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Abstract—Large Language Models (LLMs) exhibit a unique
phenomenon known as emergent abilities, demonstrating adeptness
across numerous tasks, from text summarization to code genera-
tion. While these abilities open up novel avenues in software
design and crafting, their incorporation presents substantial
challenges. Developers face decisions regarding the use of LLMs
for directly performing tasks within applications as well as
for generating and executing code to accomplish these tasks.
Moreover, effective prompt design becomes a critical concern,
given the necessity of extracting data from natural language
outputs. To address these complexities, this paper introduces
AskIt, a domain-specific language (DSL) specifically designed for
LLMs. AskIt simplifies LLM integration by providing a unified
interface that not only allows for direct task execution using
LLMs but also supports the entire cycle of code generation and
execution. This dual capability is achieved through (1) type-
guided output control, (2) template-based function definitions,
and (3) prompt generation for both usage modes. Our evalua-
tions underscore AskIt’s effectiveness. Across 50 tasks, AskIt
generated concise prompts, achieving a 16.14 % reduction
in prompt length compared to benchmarks. Additionally, by
enabling a seamless transition between using LLMs directly in
applications and for generating code, AskIt achieved significant
efficiency improvements, as observed in our GSM8K benchmark
experiments. The implementations of AskIt in TypeScript and
Python are available at https://github.com/katsumiok/ts-askit and
https://github.com/katsumiok/pyaskit, respectively.

Index Terms—domain specific language, code generation, large
language model, software engineering, artificial intelligence

I. INTRODUCTION

Recent studies [1] have unveiled the remarkable abilities of

Large Language Models (LLMs), which become increasingly

pronounced with model scaling. These abilities span a wide

range of tasks, including arithmetic operations [2], question

answering [3], text summarization [4], language translation [5],

paraphrasing [6], text prediction [7], and code generation [8]–

[12]. Intriguingly, these capabilities are not imparted explicitly

but are organically cultivated through vast exposure to natural

language data during training. This phenomenon, termed

emergent abilities, distinguishes LLMs. The notion of emergent

abilities is captivating, hinting that with further advancements

in language models, even more sophisticated capabilities may

emerge.

The rise of these emergent abilities holds significant im-

plications for software development, potentially altering the

very methods by which software is crafted. Developers can

incorporate LLMs within applications to handle tasks such as

question answering, text summarization, or language translation.

Another application of LLMs is in code generation. Tools like

Jigsaw [13] and Codex/Copilot [8] harness LLMs to convert

natural language descriptions into code. Even without these

specific tools, developers can leverage LLM-based chatbots,

like ChatGPT based on GPT-4 [14], BingAI, and Bard, for the

same purpose.

However, integrating LLMs into software development is

not without challenges. One primary decision developers face

is whether to embed the LLM directly into the application or

employ it for code generation. The distinction between these

two applications is stark, making it laborious to transition

between them later. For instance, while one could incorporate

an LLM directly into an application to sort a list of numbers,

another approach would be to utilize the LLM to generate

the code for sorting. Choosing between these methodologies

post-decision can be laborious. These methodologies differ

significantly, and altering the chosen approach subsequently

demands considerable effort.

Moreover, regardless of the approach, developers must devise

effective prompts, extract pertinent data from the LLM’s output,

and then process it. If the application integrates an LLM for its

functionality, code must be written to parse the LLM’s response

— a non-trivial task given the natural language format. Hence,

specifying the desired data format within the prompt is often

adopted to ease response parsing. Yet, this necessitates precise,

task-specific prompt design. When LLMs are used for code

generation, the resultant code must be manually integrated into

the application.

In response to these challenges, we present AskIt: a domain-

specific language (DSL) tailored for LLMs. AskIt offers a

harmonized programming interface across varied tasks, featur-

ing (1) type-guided output control, (2) template-based function

definitions, (3) code generation capabilities. The type-guided

output control obviates the need for data format specification

within natural language prompts, eliminating the intricate

prompt engineering previously essential for response extraction.
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Template-based function definitions allow developers to craft

functions leveraging an LLM, using prompts tailored to

specific tasks. Such templates can accept input parameters that

seamlessly map to the defined function’s parameters. With code

generation, there’s no demarcation between integrating an LLM

into an application and using it for code generation, allowing

effortless transitions between the two without adjusting the

prompt template.

We demonstrate AskIt’s applicability across a wide range of

LLM tasks. By using AskIt to implement 50 common tasks,

we show that AskIt can generate 7.56 lines of TypeScript code

and 6.52 lines of Python code on average. We also confirmed

that AskIt can reduce the length of prompt by 16.14 % on

average compared to the original prompts used in the OpenAI

Evals 1 benchmark.

Additionally, we measured the speedup of functions defined

with AskIt when we transitioned from using an LLM as part

of the application to executing equivalent functions generated

by the LLM. An experiment with the GSM8K benchmark [15]

revealed that generated functions by AskIt with GPT-4 achieved

a speedup of 275,092.55x in TypeScript and 6,969,904.73x in

Python, respectively, compared to the same functions using

GPT-4 as part of the application.

The contributions of this paper are summarized as follows:

1) We categorize tasks in terms of whether they are directly

answerable by LLMs and whether they are codable by

LLMs and identify the challenges faced when integrating

LLMs into software development.

2) We introduce a unified programming interface tailored

for LLMs to accommodate for codable tasks, directly

answerable tasks, and tasks that fall into both cate-

gories. This interface features type-guided output control,

template-based function definitions, and code generation

capabilities. This eliminates the boundary between the

direct application integration of an LLM and its use for

code generation.

3) We implemented AskIt in both a statically typed language

(TypeScript) and a dynamically typed language (Python)

and evaluated them across a diverse set of tasks, show-

casing its potency in code generation and efficiency in

prompt reduction.

II. MOTIVATING EXAMPLES

To underscore the need for a unified and streamlined

approach to incorporating LLMs into programming tasks, this

section explores two distinct applications that could benefit

from LLMs. The first demonstrates the potential of LLMs

in sentiment analysis of product reviews, while the second

discusses a file access task that stores the results of the

sentiment analysis in a local file system. In both cases, the

software developer must craft a prompt and either interpret the

response from the LLM or integrate the generated code into

their source code.

1https://github.com/openai/evals

A. Examples

1) Using an LLM as Part of an Application: Consider

a scenario in which a developer is writing a program to

analyze the sentiment of product reviews. Although this task

traditionally relies on complex natural language processing

pipelines or machine learning models, an LLM like GPT-4 can

significantly simplify the process. With an appropriately crafted

prompt, the LLM can interpret and deduce the sentiment behind

a given review.

Below is a simplified pseudo-code representation:
✞ ☎

1 review = "The product is fantastic. It exceeds all my

expectations."

2 prompt = "Determine the sentiment of this review: ’" +

review + "’. The final sentiment should be enclosed

in [ and ] like [negative]."

3 response = LLM.predict(prompt) # response: "The

sentiment of the review is [positive]."

4 sentiment = parse_sentiment(response) # sentiment: "

positive"
✝ ✆

where # denotes a comment. Line 1 initializes the review. In

practice, this would typically be sourced from a database or

another data source, but it’s hardcoded here for illustrative

purposes. Line 2 crafts the prompt by integrating the review

with a templated structure. Line 3 engages an LLM, processing

the prompt to generate a response. Finally, Line 4 extracts the

sentiment from the response.

This scenario introduces two major challenges:

• Parsing the LLM’s response: Developers must write

code to extract the sentiment from the LLM’s natural

language output. Due to potential variability in the LLM’s

responses, based on the prompt and its inherent behavior,

this extraction is far from trivial.

• Crafting the prompt: This task requires a deep under-

standing of natural language processing and familiarity

with potential LLM responses. By specifying the desired

response format with [ and ], the developer can make the

subsequent parsing easy.

While the provided example is straightforward, with relatively

simple prompt construction and response parsing, more com-

plex problems can introduce challenges. In these scenarios,

techniques like Chain of Thought (CoT) [16] become essential,

guiding the LLM to produce better responses. If the expected

output involves multiple facets, such as a list or several values,

crafting the prompt and response parsing can become more

complex, demanding additional effort from the developer. Thus,

while LLMs like GPT-4 offer powerful capabilities, developers

must skillfully craft their prompts and parsing methods to

ensure accuracy and reliability.

2) Using an LLM to Generate Code: Expanding upon the

sentiment analysis task, let’s delve into a scenario where the

results of the sentiment analysis need to be saved to a local

CSV (comma-separated values) file. Although this is not an

inherent function of LLMs, their ability to generate relevant

code exemplifies their adaptability.

Typically, LLMs generate code snippets in response to a high-

level description provided by the user. For instance, a developer

might employ an LLM, seeking to generate Python code that
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Fig. 1. Code generation by LLM (ChatGPT)
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saves sentiment analysis results into a local file. This interaction

often takes place within platforms like ChatGPT, Bard, or

BingAI. Here, the developer would pose a task description,

such as ”Generate a Python function to log a product review

and its associated sentiment into a specific CSV file.”

Figure 1 illustrates an interaction with ChatGPT. After the

developer inputs the task description, ChatGPT responds with

a pertinent code snippet. The developer can then manually

copy and incorporate this snippet into their existing codebase.

This generated function opens the specified CSV file in append

mode and saves the ’review’ and ’sentiment’ as a new row.

However, it’s important to note that ChatGPT cannot execute

this generated code directly since it doesn’t have access to the

local file system. Thus, developers need to manually integrate

this snippet into their software environment. Sometimes, this

incorporation requires tweaks to make the newly added code

align with the existing codebase. While this code generation

approach is useful, it still demands manual intervention which

could be made more efficient.

B. Classification and Examples of Problem Types for LLMs

In the previous examples, we presented two distinct types

of tasks that can be addressed or facilitated by LLMs. One

involves using LLMs as part of an application, while the other

entails using LLMs to generate code. To optimize the use

of LLMs, we categorize tasks based on the following two

dimensions:

• Directly Answerable or Not: Determines whether the

LLMs can directly answer the task.

• Codable or Non-Codable: Indicates whether LLMs can

generate code to do the task.

These dimensions are orthogonal to each other. We can leverage

LLMs if either of the dimensions holds true. In other words,

we can integrate LLMs into an application if the task is directly

answerable, and we can employ LLMs to implement code if

the task is codable. Given these dimensions, we can group tasks

into three categories: non-codable but directly answerable tasks,

intersecting tasks, and codable but not directly answerable tasks,

as illustrated in Figure 2. The prior two examples fall under

the categories of non-codable but directly answerable tasks and

codable but not directly answerable tasks, respectively. The

sentiment analysis task represents a non-codable but directly

answerable task because LLMs can immediately address it,

whereas traditional programming methods might not achieve

comparable accuracy. Conversely, the file access task is codable

but not directly answerable because traditional programming

techniques can handle it, but it isn’t straightforwardly answered

by LLMs.

It’s worth noting that some tasks can be addressed both

directly by LLMs or through LLM-generated code. For such

tasks, either solution may be chosen. Take, for example, the

mathematical query ”What is 7 times 8?”. This could be

resolved either by employing LLMs within an application

or by using LLMs to generate code. Generally, intersecting

tasks exhibit superior performance when tackled by generated

code than when directly addressed by LLMs. However, the

delineation of tasks isn’t always evident and can be ambiguous.

The boundaries separating the three categories are often blurred.

As we will illustrate with our experimental results, certain

mathematical problems are answerable by LLMs but resist

coding by LLMs.

The challenge arises from the distinct implementation needs

of the two approaches. When LLMs are incorporated into an

application, we must craft code to parse the LLM responses.

Conversely, when LLMs are used for code generation, the

resulting code must be manually integrated into our source code.

A unified interface for these strategies is absent, complicating

the transition between the two methods. Should such a

unified interface exist, transitioning between the two techniques

would be more straightforward. This adaptability is essential,

especially given the inherent ambiguity in task classification.

Furthermore, as LLMs continue to evolve, the borders defining

the three categories are bound to shift.

III. DESIGN AND IMPLEMENTATION

A. Overview

Our Domain Specific Language (DSL), AskIt, offers two

APIs: ask and define. They serve as a unified interface

by borrowing the syntax of function calls from the host

programming language. Hence, they can be used wherever
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function calls are permitted. These APIs address a wide array

of tasks, such as non-codable yet directly answerable tasks,

intersecting tasks, and codable but not directly answerable tasks,

as detailed in the previous section. The features of the APIs are

as follows: (1) Type-guided output control, (2) template-based

function definitions, and (3) code generation from the unified

interface.

As a proof of concept, we implemented TypeScript and

Python versions of AskIt. The DSL compiler is fashioned as

a TypeScript compiler plugin for TypeScript and as a Python

library for Python. AskIt compiler and runtime synthesize

the prompt for the LLMs and the parser for the response

based on the type information of the function and variables

embedded in the template expression. It also generates the

function that implements codable tasks. In the following, we

illustrate these features using the same examples provided

in the previous section. Although we use TypeScript for the

examples, a similar syntax can be adopted for Python. The

implementation in Python is discussed later in III-F.

Type-Guided Output Control: A typical example of a

non-codable yet directly answerable task is determining the

sentiment of a review. We assume the sentiment can be either

positive or negative. Instead of detailing the expected output

format in the prompt, we can specify the expected output type

in the DSL. For instance, the following code is valid AskIt

code for the sentiment analysis task:
✞ ☎

1 let sentiment = await ask<’positive’ | ’negative’>(’What

is the sentiment of the following review: "The

product is fantastic. It exceeds all my expectations.

"’);
✝ ✆

Here, ask is an API that accepts a prompt and returns a

response. The response’s type is indicated in the type parameter

of ask. In this instance, ’positive’|’negative’ is a

union type, which consists of two string literal types and signi-

fies that the response is either ’positive’ or ’negative’,

This type information aids in generating the prompt for the

LLMs. After executing the code, the variable sentiment

will be assigned the value ’positive’. await is a keyword

that indicates the asynchronous execution of the ask API. The

ask API returns a promise, and the await keyword is used

to wait for the promise to be resolved.

Moreover, a prompt can be parameterized by using a prompt

template as an argument for ask. Using a prompt template,

the example above can be rewritten as:
✞ ☎

1 let sentiment = await ask<’positive’ | ’negative’>(’What

is the sentiment of {{review}}?’);
✝ ✆

Here, review is a string type variable. {{ and }} mark the

start and end of a variable in the prompt template, respectively.

The variable review captures the symbol declared in the

same scope.

Template-based Function Definitions: In practical software

development, the same task often needs replication. AskIt

introduces a mechanism to formulate a function to repeatedly

perform the same task. For instance, a function can be designed

to return the sentiment of a review:

✞ ☎
1 let getSentiment = define<’positive’ | ’negative’>(’What

is the sentiment of {{review}}?’);
✝ ✆

Here, define is an API that accepts a prompt template and

returns a function. The type parameter of define determines

the function’s return value. The function’s parameter is defined

in the prompt template. In this example, the function receives

a variable named review. The parameter in the template

prompt corresponds to the parameter of the function defined

with the same name. By giving an actual argument, the defined

function can be called as follows:
✞ ☎

1 let sentiment = await getSentiment({review: ’The product

is fantastic. It exceeds all my expectations.’});
✝ ✆

Upon execution, sentiment will hold the value ’positive

’.

Code Generation: As discussed previously, LLMs can be

employed for code generation. For example, LLMs can be

used to implement a function that appends a review and its

sentiment to a CSV file. There’s no need to use different APIs

for code generation. Our cohesive interface enables function

generation:
✞ ☎

1 let appendReviewToCsv = define<void>(’Append {{review}}

and {{sentiment}} as a new row in the CSV file named

{{filename}}’);
✝ ✆

Here, filename, review, and sentiment are variables.

The above code can be invoked anywhere in the source code:
✞ ☎

1 appendReviewToCsv({

2 filename: ’reviews.csv’,

3 review: ’The product is fantastic. It exceeds all my

expectations.’,

4 sentiment: ’positive’

5 });
✝ ✆

Before the code’s execution, the DSL compiler, with the

assistance of an LLM, will generate a function that appends a

review and its sentiment to a CSV file.

B. Syntax

The AskIt syntax builds upon the function call structure

of the host programming language. Listing 1 presents the

AskIt syntax tailored for TypeScript. For this grammar, we

assume that TYPE, STRING_LITERAL, IDENTIFIER, and

CONSTANT_EXPRESSION are non-terminal symbols. They

denote the type, string literal, identifier, and constant expression

in the host programming language, respectively.

The primary APIs provided by AskIt are ask and define

(Line 1). The ask API takes the response type of an LLM as

a type parameter and takes a prompt template as a function

parameter. Optionally, it can also take examples of the task’s

input-output pairs (Line 2). These examples facilitate few-shot

learning [5] and provide a way of Programming by Example

(PBE) [17], [18]. In contrast, the define API takes the LLM’s

response type and optional parameter types as type parameters

(Line 3). Like ask, define can incorporate a prompt template

and examples. Moreover, define can accept two sets of

input-output examples. While the first set is used for few-shot
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✞ ☎
1 askit_api ::= ask | define

2 ask ::= "ask" "<" TYPE ">" "(" prompt_template examples?

")"

3 define ::= "define" "<" TYPE param_types? ">" "("

prompt_template examples? examples? ")"

4 prompt_template ::= STRING_LITERAL

5 param_types ::= "," "{" IDENTIFIER ":" TYPE (","

IDENTIFIER ":" TYPE)* "}"

6 examples ::= "," "[" example ("," example)* "]"

7 example ::= "{" "input" ":" input "," "output" ":"

CONSTANT_EXPRESSION "}"

8 input ::= "{" IDENTIFIER ":" CONSTANT_EXPRESSION (","

IDENTIFIER ":" CONSTANT_EXPRESSION)* "}"
✝ ✆

Listing 1. Syntax of AskIt for TypeScript

User
Program

AskIt
Compiler

LLM

Task
Functions

Task
Functions
Generated
Functions

Updated
User

Program

Promp

t
Promp

tPrompt

1

Promp

t
Promp

tResponse

LLM

Promp

t
Promp

tPrompt

Promp

t
Promp

tResponse

For Directly Answerable TasksFor Codable Tasks

AskIt
Runtime

2

3 4

5 7

8 9

10

6

Fig. 3. Computational flow of AskIt DSL for statically typed language

learning, the second set is utilized for validating the generated

code.

The prompt template is essentially a string literal (Line 4),

but it can have placeholders for variables. These placeholders

are identifiers enclosed between {{ and }}. The variable name

within this placeholder should be a valid identifier of the host

programming language.

Parameter types are key-value pairs listed within { and },

separated by commas (Line 5). Here, the key signifies the

variable name, and the value represents its type in the host

language.

Examples consist of input-output pairs. They are enclosed

within [ and ] and separated by commas (Line 6). Each

example, bounded by { and }, has an input key, which

links to a task input, and an output key, pointing to the

task output (Line 7). An input is a collection of key-value

pairs, where the key is a variable name and the value is a

constant expression defined by the host language. The output

is a standalone constant expression.

C. Computation Flow

In a proof of concept, we implemented AskIt for TypeScript

and a DSL compiler as a TypeScript compiler plugin. The DSL

compiler is triggered when the TypeScript compiler compiles

the source code. The source code is written in TypeScript

extended with our DSL, and the output of the DSL compiler

is TypeScript code.

The computational flow of the DSL compiler is illustrated in

Figure 3. The left side of the figure shows the computational

flow at the compilation time, and the right side shows the

computational flow at the runtime. When the DSL compiler is

triggered, it traverses the Abstract Syntax Tree (AST) of the

source code and converts the AskIt APIs to specific functions

written in TypeScript ( 1 ). If the call to define is detected

and it is a codable task, the DSL compiler generates a function

( 2 – 6 ). First, the DSL compiler generates a prompt to ask

an LLM to code the task ( 2 ). Then, the prompt is passed to

the LLM ( 3 ). The LLM generates a response with a code

for the task ( 4 ), and the DSL compiler receives the response

and parses the response to extract the generated code ( 5 ).

Finally, the DSL compiler validates the code and stores it. At

the same time, a call to define is replaced with a reference

to the generated function ( 6 ).

The DSL compiler also updates calls to ask and define

even if they are not codable tasks. The DSL compiler extracts

the type information from the type parameter of ask and

define and encodes them into data to be used to generate a

prompt at runtime ( 6 ).

The user program at the runtime consists of the generated

functions, the updated user program and the DSL runtime.

When the user program is executed, the updated user program

calls the generated functions if the task is codable. If the call

to ask or functions defined by define is detected, the DSL

runtime generates a prompt based on the type information

extracted at the compilation time ( 7 ). Then, the prompt is

passed to the LLM ( 8 ). The LLM generates a response

that contains the data in the specified type ( 9 ), and the

DSL runtime receives the response and parses it to extract the

answer( 10 ).

D. Code Generation for Codable Tasks

Our DSL compiler generates a function that implements the

task specified by the prompt template passed to the define

call. All calls to define are examined to determine if the

task is codable. If it is, the DSL compiler generates a function

and replaces the call to define with the generated function.

As a result, calls to generated functions are executed without

invoking the LLM at runtime.

We provide two ways to specify the task for codability by

LLMs. The first method allows users to specify the name of

a source file containing the call to define. In this case, the

DSL compiler generates functions for all the calls to define

in the specified source file. The second, more granular method

lets the user specify the name of the function to be generated.

This function name corresponds to the variable name to which

the result of the define call is assigned.

For all calls to define designated as codable, the DSL

compiler follows these steps to generate a function with an

LLM:

Step 1: The DSL compiler creates a prompt for the LLM

based on the prompt template given to the define

call.

Step 2: The DSL compiler sends this prompt to the LLM and

receives the response from the LLM.

Step 3: The DSL compiler parses this response to extract the

task’s code and validates it.
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✞ ☎
1 Q: Implement the following function:

2 ‘‘‘typescript

3 export function func({x, y}: {x: number, y: number}):

number {

4 // add ’x’ and ’y’

5 }

6 ‘‘‘
✝ ✆
✞ ☎

1 A:

2 ‘‘‘typescript

3 export function func({x, y}: {x: number, y: number}):

number {

4 // add ’x’ and ’y’

5 return x + y;

6 }

7 ‘‘‘
✝ ✆
✞ ☎

1 Q: Implement the following function:

2 ‘‘‘typescript

3 export function calculateFactorial({n}: {n: number}):

number {

4 // Calculate the factorial of ’n’

5 }

6 ‘‘‘
✝ ✆

Fig. 4. Prompt for asking the LLM to code the task

Step 2 and Step 3 are executed multiple times until a generated

code passes the validation in Step 3. The validation includes

a syntactic check and a semantic check using execution with

test examples.

In Step 1, the DSL compiler formulates a prompt to request

the LLM to implement the task. This prompt instructs the LLM

to complete the body of the function. The function signature is

derived from the type information of the type parameter from

the define call. Both the return type and parameter types

are obtained from the define call’s type parameter. The DSL

compiler assigns a unique name to the function and outlines

the empty function body for the LLM to fill in. We adopt

a one-shot learning approach for function generation. In the

generated prompt, we first provide a sample code generation

to elucidate the code generation process. Then, we direct the

LLM to generate a function implementing the specified task.

For instance, consider the scenario where the DSL compiler

creates a function with the define API:✞ ☎
1 let calculateFactorial = define<number, {n: number}>("

Calculate the factorial of {{n}}")
✝ ✆

The first and second type parameters specify the return type

and parameter type of the defined function. From this call,

the DSL compiler generates a function whose signature is as

follows:✞ ☎
1 function calculateFactorial({n}: {n: number}): number
✝ ✆

We can call this function with a named argument, like

calculateFactorial({n: 10}). We adopt named

parameters instead of positional parameters since they are

more robust for the modification of the prompt. Named

parameters are not affected by the appearance order in a

template prompt.

The return type and parameter types originate from the type

parameter of the define call. The DSL compiler assigns a

unique name to the function and delineates the empty function

for the LLM to complete. The prompt that instructs the LLM

to implement the function body is displayed in Figure 4. This

prompt comprises three segments. The initial two segments are

always the same regardless of the task. They provide the LLM

with an example of an input and output. This example entails

constructing a function that accepts two numbers and outputs

their sum. The initial segment requests the LLM to implement

the function. While the function body is empty, the prompt

details the task to be done as a comment inside the body. The

second segment gives an example of the response expected

from the LLM. The expected response is code that implements

the function. The third segment is the task-specific part and

instructs the LLM to implement the given task. This expected

response is code that implements the function. The structure

of the instruction to the LLM is the same as the instruction in

the first segment.

In Step 2, the DSL compiler sends the created prompt to

the LLM and receives the response from the LLM. This step is

executed using a low-level API provided by the LLM. In our

implementation, we use the OpenAI API for this step. The API

has a parameter named temperature, which controls the

randomness of the response and can have a value ranging from

0.0 to 2.0. We use the default value of 1.0 for this parameter,

as we seek a certain level of randomness in the responses to

ensure a unique response for each retry.

In Step 3, the DSL compiler extracts the code from the

response. The LLM’s reply is expected to contain the generated

function in markdown’s code block format: ‘‘‘typescript

... ‘‘‘. As such, our DSL compiler can extract the

function by finding the code block. The DSL compiler checks

the code syntactically and, optionally, checks it semantically

by using the test examples provided in the define call.

The user can specify test examples for the task in the

define call. These examples are provided as input-output

pairs. The input is a collection of key-value pairs, where the key

is a parameter name and the value is a constant expression. The

output is a standalone constant expression. The DSL compiler

executes the generated function with the input and compares

the output with the expected output.

If the code passes validation, the DSL compiler stores it

in a file within the directory named askit, which is located

in the same directory as the source file. The DSL compiler

also replaces the call to define with a call to the generated

function. The file containing the generated code is named after

the template prompt. The user can review the generated code

if necessary.

E. Interaction with an LLM for Directly Answerable Tasks

For each non-codable define and ask call, the DSL

compiler just extracts the type information from the type

parameter and encodes them into data to be used to generate a

prompt at runtime. Calls to functions defined by define and

calls to ask are replaced with a call to our DSL runtime that

takes the type information as a parameter in addition to the

original parameters. Our DSL runtime interacts with an LLM
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✞ ☎
1 You are a helpful assistant that generates responses in

JSON format enclosed with ‘‘‘json and ‘‘‘ like:

2 ‘‘‘json

3 { "reason": "Step-by-step reason for the answer", "answer

": "Final answer or result" }

4 ‘‘‘

5 The response in the JSON code block should match the type

defined as follows:

6 ‘‘‘ts

7 { reason: string; answer: { title: string; author: string;

year: number }[] }

8 ‘‘‘

9 Explain your answer step-by-step in the ’reason’ field.

10

11 List ’n’ classic books on ’subject’.

12 where ’n’ = 5, ’subject’ = "computer science"
✝ ✆

Listing 2. Prompt to ask the LLM to perform the task directly

to execute the task specified by the prompt template passed

to the define or ask call. The steps of interaction between

the DSL runtime and the LLM are as follows:

Step 1: The DSL runtime creates a prompt for the LLM based

on the prompt template given to the define call.

Step 2: The DSL runtime sends this prompt to the LLM and

receives the response from the LLM.

Step 3: The DSL runtime parses this response to extract the

answer and validates it using the type information.

Step 2 and Step 3 are repeated until an answer in the valid

type is available.

In Step 1, the AskIt runtime generates a prompt to ask the

LLM to perform the task specified by the prompt template

passed to the define or ask call. It also uses the return type

specified in the type parameter of the define or ask call to

generate a prompt that constrains the LLM’s response.

The difficulty of interacting with the LLM lies in extracting

the answer from the LLM’s response. LLM responses are typi-

cally in natural language, making answer extraction challenging.

To address this issue, we constrain the LLM’s response to be

in JSON (JavaScript Object Notation) format. The core idea of

our prompt generation is to leverage the LLM’s understanding

of the grammar and semantics of programming languages. For

instance, an LLM, like GPT, can comprehend the grammar of

JSON. By requesting the LLM to answer in JSON format, we

simplify the task of extracting the answer from its response.

However, merely specifying the JSON format does not

guarantee the ease of answer extraction since the JSON

structure may vary. This issue can be resolved by constraining

the LLM’s response to a specific JSON format. Fortunately,

LLMs can grasp the semantics of types in programming

languages. For instance, GPT can understand the semantics

of TypeScript types. Furthermore, TypeScript types are ideal

for constraining the JSON structure as they can be viewed as

a JSON schema. For instance, the type {x: number; y:

number} can be perceived as a JSON schema. For example

it accepts JSON object {"x": 1, "y": -1} but denies

JSON object [1, -1]. This approach is retained even when

the host language is not TypeScript. Our AskIt implementation

for Python uses TypeScript types to constrain the LLM’s JSON

response, even though Python is the host language.

We expect all JSON objects to have two fields: reason

and answer regardless of the task. Another possible option

is not to use these fields and to use the entire JSON object as

the answer. However, if the answer field is not specified, the

LLM sometimes automatically generates the answer field,

which is not expected. This behavior complicates the answer

extraction process. To avoid this issue, we always expect the

LLM to provide the answer field.

As an example, consider a scenario where the LLM’s

response is expected to be a list of dictionaries. A function

might be defined as follows:
✞ ☎

1 type Book = { title: string; author: string; year: number

}

2 let getBooks = define<Book[]>("List {{n}} classic books

on {{subject}}.")
✝ ✆

Here, Line 1 defines a type Book and Line 2 defines a function

getBooks that returns a list of Book. This function can be

invoked as:
✞ ☎

1 let csBooks = getBooks({n: 5, subject: "computer science"

})
✝ ✆

When this function is called during runtime, the DSL runtime

creates a prompt as displayed in Listing 2.

In Listing 2, the initial line indicates that the response should

be in JSON format enclosed with ‘‘‘json and ‘‘‘. Lines

2–4 provide an example of the expected JSON format. We

illustrate that the response should contain both an answer and

a reason, exemplified by the provided response. Lines 1–4 are

a fixed statement, always generated regardless of the function’s

parameters. Lines 5–8 are produced based on the function’s

type information. The ’reason’ is always designated as string

, regardless of the function’s type information. Conversely, the

’answer’ is task-specific. In this instance, the type of ’answer’

is specified as { title: string; author: string;

year: number }[] since the function’s type information

is Book[].

Line 9 is another fixed statement, always generated irrespec-

tive of the task description. We instruct the LLM to elucidate

its answer in the ’reason’ field. This promotes the Chain of

Thought (CoT) [19].

Lines 11-12 are constructed based on the prompt template

passed to the define call and arguments passed to the

function. {{ and }} in the prompt template are replaced with

single quotes (Line 11), and the values of each parameter are

appended to the prompt template (Line 12).

In Step 2, the DSL runtime sends the prompt to the LLM

and receives the response from the LLM. This step uses the

low-level API provided by the LLM. We use OpenAI API in

our implmentation.

In Step 3, the DSL runtime parses the response and extracts

the answer from the response. The response is expected to

contain the JSON object. However, the LLM does not always

provide answers in the expected format. In such cases, the

DSL runtime requests the LLM to retry the task. The DSL

runtime employs a feedback mechanism to elicit the desired

response in second or subsequent attempts. Through multiple
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iterations, the DSL runtime refines the prompt to guide the

LLM to provide the response in the expected format. For each

iteration, the DSL runtime evaluates the response based on the

following criteria:

1) The response contains the JSON object.

2) The JSON object includes the answer field.

3) The answer field matches the expected type.

If any of these criteria are not met, the DSL runtime refines the

prompt by adding the LLM’s response and a new instruction

to the original prompt. The new instruction points out the part

of the response that does not meet the criteria and instructs

the LLM to modify the response.

F. Implementation for a Dynamically Typed Language

Our DSL compiler can be implemented in a dynamically

typed language. In a dynamically typed language, type infor-

mation is provided at runtime. Hence, the code generation

for codable tasks should be done at runtime instead of at

compilation time.

Our implementation of AskIt for Python is fully realized as

a library. The API of AskIt for Python is almost identical to

the API of AskIt for TypeScript, except for the following two

points:

1) The return type of ask and define is specified as a

parameter of the function rather than as a type parameter.

2) Compilation is invoked explicitly by calling the compile

method on the function returned by define.

The first point concerns how the type information is provided

to define. In the case of the Python implementation, the type

is specified by a type object provided as the first argument of

the function rather than a type parameter. AskIt for Python

offers APIs to create a type object for the return type of

ask and define. The provided APIs are listed in Table I.

The first column is the name of the API, and the second

column describes the type created by the API. The third column

provides usage examples, and the fourth column indicates the

equivalent type in TypeScript.

For instance, the same task introduced in III-E can be

implemented in Python as follows:
✞ ☎

1 Book = dict({ "title": str, "author": str, "year": int })

2 getBooks = define(List(Book), "List {{n}} classic books

on {{subject}}.")
✝ ✆

The first line defines a type object using the provided APIs.

The second line defines a function that returns a list of Book.

The second point of difference concerns how code generation

is conducted. In Python’s case, users must explicitly specify

when code generation occurs. For this purpose, functions

defined by define return a function object that implements

the compile method. When the compile method is invoked,

code generation proceeds in the same manner as the compilation

time of AskIt for TypeScript.

For instance, the task described in Section III-D can be

implemented in Python as follows:
✞ ☎

1 calculateFactorial = define(int, "Calculate the factorial

of {{n}}").compile()
✝ ✆

When the compile method is invoked, code generation

takes place, resulting in the return of a function object that

implements the task. The generated code is cached in a file

upon its initial creation, ensuring that code generation happens

only once, regardless of how many times the compile method

is called.

IV. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of AskIt, we conducted a

series of experiments. Each experiment was designed to answer

distinct questions about our DSL, specifically targeting different

task types:

• Codable tasks:

– RQ1: How does AskIt reduce the LOC required to

implement codable tasks?

– RQ2: Are examples of tasks effective for improving

the accuracy of generated code?

• Directly answerable tasks:

– RQ3: How does AskIt reduce the LOC of prompt

generation for directly answerable tasks?

• Intersecting tasks:

– RQ4: How does the speed and performance of functions

generated by AskIt compare to the same function before

code generation?

To address these questions, we carried out three different

experiments for each task category.

A. Codable Tasks

1) Common Coding Tasks: To address RQ1 and RQ2, we

designed an experiment that involved implementing a set of

50 tasks using AskIt. To ensure these tasks were both relevant

and realistic, we enlisted the help of ChatGPT. Specifically, we

inquired about the 50 most commonly requested TypeScript

coding tasks. These 50 tasks subsequently served as the

foundation for our implementation in TypeScript and Python

using AskIt. To verify the correctness of the generated code,

we supplied AskIt with example tests for each task. If a test

failed, AskIt would attempt code regeneration up to a predefined

maximum retry limit, which was set to 9. In this experiment, we

specified ”gpt-3.5-turbo-16k” as the backend LLM for AskIt.

Our results for the first ten tasks and additional remarkable

tasks are presented in table II. The first column enumerates

the 50 tasks. The table’s second column displays the template

prompt used in both TypeScript and Python implementations.

The third column indicates the return type utilized in the

define call for each task. The fourth column delineates the

parameter types utilized in the define call for each task.

We only use parameter types for TypeScript since Python

implementation does not use parameter types. Columns five

and six enumerate the lines of code (LOC) in the generated

TypeScript code and the associated retries. LOC counts only

substantive lines, omitting empty lines or comment-only lines.

The next two columns present analogous details for Python.

On average, AskIt produced 7.56 lines for TypeScript and

6.52 lines for Python. Considering that each AskIt function
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TABLE I
TYPES AND THEIR EXAMPLES

API Description Usage Example Equivalent Type in TypeScript

int Integer int number

float Floating Point Number float number

bool Boolean bool boolean

str String str string

literal Literal literal(123) 123

list List list(int) number[]

dict Dictionary dict({ ’x’:int, ’y’:int }) {x: number, y: number}

union Union union(literal(’yes’),literal(’no’)) ’yes’ | ’no’

definition resulted in a single line, an effective reduction of

6.56 and 5.52 lines was achieved for TypeScript and Python,

respectively. Although all tasks were successfully rendered in

TypeScript, tasks #11 and #21-24 encountered issues in Python.

This stems from the Python variant of AskIt not leveraging

parameter types for prompt generation in the LLM. For instance,

in Task #11 for Python, we presumed the parameter type for

xs was Array. Contrarily, the generated code assumed it was

set.

The retry count for successful code generation varied

between 0 and 7 for Python. In a few instances, the initially

generated code did not pass the example test. Even though

the retry count seems negligible, it’s imperative to recognize

that it’s not consistently zero. This indicates that the LLM can

occasionally produce erroneous code. As an example, the code

for Task #14 in Python failed its initial run, computing the

Fibonacci numbers up to n + 1 rather than n, necessitating

seven retries. Thus, supplying AskIt with task examples is vital

for assuring the correctness of the generated code.
2) HumanEval: To compare the code generated by AskIt

with the hand-written code, we used the HumanEval benchmark

[8]. The HumanEval benchmark is a dataset of 164 coding tasks.

Each task description includes a prompt, test cases, and its

corresponding hand-written solution. The test cases are input-

output pairs, and the hand-written code is a Python function

that passes all the test cases. The HumanEval benchmark is

designed to evaluate the performance of LLMs on coding

tasks. We used the HumanEval benchmark to compare the

code generated by AskIt with the hand-written code.

We specified the prompts of the HumanEval benchmark

as the prompt templates for AskIt. We converted the few-

shot learning examples described in the prompts into training

examples for the define call. We used the test cases of

the HumanEval benchmark as test examples to check the

correctness of the generated code.

As a result, we successfully generated valid code for 139

out of 164 tasks, which means the success rate is 84.8 %.

This accuracy is comparable to the accuracy of state-of-the-art

LLMs [20]–[24] on the HumanEval benchmark. On average,

the generated code for the 139 tasks was 8.05 lines, while the

source code in AskIt was 23.74 lines. The source code is longer

than the generated code because it includes additional lines

for training and test examples. Compared to the hand-written

code, the generated code was on average 1.27 times longer, as

the average length of the hand-written code was 7.57 lines.
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Fig. 5. Scatter plot of LOC of generated code and hand-written code

Figure 5 shows the scatter plot of the LOC (Lines of Code)

of the generated code and the hand-written code. Each point on

the plot corresponds to a specific coding task, with the x-axis

denoting the LOC in the hand-written version and the y-axis

representing the LOC in the generated version. The size of each

point is proportional to the ratio of the generated LOC to the

hand-written LOC. This scatter plot reveals a broad distribution

of data points, indicating variability in the relationship between

the lengths of the hand-written and generated code. Although

AskIt generally produces longer code than the hand-written

code, in 49 out of 139 tasks (35.3 %) the generated code is

shorter. This result indicates that AskIt can generate shorter

code than the hand-written code in some cases.

B. Directly Answerable Tasks

To answer RQ3, we transformed existing prompts for LLMs

into AskIt prompts tailored for directly answerable tasks. We

then compared the lengths of the original prompts with those

of the AskIt prompts. Our source of these prompts was the

OpenAI Evals2. The OpenAI Evals repository contains over

300 benchmarks, representing real-world use cases of LLMs.

Notably, a majority of these benchmarks originate from real-

world LLM users.

Each benchmark in the repository consists of multiple test

cases. In turn, each test case includes a prompt and the

anticipated LLM response. For this experiment, we restricted

our focus to the first 50 benchmarks from OpenAI Evals.

Additionally, we selected only the first test case from each

benchmark, given that all the test cases within a particular

benchmark share a similar type but with varying inputs.

2https://github.com/openai/evals
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TABLE II
SUMMARY OF THE 50 CODABLE TASKS IMPLEMENTED USING ASKIT

# Template Prompt Return Type in TypeScript Parameters Types (TypeScript Only) TypeScript Python

LOC Retry LOC Retry

1 Reverse the string {{s}}. string { s: string } 5 0 4 0

2 Calculate the factorial of {{n}}. number { n: number } 9 0 7 0

3 Concatenate the strings {{ss}}. string { ss: string[] } 5 0 5 0

4 Sort the numbers {{ns}} in ascending order. number[] { ns: number[] } 5 0 5 0

5 Find the largest number in {{ns}}. number { ns: number[] } 3 0 5 0

6 Check if {{n}} is a palindrome. boolean { n: number } 7 0 6 0

7 Calculate the sum of all numbers in {{ns}}. number { ns: number[] } 5 0 5 0

8 Calculate the average of all numbers in {{ns}}. number { ns: number[] } 8 0 5 0

9 Count the number of occurrences of {{x}} in {{xs}}. number { xs: number[]; x: number } 6 0 8 0

10 Remove all instances of {{x}} from {{xs}}. number[] { xs: number[]; x: number } 3 0 6 0

11 Return the unique elements in {{xs}}. number[] { xs: number[] } 5 0 0 0

12 Find the factorial of {{n}}. number { n: number } 9 0 7 0

14 Generate the Fibonacci sequence up to {{n}}. number[] { n: number } 10 0 19 0

21 Convert the JSON object {{o}} into a string. string { o: any } 3 0 0 0

24 Find the difference between the dates {{d1}} and {{d2}}. number { d1: Date; d2: Date } 6 0 0 0

Our modification process for the AskIt prompts in-

volved eliminating superfluous information. This includes

phrases dictating the LLM’s response format or prompting

the LLM to elucidate its answer’s rationale. The AskIt

prompt inherently incorporates such information. For in-

stance, consider this excerpt from the original prompt

for the benchmark 2d movement.dev.v0: "Please note:

In the following EXERCISE, it is essential

that you only respond with a single line

in the format (x, y)." Such directives can be omit-

ted from the AskIt prompt. Instead, we detail the expected LLM

response type within the AskIt prompt. In the aforementioned

case, the response type is designated as { x: number, y:

number }.

Given that most benchmarks were unsolvable by GPT-3.5

and GPT-4, we solely ensured that our modified prompt yielded

an output format congruent with the LLM’s expected response,

as specified in the test case.

Figure 6 presents a histogram summarizing the reductions

in prompt lengths. The x-axis represents the range of character

counts, and the y-axis displays the frequency of benchmarks

within each range. This histogram visually illustrates the distri-

bution of prompt length reductions achieved by transforming the

original prompts into AskIt prompts. On average, we observed a

16.14 % reduction in character count from the original prompts.

All the types used in the benchmarks are presented in Figure

7. The x-axis represents the types, and the y-axis displays the

number of uses for each type. We count the number of uses

in two ways: (1) counting the number of uses of the top-level

type, and (2) counting the number of uses of all types. The

most frequently used top-level type is string, followed by

number and boolean. Although the literal type is not a

top-level type, it is frequently combined with other types

C. Intersecting Tasks

One of the benefits of the unified interface provided by

AskIt is that it improves the performance of intersecting tasks

by using the LLM to generate code for the task without

rewriting the prompt template. To answer RQ4, we compared
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the performance of functions in two scenarios: when using

LLMs to answer the task directly, and when the function is

generated by the LLM to perform the task.

We used the GSM8K [25] benchmark, a dataset of high-

quality grade school math word problems. We converted nu-

merical values surrounded by spaces in the problem description

into variables since the generated programs are often reused

with different values in a practical setting.

We used the original values as test examples to check the

correctness of the generated program. We execute the program

in the following two ways: (1) directly executing the program

generated by AskIt, and (2) compiling the program generated

by AskIt and executing the compiled program. If the generated

program failed to pass the test example, we retried up to 9

times to generate the correct program.

The GSM8K benchmark consists of training data and test

data. We only use the test data for our evaluation since we use

50



TABLE III
EXPERIMENTAL RESULTS USING GSM8K

Average Metrics TypeScript Python

Latency (s) 13.28 22.97
Execution Time (µs) 49.11 5.09
Compilation Time (s) 14.19 20.38
Speedup Ratio 275092.55 6969904.73

GPT without fine-tuning with the training data. The test data

contained 1,319 problems. We used ”gpt-4” as the backend

LLM for AskIt in this experiment. All the time measurements

were conducted on a machine with an Apple M1 CPU and

16GB of RAM.

In TypeScript, 1,138 problems were solved by GPT-4. In

Python, GPT-4 directly solved 1,159 problems. The difference

is not significant. Since both implementations use the same

GPT model and the same prompt, the difference seems to

come from the randomness of the response of GPT-4. We

use these 1,138 and 1,159 problems for program generation.

We successfully generated the program for 1,114 and 1,134

problems in TypeScript and Python, respectively.

The results are shown in Table III for TypeScript and Python,

respectively. The latency is the time to obtain the answer

from the LLM. The execution time is the time to execute the

generated function. The compilation time is the time to generate

the function for the problem. On average, the generated codes

answered the problem 275,092.55x and 6,969,904.73x times

faster in TypeScript and Python, respectively, than using the

LLM directly to answer the problem. While the speedup ratio

is different between TypeScript and Python, the generated code

is significantly faster than the LLM in both cases.

V. RELATED WORK

LMQL [26] is a query language specifically designed for

large language models (LLMs), combining natural language

prompts with the expressiveness of Python. It provides fea-

tures such as constraints, debugging, retrieval, and control

flow to facilitate interaction with LLMs. LMQL offers full

Python support, enabling powerful control flow and logic

in a prompting logic. LMQL allows model developers to

declare logical constraints governing model output. These

get turned into ”token-level prediction masks” - tokens being

what LLMs deal with. While it supports type constraints, the

supported types are limited and not integrated with the type

system of the underlying programming language. For example,

LMQL does not support the ability to define custom types.

LLMChain3 is a library that provides a prompt template that

supports parameters like AskIt. It generates prompts by filling

in the template with the parameters. While LLMChain provides

apply_and_parse function to parse the response of LLM,

the user needs to specify the parser to extract the answer from

the response. On the other hand, AskIt automatically parses

the response and extracts the answer from the response based

3https://docs.langchain.com/docs/components/chains/llm-chain

on the type information. The OpenAI API4 is a low-level API

for LLMs. The latest version of the OpenAI API supports

function calling. The user can register a user-defined function

with the LLM and call it from the prompt. The argument for the

function is passed as a JSON object. By exploiting this feature,

users can obtain answers in a specific format. However, the

code is more complicated than using AskIt, as the user needs

to write code to register the function, and make it callable

from the prompt. While AskIt does not use this feature, it can

be used to implement AskIt.

Unlike AskIt, LMQL, LLMChain, and the OpenAI API do

not support code generation. With AskIt, switching between

using the LLM directly and using the generated code can be

done without changing the prompt template.

Another approach to integrating LLMs into programming is

to enable LLMs to use APIs so that they can access broader and

more dynamic knowledge bases, as well as perform complex

computational tasks. The challenge is the complexity of inte-

grating millions of changing APIs, which can have overlapping

functionalities and nuanced limitations. Gorilla [27] proposes

using self-instruct fine-tuning and retrieval to enable LLMs to

accurately select from large, overlapping, and changing sets of

tools expressed via their APIs and API documentation.

VI. FUTURE WORK

One limitation of AskIt is that it does not guarantee the

safety of the generated code. If the generated function contains

harmful code, it can pose a security risk. For instance, the

generated function might unexpectedly contain code that deletes

all files in a directory. The current implementation relies on

the user’s review of the generated code. To mitigate this risk,

it is necessary to develop a mechanism that ensures the safety

of the generated code. Possible approaches include using a

sandbox or a static analysis tool.

Another improvement would be to generate more efficient

code. Although we currently generate code in TypeScript and

Python, this code is not optimized. One potential approach

involves utilizing LLMs to generate code in low-level languages,

such as C or LLVM IR, with a foreign function interface.

VII. CONCLUSION

In this paper, we introduced a domain-specific language

(DSL), AskIt. AskIt provides a unified interface for interacting

with large language models (LLMs) for various tasks. The

unified interface supports (1) Type-guided output control of

LLMs, (2) Template-based function definition, and (3) Code

generation for codable tasks. Experimental results show that

AskIt reduces the number of lines of code required to implement

codable tasks by 6.56 and 5.52 lines for TypeScript and

Python, respectively. AskIt also reduces the number of lines of

prompt generation for directly answerable tasks by 16.14 %.

The generated code for intersecting tasks is 275,092.55x and

6,969,904.73x times faster on average than using the LLM

directly to answer the problem in TypeScript and Python,

respectively.

4https://beta.openai.com/docs/api-reference
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APPENDIX

A. Abstract

The appendix is designed to facilitate the replication of

experiments conducted in this paper. It includes a Docker

container, complemented by a set of scripts, to seamlessly

replicate the results shown in Figure 5, Figure 6, and Figure 7,

as well as the data presented in Table II and Table III.

B. Artifact Check-List (Meta-Information)

• Data set: HumanEval, OpenAI Evals, GSM8K
• Run-time environment: Any operating system that supports

Docker
• Hardware: Any machine with Docker installed
• Metrics: Lines of code, reduction in prompt length, speedup
• Output: Figure 5, 6, 7, Table II, Table III
• Experiments:
• How much disk space required (approximately)?: 5 GB
• How much time is needed to prepare workflow (approxi-

mately)?: 15 minutes
• How much time is needed to complete experiments (approx-

imately)?: 1 day
• Publicly available?: Yes
• Code licenses (if publicly available): MIT License
• Workflow framework used?: No, but we provide scripts to

reproduce the experiments
• Archived (provide DOI)?: Yes

C. Description

1) How Delivered: This artifact is available at https://github.com/
katsumiok/askit-artifact.git and archived at https://doi.org/10.5281/
zenodo.10327179 [28].

2) Hardware Dependencies: No hardware dependencies.

3) Software Dependencies: The artifact is delivered as a Docker
container. The only software dependency is Docker.

4) Data Sets: The artifact includes the following data sets:

• HumanEval
• OpenAI Evals
• GSM8K

These data sets are modified to be compatible with AskIt.

D. Installation

1) Clone the artifact from the GitHub repository.

$ git clone https://github.com/katsumiok/

askit-artifact.git

2) Install Docker.
3) Edit askit-artifact/Dockerfile to specify a API

key for OpenAI API. Update the following line in askit-

artifact/Dockerfile:

ENV OPENAI_API_KEY sk-

xxxxxxxxxxxxxxxxxxxxxxxx

with your API key.
4) Build a Docker image from the Dockerfile in the artifact

directory.

$ cd askit-artifact

$ docker build -t askit .

TABLE IV
FILES GENERATED BY THE EXPERIMENT WORKFLOW

File Figure/Table

fig/loc.pdf Figure 5

fig/prompt_reduction.pdf Figure 6

fig/type_count.pdf Figure 7

tab/common_tasks.tex Table II

tab/gsm8k.tex Table III

E. Experiment Workflow

Before running the experiments, you need to start the Docker
container by running the following command in the artifact directory:

$ docker run -it -v $PWD:/root/docker-artifact

askit

To reproduce the results shown in Figure 5, Figure 6, and Figure 7,
as well as the data presented in Table II and Table III, run the following
commands:

$ make

The above command runs scripts to generate the figures and tables
from the experimental results already included in the artifact.

To reproduce the experimental results from scratch, remove the
intermediate files by running the following command:

$ make clean_all

and then run the following command:

$ ./run_all.sh

The above command runs all the experiments and generates interme-
diate files used to generate the figures and tables. Typing make again
generates the figures and tables from the intermediate files. Note that
make does not run the experiments and only generates the figures
and tables from the intermediate files.

F. Evaluation and Expected Result

The workflow generates the files listed in Table IV. These figures
and tables may be slightly different from the ones shown in the paper
due to the randomness of the language models and the difference in
the environment. However, the figures and tables should be similar to
the ones shown in the paper.

G. Experiment Customization

Table V shows the scripts to customize the experiments. These
scripts are executed by run_all.sh. Each script sets the environ-
ment variable ASKIT_MODEL to specify the language model used in
the experiments. By setting the environment variable ASKIT_MODEL
in these scripts, you can customize the experiments to use a different
model. For example, we specify ”gpt-4” in GSM8K/ts/run.sh to
use GPT-4 for the experiments on GSM8K in TypeScript. You can
change it to ”gpt-3.5-turbo-16k” to use GPT-3.5 Turbo 16K instead.

The remaining part of this section describes the details of the
experiments in each section.

1) 50 Common Coding Tasks Experiment (Section IV-A1):
In this experiment, we run AskIt on 50 common coding tasks in
TypeScript and Python. The source code of the tasks is included in
the artifact in the following files:

• coding/ts-askit/examples/src/top50def.ts

• coding/pyaskit/examples/top50.py

coding/ts-askit/examples/run.sh and coding

/pyaskit/examples/run.sh run AskIt on the tasks in
TypeScript and Python, respectively. After running these scripts, the
generated code is saved in coding/ts-askit/examples/src/
askit and coding/pyaskit/examples/askit, respectively.
coding/make_table.py generates Table II from the generated
code.
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TABLE V
SCRIPTS TO CUSTOMIZE THE EXPERIMENTS

Script Description Section

coding/ts-askit/examples/run.sh Run AskIt on 50 common coding tasks in TypeScript Section IV-A1
coding/pyaskit/examples/run.sh Run AskIt on 50 common coding tasks in Python Section IV-A1
HumanEval/run.sh Run AskIt on HumanEval in Python Section IV-A2
openai_evals/run.sh Run AskIt on OpenAI Evals in Python Section IV-B
GSM8K/ts/run.sh Run AskIt on GSM8K in TypeScript Section IV-C
GSM8K/python/run.sh Run AskIt on GSM8K in Python Section IV-C

2) HumanEval Experiment (Section IV-A2): In this exper-
iment, we run AskIt on HumanEval in Python and compare the
generated code with the hand-written code. There are 164 tasks
in HumanEval. HumanEval/HumanEval.jsonl is the original
HumanEval data, which contains the hand-written code and the prompt.
The 164 tasks written in AskIt are represented by files named 0.py
to 163.py in the HumanEval/HumanEval directory. After running
HumanEval/run.sh, the generated code is saved in HumanEval

/askit. HumanEval/make_table.py generates Figure 5 from
the generated code and the hand-written code.

3) OpenAI Evals Experiment (Section IV-B): In this ex-
periment, we compare the lengths of the prompts generated by
AskIt with those of the original prompts in OpenAI Evals. The
prompts for AskIt are stored in openai_evals/data, and the
original prompts are stored in openai_evals/odata in JSON
format. openai_evals/run.sh runs AskIt on the prompts in
openai_evals/data to check if the responses of the LLMs
correspond to the expected types. openai_evals/make_table
.py generates Figure 6 and Figure 7 by comparing the generated
prompts with the original prompts.

4) GSM8K Experiment (Section IV-C): In this experiment,
we run GSM8K in TypeScript and Python in two settings: with and
without code generation. There are 1319 tasks in GSM8K. Files named
from 0.ts to 1318.ts in the GSM8K/ts/src directory contain the
1319 tasks written in TypeScript and are used to run GSM8K without
code generation. Similarly, files named from 0.ts to 1318.ts in the
GSM8K/ts/src2 directory are the tasks written in TypeScript, used
to run GSM8K with code generation. GSM8K/ts/run.sh transpiles
the TypeScript files in both GSM8K/ts/src and GSM8K/ts/src2
and runs the generated JavaScript files. However, GSM8K/ts/run
.sh only generates functions for the tasks in GSM8K/ts/src2

and does not generate functions for the tasks in GSM8K/ts/src.
After running GSM8K/ts/run.sh, the generated code is saved in
GSM8K/ts/src2/askit. Metrics, including the execution times,
are saved in GSM8K/ts/json and GSM8K/ts/json2 as JSON
files named from 0.json to 1318.json, respectively.

A file named GSM8K/test.jsonl contains task descriptions
in JSON format. GSM8K/python/run.py, executed by GSM8K

/python/run.sh, runs GSM8K in Python using GSM8K/test

.jsonl. After running GSM8K/python/run.py, the generated
code is saved in GSM8K/python/askit. Metrics, including ex-
ecution times, are saved in GSM8K/python/json as JSON files
named from 0.json to 1318.json. These JSON files contain the metrics
for both the tasks with and without code generation.
GSM8K/make_table.py generates Table III from the metrics

produced by GSM8K/ts/run.sh and GSM8K/python/run.sh.
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