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Subroutines are essential building blocks in software design: users encapsulate common functionality in
libraries and write applications by composing calls to subroutines. Unfortunately, performance may be lost at
subroutine boundaries due to reduced locality and increased memory consumption. Operator fusion helps
recover the performance lost at composition boundaries. Previous solutions fuse operators by manually
rewriting code into monolithic fused subroutines, or by relying on heavy-weight compilers to generate code
that performs fusion. Both approaches require a semantic understanding of the entire computation, breaking
the decoupling necessary for modularity and reusability of subroutines.

In this work, we attempt to identify the minimal ingredients required to fuse computations, enabling
composition of subroutines without sacrificing performance or modularity. We find that, unlike previous
approaches that require a semantic understanding of the computation, most opportunities for fusion require
understanding only data production and consumption patterns. Exploiting this insight, we add fusion on
top of black-box subroutines by proposing a lightweight enrichment of subroutine declarations to expose
data-dependence patterns. We implement our approach in a system called Fern, and demonstrate Fern’s
benefits by showing that it is competitive with state-of-the-art, high-performance libraries with manually
fused operators, can fuse across library and domain boundaries for unforeseen workloads, and can deliver
speedups of up to 5x over unfused code.
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1 Introduction

Subroutines make it possible to write complex and scalable software. The modularity subroutines
offer is due to a division of responsibilities: the caller and callee are agnostic to each other’s
implementation, and, at the point of the subroutine call, the compiler is only tasked with meeting
the contract set up by the calling convention. High-performance applications, too, are written as a
composition of subroutines from popular libraries [3, 20, 22, 23, 28, 30, 33].
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While the division of responsibilities makes subroutines a powerful abstraction, it also makes
their composition slow. Each subroutine introduces an explicit boundary, forcing materialization
of large intermediate results, which leads to poor cache utilization and increased data copying.
For example, one can compute a linear layer in a neural network (a matrix multiplication and an
addition) by composing subroutines, producing complete intermediates at each step. Or, one can
compute the output at a granularity of tiles, immediately applying all operators for a given tile. For
a matrix of size 1024 X 1024, a tile size of 64 X 64, and an L3 cache of 9.0 MiB, the tiled program has
a 28% higher cache hit rate, 63% faster runtime, and smaller memory allocations for intermediates.
This technique of evaluating operations back-to-back on small chunks of data as opposed to entire
outputs is a well-known optimization called operator fusion.

Fusion involves manipulating iteration spaces to produce computationally equivalent, and often
faster, programs. Many libraries and compilers implement fusion as an optimization, but make
different decisions about how they manipulate iteration spaces and their resident computations.
These systems can be categorized as operating on the iteration language (which defines looping
over operands and loop-carry dependencies — how to compute?), or the computation language
(which defines operations and computes expressions — what to compute?), or both.

Many compilers operate on the iteration language and computation language simultaneously.
Both the earliest instances of fusion [17, 48] and recent technologies like LLVM loop fusion [5], the
polyhedral framework [1], and MLIR loop fusion [36] work directly on pre-existing source code.
Since they act on the source language, their ability to perform fusion is limited by the strength of
the compiler’s analysis. High-performance code makes rampant use of inline assembly, aliasing,
and complex control flow. This code, where fusion is most important, is unfortunately also an
adversarial case for the compiler’s analysis machinery. For example, no general-purpose compiler
today can fuse two hand-optimized matrix multiplications.

In contrast, some high-level, domain-specific languages (e.g., Halide [38], TACO [27], TVM [10]
and Mosaic [4]) expose a computation language. These compilers can fuse through complicated
dependence patterns by restricting their language to a particular domain. They derive iteration
spaces present implicitly in scalar representations, and generate high-performance fused code
all the way from outermost loops down to the leaf computations. Therefore, in addition to their
fusion machinery, they also require infrastructure to generate high-performance code that rivals
handwritten implementations. Even so, fusion opportunities are limited to exactly the computations
that the DSL can express. To fuse computations across domains (e.g., databases and scientific
computation), a new DSL (SciDB [7]) must be invented.

Finally, programmers can write fused code manually, exercising complete control over the
iteration language and computation language. In the best case, it is laborious to modify handwritten
high-performance code. In the worst case, it is impossible: programmers may not have the source
code for libraries that target undocumented accelerators (e.g., Apple’s Accelerate library [22]).

In all three cases — general-purpose compilers, DSL compilers, or programmers hand-fusing
code — the fusion machinery understands the complete semantics of the computation, breaking
the decoupling of implementations that subroutines enable.

In this work, we propose an approach that understands only the iteration language. Our core
insight is that fused code tends to divide responsibility between inner, independent loops that
perform the computation and contain hardware-specific logic, and outer loops that orchestrate data
movement. We rely on black-box subroutines to perform the computation in the inner loops, while
generating code for the outer loops using simple dataflow analysis of the subroutines’ dependencies.
Because we reuse high-performance inner-loop implementations, we do not need a compiler
capable of automatically generating high-performance code. By operating at the level of subroutine
interfaces, we can fuse computations across domains and libraries.
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Lightweight and Locality-Aware Composition of Black-Box Subroutines 189:3

Our work relies on two key ideas:

(1) Fusion requires understanding the data production and consumption patterns of subroutines,
but not understanding the functional semantics of the computation itself.

(2) Inner-loop kernels used in fused code often operate on subsets of data that are naturally
encoded in the same type of data structure as the original unfused operations (e.g., a matrix
tile is itself a matrix), enabling reuse of the same kernel for both fused and unfused code.

Based on these ideas, we develop Fern, a simple, domain-independent system that fuses black-box
subroutines. Fern relies on enriched subroutine interfaces that communicate data production and
consumption patterns for each subroutine. Using these patterns, Fern calls the original black-box
subroutines with subsets of the data and stitches them together by generating an outer-loop nest.
To work with Fern, subroutines must meet the following criteria:

(1) The subroutine must produce a single output.

(2) Values of the output must depend only on values of the input arguments. The subroutine can
enact side effects that have no impact on the value of the final output.

(3) The size of the subroutine’s output should not depend on values of the data.

(4) Outputs are produced in destination-passing style.

In our experience, subroutines over dense, multi-dimensional arrays often satisfy these criteria out
of the box, whereas irregular data may require modification or fail to meet them.

We show that Fern can (1) match high-performance libraries with manually fused operators
(Section 9.2) (2) fuse nontrivial dependence patterns (Section 9.3), and (3) fuse computations for
different data structures like trees, graphs, and databases (Section 9.5). In our evaluation, we are
able to liberally reuse functions from libraries across multiple domains (Intel OneDNN, several
BLAS implementations, GEOS, and TileDB), including those to which we have no source code
access (ArmPL and Apple’s Accelerate library), and even implementations from existing compilers
(Halide and ISPC). We also release Fern as open-source software (https://fern-lang.com/).

2 Motivating Example and Workflow

Consider a user who wants to compute a General Vector Rank Update (GER) operation expressed
as A = a(x X yT) + A, where A is a matrix, x and y are vectors, « is a scalar, and all datatypes are
floats. GER is a basic building block of linear algebra, and the BLAS [28] specification includes an
interface (cblas_sger) for it.

The most performant BLAS implementations on Apple’s M3 chip that uses the AArch64 in-
struction set reside in two proprietary libraries: the ARM Performance Library (ArmPL) [30] and
Apple’s Accelerate Framework [22]. Although proprietary, both implementations are known to
take advantage of classic optimizations. They use SIMD instructions to parallelize computation,
tiling to promote data-cache reuse, special microkernels to increase instruction-cache hit rate, and
software pipelining to hide latency. Each implementation, even for a simple GER calculation, likely
consists of hundreds of lines of intricate, architecture-specific code. Our user can directly use these
implementations, and both are competitive in performance (Figure 1).

On the other hand, if the user wants to compute a variant of GER, called GERB, where A is scaled
by an additional parameter f (i.e. A = a(x X yT) + fA), then the user has two possible options. First,
they can use ArmPL’s fused BLAS extension interfaces that include an sgerb_ subroutine. Or, as
Accelerate has no fused subroutine, they can compose Accelerate’s cblas_sger and cblas_saxpy
subroutines. The fused ArmPL subroutine is 1.24X (geomean) faster than the composed Accelerate
implementation (Figure 2). Since Accelerate already matched ArmPL’s performance on GER (Fig-
ure 1), the performance difference between the two implementations on GERB is not due to an
under-optimized inner loop or poor instruction selection, but is rather introduced at the point of
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Fig. 1. Performance of sger (A = Fig. 2. Performance of sgerb_ Fig. 3. Performance of A = ar(xx
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creases. increases.

( \ /*<Fern Annotation>
1_u: Symbolic
y LLTTT] y
for u in [out.x,out.x+out.len_x,1_ul{

1_v: Symbolic
for v in [out.y,out.y+out.len_y,1_vI{

_sger (Accelerate) _saxpy (Accelerate produces{

out{ x: u,
_sgerb from ArmPu y: v,
len_x: 1_u,
\ len_y: 1.v }}
:I EH when consumes{

+
_saxpy a { start: u,
(Accelerate) len: 1_u 3,
b { start: v,

len: 1_v }}3}}
k Fery </Fern Annotation>x/

void sger(float alpha,const Matrix& a,
const Matrix& b, Matrix& out)

X

_sger
(Accelerate)

Fig. 4. To compute SGERB (A = a(x x yT) + BA), users can use
one subroutine from ArmPL or compose two subroutines from
the Accelerate Library. Fern generates code that computes tiles of ~Fig. 5. Data-dependence pattern for the
outputs using the same subroutines from Accelerate. sger subroutine added to a header file.

composition itself. By the time cblas_saxpy is ready to consume the intermediate result produced
by cblas_sger, the first element of the intermediate has fallen out of the cache.

Manually recovering performance lost at subroutine boundaries by rewriting code is not only
tedious and error-prone, in this case, it is impossible. Both ArmPL and Accelerate are propriety
frameworks. In fact, the Accelerate library is the only way to target undocumented, Apple-specific
hardware. If our user wants to use this special hardware, they are tied to the Accelerate library,
which does not have extended BLAS kernels like sgerb_. But, if our user wants to use fused
implementations provided in the BLAS extension interface, they must use ArmPL.

Instead of using naive subroutine calls for Accelerate, the user can use code generated by Fern,
which continues to call Accelerate subroutines, but does so for small tiles of the output at a time
(Figure 4). This not only ensures that the intermediate result is in the cache by the time it is ready to
be reused, but also asymptotically decreases memory footprint for intermediate storage, allocating
only a single tile’s worth of memory as opposed to a large intermediate. Figure 2 shows that Fern
recovers the performance lost at the composition boundary.

To use Fern, users write a list of subroutine calls they would like to compose (Figure 6). Each
subroutine is a special Fern object, and the () operator has been overloaded to mimic subrou-
tine call syntax. The Fern objects have been automatically generated from header files con-
taining data-dependence annotations. Figure 5 shows the data-dependence pattern for SGER.
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In the pattern, each sub-array is described using a collection of two metadata fields: the start
of the sub-array, start, and the length of the sub-array, 1len. Meanwhile, for a matrix, meta-
data fields x and y point to the beginning of a sub-matrix and len_x and len_y describe the
length and the width of a sub-matrix respectively. The annotation specifies that to produce
a sub-matrix out(x=u,y=v,len_x=1_u,len_y=1_v), the subroutine must consume sub-arrays
a(start=u,len=1_u) and b(start=v,len=1_v). Finally, the for loops specify all the subsets the
function must compute to generate a complete output. Given a list of subroutine calls and their
corresponding annotations, Fern determines the subset relationships that need to be satisfied across

subroutine calls, and generates a fused implementation (Figure 4).

Now, assume that the user wants another variant of the
above computation that is not available in any library. Con-
sider the computation A = a(x x y7) + BA + B + C where B
and C are matrices. Neither ArmPL nor Accelerate provide
a fused implementation for this computation. Fern, how-
ever, can fuse this computation and is 1.45X% faster than the
ArmPL implementation and 1.65X faster than the Accelerate
implementation (Figure 3). Fern delivers this performance
by continuing to reuse high-performance implementations
within these libraries and by simply partitioning data into
small chunks that continue to stay resident in the cache.

// Data structures x, y, A are symbolic,
// and used to specify the composition.
Matrix A, R; // R is an intermediate.
Vector x, y;

// Saxpy and Sgerb are Fern objects

// generated from .h files.

fern::Saxpy saxpy;

fern::Sger sger;

fern: :Composition program {

sger(a, X, y, R),

saxpy(R, B, A)};
// Generate fused code (will be called
// with actual data structures).
program.compile(compile_options);

3 Design of Fern Fig. 6. Fern program to fuse SGERB.

Fern’s design builds on four key ingredients:

e The data production and consumption patterns of subroutines do not depend on values of the
data. At compile time, given a subset of the output, it must be possible to compute a symbolic
expression for the required subsets of the input. Subroutines must also produce the same
output if run on the same set of inputs (idempotence). By restricting the type of subroutines
allowed in Fern, we are able to manipulate the order of computation without accessing the
source code or building heavy-weight analysis machinery.

e An output-first view of the computation: Fern understands data-dependence patterns from the
perspective of the output. An output-first perspective enables Fern to run a demand-driven
analysis [16] to compute subsets of the intermediates that will be ultimately used.

o A logical understanding of subsets of a data structure: As opposed to operating on concrete
data structures that are owned and managed by Fern, users can bring their choice of data
structure that Fern will understand logically through a collection of metadata fields and a
set of small interfaces. By introducing a logical interface, Fern is able to fuse computations
across domains and for different data structure implementations.

o Parametrization of subroutine implementations: In Fern-generated code, the compute subrou-
tines ultimately get called over subsets of data. Therefore, the same subroutine implementation
must be able to operate on subsets as on the whole input and output. We exploit the fact
that fused code often operates on subsets that are self-similar to the overall data structure to
recursively break the problem down into smaller sub-problems for better locality.

Previous work has exploited similar ideas, but Fern is the first to combine all four into a light-
weight system for fusing existing black-box subroutines. Halide [39] adopts a functional algorithm
language (idempotence), but is restricted to dense arrays that it understands how to physically index
into. Legion [6] and Sequoia [11] adopt an abstract view of tasks and can operate on irregular data
structures (logical view), but cannot automatically rearrange the granularities of these tasks since
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1| /*<Fern Annotation>
Variable v € String, x € N 2| 1_u: Symbolic
3| 1_v: Symbolic
(dependence) =  (Vardecl) * (Interval) 4| for u in [out.x,out.x+out.len_x,1_ul{
(Vardecl) == (Var) : Symbolic 5| for v in [out.y,out.y+out.len_y,1_v1{
i R . 6 produces {
(interval) == for v in ( (Expr), (Expr), (Expr) ){(Fire)} | 7 out { x: u,
for v in ( (Expr), (Expr), (expr) ){(Interval)} 8 yiov,
(fire) == produces {(Subset)} when consumes {[(Subset)] * } 13 1:2*; %*:’D
(Subset)  u=  (Data){(Fields)} 11 when consumes {7
(Data) == (String) (Name of data structure) 12 a { start: u,
. o . . . 13 len: 1_u},
(Fields) == (String) : (Expr)[ , (Fields)] * 14 b { start: v,
(Expr) == x | o | (Data).(String) | 15 len: 1_v }33}}
Expr){+, -, *} (Expr Expr){%,/}x 16 | </Fern Annotation>*/
(Expri{ HExpr) | (Expr){ ) 17 | void sger(float alpha,const Matrix& a,
18 const Matrix& b, Matrix& out)
Fig. 7. The syntax of the data-dependence language. Fig. 8. Data-dependence description for

sger described in Section 2.

they lack data-dependence information. Split Annotations [35] exploits parametrization and exposes
data relationships, but struggles to generalize to computations beyond elementwise, “embarrass-
ingly” fusable patterns. Mosaic [4] can call black-box subroutines (idempotence) and automatically
generate surrounding code (parametrization), but is restricted to einsum-based computations. Fern
is inspired from the collective experience of building such systems, and combines aspects of their
design in a single system. Section 10 discusses related work in more detail.

Now, we shift our discussion to how these design decisions are reflected in Fern. Sections 4 and 5
concretize the design of the language used to define data consumption and production patterns.
Section 6 describes how a Fern program is lowered through an example, Section 7 discusses the
semantics of Fern programs, and Section 8 discusses a scheduling language.

4 Data-Dependence Language

Fern converts a list of subroutines, where each subroutine computes its output completely, into
code that computes the output subset-by-subset using the same subroutines. To do so, Fern needs
to understand the data production and consumption patterns of subroutines. In this section, we
describe the design of the data-dependence language that is used to express this relationship.
Figure 7 shows the complete grammar of the dependence language.

Users or library authors add data-dependence descriptions to subroutine declarations in header
files (Figure 8). A description is written once per subroutine, and the cost of writing it is amortized
over multiple uses of the library. As the description is tied to subroutine declarations (not definitions),
Fern can fuse subroutines without source-code access.

The dependence language describes subsets using metadata fields. For example, to refer to a
sub-block of a matrix (Figure 8), we can use four metadata fields x, y, len_x and len_y, where x
and y indicate the starting coordinate of the block, and 1len_x and len_y denote its height and
width. Similarly, access into a graph can be decomposed using two fields, node and ring, where
node represents a vertex ID, and ring specifies the distance from node up to which we want to
gather a neighborhood of points.

Users describe dependence relationships by referencing metadata fields. The dependence rela-
tionship consists of a produces node, and a corresponding list of zero or more consumes nodes.
Each node is tied to a parent data structure whose subsets it describes. Lines 6-15 in Figure 8 show
an example for the sger subroutine introduced in Section 2. The underlying data structure is still
owned by user code, and Fern understands the data structure logically (i.e., in terms of metadata
fields), not physically (i.e., in terms of how the data is laid out in memory). The descriptions are
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written from the perspective of the output, answering the the following question: To produce a
given subset of the output, what subsets of the input does the subroutine need?
The dependence relationship can also be wrapped in in-

. sger(a, b, out);
tervals that have a start, end, and step parameter. While the

produces and consumes nodes provide information to suc- !
cessfully fire a subroutine to produce a subset of the output, f°;°‘r‘ i”i;acgﬁé‘;‘(’;:’y' 20 0 I-T);)_
the intervals enumerate the combination of metadata fields 1 QuERy & SuEE, CT
that the subroutine must be called on to produce a complete out_q = out.query(u,v,1.u,1.v)
X K R // Call with subsets.

output. An interval introduces a bound variable that can be sger(a.query(u, 1_u),
used within the description. The extent of the interval can be b.query(v, 1v), out_a)

i // Insert the subset.
an output field (e.g., out.len_x), or integer arguments used out.insert(u,v,1_u,1_v,out_q)

in the subroutine interface. The decomposition can use any . ‘
number of fields and the physical subsets themselves need not  Fig- 9- The annotation presented in
be rectangular; however, the choice of subsets must be able Figure 8 make the above: rewrite legal.
. . The query and insert interfaces are
to tile the entire output data structure. L .
. . . . described in Section 5.

The description can also use symbolic variables to describe
dependencies. In the example shown in Figure 8, the start, end, and step of the interval are all
symbolic. Integer arguments can be used within dependence descriptions even if they cannot be
statically determined. The annotation lets Fern know what decompositions of the output data
structures are legal and result in equivalent programs (Figure 9).

During lowering (Section 6), Fern generates expressions that compute the precise values of these
variables at runtime, or, if possible, at compile time. Fern ultimately generates a C++ object from
the header files’ data-dependence descriptions. As opposed to the preprocessor generating these
classes, it is also possible for users to construct this object directly. Since the class can contain
arbitrary C++ logic, it is possible to metaprogram the annotations.

5 Abstract Data-Structure Interfaces

In Section 4, we described how Fern understands a subroutine’s data production and consumption
requirements. Central to this strategy was the decision to describe subsets of data structures using
some collection of metadata fields. While Fern can resolve logical dependencies using only these
dependence descriptions, during code generation, it needs to query, allocate, insert, and free the
corresponding subsets of the physical data structures. To enable this, a data structure with type
Data used by a subroutine must support the following interface:

(1) Aquery :: Int — Int ... — Data method that takes values of metadata fields and
returns an object representing the corresponding subset of the data structure. Depending on
the library’s data structure implementation, this can either be a fully materialized subset or a
lightweight view.

(2) Aninsert :: Int — Int ... — Data — () method thatinserts a subset into an existing
data structure at the location referred to by the values of the fields.

(3) An allocate :: Int — Int ... — Data function that allocates a fresh object of type
Data with the provided values of the fields.

(4) A free :: () — () method that frees the data structure.

(5) An optional free_query :: () — Bool method that returns whether the output of a query
needs to be freed (assumed false by default).

(6) An optional insert_query :: () — Bool method that returns whether the subset needs
to be explicitly inserted, or is modeled by a view (assumed true by default).
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6 Lifecycle of a Fern Program // The input and output.

annot::Matrix input, output;

// All the temporaries.
annot::Vector t1, t4;
annot::Matrix T2, T3;

Variable width(Datatype::Int32);
// Annotated functions.

Fern accepts as input a list of subroutine calls and produces
as output fused imperative code. The generated code completely
evaluates the output of the last subroutine, and computes only
the subsets of the intermediates relevant for the final output.

Users can optionally control properties of the generated code ZE:ZE i!igii\;c?x;rzﬁé_vec;
using a scheduling language (Section 8). 10| annot: :Exp2d exp_2d;
. . . . 11| annot: : SumRow sum_row;

In this section, we describe how a Fern program is lowered |, | 0\ 5ividevec divide_ vec:
to produce a C++ file that contains the fused code. The fused 13
code continues to call the the original subroutines at smaller ;

o S I IR Cay

fern::Composition program {
max_row(input, width, t1),

granularities, letting users take advantage of previously-written 1 sub_vec(t1, input, T2),
high-performance subroutines. After lowering, Fern-generated 7|~ &P-24(72, T3,
gh-p . g g 18 sum_row(T3, width, t4),

code can also be auto-tuned to determine the granularity at 1 divide_vec(t4, T3, output),

. . .20 )
which the final output should be computed. In practice, this | ;) o ¢ions contains compiler flags.
amounts to a straightforward enumeration of possible combi-22| program.compile(options);

nations of tiling parameters.

Fig. 10. Fern program for the decom-
posed softmax operator.
6.1 Our Running Example
To guide readers through the internals of our compiler, we will focus our discussion on a Fern
program that computes the softmax function, but decomposes it into smaller operations (Figure 10).
The decomposition of the softmax computation itself is novel [14], and, to the best of our knowl-
edge, current compilers — domain-specific or otherwise — cannot discover this decomposition
automatically. While Fern cannot generate the optimal decomposition either (it does not even know
what the leaf computations are), it is able programmatically generate a fused program once the
user has specified the decomposition.

The discussion that follows is centered on the softmax program. The appendix presents imperative
algorithms for lowering arbitrary Fern programs.

6.2 Understanding the Softmax Program

As Lines 14-20 in Figure 10 show, the input to Fern is a list of “subroutine calls”. Each subrou-
tine object (Line 8-12) is an instance of the AbstractSubroutine class. These classes do not
need to be manually written, and can be automatically generated from the data-dependence an-
notations written in header files. Any subclass that implements the interfaces specified by the
AbstractSubroutine class can operate within the Fern ecosystem.

First, let’s look at the data-dependence annotations for the subroutines in the program.

Figure 11 contains the annotation for the max_row subroutine. max_row takes as input a matrix
and a reduction parameter width. It then computes a vector that stores the maximum element up
to width per row of the matrix. Therefore, to compute the subset of the output vector that starts at
index x and is of length x_tile, max_row requires the sub-matrix of input starting at index x, @
that has height x_tile and width width. The annotation for sum_row is identical.

The annotation for sub_vec (Figure 12) is similar. It takes as input a vector and a matrix, and
computes a matrix. The subroutine computes a broadcasted subtraction i.e., it subtracts each element
in the row of the input matrix by the corresponding element in the input vector. To compute a
subset of the output matrix that starts at index x, y and has width x_tile and height y_tile,
subtract_vec requires the sub-matrix of the input starting at x, y that has width x_tile and
height y_tile, and the input vector starting at x and with length y_tile. The annotation for
divide_vec is identical to that of sub_vec.
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/* <Fern Annotation>

x_tile : Symbolic
y_tile : Symbolic
for x in [0, output.len,
produces {

output { start: x,

len: x_tile}}

when consumes {

input { x: x,

x_tilel{

y: @
width: width
height: x_tile
¥
}

}

</Fern Annotation> */
void max_row(const Matrix& input,
const int& width, Vector& output);

Fig. 11. Annotation for max_row.

/* <Fern Annotation>
x_tile : Symbolic
y_tile : Symbolic
for x in [0, output.width, x_tile]{
for y in [@,output.height,y_tile]{
produces {
output { x: x,
yoy,
width: x_tile,
height: y_tile }}
when consumes {
input { x: x,
y:iy,
width: x_tile,
height: y_tile },
v { start: x,
len: y_tile }3}3}3
</Fern Annotation> x/
void sub_vec(const Vector& v,const
Matrix& input, Matrix& output);

Fig. 12. Annotation for sub_vec.

189:9
/* <Fern Annotation>
x_tile : Symbolic
y_tile : Symbolic
for x in [0, output.width, x_tile]{

for y in [0,output.height,y_tilel{

produces {

output { x: x,
vy,
width: x_tile,
height: y_tile }}

when consumes {

input { x: x,

iy,
width: x_tile,
height: y_tile}
}
1}

</Fern Annotation> */
void exp_2d(const Matrix& input,a
Matrix& output);

Fig. 13. Annotation for exp_2d.

Finally, Figure 13 presents the annotation for exp_2d, an elementwise subroutine. exp_2d takes
a matrix as input and computes a matrix whose elements are the exponentials of the corresponding
input elements. To compute a subset of the output matrix that starts at index x, y and has width
x_tile and height y_tile, exp_2d requires the sub-matrix of the input starting at x, y that has
width x_tile and height y_tile.

The () operator of the AbstractSubroutine class is overloaded to mimic function call syntax.
The () operator produces a ConcreteSubroutineCall object that captures the arguments of the
subroutine call. The ConcreteSubroutineCall models a distinct callsite. Since dependencies of
distinct callsites need to be solved separately, each time Fern produces a ConcreteSubroutineCall,
it also mangles the variable names introduced in the data-dependence description, generating a

fresh name for each variable.

6.3 Lifting a Computation Graph

From the list of subroutine calls and the implicit dependencies between them,
Fern lifts a computation graph. A computation graph is a directed-acyclic graph
(DAG) where nodes represent subroutine calls, and an edge indicates a producer-
consumer relationship between two subroutines (Figure 14). Each computation
graph computes one final output, in particular, the output produced by the
last subroutine call. At this stage, a fresh output data structure is used for each
subroutine call. Fern will automatically optimize reuse of intermediate allocations
at a later step. Because the input is simply an ordered list of subroutine calls with
fresh outputs, the computation graph is guaranteed to be a DAG by construction.
A computation graph can contain three types of connections (Figure 14):

e A straight connection where one node produces data for one node.
e A merge connection where two or more nodes produce data for one node.
o A fork connection where one node produces data for two or more nodes.

6.4 Resolving Dependencies across Call-sites

‘Strmght
)

\ . Fork
(&

~\/ t
l\/Ierge

Fig. 14. The com-

putation graph
for the softmax
program.

For all nodes, Fern needs to compute data dependencies that satisfy the callsite. To do so, Fern
begins by traversing the computation graph bottom up. In our example, Fern will first visit the
divide_vec node that consumes data structures t4 and T3. Both t4 and T3 are outputs of other
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subroutine calls. Let’s follow the dependencies of T3. Figure 15 shows the dependencies of T3
as a function of divide_vec’s output fields. Next, to compute T3, we need to call exp_2d on T2.
Figure 16 shows the relationship between T2 and T3. T2 itself is an output of sub_vec, which
consumes t1, and dependencies will be chained in a similar manner. t1, in turn, is an output of
max_row, which consumes input, a data structure that the user provides as input. When Fern
reaches a user-provided data structure, it stops traversing the computation graph.

divide_vec.input.x = divide_vec.output.x exp_2d.input.x = divide_vec. input.x
divide_vec.input.y = divide_vec.output.y exp_2d.input.y = divide_vec.input.y
divide_vec.input.width = divide_vec.output.width exp_2d.input.width = divide_vec.input.width
divide_vec.input.height = divide_vec.output.height exp_2d.input.height = divide_vec.input.height

Fig. 15. Relationship between T3 (divide_vec’s Fig. 16. Relationship between T2 (exp_2d’s input)
input) and output (divide_vec’s output) and T3 (divide_vec’s input & exp_2d’s output).

Lowering straight and merged connections is straightforward using the above strategy. How-
ever, lowering fork connections poses a problem. Since multiple subroutines are consuming
the output of a single subroutine, the producer subroutine must produce an output that satis-
fies the dependencies of all the consumer subroutines. To resolve fork nodes, Fern replaces the
consumer subroutine nodes with a dummy subroutine node that artificially represents the su-
perset of the consumer subroutines’ requirements. The dummy subroutine is used to resolve
subset requirements for the producer subroutine. Fern generates queries on the produced su-
perset for individual consumer functions and passes the queried subset to corresponding con-
sumer functions. In our example, exp_2d is replaced with a dummy subroutine that produces
output such that exp_2d.output.x = min(divide_vec.input.x, sum_row.input.x), and
exp_2d.output.width = max(divide_vec.input.x + divide_vec.input.width,
sum_row. input.x + sum_row.input.width). exp_2d.output.y and exp_2d.output.height
are computed similarly.

In this way, for each producer-consumer pair, Fern solves an equation that requires that the
metadata fields of the producer subroutine satisfy the requirements of the consumer subroutine.

6.5 Generating Pipelines

After computing dependencies for each call site, Fern generates a pipeline. A pipeline is a recursive
data structure that consists of an ordered list of compute, query, insert, allocate, free or other
pipeline nodes; an ordered list of intervals; and a list of relationships between metadata fields of
inputs and outputs of different subroutines. The pipeline for softmax is shown in Figure 17.

Query nodes request subsets of data structures (Lines 12, 16). For inputs that are intermediate
results of another computation, Fern emits an allocate node instead of a query node (Lines 15, 21,
24, 27). Each allocated or queried subset has an associated free node (Lines 33-36). A compute node
is then generated for the subroutine call (Lines 19, 22, 25, 28, 30), and if the output data structure
requires it, an insert node is added. Finally, Fern iterates over the intervals of the final output and
emits intervals corresponding to the final output’s domain (Lines 3, 4).

Users can optionally control parameters of the pipeline, such as the tiling strategy, loop order,
etc. using the scheduling language described in Section 8.

6.6 Optimizing Pipelines

Two optimizations are applied on pipelines before generating the final C++ code. First, if an
allocation nested inside a loop does not depend on the loop variable and and the loop is not
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1 // === void function_39(Matrix &input, Matrix &output_final,
2| // Pipeline nodes for the softmax computation. int64_t 1_x, int64_t l_y, int32_t width) {

3| for ((_gern_x_15_22_33=0); output_final.row; 1_x ){ for (_gern_x_15_.22_33 = 0; _gern_x_15_22_33 < ....){
4| for ((_gern_y_16_26=0); output_final.col; 1_y){ for (_gern_y_16_26 = 0; _gern_y_16_26 < ....){
5 // Definitions of metadata fields. // Definitions of metadata fields.

6 (_gern_y_16=_gern_y_16_26) int64_t _gern_y_16 = _gern_y_16_26;

7 (_gern_l_y_14=1_y) int64_t _gern_l_y_14 = 1l_y;

8 (_gern_x_15=_gern_x_15_22_33) int64_t _gern_x_15 = _gern_x_15_22_33;

9 (_gern_1_x_13=1_x) int64_t _gern_1_x_13 = 1_x;

10

11 // Query node for user-provided data structures. // Query using the provided interface.

12 Query _query_output_final_4@ from output_final auto _query_output_final_40 = output_final.query(
13 with {_gern_x_15,_gern_y_16, ...} _gern_x_15, _gern_y_16, _gern_1_x_13, ..);

14 // Allocate intermediate data structures. // Allocations for intermediates.

15 Allocate rowMax with {_gern_x_2,_gern_1_x_1} Array rowMax = Array::allocate(_gern_x_2, ...);
16 Query _query_input_41 from input with ... auto _query_input_41 = input.query(...);

17

18 // Now, compute the intermediate result. // Call the compute function.

19 Compute max_row {_query_input_41,rowMax,width} max_row(_query_input_41, rowMax, width);

20

21 Allocate subDS with ... Matrix subDS = Matrix::allocate(...);

22 Compute sub_vec {rowMax,_query_input_41,subDS} sub_vec(rowMax, _query_input_41,subDS);

23

24 Allocate expDS with ... Matrix expDS = Matrix::allocate(...);

25 Compute exp_2d {subDS,expDS} exp_2d(subDS, expDS);

26

27 Allocate rowSum with ... Array rowSum = Array::allocate(...);

28 Compute sum_row {expDS,rowSum,width} sum_row(expDS, rowSum, width);

29

30 Compute divide_vec {..,_query_output_final_403} divide_vec(rowSum ..., _query_output_final_40);
31

32 // Free allocations. // Free allocations.

33 Free rowSum rowSum.destroy();

34 Free rowMax rowMax.destroy();

35 Free expDS expDS.destroy();

36 Free subDS}} subDS.destroy();}}}

Fig. 17. Pipeline nodes for the softmax computation. Fig. 18. Generated C++ for the softmax computation.

computed in parallel, then the allocation is hoisted outside the loop interval. Second, to reduce the
amount of memory allocations, intermediates with the same type and metadata values can be reused
across different subroutine calls once they are done being used as inputs. After generating the
complete pipeline, Fern optimizes for the reuse of allocated intermediates using liveness analysis.

6.7 Example of Generated Code

Once a pipeline has been generated, Fern is ready to lower it into imperative code (Figure 18).
As mentioned in Section 6.5, pipelines contain query, compute, free, allocate or other pipeline
nodes. Additionally, they contain intervals over the final output’s domain, and a list of metadata
relationships. For a pipeline, Fern first lowers the interval nodes into for loops (Lines 3, 4), and
then proceedes to generate the list of dependence relationships nested inside the loop. It then
recursively lowers each node, generating calls to allocate (Lines 15, 21, 24, 27), query (Lines 12, 16),
compute (Lines 19, 22, 25, 28, 30), or free (Lines 33-36) functions, or nesting another pipeline inside
the original pipeline when lowering a pipeline node. Finally, Fern wraps this code in a function
interface (Line 1), which users can use in existing applications. In this way, Fern pieces together
pre-compiled high-performance code without understanding their implementations.

In the example shown above, while most of the metadata relationships have been completely
resolved, the tiling parameters, 1_x and 1_y (Line 2), have not been set. Fern exposes these un-
resolved variables in the function interface as well. Users can set values for these variables, and
since the equations were solved symbolically, the function implementation is already parametric
over different choices of the symbolic variable. These variables can also be exposed as template
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parameters, retaining flexibility while taking advantage of compile-time specialization. As a simpli-
cation, Fern assumes that the loop step divides the loop extent exactly. We expect users to pad data
structures to handle boundary conditions. This simplication is not fundamental to our design.
While we have shown a C++ function, our approach is language independent. In addition to C++,
Fern can generate Python code. The code generator can be extended further to another backend.

7 Denotational Semantics

A Fern program is a list of subroutines fi, . .., f, invoked using the () operator with corresponding
data-dependence patterns py, . . ., p,. Each subroutine f; is an object of type AbstractSubroutine,
and each annotation p; is of type Annotation. Each subroutine call produces a distinct output out;
of type Data which supports the required interfaces (Section 5).

class Annotation: class AbstractSubroutine: class

-- List of [start, end, stepl -- The data-dependence pattern. < ConcreteSubroutineCall:

-- of the annotation's intervals. annot :: Annotation -- Annotation specialized
range :: List[[Expr,Expr,Expr]l] -- The C++ function signature -- to the call.

-- Variables that index the intervals. -- of the asbtract function. annot :: Annotation
loop_var :: List[Variable] -- (name, types of parameters, -- Call generated from

-- Fields used to point at the subset of -- templated parameters, output -- AbstractSubroutine's

-- a data structure in the annotation. -- type). -- function signature.
fields :: Data -> List[Expr] fs :: FunctionSignature fc :: FunctionCall

The () :: AbstractSubroutine — a — b ... — ConcreteSubroutineCall opera-

tor invokes an AbstractSubroutine with a polymorphic list of arguments to produce an ob-
ject representing a subroutine call of type ConcreteSubroutineCall. ConcreteSubroutineCall
models a distinct callsite of an AbstractSubroutine. A Fern program is, therefore, just a list of
ConcreteSubroutineCall objects ¢; that produce output out;.

{fi...,outy), ..., fu(...,0uty)}

€1 Cn

We can now discuss the semantics of Fern programs. For the semantics, we maintain some
state denoted by I' and ®. I :: Data — ConcreteSubroutineCall maps each out; to the
ConcreteSubroutineCall in charge of producing it. ® :: Variable — Expr, on the other
hand, tracks the implicit relationships between different metadata fields in the program.

# 1. Applying the top-level rule: Fern commits to computing the final output in the program. There-
fore, the denotation of the program is just the denotation of the last concrete call:

[CAC - outy), ..., ful.. . outy)}re = [ fa(- - . outn) I rfouti— () Tocicnr.®
Notice how we do not insert the final output out, into I'.
# 2. Computing at smaller granularities: Fern fuses its calls i.e. it calls a C++ sub-routine at smaller

granularities. We use the annotation to rewrite the program, and compute the function at smaller
subsets (this is the same transformation we applied in Figure 9).

(I f(...,out) Iro = for io in range c.annot.range[0] :
—_———— ——
or, the ConcreteSubroutineCall ¢ Fresh Variable
foripin range c.annot.range[p] :  (where p = len(c.annot.range) — 1)

out” = [out.query(c.annot.fields(out)) | r o

|[C’fc]] I,®[c.annot. ZOOP_VarS[m] —im] VY0<m<len(c.annot.range)

[out.insert(c.annot.fields(out), out”) | 1.0
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# 3. Generating a call: To actually call a function fc of a ConcreteSubroutineCall ¢, we need to
make sure that all fc’s inputs and outputs are ready. In the rule below, the notation data{fi, ..., f,}
describes a subset of data indexed by metadata fields fi, ..., fn.

[c.fe(arg, ..., out)|re =arg;=[larg_1{c.annot.fields(arg1)}|r.o (Prepare arg_1’s the required subset)

out’=[ allocate(c.annot.fields(out)) || r.o (Allocate the output of the call.)
fe(argl, ..., out”); (Generate the actual C++ function call)

# 4. Recursively preparing the data structures: To prepare a subset of data structure data with some
associated metadata fields my, ..., my:
[data{my,..., mp}]]["@ =

[data.query(mi,...,mp)]re ifdata ¢ T

[g-fellr.oro—solve for v in “g.annot.fields(data)j] - m_i"oev,1<,<p i data € T with g = T'[data]

where V; are non-free variables used in
g.annot.fields(data)| j)

Base Case: If the data is not the output of another call, the user is required to pass it as input. In
this case, we simply query the data structure.

Recursive Case: When the data is produced by another call, the call is evaluated first, and Rule
#3 is applied again. Before evaluating the call, we record the fact that the call is expected to produce
the subset indexed by {my, ..., m;} by storing the implied relationship in ®.

# 5. Generating insert, query and allocate nodes: For the calls described to query, insert and allocate,
we simply call the user-defined function for the datatype (Section 5).

[ data.query([mi,...,mp])]| = data.query([mi]r.a....[mplre); (User-defined query function)
[allocate([my, ..., mp])] = allocate([mi]re. ... [mplr.e); (User-defined allocate function)
[data.insert([my, ..., mp], datd’)] = data.insert([mi|re. ..., data’); (User-defined insert function)

For each query and allocate call, Fern maintains a corresponding list of data structures that need
to be freed, a detail we elide in the presented semantics.

# 6. Generating expressions:

[ex +exllre =[eillro + [e2]ro

[[61 - eZ]]F,CD = |[€1]]r,<1> - [[ez]]r,cb
[e: *eallro = [erllroe = [e2]lr.o
[ei/e2llre = [erllra/le2]Iro
[e:%e:]ro = [erlro%le:]re

[®lo]]re ifoed

[olre = {v

[N]re =N

To evaluate an expression, we first compute the values of its variables and apply the appropriate
operators. To determine the value of a variable v, we check whether v has a previously defined
value in ®. If v is not in @, it is treated as a free variable whose value must be provided by the user.

Otherwise
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Table 1. Scheduling Commands to control pipeline construction in Fern.

Scheduling Commands Description
s.parallelize(i) Parallelize the interval at nesting level i.
s.reorder(i, j) Reorder intervals at nesting level i and nesting level j.

s.split(i,x_o,x_i,s_i,s_o0) Stripmines loop at nesting level i by inner and outer iteration variables
x_1i and x_o, and inner and outer step variables s_i and s_o.

s.substitute(x, val) Bind the value of a free variable to concrete value val.

s.reuse(ds, i) Reuses values in data structure ds (if there is overlap) across iterations
of loop at nesting level i. Default behavior recomputes values.

s.break(i) Unfuse the pipeline at subroutine at index i and produce the full inter-
mediate.

s.subpipeline(start,end) Compute subroutines between index start and index end at a finer
granularity.

8 Scheduling Language

For a fixed computation, there exists a space of fusion strategies. For example, a simple elementwise
computation may be fused at the granularity of a single output element or at vector-lane width,
exposing parallelism. The best performing strategy depends on the arithmetic intensity of the
computation, sizes of the caches, parallelism, and the availability of hardware accelerators.

Modern domain-specific languages like Halide [37], TACO [12], and TVM [10] as well as loop
transformation frameworks like CHILL [9] use scheduling languages to let users explore possible
fusion strategies. Scheduling languages provide a set of correct and compositional rewrites that let
users sample the space of choices and apply their decisions in a precise and deterministic manner.
Scheduling languages often include commands analagous to classical loop optimizations like loop
permutation, loop tiling, vectorization and parallelization. More interesting commands like Halide’s
compute_at command describe the granularity at which data is to be produced for a consumer.

To control properties of the fused code, we provide a small scheduling language for Fern (Table 1).
The design of parallelize (parallel-for loop using Cilk [42]), split (loop tiling) and reorder (loop
permutation) follow the tradition of existing scheduling languages. The substitute command
replaces a symbolic variable with a concrete value. During lowering, the value is constant propagated
and can help resolve dependencies statically. The reuse command helps control sliding-window
style optimizations by reusing overlapping values over consecutive iterations of some domain.
Meanwhile, break helps unfuse pipelines, and subpipeline can fuse a subset of subroutines at a
finer granularity. In this section, we discuss the reuse, break and subpipeline commands.

Reuse: The reuse(ds, i) command when applied on a pipeline P produces a new pipeline P’ that
reuses overlapping intermediate values stored in a data structure ds across iterations of the loop at
level i. To apply a reuse command on a data structure, the pipeline P must satisfy three conditions:

(1) The data structure ds is an intermediate (not an input or the final output), which is computed
in the scope of loop i.

(2) The storage of ds should not depend on the variable bound by loop i.

(3) Loop i has not been marked as parallel by another scheduling command.

To apply the reuse optimization, Fern hoists the data structure outside loop i, and computes the
complete data structure for iteration 0 outside the loop. Fern computes the intersection between
different loop iterations of loop i. For the values that do not intersect, Fern generates a fused
pipeline, and the output is computed as normal. Finally, a special epilogue is added. Fern generates
a query into values computed at the current iteration that overlap with the next iteration, inserting
them into the reused data structure.
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Break: The break command P’ = P.break(i) when applied to a pipeline P, produces a new pipeline
P’, where the intermediate produced by the subroutine at index i is computed entirely. In this
way, the break command unfuses computations. To apply this command, Fern treats subroutines in
the pipeline until index i-1 and the subroutines starting from index i as distinct pipelines (and
mangles variable names). The lowered pipeline for the first set of subroutines contains an extra
allocation for the intermediate of subroutine i-1, and both graphs are lowered as usual.

Subpipeline: The subpipeline command P’ = P.subpipeline(i, j) when applied to a pipeline P,
produces a new pipeline P’, where the intermediates produced by the subroutine at index i uptil
(but not including) index j are fused at a finer granularity. In this way, the subpipeline command
introduces a layer of nesting in the generated code. To accomplish subpipelining, Fern lowers the
pipeline as normal. And, Fern also lowers the computation for subroutines at index i to j separately
with fresh variable names. Finally, the computation for subroutines at index i to j is replaced by a
pipeline node for subroutines at index i to j.

9 Evaluation

We evaluate Fern on a range of workloads to show that it can compete with state-of-the-art libraries
and compilers that have built-in fusion technology (Section 9.2, Section 9.3), exploit nontrivial fusion
patterns (Section 9.3, Section 9.4), exploit fusion patterns that current libraries cannot (Section 9.4,
Section 9.5, Section 2), and capture a variety of data structures across domains (Section 9.5).
Section 9.7 discusses the impact of different fusion choices on cache utilization. We also show that
Fern’s end-to-end runtime is small (Section 9.8). Finally, we characterize the overhead of fusing
through library interfaces using a synthetically constructed “worst-case” example (Section 9.6).

We extensively reused existing high-performance implementations as microkernels, showcasing
that Fern promotes reuse of existing code (Section 9.9).

9.1 Methodology

Experiments are run on an Intel machine and an Apple machine. We use two machines to ensure
that our baselines—such as Intel’s oneDNN library [33] and Apple’s Accelerate library [22]—are
evaluated on hardware they were designed for. The Intel machine has an Intel(R) Core(TM) i5-8400
CPU with a 192 KiB instruction cache, 192 KiB L1 data cache, 1.5 MiB L2 cache, 9 MiB L3 cache, and
24.0 GiB of RAM. It is clocked at 2.80 GHz and runs Ubuntu 20.04.6 LTS. The CPU supports the
AVX2 [24] vector extension. The Apple machine is a 2020 MacBook Air with an Apple M1 chip.
It has four high-performance cores, each with a 192 KiB instruction cache and a 128 KiB L1 data
cache, a shared 12 MiB L2 cache, an 8 MiB system-level cache, and 8.0 GiB of RAM. The cores are
clocked at 3.23 GHz.

All code is compiled with -03 -ffast-math, and target specific optimizations are enabled when
applicable. We use the average of the minimum running time sampled 5 times across 10 iterations.
Aggregate speedup refers to the geometric mean of the speedup across different data points.

9.2 Comparison with State-of-the-Art Systems

In the section, we show that Fern can deliver performance that is competitive with state-of-the-art,
domain-specific systems and libraries that have built-in fusion machinery.
Experiment 1: (Intel Machine) The first experiment is a convolutional layer which consists of
a multi-channel convolution, an addition with a bias vector, and a rectified linear unit (ReLU).
The Intel oneAPI Deep Neural Network Library [33] (oneDNN) is a highly optimized neural
network library that implements the convolutional layer as a fused operator. To fuse operators,
oneDNN provides two choices. First, the interface of the convolution function is set up such that
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it takes a bias vector and an optional epilogue operator as a parameter. Second, oneDNN offers
a graph extension where users describe their computation as a graph that then gets just-in-time
compiled, and is pattern matched for a fixed set of fusion patterns.

For Intel’s performance numbers, we use the fused API interface. For the Fern implementation,
we implement and annotate interfaces for convolution, bias and ReLU. The convolution interface
reuses the oneDNN implementation under the hood. Fern is competitive with oneDNN, and achieves
oneDNN’s performance (1% slowdown on aggregate), while being 1.44X faster than the unfused
implementation (Figure 19).

For both the API and the graph extension, the fusion capability of oneDNN is limited and brittle.
For the interface, the choice of the epilogue is only limited to elementwise and binary operators.
And, for the graph extension, not only does the user need to construct their computation as a graph,
but if their computation lies outside the set of fixed fusion patterns that oneDNN can match on, the
user is out of luck. In Section 9.3, we show the fusion of the convolutional layer with a maxpool
layer, an operation that lies outside the scope of oneDNN’s capability.

Experiment 2: (Intel Machine) The Haversine formula calculates the great-circle distance
between two points on a sphere. It comprises of 17 basic operations like addition, subtraction,
square root, sin, cosin, etc., and is ripe with opportunity for vectorization. Fusion at the granularity
of multiples of vector-lane width can be fruitful for such elementwise computations.

We use the ISPC compiler [25] from Intel as the state-of-the-art comparison. ISPC specializes in
single program, multiple data (SPMD) workloads, and excels at mapping such programs to single
instruction, multiple data (SIMD) instructions.

We also implemented a library of vector functions that compute additions, sin, cosin, etc. over
entire arrays in ISPC. We wrote the Haversine computation as a composition of these functions, and
directed Fern to fuse exactly at vector-width granularity. We also enable the inlining of the ISPC
functions through LLVM to mitigate the overhead of function calls. The arithmetic intensity of the
benchmark also hides some of the overhead of making function calls. (Section 9.6 characterizes this
overhead). Fern closely follows ISPC’s performance, lies within 8% the ISPC implementation on
aggregate (Figure 20), and provides a speedup of 1.09x over the unfused implementation.

Experiment 3: (Same as Section 2) Figure 2 presented in Section 2 shows how our system can
achieve performance matching ArmPL’s fused implementation for the sgerb_ kernel.

Experiments with other state-of-the-art systems are also presented in Section 9.3.

9.3 Exploiting Diverse Fusion Patterns

In this section, we demonstrate that Fern can programmatically exploit nontrivial fusion patterns.
Further, we show that Fern can achieve performance similar to a high-performance, domain-specific
language (DSL) that offers built-in fusion capabilities for such patterns.
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We consider two image processing benchmarks: 2D blur and unsharp mask, and compare the
performance of our system to Halide [37]. Halide is a high-performance, image-processing DSL
that enables users to fuse their computation through a scheduling command. Both benchmarks
have corresponding schedules written by experts.

Experiment 4: (Apple Machine) The 2D blur benchmark consists of a 3 X 3 separable box filter
that is applied on the x-axis and y-axis of a 2D image. The most performant schedule for a 2D
blur requires a sliding window and tiling optimization, where tiles of the output are computed in
parallel, each tile is fused such that enough output is produced to compute one row of y-axis blur at
a time, and the intermediates produced by the x-axis blur are reused across different computations
of the y-axis blur as shown in Figure 28.

Fern can tile, parallelize and identify the opportunity for reuse to produce an implementation
that is competitive with Halide. Fern fuses vectorized Blur X and Blur Y functions, similar to those
generated by Halide, achieving 0.88% of Halide’s performance, and is 2.53x faster than the unfused
implementation (Figure 21). The difference between Halide’s and Fern’s performance is due to the
fact that Halide is a DSL that owns the storage of underlying data structures. Therefore, Halide can
use a ring buffer to store the x-axis blur intermediates that will be used in later iterations. Since
Fern does not own the data structures related to the computation, it cannot perform a similar ring
buffer optimization, and needs to perform an extra copy.

Experiment 5: (Apple Machine) The unsharp mask computation not only involves the 2D blur
computation, but also has multiple intermediates that are fed into multiple subroutines (Figure 27).
Fern is competitive with Halide, achieving 0.91X of its performance, and Fern is 1.94X faster than
the unfused (but parallelized and vectorized) implementation (Figure 22). The Halide schedule paral-
lelizes, vectorizes and performs a sliding-window optimization. Similar to the previous experiment,
Fern needs to perform an extra copy.
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9.4 Extending Existing Fusion Machinery

In this section, we show that Fern can add to existing fusion capabilities of libraries by generating
fused implementations of computations that have no corresponding equivalent within the library.
For the following set of experiments, we will consider the oneDNN [33] library, an industry-
standard, high-performance library optimized for almost a decade. Our technique can find and
exploit performance opportunities in this highly-optimized library.

Experiment 6: (Intel Machine) In Section 9.2, we compared the performance of oneDNN’s
fused convolution layer to Fern’s as oneDNN provides an interface for a fused covolutional layer.
However, a convolutional layer is often followed by a pooling operation and the oneDNN library
does not contain a pattern for convolution-bias-reLU-maxpool.

In Fern, fusing convolution-bias-reLU-maxpool is as simple as adding the dependence infor-
mation for the maxpool subroutine call. We compare Fern’s fused implementation to a oneDNN
implementation (function composition of fused conv-bias-reLU and maxpool) as shown in Figure 23.
Our implementation is 12.6% faster than the oneDNN’s implementation, and 34.8% faster than the
unfused implementation.

The oneDNN implementation relies on a handwritten fused interface for the convolution-bias-
reLU and takes advantage of a memory propagation optimization, where later operands adapt to
the data layout of preceding operands [26]. Not only does our implementation provide better data
locality, it also does less work, only requesting the convolution output that will eventually be used
by the maxpool subroutine. We did not need to write a handwritten fused interface or implement a
special memory propagation optimization like the oneDNN library, leading to a much simpler user
experience without being domain-specific.

Experiment 7: (Intel Machine) While oneDNN provides an epilogue argument for the con-
volution interface (Figure 19), it does not do the same for the maxpool operator. Therefore, it
cannot fuse convolution-bias-reLU-maxpool-tanh kernel. Fern performs this fusion, resulting in an
implementation that is 10.9% faster than the oneDNN implementation, and 42.8% faster than the
unfused implementation (Figure 24).

Experiment 8: (Apple Machine) This experiment is the same as Section 2, Figure 3, where we
fuse computations across the ArmPL and Accelerate framework, both proprietary libraries. Fern
delivers a speed up of 1.45% and 1.65% over ArmPL and Accelerate implementations respectively.

9.5 Adding Fusion to Different Domains

In this section, we show that it is possible to apply the ideas described in this paper to target
libraries that use data structures beyond dense n-dimensional arrays.

Experiment 9: (Apple Machine) Shapely [19] is a Python library for geospatial computations.
Shapely offers a special data structure called STRTree that uses the sort-tile-recursive [29] algorithm
to insert geometries at construction time. Under the hood, Shapely uses the GEOS library [18], a
C/C++ library for computational geometry.

For our benchmark, we consider Shapely’s query function that takes in an STRTree object, a
list of input geometries, and an optional predicate. The function returns a list of geometries that
intersect those in the tree and satisfy the optional predicate. This is done within the Shapely
codebase as a composition of two GEOS functions: (1) A function that checks for intersection (2) A
function that evaluates the predicate. There is no fused implementation to perform both operations.
We change the first function’s implementation slightly: in the case that it does not find a valid
intersection, the function returns an None type object. This is necessary so that we can define a
symbolic expression to compute the size of the input.
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We extend the STRTree type with a data query interface and a specialized insertion function that
recurses on the newly inserted node. Additionally, we enrich the query and predicate functions to
specify that they operate on one node at a time. Fern fuses these computations and generates a
C++ interface compatible with libraries such as Shapely. As shown in Figure 25, the fused code
achieves speedups of up to 1.15X compared to naive function composition.

Experiment 10: (Apple Machine) Consider the case where some processing is supposed to be
performed on data stored in a database. For example, a sigmoid needs to be applied to every entry
of a matrix stored in a database (Figure 26).

We use TileDB [44] as our database backend. TileDB is a database management system designed
to handle large-scale, multi-dimensional arrays. We use TileDB as an in-memory database, and
query TileDB to produce tiles of data at a time.

Fusing the database reads and the scientific computation results in a 1.11X speedup over the
unfused implementation. There are more performance opportunities left to be exploited at this
boundary. In our implementation, we make repeated queries on tiles of the data and pay the penalty
of query parsing and interpretation each time. A more natural streaming interface may result in
even better performance. !

9.6 Measuring the Overhead of Fern’s Design

Since our approach aims to fuse black-box subroutines, there is overhead related with making
subroutine calls when compared to handwritten fused code that can simply inline computations.
Additionally, since individual fused computations are separated by subroutines, our system cannot
fuse at register granularity and cannot expose reuse at that fine-grained a level. In this section, we
characterize the overhead of our system by constructing an adversarial "worst-case” example.

Experiment 11: (Intel Machine) For the worst case, we consider a simple, six-operand element-
wise addition on vectors. Similar to Section 9.2, we use an ISPC handwritten fused implementation
as the state-of-the-art. Since the arithmetic intensity of the benchmark is quite low and the ISPC
compiler can fuse at the register level, we expect this benchmark to be the "worst case" and the
overheads to dominate the runtime. We also explicitly disable LLVM’s inlining pass to prevent
optimizations across subroutines. Our system runs 2.6X slower than ISPC (Figure 29), but delivers
1.27x speedup over the unfused case.

Note that operator fusion is beneficial only in the case that the data is stored in memory. If the data is requested over the
network, then the network calls become the bottleneck, and benefits seen from operator fusion (which promotes cache
reuse) become negligible.
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9.7 Impact of Fusion Choices

So far, we have compared fused and unfused code. However, there are several choices available for
the granularity at which to fuse. In this section, we compare the impact of fusion granularity on
program runtime, cache behavior, and memory footprint. (Figures 30 to 32, and Table 2).
Experiment 12: (Intel Machine) We ran a three-operand ele- 1,11. 2 workin g set size and
mentwise addition, changing the size of the working set (computed memory allocations as fusion
by n * 6 due to three inputs, one output and two intermediates). granularity (tile size) increases.
At the extreme, the working set size is set to the size of the full

. . . ) . Tile Size | Working Set
array, modeling the unfused case. The increase in runtime is closely Size (Bytes)
related to the increased cache miss rate, giving us confidence that Soonao? VS
locality benefits correspond to better performance. Table 2 shows [CiCache”| ~ ~ ~ 9MB ]
how the memory consumption of the program increases with the gggggg . g mg
tile size. The memory allocation of the program scales with the size | 100000 | 24MB |
of the intermediates (the input and output are allocated by the user | L2Cache | J-ZAMAl; |

. . . . 62500 12
before calling the Fern function), leading to an asymptotic decrease 50000 12 MB
in memory allocation. 40000 960 KB

Experiment 13: (Same as Section 2) For the SGERB benchmark

presented in Figure 2, we had to pick a concrete fusion granularity with which to run the benchmark.
To do so, we performed an enumerative search over a set of tile sizes. For our search, we explored
computing x number of columns per subroutine call, resulting in a tile size of x X n where n is the
length of the column. Smaller tile sizes result in smaller working-set sizes, making it more likely
that the data remains resident in cache, but they also lead to more subroutine calls. Since we do not
have source code access to the library, the downstream compiler cannot inline the subroutines, and
we must pay the overhead of these calls. Larger tile sizes result in fewer subroutine calls, adding
less overhead, but increase the working-set sizes. Figure 32 shows how the runtime of the program
changed with different tile sizes.

9.8 Scaling of Analysis Table 3. Fern’s compile time while
, . . varying # subroutine calls.
Fern’s primary task is to reason about dependence patterns over yne ¥ i
. . L. . . Application # Calls Time
a chain of subroutine calls, and the majority of compile time [3pprr 3 T34ms
is spent resolving these patterns. Fern’s compile time scales | Conv, Max, Tanh 4 1.63ms
Haversine 17 6.91ms

linearly with the length of the program as dependencies need
to only be resolved across consecutive pairs of subroutines. Table 3 shows compile times for a
subset of applications. The maximum time taken to compile a fused pipeline was 6.91 ms across all
experiments in Section 9, making Fern easy to integrate into a rapid edit-compiler-test loop.

9.9 Simplicity and Reuse of Existing Code

For the experiments presented above, we reused subroutine implementations across several high-
performance libraries and DSLs (Halide, oneDNN, BLAS, GEOS, TileDB, ISPC, ArmPL, Accelerate).
Since we reused previously existing interfaces, generating fused code with Fern was simpler than
handwriting fused code, or building compilers that produce fused code by default.

To apply the approach presented, data-dependence information needs to be added to subroutine
interfaces. This information is easy to derive and write down, and needs to be done once per
computation. For example, once the data-dependence information for matrix multiplication has
been added for Intel MKL’s BLAS library, it can be quickly adapted for ArmPL, Accelerate, etc.
Further, writing annotations can be automated for high-level languages (like Halide). We also added
data querying and insertion interface to data structures that these libraries and systems operate
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on. This amounts to only a few hours of work, and had to be done only once per library. The
subroutines may also need to be wrapped in newer interfaces that interoperate with the new data
structures that have the added querying and insert interfaces.

10 Related Work

Many compilers and languages perform operator fusion as an optimization. In Section 1, we
categorized past approaches to fusion as operating on the iteration language, the computation
language, or both. In this section, we discuss past approaches to fusion, and continue categorizing
them as such. We also discuss the scope of fusion opportunities that these system can exploit.

General-purpose compiler frameworks operate on both the iteration and computation language.
For example, LLVM loop fusion [5], the polyhedral framework [1], and MLIR loop fusion [36] work
directly on source code. Meanwhile, several languages like Delite [8] and Weld [34] introduce novel
intermediate representations (IR) to which applications must be translated, which can then be
analyzed for fusion opportunities. When fusion machinery is retrofitted into pre-existing languages
and compilers, its capability is limited by the properties of the source language. For example, aliasing
and complex dependence patterns can be hard to analyze in C. On the other hand, novel IRs require
rewriting entire codebases, with no reuse of previously written high-performance implementations.
In both cases, the entire implementation must be visible to the compiler, and it is not possible to
fuse through proprietary subroutines.

In contrast, domain-specific languages (e.g., Halide [38], TACO [27], TVM [10], Mosaic [4],
Hector [49], and Orchard [43]) often expose only the computation language. Their languages are
limited to a particular domain (sparse tensors, dense tensors, etc.). Their compilers derive iteration
spaces implicitly, generating high-performance fused code from outermost loops down to the leaf
computations. Since these languages understand the mathematical domain of their computations,
they can also expose fusion opportunities by applying mathematical rewrites, a capability that our
system lacks. However, these approaches are limited to the domain in which their computation
language specializes. Additionally, these languages completely own the physical implementation of
data structures, requiring users to pay the penalty of translating data formats into the systems’ data
structures. Diffuse [50], a domain-specific system built on top of Legion [6], can dynamically fuse
functions from the cuNumeric and Legate Sparse libraries at runtime. Languages like Fireiron [21]
treat data movement as a first-class citizen, and can recursively decompose the computation to
generate performant implementations for a single kernel, but not across computations.

Functional approaches model iteration using a set of patterns such as map, zip, and reduce.
Examples include MapReduce [15], Spark [51], Haskell’s stream fusion [13], deforestation [46], and
push arrays [47]. However, many fusion patterns—such as those with overlapping inputs in stencil
computations—fall outside these constructs, requiring users to handwrite fused code.

Lighter-weight approaches like Split Annotations [35] and Legion [6] decide how to partition data
and own the iteration language. These systems are the closest to our approach. Split Annotations
splits data to parallelize across subroutine boundaries by adding annotations to the subroutine
interface. However, Split Annotations’ approach does not generalize to patterns beyond elementwise
fusion of array operations. This is because the proposed split types only describe how to break
down operations and data structures into smaller pieces, and not how to chain dependencies. Legion
is a programming model for parallel architectures that exploits data locality and task independence.
Legion operates on logically independent regions of memory, and uses this independence to
dynamically extract parallelism. The notion of data dependence (Section 4) presented in this work
closely resembles Legion’s idea of logical regions. However, Legion requires a heavy-weight runtime
scheduler whose cost must be recovered by the workload. As Fern understands data dependencies,
it can statically schedule work and operate on much finer granularities (Section 9.2).
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Several neural network optimization systems like PyTorch 2.0, [2], nvFuser [41], XLA [40],
TVM’s graph optimizer [10], and Intel oneDNN’s Graph Extension [33] fuse representations lifted
from a chain of subroutine calls. They generate call graphs that can then be pattern matched or
rewritten for known fusion opportunities. These approaches are still domain-specific and understand
the semantics the computation since they are limited to operators in the library itself. At the
extreme, several libraries also provide handwritten fused interfaces for popular sets of subroutine
compositions (e.g., Apple BNNS [3], BLAS [28], CUTLASS [32]). However, these are limited to a
predetermined set of fused computations. Handwritten libraries like the BLIS framework [45] and
the AMD composable library [31] have exploited the notion of a microkernel to dispatch inner loop
computations to a small, highly optimized kernel. In these cases, programmers must manually
orchestrate data movement and reason about dependence patterns, which Fern automates.

11 Non-Critical Design Decisions

Section 3 details decisions that were fundamental to Fern’s design. However, we would like to
distinguish certain features of Fern that are more inessential artifacts of our implementation:

(1) Currently, Fern generates a C++ file that is linked into a user’s application. Alternatively,
it would be possible to interpret outer loops present in Fern-generated code and call into
precomplied functions. It would also be possible to just-in-time compile Fern code.

(2) While Fern uses abstract data types to interface with data structures, it would be possible to
specialize a Fern implementation to a particular choice of data structure and make it domain
specific. This can unlock more optimizations, and reduce overhead related with querying
and inserting subsets using interfaces presented in Section 5.

(3) Fern’s core ideas are language independent. We chose C++ because most high-performance
code is written in C++. We also implemented a Fern back end to Python, and believe that our
ideas can generalize to other languages.

There may be instances where an alternative choice is more ergonomic or performant, although

we believe that the ideas in Section 3 are still key to making these designs work.

12 Conclusion

We have aimed to combine the robustness of fusion approaches that exist in compilers and languages
with the simplicity and ease-of-use of subroutines. We presented a lightweight annotation language
for subroutine interfaces that enables fusion for nontrivial dependence patterns across many
domains, without requiring source code access to their implementations. We showed that our
approach is competitive with state-of-the-art systems and can fuse new workloads, even across
boundaries of proprietary libraries. We hope that that instead of reinventing infrastructure to
perform fusion for new domain-specific compilers and libraries, programmers will be able to reuse
our solution to add fusion on top of existing interfaces. Fern is open source and can be accessed at
https://fern-lang.com/.
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