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Abstract

Compilers today are capable of inferring detailed informationabout program parallelism and

analyzing whole-program behavior. However, the traditional interface between the compiler and

the processor, as defined by the instruction set architecture (ISA), is unable to communicate much

of the compiler knowledge to the processor. The approach taken by modern processors such as

superscalars is to incorporate purely run-time algorithms in their hardware to perform analyses

and optimizations such as detection of instruction-level parallelism. However, these complex

hardware implementations can only exploit a small fraction of the parallelism information

available to the compiler.

The Raw architecture developed at MIT aims to maximally utilize the compiler by fully

exposing the hardware and by delegating the hardware’s control completely to the software

system. The Raw microprocessor, a set of simple RISC-like processor tiles interconnected

with a high-speed 2D mesh network, does not provide hardware implementations for any of

the complex algorithms found in conventional microprocessors. Instead, the compiler and the

run-time software system fully orchestrate the Raw hardware resources, and they implement

run-time analyses and optimizations tailored to the need of each individual application. This

novel approach provides many opportunities and challenges for the Raw compiler and run-time

system.

1



1 Introduction

The advent of RISC revolutionized the microprocessor by making it simpler. This simplicity,

achieved mainly by off-loading the task of choreographing complex instructions from the hardware

to the compiler, resulted in a cost-effective, high performance processor. However, subsequent

generations of microprocessors failed to take heed from this lesson about hardware simplicity. They

focused on fully hardware-based approaches for many optimizations, resulting in complex hardware

implementations of algorithms such as branch prediction, instruction level parallelism detection,

register renaming, and out-of-order execution.

Although these microprocessors clearly benefit from compiler optimizations, they do not take

full advantage of the compiler. Performing the analysis at compile time can simplify and eliminate

many of the complex algorithms in the hardware. Furthermore, unlike hardware-based approaches

which must work under heavy resource and time constraints, compiler-based analysis can be more

rigorous, leading to an increase in the effectiveness of the optimizations.

Of course, compiler-based analysis cannot completely eliminate run-time analysis. Run-time

analysis is necessary when the information required to perform the optimization is not available at

compile-time. But run-time analysis and optimization need not be implemented in hardware. A

run-time software system can be utilized in many cases. Unlike hard-coded custom logic, a software

system can adapt to the individual requirements of the program, and it can readily accept changes

and updates to the algorithms.

There have been numerous attempts to use compiler and run-time software technology to

eliminate the complex algorithms from hardware. A prominent example of this approach is the

VLIW processor [8]. However, most of these approaches had concentrated on off-loading individual

algorithms and optimizations from hardware to software.

We are developing a novel approach that fully exposes the low-level details of the hardware

architecture to the compiler. We call machines based on this approach Raw architectures because

they implement only a minimal set of mechanisms in hardware. These mechanisms are fully exposed

to the software, allowing efficient implementations of high-level application programs.

A corollary to the Raw philosophy of keeping the hardware simple is that the software system

must bear more responsibilities. The Raw software system includes both a run-time system and a

compiler. The run-time system manages dynamic mechanisms historically handled in hardware,

including branch prediction, caching, and speculative execution. The Raw compiler faces issues such

as resource allocation, inter-tile exploitation of fine-grained parallelism, communication scheduling,

and the use of configurable logic.

The remaining sections are organized as follows. Section 2 describes the Raw architecture.

Sections 3 and 4 discuss issues, opportunities and challenges in developing the Raw run-time

system and the Raw compiler respectively. Section 5 details the current status of the SUIF-based

Raw compiler. We close with the project status and conclusions in Section 6.
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Figure 1: Raw microprocessor composition. A typical Raw system might
include a Raw microprocessor coupled with off-chip RDRAM and stream-IO
devices.

2 Raw Architecture

The Raw microprocessor chip comprises a set of replicated tiles. Each tile contains a simple

RISC-like processor, a portion of memory for instructions and data, configurable logic, and a

programmable switch.

2.1 Simple replicated tile

A Raw machine comprises an interconnected set of tiles (Figure 1). Each tile contains a simple

RISC-like pipeline and is interconnected with other tiles over a pipelined, point-to-point network.

A large number of distributed registers eliminates the small register-name-space problem, allowing

the exploitation of ILP to a greater degree. SRAM memory distributed across the tiles eliminates

the memory bandwidth bottleneck and provides significantly lower latency to each memory module.

The distributed architecture also allows for multiple high bandwidth paths to external RDRAM, as

many as packaging technology will permit. The amount of memory is chosen to roughly balance the

areas devoted to processing and memory, and to match the memory access time with the processor

clock.

Unlike current superscalars, a Raw processor does not bind specialized logic structures such

as register renaming logic or dynamic instruction issue logic into hardware. Instead, it focuses on

keeping each tile small to maximize the number of tiles that can fit on a chip, thereby increasing

the amount of parallelism it can exploit and the clock speed it can achieve. For example, a

single one billion transistor die (which might be available in 7-10 years) can carry 128 tiles, each

including an R2000 equivalent CPU, floating point unit, configurable logic, 64K-bytes of SRAM,

and 128K-bytes of DRAM. Significantly higher switching speeds internal to a chip compared to
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Figure 2: Raw microprocessors versus superscalar processors and multiproces-
sors. A Raw microprocessor distributes the register file and memory ports and
communicates between ALUs on a switched, point-to-point interconnect. In
contrast, a superscalar contains a single register file and memory port, and it
communicates between ALUs on a global bus. Multiprocessors communicate
at a much coarser grain through the memory subsystem.

off-chip communication and DRAM latencies will allow software to replace specialized hardware

functionality.

As depicted in Figure 2, a Raw architecture can be viewed as a microprocessor which replaces

the bus architecture of superscalar processors with a switched interconnect, and uses software to

implement operations such as register renaming, instruction scheduling, and dependency checking.

Although reducing the amount of hardware support for these operations is counter to current market

trends, this approach makes available more of the chip area for memory and compute logic, results

in a faster clock, and reduces the verification complexity of the chip. Taken together, these benefits

can make software synthesis of complex operations competitive with hardware for end-to-end

application performance.

2.2 Programmable, integrated interconnect

As shown in Figure 2, a Raw machine uses a switched interconnect instead of buses. The switch is

integrated directly into the processor pipeline to support single-cycle send and receive operations.

The processor communicates with the switch using distinct opcodes to distinguish between accesses

to the static and dynamic network ports. No signal in a Raw processor travels more than a single tile

width within a clock cycle. The tight integration of the switch with the processor and the short wire

lengths permit inter-tile communication to occur at nearly the same speed as a register read. An

on-chip interconnect also allows channels with hundreds of wires instead of tens – VLSI switches

are pad limited and are rarely dominated by internal switch area.

The switch multiplexes two logically distinct networks, one static and one dynamic, over the

same set of physical wires. In the static network, routing decisions are made statically at compile
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time; at run-time the switches blindly follow the routing instructions generated by the compiler. In

the dynamic network, routing decisions are made by the network at run-time, similar to how routing

is done in NUMAs.

2.3 Configurability

Each tile of a Raw architecture also contains configurable logic. The configurable logic is comprised

of a small array of byte-wide ALUs and registers, with sufficient routing resources to connect them

into configurations which commonly appear in general purpose computing. There is also a small

amount of bit-level and control logic to support special bit-level and conditional operations. A Raw

processor is thus coarser than a traditional FPGA-based computer [3], which evolved from structures

better suited for random hardware glue logic than datapath oriented computation. Compared to a

FPGA computer, the Raw configurable logic has a smaller configuration state, better propagation

delays for common operations, lower routing requirements, and smaller area per ALU-like operation.

However, it can still achieve the same level of fine-grained parallelism that an FPGA computer can

attain when such parallelism exists in an application. Traditional FPGA computers also leverage

their bit-level configurability to trade precision for parallelism. Raw explores this idea with some

restrictions. The programming and algorithmic analysis issues do not seem worth the effort to

provide complete precision flexibility. Instead, the byte-granular configurable logic allows the

implementation of multigranular operations much like Sun’s VIS, HP’s MAX, and Intel’s MMX

extensions.

3 The Run-time System

Achieving top performance in programs with data dependent branching patterns and pointer based

memory operations requires mechanisms that can analyze and react to program behavior at run

time. In a modern superscalar processor, these operations are provided by hardware units including

caches, branch prediction buffers, register renaming logic, and instruction scheduling units. In a

Raw processor these functions are provided by the run-time system.

For example, Raw can do caching in software. The run-time system manages the memory

hierarchy by checking each memory access and providing the current mapping of the requested

address. As with other systems that use software to manage the memory system [12, 13, 14], the

compiler has two responsibilities. It must insert code to perform these checks at each memory

reference, and it must optimize away checks that can be statically determined to be redundant.

Inevitably, the baseline cost for software caching is higher than that for hardware caching.

However, software caching can handle more sophisticated algorithms than can be conveniently

built in hardware, and it provides the opportunity to customize the algorithms. These features can

lead to higher hit rates, which in turn can mitigate and possibly completely recover the software

overhead. There is also an exciting potential for exploiting inter-tile parallelism and scalability

through software caching.
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Similar support from both the run-time system and compiler will be required to provide mech-

anisms like speculative execution. Speculative execution increases the available parallelism of

programs with dynamic dependence and branching patterns. The additional costs of performing

services such as branch prediction and checking dependences on speculatively issued loads will

need to be reduced. Cost reduction can come directly from compiler elimination of unnecessary

operations, or it can come indirectly by the use of algorithms which provide superior support. An

additional benefit of moving these mechanisms into software is that the hardware can be eliminated,

permitting more room on the chip for additional parallelism and better clock cycle times.

Finally, the run-time system has to provide support for performance monitoring and debugging.

Because the requested features (e.g., a breakpoint) may change while the program is running, the

run-time system needs to support dynamic code scheduling [2, 5, 6, 15]. Because the run-time

system inserts code only where it is needed, the user will not need to pay any additional overhead

for features they are not currently using.

The overall performance of the Raw system will depend on a number of factors. Because

support for dynamic behaviors has been moved into the run-time system, a program will execute

more instructions in Raw than in a system with more hardware support. On the other hand,

the simpler Raw hardware will execute at a faster clock rate, and it can explore more available

parallelism. The end-to-end performance will involve a balance of these factors and will also

depend on the compiler’s ability to eliminate and optimize the run-time mechanisms.

4 The RAW compiler

The RAW compiler faces many unique opportunities as well as challenges. Compilation issues

in RAW include resource allocation, the exploitation of fine-grained parallelism, communication

scheduling, the use of configurable logic, and code generation.

4.1 Resource Allocation

When executing a program in the Raw processor, both the run-time system and program execution

are mapped to a collection of identical tiles. Rather than fixing the allocation in hardware, the tiles

can be allocated in an application-specific manner to perform these tasks. More resources can be

dedicated to performance-critical and highly used parts of the run-time system.

The program execution is divided into coarse-grain parallel regions. Each parallel region is

executed on multiple tiles, which together behave as a single logical processor. The number of tiles

allocated to each region depends upon the availability of fine-grain parallelism within the region.

The tiles in a region communicate with each other using mostly static communication, while the

regions communicate with each other as well as with the run-time system using dynamic messages.

The size and number of regions allocated could be decided by the compiler based upon the nature of

the parallelism available in the application. For example, it can use a small number of large regions

when high-level fine-grained parallelism is known to the compiler, and a large number of smaller
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regions when only coarse-grained parallelism is available.

The Raw compiler needs to perform whole program analysis to obtain the run-time resource

requirements and the availability of fine-grain and coarse-grain parallelism [9].

4.2 Exploitation of fine-grain parallelism

Raw has the flexibility to explore many forms of parallelism. It can support both the SIMD and

MIMD programming models used by conventional multiprocessors. In fact, its low latency network

allows it to attain speedup for a bigger set of such applications. More interestingly, Raw introduces

a new paradigm for exploiting parallelism. Due to its miniscule cost of communication, Raw can

profitably exploit fine-grained parallelism across tiles. In particular, multiple tiles can work together

to exploit the ILP of a single original instruction stream.

The Raw approach to exploiting ILP differs from that of superscalar and VLIW. In contrast to

a superscalar, Raw exploits ILP without complex and space-consuming hardware logic. Moreover,

Raw’s software approach does not suffer from the limitations of a small hardware instruction

window. Unlike VLIW processors, each of Raw’s processing units has its own instruction stream.

This approach is more flexible because it does not require instructions to proceed in lock steps.

On the other hand, the distributed structure of Raw makes the exploitation of locality an important

issue.

Raw offers opportunities for new optimization techniques as well. An example pertains to

register spilling. In conventional architectures, registers must spill to memory. Raw provides a

cheaper alternative of spilling to registers of a neighboring tile. In effect, Raw maintains a double

advantage in available register resources over modern architectures. Not only can a single tile afford

more registers than a modern processor on a per-area basis, adjacent tiles can pool and share their

registers, an opportunity made profitable by the availability of cheap communication.

4.3 Communication scheduling

The static network makes the Raw compiler novel among traditional compilers. Traditional com-

pilers schedule a single type of event (instructions) along a single dimension (time) 1. The Raw

compiler, on the other hand, faces a more generalized problem: it must schedule both instructions

and communication events, and the events must be scheduled both temporally and spatially.

Compilation of code to use the static network provides challenges from the perspective of both

correctness and performance. With respect to correctness, the switch code must be deadlock-

free. With respect to performance, the compiler must carefully orchestrate the communication to

minimize network stalls. Both issues are complicated by the presence of dynamic events such as

branches, cash misses, and dynamic messages.

Correct code can be generated for the static network even in the face of compile-time uncertain-

ties. By statically ordering the communication in a way which is deadlock free, the compiler can

1If present, the spatial dimension in VLIW and superscalar processors is very small in size.
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guarantee that the resultant code will be deadlock free even if the compile-time estimates of event

latencies are not cycle-accurate.

The static network can be leveraged in two ways. In the general case, it can be used to provide

low-latency communication needed to exploit profitably the fine-grain parallelism across multiple

tiles. In this approach, the compiler takes an instruction stream as input, partitions that stream into

multiple instruction streams, maps each stream to a tile, instruction-schedules each stream, and

schedules the communication between the streams2. The partitioning and scheduling framework

in the compiler builds on the work reported in [11, 16]. In addition, the compiler can turn certain

loops into inter-tile pipelines which leverage the low cost of communication to achieve maximum

throughputs.

When both the static and dynamic networks are used in the same application, we need to consider

the issues which arise due to their interaction. We have to ensure in the compiler that the resultant

programs are correct and deadlock-free. In addition, timing optimizations are likely to be beneficial

due to the performance differences between static and dynamic networks. The timing of the static

messages is highly predictable, while the delays due to dynamic messages can be large and highly

unpredictable.

Programs which use both networks can benefit from optimizations which attempt to minimize

the time wasted when multiple nodes blocked on static messages due to a large delay of a dynamic

message to a single node. One such optimization applicable to some cases is to continue to send

static messages containing variables stored locally to remote locations, even if the local processor is

blocked on the dynamic network. This optimization is possible if the static messages do not depend

on the information carried by dynamic messages. For example, variables for which a processor acts

as a passive home location, rather than an active generator of new values, may safely be sent to

remote processors while the local processor is blocked on the dynamic network.

4.4 Configurable logic

The presence of Raw’s configurable logic provides many opportunities for optimization. The sim-

plest manifestation of Raw’s configurable support is the ability to perform multigranular operations.

This model mirrors SIMD and vector processors. Existing vectorizing compiler work can be lever-

aged to provide automatic compilation for these operations. Such a compiler would also be useful

to current commercial processors with extensions like VIS and MMX.

Additionally, the configurable logic can be used to replace frequently executed patterns found in

program codes. In particular, the configurable logic will be helpful in reducing the overhead of the

run-time system. For instance, the run-time system might require that additional parallel checks be

done to support memory dependence checking and speculative execution. Parallel structures can be

configured to accelerate these operations, making the overhead of doing these software operations

more similar to the hardware overhead. If these structures are no longer needed, the logic can be

2Note that the compiler needs not perform these tasks in the order given in this list, nor are the tasks required to be
independent of each other.
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Figure 3: Components of the code emitted by the Raw compiler and their
relations to the architecture.

reconfigured to perform other useful, common operations.

The configurable logic can also be used to accelerate signal processing algorithms with medium

sized compute-intensive cores. Data would be pipelined through configured logic that mimics the

program graph to attain parallelism that a superscalar could never attain due to the limitation in

instruction sequencing resources. The reconfigurable logic within each of the tiles would be chained

together to provide support for extremely long pipelines. This sort of structure could also be built

with the tiles themselves. However, the reconfigurable logic does not require the sequencing or

memory resources that a tile does. It thus provides improved computation density and is more

suitable for stream-based multimedia applications.

One of the most difficult tasks of the compiler will be to identify the regions of code well

suited to configurable implementation. We are exploring the possibility of using tree-pattern

matching techniques [1, 10] to assist in identifying these regions. Once these regions are identified,

hardware compilation algorithms can be employed to compile the critical program patterns into the

configurable hardware [4].

4.5 Code generation

Because the Raw compiler is hardware-omniscient, its code generation phase is more involved

than that of a traditional compiler. In additional to the traditional task of data partitioning and tile

code generation, the Raw compiler must also generate code for the static switches and emit bit

sequences for programming the configurable logic. Each of these components is an opportunity for

developing new optimization techniques. See Figure 3 for how the compiler outputs relate to the

architecture.

5 Compiler Implementation

We are using the SUIF compiler infrastructure to implement the Raw compiler. SUIF has many

features which make it an ideal framework for the Raw compiler project [7]. It provides a single

tool under which all compiler development, from whole program analysis for resource allocation
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to switch and tile code generation, can be performed. We plan to leverage on many aggressive

analyses such as data-flow analysis and pointer alias analyses available for the SUIF infrastructure.

Development of many new techniques for this unique architecture requires us to perform a lot

of prototyping, an objective SUIF is designed to handle well. Finally, the availability of many

traditional optimizations passes and strong front-ends to popular languages such as C and FORTRAN

will help us evaluate the Raw architecture using a wide range of benchmarks and real programs.

Our short-term goal is to develop a end-to-end compiler path which can take in a subset of

sequential C programs and map it to multi-tile code runnable on the Raw simulator. The compiler

currently handles mostly static programs with arbitrary control flow,but it forbids memory references

which cannot be disambiguated at compile time. We have yet to implement any of the optimizations.

The compiler path to handle these simple programs is as follows. We stress that this is the

base approach for programs, and we expect that some classes of special programs, such as regular

programs, and several others, will be handled as special cases for optional optimization. We

do expect however, that this approach will provide a correct fall-back implementation for most

programs.

First, we use SUIF’s cfg library to divide a program into its basic blocks. Basic blocks are

merged into superblocks which contain sufficient parallelism to be profitably parallelized. Then a

series of compiler passes are performed on individual superblocks. First, a renaming pass renames

variables as well as memory so that most storage locations accessed in a superblock are single

assignment 3. This renaming serves two purposes. It exposes all the inherent parallelism within a

superblock, and it simplifies the later task of switch code generation.

After the renaming pass, the partitioner partitions the superblock into multiple instruction

streams which can be executed in parallel. The number of streams generated depends on the amount

of parallelism in the superblock and is limited to a maximum of the number of processors in the

system. Also, communication instructions are inserted into the resultant streams to preserve the

semantics of the original superblock.

After partitioning, the placer maps each stream to a physical processor. Then the machsuif

backend for the Mips architecture translates each instruction stream from SUIF to Mips assembly

to be run on the Raw tiles. Next, these code sequences are instruction scheduled while taking into

account inter-tile communication latencies. Finally, switch codes corresponding to these tile codes

are generated.

The above compiler passes turn each superblock into parallel instruction streams for Raw. A

final pass uses the information from the control flow graph to stitch together the set of instruction

streams for each processor. The final result is a MIMD parallel program using static communication

which is semantically equivalent to the original program.

3Renaming is not performed when it incurs too much overhead e.g., the copy overhead that can result from renaming
array variables.
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6 Conclusion and Current Research

We have embarked on developing a complete compiler and run-time system for the Raw architecture.

This paper describes the opportunities and challenges in developing these software.

Currently our initial compiler can generate unoptimized code for a small set of programs. We

are extending the compiler in both its ability to handle a wide range of programs and its capacity to

perform Raw-specific aggressive optimization. Our goal is to achieve performance that is at least

comparable to that provided by scaling an existing architecture, and also to achieve performance

which is orders of magnitude better for applications in which the compiler can discover and exploit

fine-grained parallelism, data access patterns and other features.
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