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From FORTRAN to NumPy, tensors have revolutionized how we express computation. However, tensors
in these, and almost all prominent systems, can only handle dense rectilinear integer grids. Real world
tensors often contain underlying structure, such as sparsity, runs of repeated values, or symmetry. Support for
structured data is fragmented and incomplete. Existing frameworks limit the tensor structures and program
control flow they support to better simplify the problem.

In this work, we propose a new programming language, Finch, which supports both flexible control flow
and diverse data structures. Finch facilitates a programming model which resolves the challenges of computing
over structured tensors by combining control flow and data structures into a common representation where
they can be co-optimized. Finch automatically specializes control flow to data so that performance engineers
can focus on experimenting with many algorithms. Finch supports a familiar programming language of loops,
statements, ifs, breaks, etc., over a wide variety of tensor structures, such as sparsity, run-length-encoding,
symmetry, triangles, padding, or blocks. Finch reliably utilizes the key properties of structure, such as structural
zeros, repeated values, or clustered non-zeros. We show that this leads to dramatic speedups in operations
such as SpMV and SpGEMM, image processing, and graph analytics.
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1 Introduction

Arrays are the most fundamental abstraction in computer science. Arrays and lists are often the
first-taught datastructure [4, Chapter 2.2], [59, Chapter 2.2]. Arrays are also universal across
programming languages, from their introduction in Fortran in 1957 to present-day languages like
Python [11], keeping more-or-less the same semantics. Modern array programming languages
such as NumPy [48], SciPy [94], MatLab [71], TensorFlow [2], PyTorch [74], and Halide [76] have
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Fig. 1. A few examples of matrix structures arising in practice

pushed the limits of productive data processing with arrays, fueling breakthroughs in machine
learning, scientific computing, image processing, and more.

The success and ubiquity of arrays is largely due to their simplicity. Since their introduction,
multidimensional arrays have represented dense, rectilinear, integer grids of points. By dense, we
mean that indices are mapped to value via a simple formula relating multidimensional space to linear
memory. Consequently, dense arrays offer extensive compiler optimizations and many convenient
interfaces. Compilers understand dense computations across many programming constructs, such
as for and while loops, breaks, parallelism, caching, prefetching, multiple outputs, scatters, gathers,
vectorization, loop-carry-dependencies, and more. A myriad of optimizations have been developed
for dense arrays, such as loop fusion, loop tiling, loop unrolling, and loop interchange. However,
while dense arrays are the easiest way to program for performance, real world applications often
require more complex data structures to reach peak efficiency.

Our world is full of structured data. In this work, we make the distinction between a tensor,
which describes any multidimensional object which relates tuples of integer coordinates to values,
such as vectors or matrices, and an array, the previously described classical data structure. We say
that a tensor is structured when it has patterns that allows us to optimize storage or computation
of the tensor. Sparse tensors (which store only nonzero elements) describe networks, databases, and
simulations [5, 13, 17, 69]. Run-length encoding describes images, masks, geometry, and databases
(such as a list of transactions with the date field all the same) [43, 82]. Symmetry, bands, padding,
and blocks arise due to modeling choices in scientific computing (e.g., higher order FEMs) as well as
in intermediate structures in many linear solvers (e.g., GMRES) [25, 73, 78]. Combinations of sparse
and blocked matrices are increasingly under consideration in machine learning [30]. Even complex
operators can be expressed as structured tensors. For example, convolution can be expressed as a
matrix multiplication with the Toeplitz matrix of all the circular shifts of the filter [88].

Currently, support for structured data is fragmented and incomplete. Experts must hand
write variations of even the simplest kernels, like matrix multiply, for each data structure/data
set and architecture to get performance. Implementations must choose a small set of features
to support well, resulting in a compromise between program flexibility and data structure

Table 1. Finch supports both complex programs and complex data structures.
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flexibility. Hand-written solutions are collected in diverse libraries like MKL, OpenCV, LAPACK or
SciPy [10, 23, 75, 94]. However, libraries will only ever support a subset of programs on a subset of
data structure combinations. Even the most advanced libraries, such as GraphBLAS, which support
a wide variety of sparse operations over various semi-rings always lack support for other features,
such as N-D tensors, fused outputs, or runs of repeated values [24, 68]. While dense tensor compilers
support an enormous variety of program constructs like early break and multiple left hand sides,
they only support dense tensors [45, 76]. Special-purpose compilers like TACO [57], Taichi [51],
StructTensor [42], or CoRa [37] which support a select subset of structured data structures (only
sparse, or only ragged tensors) must compromise by greatly constraining the classes of programs
which they support, such as tensor contractions. This trade-off is visualized in Table 1.

Prior implementations are incomplete because the abstractions they use are tightly coupled with
the specific data structures that they support. For example, TACO merge lattices represent Boolean
logic over sets of non-zero values on an integer grid [58]. The polyhedral model allows various
compilers to represent dense computations on affine regions [45]. Taichi enriches single static
assignment with a specialized instruction to access only a single sparse structure, but it supports
more control flow [51]. These systems restrict their scope to avoid the challenges that occur when
complex control flow meets structured data. There are two challenges:

Optimizations are specific to the indirection and patterns in data structures: These
structures break the simple mapping between tensor elements and where they are stored in
memory. For example, sparse tensors store lists of which coordinates are nonzero, whereas run-
length-encoded tensors map several pixels to the same color value. These zero regions or repeated
regions are optimization opportunities, and we must adapt the program to avoid repetitive work
on these regions by referencing the stored structure.

Performance on structured data is highly algorithm dependent: The landscape of imple-
mentation decisions is dramatically unpredictable. For example, the asymptotic performance of
sparse matrix multiplication can be impacted by the distribution of nonzeros, the sparse format,
and the loop order [8, 102]. This means that performance engineering for such kernels requires the
exploration of a large design space, changing the algorithm as well as the data structures.

In this work, we propose a new programming language, Finch, which supports both
flexible control flow and diverse data structures. Finch facilitates a programming model which
resolves the challenges of computing over structured tensors by combining control flow and
data structures into a common representation where they can be co-optimized. In particular,
Finch automatically specializes the control flow to the data so that performance engineers can
focus on experimenting with many algorithms. Finch supports a familiar programming language
of loops, statements, if conditions, breaks, etc., over a wide variety of tensor structures, such as
sparsity, run-length-encoding, symmetry, triangles, padding, or blocks. This support would be
useless without the appropriate level of structural specialization; Finch reliably utilizes the key
properties of structure, such as structural zeros, repeated values, or clustered non-zeros.

As an example, in Figure 2, a programmer might explore different ways to intersect only the
even integers of two lists. The control flow here is only useful if the first example differs from
the next two in that it actually selects only even indices as the two integer lists are merged and
different from the last in that it does not require another tensor:

for i = _ for i = _ for i = _
for i = _ ifis2==0 cplil = ali] = b[i] ifis2==0
ifis2==0 apl[i] = ali] for i = _ flil =1

cl[il=alil#b[i] for i = _ ifi%n2==20 for i = _
c[il = apl[i] * b[i] c[i] = cpli] c[il = alil % b[i] = f[i]

Fig. 2. Four strategies to intersect even indices of two lists, represented as sparse vectors with sorted indices.
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Contributions. We make the following contributions:

e More complex tensor structures than ever before. We are the first to extend level-by-level
hierarchical descriptions to capture banded, triangular, run-length-encoded, or sparse datasets,
and any combination thereof. We have chosen a set of level formats that completely captures all
combinations of relevant structural properties (zeros, repeated values, and/or blocks). Although
many systems (TACO, Taichi, SPF, Ebb) [18, 29, 51, 87] feature a flexible structure description, Finch
is more capable and extensible because it uses looplets [7] to express the structure of each level.

o A rich sparse and structured tensor programming language with for-loops and complex control
flow constructs at the same level of productivity of dense tensors. To our knowledge, the Finch
programming language is the first to support if-conditions, early breaks, multiple left hand sides,
and complex accesses (such as affine indexing or scatter/gather) over sparse and structured tensors.

o A compiler that specializes programs to data structures automatically, facilitating an expressive
language for searching the space of algorithms and data structures. Finch reliably utilizes four key
properties of structure: structural zeros, repeated values, clustered non-zeros, and singletons.

e Our compiler is highly extensible, evidenced by the variety of level formats and control flow
constructs that we implement in this work. For example, Finch has been extended to support
real-valued tensor indices with continuous tensors. Finch is also used as a compiler backend for
the Python PyData/Sparse library [3].

e We evaluate the efficiency, flexibility, and expressiveness of our language in several case
studies on a wide range of applications, demonstrating speedups over the state of the art in classic
operations such as SpMV (geomean 1.26X, max 3.04X) and SpGEMM (geomean 1.30X, max 1.62X),
to more complex applications such as graph analytics (geomean 2.47X on Bellman-Ford, reducing
lines of code by 4x over GraphBLAS), and image processing (19.5X on the sketches dataset [36]).

2 Background
2.1 Looplets

Finch represents iteration patterns using looplets, a language that decomposes datastructure
iterators hierarchically. Looplets represent the control-flow structures needed to iterate over any
given datastructure, or multiple datastructures simultaneously. Because looplets are compiled with
progressive lowering, structure-specific mathematical optimizations such as integrals, multiply
by zero, etc. can be implemented using simple compiler passes like term rewriting and constant
propagation during the intermediate lowering stages.

seek(i); seek(j);
head if cond
| | | £ ||
[ b I I [

tail otherwise
i5j-1 —j5—

A Lookup looplet representsa A Run looplet represents a A Spike looplet represents a run A Switch looplet represents a

randomly accessible sequence  sequence of many of the same followed by a single, different value choice between different looplets
as a function of the index. value, usually stored once. at the end of the target region. under different conditions.
seek(i); next; next;  next;
preamble; —l |—> epilogue; 1 ’—> —l ’—> —l
head tail body body body
body

F—ab— bic | } i }
A Thunk looplet adds side effects such as A Sequence looplet represents a sequence of A Stepper looplet represents a sequence of
caching a value for sublooplets to use. a few different looplets, one after the other.  an unbounded number of identical looplets.

Fig. 3. The looplet language, as understood in a correct execution of a Finch program.
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The looplets are described in Figure 3. We simplify the presentation to focus on the semantics,
rather than precise implementation. For more background on looplets, we recommend the original
work [7]. Several looplets introduce or modify variables in the scope of the target language. This
allows looplets to lift code to the highest possible loop level. It is assumed that if a looplet introduces
a variable, the child looplet will not modify that variable.

Table 2. Detailed descriptions of looplet behavior. An example compilation is given later in Figures 17 and 18

Description

Arguments

lookup(body): The Lookup looplet represents a randomly accessible region
of an iterator, where the element at index i is given by the expression body(i).
While this often an array access, it could also be a computation like f(i) =
sin(7i/7). Lookups are leaf looplets, and the body is a value, not a looplet.

« body(i): A function which returns an
expression for the value at index i in the
current program state.

run(body): The Run looplet represents a constant region of an iterator. Runs
are leaf looplets, and the body of a run is a value, not a looplet, similar to
a Lookup. Run looplets do not need to store any information about their
region because it is specified by the enclosing loop.

« body: An expression representing the
value within the run in the current pro-
gram state.

switch(cond, head, tail): The Switch looplet specializes the body of a looplet
based on a condition, evaluated in the embedding context. If the condition
is true, we use head, otherwise tail. Switch has a high lowering priority so
we can see the looplets it contains and lower them appropriately. Lowering
Switch first also lifts the condition as high as possible in the loop nest.

« cond: A Boolean-valued expression.

« head: A looplet to execute if the condi-
tion is true.

« tail: A looplet to execute if the condi-
tion is false.

thunk(preamble, body, epilogue): The Thunk looplet allows us to cache
certain computations in program state in the preamble. The state can be used
by the Thunk body, making Thunks useful for computing and caching the
results of expensive computations. The epilogue can be used to clean up any
relevant side effects.

« preamble: A setup program for body.

« body: A looplet that can reference vari-
ables defined in preamble.

« epilogue: A teardown program for
preamble or body.

sequence(bodies...): The Sequence looplet represents the concatenation of
two or more looplets. The arguments must be phase objects which regions
on which each body is defined.

« bodies...: One or more phase objects,
whose regions must be non-overlapping,
covering, and ordered.

phase(ext, body): The Phase object is not a looplet, but instead helpfully
couples a sublooplet with the subregion of indices it is defined on in a larger
compound looplet.

« ext: An expression for the absolute
range on which the body is defined.
« body: The looplet defined within ext.

spike(body, tail): The Spike looplet represents a run followed by a single
value. Spike can be considered a shorthand for sequence(phase(i : j —
1,run(body)), phase(j : j,run(tail))). In the compiler, spikes are handled
with special care, since they are can help align the final value to the end of
the root loop extent without using any special bounds inference.

« body: An expression representing the
value within the run.

« tail: An expression representing the
value at the end of the spike.

stepper([seek], next, stride, body): The Stepper looplet represents a vari-
able number of looplets, concatenated. Since our looplets may be skipped
over due to conditions or various rewrites, the seek function allows us to
fast-forward the state to the start of the root loop extent when it comes time
to lower the stepper.

jumper(seek, next, body): The Jumper looplet is identical to a stepper
looplet, but when two jumpers interact, the largest stride between them
is taken, and the jumper with the smaller stride is demoted to a stepper
within that region. Jumpers allow us to request leader-follower strategies or
mutual-lookahead coiteration.

« seek(j): A function that returns a pro-
gram that advances state to the iteration
of the stepper which processes the abso-
lute coordinate j.

« next: A program that advances the state
to the next iteration of the stepper.

« stride: The absolute endpoint of the cur-
rent subregion of the stepper.

« body: The looplet to execute for the cur-
rent iteration of the stepper.

Finch advances the state-of-the-art over the looplets work [7]. While looplets presented a way
to merge iterators over single dimensional structures, Finch is the only framework to support such
a broad range of multi-dimensional structured data in a programming language with fully-featured
control flow. Looplets provide a powerful mechanism to simplify structured loops, but our paper
shows how to make this functionality practical; Finch uses looplets as a symbolic loop simplification
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engine. The precise choice and implementation of tensor level structures, the lifecycle interface
between levels and looplets, and the canonicalization of fancy indexing and masking all serve to
utilize and recombine looplets to achieve efficient computation over structured tensors.

2.2 Fiber Trees

Fiber-tree style tensor abstractions have been the subject of extensive study [28, 29, 88]. The
underlying idea is to represent a multi-dimensional tensor as a nested vector datastructure, where
each level of the nesting corresponds to a dimension of the tensor. Thus, a matrix would be
represented as a vector of vectors. Fiber-trees can represent sparse tensors by varying the type of
vector used at each level in a tree. Thus, a sparse matrix might be represented as a dense vector of
sparse vectors. The vector of subtensors in this abstraction is referred to as a fiber.

Instead of storing the data for each subfiber sep- e [ o e
arately, most sparse tensor formats such as CSR, i\ J[es] 0 [0

i
1 2

DCSR, and COO usually store the data for all fibers Denso Lovel —= Dense Fver \ T e

in a level contiguously. In this way, we can think ;
of a level as a bulk allocator for fibers. Continuing Postions: \_* .
the analogy, each fiber is disambiguated by a po- T J . ‘H

3

i
12 s
0 o‘o‘

i
sition, or an index into the bulk pool of subfibers. ] o o]l ] L‘Jt) ‘u‘
The mapping f from indices to subfibers is thus a Posiions: | 1 4 | —
mapping from an index and a position in a level to aafee][27][os] S s

a subposition in a sublevel. Figure 4 shows a sim-

ple example of a level as a pool of fibers. When we Fig. 4. Afiber tree representation of a sparse ma-
need to refer to a particular fiber at position p in the ~trix in _CSC format, with a dense outer level, a
level I, we may write fiber(, p). The construction of sparse inner level, and an element level of leaves.
fibers from levels is lazy, and the data underlying

each fiber is managed entirely by the level, so the level may choose to overlap the storage of
different fibers. Thus, the only unique data associated with fiber(l, p) is the position p.

3 Bridging Looplets and Finch: The Tensor Interface

Tensors use multiple dimensions to organize data with respect to orthogonal concepts. Thus,
the Finch language supports multi-dimensional tensors. Unfortunately, the looplet abstraction
is best suited towards iterators over a single dimension. Our level abstraction provides a bridge
between the single dimensional iterators created from looplets and the multi-dimensional fiber-tree
abstractions common to tensor compilers. This bridge must address three challenges. First, while
looplets represent an instance of an iterator over a tensor, we may access the same tensor twice with
different indices. Thus, the unfurl function creates separate looplet nests for each iterator. Next,
since Finch programs go beyond just single Einsums, they may read and write to the same data at
different times. The declare, freeze, and thaw functions provide machinery to manage transition
between these states. Finally, we must be able to write looplet nests that modify tensors, as well as
reading them. The assemble function manages the allocation of new data in the tensor.
Additionally, prior fiber-tree representations focus on sparsity (where only the nonzero elements
are represented) and treat sparse vectors as sets of represented points. Since our fiber-tree represen-
tation must handle other kinds of structure, such as diagonal, repeated, or constant values, we must
generalize our fiber abstraction to allow arbitrary mappings from indices into a space of subfibers.
In the rest of this section, we discuss how these 5 core functions (declare, freeze, thaw, unfurl, and
assemble) function as part of a life cycle abstraction that defines a level in Finch. These interfaces
add to the level abstraction, expanding the types of data that they can express via mapping to
looplets and expanding the contexts in which they can be used. We then identify a taxonomy of
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four key structural properties exhibited in data. We implement several levels in this abstraction
that capture all combinations of these structures, including specializations to zero dimensional
tensors (scalars) and level structures that support different access patterns.

3.1

Our simplified view of a level is enabled by our use of looplets to represent the structure within
each fiber. In fact, our level interface requires only 5 highly general operations, described below.

The first three of these functions, declare, freeze, and thaw, have to do with managing when
tensors can be assumed mutable or immutable. As we use looplets to represent iteration over a
tensor, we must restrict the mutability of tensors in the region of code which iterates over them.
For example, if a tensor declares it has a constant region from i = 2 : 5, but some other part of
the computation modifies the tensor at i = 3, this would result in incorrect behavior. It is much
easier to write correct looplet code if we can assume that the tensor is immutable while it is being
read from. Thus, we introduce the notion that a tensor can be in read-only mode or update-only
mode. In read-only mode, the tensor may only appear in the right-hand side of assignments. In
update-only mode, the tensor may only appear in the left-hand side of an assignment, either being
overwritten or incremented by some operator. We can switch between these modes using freeze
and thaw functions. The declare function is used to allocate a tensor, initialize it to some specified
size and value, and leave it in update-only mode.

Tensor Lifecycle, Declare, Freeze, Thaw, Unfurl

Table 3. The five functions that define a level.

Description

Arguments

declare(tns, init, dims...) : Returns a program that declares a ten-
sor of size dims and an initial value of init. This procedure thaws
the tensor.

« tns: The tensor to declare. Must be read-only.
« init: An expression for the initial value.
« dims...: Expressions for the tensor dimensions.

freeze(tns) : Returns a program that finalizes the updates in the
tensor, and readies the tensor for reading.

« tns: The tensor to freeze. Must be update-only.

thaw(tns) : Returns a program that prepares the level to accept
updates, initializing internal scratchspaces, etc.

« tns: The tensor object to thaw. Must be read-only.

unfurl(tns, ext, mode) : Returns a looplet that iterates over subten-
sors within the tensor along the extent ext. When mode = read,
returns a looplet nest over the values in the read-only fiber. When
mode = update, returns a looplet nest over mutable subfibers in
the update-only fiber. The compiler calls unfurl directly before
iterating over the corresponding loop, so it has access to any state
variables introduced by freezing or thawing the tensor.

« tns: The tensor or subtensor to unfurl.

« ext: An expression representing the range to unfurl
over.

« mode: An enum representing whether to unfurl in
read-only or update-only mode.

unwrap(tns, mode, [op], [rhs]) : Returns code to read or update
the scalar value of a scalar or leaf node tns (possibly a fiber),
using op and rhs in the case of update. Parent fibers may ask their
children to use this function to set a dirty bit in tns, indicating a
non-fill value has been written and that the child fiber needs to
be stored.

« tns: The tensor object to increment.

« mode: An enum representing whether to unwrap
in read-only or update-only mode.

« op: An expression representing the operation to
apply to the scalar value.

« rhs: An expression for the second argument to op.

assemble( v, possmrt,possmp) : Returns a program that allocates
subfibers in the level from positions posq,; to posy,,. In looplet
nests which modify the output, this function is often called to
construct the output tensor. For example, to handle the case where

a new nonzero is discovered, the compiler might call assemble to

obtain a location in memory to which the nonzero may be written.

« [vl: The level object in which subfibers are allo-
cated.

s posg;,,,: The first subfiber position to assemble.

* P0Sg,,: The last subfiber position to assemble.

The unfurl function is used to manage iteration over a subfiber. When it comes time to iterate
over a tensor, be in on the left or right hand side of an assignment, the compiler calls unfurl to
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return a looplet nest that describes the hierarchical structure of the outermost dimension of the
tensor. The compiler calls unfurl directly before compiling the corresponding loop, so the called has
access to any state variables introduced by freezing or thawing the tensor. Looplets were chosen
for this purpose as a symbolic engine to ensure certain simplifications take place, but another
symbolic system could have been used (e.g. polyhedral[103] or e-graph search [81]). We chose
looplets because they reliably process structured iterators, predictably eliminating zero regions,
using faster lookups when available, and utilizing repeated work.

Our view of a level as a fiber allocator implies an allocation function assemble(tns, pos,,,, :
Pos,,), which allocates fibers at positions pos,,, : posy,, in the level. We don’t specify a de-
allocation function, instead relying on initialization to reset the fiber if it needs to be reused. While
all of the previous functions are used to manage the lifecycle and iteration over a general tensor,
assemble is quite specific to the level abstraction, and the notion of positions within sublevels.

The assemble function lends itself particularly to a "vector doubling" allocation approach, which
we have found to be effective and flexible when managing the allocation of sparse left hand sides.

3.2 The 4 Key Structures

In the Finch programming model, the programmer relies on R El
the Finch compiler to specialize to the sequential properties of é E g §°
the data. In our experience, the main benefits of specializing N FD"“““
ense
to structure come from the following properties of the data: 7 o
. . . 7 RunLi
o Sparsity Sparse data is data that is mostly zero, or some 7 n/uan =
other fill value. When we specialize on this data, we can use v n/a
annihilation (x * 0 = 0), identity (x * 1 = 1), or other constant j ve 4 2;:
propagation properties (ifelse(false, x,y) = y) to simplify the V| V[V v
computation and avoid redundant work. v SparseList
R v v | SparsePinpoint
o Blocks Blocked data is a subset of sparse data where the 7 7 SparseRunList
nonzeros are clustered and occur adjacent to one another. This v v | v | Sparselnterval
s . . . v |V SparseBlockList
presents two opportunities: We can avoid storing the locations 77 7| SparseBand
of the nonzeros individually, and we can use more efficient Y Arar n/a
V[V [ 7 |7 v

randomly accessible iterators within the block. [7, 54, 95].

e Runs Runs of repeated values may occur in dense or
sparse code, cutting down on storage and allowing us to use
integration rules such as for i = 1:n; s += x end > s +=n

Fig. 5. All combinations of our 4 struc-
tural properties and the corresponding

> - ] formats we have chosen to represent
* x or code motion to lift operations out of loops [7, 34]. them. Not all combinations are rele-

e Singular When we have only one non-fill region in yant. There is no benefit to a block of
sparse data, we can avoid a loop entirely and reduce the com- runs if the run lengths are stored in-
plexity of iteration [7, 42]. dividually. Blocks and singletons only

In the following section, we consider a set of concrete im- make sense in the context of sparsity.

plementations of levels that expose all combinations of these
structures, paying some attention to a few important special
cases: random access, scalars, and leaf levels. We summarize the structures in Table 4 and Table 5.

3.3 Implementations of Structures

3.3.1 Sequentially Constructed Levels. We consider all combinations of the four structural proper-
ties in Table 5, resulting in 8 key level formats which proved to be useful. While it is impossible to
write code which precisely addresses every possible structure, our level formats can be combined
in a tree to express a wide variety of hierarchical structures, as shown in Figure 6.
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Fig. 6. Several examples of matrix structures represented using the level structures identified in Table 5.
Comparing to [7, Figure 3], we have added a level-by-level structural decomposition to the looplets.
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3.3.2  Non-sequentially Constructed Levels. To reduce the implementation burden and improve
efficiency in the common case, our structured levels only support bulk, sequential construction.
However, some problems or loop orders require writing out of order. For example, out-of-order
access occurs in our SpGEMM and histogram algorithms in Sections 7.2 and 7.4. This requires
more complicated datastructures with higher performance overhead, such as hash tables or trees.
We therefore support several randomly accessible sparse datastructures. These general sparse
datastructures may be used as intermediates to convert to our more specialized structures later.

3.3.3 Scalars. Because leaflevels are geared towards representing multiple leaves, we also introduce
a much simpler Scalar format to represent 0-dimensional tensors (a single leaf). Scalars don’t have
as much structure because they only concern one value. However, we allow the programmer to
declare that a scalar might be sparse, or that it might be used in a reduction which can be exited
early. Scalar structures can interact with other tensor structures in crucial ways.

We introduce the SparseScalar to indicate that it might be equal to the fill value and request
for the compiler to simplify subsequent computations accordingly. Constant propagation through
tensors is known to be a complex compiler pass [70]. SparseScalars present an alternative by
specializing reads for the possible fill value when a runtime check is passed.

We also introduce ShortCircuitScalars, which signal that the compiler 7 Swftcireviescalar(o}0
should early break out of a reduction loop when the loop hits an annihilator b= 0
value. For example, Figure 7 computes the product of vector elements, o ;Ej = AL3]
exiting the loop when one of them is zero. Ordinary break statements may
affect the value of all other statements in the loop, violating our lifecycle
constraints. We instead support early break as a structural property as
it allows us to elegantly compose with other structures, including other

Fig. 7. Using a Short-
CircuitScalar to find the
product of values in A.
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ShortCircuitScalars which may trigger at different times. SparseScalars and ShortCircuitScalars are
novel contributions of this work; other systems don’t include them, limiting the impact of sparsity.

3.3.4 Leaf Levels. The leaf level stores the actual entries of the tensor. In most cases, it is sufficient
to store each entry at a separate position in a vector. This is accomplished by the ElementLevel.
However, when all of the values are the same, an additional optimization can be made by storing
the identical value only once. In this work, we introduce the concept of a PatternLevel to handle
this binary case. The PatternLevel has a fill value of false, and returning true for all “stored” values.
The PatternLevel allows us to easily represent unweighted graphs or other Boolean matrices.

4 The Finch Language

EXPR := LITERAL|VALUE | INDEX | VARIABLE |EXTENT | CALL |ACCESS [toop (i extent(a,b) block) | F =UF R
STMT := ASSIGN|LOOP|DEFINE | SIEVE |BLOCK | DECLARE | FREEZE | THAW ivezn([a]”[5]"]
[[access (tensor,exprs...) | F =[ tensor| ¥ ([ exprs] ¥ ...)

|[block]]F’i’_'iv

DECLARE := TENSOR .= EXPR(EXPR...) #V is the set of all values

[ tensorname] F=F(tensorname)

FREEZE := @freeze(TENSOR) #S is the set of all Symbols
THAW := @thaw(TENSOR) #T is the set of all types OTF = w F
TENSOR := TENSORNAME :: WRAPPER(TENSOR, EXPR...) Dwrapper(tensor.expro) | =([wrapper] ™ (exprs) ([ensor] ™)
ASSIGN := ACCESS <<EXPR>>= EXPR TENSORNAME := S [block (stmty,stms...) | =[ stmt1 | UF [block(stmes...) | F
LOOP := for INDEX = EXPR LITERAL := V
STMT VALUE := S::T [block()17=()
end WRAPPER := S F F
DEFINE := let VARIABLE = EXPR INDEX := S [sieve(exprstmt) | F= Letme ™ Texpr]
STMT VARIABLE := §
end EXTENT := EXPR : EXPR &
SIEVE := if EXPR CALL := EXPR(EXPR...) [declare(var,expr,stme) | F <[ stme] F-0ar-leor]®
STMT ACCESS := TENSOR[EXPR...]
end MODE := @mode (TENSOR) [assign(access(tensar,idexpr),op,expr)]]F:FUF{lensnrb—»
BLOCK := begin
STMT. ... [ tensor | F u{[LidxExprs| ¥ ...~ [ op] ¥ ([[tensor|F ([idxExprs]|F ...), [ expr]F)}}
end

(a) The syntax of the Finch language. Compare this (b) Semantics of Finch. The domain F assigns tensor
grammar to the Concrete Index Notation of TACO [57, names to functions (ZN — V) and W assigns wrap-
Figure 3], noting the addition of multiple left-hand pers to functions (VM — ((ZN — V) — N o V),
sides (via blocks), access with arbitrary expressions, representing transformations of tensors. Dimensions
and explicit declaration, as well as freeze and thaw.  are computed via the rules laid out in Section 4.

Fig. 8. Syntax and Semantics for Finch

The syntax of Finch is displayed in Figure 8a, and a denotational semantics is displayed in Figure
8b. The Finch language mirrors most imperative languages such as C with for-loops and control
flow. Notable statements that have been added to the language include for, let, blocks of code with
if, wrappers of tensors, and the lifecycle functions that let us declare, freeze, and thaw tensors. As
discussed in Section 3.3, our language handles break as a structural property of scalars.

The denotational semantics of our language concern large dense iteration spaces, but the im-
plementation eliminates many of these unnecessary iterations through aggressive optimizations,
carefully using life cycles, dimensions, sparsity via looplets, and control flow as a form of sparsity.
Section 5 details the specifics of how we compile our syntax to efficient code over structured data.

As detailed in the previous section, tensors are defined externally via an interface that supports
the declare, freeze, thaw, and unfurl functions. The first three are supported directly in the syntax
whereas the fourth will be introduced through evaluation of loops and accesses, in the next section.
We do not intend the user to insert freeze or thaw manually, but we include them in the language
since they are added by a compiler pass (described in Section 5). Tensors can only change between
read and update mode in the scope in which they were defined, so we can insert freeze/thaw
automatically by checking whether the tensor is being read or written to in each child scope. We
error if a tensor appears on both the left hand and right hand sides within the same child scope.
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Table 4. The main level formats supported by Finch. Note that all non-leaf levels store a the dimension of the
subfibers and a child level. Since we must be able to handle the case where a sublevel is not stored because a
parent level is sparse, all of Finch’s sparse formats use a dirty bit during writing to determine whether the
sublevel has been modified from it’s default fill value and thus, whether it needs to be stored.

Sequentially Constructed Levels

Dense: The dense format is the simplest format, mapping fiber(l, p)[i] — fiber(l.Ivl, p X l.shape + i). This format is used to store dense
data and is often a convenient format for the root level of a tensor. Due to its simplicity, freezing and thawing the level are no-ops.

RunlList: Used to represent runs of repeated values, storing two vectors, right and ptr, with q’h run in the p‘h subfiber starting and ending
at right[ptr[p] + q] and right[ptr[p] + q + 1] — 1, respectively. A challenge arises for this level: it is difficult to merge duplicate runs.
An example would be merging runs of subfibers of length 3, representing colors in an image. Ideally, we would be able to detect duplicate
subfibers and merge them on the fly, but we cannot determine which subfibers are equal because the sublevel cannot be read in update-only
mode. Instead, the duplicates are merged during the freeze phase. The compiler freezes the sublevel, declares a separate sublevel buf as a
buffer to store the deduplicated subfibers, and compares neighboring subfibers in the main level, copying deduplicated subfibers to the buffer.
SparseList: The simplest sparse format, used to construct popular formats like CSR, CSC, DCSR, DCSC, and CSF. It stores two vectors, idx
and ptr, such that idx[ptr[p] + q] is the index of the ¢*" nonzero in the subfiber at position p.

SparsePinpoint: Similar to SparseList, but only one nonzero in each subfiber, eliminating the need for the ptr field. It stores a vector idx,
such that idx[p] is the nonzero index in the subfiber at position p.

SparseRunList: Similar to RunList level, but because runs are sparse, we must also store the start of each run. It stores three vectors left,
right, and ptr, such that the g*”* run in the p*”* subfiber begins and ends at left[ ptr[p] +q] and right[ ptr[p] +q], respectively. Like RunList,
it also stores a duplicate sublevel, buf, for deduplication.

Sparselnterval: Similar to SparseRunList, but only stores one run per subfiber, eliminating the need for the ptr field. This level does not
deduplicate as it cannot store intermediate results with more than one run. It stores two vectors, such that the run in subfiber p begins and
ends at left[p] and right[p] respectively.

SparseBlockList: Used to represent blocked data. It stores three vectors, idx, ptr, and ofs, such that ofs[ptr[p] +q] : ofs[ptr[p] +q+1] — 1
are the subpositions of block g ending at index idx[ptr[p] + q] in the subfiber at position p.

SparseBand: Similar to SparseBlockList, but stores only one block per subfiber, eliminating the need for the ptr field. It stores two vectors
idx and ofs, such that ofs[p] : ofs[p + 1] — 1 are the subpositions of the block ending at idx[p] in subfiber p. Banded tensors are a superset
of ragged tensors, where every band starts in the first column. In practice, the overhead of storing a 1 for the start of each band is minimal.

Nonsequentially Constructed Levels

SparseHash: The sparse hash format uses a hash table to store the locations of nonzeros, and sorts the unique indices for iteration during
the freeze phase. This allows for efficient random access, but not incremental construction, as the freeze phase runs in time proportional to
the number of nonzeros in the entire level. It stores two vectors, idx and ptr, such that idx[ptr[p] + q] is the index of the g**
the subfiber at position p. Also stores a hash table tbl for construction and random access in the level.

nonzero in

SparseBytemap The SparseBytemap format uses a bytemap to store which locations have been written to. Unlike the SparseHash format,
the bytemap assembles the entire space of possible subfibers. This accelerates random access in the format, but requires a high memory
overhead. Because we don’t want to reallocate all of the memory in each iteration, the declaration of this format instead re-assembles only
the dirty locations in the tensor. This format is analogous to the default workspace format used by TACO. It stores two vectors, idx and ptr,
such that idx[ptr[p] + q] is the index of the g nonzero in the subfiber at position p. These vectors are used to collect dirty locations. It
also stores tbl, a dense array of Booleans such that tbl[ shape  p + i] is true when there is a nonzero at index i in the subfiber at position p.

Leaf Levels

Element: The element level uses an array val to store a value for each position p. The zero (fill) value is configurable.

Pattern: The pattern level statically represents a leaf level with a fill value of false and whose stored values are all true.

Scalars

Scalar: A dense scalar that, unlike a variable, supports reduction.
SparseScalar: A scalar with a dirty bit which specializes on the fill value when it occurs.

ShortCircuitScalar: A scalar which triggers early breaks in reductions whenever an annihilator is encountered. ShortCircuitScalars trigger
stepper and lookup looplets to re-specialize the loop whenever a reduction into the scalar hits an annihilator, removing the reduction since
the value can no longer change. Short-circuiting conditions are lowered by inserting a branch into the loop body which checks for the short
circuit condition. The branch contains the (hopefully simplified) remainder of the loop, followed by a break. Re-specialization of other
looplets is not required because only steppers and lookups have more than a constant number of iterations.

Our expressions support a wide variety of scalar operations on literals, indices, extents, wrappers,
and calls to externally defined functions. Wrapper tensors are static higher order functions on
tensors that serve to optimize indexing logic such as i + j or i <= j; an initial pass converts
indexing to wrappers when possible. We implement wrappers as transformations on looplets or
other properties of the tensor interface. This supports a more efficient, lazy implementation of
complex indexing as opposed to naive random access. For examples of wrappers, see Table 5.
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Our syntax is highly permissive: by allowing blocks of code with multiple statements, we
implicitly support many features gained through complicated scheduling commands in other
frameworks, such as multiple outputs, masking to avoid work, temporary tensors, and arbitrary
loop fusion and nesting. These features are seen in our implementation of Gustavson’s sparse-sparse
matrix multiply, which writes to a temporary tensor in an inner loop and then reuses it; or in our
breadth-first search, which uses an if statement to avoid operating on vertices outside the frontier.

Dimensionalization Rules. Looplets typically require the dimension of the loop extent to match
the dimensions of the tensor. However, it is cumbersome to write the dimensions in loop programs,
and most tensor compilers have a means of specifying the dimensions automatically. In many
pure Einsum languages like TACO, determining dimensions is not needed because any tensor
dimensions that share an index are assumed to be the same [58]. Other languages, such as Halide,
perform bounds inference where known bounds are symbolically propagated to fill in unknown
bounds, often from output/input sizes to intermediates via some approximation such as interval
analysis or polyhedral methods [45, 76]. We refer to the process of discovering suitable dimensions
as dimensionalization. Loop bounds in Finch are computed automatically via a few simple rules.
There are currently two kinds of dimensions in Finch: _ represents a dimensionless quantity, and
a:b represents an integer dimension. Dimensions can be joined with the meet operation, which
returns the dimension that is not _ or else asserts that the two extents match.

o The dimension of an index is defined as the meet of the loop bound and the tensor dimension
corresponding to any right-hand-side accesses with that index.

e The n'" dimension of a tensor declaration is defined as the meet of all index dimensions in the
n'" mode of left-hand-side accesses to that tensor, from its declaration to its first read.

e The dimension of i + c, where c is a constant, is the dimension of i shifted by c.

o The dimension of ~(x), or any other unrecognized function, is _.

e More rules may be added as Finch is extended to recognize more indexing syntax.

5 The Finch Compiler

The Finch compiler takes a Finch program together with a program state defining the formats of
tensors, and produces efficient structure aware code. The compiler operates in several stages. The
first stages normalize the program to make it easier to process. The final stages lower a normalized
program recursively, one loop at a time. For each loop, all tensors that are indexed by the loop
index are transformed into looplets based on their structure, and these looplets are lowered to
executable code. The overall flow is summarized in Figure 9.

Life Cycle Statement Looplet

Wrappetization Dimensionalization Cencordization Automatien Lowering Lowering
nput  (Section 5.2) (Section 5.3) (Section 5.4) (Section 5.5) (Figure 14) (Figure 15)

~ . Concordant
Finch IR Finch IR + F:g;';clz*; Finch IA + N:U'?:"a' ) Finch IR Finch IR +
wrappers extants Wrappers + Finch IR {root=loop) Looplets
Input axtents )
’—) Finch IR—|
Formats _
L Finch IR——»

Output Code—»

Output Cod;

Fig. 9. Stages of the Finch Compiler.

5.1 Finch Normal Form

Our core recursive lowering compiler described in Figure 14 and Figure 15 is designed to handle a
particular class of programs we refer to as Finch Normal Form. This section defines the properties
of Finch Normal Form. Later sections will describe how to normalize all Finch programs which are
well-defined under the semantics in Figure 8b. The properties of our normal form are as follows:
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o Access with Indices: Though Finch allows general expressions (including affine expressions
and general function calls) in an access (i.e. A[i + j] or ALI[i]]), the normal form restricts to allow
only indices in accesses (i.e. A[i]), rather than more general expressions.

e Evaluable Dimensions: Loop dimensions and declaration dimensions must be evaluable at
the time we compile them, so we restrict the dimensions in normal form to dimensions that are
extents with limits defined in the scope of the corresponding loop or declaration statement.

e Concordant: Finch is column-major by default to match Fortran[11] and Julia[19]. A Finch
program is concordant when the order of indices in each access match the order in which loops
are nested around it. For example, for j = _; for i = _; s[]1 += A[i, j] end end is concordant
but for i = _; for j = _; s[]1 += A[i, j] end end is not.

e Lifecycle Constraints: Tensors in read mode may appear on the right hand side only. Tensors
in update mode may appear on the left hand side only. Tensors may only change modes in the
same scopes in which they were defined, imposing a simplifying dataflow constraint.

The following compiler passes explain how programs that violate each of these constraints can
be rewritten to programs that satisfy them and thus how we can support such a wide variety of
programs. For example, we can write nonconcordant programs like for i = _; for j = _; s[] +=
ALi, j] end end by inserting a loop to randomly access A.

Table 5. Wrapper tensors

OffsetTensor shifts tensors such that offset(tns, delta...)[i...] == tns[i + delta...]. The shifting is
achieved by modifying the ranges returned by the looplets in the wrapped tensor.

Ali..., j + ¢, k...] -> OffsetTensor(A, (@..., c, @...))[i..., j, k...]

ToeplitzTensor adds a dimension that shifts another dimension of the original tensor. The added dimensions are
produced during a call to Unfurl, when a lookup looplet is emitted for the first dimension.

ALi_1, ..., in, j +k, 1...] -> ToeplitzTensor(A, n)[i_1, ..., i_n, j, k, 1...]
PermissiveTensor allows for out-of-bounds access or padding. Permissive indices have dimension _. The out-of-
bounds value is missing, and the coalesce function can be used to return the first nonmissing value.

Ali..., ~j, k...]1 -> PermissiveTensor(A, (false..., true, false...))[i..., j, k...]
ProtocolizedTensor allows for advanced iteration protocols. The ProtocolizedTensor selects between several different
implementations of unfurl that a level may support. Finch recognizes several protocols:

e The follow protocol indicates the structure should be ignored and random access used for each element.

o The walk protocol declares that the structure of the iterator should be used in the computation.

e The gallop protocol declares that the structure of a tensor should lead an iteration and the compiler should
specialize to that structure with a higher priority than others. A galloping protocol over two SparseList levels produces
a mutual-binary-search merge algorithm popularized in the case of worst-case-optimal join queries [14, 72, 93].
Ali..., p(3), k...l —> ProtocolizedTensor(A, (nothing..., p, nothing...))[i..., j, k...]
SwizzleTensor is a lazily transposed tensor that changes the interpretation of the order of modes in the tensor. Unlike
other wrappers, a SwizzleTensor is compiled during the wrapperization pass rather than introduced by it.
swizzle(A, perm)[idx...] -> A[idx[perm]...]

UpTriMask is a mask tensor that represents Boolean upper tri- unfurl(UpTriMask(), ext, reader) =
angular matrices. We introduce the mask via rewrite rules, taking Lookup(body(j) = UpTriMaskCol(j))
care to emit an expression in column-major order. For example, unfurl(UpTriMaskCol(j), ext, reader) =

i <= j -> UpTriMask()[i, j] Sequence (

i > j -> lUpTriMask()[i, j] Phase(stop = j, body = Run(true)),
i <=j -> !UpTriMask()[j, i-1] Phase(body = Run(false)))

DiagMask is a mask tensor that represents Boolean diagonal ma- unfurl(DiagMask(), ext, reader) =

trices. It is introduced via rewrite rules such as: Lookup(body(j) = DiagMaskCol(3j))

i == j -> DiagMask()[i, jl unfurl(DiagMaskCol(j), ext, reader) =

i !=j -> IDiagMask()[i, jl Sequence(

When i would be bound at a higher loop depth than j, care is taken Phase(stop = j-1, body = Run(false)),

to reverse the loop order and emit the mask in column-major order. Phase(stop = j, body = Run(true))

Phase(body = Run(false)))
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5.2 Wrapperization

Many fancy operations on indices can be resolved by introducing
equivalent wrapper tensors which modify the behavior of the
tensors they wrap, or by introducing mask tensors which replace
index expressions like i <= j with their equivalent masks (in
this case, a triangular mask tensor). Wrappers and masks are
summarized in Table 5. More formally, a wrapper tensor is any
tensor that wraps a tensor variable in an access, and can overload
the behavior of unfurl, unwrap, and size, as well as modify the
ranges declared by any looplets the wrapper contains. For example,
the of fset wrapper tensor shifts the declared ranges of looplets
to shift the tensor with respect to the loop index. Wrappers may

also trigger a rewrite (such as a transpose) during wrapperization.

A mask tensor is a Boolean tensor with implicit structure that

Willow Ahrens, Teodoro Fields Collin, Radha Patel, Kyle Deeds, Changwan Hong, and Saman Amarasinghe

for i=_, j=_
ifi<=j
s[1 += Ali - 1, j]
l
for i=_, j=_

if UpTriMask()[i, j]
s[1 += OffsetTensor(A, (-1, @))[i, j]
l

for i = 1:n
for j = 1:1
s[] += A.vall(i - 1) + j * n]

Fig. 10. Wrapperization. While
i <= jis only an expression,
UpTriMask()[i, j] useslooplets
to restrict iteration to 1:1.

uses a predefined looplet nest, rather than the level abstraction. For example, the UpTriMask tensor
uses looplets to represent the structure of a Boolean upper triangular matrix. Mask tensors are
implemented using static looplets that are constructed during the unfurl step. Mask tensors allow
us to lift computations with masks to the level of the loop, without modifying the loop directly.

5.3 Dimensionalization

In Section 4, we described a simple set of rules to calculate dimen- " ©° @« % © = 4% 0
sions. We implement these rules in a straightforward algorithm to for i = 1:3
assign dimensions to loops and declaration statements (output tensors). oS _
Finch determines the dimension of a loop index i from all of the tensors | CHL, 33 = ALL, K3 BLk, 5]
using i in an access, as well as the bounds in the loop itself, and oper- LI
ates similarly for declarations. Finch can compute these dimensions  for j = 1:5
for k = 1:4

in a single pass over the program. When the compiler reaches a read
access, the dimensions of the tensor must be constant and are used
to compute the loop index dimension. When the compiler reaches an
update access, we make record of the indices used for later. Because
freeze and must occur outside of loops which access a tensor, when we reach a freeze we can use
those recorded indices to compute the dimensions of the corresponding declare.

For example, in Figure 11, the second dimension of A must match the first dimension of B. The
first dimension of A must match the i loop dimension, 1:3. Finch will resize declared tensors to
match indices used in writes, so C is resized to 1:3 x 1:5. If no dimensions are specified elsewhere,
Finch will use the dimension of the declared tensor. Dimensionalization occurs after wrappers are
de-sugared, so wrappers can be used to modify dimensions with indexing expressions. Users can
exempt an index from dimensionalization by wrapping it in ~ to produce a “PermissiveTensor”

Cli, j1 += A[i, k1 = B[k, jl

Fig. 11. Dimensionalization

5.4 Concordization

After dimensionalization, Finch runs a pass over the code for i = _ r 3 2
. . . . . f i = -
to make the program concordant by inserting single-iteration "0 9 for k=i
- X ' s[1 += ALk, 3§
loops. Examples are given in Figure 12. The algorithm targets o for i =
or i = N

A[I[i]i =1 — for j = I[i]:1I[i]

each indexing expression x which is not an index or is not bound
before subsequent indices in the access. The algorithm replaces
x with a new index j, and inserts a loop for j = x:x at the

appropriate level in the loop nest to make the expression column-

ALj] +=1

Fig. 12. Concordization to col-major
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major. An index expression is considered bound when all of its constituent expressions are defined,
either by a for-loop or an earlier definition, or it may be a constant.

5.5 Life Cycle Automation

The last normalization pass inserts the @freeze or @thaw 1o
statements automatically. Tensors are only allowed to change %7, yIil = il + 1
mode within the scope in which they were declared. If they have ~vt1 =xtiJ =1 ?Z’Sa?<§),
not been inserted already, this pass automatically inserts these X[i] += 1 - ;EH o
statements in the program, easing the programmer’s burden ¢, e @freeze(y)
and bridging between structured and dense languages. The pass X[ += yIil f:r ;[;27;: ylil

efreeze(x

walks the program and tracks the current mode of each tensor,
depending on whether the tensor is read or updated in each

iy , Fig. 13. Life cycle automation.
statement within the tensor’s declared scope block.

5.6 Recursive Lowering

Finally, after normalization, the program is lowered recursively, node by node. This phase is
presented as a staged execution of a small step operational semantics (SOS) for Finch Normal Norm
programs. Figure 14 evolves Finch control flow towards loops. Figure 15 lowers loops with looplets.

Though are semantics are phrased as an interpreter, we stress that what goes into the compiler
is a program and some formats, and what comes out is code. In Figure 8b, we offer a denotational

(val, (e,t,d)) — val' var ¢ d

Deﬁne Literal iabl d Variable
(define(var, val, body), (e, t,d)) (literal(val), (e, t,d)) — val (varial e(namei), (e.t,d))
— <b0dy, (e[vm, — val'], t, {})) d e(varlable(name))
(args;, (e,t)) = vals; (fi(et))y=g - Index (node, algebray — node’
Call (index(name), (e, t,d)) Simplify
(call(f, args...), (e,t)) — (g(vals...), t) — e(index(name)) (E[node],s) — (E[node'],s)
(body,s) — s’ (cond, (e,t,d)) = true
Block SieveTrue
(block(body, tail...), s) — (block(tail...),s") (sieve(cond, body), (e, t,d)) — (body, (e,t,{}))
e(tns) — tns’ e(mode(tns)) — read {unwrap(ins’, read), t)) — tns” (cond, s) = false
-Access SieveFalse
(E[access(ins)],s) — (E[tns"],s) (sieve(cond, body),s) — s
e(tns) = tns’ (op, (e,t,d)) — op’ (rhs, (e,t,d)) — rhs’
e(mode(ins)) = update {unwrap(ins’,update, op’, rhs’), t)) — t’ Value

(value(ex, type), (e,t,d)) = (ex, t))

-Assign
(E[assign(access(tns), op, rhs)], (e, t,d)) — (e, t’,d)

s=(et,d) tns¢ d e(tns) = tns’

(init,s) = init’ Vi(init, dims;) = dims; (declare(tns’, init’, dims’...), t)) —> t’
Declare

(declare(tns, init, dims),s) — (e[mode(tns) — update],t’,d U {tns})

s=(et,d) e(mode(tns)) = update tns € d e(tns) = tns’
Freeze

(freeze(itns),s) — (e[mode(tns) > read], {(freeze(tns’), t),d)
s= (e t,d) e(mode(tns)) = read tns € d e(tns) = tns’

(thaw(tns),s) — (e[mode(tns) — update], {(thaw(tns'), t),d)

Fig. 14. Basic evaluation semantics, roughly defining most of these language constructs to function similarly
to their classical definitions. The state, s, of the program is a tuple (e, t,d) of a variable value environment,
another state t corresponding to the state in the host language, and finally the set of tensors defined within
the current scope, d. We evolve tensor state with () and host state with ()). Several looplets introduce variables
into the host state, which may be read when evaluating the value node. Lifecycle functions are designed
to be implemented and executed in the host language, but these semantics enforce that each function may
update state in the host language and flip the mode of the tensor between read and update.
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semantics which described the format-agnostic mathematical behavior of Finch programs as if
tensors were functions. In Figures 14 and 15, we offer a structural operational semantics which
succinctly describes the format-specific behavior of a hypothetical Finch interpreter. Our semantics
can formally answer questions such as "which expressions will be annihilated by zero?", or "how
many steps would be required to traverse a certain combination of formats?".

Our evaluation rules in SOS are closely related to the lowering rules used to define a compiler.
Lowering rules would be similar to Figures 13 and 14, with a few key differences. First, any changes

T :=EXPR|STMT
E :=[-]|loop(T,T,E)|block(E,T...)|block(T,E,T...)|sieve(E, T)|assign(E, T, T)|assign(T,T,E)|
declare(T, E, T)|declare(T,T,E)|call(E,T...)|call(T,E,T...) |access(T,E,T...) |access(T, T,E...)

e(tns) > tns’ e(mode(ins)) —> m (unfurl(ins', ext,m), t)) = tns”

Unfurl
(loop(i, ext, E[access(ins, j...,i)]),s) — (loop(i, ext, E[access(tns”, j...,i)]),s) f

e(i)=1i ((seek(i’), ) — t’

Run

(loop (i, ext, E[access(run(body), j...,i)]),s) (E[access (looku . Lookup
. K p(seek, body), j...,i)], (e, t,d))
— (loop(i, ext, E[access(body, j...)]), s) = (Elaccess(body, j.) . (e, ',d))
-AcceptRun
(loop (i, extent(a, b), E[assign(access(run(body), j...,i), op, rhs)]),s)
— (loop(i, extent(a, b), E[sieve(i == a, assign(access(body, j...), op,rhs))]),s)
{cond, t)) = true {(cond, t)) = false
SwitchTrue SwitchFalse
(E[access(switch(cond, head, tail),i...)],s) (E[access(switch(cond, head, tail),i...)],s)
— (E[access(head,i...)],s) — (E|access(tail,i...)],s)
Phase

(loop (i, extent(a, b), E[access(phase(extent(c,d), body), j...,i)]),s)
— (loop (i, extent(max(a, c), min(b,d)), E[access(body, j...,i)]),s)

{preamble, t)) — ¢’ (E[body], (e,t',d)) — (¢/,t",d) (epilogue, t” ) — t"”’
(E[thunk(preamble, body, epilogue) ], (e, t,d)) — (e’,t"”’,d)
(loop (i, ext, E[access(head, j...,i)]),s) — s’

Thunk

(node, algebra) — node’
Sequence Simplify
(E[node],s) — (E[node’],s)

(loop (i, ext, E[access(sequence( head, tail), j...,i)]),s)
— (loop(i, ext, E[access(tail, j...,i)]),s")

{(seek(a), t) — t'

StepperSeek
(loop (i, extent(a, b), E[access(stepper(seek, body, next), j...,i)]), (e, t,d))
— (loop(i, extent(a, b), E[access(stepper(body, next), j...,i)]), (e,t’,d))

(loop(i, ext, E[access(body, j...,i)]), (e,t,d)) — (e’,t',d) {(next, t') — t”

StepperNext
(loop (i, ext, E[access(stepper (body, next), j...,i)]), s)
— (loop(i, ext, E[access(stepper (body, next), j...,i)]), (¢/,t”,d))

Loop
(loop(i, extent(a, b), body), s)
— (block(define(i, a, body), sieve(a < b,loop(i, extent(a + 1,b), body))), s)

Fig. 15. Looplet evaluation semantics. The state s of the program is a tuple (e, t,d) of a variable value
environment, host language state t, and the current tensor scope, d. Note that E is an evaluation context
that applies anywhere in the syntax tree. The nonlocal evaluations of looplets are what allow looplets to
hoist conditions and subranges out of loops. However, this also means we must specify the priority in
which we apply looplet rules, which is as follows: Thunk > Phase > Switch > Simplify > Run > Spike >
Sequence > StepperSeek > StepperNext > Lookup > AcceptRun > Unfurl > Loop > Access. Many looplets,
most notably the thunk looplet, introduce variables into the host language environment. While looplets may
modify variables they introduce themselves (steppers often increment some state variables), we forbid child
looplets from modifying state variables that they didn’t introduce. This allows us to treat the value node
as a constant. The Simplify rule references algebra, which is our variable defining a set of straightforward
simplification rules. These rules include simple properties like x * 0 — 0 to more complicated ones such as
constant propagation. We omit the full set of rules for brevity and refer to [7, Figure 5] for examples.
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to variable values in the "target environment” would simply be lowered to variable assignments.
Second, instead of evaluating expressions when we apply a rule, we lower the expressions to code,
using variables to reference the results. Finally, when runtime information is used to determine
which rule to use, we instead lower both rules and emit a runtime branch to decide between them.

For example, though there are two rules to lower sieve depending on whether the condition is
true (SieveTrue and SieveFalse) both branches are lowered with an if to decide between them.

This stage of the compiler carefully intermixes our control flow and tensors into looplets so the
combination can be successfully simplified. The crux is that loops are decomposed into looplets,
introduced via the Unfurl rule. Unfurl is defined in Section 3.3. As the looplets are lowered, repeated
values and constants are slowly uncovered (e.g. Run and Switch, respectively). We use rewrite rules in
Simplify to eliminate cases, unnecessary iterations, and so forth based on the information provided
via looplets and via the control flow (loops, sieve, definitions). Our rewrites rely on concordization
and wrapperization to reliably transform complex index expressions and control flow into loops
and wrappers, our recursive lowering stage can use looplets to simplify the combination of tensor
structures and control flow to eliminate unneeded work. Our rewrites also rely on tensor life cycles
to guarantee their validity and avoid arbitrary mixes of reads and writes.

Finch lowers loops from the outside to the in- 4
side, focusing on a single outer loop at a time. The c
lowering of a single loop rewrites the entire loop °

Tensor (Dense(Element(0.0)))

Tensor (SparseList(SparseList(Element(0.0))))
Tensor (Dense(SparseList(Element(0.0))))
Tensor (SparseList(Element(0.0)))

. . . for k = _
body, even when the body contains multiple inner for ko A=0
- for i = _

loops. It is true that a complex loop body may re- fo;[i]z__B[i Qe o AT = SteperC.oli, K+ 2
quire a fairly invasive rewrite, but the rewrite is ¢ j- _ Fo[oikipz N
broken into many manageable pieces. The unfurl €03, K1 = ALi1"2 + DIk] ALi1*2 + Stepper(...)[K]
operation applies to all tensor access expressions

involving the outer loop index, simply substitut- Fig. 16. Unfurling accesses on the k loop.

ing each tensor with a corresponding looplet nest

expression. The Looplet lowering rules in Figure 15 specify more granular rewrites that affect the
entire loop body and involve the interaction between multiple looplets in different accesses.

We chose this level-by-level design to avoid combinatorial explosions handling different formats
across two or more levels. Each level format describes one dimension of a tensor at a time, and Finch
only lowers one loop at a time. The Unfurl function substitutes each level format with a looplet
expression composed from a fixed set of looplets. Then, we need only consider the relationships
between each looplet, and not each format. An example of Unfurl is given in Figure 16.

6 Example Lowering

In Figures 17-18, we illustrate the lowering of a program that sums the upper triangle of a matrix.

Input Program: Step 1: Normalization
A = Tensor(Dense(SparseList(Element(0.0))), m, n) T = UpTriMask()
s = Tensor(Element(0.0)) A = Tensor(Dense(SparseList(Element(0.0))), m, n)
@finch begin s = Tensor(Element(0.0))
s .= 0.0 @finch begin
for j = _ @declare(s, 0.0)
for i = _ for j = 1:n
if i <=3 for i = 1:m
s[1 += Ali, 3] if TCi, 3]
s[1 += Ali, j]
@freeze(s)

Fig. 17. Example normalization of a Finch program. Wrapperization replaces i <= j with UpTriMask(O[i, 3jI.
Dimensionalization computes i = 1:m, and j = 1:n. The input is already concordant. Lifecycle statements are
added. Normalization readies the program for recursive lowering, shown in Figure 18.
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Step 2: Declaring s The declare statement initializes the s tensor.
s.lvl.val[1] = 0.0
@finch begin
for j = 1:n
for i = 1:m
if UpTriMask()[i, j]
s[1 += A1, j]
@freeze(s)
Step 3: Unfurling j To process the j loop, we unfurl both tensors
that access j:
s.lvl.val[1] = 0.0
@finch begin
for j = 1:n
for i = 1:m
if (t[3DLi]
sf] += (aliDHil
@freeze(s)
Step 4: Lower Lookups We insert a for-loop:
s.lvl.val[1] = 0.0
for j = 1:n
@finch begin
for i = 1:m
if UpTriMaskCol(j)[i]
s[] += SubFiber(A.1vl.1lvl, j)[i]
@finch @freeze(s)
Step 5: Unfurling i Next, we process the i loop. Again, we unfurl
both tensors:

t = unfurl(UpTriMask()) =
Lookup(
body(3) = UpTriMaskCol(j))
a = unfurl(A::DenseLevel) =
Lookup(
body(j) = SubFiber(A.1lvl.1lvl, j))

t = unfurl(UpTriMaskCol(j)) =

Sequence(
Phase(stop = j, Run(true)),
Phase(Run(false)))

a = unfurl(SubFiber(

s.lvl.vall1] = 0.0 A.1vl.1lvl::SparseListLevel, j)) =

for j = 1:n

) R Thunk (
@fmch_b?gm preamble = (q = A.1lvl.1lvl.ptr[jl),
for i = 1:m
. . Stepper (
if t[i] k = (i) -> (
s[] += a[i] S i

q = binarysearch(A.1lvl.1vl.idx, i)),
stop = A.1vl.1lvl.idx[q],
body = Spike(
body = 0,
tail = A.1vl.1lvl.vallql),
next = (q += 1)))
Step 6: Lower Thunks We move the preambles out of any Thunks
and unwraps them:

@finch @freeze(s)

t = Sequence(
Phase(stop = j, Run(true)),
Phase(Run(false)))
a = Stepper(
seek = (i) -> (
q = binarysearch(A.1lvl.1lvl.idx, 1)),

s.1lvl.val[1] = 0.0
for j = 1:n
q = A.1vl.1vl.ptr[j]
@finch for i = 1:j

if t[i] stop = A.1lvl.1lvl.idx[ql,
s[] += ali] body = Spike(
@finch @freeze(s) body = 0,

tail = A.1vl.1lvl.vallql),
next = (q += 1))
Step 7: Lower Sequences We insert loops for each phase:

s.lvl.val[1] = 0.0 t_1 = Run(true)
for j = 1:n t_2 = Run(false)
q = A.1vl.1vl.ptr[j] a = Stepper(

@finch for i = 1:j seek = (i) -> (

if t_1[i] q = binarysearch(A.1vl.1lvl.idx, i)),
s[] += ali] stop = A.1vl.1lvl.idx[q],
@finch for i = j+1:m body = Spike(
if t_2[i] body = @,
s[] += a[i] tail = A.1lvl.1lvl.val[ql),

efinch @freeze(s) next = (q += 1))

Willow Ahrens, Teodoro Fields Collin, Radha Patel, Kyle Deeds, Changwan Hong, and Saman Amarasinghe

Step 8: Lower Runs We simply replace runs with their value:
s.1lvl.val[1] = 0.0
for j = 1:n

q = A.1vl.1vl.ptr[j]

a = Stepper(
seek = (i) -> (

@finch for i = 1:j q = binarysearch(A.1lvl.1lvl.idx, 1)),
if true stop = A.1vl.1vl.idx[ql,
s[] += ali] body = Spike(
@finch for i = j+1:m body = 0,
if false tail = A.1lvl.1lvl.val[ql),
s[] += a[i] next = (q += 1))

@finch @freeze(s)
Step 9: Simplify The simplification pass removes the if statement in
the first loop and removes the second loop:
a = Stepper(
seek = (i) -> (
q = binarysearch(A.1lvl.1lvl.idx, 1)),
stop = A.1lvl.1lvl.idx[ql,
body = Spike(
body = @,
tail = A.1vl.1vl.vallql),
next = (q += 1))
Step 10: Lower Steppers We process steppers with a while loop:
s.1lvl.val[1] = 0.0

s.lvl.val[1] = 0.0
for j = 1:n
q = A.1vl.1lvl.ptr[j]
@finch for i = 1:j
s[1 += a[i]
@finch @freeze(s)

for j = 1:n
q = A.1vl.1vl.ptr[j]
k=1 = Spi
while k < j as ﬁﬂ;ﬁ °
k_2 = A.1vl.1vl.idx[q] tail = A.1vl.1vl.vallql)

@finch for i = k:min(k_2, j)
s[] += ali]
+=1
@finch @freeze(s)
Step 11: Lower Spikes A Spike is a Run followed by a single value:
s.lvl.val[1] = 0.0
for j = 1:n
q = A.1vl.1vl.ptr[j]
k=1
while k < j
k_2 = A.1vl.1vl.idx[q]
@finch for i = k:min(k_2, j)
s[1+=10
i=k.2
@finch if i < j
s[] += A.1vl.1lvl.val[q]
q+=1
@finch @freeze(s)
Step 12: Simplify We observe that addition of @ is a no-op:
s.lvl.val[1] = 0.0
for j = 1:n
q = A.1vl.1vl.ptr[j]
K =
while k
k.2 =
i=
ifi<j
s[] += A.1vl.1lvl.val[q]
q+=1
@finch @freeze(s)
Step 13: Lower Freeze Finally, the final freeze is a no-op and we
obtain:
s.lvl.val[1] = 0.0

- >

x> A

i)
.1v1.1v1.idx[q]
2

for j = 1:n
q = A.1vl.1lvl.ptr[j]
k=1
while k < j
k_2 = A.1vl.1vl.idx[q]
i=k.2
if i <j
s[] += A.1vl.1lvl.val[q]
q+=1

Fig. 18. Example recursive lowering of a Finch program, continued from Figure 17. Though Finch programs
look as if they are written for dense loops, Finch specializes the code during lowering so that only the necessary
elements of structure need to be processed. The final program accesses only the upper triangle of A, though
the original code looks as though it loops over all i and j.
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7 Case Studies

We evaluate Finch on a broad set of applications to showcase it’s efficiency, flexibility, and expres-
siveness. All experiments were run on a single core of a 12-core 2-socket 2.50GHz Intel Xeon CPU
E5-2680 v3 with 128GB of memory. Finch is implemented in Julia v1.9, targeting LLVM through
Julia. All timings are the minimum of 10,000 runs or 5s of measurement, whichever happens first.

Our study of sparse-sparse-matrix multiply (SpGEMM) translates classical lessons from sparse
performance engineering into the language of Finch. Our study of sparse-matrix-dense-vector mul-
tiply (SpMV) highlights the benefits of structural specialization. Our studies of image morphology
and graph algorithms show how Finch can express complex real-world kernels.

7.1 Sparse Matrix-Vector Multiply (SpMV)

Sparse matrix-vector multiply (SpMV) has a wide range {fofj“: .- 1{0302
of applications and has been thoroughly studied [66,  y[il += Ali, 31 * x[31  let x_j = x[5]
. . _j =0
104]. Because SpMV is bandwidth bound, many formats foric.
have been proposed to reduce the footprint [62]. The | _, e
wide range of applications results in a wide range of ten- for 3 =, i =_ y-3L1 = Aij * x[i]

sor structures, making it an effective kernel to demon-
strate the utility of our programming model.

Figure 20 displays the performance of SpMV measured
relative to TACO. We varied both the data formats and
SpMV algorithms in Finch (see Figure 19), and display
the best-performing combination. Precisely which Finch

y[31 += ALi, 31 % x[i]  y[31 += y_300 + D[51 * x_j
Fig. 19. Finch row-major, column-major and
symmetric SpMV Programs. Note that the up-
per triangle of the input is pre-computed for
the symmetric program. Reads to the canon-
ical triangle are reused with a define state-

ment, and the results are written to both rel-
evant locations using multiple outputs.

format performed best on which matrices is shown in
the figure. We compare against TACO (best of row or
column-major), Julia’s standard library (column major),
baseline Finch (best of row or column-major with CSC format), Eigen (row-major) [46], MKL
(row-major) [1], and CORA (unscheduled, row-major) [38]. Our test suite is the union of datasets
from three previous papers: the matrices used by Ahrens et al. to test a variable block row format
partitioning strategy [6], Kjolstad et al. to test the TACO library [58], and Leskovec et al. to
evaluate graph clustering algorithms [64]. We left out two very large matrices (Janna/Emilia_923
and Janna/Geo_1438); the remaining matrices had a maximum of 12 million nonzeros. We also
added some synthetic matrices, 10,000 X 10,000 banded matrices with bandwidth 5, 30, and 100, a
1024 X 1024 upper triangular matrix, and a 1, 000, 000 X 1, 000, 000 reverse permutation matrix.
Finch introduces tradeoffs between the benefits of specialization and the branching it induces.
Specialization is most effective for common cases that can be highly simplified, such as the zero
region of sparse matrices. For example, we found it was faster to pre-compute the upper triangle of
our symmetric matrix, rather than calculate it on the fly using a mask expression such as i < j,
which changed the exit condition of the inner loop. The option to de-specialize certain conditional
expressions is another example of how Finch can widen the design space for structured operators.
Our result shows that different formats perform better on different matrices, and that Finch can
be used to exploit these formats. In general, SpMV performance was superior for the level format
that best paralleled the structure of the tensor. The best Finch format had a geomean speedup of
1.27 over TACO. Matrices with block structure like exdata_1, TSOPF_RS_b678_c1, and heart3
performed best with the SparseBlockList format with speedups of 2.75, 1.80, and 1.20 relative to
TACO. Matrices with banded structure performed the best with the SparseBand format. In particular,
on the large_band and the medium_band matrices, our banded format showed a speedup of 2.50
and 2.02 relative to TACO. On our triangular matrix, Finch had a speedup of 3.04 over TACO,
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SpMV Performance (Speedup Over Taco)

T
B Finch (Best) mm Julia Stdlib B Eigen

357 mmm Finch (Baseline)  mmm MKL = CoRa
3.0 1
2.5

cant
pwtk
besstk17
consph
pdb1HYS
Ipi_gran
scircuit
rajat26
malo
shipsecl
heart3

cop20k A
email-Enron

ACTIVSg70K
large_band
com-DBLP

permutation

Goodwin_071
upper_triangle
medium_band

mac_econ_fwd500

TSOPF_RS_b678_c1

Sym;emc Colﬂmn Row ColImn Row Colxmn Row_|Symmetric ng Row
Tensor(Dense(SparseList(Element(0.0)))) Tensor(Dense(SparseBlockList(Element(0.0))))

Tensor(D Element(0.0))))
Tensor(Dense(SparseList(Pattern(false))))
Tensor(Dense(SparsePoint(Pattern(false))))

Fig. 20. SpMV performance, organized by the best performing Finch format. Programs are from Figure 19. “Finch (Best)”
is the fastest among the formats we tested. “Finch (Baseline)” is the faster of row or column major “SparseList”.

outperforming even CORA, which was designed for ragged tensors but targeted more towards
cache blocking than to the specific structure of the tensor. Similarly, using a SparsePoint format
obtained a speedup of 1.30 by avoiding a loop over nonzeros (since there is only ever one nonzero
in the SparsePoint level). The Pattern leaf level performed better than the Element leaf level on
Boolean graph matrices. On ca-AstroPh, SparseList-Pattern format resulted in a speedup of 1.17
over TACO, while SparseList-Element only achieved 1.04. Our results clearly demonstrate the utility
of being able to vary both the algorithm and the format to match the structure of the tensor.
Though MKL is closed-source, using perf on mac_econ_fwd_500, we found that MKL had
noticeably higher branch mispredictions than expected (23%, as compared to TACO’s 1%), and that
many instructions were vectorized with AVX (23% as compared to TACO’s 0.03%), indicating a
vectorized row-major implementation. Such an implementation should underperform since the
matrix has only 6 nonzeros per row and the inner loop would iterate only once between setup and
cleanup of the vector registers. Taco and Eigen performed similarly, both emitting simple loops
over non-zeros. This sometimes has a slight advantage over Finch, which uses the coordinate as
the loop variable. Still, Finch’s structural specification showed a clear advantage on our test inputs.

7.2 Sparse-Sparse Matrix Multiply (SpGEMM)

We compute the M X N sparse matrix C as the product of M X K and K X N sparse matrices A and
B. There are three main approaches to SpGEMM [102, Section 2.2]. The inner-products algorithm
takes dot products of corresponding rows and columns, while the outer-products algorithm sums
the outer products of corresponding columns and rows. Gustavson’s algorithm sums the rows of B
scaled by the corresponding nonzero columns in each row of A. Inner-products is known to be
asymptotically less efficient than the others, as we must do a merge operation to compute each of
the MN entries in the output [8]. We will show that our ability to implement these latter methods
exceeds that of TACO, translating to asymptotic benefits.
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@finch begin w = Tensor (SparseByteMap(Element(0))) w = Tensor(SparseHash(SparseHash(Element(0))))
cC.=0 @finch begin efinch begin
for j=_ cC.=0 w .= 0
for i=_ for j=_ for k=_
for k=_ w.=0 for j=_
CLi, j1 += ATLk, il = B[k, j] for k=_ for i=_
return C for i=_ wli, j] += A[i, kI = BT[j, k]
wlil += A[i, k1 * B[k, j] c.=0
for i=_ for j=_, i=_
CLi, j1 = wli] Cli, j1 = wli, 3

Fig. 21. Inner Products, Gustavson’s, and Outer Products matrix multiply in Finch
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Fig. 22. A comparison of several matrix multiply algorithms in Finch, Taco, Eigen, and MKL. The top images
show results on the same dataset as [102]. We use only Gustavson’s algorithm on larger matrices.

Figure 21 implements all three approaches in SpGEM1Runtime Versusincressing Dlnension (4 nanzers o ow)

o TACO Inner -

+~ Finch Inner o~ TACO Outer Dense

Finch, and Figure 22 compares the performance |+ i = o

of Finch to TACO, Eigen, and MKL on the matri- T ——
ces of Zhang et al. [102]. While these algorithms .

differ mainly in their loop order, different data
structures must be used to support the various =
access patterns. In our Finch implementation .
of outer products, we use a sparse hash table,
as it is fully-sparse and randomly accessible.
Since TACO does not support multidimensional

- Eigen

Runtime (s)

. .
o o = e o
Matrix Dimension Size

K . d Fig. 23. An asymptotic comparison of several matrix
sparse'wor spa'ces, its f)uter products uses a multiply algorithms on increasingly large Erdés-Rényi
dense intermediate, which leads to an asymp- matrices with an average of 4 nonzeros per row. Gus-

totic slow down shown in Figure 22. Although  tavsons and sparse output outer products have an as-
a sparse bytemap has a dense memory foot- ymptotic advantage over inner products or dense out-
print, we use it in our Finch implementation put outer products as the problem size grows.

of Gustavson’s for the smaller 1-dimensional

intermediate. We note that the bytemap format in TACO’s Gustavson’s implementation is a hard-
wired optimization, whereas Finch’s programming model allows us to write algorithms with explicit
temporaries, formats, and transpositions. As depicted in Figure 22, Finch achieves comparable
performance with TACO on smaller matrices when we use the same datastructures, and significant
improvements when we use better datastructures. Finch outperforms TACO overall, with a ge-
omean speedup of 1.30. Finch and TACO both outperform Eigen by a significant margin, as Eigen
is designed for usability and generality but is not heavily optimized. Finch is competitive with, but
slightly slower than MKL. We cannot comment extensively on MKL'’s performance as we cannot
access source code. We suspect MKL uses Gustavson’s algorithm with a optimized sorting routine.
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Figure 23 includes a scaling study to show the asymptotic impact of algorithms and output
formats as the SpGEMM problem size grows. We consider uniformly random N X N matrices
with a fraction of p = 4/N nonzeros. Inner-products runs in expected time @(N®p) = ©(4N?).
Outer-products with a sparse output format runs in expected time ©(N>p?) = ©(16N), which is
an asymptotic improvement as the matrix gets sparser. Outer-products with a dense output format
runs in expected time ®(N>*p? + N?) = @(N?), which is an asymptotic disadvantage when the
number of nonzeros per row (Np) is small. Our plot shows that Finch’s outer products outperforms
TACO’s outer products, as Finch supports sparse output formats where TACO does not. Finch is
the first tensor compiler to support all three strategies with both sparse and dense output formats.

7.3 Graph Analytics

We used Finch to implement both Breadth-first search (BFS) and Bellman-Ford single-source shortest
path. Our BFS implementation and graphs datasets are taken from Yang et al. [99], including both
road networks and scale-free graphs (bounded node degree vs. power law node degree).
Direction-optimization [16] is crucial for achieving high BFS performance in such scenarios,
switching between push and pull loop orders to efficiently explore graphs. Push traversal visits
the neighbors of each frontier node, while pull traversal visits every node and checks to see if
it has a neighbor in the frontier. The advantage of pull traversal is that we may terminate our
search once we find a node in the frontier, saving time in the event the push traversal were to visit
most of the graph anyway. Early break is the critical part of control flow in this algorithm, though
the algorithms also require different loop orders, multiple outputs, and custom operators. Finch
performs well because it can directly express algorithms comparable to competitive libraries.

V = Tensor(Dense(Element(false)))
P = Tensor(Dense(Element(0))) function bfs_pull(_F, F, AT, V, P)
F = Tensor(SparseByteMap(Pattern())) p : ShortC%rcultScalar{O}() D = Tensor(Dense(Element(Inf)), n)
_F = Tensor(SparseByteMap(Pattern())) @finch begin a
© D = Tensor(Dense(Element(Inf)), n)
A = Tensor(Dense(SparseList(Pattern()))) _F .= false -
X function bellmanford(A, _D, D, _F, F)
AT = Tensor(Dense(SparseList(Pattern()))) for k=_ : .
if VK] @finch begin
function bfs_push(_F, F, A, V, P) p.=0 ;o'.-—_lese
@finch begin for j=_ ifJ F[T]
_F .= false if FLfollow(j)] && AT[j, kI il
for j=_, k=_ p[] <<choose(0)>>= j L . A
. ! . . 1 =D + A
if FL31 8 ALK, 31 8& !(VIKD) if p[1 = 0 S ] A 3
_FLKk] |= true _FLk] |= true FLil |= d < _D[i]
P[k] <<choose(@)>>= j P[k] = p[] -
return _F return _F

Fig. 24. Graph Applications written in Finch. Note that parents are calculated separately for Bellman-Ford.
The choose(z) operator is a GraphBLAS concept which returns any argument that is not z.

Figure 25 compares performance to Graphs.jl, a Julia library, and the LAGraph Library, which uses
sparse linear algebra via GraphBLAS [68]. On BFS, Finch is competitive even with the hardwired
optimizations of GraphBLAS, a geomean slowdown of 1.22. Direction-optimization enhances
performance for scale-free graphs. On Bellman-Ford (with path lengths and shortest-path tree),
Finch’s support for multiple outputs, sparse inputs, and masks leads to a geomean speedup of 2.47
over GraphBLAS. Our artifact lists code for BFS and Bellman-Ford in Finch (53 and 54 LOC) and
LAGraph (215 and 227 LOC), and we invite readers to compare the clarity of the algorithms [9].

7.4 Image Morphology

Some image processing pipelines stand to benefit from structured formats [34]. We consider
two operations in binary image morphology: binary erosion (computing a mask), and a masked
histogram (using a mask to avoid work). Our images are all binary, either by design or thresholding.
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Fig. 25. Performance of graph apps across various tools. finch_push_only exclusively utilizes push traversal,
while finch_push_pull applies direction-optimization akin to GraphBLAS. Finch’s support for push/pull
traversal and early break facilitates direction-optimization. Among GraphBLAS’s five variants for Bellman-
Ford, we selected LAGraph_BF_full1a, consistently the fastest with our graphs. We did not include Bellman-
Ford results for graphs with high diameter as they timed out (> 1 hour).

Finch allows us to choose our datastructure, so we may choose to use either a dense representation
with bytes (Dense (Element (0x@9))), a bit-packed representation (Dense (Element(UInt64))), or a run-
length encoded representation that represents runs of true or false (SparseRunList(Pattern())). All
of these have their advantages. The dense representation induces the least overhead, the bit-packed
representation can take advantage of bitwise binary ops, and the run-length encoded version only
uses memory and compute when the pattern changes.

Finch also allows us to choose our algorithm, and we can implement erosion in a few ways. The
erosion operation turns off a pixel unless all of it’s neighbors are on. This can be used to shrink the
boundaries of a mask, and remove point instances of noise [39]. This introduces three instances
of structure in the control flow: the mask, the padding of inputs, and the convolutional filter. We
focused on the filter. We can understand the filter as a structured tensor of circular shifts, or we
can understand each shifted view of the data in an unrolled stencil computation as a structured
tensor, or a two part stencil where we compute the horizontal then vertical part of the stencil. We
experimented with these options and found that the last approach performed best, due to fitting
the storage formats while reducing the amount of work with intermediate temporaries. Figure 26
displays example erosion algorithms for bitwise or run-length-encoded algorithms.

We compared against OpenCV on four datasets. We randomly selected 100 images from the
MNIST [63] and Omniglot [61] character recognition datasets, as well as a dataset of human line
drawings [36]. We also hand-selected a subset of mask images (these images were less homogeneous,
so we listed them in our artifact [9]) from a digital image processing textbook [44]. All images
were thresholded, and we also include versions of the images that have been magnified before
thresholding, to induce larger constant regions. In our erosion task, the SparseRunList format
performs the best as it is asymptotically faster and uses less memory, leading to a 19.5X speedup
over OpenCV on the sketches dataset, which becomes arbitrarily large as we magnify the images
(here shown as 266X). Finch achieves these speedups by exploiting structured sparsity to do less
work than OpenCV’s more naive dense implementation, which unnecessarily reads most of an
image or mask. However, we believe the 51.6x on MNIST is due to calling overhead in OpenCV. The
bitwise kernels were effective as well, and would be more effective on datasets with less structure.
A strength of Finch is that it supports structured datasets, even over bitwise operations.

We also implemented a histogram kernel. We used an indirect access into the output to implement
this (Figure 26), something not many sparse frameworks support. We compare to OpenCV since the
OpenCV histogram function also accepts a mask. If we use SparseRunList(Pattern()) for our mask,
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Wordwise Erosion:

output .= false Bitwise Erosion:

fory = _ ;
tmp .= false output_.— Q
for x = _ for y = -
tmp[x] = coalesce(input[x, ~(y-1)1, true) & inputlx, yl & ;mp ~*_0
fo?x Zoale“e(i"p“tfx, ~(y+1)1, true) ngxm;sitx, vl

tmp[x] = coalesce(input[x, ~(y-1)], OxFFFFFFFF) & input[x,
< y] & coalesce(input[x, ~(y+1)], OxFFFFFFFF)
for x = _
if mask[x, yl
let tl = coalesce(tmp[~(x-1)], OxFFFFFFFF), t = tmp[x], tr =

output[x, y] = coalesce(tmp[~(x-1)], true) & tmp[x] &
< coalesce(tmp[~(x+1)], true)

Masked Histogram: < coalesce(tmp[~(x+1)], OXFFFFFFFF)
bins .= @ let res = ((tr << (8 x sizeof(UInt) - 1)) | (t > 1)) &t &
for x=_ — ((t << 1) | (t1 >> (8 * sizeof(UInt) - 1)))

for y=_

output[x, y] = res
if mask[y, x]

bins[div(imgly, x], 16) + 1] += 1
Fig. 26. Two approaches to erosion in Finch. The coalesce function defines the out of bounds value. On left,

the naive approach. On SparseRunList (Pattern()) inputs, this only performs operations at the boundaries
of constant regions. On right, a bitwise approach, using a mask to limit work to nonzero blocks of bits.

erode2 Speedup over opencv hist Speedup over opency.

sketches. MNIST 8X Omniglot 8X Sketches 8X dip3e 8X MNIST Omniglot  Sketches dip3e MNIST8X  Omniglot 8X  Sketches 8X dip3e 8X

Fig. 27. Performance of Finch on image morphology tasks. On left, we run 2 iterations of erosion. On right,
we run a masked histogram. We display the geomean speedup within each dataset.

we can reduce the branching in the masked kernel and get better performance. The improvements
with SparseRunList are seen in the histogram task too, as it allows us to mask off contiguous regions
of computation, instead of individual pixels, reducing the branches and leading to a significant
speedup (20.3x on Omniglot and 20.8x on sketches). In a low compute task such as a histogram,
skipping many reads for the mask via structured sparsity can lead to huge speedups.

8 Related Work

The related work spans several areas, from libraries to languages, from dense to structured data.

Libraries for Dense Data: Many libraries specialize in dense computations. Perhaps the most
well-known example is NumPy [48], and a classic example is the BLAS, though several BLAS
routines are specialized to symmetric, hermitian, and triangular matrices [10]. Many research
projects have advanced on BLAS, such as BatchedBlas and BLIS [35, 92].

Libraries for Structured Data: Many libraries support BLAS plus a few sparse tensor types, typically
CSR, CSC, BCSR, Banded, and COO. Examples include SciPy [94], PETSc [5], Armadillo [77],
OSKI [96], Cyclops [85], MKL [1], and Eigen [46]. There are even libraries for very specific kernels
and format combinations, such as SPLATT [83] (MTTKRP on CSF). Several of these libraries also
feature some graph or mesh algorithms built on sparse matrices. The GraphBLAS [56] supports
primitive semiring operations (operations beyond (+, *), such as (min, +) multiplication) which can
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be composed to enable graph algorithms, some of which are collected in LAGraph [68]. Similarly, the
MapReduce and Hadoop platforms support operations on indexed collections [32], and have been
used to support graph algorithms in the GBASE library[55]. Several machine learning frameworks
support some sparse tensors and operations, most notably TorchSparse[89, 90].

Compilers for Dense Data: Outside of general purpose compilers, many compilers have been
developed for optimizing dense data on a variety of control flow. Perhaps the most well known
example is Halide [76] and its various descendant such as TVM [27], Exo [53], Elevate [47], and
ATL [65]. These languages typically support most control flow except for an early break though some
don’t support arbitrary reading/writing or even indirect accesses. Several polyhedral languages,
such as Polly [45], Tiramisu [12], CHILL [26], Pluto [22], and AlphaZ [101] offer similar capabilities
in terms of control flow though they often support more irregular regions. The density of this
research represents the density of support for dense computation.

Compilers for Structured Data: Several compilers exist for several types of structured data, often
featuring separate languages for the storage of the structured data and the computation. The TACO
compiler originally supported just plain Einsum computations [58], but has been extended several
times to support (single dimensional) local tensors [57], imperfectly nested loops [33], breaks via
semi-rings [49], windowing and tiling [80], and convolution [97], and compilation in MLIR [20], all
as separate extensions. Similarly, TACO originally support just dense and CSF like N dimensional
structures, but was extended independently to support COO like structures [29], and tree like
structures [28], as separate extensions. SparseTIR is a similar system supporting combined sparse
formats (including block structures) [100]. The SDQL language offers a similar level of control
flow [81], but only on sparse hash tables. Similarly, SDQL has been extended with a system that
allows one to specify formats as queries on a set of base storage types [79] and separately by another
system that describes static symmetries and other structures as predicates [42]. The Taichi language
focuses on a single sparse data structure made from dense blocks, bit-masks, and pointers [51]. The
sparse polyhedral framework builds on CHILL for the purpose of generating inspector/executor
optimizations [87] though the branch of this work that specifies sparse formats separately from
the computation (otherwise they are inlined into the computation manually) seems to apply
mainly to Einsums [103]. Second to last, SQL’s classical physical/logical distinction is the classic
program/format distinction, and SQL supports a huge variety of control flow constructs [31, 60].
However, many SQL or dataframe systems rely on b-trees, columnar, or hash tables, with only a
few systems, such as Vectorwise [21], LaraDB [52], GMAP [91], or SciDB [86] building physical
layouts with other constructs based in tensor programming. However, tensor based databases are a
new focus given the rise of mixed ML/DB pipelines [15, 67]. Lastly, SPIRAL focuses on recursively
defined datastructures and recursively define linear algebra, and can therefore express a structure
and computation that none of the systems mentioned above can: a Cooley-Tukey FFT [40, 41].

Other Architectures: Sparse compilers have been extended to many architectures. An extension
of TACO supports GPU [80], Cyclops [84, 85] and SPDistal [98] support distributed memory, and
the Sparse Abstract Machine [50] supports custom hardware. We believe that supporting control
flow is the first step towards architectural support beyond unstructured sparsity.

9 Conclusion

Finch automatically specializes flexible control flow to diverse data structures, facilitating productive
algorithmic exploration, flexible tensor programming, and efficient high-level interfaces for a wider
variety of applications than ever before.
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10 Data Availability Statement

The most recent version of the Finch compiler is currently available as open-source software
at https://github.com/finch-tensor/Finch.jl. The benchmarks used to construct this paper are
available as an artifact on Zenodo at https://doi.org/10.5281/zenodo.14597754. The reviewed ver-
sion of the artifact is https://doi.org/10.5281/zenodo.14735207. They can also be found in the
oopsla-25-artifact branch of the FinchBenchmarks repository on GitHub at https://github.com/
finch-tensor/FinchBenchmarks. The artifact contains a copy of the Finch.jl compiler version v1.1.0,
our benchmarking code, and instructions to replicate all results of the paper.
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