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Abstract—Static dependence analysis is critical for optimiza-
tions such as vectorization and loop-invariant code motion.
However, traditional static dependence analysis is often imprecise,
making these optimizations less effective. To address this issue,
production compilers use loop versioning to rule out some
categories of memory dependencies at run time. However, loop
versioning is loop-centric and usually tied to specific optimiza-
tions (e.g., loop vectorization), making it less effective for non-
loop optimizations such as superword-level parallelism (SLP)
vectorization.

In this paper, we propose a fine-grained versioning framework
to rule out program dependencies at run time. Our framework is
general and not tailored to any specific optimizations. To use our
system, a client optimization specifies groups of instructions (or
loops) whose independence is desired but unprovable statically.
In response, our system duplicates the appropriate instructions
and guards the original ones with run-time checks to guarantee
their independence; if the checks fail, the duplicated instructions
execute instead.

In a case study, we extended an existing SLP vectorizer with
minimal modifications using our framework, resulting in a 1.17×
speedup over Clang’s vectorizers on TSVC and a 1.51× speedup
on PolyBench. In both benchmarks, we encountered programs
that could not be vectorized with loop versioning alone.

In a second case study, we used our framework to implement
a more aggressive variant of redundant load elimination than
the one implemented by Clang. Our redundant load elimination
results in a 1.012× speedup on the SPEC 2017 Floating Point
benchmarks, with the maximum speedup being 1.064×.

I. INTRODUCTION

Dependence analysis is crucial for many compiler trans-
formations, such as loop-invariant code motion, vectorization,
and, more generally, any optimizations that perform code
motion. However, performing precise dependence analysis is
difficult. For example, in a language such as C, the compiler
must assume that arbitrary pointer arguments may alias and
that all memory accesses on those pointers are dependent. This
scenario can be addressed, to some degree, with interprocedu-
ral pointer analyses. However, such analyses are prohibitively
expensive and not deployed in production compilers. Further-
more, dependence analysis is complicated by nontrivial pointer
arithmetic and control flow, both of which can induce patterns
that are impossible to analyze soundly at compile time, even
with state-of-the-art analysis. For example, two indirect pointer
accesses could be both dependent and independent, depending
on how the input is initialized. All these factors contribute
to imprecise dependence analysis, making optimizations less
effective as a consequence.

Loop Versioning. When there is insufficient dependence
information, production compilers use a technique called loop
versioning. With loop versioning, the optimizer makes two
copies of a loop—one loop is optimized, assuming there are
no dependencies among instructions that are critical to the
optimization, and the other is left unoptimized—and generates
run-time checks so that the optimized loop is only entered if
the absence of these dependencies is confirmed. Because the
run-time checks must be performed upfront before the loop
is executed, loop versioning only works if all the requisite
information is known before the loop is executed.

Consequently, loop versioning cannot rule out dependencies
that are loop-variant. For instance, complex pointer arithmetic
can lead to some memory accesses that are dependent in some
iterations yet independent in others. Similarly, loop versioning
cannot rule out rare dependencies that are caused by condition-
ally executed instructions within the loop. To deal with such
dependencies in the context of vectorization, researchers have
proposed an approach that performs sophisticated run-time
checks that are more fine-grained [10, 17]. In this approach,
the vectorizer first identifies some specific control-flow paths
along which the loop iterations are completely independent.
It then optimizes the program assuming only those paths are
taken, while also generating the necessary recovery code in
case the paths are not taken. Unlike loop versioning, this
approach is tied specifically to vectorization and only works
in the presence of loops that follow certain patterns.

Our Approach. In this paper, we propose a fine-grained
versioning framework to rule out program dependencies at run
time. Our framework is general, flexible, and not coupled with
specific optimizations. To use our system, a client optimization
supplies groups of instructions (or loops) whose independence
is desired but cannot be proven statically. In response, our
system identifies a small—and in many cases optimal—set of
conditions that ensures the independence of those instructions
and then versions the input program accordingly.

Our framework is fine-grained because it develops a ver-
sioning strategy for each group of instructions (or loops) indi-
vidually, without having to version whole loops at a time. This
is particularly useful when some dependence relationships
change from loop iteration to iteration due to nontrivial uses
of pointer arithmetic. Furthermore, our framework supports
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nested versioning, which is necessary when one versioning
transformation itself relies on assumptions that cannot be
statically proven, thus requiring a further round of versioning
to confirm those assumptions at run time.

Central to our framework is the concept of dependence con-
dition, which identifies the necessary condition under which a
dependence occurs at run time. While most dependencies are
unconditional—such as when arithmetic instructions depend
on their operands unconditionally—others are conditional. For
example, a pair of memory accesses is only dependent if the
accessed memory locations overlap; a load only depends on a
preceding conditional store if the store actually executes at run
time. Our insight is that when dealing with instructions whose
independence cannot be statically proven due to conditional
dependencies, we can establish a sufficient condition for their
independence by finding a cut over the dependence graph that
makes the instructions unreachable from one another. This cut
reveals the conditional dependencies that we must check at
run time.

To demonstrate the effectiveness of our framework, we
first applied our versioning framework to an existing imple-
mentation of superword-level parallelism (SLP) vectorization.
Although most production loop vectorizers—such as those
employed by GCC and Clang—use loop versioning, there
has been no implementation of SLP vectorization capable of
versioning because it is more flexible and not loop-centric.
Consequently, SLP vectorization has been limited by pointer
aliasing and other sources program dependencies, particularly
when compared to loop vectorization.

We adapted Chen et al.’s [4] SLP vectorizer—an aggressive
SLP implementation that can pack independent instructions
globally across loops and basic blocks—to use our version-
ing framework. With versioning, this single implementation
of SLP is 1.17× faster than both LLVM’s loop and SLP
vectorizers combined on the TSVC benchmark (and 1.07×
faster than their previous implementation). On PolyBench with
the restrict keyword disabled, versioning enabled a 1.51×
speedup over both LLVM’s vectorizers (and 1.62× faster than
their previous implementation). In both benchmark suites,
we found examples of programs that cannot be vectorized
with loop versioning alone. We obtained these results without
changing any of the vectorizer’s heuristic or code-generation
algorithms: we only modified the vectorizer to inform our
framework of the groups of instructions that should be in-
dependent, and it versions the program transparently.

Finally, we used our framework to implement a variant
of redundant load elimination that removes redundant loads
that cannot be proven redundant with traditional static anal-
ysis. With versioning, our implementation of redundant load
elimination achieves a geometric mean speedup of 1.2% on
the SPEC 2017 Floating Point benchmark suite, with the
maximum speedup being 6.4%.

Y[0] = 0;
if (*X) cold_func();
Y[1] = 0;

Fig. 1: Running example. The highlighted instructions may be
dependent and cannot be directly vectorized.

noalias = X != Y;
if (noalias) {

x = *X;
if (x) Y[0] = 0;
else {
Y[0] = 0;
Y[1] = 0;

}
} else {

Y[0] = 0;
x = *X;

}
if (x) cold_func();
if (!noalias || x) Y[1] = 0;

Fig. 2: Running example transformed so that the stores become
independent (and amenable to vectorization).

This paper makes the following contributions:
• A general, fine-grained versioning framework.
• The concept of nested versioning, where the run-time

checks of a versioning transformation require further
versioning.

• The concept of dependence condition, which allows us
to systematically identify dependencies that can be elim-
inated at run time.

• Empirical evaluations showing that our framework en-
ables an existing SLP vectorizer to effectively vectorize
programs in the presence of conditional dependencies.

• Empirical evaluation showing that our framework enables
a more effective form of redundant load elimination.

II. RUNNING EXAMPLE

Figure 1 shows a snippet of a C function that will serve
as a running example throughout the paper. Suppose we want
to optimize the program by replacing the stores to the array
Y with a single vector store. This is only possible if the two
stores are independent; however, any sound static dependence
analysis will conclude that the stores are dependent for the
following reasons. First, there is a dependence chain from the
last store (Y[1] = 0) to the load (*X) because the pointers
X and Y may alias, and then to the first store (Y[0] = 0).
Second, the function call also prevents vectorization because
it may read and write arbitrary memory.

Figure 2 shows a program equivalent to the running ex-
ample. We can verify that the programs are equivalent with
a case analysis of the two if conditions and the resulting
traces of operations. Although the two programs have the
same semantics, there is one key difference, namely that in the
rewritten program, the stores we are interested in are indepen-
dent. Section III discusses how our framework automatically
performs this transformation for general programs to ensure
that the specified sets of instructions are independent.
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fn ::= item1 : p1, . . . , itemn : pn

item ::= instruction | loop

loop ::= with v1 = µ1, . . . , vm = µm do
item1 : p1, . . . , itemn : pn

while pcont
µ ::= mu(vinit , vrec)
φ ::= phi(v1 : p1, . . . , vn : pn)

p ::= true | v | v | p1 ∧ p2 | p1 ∨ p2
v ::= µ | instructions | constant | argument

Fig. 3: Definition of predicated SSA. Our framework uses
predicated SSA to represent the input program to simplify
control-flow code motion.

store [Y + 0], 0 ; true
x = load X ; true
c = cmp ne x, 0 ; true
call cold_func ; c
store [Y + 1], 1 ; true

Fig. 4: Running example from Figure 1 represented in predi-
cated SSA.

III. APPROACH

We first present the general workflow of our versioning
framework. First, during the planning stage, the client opti-
mization provides us with a set of instructions (or loops) that
are possibly dependent. In response, our system infers a ver-
sioning plan that ensures their independence. Each versioning
plan outlines a set of instructions (and loops) that requires
versioning and specifies the set of conditions under which
versioning should take place. The client can make multiple
requests to make different sets of instructions (or loops)
independent, which can result in multiple versioning plans.
Finally, the client invokes a separate routine to materialize the
inferred versioning plans. Afterwards, the optimization can use
the instruction dependence guaranteed by the plans to perform
its transformations.

Control-flow Code Motion and Predicated SSA. Control-
flow code motion (i.e., moving instructions across basic blocks
and branches) is a basic operation on which our versioning
framework relies. To simplify this operation, we first convert
the input program to predicated SSA form [4]. Figure 3 shows
the definition of predicated SSA. In predicated SSA, each
instruction (or loop) is annotated with a predicate indicating
whether the instruction should be executed. With these pred-
icates, the IR no longer uses branches or basic blocks and
instead models the program as a hierarchy of nested loops,
each of which contains a flat list of member instructions
and loops. This representation simplifies global code motion
because individual instructions and loops are no longer tied to
any specific basic blocks and can be moved without affecting
correctness (provided no dependencies are violated). Figure 4
shows the program represented in predicated SSA form.

c ::= p | intersection | c1 ∨ c2
intersection ::= intersects([m1,m2], [m3,m4])

p ::= control predicate
m ::= memory address

Fig. 5: Definition of dependence condition. A dependence
exists either due to some predicate p (e.g., an instruction i
depends on another instruction j only if j is executed) or
because of the intersection of two memory ranges (e.g., two
memory writes are dependent if they alias).

def c(i, j):
# return the condition for when i depends on j directly
if is_phi(i):

for op, op_pred in cast_to_phi(i).operands():
if op == j:
return op_pred

return Predicate.false()
if is_select(i):

select = cast_to_select(i)
if select.true_val == j:

return pred(i).and_(select.cond)
if select.false_val == j:

return pred(i).and_(select.cond, negate=True)
return Predicate.false()

if i in j.users():
return Predicate.true()

if not i.may_write() and not j.may_write():
return Predicate.false()

if i.is_instruction() and j.is_instruction():
# If j executes at a more specific predicate than i
if pred(j).implies(pred(i)) and pred(j) != pred(i):

return pred(j)
return Intersects(mem_location(i), mem_location(j))

# deal with cases when either i or j is a loop
insts1 = [i.mem_instructions()] if i.is_loop() else [i]
insts2 = [i.mem_instructions()] if j.is_loop() else [j]
conds = []
for i1 in insts1:

for i2 in insts2:
if i1.may_write() or i2.may_write():
conds.append(c(i1, i2))

return Or(conds)

Fig. 6: Algorithm for determining the dependence condition
between two nodes in the dependence graph i and j.

A. Dependence Condition

The traditional notion of program dependence can be too
restrictive and imprecise for complex, real-world programs.
For example, if the alias analysis cannot soundly disambiguate
the pointers used by a pair of memory accesses (assum-
ing at least one is a write), traditional dependence analysis
simply concludes that there is a dependence. However, this
dependence only exists at run time if the accessed memory
locations actually intersect. For this reason, we propose a more
refined approach, in which program dependence is labeled with
the necessary condition for the dependence to occur at run
time. We refer to this condition as the dependence condition.
Figure 5 shows the definition of dependence conditions.

Given two instructions i and j from the dependence graph,
we use the notation c(i, j) to represent the dependence condi-
tion for i to directly depend on j. Figure 6 shows the algorithm
calculating c(i, j). We assume the input program is represented
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in predicated SSA and use pred(i) to denote the predicate
associated with the instruction i. Our framework identifies
dependence conditions as follows:

• A φ node t = phi (x1: p1, ... , xn : pn)
only depends on the operand xi if pi is true at run time;
i.e., c(t, xi) = pi.

• A select instruction t = select x, a, b depends
on a if x is true; i.e., c(t, a) = pred(a) ∧ x.

• In other cases where an instruction i uses the result of
another instruction j as an operand, then i depends on j
unconditionally.

• A necessary condition for an instruction i to depend on
j is if j is ever executed. Therefore, when we detect that
j executes at a more specific predicate than j, we return
j’s predicate as the dependence condition.

• Two memory accesses (assuming at least one is a write)
are dependent if their memory locations intersect.

• Assuming there are no use-def dependencies, two loops l1
and l2 are dependent if any of their member instructions
are dependent; i.e., c(l1, l2) =

∨
i∈insts(l1),j∈insts(l2)

c(i, j).

We define the dependencies between a loop and an
instruction similarly.

For any two instructions i and j, we refer to the dependence
i → j as an unconditional dependence if c(i, j) = true;
otherwise, we call it a conditional dependence.

For some of the dependence conditions, our system eventu-
ally needs to generate run-time checks to verify that those con-
ditions are indeed true. In this sense, a dependence condition
implies a computation that, in turn, has its own dependencies.
For instance, if a dependence condition contains intersection
checks, then the condition itself depends unconditionally on
the memory addresses involved in the intersections.

Graph Cut and Versioning. Figure 7 shows the dependence
graph of the running example, where the conditional depen-
dencies are represented as dotted edges and unconditional
dependencies are represented as solid edges. Note that we can
make the two stores independent (i.e., unreachable from one
another) by eliminating the following conditional edges: (1)
the conditional dependence from the load to the first store and
(2) the dependence from the last store to the function call.
This is a core operation that we use extensively throughout
our framework.

More generally, given two sets of dependence graph nodes S
and T (which may intersect), we need to identify a set of con-
ditional dependencies whose removal makes S independent
of T . This is equivalent to finding a cut over the dependence
graph so that nodes in T are not reachable from S,1 with
the cut-set—edges crossing the partitioned sets—exclusively
containing edges for conditional dependencies. To optimize for
performance, our algorithm also reduces the cut-set because
each edge in the cut-set represents a dependence condition

1Because S and T may intersect, we ignore trivial reachabilities of the
form s → s, where s ∈ S ∩ T .

store 0, [Y+0]

store 0, [Y+1]

x = load X

c = cmp ne x, 0

call cold_func ; c

c

intersects([X,X+1), [Y,Y+1))

int
ers

ect
s([

Y+1
,Y+

2),
 [X

,X+
1))

Fig. 7: Dependence graph of the running example. Conditional
dependencies are represented as dotted edges and labeled
with their dependence conditions. The function call depends
unconditionally on the first store because the store has a
stronger predicate (i.e., the execution of the call implies that
of the store but not vice versa).

that must be eventually checked at run time. A smaller cut-
set typically leads to better performance. If successful, the
algorithm returns two sets: (1) the cut-set and (2) the source
side of the cut that can reach T . Note that if the S and T are
already independent, the algorithm returns two empty sets.

We find the cut with a reduction to min-cut, which works
by constructing a flow graph such that there is a flow from
the source to sink if and only if any of the nodes in S
depends on T . A min-cut of the flow graph reveals the
set of dependence edges whose removal would make the
input instructions independent. Figure 8 shows the flow graph
constructed for the running example. In general, we create the
flow graph as follows:

1) We start with a depth-first search (DFS) to discover the
dependencies of nodes in S, considering both conditional
and unconditional dependencies.

2) We split each node discovered by the DFS into an in-
node and an out-node. We then duplicate the dependence
edges such that each dependence flows into an in-node
and out of an out-node, with each pair of in- and out-
nodes connected with a single auxiliary edge. Splitting
the nodes is important because otherwise the sink will
always be reachable from the source even when all the
conditional edges are cut.

3) Next, we connect the source node to all of the out-nodes
of S and all of the in-nodes of T to the sink node.

4) Finally, we set the capacity for each conditional edge to
1 and all the other edges to n + 1, where n is the total
number of unconditional edges.

With the capacity thus set, if the min-cut is greater than n, we
must disconnect at least one unconditional dependence edge
to make the nodes independent, and versioning is infeasible.
If the min-cut is less than n, then versioning is feasible, and
we set the versioning conditions—which we speculate to all
be false—as the union of the dependence conditions of the
edges in the cut-set. With profile information, we can also
set the capacity of each conditional edge as the likelihood of
the corresponding dependence occurring at run time, thereby
maximizing the pass rate of the run-time checks.
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store [Y+0], 0

store [Y+1], 0

x = load X

c = cmp ne x, 0

call cold_func ; c

SINK

SOURCE

Fig. 8: Flow graph constructed for the running example to
separate the two stores in the dependence graph. Dotted edges
are conditional and have capacities of 1, while solid edges are
unconditional and have capacities of 4.

B. Versioning by Example

We now discuss how our framework uses the aforemen-
tioned algorithm for finding dependence graph cuts as a
subroutine to version the running example (Figure 4), using
step-by-step examples. Section III-C discusses the general
algorithm for versioning.

Versioning is more intricate than simply finding a cut in
the dependence graph. It might be tempting to version the
program directly given a cut by duplicating nodes on one side
of the cut and using the dependence conditions from the cut-
set as the versioning conditions. Nevertheless, this approach
is generally unsafe because materializing a versioning plan
involves generating code to check that none of the dependence
conditions are true. These checks themselves are computations
that can depend on the nodes being versioned, and when
they cannot be computed because they depend on the code
under versioning, we need to identify a secondary versioning
plan to ensure that the initial set of versioning conditions is
independent of the code that was intended to be versioned
in the first place. We refer to the initial versioning plan as
the primary versioning plan, and such a collection of plans—
primary, secondary, etc—constitutes a single nested versioning
plan.

The running example (Figure 4) is one such example that
requires a nested versioning plan. To start, we aim to make
the two stores independent, which entails finding a cut that
separates the two stores. Figure 9 shows the flow graph and
the min-cut. The cut has the following dependence edges in
its cut-set (marked with

❌

):
• The dependence from the second store

(store [Y+1], 0) to the function call, which
has the dependence condition c; i.e., the dependence
only exists if c is true.

• The dependence from the load (x = load X) to the
first store (store [Y+0], 0), which has the depen-
dence condition intersects([X,X + 1), [Y + 0, Y + 1));
i.e., the dependence only exists if the addresses X and
Y+1 alias.

store 0, [Y+0]

store 0, [Y+1]

x = load X

c = cmp ne x, 0

call cold_func ; c

SINK

SOURCE

❌❌

Fig. 9: Primary cut to separate the two stores in the dependence
graph. Nodes and edges with positive flow are highlighted in
(different shades of) red. represents a node in the source-
side cut. represents a node in the sink-side cut. Edges in
the cut-set are marked with

❌

.

store [Y+0], 0

store [Y+1], 0

x = load X

c = cmp ne x, 0

call cold_func ; c

SINK

SOURCE

❌

Fig. 10: Secondary cut to make the comparison (c) indepen-
dent of the stores.

store [Y+0], 0

store [Y+1], 0

x = load X

c = cmp ne x, 0

call cold_func ; c

SINK

SOURCE

❌

Fig. 11: Primary cut from Figure 9 updated to reflect that the
dependence from the load to the first store is removed by the
secondary cut (Figure 10).
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  N  = {
    store [Y+0], 0
    store [Y+1], 0
  }
  C  = {c}
  V’ = 

 

 N’ = {
   x = load X
   c = cmp ne x, 0
   store [Y+0], 0
   store [Y+1], 0
 }
 C’ = {intersects([X,X+1), [Y,Y+1))}

Fig. 12: Final nested versioning plan derived from the cuts
shown in Figures 10 and 11. N (and N ′) are the nodes that
will be versioned and C (and C ′) are the conditions under
which they will be versioned.

We focus on the conditional dependence that involves the
conditional function call. It has a dependence condition of c,
which itself depends (transitively) on the first store (because
X may alias with Y). Because we must be able to evaluate c
before both of the stores, the plan is not materializable. More
generally, a plan is materializable if its versioning conditions
are independent of its versioned nodes. Therefore, we proceed
to infer a secondary versioning plan that makes c independent
of the stores.

Figure 10 shows the secondary cut. The cut has exactly
one edge in the cut-set, the dependence edge from the load to
the first store (x = load X→ store [Y+0], 0), which
has the dependence condition intersects([X,X + 1), [Y +
0, Y + 1)). We do not need a tertiary plan here because this
dependence condition only depends on the pointers X and Y
and no other instructions.

Given the secondary plan, we finish by updating the initial
flow graph constructed for the primary plan. The updated
flow graph and (primary) cut are shown in Figure 11. Note
that we delete the dependence edge from the load to the
first store (store [Y+0], 0) because this dependence has
been eliminated by the secondary plan. Having considered
the removal of this dependence, we update the source-side
cut to include only the second store (store [Y+1], 0).
Figure 12 shows the final versioning plan—constructed based
on the cuts we just computed—making the two stores inde-
pendent. Essentially, for a given cut, we perform versioning
on stores as well as any nodes on the source side that can
reach the stores.

C. Inferring Versioning Plans

We are now ready to formalize the example procedure for
inferring a versioning plan given a set of instructions that we
wish to make independent. A versioning plan is an abstraction
that allows us to represent a subprogram that we want to
version and the condition under which it should be executed
without explicitly transforming the program. More specifically,
a versioning plan is a three-tuple V = (N,C, V ′), where:

• N is the set of dependence graph nodes that we want to
version, with each node representing either an instruction
or a loop.

• C is the set of versioning conditions that we will assert to
be false at run time, and if any of them is true, execution
will proceed to the fallback path.

• V ′ is an optional secondary versioning plan, which
becomes necessary if some of the dependence conditions
(C) transitively depend on a subset of the versioned nodes
(N ), introducing circular dependencies that make code
generation impossible.

Figure 13 shows the algorithm for inferring a nested list of
versioning plans so that a given list of instructions is inde-
pendent, with the initial primary plan ensuring that the input
instructions are independent and each subsequent secondary
plan ensuring that a previous primary plan is materializable
(i.e., ensuring that the dependence conditions of the primary
version do not depend on the versioned nodes).

The algorithm for inferring versioning plans is recur-
sive and takes two sets of nodes as input: nodes and
input_nodes. Each recursive call returns a versioning plan
that—once materialized—ensures that no node in nodes
depends on input_nodes. The algorithm starts by finding
a cut of the dependence graph that separates nodes from
input_nodes. The versioning conditions are set as the
union of the conditions of the dependencies in the cut-set.
If the versioning conditions are all false, then it implies that
nodes are independent of input_nodes.

At run time, the transformed program must verify that
all of these versioning conditions are false before executing
the input instructions (input_nodes) as vector instructions.
Based on this execution strategy, the versioning conditions
must not depend on the input_nodes; otherwise, those
conditions cannot be evaluated before input_nodes. Con-
sequently, instead of directly constructing a primary versioning
plan according to the initial cut, we need to recursively
run the algorithm to ensure that the versioning conditions
are independent of input_nodes (lines 11-21). Before we
attempt to find a secondary versioning plan recursively, it
is crucial to check that none of the versioning conditions
directly uses any of the input_nodes (at line 16) because
otherwise the versioning conditions would always depend on
the input_nodes unconditionally.

With the secondary plan in hand, we then update the cut
to take into account the dependence edges that no longer
exist due to secondary versioning. Alternatively, we could
compute this cut from scratch to account for the dependence
edges removed by secondary versioning. Finally, the algorithm
constructs the primary versioning plan to version only the
source side of the cut that can reach input_nodes and the
input_nodes themselves.

Although the recursive call only constructs a secondary plan
guaranteeing that the versioning conditions (of a primary plan)
are independent of the input_nodes, the secondary plan
also implicitly guarantees that the versioning conditions are
independent of all versioned nodes, which is necessary for
a plan to be materializable. In other words, if a versioning
condition c does not depend on any of the input instructions,
then c must also be independent of any node n versioned by
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the primary plan. We can prove this by contradiction. Suppose,
for contradiction, that a versioning condition c depends on
such a node n. Recall that n, by definition, is either (1) a node
on the source side of the cut that can reach input instructions
(input_nodes) or (2) one of the input instructions. Either
case would imply that there is a path from n to some of the
input instructions, leading to the contradiction that c depends
on n and thus an input instruction.

The versioning plan inference algorithm always terminates,
which we show by fixing a topological ordering for all the
nodes in the dependence graph. The original program order is
one such ordering, which assigns a unique number, order(.),
to each dependence graph node so that if a node s depends
on another node t, then order(s) > order(t). Observe that if
the following condition is true, then the recursion terminates
(because if order(s) ≤ order(t), then s cannot depend on t):

max
s∈nodes

order(s) ≤ min
t∈input_nodes

order(t)

It suffices to show that the ordering of the nodes is always
decreasing, which is the case because the operands of the
versioning conditions—i.e., the nodes that we pass to the
recursive call (line 19)—are always ordered before at least
one of the nodes. To see why this is true, recall that each
versioning condition is the dependence condition of one of the
edges in the cut-set. Let s→ t be an edge in the cut-set and x
be an operand of the dependence condition c(s, t). Following
the definition of dependence conditions, there are two cases
here: (1) c(s, t) involves an intersection check, and x is some
memory address used by s or t; and (2) c(s, t) involves a
predicate and x = pred(t). Either case implies that s depends
on x, and consequently x is ordered before s and at least one
of the nodes.

D. Materializing Versioning Plans

Figure 14 shows the algorithm for materializing versioning
plans. The algorithm recursively materializes any secondary
plans before materializing the primary plans. It uses a table
that maps each instruction (or loop) to the set of dependence
conditions under which the instruction (or loop) is versioned.
Given that an instruction (or loop) may be involved in more
than one versioning plan, its entry in this table is the union of
all the conditions in the involved versioning plans.

Figure 15 shows how the versioning plan of the running
example (Figure 12) is materialized in steps. First, the sec-
ondary plan is lowered (Figure 15a) by duplicating all of the
versioned nodes and guarding them with checks computing the
versioning conditions. After the secondary plan is lowered, the
primary plan is lowered similarly (Figure 15b). It is important
to note that the materialization algorithm hoists the comparison
as well as the load (of X) before stores (versioned by the
primary plan) to compute the primary versioning condition,
whereby this hoisting is enabled by the secondary versioning.
Figure 15c shows the final versioned program further lowered
to SSA (with control flow).

1 def infer_versioning_plan(nodes, input_nodes):
2 # Find a cut in the dependence graph that makes
3 # ‘nodes‘ independent from ‘input_nodes‘
4 cut = find_cut(nodes, input_nodes)
5 # Abort if such a cut does not exist
6 if cut is None:
7 return None
8
9 dep_conds = set_union(c(e.src, e.dst)

10 for e in cut.cross_edges)
11 # Find a secondary versioning to make sure that
12 # we can evaluate the dependence conditions
13 # before the versioned nodes.
14 cond_operands = set_union(operands(dep_cond)
15 for dep_cond in dep_conds)
16 if set_intersect(cond_operands, input_nodes):
17 return None
18 secondary_plan =\
19 infer_versioning_plan(cond_operands, input_nodes)
20 if secondary_plan is None:
21 return None
22
23 # Update the cut according to the secondary plan.
24 # This is equivalent to:
25 # 1) updating the dependence graph to remove
26 # edges that no longer exists because
27 # of the secondary plan and
28 # 2) rerunning ‘find_cut‘ on the updated graph.
29 cut = update_cut(cut, secondary_plan)
30 return VersioningPlan(
31 nodes=cut.source_nodes + input_nodes,
32 versioning_conds=dep_conds,
33 secondary=secondary_plan)
34
35 def infer_version_plans_for_insts(insts):
36 return infer_versioning_plan(
37 nodes=insts, input_nodes=insts)

Fig. 13: Algorithm for inferring a versioning plan that makes
a list of instructions independent. Lines 11-21 deal with
secondary versioning.

More generally, the algorithm for materializing the version-
ing plans works as follows. First, we emit a check for each
unique set of dependence conditions to ensure they are all
false, after having also hoisted the dependencies of the check
before the versioned nodes. This is feasible because in the
planning phase, we have ensured that the conditions do not
depend on the versioned nodes. After emitting the checks, we
clone the nodes and strengthen their control predicates so that
the original copy executes if its check passes and the clone
executes if the check fails.

Versioning may break the invariant that all definitions
should dominate their uses. Therefore, we must update the
instructions that use the versioned nodes as operands. More
specifically, let idef be an instruction that we want to version,
iuser one of its users, and i′def the cloned version of idef . After
versioning, idef might no longer dominate iuser . This occurs
when iuser is either not versioned or versioned under a set of
conditions not implied by the versioning conditions of idef . In
this case, we need to replace all uses of idef with an auxiliary
phi node that takes the value of idef if the check passes and
i′def if the check fails. Lines 49-57 show the algorithm for
restoring the def-use dominance for a versioned instruction.
Similarly, we also restore def-use dominance for the live-out
instructions of versioned loops.
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1 def materialize_plans(versions):
2 # lower the secondary versions
3 secondaries = [version.secondary
4 for version in versions
5 if version.has_secondary()]
6 if len(secondaries) > 0: materialize_plans(secondaries)
7 # Build a table that maps each instruction/loop
8 # to its versioning conditions
9 versioning_table = build_versioning_table(versions)

10 # Mapping each cloned instruction/loop to its clone
11 clones = {}
12 # Mapping each cloned instruction to a phi that
13 # joins the original and clone
14 versioning_phis = {}
15 for inst_or_loop, conditions in versioning_table:
16 # Emit a check to return true iff *none* of
17 # the conditions are true.
18 # Also take care to hoist any dependencies that
19 # exists *after* this inst/loop.
20 check = emit_check(conditions,
21 insert_before=inst_or_loop)
22 clone = inst_or_loop.clone(
23 insert_after=inst_or_loop)
24 clones[inst_or_loop] = clone
25 p = pred(inst_or_loop)
26 # Predicates indicating if the check passes/fails
27 success_p = PredicateAnd(p, check)
28 failure_p = PredicateAnd(p, check, negate=True)
29 # The original computation runs if the check passes
30 inst_or_loop.update_predicate(success_p)
31 # The cloned computation runs if the check fails
32 clone.update_predicate(failure_p)
33 if inst_or_loop.is_instruction():
34 inst = inst_or_loop.cast_to_inst()
35 phi = Phi.make(
36 {success_p: inst, failure_p: clone},
37 insert_after=clone)
38 versioning_phis[inst] = phi
39 else:
40 # Process the loop instructions similarly
41 ...
42
43 # Change the cloned instructions to
44 # use the correct operands
45 for inst_or_loop, conditions in versioning_table:
46 if inst_or_loop.is_instruction():
47 inst = inst_or_loop.cast_to_inst()
48 cloned_inst = clones[inst]
49 for user in inst.uses():
50 if conditions.subset_of(versioning_table[user]):
51 cloned_user.replace_uses_of(inst,
52 with=cloned_inst)
53 else:
54 phi = versioning_phis[inst]
55 user.replace_uses_of(inst, with=phi)
56 if user in clones:
57 clones[user].replace_uses_of(inst, with=phi)
58 else:
59 # Process the uses of the loop live outs similarly
60 ...
61 # DCE on the versioning phis
62 for phi in versioning_phis:
63 if phi.has_no_uses():
64 phi.erase()
65 # Some phi’s incoming predicates become dead
66 # (i.e., always false).
67 # Replace those operands with a placeholder value.
68 for inst_or_loop, conditions in versioning_table:
69 if inst_or_loop.is_phi():
70 phi = inst_or_loop.as_phi()
71 for op, op_pred in phi.operands():
72 if is_implied(op_pred, conditions):
73 phi.set_operand(UNDEFINED)

Fig. 14: Algorithm for versioning a program according to a
set of inferred versioning plans. For simplicity, the pseudocode
emits the versioning checks for each instruction (or loop) from
scratch without regard to redundancy; our implementation only
emits one check for each unique set of conditions.

  chk = cmp ne X, Y    ; true

  store [Y+0], 0       ; not chk

  x’= load X           ; not chk

  c’= cmp ne x’, 0     ; not chk

  c_phi = phi(chk: c, not chk: c’)

  call cold_func       ; c_phi

  store [Y+1], 0       ; not chk

  

  store [Y+0], 0       ; chk

  store [Y+1], 0       ; chk

  c = cmp ne x, 0      ; chk

  x = load X           ; chk

(a) Running example with the
secondary versioning plan mate-
rialized. Because the comparison
(c) is versioned, we insert a φ
node to join the two versions of
the comparison before it is used
(as a predicate) by the function
call.

  chk = cmp ne X, Y    ; true

  store [Y+0], 0       ; not chk

  store [Y+0], 0       ; not chk

  x’= load X           ; not chk

  c’= cmp ne x’, 0     ; not chk

  c_phi = phi(chk: c, not chk: c’)

  call cold_func       ; c_phi

  store [Y+1], 0       ; not chk

  store [Y+1], 0       ; chk and c

  store [Y+0], 0       ; chk and not c
  store [Y+1], 0       ; chk and not c

  x = load X           ; chk
  c = cmp ne x, 0      ; chk

  store [Y+0], 0       ; chk and c

(b) Running example with the
secondary and primary version-
ing plans materialized.

  chk = disjoint x, y
  br chk, …, …

  x = load X   
  c = cmp ne x, 0
  br c, …, …

vstore {0,0}, [Y+0]
br …

 store 0, [Y+0]
 br …

  store 0, [Y+0]
  x’ = load X
  c’ = cmp ne x’, 0
  br c’, …, …

 call cold_func
 br …

 c_phi = phi(c, c’)
 br c_phi, …, …

br chk, …,…

br c, …, …

 store 0, [Y+1] 
 br …

 store 0, [Y+1] 
 br …

return

(c) Running example after versioning and conver-
sion back to SSA with control flow.

Fig. 15: Running example with the versioning plan (from
Figure 12) materialized. Instructions versioned by the primary
plan are surrounded with , and those instructions versioned
by the secondary plan are surrounded with . We materialize
the secondary plan before the primary plan.

IV. IMPLEMENTATION

We implemented the proposed versioning framework as an
LLVM [8] library with 4, 982 lines of C++ code. The interface
of the library has two functions: the first performs versioning
plan inference by taking a list of instructions (or loops)
and returning a versioning plan that makes those instructions
independent; this function may report that it is infeasible
to infer such a plan; and the second function materializes
a given list of versioning plans into actual IR instructions
and control flow. In this section, we discuss some important
implementation choices for the framework to work in practice,
for correctness and performance.
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A. Optimizing Dependence Conditions

Before materializing the versioning plans, we additionally
allow the user to run some optimizations on their versioning
plans to reduce the cost of run-time checks. More specifically,
each memory intersection requires us to emit a sequence of
pointer arithmetic and comparisons to perform the check. We
have three optimizations to reduce the cost of performing the
intersection checks: redundant condition elimination, condi-
tion coalescing, and condition promotion.

Redundant Condition Elimination. Some intersection
checks are logically equivalent (but syntactically different). For
example, we can see with basic algebraic manipulation that if
[a, a + 10] intersects with [b, b + 2], then [a + 100, a + 110]
also intersects with [b+100, b+102]. In general, two intersec-
tion checks intersects(ra, rb) and intersects(rx, ry) (where
r. are memory ranges) are equivalent if offset(rx, ra) =
offset(ry, rb) or if offset(rx, rb) = offset(ry, ra), where
offset)(., .) provides the offset between two memory ranges.
The offset between two ranges is undefined when their lower
bounds and upper bounds differ by two different numbers;
when this occurs we simply conclude that the two intersec-
tion checks are not equivalent. To perform redundant condi-
tion elimination, we first partition the dependence conditions
into equivalence classes and then replace each dependence
condition with an arbitrarily chosen representative from its
equivalence class.

Condition Coalescing. Condition coalescing replaces two
different range checks with a single check that overap-
proximates the original checks. The final coalesced check
might be less precise yet cheaper to compute. For exam-
ple, we can coalesce intersects([a, a + 10), [b, b + 10)) and
intersects([a + 20, a + 30), [b + 40, b + 50)) into a single
check intersects([a, a + 30), [b, b + 50)). Because condition
coalescing results in less precise checks (that fail more often),
we perform condition coalescing after redundant condition
elimination.

Condition Promotion. Condition promotion generalizes a
range check to be loop-invariant so that the promoted check
can be hoisted outside a loop. Consider the intersection check
intersects([a+ i, a+ i+2), [b+ i, b+ i+4)), where i is a loop
induction variable. In this case, we can promote the check to
the equivalent check intersects([a, a+2), [b, b+4)), which no
longer involves the induction variable and is therefore loop-
invariant. This type of promotion is precise; i.e., a promoted
check passes if and only if the original check passes. We also
perform a second type of promotion that is imprecise. For
example, we can promote the check intersects([a+ i, a+ i+
1), b[b + 4 ∗ i, b + 4 ∗ i + 4)) to the check intersects([a, a +
N + 2), [b, b + 4 ∗ N + 4)), where N is the trip count of
the loop. We only perform this type of promotion when the
trip count of the loop is known before the loop is executed.
Because this kind of promotion is imprecise, it’s only applied
to intersection checks involving different memory objects.

B. Aliasing Annotation

Although our versioning plan materialization algorithm gen-
erates the requisite checks and control flow to guarantee that
the user-supplied instructions (or loops) are independent, the
independence of these instructions is implicit and unlikely to
be detected by LLVM’s built-in alias and dependence analysis.
Thus, our implementation additionally annotates the versioned
instructions with LLVM’s scoped noalias metadata [1].

Using LLVM’s scoped noalias system provides two benefits.
First, it allows us to reuse LLVM’s existing alias analyses and
be compatible with any client optimization that uses those
analyses. Second, LLVM’s instruction cloning utility preserves
these noalias annotations, which is useful when an instruction
is cloned multiple times due to nested versioning.

V. EVALUATION

We evaluated the proposed versioning framework by using
it for two optimizations: redundant load elimination and SLP
vectorization. We show that our framework makes both opti-
mizations more effective with relatively minimal changes to
their implementations.

Experimental Setup. We ran all experiments on a machine
with an Intel® Xeon® Platinum 8124M CPU running at
3.00GHz. All benchmarks were single-threaded, run sequen-
tially, and pinned to a specific core with taskset. All
benchmarks were run 30 times and the median run times
were used for reporting. Unless otherwise specified, we used
LLVM’s -O3 pipeline as the baseline, which used LLVM’s
loop and SLP vectorizers with the former using LLVM’s loop
versioning implementation.

A. Versioning for SLP Vectorization

To demonstrate the effectiveness of our versioning frame-
work, we modified an existing SLP vectorizer to support
versioning. Before discussing how we integrated versioning
with SLP vectorization, we first provide some background.

Background. Larsen and Amarasinghe [7] proposed SLP
vectorization as an alternative to loop vectorization. SLP
vectorization works in two stages, whereby the vectorizer first
uses a heuristic to identify packs of independent instructions
that are profitable candidates for vectorization, and then it fin-
ishes by replacing these packs of instructions with equivalent
vector instructions. The vectorizer might also need to emit
extra data-movement instructions to gather the operands of
the vector instructions; for instance, if a vector instruction uses
some array elements out of order, the vectorizer must emit a
shuffle instruction to permute those elements.

While loop versioning is natural to apply for loop vec-
torization, there is no equivalent versioning scheme for SLP
vectorization. With the unit of vectorization being individual
vector packs and considering the diversity of the different SLP
packing heuristics [11, 12, 13, 14, 15], a versioning scheme
for SLP vectorization must be more fine-grained to fully take
advantage of its flexibility.
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Fig. 16: Speedup on PolyBench over LLVM -O3 without vectorization (higher is better).

1) Versioning for SLP Vectorization: We added support
for versioning to SuperVectorization [4], an extension of
SLP vectorization to handle complex data-dependent control
flow. This vectorizer can pack instructions across different
basic blocks or even loops that might have divergent run-
time trip counts. Due to these complex control-flow patterns,
their code-generation algorithm is more involved than a more
traditional SLP vectorizer. Nonetheless, we added versioning
to their vectorizer without having to modify any of their code-
generation machinery.

We made only two changes to SuperVectorization to enable
versioning. First, we modified its implementation to allow
packing instructions that are conditionally independent. Its
system originally had a filter pass to reject any packs involving
dependent instructions for vectorization. We modified this
pass to forward such packs to our versioning plan inference
routine and accept a pack for vectorization if we can infer a
versioning plan. At the end of the packing stage (but before
vector code generation), our system ends up with a list of
versioning plans. The second change was to materialize the list
of versioning plans before performing vector code generation.
No other changes were necessary, and their original vector
code generator works out of the box.

2) Results: We evaluated the modified SuperVectorization
on two benchmark suites: PolyBench [16] and TSVC [3].
We used the same optimization pipeline as the LLVM -O3
optimizations, aside from the fact that we ran Chen et al.’s [4]
vectorizer instead of LLVM’s loop and SLP vectorizers (which

are disabled in our pipeline). Note that LLVM’s loop vectorizer
uses loop versioning, which is the same setting that Chen et
al. [4] used in their original evaluation.

PolyBench. Figure 16 shows the results on PolyBench. We
ran the experiments in two settings, with the restrict key-
word enabled and disabled. Because LLVM does not perform
interprocedural alias analyses, without the restrict key-
word, LLVM’s dependence analysis conservatively assumes
that all input arrays in the PolyBench kernels may alias.

With the restrict annotation turned off, SuperVectoriza-
tion with versioning obtains a geomean 1.65× over LLVM’s
scalar (-O3) pipeline and 1.50× faster than LLVM’s full
-O3 pipeline (with vectorization enabled). With restrict
turned on, SuperVectorization together with versioning obtains
a 1.76× speedup over LLVM’s scalar pipeline and 1.51×
faster than LLVM with vectorization; whereas SuperVector-
ization without versioning is 1.57× faster than LLVM’s scalar
optimization and 1.35× faster than LLVM with vectorization.

In sum, even with full aliasing information, versioning
enables SuperVectorization to vectorize five more bench-
marks (correlation, covariance, floyd-warshall, lu, and lu-
dcmp), boosting SuperVectorization’s performance by 1.12×
on average. All but one of the five benchmarks have loop
iterations that are independent but involve triangular iteration
space, which is too complex for LLVM’s dependence analy-
sis to reason. With versioning, SuperVectorization effectively
performs dependence analysis dynamically.
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1 for (k = 0; k < _PB_N; k++)
2 for (i = 0; i < _PB_N; i++)
3 for (j = 0; j < _PB_N; j++)
4 path[i][j] = path[i][j] < path[i][k] + path[k][j]
5 ? path[i][j] : path[i][k] + path[k][j];

Fig. 17: Snippet of the floyd-warshall benchmark from Poly-
Bench. The read-write conflicts arising from the in-place
updates on the path array prevents auto-vectorization. Our
versioning scheme enables vectorization by checking for this
conflict dynamically at run time.

Figure 17 shows a code snippet of the floyd-warshall bench-
mark from PolyBench. Neither SuperVectorization (without
versioning) nor LLVM can vectorize the floyd-warshall bench-
mark because the benchmark performs in-place updates on
the output buffer, leading to a dependence from the read of
path[i][k] to the write of path[i][j]. However, this
read-write conflict does not occur on every loop iteration.
Our versioning algorithm allows SuperVectorization to safely
vectorize by checking for this dependence dynamically and
executing the vectorized code in the absence of this depen-
dence.

Figure 18 shows floyd-warshall optimized by our ver-
sioning algorithm. Notice that the code does not check the
dependencies between the write path[i][j] and the read
path[k][j]. Although this dependence blocks traditional
auto-parallelization, it does not prevent SLP vectorization by
itself and is left out of run-time checking by our versioning
algorithm. We illustrate how our algorithm comes to this
decision by unrolling the code by a factor of 2 (some other
unroll factor also works) as follows:

... = path[k][j]

... = path[i][k]

... = path[i][j]
path[i][j] = ...
... = path[k][j+1]
... = path[i][k]
... = path[i][j+1]
path[i][j+1] = ...

We can see that the write to path[i][j+1] may depend on
the reads of path[i][j+1] and path[k][j+1] (we ig-
nore the dependence from path[i][j+1] to path[i][k]
because it is in the cut), neither of which depend on
path[i][j]. We can therefore conclude that the writes to
path[i][j] and path[i][j+1] are independent and can
be packed into a single vector store. One can follow this pro-
cess and conclude that the other reads are also independent and
can be packed, provided the accesses to path[i][j:...]
and path[k][j...] are disjoint (which we check at run
time).

TSVC. Figure 19 shows the results of TSVC, a comprehen-
sive suite of 151 loops for evaluating vectorization algorithms.
Without versioning, SuperVectorization is 1.09× (geomean)
faster than LLVM, and with versioning, SuperVectorization
is 1.17× faster. Versioning enables SuperVectorization to
vectorize thirteen more benchmarks, improving the overall

1 for (k = 0; k < _PB_N; k++) {
2 for (i = 0; i < _PB_N; i++)
3 for (j = 0; j < _PB_N; j += VL) {
4 if (disjoint(&path[i][j:j+VL], &path[i][k])) {
5 // vector code
6 } else {
7 // scalar code
8 }
9 }

Fig. 18: Sketch of the code generated by our versioning
algorithm for floyd-warshall. VL is the vector length chosen
by the vectorizer.

performance of SuperVectorization by 1.08× on average.
Figure 20 shows a code snippet from s281. Neither original
SuperVectorization nor Clang’s vectorizers can vectorize s281
because the code has a read-write conflict between some but
not all iterations. The authors of TSVC originally envisioned
a transformation that partitions the loop iteration space and
vectorizes the subspace where vectorization is safe. In contrast,
our versioning framework enables vectorization by precisely
identifying (at run time) those iterations where such conflicts
are absent and executing those iterations in parallel.

Figure 21 shows a snippet of the s258 benchmark from
TSVC. Our versioning framework enables vectorization by
speculating that successive iterations of a[i] > 0 are true
at run time. We did not observe speedup (or slowdown)
in TSVC’s original setup because with versioning, the run
time is data-dependent. Consequently, we ran another set
of experiments where we initialized the array a randomly
so that more than 99% of the entries are positive. In this
setup, the vectorized code is 2.0× faster than the scalar
version. In a separate experiment, we further modified the
benchmark so that all of the arrays are declared as function
parameters (instead of global variables), forcing the compiler
to assume the arrays may alias. In this setup, one level of
versioning is no longer sufficient; to generate code to speculate
that a[i] > 0 for successive iterations, we must hoist the
comparisons and the load of a[i] past the stores to the arrays
b and e, which is only safe if a does not alias either b or e. We
observe similar speedups even with two levels of versioning
for this example because our implementation is able to hoist
the alias checks outside the loop and amortize the overhead
of the checks.

B. Versioning for Redundant Load Elimination

To further demonstrate the effectiveness of our versioning
framework, we used it to perform redundant load elimination,
a basic optimization implemented by modern compilers. A
load is redundant if (1) it is dominated by a prior load on the
same address and (2) there are no intervening writes between
them. In practice, the latter condition often prevents compilers
from eliminating many redundant loads because between two
redundant loads, there are often some spurious writes—stores
on plausibly aliased addresses or even function calls—that
force the compiler to assume, conservatively, the loads are
not redundant.
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Fig. 19: Speedup on TSVC over LLVM -O3 (higher is better). Note that LLVM’s loop vectorizer uses loop versioning.

1 for (int i = 0; i < LEN; i++) {
2 x = a[LEN-i-1] + b[i] * c[i];
3 a[i] = x-(float)1.0;
4 b[i] = x;
5 }

Fig. 20: s281 from TSVC. There is a read-write conflict on
the array a, but only in some iterations (around the middle
of the array). Our versioning framework generates code that
identifies precisely the iterations that are safe to vectorize at
run time.

1 float s = 0.;
2 for (int i = 0; i < N; i++) {
3 if (a[i] > 0.) {
4 s = d[i] * d[i];
5 }
6 b[i] = s * c[i] + d[i];
7 e[i] = (s + (float)1.) * aa[i];
8 }

Fig. 21: s258 from TSVC. Without versioning, the loop-carried
dependence around s prevents vectorization.

We can use our versioning framework to eliminate more re-
dundant loads by viewing redundant loads from the perspective
of independence: A set of loads (assuming one load dominates
all the others) is redundant if they are all independent. This
leads to a simple implementation of redundant load elimina-
tion that is also more aggressive than those implemented by
existing compilers:

1) Collect groups of loads on the same addresses (and of
the same data types). Each group should have at least
one load whose execution is implied by the other loads,
and we call such a load the leader of the group.

2) If the loads in a group are not already independent,
attempt to infer a versioning plan for the group so that
they become independent, and remove the group for
optimization if versioning is infeasible.

3) Materialize the inferred versioning plans.

4) Hoist the leader of each group before all the other
loads—such hoisting is safe because we have established
that the loads are independent—and replace the uses of
the other loads with the leader.

We implemented this optimization as an LLVM pass with 153
lines of C++.

Figure 22 shows the result of running the proposed redun-
dant load elimination pass on the SPEC 2017 Floating Point
benchmark suite. Our optimization leads to major speedups for
lbm_r (6.4%) and blender_r (4.7%), with the geomean
speedup being 1.2%.

We also collected performance counters for the benchmarks.
With versioning, redundant load elimination eliminated 4.8%
(geomean) of the loads executed dynamically, at the expense
of executing 5.5% (geomean) more branches at run time. Our
optimization also enabled more optimizations downstream in
the pipeline: loop-invariant code motion (LICM) hoisted 6.4%
more instructions and global value numbering (GVN) deleted
8.5% more instructions.

VI. RELATED WORK

Loop Versioning. Existing loop versioning implementations,
such as the ones used by GCC and Clang, focus on pointer dis-
ambiguation and require predictable memory access patterns
to overapproximate the accessed ranges of memory.

To address this limitation, researchers have proposed us-
ing specialized memory allocators that can efficiently check
whether two pointers can point to the same allocated object [2,
5, 6]. With such allocators, loop versioning can be applied
to loops—regardless of their memory access patterns—by
querying these allocators whether the base pointers of different
accesses point to the same objects.

This allocator-based loop versioning scheme is more effi-
cient than our approach because it can disambiguate pointers
outside loops with irregular memory accesses. In contrast, to
check the dependencies for such loops, our approach must
perform the checks within those loops.
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namd r parest r povray r lbm r blender r imagick r nab r GeoMean

Speedup 0.5% −0.5% −1.7% 6.4% 4.7% 0.0% 0.0% 1.2%

Loads eliminated 1.2% −0.43% −0.21% 26% 0.69% −0.22% 2.7% 4.8%
Branches increase 3.4% 1.1% 1.3% 3.5% −0.73% 0.0% 2.2% 5.5%

Extra instructions hoisted by LICM 50% 0.15% 0.1% 0.0% 1.2% 0.9% 0.0% 6.4%
Extra instructions deleted by GVN 0.59% 9.6% 1.3% 3.3% 19% 7.1% 7.7% 8.5%

Code size increase 1.5% 0.73% 1.2% 12% 0.88% 0.51% 0.00% 2.3%

Fig. 22: Result of running redundant load elimination (with versioning) on the SPEC 2017 Floating Point benchmark suite.

On the other hand, our approach can rule out intra-
object dependencies—e.g, those arise from in-place updates—
whereas theirs cannot. Our approach is also more fine-grained
and decoupled from specific optimizations, whereas their ap-
proach uses hand-designed and optimization-specific rules to
decide which dependencies should be checked. Furthermore,
our approach works in the absence of loops and applies to
non-loop optimizations.

Speculative Optimization. Our framework is also related
to Lin et al.’s [9] work on performing speculative partial
redundancy elimination (PRE) in the presence of rare de-
pendencies. Their work relies on the architectural speculation
support provided by IA-64. Our approach does not perform
speculation and targets more conventional architectures with-
out speculation capabilities.

Finally, our work is related to Sujon et al.’s [17] work on
speculative loop vectorization, which was proposed to deal
with loops with biased branches that incur rare loop-carried
dependencies that prevent vectorization. Their approach works
by identifying sets of paths where vectorization is safe, vector-
izing the loop, and then generating run-time checks to guard
vectorized code in case any other paths are taken. If the checks
fail, the loop restarts execution in scalar mode for the next
several iterations. Their approach relies on explicitly enumer-
ating all possible CFG paths as candidates for speculation.
Because there can be an exponential number of paths within a
given CFG, their approach must consider exponentially many
paths or up to a predetermined abort threshold. Our approach
does not suffer from exponential blow-ups because it reduces
the problem of finding the set of speculation (versioning)
conditions to min-cut, which has an efficient solution.

VII. CONCLUSION

We have introduced a general framework for fine-grained
versioning and demonstrated its effectiveness with case studies
on applying our framework to redundant load elimination and
SLP vectorization. Our redundant load elimination is simple
and effective in removing many redundant loads that static
analyses fail to detect. With our versioning framework, an
existing implementation of SLP vectorization has been ex-
tended with minimal changes to perform versioning, achieving
speedups that often outperform LLVM’s vectorizers that use
loop versioning.
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