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Abstract

Shared-memory multiprocessors, built out of the latest microprocessors, are becoming a
widely available class of computationally powerful machines. These affordable multipro-

cessors can potentially deliver supercomputer-like performance to the general public.

To effectively harness the power of these machines it is important to find all the available
parallelism in programs. The Stanford SUIF interprocedural parallelizer we have devel-
oped is capable of detecting coarser granularity of parallelism in sequential scientific appli-
cations than previously possible. Specifically, it can parallelize loops that span numerous
procedures and hundreds of lines of codes, frequently requiring modifications to array data
structures such as array privatization. Measurements from several standard benchmark
suites demonstrate that aggressive interprocedural analyses can substantially advance the

capability of automatic parallelization technology.

However, locating parallelism is not sufficient in achieving high performance. It is critical

to make effective use of the memory hierarchy. In parallel applications, false sharing and
cache conflicts between processors can significantly reduce performance. We have devel-
oped the first compiler that automatically performs a full suite of data transformations (a
combination of transposing, strip-mining and padding). The performance of many bench-

marks improves drastically after the data transformations.

We introduce a framework based on systems of linear inequalities for developing compiler
algorithms. Many of the whole program analyses and aggressive optimizations in our com-
piler employ this framework. Using this framework general solutions to many compiler

problems can be found systematically.
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1 Introduction

Shared-memory multiprocessors, built out of the latest microprocessors, are now becoming
widely used as medium- and high-powered servers. These affordable multiprocessors can
potentially deliver supercomputer-like performance to the general public. Today, these
machines are mainly used in a multi-programming mode, increasing system throughput by
running several independent applications in parallel. The multiple processors can also be
used together to accelerate the execution of single applications. Automatic parallelization
is a promising technique that allows ordinary sequential programs to take advantage of
multiprocessors [24,43,71,87].

Multiprocessors present more difficult challenges to parallelizing compilers than do vector
machines, their initial target. Effective use of a vector architecture involves parallelizing
repeated arithmetic operations on large data streamgsifinermost loops in array-ori-
ented programs). On a multiprocessor, however, parallelizing innermost loops typically
does not provide sufficiently largganularity of parallelism—not enough work is per-
formed in parallel to overcome the overhead of synchronization and communication among
processors. To utilize a multiprocessor effectively, the compiler must ezpéoge-grain

parallelism locating large computations that can execute independently in parallel.

Locating coarse-grain parallelism is not sufficient to obtain parallel performance. It is crit-
ical to make effective use of the memory hierarchy to achieve high performance. Over the
last decade, microprocessor speeds have been steadily improving at a rate of 50% to 100%
every year [82]. Meanwhile, memory access times have been improving at the rate of only
7% per year [82]. A common technique used to bridge this gap between processor and
memory speeds is to employ one or more levels of caches. However, it has been notoriously

difficult to use caches effectively for numeric applications. In fact, various past machines
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built for scientific computations—such as the Cray C90, Cydrome Cydra-5 [126] and the
Multiflow Trace [42]—were all built without caches. However, current multiprocessor
systems include complex memory hierarchies and multiple levels of caches. Given that the
processor-memory gap continues to widen, exploiting the memory hierarchy is critical to

achieving high performance on modern architectures.

1.1. Thesis Overview

1.1.1. Framework for Compiler Development

A successful parallelizing compiler needs to perform many whole program analyses and
aggressive optimizations. Creating a compiler that is capable of performing these analyses
and optimizations on an arbitrary program, written in one of many programming styles, is

a daunting task for compiler writers. One important method used by compiler writers to
tackle the complexity of the development process is to take advantage of proven frame-
works. We introduce one such framework for parallelizing compilers based on systems of
linear inequalities. Many of the problems in parallelizing compilers for scientific applica-
tions involve comprehensive analysis and aggressive optimizations on loop nests and data
arrays. The iteration space of the loop nests, the data space of the arrays, and the index
space of the processors are multi-dimensional integer spaces, and thus can be represented
using systems of linear inequalities. We show the usefulness of this framework by applying

it in developing many advanced analysis and optimization techniques.

1.1.2. Locating Coarse-Grain Parallelism

Finding coarse-grain parallelism requires major improvements over standard analysis for
parallelization. A loop is often not parallelizable unless the compiler modifies the data
structures it accesses. For example, it is very common for each iteration of a loop to define
and use the same variable. The compiler must give each processor a private copy of the
variable for the loop to be parallelizable. The compiler needs to perform array data-flow
analysis to determine if an array is privatizable [52,113]. We have developed a unified
array analysis algorithm using an array summary representation based on the linear ine-

gualities framework. Using this representation, we calculate data-flow information more



accurately than any other previous analysis, and we also perform the data-dependence anal-

ysis at the same precision as the exact data dependence test.

Furthermore, the existence of array reshapes in FORTRAN, where the same memory loca-
tions are accessed using different array shapes, further complicates interprocedural array
analysis. In order to perform the aggressive whole program analysis, required to find
coarse-grain parallelism, the compiler must analyze the programs in the presence of array
reshapes to determine their effect on the rest of the analysis. Previously, array reshapes
were handled only within a limited domain [137]. We have developed a linear inequalities-

based algorithm that can analyze a large class of array reshapes.

Using these advanced array analysis techniques we have developed a fully functional inter-
procedural parallelizer in the Stanford SUIF compiler system that is capable of detecting
coarse-grain parallelism. We show that automatic parallelization can succeed with many
existing sequential dense matrix scientific applications by applying our compiler to more

than 115,000 lines of FORTRAN code in 39 programs from four benchmark suites.

1.1.3. Optimizing for the Memory Hierarchy

The effective utilization of the memory hierarchy is critical to achieving high performance.
Recent work on code transformations to improve cache performance has been shown to
improve uniprocessor system performance significantly [33,147]. Making effective use of
the memory hierarchy on multiprocessors is even more important to performance but also

more difficult to achieve.

We have developed the first compiler that automatically performs a full suite of data trans-
formations on the original array layouts to improve memory system performance of cache-
coherent multiprocessors. Our algorithm restructures the layout of the data in the shared
address space such that each processor is assigned a contiguous segment of memory. We
ran our compiler on a set of application programs and measured their performance. Our
results show that the compiler can effectively optimize for parallelism and memory sub-

system performance.



1.1.4. Optimizing Communication

We have developed a systematic approach, based on the linear inequalities framework, for
code generation and optimization of communication for distributed memory machines.
This problem involves manipulation of all three spaces: iteration, data and processor. It
also demonstrates the flexibility and usefulness of the linear inequalities framework. This
framework can handle a large class of computation and data decompositions as well as
complex array access functions. We represent data decompositions, computation decom-
positions, and inter-processor communication as systems of linear inequalities. We have
also developed several communication optimizations within the same unified framework.
These optimizations include eliminating redundant messages, aggregating messages, and

hiding communication latency by overlapping communication with computation.

1.2. Organization of the Thesis

The organization of this thesis is as follows. In Chapter 2, we introduce our framework for
parallelizing compilers based on systems of linear inequalities. We discuss the need for
coarse-grain parallelism and the requirements for obtaining it in Chapter 3. We present our
array data-flow algorithm in Chapter 4 and the linear inequalities-based summary repre-
sentation in Chapter 5. In Chapter 6, we introduce a linear inequalities-based algorithm that
can analyze a large class of array reshapes. In Chapter 7, we show that automatic parallel-
ization can succeed with many existing sequential dense matrix scientific applications by
applying our compiler to more than 115,000 lines of FORTRAN code in 39 programs from
four benchmark suites. The unique problems posed by multiprocessor caches are discussed
in Chapter 8. We introduce a data transformation algorithm that changes the original array
layouts to improve memory system performance. A collection of communication code
generation and communication optimization algorithms for distributed address-space

machines is defined in Chapter 9. We conclude in Chapter 10.



2 The Linear Inequalities Framework

The first generation of compilers was capable only of a simple translation of programs writ-

ten in a high-level programming language into a low-level machine language. However,

modern compilers perform many complex transformations that are necessary to optimize
programs to obtain good performance from today’s complex computers. Creating a com-
piler that is capable of performing these complex transformations on an arbitrary program,
written in one of many programming styles, is a daunting task for the compiler writer. Com-

pilers have become very large and complex software systems that require highly skilled
compiler writers and many people-years of development. One important method used by
compiler writers to tackle the complexity of the development process is to take advantage
of proven frameworks. Use of tools such as parser generators [96] and data-flow frame-

works [90] can help create robust and powerful compilers with relative ease.

The next generation of compilers, aimed at parallel architectures, such as shared memory
multiprocessors, needs to perform even more complex whole program analysis techniques
and aggressive optimizations. A framework that can be used to develop many of the new
analyses and optimizations is essential to the success of these parallelizing compilers. The
framework should be robust and applicable to a wide class of input programs. Compiler

writers should be able to use this framework to create effective general solutions in a sys-
tematic manner. In this chapter, we introduce one such framework based on systems of

linear inequalities.

Many of the critical requirements of parallelizing compilers for scientific applications
involve comprehensive analyses and aggressive optimizations on loop nests and data
arrays. By representing the iteration space of the loop nests and the data space of the arrays

as multi-dimensional integer spaces, we can perform these novel analyses and optimiza-
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tions through a mathematical manipulation of the spaces. The compiler can analyze an
input program by creating index sets associated with the spaces and perform optimizations
by manipulating these index sets. Representing arbitrary sets of coordinates accurately is
not practical in a compiler. However, many of the iteration and data spaces found in prac-
tice are multi-dimensional convex regions. Thus, we focus on the domain of index sets that

can be represented using convex polyhedrons.

This chapter is organized as follows. In the next section we will define the linear inequality
representation used throughout this thesis. We introduce the use of this framework by
describing a code generation algorithm in Section 2.2. We have extended linear inequali-
ties, as described in Section 2.3, to handle simple non-linear systems with symbolic coef-
ficients. The data and processor spaces used in this thesis are introduced in Section 2.4. We

present related work in Section 2.5.

2.1. Systems of Linear Inequalities

We use a unified framework based on linear inequalities to handle multi-dimensional inte-
ger spaces such as iteration, data and processor spaces that are used in analyses and opti-
mization techniques for next-generation compilers [9]. We represent all possible values of

a set of integer variablegv,, ...,v,) 0Z" asmdimensional discrete cartesian space,

where thek-th axis corresponds to variablg . Coordingte, ..., x ] 0 Z" corresponds

to the valuev1 =Xy e Vo =X

A parameterized convex polyhedron in théimensional space of the variablgs..., v, ,
parameterized by symbolic constants...,u,  , is represented by a system of linear ine-

qualities with the variableg,, ..., v, and the symbolic constats.., u, . All the solu-

n
tions satisfying the inequalities correspond to the integer points within the polyhedron.



Definition 2-1: A parameterized convex polyhedr8h: z . PHZ”H of n dimensions

and k parameters is represented by the system of inequalities

1.1 1 1 1
a +b1u1+ +bkuk+clv1 +..+Cc Vv, 20

0O

S'(uy, .uy) = 0O (vl,...,vn)

O
I

m m m m m
a +b1ul+... +bkuk+clvl+... +c v, 20

where all a’s, b’'s and c's are integers,, ..., u, ~ are integer symbolic constants and

Vy, ..., V,, are integer variables.

In our compiler algorithms, we use projection as one of the key transformations in manip-
ulating systems of linear inequalities [47]. Suppose we projetdamension polyhedron,

S, onto the i —1 )-dimensional subspace orthogonal to the axis representing wgiable
The resulting polyhedron inthe 1 )-dimensional subspgtel , Is derived by elimi-

nating the variable,  from the system of inequalitieSbf

Projection of ann-dimensional polyhedron onto am{1 )-dimensional space can be
achieved using a single step of Fourier-Motzkin elimination [48,127]. Fourier-Motzkin
elimination can produce a large number of superfluous constraints. We can determine if a
constraint is superfluous as follows. We replace the constraint in question with its negation,
and if the new system does not have an integer solution then the constraint is superfluous.
To check if a system has an integer solution, we again use Fourier-Motzkin elimination.
Since the Fourier-Motzkin elimination algorithm checks if a real solution exists for a sys-
tem, a branch-and-bound technique is needed to check for the existence of an integer solu-
tion [127].

Each integer point in the original polyhedron is mapped to an integer point in the polyhe-
dron created by the projection operation. However, the projected polyhedron may contain
integer points with no corresponding points in the original polyhedron. If
[Xg, ..y X,] DS then [xy, ..., x,_,] O0S"~1.But, given[x,, ...,x, ;] O0S'~1 , there

may or may not exist an,  such thiat, ..., x ] 0S" . Consider the example iere

has a single constraint invoIvinq v; =2v, .We know thgt must be even. However,



this constraint is not captured in the projected polyhe@bnt vand can be an odd

number inS"-1 .

2.2. Code Generation

As a simple example of how linear inequalities framework can be used in compilers, we
present a code generation algorithm based on linear inequalities [9]. Ancourt and Irigoin
presented an algorithm for generation of loop nests after loop transformation by a series of
projections of the transformed iteration space [10,11]. In the following, we briefly describe

their algorithm, and our heuristics for finding tight and efficient loop bounds.

2.2.1. lteration Space

The iterations of an-deep loop nest are given by an iteration set where each element is an

iteration in the iteration spade [J z"

A parameterized convex polyhedron can be used to represent the iteration space of a loop
nest when the loop bounds of the nest are affine expressions of outer loop indices and sym-
bolic constants. Within this scope of a loop nest, the convex polyhedron representing the

iteration space is formally defined as follows:

Definition 2-2: For the n-deep loop nest

DOi; = 1,(vyovy) o hy(vyvy)

DO, = Iy(Vy ooy Vi i) o Ny (Vs o, Vi)

DOi =1 (V. .oy Vi eonig_q) o Do (Vg ooy Vi g i)

wherev,, ..., v, are symbolic constants (variables unchanged within the lgop), i

m "In

are the loop index variables andg, b, are affine functions, the iteration set,

" (Vq, ..., V) , is given by the parameterized convex polyhedron

2 g o Ve iy H
0
0

1" (v oo V) = O (ig,o.yi ) OO

[ |

K=1,..n i : -
i < hk%"l’ o Vg gyl



Figure 2-2 shows the system of inequalities describing the iteration space of the example
loop nest in Figure 2-1. Each integer point within the convex polyhedron corresponds to a
valid iteration of the loop nest. The graphical representation of the convex polyhedron of

the iteration space is illustrated in Figure 2-3.

DOI=1,N
DOJ=1, |
DO K = J, 2N-I
Figure 2-1. Example loop nest
. . I-120  N-120 [
I"(N) = %(I,J,K) J-120 1-J=0 E
il K-J=0 2N-I1-K=00O

Figure 2-2. System of inequalities describing the iteration space

2.2.2. Scanning a Polyhedron
The iteration space representation of a loop nest does not specify the order of execution of
the iterations. When generating a loop nest from an iteration space, we need to provide a

lexicographicalorder for execution of the iterations.



Figure 2-3. Convex polyhedron representing the iteration space

Definition 2-3:  Given iterations (i, ...,i.), (jy...,),) OZ", (i ...0i) s
lexicographically less than(j,, ..., J,)) iff there existk<n suchthat0O<I|<k i, = j,

andi, <j, .

We generate a loop nest from a parameterized convex polyhaﬁr(m]_, ., U) , with

symbolic constantsl,, ...,u., and unknowss, ...,v, . The integer points within the
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polyhedron are converted to iterations of the loop nest. The order in which the points are
visited, the lexicographical ordering of the iterations, is given bgt¢haning orderThe
scanning order(v,, ...,Vv,) indicates that the index variable okitireoutermost loop is

v,.. The index of a loop is incremented by one every iteration, and has a finite lower and
upper bound. The loop bounds are expressions of symbolic consfantsu, . and outer
loop indices. The problem that remains is, what should the bounds of the loops be such that

the loop nest contains an iteration with indides, ..., X ] [oF, ..., %] IS a solution

toS'?

We find the bounds of the loop nest in the reverse scanning order. To find the bounds for
loop indexv,, , we rewrite the constraints in the form:(o}fn > I"(ul, e Uy Vi oy V_1)

k : " . .
andc,v, < hk(ul, e Uy Voo oo V,_1) - Any inequalities not involving, need not be

considered here. The integer lower and upper bounds for  are given simply by

k k
MIN I (ul,...,um,vl,...,vn_l) <y <MIN h (ul,...,um,vl,...,vn_l)
k ck "k ck
[ h
We next project the original polyhedron onto tige,, ..., v, _,) space to obtain an

(n—1)-dimensional parameterized convex polyhedron represented by a set of constraints

involving the symbolic constants;, ..., u and the variahigs.., v, _, . We can then

m

repeat the process in the reverse scanning order for vangples..., v,

The system of inequalities in Figure 2-2 represents a three-dimensional iteration space. For
this iteration space, six possible scanning orders can be used to generate a loop nest. The
projections necessary for generating loop nests for all the six scanning orders are illustrated
in Figure 2-4. The six loops nests generated are given in Figure 2-5. Each loop is marked
with the projection number that created the loop bounds. The three-dimensional polyhe-
dron of the original iteration space has three possible projections, resulting in three two-
dimensional polyhedrons(planes). The inequalities of the projected variable are the bounds
of the inner loops. Each of the three planes have two possible projections, creating six one-
dimensional polyhedrons(lines). These six lines provide the bounds for the outer loop. Note
that the lexicographical order of the original loop nest in Figure 2-1 is given by the scan-

ning order (1, J, K) . A loop nest with the same scanning order is generated by the projec-
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Third Second First
Projection Projection Projection

15 DOi=1,N

Number

DOj=1,i
DO K = j, 2N-i

13 | DOi=1,N
7 DOk = 1, 2N-i
DO j = 1, min(k, i)

14 | DOj=1,N
DOi=j, N
DO K = j, 2N-i

10 | DOj=1,N
4 DOk = j, 2N-j
DO i = j, min(N, 2N-k)

12 DO k=1, 2N-1
DO i =1, min(N, 2N-k)
DO j =1, min(k, i)

11 | DOk=1,2N-1
5 DOj = 1, min(k, 2N-k)
DO i = j, min(N,2N-k)

Figure 2-5. Loop nests generated by projecting the polyhedron

tions numbere® —» 9 - 15 , and the bounds of the loop nest generated by our algorithm
are identical to the original loop nest.
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While the algorithm described above is correct, the generated code can be inefficient.
Although the iteration space is dense, the presence of tight bounds may create gaps in the
iterations. We demonstrate this using the example loop, in Figure 2-6(a), with the iteration
space given in Figure 2-6(b). The iteration space is graphically represented in Figure 2-

6(c), where the valid iterations are the dark dots in the shaded region. Although the dimen-

DOJ=0,6
DO1=4%,4*3+1

(a) Example loop nest

J-0=0 6-J=0

2 0 0
=() = 03,9) O
O 1-4J20 4J+1-1200

(b) Iteration Space

oooooooooooooooooooooooooo

(c) Graphical representation of the iteration space

Figure 2-6. Example with tight bounds on the iteration space
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sionl has iterations between 0 and 25, not all of them are valid. An inefficient loop nest is
generated when we transpose the dimensions. In the new loop nest, given in Figure 2-7(a),
the outer loop contains iterations that do not have any useful computation; they simply

compute the bounds of the inrkloop just to find that the inner loop has no iterations.

DO1=0,25
DO J = (2+1)/4, 1/4

(&) Loop nest with empty iterations

DO Il =0, 25, 4
DO | = Il to MIN(II+1, 25)
J=1/4

(b) Optimized loop nest

Figure 2-7. Transposed loop nests

This form of inefficiency can be eliminated as follows. We need not create a loop nest for
v,,, when the bounds ov), can be expresseq a§<av, <v, -y ,whefie ,y and
are integers suchtht| >1  af&k B-y<a ,apd isaninduction variable of an outer
loop. Then, we can simply eliminate the loop¥gr  from the loop nest by replacing all ref-

erences tw, b%\uJ and replacing the logp  with:

a

Dka'zatl—VJ’—O‘—lJﬂ; h «o
o

DOv, = v, min(vy'+B-yh)
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wherel andh are the lower and upper bounds of the original gop  vghd is a new loop
index. Furthermore, whefi =y , the loag does not need strip-mining and can be

replaced with:
DO v, = a{"\/”—o‘_lJﬂﬁ h a
a

Note that the floor functions can be eliminated using integer division. The example loop
nest in Figure 2-7(a) can be optimized, as given in Figure 2-7(b), since the bounds fit this
definition witha = 4,3 =1 andy = 0 .

2.2.3. Generating Efficient Loop Bounds

The Fourier-Motzkin elimination step used to generate the loop bounds produces a large
number of redundant constraints. We iterate over all the constraints created by the Fourier-
Motzkin elimination step, removing as many redundant constraints as possible. The order
in which the constraints are checked for elimination determines the constraints that will be
left at the end, which will constitute the bounds of the loop. We have developed a set of
heuristics to simplify the system of inequalities, and to pick the order for eliminating the
constraints so that the loop bounds generated are simple and efficient [9]. The outline of
the algorithm is given in Figure 2-8. First, we simplify the system of inequalities. Then we
attempt to eliminate the constraints in the given order. To check if a constraint is redundant,
we replace the constraint in question with its negation. If the new system does not have an

integer solution, then the constraint is redundant and can be eliminated.

2.2.3.1. Simplifying the inequalities

First, we simplify the inequalities by dividing all the coefficients by the greatest common
divisor and finding the smallest integer offset. It is valid to round off the offset since we
are interested only in integer solutions. The algorithm for normalizing the inequalities is

given in Figure 2-9.
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EfficientBoundg S( 4i...,i,)) - S
whereS is a system of inequalities with index variallgs ..., i) , from outer to inner
loops respectively, an  is a system of inequalities containing the loop boumds for

for each inequality O S do
| = Simplify(I)
S = EliminateRedundarit)S
W = CaIcuIateWeigh% g i i} E
for each inequality O S in the order of weight¢ do
Remove inequality frons
if Sn {-1} #0 then
S=Sn{}
for each inequality OS do
if the variable is not used in inequalltthen
Remove inequality frons

return S

Figure 2-8. Algorithm for creating efficient loop bounds

2.2.3.2. Eliminating simple redundant inequalities
Next, we eliminate some of the redundant inequalities using a simple algorithm such that
no two inequalities with identical coefficients exist in the system. Figure 2-10 contains the

algorithm.
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Simplify() - I'
wherel, |’ are inequalities such that {a,+a;i; +... +ai, = 0} ayl...,a,
are integers

g =g9cd(q,...,q)

a a. a,.
return {_OJ +—1'1+ +-§k|k2 0
g

Figure 2-9. Algorithm for simplifying an inequality

EliminateRedundart )S- S
whereS andS are systems of inequalities

for all pairs of inequalitieg ¢, +a,i, +... +a,i, 20} 0S and
{c,+a)i; +... +ai, =0} OSwherec;,c,a,,...,a, are
integer constantso

if C,2=¢C, then

Removec1 ta)i .. +al = 0 fromS
else

Removec, +a,i; +... +ai, = 0 fromS

return S

Figure 2-10. Algorithm for eliminating simple redundant inequalities
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2.2.3.3. Determining the elimination order

Finally, we order the elimination of redundant inequalities, such that complex inequalities
that can generate expensive loop bounds are eliminated before the inequalities that generate
efficient loop bounds. The elimination order is determined by weights generated in the
algorithm in Figure 2-11. The inequalities with higher weights will become candidates for

elimination before the inequalities with lower weights.

CalculateWeight¢ S ;i...,i,)) - W
whereS is a system of inequalities with index variak(gs ..., i) from outer to inner
loops respectively, and/  is the set of weights for the elimination ordering

for all inequalities{ a, +a;v; + ... +ak +bji; +... +b i >0} OS
wherea,, ..., a, andy, ..., b, are integer constants and
Vy, ..., V, are loop invariant variableto

c=n-1

while ¢>1 andb, = 0 do
c=c-1

if there exist{ —a—a,v,—...—a k —b,i;—...—b,i =0} OSthen
cC=c-2n

if |b,| #1then
c=c+n

WH{ a,+a,v, +... +ak +bii +.. +bi 20 H=c

ReturnW

Figure 2-11. Algorithm for calculating the weights that order the elimination of
redundant inequalities
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The least expensive loop bounds are the pairs of inequalities that form an equality, because
the loop can be replaced by a single assignment statement. The inequalities that create loop
bounds with floor and ceiling calculations are the most expensive and are therefore
assigned highest weights. Otherwise, bound expressions with only outer or no loop index
variables receive higher weights since loop invariant bound expressions can be moved out

of the inner loops.

2.3. Linear Inequalities with Symbolic Coefficients

We have extended Fourier-Motzkin elimination to handle simple non-linear systems [9].

The variables of the linear inequalities can have a restricted form of symbolic coefficients.
Definition 2-4: A linear inequality with symbolic coefficients is of the form
0, 0 ) 01, 1 1 [ On, n n [
ta ta,u,...ta U +t/a +aju, ... +a u v, .t tagug . tau v, =0

where v,, ...,v, are integer variablesy,,...,u >0 are symbolic constants and

n

Ox,y (0<x<n)jand(0<y<m), ayxzo are integers.

The scope of the systems that are allowed is limited to cases where the result of the Fourier-

Motzkin elimination also creates inequalities that conform to Definition 2-4.
Theorem 2-1: For the two inequalities with symbolic coefficients

0,0 0 01, 1 10 O.n, _n n [
ta ta,u,...ta U *ra +aju;... +a u v, ... —ma,+au, ... +a u v, =0 and

ibgibiul...ib%umigbi + biul... + binumgvl... + Ebg +bju,... + b”mumgvn >0 |

where v,, ...,v, are integer variablesy,,...,u_ >0 are symbolic constants and

n
x,y (0<x<n)jand(0<y<m), a; b;(,zo are integers, the Fourier-Motzkin
elimination step to eliminate the variable  creates another inequality conforming to

Definition 2-4 iff either

1)  There exist integers p and g such that (0<y<m) payn = qb; or
i) (Oy (1sysm),a) =Oor
Ox,y (0Osx<n-1)and(l<sys<sm), b; = 0)and
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(Oy (1<y<m), by =0or
Oxy (0sx<n-1)and(l<ysm),a =0)

This class of systems is important because it enables the compiler to handle symbolic block
sizes in Single Program Multiple Data(SPMD) code generation as shown below. Other-
wise, the number of iterations attached to each processors has to be determined at compile

time.

2.3.1. SPMD Code Generation Example
We illustrate the use of linear inequalities with symbolic coefficients by an example, where
we generate an SPMD loop nest after parallelization. The loop nest, given in Figure 2-12,

has the inner loogd marked parallel. We need to generate an SPMD loop nest to execute

DOI1=0,U
DOALL J = 0, MIN(2*1, V)

Figure 2-12. Example DOALL loop nest

this loop in parallel. The Figure 2-13 shows the iteration space of the loop nest. The shaded
area represents the iterations that need to be executed. Iterations of the loop are distrib-
uted across processors such that each processor is assigned an equal size block of iterations.
We need to create a system of inequalities to represent the iteration space. Using this iter-
ation space, we can generate a single program that will assign blocks of iterations of the
loop J and execute the correct iterations in the corresponding processor. However, neither
the number of processors nor the number of iterations of theJloop is known at compile-
time. Therefore, we cannot create a linear system with integer coefficients to represent the

iteration space. However, a system of inequalities with symbolic coefficients can be cre-
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Figure 2-13. Iteration space

ated, as given by Figure 2-14, to represent the iteration space. The first five inequalities are
the loop bounds of the input program. The last two inequalities distitbute iterations of
the J loop across the processors. The processor identification number is the variable
Now, applying Fourier-Motzkin elimination with the scanning ordgrJ) , We generate
the SPMD loop nest given in Figure 2-15. Using the number of procefsors, , which is a

run-time constant, we generate code to calculate the appropriate block size at run-time.

2.4. Linear Inequality Representation for Data and Processor Spaces

The two other important multi-dimensional integer spaces used in our compiler are the

array data spack and the processor spdée
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E 120 U=1>0 E

2 J=0 21-J>0

(U, V,b, X = 3(1.J 0
D(' ) V-J=0 0
E J—bx=0 bx+b—1—JzoE

Figure 2-14. System of inequalities describing the iteration space

P = NumProcs()
X = MyProcID()
b = (min(V, 2*U)+P-1)/P
DO | = max((1+b*x)/2, 0), U
DO J = max(b*x, 0), min(2*l, V, -1+b+b*x)

Figure 2-15. Compiler generated SPMD loop nest

2.4.1. Data Space

Manipulating arrays is critical for analysis and optimizations when compiling dense matrix
scientific applications. Accesses to multi-dimensional arrays can be represented using sys-
tems of linear inequalities, providing a convenient framework for array analysis and opti-
mization. For example, the array summary representation defined in Chapter 5 is based on

systems of linear inequalities.
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Definition 2-5: The index set of an m-dimensional data array, with the declaration

(I;:uy, .., 1 ru) , is given by
: :
A=D(ay,....a ) OA k:g...,m l <a <up.
O O
O O

2.4.2. Processor Space

When generating code for multiprocessors as well as when performing communication
optimizations, compilers need to operate on the processor space. Again, it is convenient to
represent the processor space as a system of linear inequalities. The SPMD code generation
example in Section 2.3.1 introduced a simple one-dimensional processor space. Chapter 9
uses virtual and physical processor spaces extensively in communication code generation

and communication optimization algorithms.

Definition 2-6: For a g-dimensional processor space, where..., Mg are the number of
processors in each dimension, the index set of the processor space is

- O
p= N 0< <r,r.
E(pl, ey pq) op k=1, ...q Pi k%

2.5. Related Work

Researchers have used integer and linear programming techniques to solve many individ-
ual problems in parallelizing compilers. For example, compiler problems such as exact
data-dependence analysis [110,119], array analysis based on array summary information
[137], instruction scheduling for superscalars [5], automatic data layout for minimizing
communication [21], and code generation after loop transformations [10,11] have been
solved using linear and integer programming. In this thesis, we introduce a framework
based on linear inequalities that is used for many purposes, such as representing array sum-
maries in interprocedural data-flow analysis, solving for the array reshapes, identifying
modulo and division optimizations, and generating and optimizing communication code

for distributed address-space machines.
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Ancourt and Irigoin used a series of projections to generate loop nests after loop transfor-
mation [10,11]. We have introduced a set of heuristics to simplify the loop bounds gener-
ated by their algorithm. We have also extended their algorithm to handle simple non-linear

systems.

2.6. Chapter Summary

In this chapter, we describe the linear inequalities framework used for developing advanced
compiler analyses and optimizations. The framework is used in compiler algorithms to rep-
resent and manipulate iteration, array and processor spaces. We introduce the use of this
framework by describing an algorithm for code generation. We have extended the linear

inequalities framework to handle simple non-linear systems with symbolic coefficients.
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3 Coarse-Grain Parallelism

Shared-memory multiprocessors are now a widely available class of computationally pow-
erful machines. As hardware technology advances make pervasive parallel computing a
possibility, it is ever more important that tools be developed to simplify parallel program-
ming. Parallelizing compilers that automatically parallelize sequential applications are crit-
ical tools, because they free programmers from the difficult task of explicitly managing
parallelism. A large body of research and development effort has focused on developing
parallelizing compilers for scientific applications. In Section 3.1 we focus on the major

issues involved in detecting parallelism in sequential scientific applications.

Current parallelizing compilers have not succeeded in obtaining good parallel performance
on symmetric shared-memory multiprocessors. These parallelizers, based on vectorization
technology, are generally capable of finding only inner loop parallelism. The inability to
parallelize computation that occurs outside the inner loops reduces the effectiveness of
these compilers. Furthermore, multiprocessors need to perform an expensive synchroniza-
tion operation after executing each parallel region. Parallelizing the inner loops creates par-
allel regions with relatively small amounts of computation; thus the cost of synchronization
can easily overwhelm the benefits of the parallel execution. For parallelizing compilers to
target multiprocessors effectively, it is necessary to laxsese-grain parallelisnthat is,

to find outer loops with independent computations that can perform a significant amount of

work without any synchronization.

This chapter provides an overview of parallelizing sequential scientific applications for
shared-memory multiprocessors. In Section 3.2 we will introduce coarse-grain parallelism.
We focus on the advanced array analyses required for obtaining coarse-grain parallelism in
Section 3.3.
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3.1. Parallelism in Sequential Scientific Programs

Scientific applications are typically computationally intensive, and thus can benefit
immensely from parallelization. The domain of applications we are interested is dense
matrix scientific applications written in FORTRAN [150]. Within this domain, loop nests
dominate the computation and multi-dimensional arrays hold most of the data structures.
A parallelizing compiler determines loops that can be parallelized by analyzing accesses
to scalar and array variables within the loops. One of the most difficult parts of this paral-
lelization process is array analysis. For the references to each array data structure, array
analysis determines if executing the iterations of a loop in parallel does not violate the
semantics of the original serial ordering. Current parallelizers accomplish thisdasing

dependence analysis

3.1.1. Data Dependence Analysis

Current parallelizing compilers use data dependence analysis to check whether the parallel
execution of a loop violates serial ordering constraints between any write operation and
any other write or read operation to the same memory location [151]. Data dependence
analysis is performed on each pair of references to the same array, where two references
are said to bdependenif any of the locations accessed by one reference is also accessed
by the other [149]. A dependence is said tddop-carriedby a loop if the dependence
occurs between two iterations for the same instance of the loop. Thus, according to the data

dependence test, a loop can be parallelized if there doemaarried data dependences

Definition 3-1: For an m-deep loop nest with two array acces¥esX’ , to the same
array in the loop body, if there exist iteratior{s,, ..., i) ad,, ...,1" ) such that

i = 1...Dk—1 ij = i'j andi, <i', , and array access  at iteratiafi,, ..., 1) accesses the
same memory location @  &t';,...,i',) ,and

)] X is a write access anK' is a read access, then there exists a true-

dependence carried at the k-th loop.

i) X is a read access anX’ is a write access, then there exists an anti-

dependence carried at the k-th loop.
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iii) both X and X' are write accesses, then there exists an output-dependence

carried at the k-th loop.

The compilers perform a data dependence test on each pair of accesses within the candidate
loop for parallelization. Determining the data dependences of loop nests where the loop
bounds and array indices are affine functions of the loop indices is equivalent to integer
programming [110]. Many practical algorithms have been devised to find the data depen-
dence information exactly [19,110,120,149,151].

3.1.2. Extracting Fine-Grain Parallelism

The first-generation parallelizers start the parallelization process by performing a series of
symbolic analyses such as constant propagation, induction variable identification and loop-
invariant code motion. These analyses increase the ability of finding parallel loops. Next,
each loop nest is analyzed to identify parallelizable loops. These analyses are performed
intraprocedurally; thus a procedure call within the loop will eliminate it as a candidate for
parallel execution. Since the presence of any scalar definition within the loop creates a
loop-carried dependence, the parallelizer attempts to eliminate this dependence by apply-
ing scalar privatizationor scalar reductior{149]. When the scalar value used in each iter-
ation is created within the same iteration, the loop-carried data dependence can be
eliminated by giving each processor a private copy of the variable. Further, a reduction
(e.g.,computation of a commutative and associative operation such as sum, product, or
maximum of the scalar) can be parallelized by having each processor compute a partial
reduction locally and update the global result at the end. Finally, the parallelizer performs
data dependence analysis on all pairs of accesses to the same array within the loop. After
these analyses and optimizations, if the compiler does not find any loop-carried array
dependences and can eliminate all the loop-carried scalar dependences, then the loop can

be parallelized.

3.2. Coarse-Grain Parallelism

The first generation of parallelizing compilers targeted for vector supercomputers focused
on finding inner-most parallel loops with only a few simple operations that can be con-

verted into vector operations [4,32,125].
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Multiprocessors are more powerful than vector machines in that they can execute different
threads of control simultaneously. The processors can execute different segments of code

in parallel, each of which can be arbitrarily complex.

The current parallelizing compilers, developed from vectorizing compiler technology, do
not effectively obtain good performance on multiprocessors [23,131]. Parallelizing just
inner loops is not adequate for multiprocessors for two reasons. First, inner loops may not
make up a significant portion of the computation, thus limiting the parallel speedup by lim-
iting the amount of parallelism. Second, multiprocessors need to perform an expensive
synchronization operation at the end of each parallel region. When parallelizing inner
loops, which normally contain only small amounts of computation, the cost of frequent
synchronization and load imbalance can potentially overwhelm the benefits of paralleliza-
tion. Thus, for a parallelizing compiler to target a multiprocessor effectively, it must iden-

tify outer parallelizable loops to extract coarse-grain parallelism.

However, detecting coarse-grain parallelism is much more complicated than finding inner
loop parallelism, requiring whole program analyses and aggressive optimizations. Inter-
procedural analysis is necessary for obtaining coarse-grain parallelism. If programs are
written in a modular style, it is natural that coarse-grain parallel loops will span multiple
procedures. For this reason, procedure boundaries must not pose a barrier to analysis [23].
This can be accomplished by applying data-flow analysis techniques across procedure
boundaries using an interprocedural framework. Although many interprocedural analyses
for parallelization have been proposed [70,80,81,86,108], they have rarely been adopted in
practice. The primary obstacle to progress in this area has been the fact that effective inter-
procedural compilers are substantially harder to build than their intraprocedural counter-
parts. Moreover, there is an inherent trade-off between performing analysis efficiently and
obtaining precise results. A successful interprocedural compiler must handle the complex-
ity of the compilation process, while maintaining reasonable efficiency without sacrificing

too much precision.

It is also critical to go beyond the restrictive data-dependence test in analyzing arrays when

detecting coarse-grain parallelism. We need to perform parallelism-enhancing optimiza-
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tions on arrays, such as array privatization, to expose the inherent parallelism in the algo-

rithms of the program.

3.3. Advanced Array Analyses

Much of the inherent parallelism that is available in an abstract algorithm can be hidden by
the implementation of the algorithm. We can expose some of these inherent parallelism by
using complex analyses such as array data-flow analysis and by performing aggressive

optimizations such as array privatization and array reductions.

3.3.1. Beyond Location-Based Dependences

Traditional data dependence analysis checks if two iterations of the loop access the same
memory locationHowever, the only dependence that requires data to be communicated
between iterations of a loop idlaw-dependenceyhere adata valueused by an iteration

is defined in a previous iteration.

Definition 3-2: For an m-deep loop nest with a write accéss and a read aéfess  to
the same array, there exists a loop-carried flow-dependence at the k-th loop iff there exist
iterations (i, ...,i,) and(i';,...,i" ) such thajt: 1...Dk—1 I =] ang <i’, , and
read X' atiteration(i’y, ..., 1" ) uses the data written ¥y  at iteratigyp, ..., 1)

Thus, when there are no value-based flow-dependences between a write and a read access,
a loop can be parallelized even if there exist location-based dependences. However, this

requires us to assign a private copy of the array to each processor.

Array privatization is crucial for parallelizing ordinary scientific applications because pro-
grammers tend to reuse the same array space for multiple purposes. This creates memory-
based dependences while there are no value-based dependences requiring sequential exe-
cution. A simple example motivating the need for value-based dependences is shown in
Figure 3-1. It is a 160-line loop taken from thas sample benchmaikppbt. Figure 3-2

shows both location-based and value-based dependences for the read accesses to the array
TM in the 4-th iteration of the outermost loop. All iterations of the outermost loop write to

the samdocationsof the arrayTM that are read in the 4-th iteration. Thus, as shown in
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DO K=2,NzZ-1

DOM=1,5
DON=1,5
TM(L:5,M) = ...
DOM=1,5
DON=1,5
... = TM(N,M)

Figure 3-1. Example frorappbt

Figure 3-2(a), the location-based data dependence analysis will find a loop-carried true-
dependence at the outermost loop, suppressing parallelization of the loop. However, the
datavaluesread in the 4-th iteration are defined by the write instructions of the same iter-

ation, as shown in Figure 3-2(b). Consequently, we can parallelize the outermost loop by

allocating a private copy @M to each processor.

Finding privatizable arrays can be achievedalngy data-flow analysiswhich extends

scalar data-flow analysis to individual array elements [28,53,55,111,112,121,122]. Using
array data-flow analysis, if we can determine that an array in a loop, with loop-carried true-

, anti- or output-dependences, does not contain any loop-carried flow-dependences, we can
still parallelize the loop by allocating a private copy of the array to each processor. When
privatizing an array, we need to perforntialization at the beginning of the parallel
region andinalizationat the end of the parallel region. We need to initialize the array by
copying all values, that are used within the loop but are defined outside, from the original
array to each private copy. We finalize the array by copying those values that are defined

within the loop from the private copies to the original array.

An example of array privatization with initialization is shown in Figure 3-3. The figure

shows a portion of a 1002-line interprocedural loop inRbBgect benchmarkspec77.
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Figure 3-2. Dependences for the elements read by the 4-th iteratiorkdbtpe

Here, part of arrayE, the second row, is modified before it is referenced; the remainder
of the array is not modified at all in the loop. Ariély is privatizable in the outer loop by

giving each processor a private copy with all but the second row initialized with the original
values.

3.3.2. Multiple Array Accesses

To locate coarse-grain parallelism successfully, we must analyze very large interprocedural
loops with numerous array accesses. When numerous reads and writes to an array are inter-
leaved in multiple loop nests, it is more difficult to keep track of the order of the elements

accessed. Figure 3-4, which is extracted fpac77, illustrates the complexity of the
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DO LAT =1, 38
DO K=1, 12
ZE(2,K) = RELVOR(K)
// UVGLOB reads the entire
/I Kth column of array ZE
CALL UVGLOB(...,ZE(1,K),...)
ZE(2,K) = ABSVOR(K)

Figure 3-3. Example of an array privatization frepec77

DO LAT =1, 38

W(1:2,1:UB) =...

W(3:36,1:UB) = ...

W(62:96,1:UB) = ...

W(37:48,1:UB) = ...

W(51:61,1:UB) = ...

W(49:50,1:UB) = ...

.= W(1:2,1:UB)+
W(33:34,1:UB)+
W(65:66,1:UB)

.. =W(3:32,1:UB)+
W(35:64,1:UB)+
W(67:96,1:UB)

Figure 3-4. Example of multiple regions across loops fspeT77
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problem. Each statement in array notation here corresponds to a doubly nested loop. In
order to determine that the arfdyis privatizable, we need to infer from the collection of

write operations thatV defines all the elements before they are read.

3.3.3. Array Reshapes Across Procedure Boundaries

The existence of array reshapes further complicates interprocedural analysis. An example
of an array reshape is given in Figure 3-5. The code segment is a part of an interprocedural
loop from theTURB3d program of theSPEC95fp benchmark suite. In this segment, a
three-dimensional arrdy in the caller is treated as a vectoDIGFT. The FORTRAN-77
standard allows array reshapes with equivalence statements, in parameter passing, and with

different common block definitions [150]. To perform the aggressive whole program anal-

DIMENSION U(66,64,64)

DO K=1,64
CALL DCFT(U(1,1,K),33)

DO J=1,64
CALL DCFT(U(1,J,1),33*64)

SUBROUTINE DCFT(X, INCX)
REAL*8 X(*)
DO I=1,33
DO II=1,64
oo = X((1-1)*2+(11-1)*2*INCX+1)
oo = X((I-1)*2+(11-1)*2*INCX+2)

Figure 3-5. An example with two array reshapes ftorb3d
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ysis required in finding coarse-grain parallelism, it is necessary for the compiler to analyze
the programs in the presence of these features and determine their effect on the rest of the

analysis.

3.4. Chapter Summary

It is necessary to locate coarse-grain parallelism for compilers to target multiprocessors
effectively. However, obtaining coarse-grain parallelism requires many advanced analyses
and optimizations such as interprocedural analysis, array privatization and array reshape

analysis.
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4 Interprocedural Array Analysis

Automatic detection of coarse-grain parallelism is challenging as it requires a large suite of
robust analysis techniques to work together. Furthermore, the original program may need
to be transformed before it can be parallelized. Detecting and enabling parallelism require
sophisticated analyses on array and scalar variables. These analysis techniques need to
operate across procedural boundaries seamlessly. For a parallelizing compiler to work in

practice it must not only be sufficiently powerful, but also robust and efficient.

Most of these analyses are formulated as interprocedural data-flow problems. As solving
interprocedural data-flow problems is very complex, we have developed a framework,

described in Section 4.1, to cope with the complexity involved in building such a system.

The parallelization process is composed of multiple phases. The first set of phases consists
of a large suite of interprocedural symbolic analyses on scalar variables. These analyses
include constant propagation, common sub-expression recognition, loop invariant code

motion, and induction variable detection. These symbolic analyses provide detailed and

accurate information about the input program, which enhances the effectiveness of array
analyses and parallelization. The next set of phases includes parallelization analyses on
scalar variables. These analyses identify scalar dependences, and perform optimizations,
such as scalar privatization and scalar reductions. More information on scalar analyses can
be found in [74]. The scalar analyses are followed by the array analyses and parallelization,

which include the following four phases:
* The first phase propagates loop context information to the nested loops.

* The second phase performs the array data-flow analyses necessary for dependence

testing and parallelization.
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» The third phase performs data-dependence and privatization tests to determine which

loops can be executed in parallel.

* The last phase identifies the outermost parallel loops and transforms the code to exe-

cute them in parallel.

The outline of this chapter is as follows. We introduce the interprocedural framework in
Section 4.1 The four phases of array analysis are described in Sections 4.2, 4.3, 4.4 and 4.5
respectively. We compare our approach to related works in Section 4.6, and we summarize

in Section 4.7.

4.1. Interprocedural Framework

Traditional intraprocedural data-flow analysis frameworks help reduce development time
and improve correctness by capturing the common features in a single module [90]. In an
interprocedural setting, a framework is even more important because of the increased com-
plexity in collecting and managing information about all the procedures in a program.
Thus, when building the parallelizer, we rely on an interprocedural framework that encap-

sulates the common features of interprocedural analysis [74,76].

Traditional intraprocedural data-flow frameworks #osv-sensitive That is, they derive
data-flow results along each possible control flow path through the procedure. Straightfor-
ward interprocedural adaptation of flow-sensitive intraprocedural analysis is not sufficient
to maintain the same precision over the entire program. For example, interprocedural anal-
ysis using thesupergraph[117] program representation, where individual control flow
graphs for the procedures in the program are linked together at procedure call and return
points, loses context sensitivity by propagating information alomgalizable paths

[104]. This occurs when the analysis propagates calling context information from one
caller through a procedure and returns the side-effect information to a different caller. Fur-
thermore, iterative analysis over this structure is slow because of the large number of con-

trol flow paths through which information flows.

Full interprocedural precision was previously obtained either by inline substitution or by

tagging data-flow values with a path history through the call graph [79,117,128,130].
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However, these methods do not exploit the common case in which many calls to a proce-
dure have the same context. Thus, they require excessive space and are expensive and
impractical. Inlining the procedure bodies at all the call sites in the program can result in
code explosion, and tagging of the data-flow values with all possible paths can result in
rapid multiplication of the tags. Our interprocedural framework utilizes path-specific infor-
mation only when it can provide opportunities for improved optimization. The system
incorporateselective procedure cloning program restructuring technique in which the
compiler replicates the analysis results in the context of distinct calling environments [44].
By applying cloning selectively according to the unique data-flow information it exposes,

the interprocedural system can obtain the same precision as full inlining without unneces-

sary replication.

4.1.1. The Regions Graph

Region-based analysis collects information at the boundaries of program regions: basic
blocks, loop bodies and loops (restricted to DO loops), procedure calls, procedure bodies,
and procedures. The interprocedural framework represents a program as regienef

one for each loop body and procedure body in the program. Within a region, inner loop
nests are represented by “loop” nodes, procedure call sites by “procedure” nodes, and the
remaining basic blocks in the region by “basic block” nodes. These nodes and their control
flow edges necessarily define a directed acyclic graph. The regions have a single entry and
a single exit defined by the “start” node and the “end” node, respectively. Therefore, a
regionR is a four-tuplgN, E, s € whed s the set of nodes, is the set of edges,

is the start node anel is the end node. Associated with each “loop” or “procedure” node
is the region representing the corresponding loop body or procedure body, respectively. We
say that aregioR is ammediate subregioof another regiolQ iR represents the body

of a node in regioQ@ . A program’s regions and their immediate subregion relationships
define aregions graphof the program. The regions graph of any FORTRAN-77 program,
which by definition does not contain recursive function calls, is also a directed acyclic

graph.
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The regions graph of the example program segment in Figure 4-1 is shown in Figure 4-2.
In Figure 4-2, the regions are enclosed in gray polygons and the immediate subregion rela-
tionship is represented by gray dotted lines. For each region, the start and end nodes are
represented by black ovals, the loop and procedure nodes by gray ovals and basic block
nodes by white ovals. Control flow between the nodes within each region is represented by

arrows. Each node is annotated with the corresponding code.

IF X >0 THEN
DOI=2,X
CALL FOO(l,A)
IF A(l) > 0 THEN
Y=Y +A()
ELSE
Y=Y-A()
ELSE
DO J=2, -X
CALL FOO(J,A)
DO K= 2, -X
CALL FOO(K,A)

SUBROUTINE FOO(l,B)
B(l) = B(I-1) + B(l) + B(I+1)

Figure 4-1. Example program

4.1.2. Data-Flow Analysis

Data-flow analysis is composed of one or more traversals through the regions graph where

each traversal propagates the flow values in a single sweep over the nodes of the graph. We

can choose the order in which to visit the regions and the nodes within each region inde-
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IF X>0THEN

DOJ= 2,-X
DO =2, X
DOK = 2, -X
CALL FOO(J,A)
CALL FOO(l,

IF A(l) > 0 THEN
-A(l)

Y
Y=Y+A() \
ALL FOO(K,A)
B(l) = B(I-1) ....
< Basic Block Nodes
<= Loop and Procedure Nodes
« Start and End Nodes

Regions

Figure 4-2. Regions graph of the example program in Figure 4-1.
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pendently. The regions can be visited eithertwmpadownor abottom-uporder. In the top-

down order, we visit a region before its immediate subregions, and vice versa in a bottom-
up traversal. Each region is a directed acyclic graph and the nodes in the region can be vis-
ited in aforward-flow or backward-floworder. In a forward-flow order, we visit a node
before its successors in the control-flow graph, and vice versa in a backward-flow order.
In addition to these two flow-sensitive methods of propagation, nodes can be visited in a
flow-insensitivanethod which ignores the control flow within the region and treats all the
nodes as a single summary node. Next, we define bottom-up traversal for forward-flow and

backward-flow order, and top-down traversal for flow-insensitive order.

4.1.2.1. Bottom-up traversal for forward and backward flow order

In a bottom-up traversal of a regions graph, we analyze the program starting from the leaf
procedures in the call graph. Each procedure is analyzed once, after all its callee proce-
dures have been analyzed. Within each procedure, analysis is performed from inner loops
to outer loops. In the regions graph representation of the program, this is achieved by vis-
iting the regions in the directed acyclic graph in a post-order traversal. Thus, each node is
visited only once in a bottom-up traversal pass. Figure 4-3 shows the bottom-up, forward-

flow propagation for the regions graph example in Figure 4-2. The ordering of the traversal

is given by the arrows in the diagram.

In a forward-flow pass, the analysis calculatesfline valueat each node, summarizing

the cumulative effect of traversing through all the possible paths between two points of the
program represented by the start node of the region and the current node. In a backward-
flow pass, the flow value of a node summarizes the cumulative effect of traversing, in
reverse direction, through all the possible paths between the program points represented by
the current node and the end node of the region. We calculdtedhgaluesas an inter-
mediate step in calculating the flow values. The local value of a nhode summarizes the
cumulative effect of traversing through all the paths of the program segment represented

by the node.

The algorithm for bottom-up traversal is given in Figure 4-4. We start by calculating the

local values for each node.We define the functiat that provides the local value for
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for each procedur® from leaf procedures to main (bottom taltop)
for eachregiorR = (N E s @ from innermost to outermosPoflo
for all nodesn O N do

if n is a basic block nodéen
|, = Loc(n)

if n is a loop nodéhen
R’ = ImmediateSubregiof )n
I, = Vgt

if n is a call-site nodéhen
R’ = ImmediateSubregiof )n
lh = Vg

if n is the start node or the end ndben

| =

if forward-flow problemnthen

for each noden 0 N do

0 0
V., = TO A V1.0
0 (n,n) OE O

Vg =V,
else ifbackward-flow problenthen

for each noden O N do

0 0
v,=T0 /\ V.10
O (n,n) OE
Vg =V,

Figure 4-4. Algorithm for bottom-up regions-based data-flow analysis
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each basic block node. For loop nodes and call site nodes, we derive the local values from
the flow values of the immediate subregions. At each loop node, we apply the closure oper-
ator to the flow value of the immediate subregion (the loop body) and create a local-value
that describes the effect of the entire loop. At a procedure call node, we apply the map oper-
ator that maps the flow value of the immediate subregion (the procedure body) from the

callee space to the caller space by mapping the formals to actuals.

The local value of the start or end nodes is set to the initial flow value. Next, we calculate
the flow valueV,, , at each node by using the meet operator to combine the incoming flow
values from multiple control-flow edges, and then applying the transfer function to the
combined incoming flow-value and the local value of the node. After propagating the flow

value through all the nodes, we find the flow vaMg, , for the region.

4.1.2.2. Top-down traversal for flow-insensitive order
The only top-down traversal used in this thesis is flow-insensitive. Thus, we omit the for-
ward-flow and backward-flow orders from the description. The general algorithm for a top-

down traversal can be found in [76].

A flow-insensitive, top-down pass is used to propagate information into loop bodies and
down the call chain. A flow value at a node is the cumulation of the local information of all
the enclosing loops and procedure calls. The top-down analysis starts at the “main” proce-
dure and moves toward the leaf procedures by following the call chains. Within each pro-
cedure, the analysis is performed from outer loops to inner loops. We analyze each region
by propagating the incoming flow value through the nodes. Then, for loop and procedure
nodes, we propagate the flow value to the immediate subregion. When the immediate sub-
region is a loop body, we analyze that region using this flow value. However, if the imme-
diate subregion is a procedure body and if the procedure is called by multiple call sites, we
may need procedure cloning. A procedure is cloned only if none of the clones created thus
far has the same incoming flow value. Figure 4-5 shows the top-down, flow-insensitive
propagation for the example code segment in Figure 4-1. The ordering of the traversal is
given by the arrows in the diagram. We assume the flow values propagated to the subrou-

tine FOO from the last two call sites are the same. Thus they both share a single clone,
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Figure 4-5. Top-down, flow-insensitive pass needing selective procedure cloning
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which will be analyzed once when the flow value is propagated by the first call-site. The

first call to subroutindOO has a separate clone since its flow value is different.

The algorithm for top-down traversal is given in Figure 4-6. The subroilitoEDown
recursively descends through the regions graph starting from the outermost region of the

“main” procedure. The flow value of the regio, , is the incoming flow value. We find

TopDown( R V:whereregiorR = (N E s @ ,an¥ isthe initial flow value
for all nodesn O N do
|, = Loc(n)
vV, =T 1)

for all loop nodesh [0 N do
TopDown( ImmediateSubregign) V)
for all call site nodes L N do
Let p be the procedure called by
Let Cp be the set of cloned regions for procedure
if there exist aiR’ [J Cp such thet, = Evn then

Make R' the immediate subregion of

else
R = Clone(p
0
TopDoer R, %’V”D
Add R' to Cp

Make R' the immediate subregion of

Figure 4-6.  Algorithm for top-down analysis. Initiated with the call
TopDown( R, s\ [
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the flow value at each node by applying the transfer funcliotg the flow-value of the

region and the local valuéoc(n) , of the node. Next, at loop and procedure call nodes,
we propagate the flow value to the immediate subregion. At a loop node, we analyze the
immediate subregion with this flow value. At a procedure call node, we use the map oper-
ator to map the flow value of the call site node from the caller space to the callee space.
Then we check the set of clones for the procedure to see if reanalysis is needed. If no clone
exists with the same flow value, we create a new clone for the procedure and analyze it

with the incoming flow value.

4.2. Loop Context Propagation

Each static instance of the program, denoted by a node in the regions graph, can have mul-
tiple dynamic invocations due to the execution of the enclosing loop nest. These invoca-
tions have different values for the index variables of the enclosing loop nest, which are
often used in array access functions and inner loop bounds. The loop context captures the
values of these index variables for each dynamic instance. We use the loop context infor-
mation in array analyses, such as in data dependence analysis, to derive more accurate

results.

The loop context at a node describes the bounds of the loop index variables in the node’s
enclosing loops. We represent the loop context concisely using a system of linear inequal-
ities, a representation that is precise within the domain of affine loop bound expressions.
The example in Figure 4-7 shows the system of inequalities representing the loop context

of a loop nest.

4.2.1. The Data-Flow Problem

Loop context propagation is a single top-down, flow-insensitive traversal over the regions
graph of the program. The analysis starts with an empty context at the outermost region of
the “main” procedure and propagates the context in a top-down manner. At each loop node,
we include the bounds of the loop index variable in the current context and propagate them
to the loop body. If multiple call sites propagate different contexts to a procedure, the pro-

cedure is cloned. To reduce the number of clones created, we simplify the context by elim-
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DOi=1,M

{ ()] 1cis™m}

DOj=i,N
0 i<jsN U

Figure 4-7. An example of loop contexts for a loop nest

inating information that has no effect on the array analyses. The analyses of the caller’s
array accesses cannot be improved by knowing the bounds of the variables in the callee that
are not accessible to the caller. Thus, we eliminate from the context the variables that are
not accessible to the caller. We define the algorithm for loop context propagation by pro-

viding the functions used in the top-down pass algorithm in Section 4.1.2.2.

4.2.1.1. The local value function

The local value is the empty system for all but the loop nodes. The system of inequalities
representing the loop bounds provides the local value at each loop node. For the loop
DOi=Iltou , with the corresponding nodkethe local value is:

Loc(n) = EUSiSu} nis aloop node
{1} otherwise

4.2.1.2. The transfer function

The transfer function incorporates the local constraints into the system of inequalities of the

incoming flow-value from the enclosing loop nest. Cebe the context of the outer loop
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nest and be the local constraints of the loop, then the transfer function to derive the flow
value for the body of the loop is:
T(Ct) = COt

4.2.1.3. The map operator

The map operatdﬁ first eliminates the inaccessible variables and then transforms the
context across the procedure boundary. In the elimination step, loop index variables that
are not accessible at the procedure body are projected away from the context using Fourier-
Motzkin elimination. Next, the variables of the context that are actual variables of the

callee space are renamed to the corresponding formal variables in the caller space.

4.3. Array Data-Flow Analysis

Array data-flow analysis is the most important phase in the parallelization process. This
analysis summarizes the array accesses of the sub-region at each loop node. We use this
information to parallelize loops by identifying arrays without any data dependences. The
information also helps increase the available parallelism by identifying privatizable arrays
that would otherwise prevent the parallelization of a loop. We perform the analysis using

a single traversal over the regions graph of the program. For simplicity, in the following
discussion we assume that the program contains only a shuljleensional array. The

analysis can be easily extended to the general case with multiple arrays.

4.3.1. Array Index Sets

In array data-flow analysis, we are required to summarize the effects of multiple dynamic
instances of many different accesses to the array. The array summaries need to capture the
access information at the granularity of array indices. This can be achieved by using an

index setepresentation for the array summaries.

Definition 4-1: The index set of the array is denotedAyEach array index of the array

is an n-tuple (a;,...,a,) 0Zz"  such that (a;, ...,a,) OA if and only if
i =9 . |, <a, <u, where, from innermost to outermost dimensign,.., | | are the

lower bounds and,, ..., u, are the upper bounds of the array.

n
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The set of all the possible array summaries is the power get of

In array data-flow analysis, we generate a summary for the array at each node of the regions
graph. These summaries represent the accesses to the array within the subregion of the
node. The accesses in the subregion, enclosed in loop nests and procedure bodies, can have
multiple dynamic invocations at each invocation of the node. Moreover, the nodes are also
enclosed within loop nests and procedure calls, and thus have multiple dynamic instances
themselves. Therefore, at each node we need the ability to summarize not only the effect of
all dynamic invocations within the subregion but also differences among the multiple invo-
cations of the node. Creating a separate summary for each dynamic instance of a node is
not viable. Therefore, we generate a summary at a node that is valid for all the dynamic
instances of that node. However, the use of a simple array index set is not sufficient to pro-
duce an accurate summary that is valid for all the dynamic instances of the node. This
requires the summary information to be parameterized by the instances of the loop context
of the node. Thus, we defingparameterized index set set of array indices that are param-

eterized by the variables defining the dynamic instance.

Definition 4-2: A parameterized index set of an array at a node with a context C is a

functionr where, for all instance§ ,, ...,i,) OC , the functio(i, ...,i,) OA

One or more parameters can be eliminated from a parameterized index set by assigning
them actual integer values. We defingrajection functiorthat eliminates a parameter by
assigning a value range to that parameter. For each integer value in the range, a new param-
eterized index set is created. The projection function returns the union of these parameter-

ized index sets.

Definition 4-3: The projection function maps a parameterized indexrset to a

parameterized index set  such tmat= proj (r,k, I, u) , Where
M (g e iy e b)) = D Mg iy
I<i <u
iy, ceosipy ..oy 1, @re integer variables, | and u are upper bound and lower bound

expressions.
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We also define a reshape operator to transform an array index set across procedure bound-
aries. The operataeshape (r) transforms an array index set  of a formal array vari-
able at the callee procedure to the corresponding array index set of the actual array at the
call siten . The reshape operator is an injective mapping from indices of a formal array at

a called procedure to the indices of the corresponding actual array at the call site. An

inverse mapping from call site in the caller to callee can also be defined.

4.3.2. The Flow Value of the Array Data-Flow Problem
The array data-flow analysis calculates four parameterized index sets at each node. These
sets, at anode , contain the indices that are accessed in a program section defined by the

noden and its subgraph. The four sets are:

» Theread setR, which contains all the array indices that may be used by a read access

in a valid execution path of the program section.

 Theexposed read sdf, which contains all the array indices that may be used by a
read array access in a valid execution path but have no preceding write array access in
the same path. These exposed read accesses use values that were defined outside the

program section.

» Thewrite setW, which contains all the array indices that may be defined by a write

access in some valid execution path of the program section.

« Themust write seiM, which contains the array indices that are definitely defined by a

write access in all the valid execution paths of the program section.

Thus, array data-flow analysis calculates a four-tuiReE, W M at node , where:

R = {a] array elementa may be used inn }

E = {a] array elementa may be an outward exposed useti
W = {a| array elementi may be defined inn }

M = {a]| array elementa must be defined inn }
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We have defined the above four sets such that these values do not need to be exact. It is not
always possible to find the exact set of indices that are accessed when the corresponding
code is executed since that information may be undecidable at compile time. Therefore, the
exact parameterized index set for many of the array access functions, loop bound expres-
sions, etc., cannot be created at compile time. Furthermore, the operators on array index
sets in a given representation may not be exact. Thus, we calculate a valid approximation
of the exact value in our algorithm. LBt .. .  be the exact parameterized index set for all
the reads in a program segmes, . .. for all the exposed réads,, for all the writes

and M for all the must writes. The valu®, E W M1 is a valid approximation for

exact
that program segment if and onlyRf E W  are over approximations of the exact value and
M is an under approximation of the exact value. ThatR§] R, ... EOE

exact '
wio W andM O M

exact exact*

4.3.3. The Data-Flow Problem
The array data-flow analysis is defined as a single top-down, backward-flow problem in the
regions-based data-flow framework. The algorithm for array data-flow analysis is defined

by providing the functions needed by the top-down pass in Section 4.1.2.2.

4.3.3.1. The local value function

The local value functiooc generates a four-tupie E W MJ for the array accesses

in each basic block. While the conversion of array accesses with affine access functions to
a parameterized index set is exact, we also need to generate conservative approximations
when exact information is not available. If multiple array accesses are present in a basic
block, we create multiple nodes with a single array access per node when building the
regions graph. The local value for the array at a basic mlock  with a context descriptor

is the four-tuplelR, E W M1 . When the basic block has:

I) no accesses to the array, the four-tuplélis O, [I, OO

ii) areadaccesé (f,...,f)) whefe ...,f  are functions known at compile-

time and parameterized by the contex@ , the four-tuple is

o (fp £}, { (Fp -, )}, 0,00
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iii) awrite acces® (f,...,f)) wherg,...,f  are functions known at compile-

time and parameterized by the contex@
m, O, { (f,...f)}, { (f,....f)1 0

, the four-tuple is

iv) aread accesA(f;,...,f)) where at least ond,pof.., f_ is not known at

compile time, the four-tuple i8A, A, O, 00O

v) awrite acces®\(f,...,f)) where at least ondpf.., f is not known at

compile time, the four-tuple id1, O, A, OO .
vi) an unknown access, the four-tupleli’, A, A, 0

The local value,Loc(n) , is always a valid approximation of the array indices
accessed by the program segment in node and its subgraphl. Ror E and  of part
i, RandE of partiiandivantvV of partiiiand v, the empty[Set is the exact result
since there are no accesses to the array. In all other cagescof [E and |, theresultis
either the exact array index or an over approximation given by the entire index set

The setM is either the exact array index or an under approximation given by the

empty setl] . Thus, the local valusc( n) is a valid approximation of the array

accesses in the basic blogk

4.3.3.2. The transfer function

The transfer functionm takes the local vaIDéIOC,E W_ .M _[O at a node and an

loc’ ""loc’ ""'loc
incoming flow valuelR, , E, ., W, , M. [I as input and creates the outgoing flow value

(R U W,

IocD F\)in’ E|QCD (Ein_MIoc)’W in’ M

loc

OM, 0

loc

If the local value and incoming flow value are valid approximations, the outgoing flow
value is also a valid approximation. The resulting parameterized indelk sefs R, | and
W, O W, are supersets of the exact value &hg [ M, is a subset of the exact value.
SinceE, | is a superset of the exact value g is a siihsetM, . Is also a superset

of the exact value. Thug, .U (E,—M,,.) is a superset of the exact value. This con-

forms to the definition of the flow value.
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4.3.3.3. The meet operator
The meet operator of two flow valuesR;, E;, W;, M,00  ailg,, E,, W,, M,[1 , produces

the flow value

(R, 0 Ry, E; 0 Ey, W, 0 Wy, My 0 ML

4.3.3.4. The closure operator

The closure operator takes the flow valilg E W M] at the immediate subgraph of the

loop node of the looPO i =1tou and returns the flow value for the loop node
 Proj(R i I, ), projE —projaM|. ", i —15i,1,ul3 .

proj (W, i, I,u), proj(M,i,l,u)

wherei' is a new variable. The projection opergioo; , Is given in Definition 4-3.

4.3.3.5. The map operator
The map operator takes a flow value, E W M1  at a procedure node and returns the flow

value for the call-site node

[reshape (R), reshapg (E), reshape (W), reshapg (M) U

The functionreshape is defined in Section 4.3.1.

4.4, Parallel Loop Detection

At each loop, we need to determine if that loop can be executed in parallel. We are only
interested in the variables declared outside the scope of the loop and modified inside the
loop body. We test these variables for loop-carried dependences and perform optimizations
to eliminate the loop-carried dependences when possible. In this presentation we assume
that testing of the scalar variables has already been done. All the scalar variables should be
candidates for either privatization or reduction optimizations. For all the array variables, we
use the results of the data-flow problem to identify if the loop can execute in parallel with

respect to each array.
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4.4.1. Location-Based Dependences
First we perform a location-based data-dependence test to identify the existence of loop-

carried true-, anti-, and output-dependences in the array.

Theorem 4-1: At the loop DOi ,=0tou with the flow value
Ry i) E(igy i), W(iy, ooy i ), M (i, ..., i) O there is a loop-carried true-
dependence iffk, | 1<k<I<u suchth@(iy,....,i,_,K) nR(ij,...,i,_; 1) #0

Theorem 4-2: At the loop DOi ,=0tou with the flow value
Ry i) E(igy oonyi)), W(iy, ooy i), M (iy, ..., i) Othere is a loop-carried anti-
dependence iffk, | 1<k<I<u suchthRt(iy, ...,i ,_,K) n W(ij,...,i,_;, 1) #0

Theorem 4-3: At the loop DOi,=0tou with the flow value

R i) E(iy i), W(Iy, o), M (i, .., i )0 there is a loop-carried
output-dependence ifik, | 1<k<l<u s.t.

W (i oonin 1K) AW (g, oonyi 1) 20

n-1 n-1’

4.4.2. Value-Based Dependences

If a location-based loop-carried dependence exists for any array, the loop may still be par-
allelized if there are no value-based, loop-carried flow-dependences or if the dependences
are due to a reduction operation. When there are no loop-carried flow-dependences, the
location-based dependences can be eliminated by giving each processor a private copy of
the array. When a memory location updated using a commutative and associative reduction
operation, the accesses will create a loop-carried dependence. However, we can safely par-
allelize the loop by replacing the reduction with a parallel version since the ordering of the
commutative updates need not be preserved. The updates are applied to a local copy during
the parallel execution of the loop. The program performs a global accumulation following

the parallel loop execution. Array reductions are futher described in [75,76].

Theorem 4-4: At the loop DOi,=0tou with the flow value
Ry i) E(igy oyi) , W(y, ooyi)), M (i, ..., i )0 the array cannot be
privatized iff(k, | 1<k<Il<u suchthaW (i, ...,i,_;,K) n E(ij,....,i,_5, 1) #0
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However, it may not be possible to produce efficient code for a privatized array due to the
need forfinalization At the end of the loop, the original copy of the privatized array must
have the most up-to-date values. But all the updates within the loop nests were made to the
private copy. Thus, we need to identify the last update to each location and copy it to the
original array. In general this is a very expensive operation. Hence, we restrict privatization
to arrays where the last iteration of the loop will be overwriting all the indices updated by
any previous iteration. In this case, we can create the correct final values for the original
array by allowing the processor that executes the last iteration to use the original array

while all the other processors use a private copy.

Theorem 4-5: At the Iloop DOi,=0tou with the flow value
R(iy, i) E(i i), W(iy, oyi), M (i, ..., 1) 0 the array can be finalized
after privatization, by assigning the original array to the processor executing the last

iteration, iff _ 0 Wiy, .ooyip_3, K) DW(iy, iy 0) -

4.5. Determining the Outermost Parallel Loops

Determining the outermost parallel loops is defined as a single data-flow problem in a top-
down, flow-insensitive pass using the regions-based interprocedural data-flow framework.
After solving the data-flow problem, we assign each loop a value from the set
{outerSeq parallel innerSéqg The outermost parallel loops will be markeatallel

while the outer sequential loops and loops inside parallel regions will be ntarez8eq
andinnerSeqgrespectively. The algorithm for determining the outermost parallel loops is
defined by providing the functions needed by the top-down pass algorithm in
Section 4.1.2.2.

* We define the local value at each node to be

Loc(n) = E parallel nisa parallel loop
UouterSeq otherwise

* The transfer function is defined as

« The closure operator] = V
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E outerSeq ( = outeSéd] (I =outerSeq
T(V,I) = E parallel (V= outerSey O (I = parallel)
OinnerSeq ( V= parallgld (V= innerSey

« The map operatdﬁv =V

We parallelize the outermost parallel loops after the appropriate transformations to imple-

ment scalar and array privatization and reduction for the loops.

4.6. Related Work

Researchers have discovered that it is necessary to go beyond the traditional scalar data-
flow and array data dependence analysis in automatic parallelization of sequential scien-
tific applications. Successful parallelization requires advanced analysis techniques such as
array data-flow analysis used for array privatization [52,113,131]. There have been two
major approaches in finding data-flow information for array elements. The first approach

builds on data dependence analysis, and the second on scalar data-flow analysis.

The first approach, pioneered by Feautrier, uses the same framework as the data depen-
dence analysis. This approach finds the perfect data-flow information for arrays in the
domain of loop nests where the loop bounds and array indices are affine functions of the
loop indices [53,54,55]. We have devised a more efficient algorithm than Feautrier’s for
obtaining data-flow information that is applicable to many common cases found in practice
[112]. Several other researchers have taken a similar approach to data-flow analysis
[28,121,122].

However, none of these algorithms handle general control flow in a direct or efficient man-
ner. Extending the pair-wise data dependence framework is not efficient in handling a large
number of array accesses. Furthermore, the presence of multiple writes makes solving the
exact data-flow problem very complex and prohibitively expensive. Thus, this approach is
not practical for large coarse-grain loop nests with complex control flow and a multitude

of array accesses.
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The other approach, used in our algorithm, is based on extending the scalar data-flow
framework. Array data-flow analysis is formulated as a problem in the data-flow frame-
work. Instead of representing an array with a single bit, the set of data touched within a
region/interval in the flow graph is approximated by an array index set. In this approach,
we are able to efficiently handle arbitrary control flow by using conservative meet opera-
tors and multiple accesses by merging summary information. Many researchers have pro-
posed this approach for array data-flow analysis [18,45,64,66,124,137,142]. The greatest
improvement of our algorithm over previous work is the increased accuracy of our array

region representation.

Our array summary representation, based on sets of convex polyhedrons, is most similar to
the single convex polyhedron representation used in the PIPS project [45,46,86]. However,
we will show in Chapter 5 that our representation is more accurate. Furthermore, their algo-
rithm restricts write regions to be either a single over or an under approximation. In our
algorithm, we calculate both an over approximation (write) and an under approximation
(must write). Thus, we are not forced to lose under approximation information, required for

array privatization, in the presence of over approximations.

Unlike many of these previous studies, we have implemented our array data-flow algorithm

in a full interprocedural parallelizer. We demonstrate the applicability of our analysis in
Chapter 7, by automatically parallelizing a large collection of benchmark programs.
Another implementation of interprocedural array data-flow analysis can be found in the
Polaris parallelizing compiler [22,25]. In their algorithm, array privatization is applied only

to the cases where all the values used in an iteration are defined before they are used in the
same iteration [142]. However, array privatization is also applicable to loops in which iter-
ations use values computed outside the loop, where the private copies must be initialized
with these values before parallel execution begins. Our algorithm identifies privatizable

arrays that require initialization.

4.7. Chapter Summary

This chapter presents the array analyses used in our parallelizer. Our algorithm calculates

both location-based and value-based dependences to locate parallelizable loops. We first
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introduce the interval-based interprocedural framework used by the algorithm. The array
analysis is divided into four phases. The first phase propagates the loop context informa-
tion used to increase the precision of array analysis. Next, we derive array data-flow infor-
mation at each loop using an array summary representation. Then, we use the array data-
flow information to identify data-dependences and privatizable arrays. Finally, we identify

the outermost parallel loops.
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5 Array Summary Representation

For the array analysis defined in the previous chapter to be practical, we must have an
expressive, compact, and efficient array summary representation. In this chapter we define

such a representation based on systems of linear inequalities.

Since no practical array summary representation can precisely represent any arbitrary
access pattern, we need to find a compact representation with the ability to precisely repre-
sent many access patterns found in practice. The array summary representation should effi-
ciently execute operations on array index sets such as union, intersection, difference, and
projection. The cost of maintaining the array summaries as well as performing operations
on them increases with the precision of the representation. Thus in designing the summary
representation, we have to arrive at a balance between precision and cost. The array sum-
maries need to maintain sufficient precision to perform the required analysis without losing
information for most cases found in practice. But the cost of generating and maintaining

the information should not be prohibitively expensive.

We have imposed an additional requirement on the precision of the array summary repre-
sentation. We want the data dependence test based on the summary representation to be at
least as precise as the pair-wise array data dependence test that it will replace [110]. The
pair-wise data dependence test is exact oveafitee domainAn array access is in the

affine domain when the index function of the array access and lower and upper bounds of
the enclosing loops of interest are affine expressions with respect to loop index variables

and loop constants.

We have developed an array summary representation based on systems of linear inequali-

ties that satisfy the above criteria. We represent convex regions of an array by a system of
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linear inequalities called@nvex array sectioWe use a list of convex array sections, an

array section descriptoras the general representation of array summaries.

In this chapter we introduce the convex array sections in Section 5.1 and array section
descriptors in Section 5.2. We show how to create a convex array section for a sparse
region in Section 5.4. The operations on convex array sections and array section descrip-
tors are defined in Sections 5.4. and 5.5. respectively. The related works are given in
Section 5.6. As in Chapter 4, we simplify the following discussion by assuming that the

program contains only a singbedimensional array.

5.1. Convex Array Section

We use convex array sections as a practical representation for the parameterized index sets
introduced by Definition 4-2. A convex array section can precisely represent the class of
parameterized index sets, where all the indices of the index set can be represented as a set
of integer points within a multi-dimensional convex polyhedron. We use a system of linear
inequalities to describe this convex polyhedron. The inequalities are parameterized by the
variables of the loop context associated with the parameterized index set as well as the set
of dimension variable®f the array. These special dimension variables hold the index

values of each dimension of the array.

Definition 5-1: A convex array section

1, 1 1 1. 1.
E CotCia;+...+tca,+C 4l +... +C 1,2 0%
R = E(al,___,an) ......... E
Il m m m m . m . ]
Cy+tCia;+...+ca +c 41, +... +Cc 1,20
defines a parameterized index set whgge.., i, are the variables of the loop context
associated with the parameterized index agt,.., a, are variables representing each of

the dimensions of the n-dimensional array, and all c’s are integers.

Figure 5-2 shows the different parameterized index sets of the regions graph for the exam-
ple in Figure 5-1. The innermost region, with only one array access, is represented by a

convex array section that denotes a single array index. The convex array section is param-
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DOI=1,M
DOJ=1,N
AQJ+C, 1+J) = ...

Figure 5-1. A loop nest with an array access

eterized by the loop index variableandJ, the loop invariant variabldd, N andC and
dimension variablea; anda,. The region that includes the innermost lodgs repre-

sented by a convex array section containing the array elements accessed by all the iterations
of the loopJ for a given iteration of the lodp The parameterized index set describing the
entire region is a convex array section containing the array elements accessed by all itera-

tions of both loops.

Next, we define the index s&tand the empty séf  using the convex array section repre-

sentation

Definition 5-2: The index set of all the indices of the array is given by the convex array

section
[l [
0 u<a; <l 0
A= %(al, a,, ...,a,) E
[ u,<a <l 0O
where integerd,, ...,I andi, ...,u, ~ are the lower and upper bounds of the array

dimensions.

Definition 5-3: The empty set is given by the convex array section in canonical form

where the system of inequalities is always false.

0={(a,a,..,a) |0> 1}
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C+ls<a <N+

C
1sa2—a1+CsM

(a;, &)

OOoOoOd
[ -

DOI=1,M

1<1<M
C+l<a <N+C

a1+l :a2+C

—~
o))
=
QD
N
~

OOoOOod
I

DOJ=1,N
1<I<M

1<J<N
(al’ a2) al =J+C

[ o o
o

a,=1+J
A(J+C, I+d) = ...

Figure 5-2. Summarizing the array access patterns

Next, we express an affine array access function using the convex array section represen-

tation. This formulation is used in calculating the local values as defined in Section 4.3.3.1.

_— , 1, 1. 1. , .
Definition 5-4: An affine array accesAEco +Clig... +C, .. : cg + Czll... + c’X‘|XE
is represented by the convex array section
O a, =c +cri, +..+ci U
[l 1 0 1'1 X' X []
E(al,...,an) %
0 _n n. n.
a,=Cyt+Ciji;+...+C i,
where, all ¢'s are integers and, ...,i,  are the variables of the loop context associated

with the array access.
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5.2. Array Section Descriptors

Although each affine array access can be represented using a convex array section, many
operations on these convex array sections produce non-convex results. By using a single
convex section to approximate a non-convex region, we lose a significant degree of preci-
sion. Because of this loss of accuracy, approximating non-convex regions using a convex
section is unacceptable. Therefore, for parameterized index sets we need a more general
representation than the convex array sections. We umgagnsection descriptom list of

convex array sections, to represent a general array index set. Each array section descriptor
can have one or more convex array sections. Thus, non-convex regions can be represented
using multiple convex array sections. In theory, any arbitrary array index set can be repre-
sented using a list of convex array sections by dividing the index set into convex regions.

However, in practice we avoid creating large lists.

Definition 5-5: An array section descriptor D is a list of convex array sections

{Rl, o Ry Rk} , Where an array inde>(a1, an) oD if(al, an) OR,

We use a canonical form for the array section descriptor, where, for a given array section
descriptorD,

i) there does notexi®k, 1D  such tHat= [

i) there does not exidg;, Rj 0D i#] suchtHat is containeﬂjin

These properties do not affect the functionality of the array section descriptors but help
make the implementation more concise. We allow overlapping convex sections in an array
section descriptor. Requiring convex array sections of a descriptor to be non-overlapping
would not increase the precision of the results. However, it would make the operations on

array section descriptors more complicated and expensive.

5.3. Sparse Array Regions

A convex array section, as defined in Definition 5-1, can only represent index sets which
aredense convex polyhedrgnghere all the integer points within the convex polyhedron

are in the index set. However, in practice we need to represent sparse convex polyhedrons,

where only a subset of integer points within a convex region are in the index set. The exam-
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ple loop in Figure 5-3 accesses only the even elements of the array, resulting in a sparse
access pattern. There are two possible methods of representing a sparse pattern within our
framework. One way is to fragment the sparse region into a set of dense convex regions.
However, the number of regions required is not known at compile-time for many parame-
terized accesses. Furthermore, the number of dense convex regions is dependent on the size
of the sparse region, which can be quite large. Instead, we choose to construct a single
system usinguxiliary variables special variables used in creating linear constraints to
represent the sparse nature of the access patterns. These variables can be viewed as addi-
tional dimensions of the parameterized convex polyhedron. The Figure 5-4 shows how an
auxiliary variable is used to represent a non-dense array region for the loop nest given in
Figure 5-3. In this case, all the even indices of the one-dimensional array between indices

1 andN are represented using an auxiliary variable

DOI=1,N
A1)

Figure 5-3. A simple example creating sparse access pattern

When the same sparse pattern arises in multiple sections, each section introduces a unique
auxiliary variable. Thus, union, intersection or subtraction operations on two of these sec-
tions will create a section that has multiple redundant auxiliary variables representing the
same sparse pattern. In Section 5.4.8, we show how to simplify the resulting section by
eliminating these redundant auxiliary variables. We also handle auxiliary variables as a

special case in our union algorithm given in Section 5.4.3.
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0 (a) o 2<a<?2N 0

O a=2a U

O O
DOI=1,N 0 0

O O

1<I<N

D(a) U

O a=21 O

O O

A(21)

Figure 5-4. An array summary with an auxiliary variable

5.4. Operations on Convex Regions

We define several operations useful for manipulating array index sets. Some of these oper-

ators, such as subtraction, are only approximations of the set operators.

5.4.1. Empty Test

The operatotsEmpty is a boolean function that returns false if the convex array section

contains any valid array indices. An empty array region implies that no integer solution

exists for the system of inequalities. Therefore, the empty test is implemented using Fou-

rier-Motzkin elimination, which finds the existence of an integer solution for the system.

5.4.2. Intersection Operator

The intersection operator finds the common array indices in multiple array sections. The
function Intersect(R;, R,) returns a convex array sectRepn R, ,wheye Rpd  are
convex array sections of the same array. The implementation of the intersection operator is
very simple. The inequalities of both systems are combined to form a single system. Inter-

secting two sections with no common array indices will result in a system of inequalities
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with no solution. We eliminate these systems by checking for empty sections after the
intersection. Moreover, the resulting system may have many redundant inequalities and
auxiliary variables. The algorithms to eliminate the redundant inequalities and auxiliary

variables are given in Section 5.4.8.

5.4.3. Union Operator

A union of two convex array sections contains all the array indices of both sections. How-
ever, as shown by the two examples in Figure 5-5, the union of two convex sections may
not be convex. In our algorithm, we keep both convex array sections to precisely represent
the resulting region. Since this requires a list of convex array sections in the representation,

the definition of the union operator will be deferred until Section 5.5.3.

]

Figure 5-5. Examples of unions of two convex sections resulting in a non-convex section

In many instances found in practice, the union of two convex regions is a single convex
region. This is illustrated by the two examples in Figure 5-6. The array index sets for the
examples are given in Figure 5-7. In the first example, the odd and even indices of a one-
dimensional array are written by two write statements. The two convex array sections of
the write statements can be merged into a single convex array section. In the second exam-
ple, the elements of the lower triangle and the diagonal of a two dimensional array are
updated separately. The two sections can be merged into a single convex array section rep-

resenting both regions.
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DOI=1,M

AQ2I) = ..

A(21+1) = ...
DOI=1,M

Al
DOI=1 M1

DOJ=1, Il

Figure 5-6. Two examples of loop nests where the convex array sections can be
merged after union operator.

5.4.3.1. A simple merge algorithm

First, we describe a merge algorithm that attempts to merge two convex array sections with-
out any special treatment of the auxiliary variables. Merging two convex array sections
where one is contained in the other is trivial. The result of the merge is the convex array
section that contains the other. However, merging two arbitrary convex array sections, even
when the result is convex, is non-trivial. All the elements of each input convex array region

are in the result of the merge.

We have developed an algorithm, presented in Figure 5-8, that will merge two convex array
sections when the merge can be performed by eliminating exactly one inequality from each
convex array section. The negation operator, , used in the algorithm is implemented by
negating all the coefficients and the offset of the inequality and subtracting one from the
offset. Since it is not always possible to merge two convex array sectiomgeESimple
algorithm returns a tuple with a convex array section and a boolean. If a valid merge is
found, a tuple with the convex array section &nd will be returned; otherwise, the bool-

ean value of the returned tuple will ta¢se
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]
E (a) ‘ 2<a<2M+1

oo™

DOI=1,M

§ 0
1<I<M
U (a) U
/D a=2l 0O
AQ2l) = O 0
A(21+1) = E E
- — 1<1<M
U (a) [
U a=2l+1 0
U U
[ [l
O l1<a,<M O
0 (al,az) O
O l<a;sM-a,+1 U
U U
[ 0l
O l<a,sM O
/D (al,az) N U]
DOI=1,M E a, = a, E
DOI=1, M-1 O O
T @ lsa,sM-1 O
(a,, a,) 0
[ l<a,sM-a, U
A(, 1) O 0
DOJ=1, I
A, 1)

Figure 5-7. Examples of convex array sections that can be merged after union operator.
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MergeSimpld RR,) - [R, {trug fals¢ [J
whereR; ,R, andR are convex array sections

if IsContained R R,) then
return [R,, truel]

else iflIsContained B R;) then
return [R,, truel]

else
R' =R,

for each linear inequality 1 R, do

if IsEmpty( Intesec B, {-1})) then

Remove inequality  fronRR;’

for each linear inequality 1 R, do
if IsEmpty( Intesec{ R, {-1})) then
Remove inequality  fronR)’

if R'={1;} andR, = {l.}
wherel, and, are single linear inequalitieen

removel; fromR;

removel, fromR,

if IsEmpt)H Intesecg R Ry, {1}, {-1} %then
return Ontersed (R}, R,), truel]

return I, false]

Figure 5-8. Attempts to merge two convex array sections without any special
treatment on auxiliary variables
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5.4.3.2. Merge algorithm in the presence of auxiliary variables

When both sections have auxiliary variables,ttexgeSimplalgorithm considers these
auxiliary variables as separate variables, and thus does not succeed in merging the sparse
access patterns. However, we can successfully merge many sparse patterns when the prop-
erties of the auxiliary variables are taken into account. The algontbrgeAuxVarsn

Figure 5-9 attempts to merge two sparse patterns given by two different auxiliary variables
into a single sparse pattern with a new auxiliary variablenigrgealgorithm, in Figure 5-

10, eliminates the inequalities of sparse patterns that are combined usimegdbAux\Vars

algorithm and merged the reduced system usinghdrgeSimplalgorithm.

5.4.4. Projection Operator
We define a general projection operal%rpjecth { v vy} E , that projects away a
set of variables,, ..., v, from a given system of inequalities using Fourier-Motzkin elim-

ination. The resulting system does not have any inequalities with the vanablesv,

The projection operator defined in Definition 4-3 is implemented using this operator. The
operatorproj, takes a system of inequalitiBs  and eliminateskthe -th index varigble,
from the system. The range of tke -th index variable is between the lower and the upper
bound affine expressions and , respectively. Thus, the resulting system of
proj (R, k |, u) is given byProjec%lntersec%R {I=i=su} E, { i} E . The resulting
system does not have any inequalities with the varigble . However, the result may not be
exact since the index variable may have contributed to a sparse pattern. In that case, elim-
ination of the variable creates a dense region, including the array indices not present in the
original region. Therefore, we include the original inequalities with the index variable back
into the result by changing the index variable to a new auxiliary variable. If there are no
sparse patterns, the clean-up algorithm, given in Section 5.4.8, will eliminate the inequal-

ities with the auxiliary variable.
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MrgeAuxVarg R a,, R, a,) - [R, {trug fals¢ [

where E et - >O%
R, = E_l_cill_m_cik na, > E
QU +ciig+...+ci,—n0, 20
E—I i — ... —cfi +n.a >OE
RZZE 2 :2L1 2kk 2¥2= E
QU,+Coiy+... +Coi —N,0,20

allcs, I, 1,,u;, U, n;, n, are integers ang, ..., i, ~ are variables

o1 1 K k
if C,=C,...C; =¢C, andnl =n, then

I=min(|1,I2)
u = max( y,u,)

else ifc1 = c1 ck = ck and, <l, andi,2u, andk s.kn, = n, then
1 2 Y 2 1=12 1= Y -8l 2
I=Il
u=u

o 1 K
else |fc1 =C,...C; = C, andlzsl1 anauzzu1 andk s.kn2 =n; then

u=u,
else
return (11, falsd]
a 1, k. m
0 —l—li;—...—cji,+na=0 0 _ o _
R= E E wherea is a new auxiliary variable
1. k.
gutci;t..+cil —na=0p

return [R, trudl

Figure 5-9.  Attempts to merge different sparse patterns into a single sparse pattern
using a new auxiliary variable.
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Merge( R, R,) - [R, {trug fals¢ [
whereR; ,R, andR are convex array sections.

R ={}
for each auxiliary variable;,  used by the inequalitieRpfdo
R‘i = {l]l R andvariablea, isin I}
for each auxiliary variable, used by the inequalitieRpfdo
Rg = {l]l OR,andvariablea, isin I}
[R", boold= mergeAuxVar% %al, Rg,azg

if bool = truethen

R, = {I]l OR,andvariablea, is notin I}
R, = {I]l OR,andvariablea, is notin I}
R = IntersecHR’, RGH

[R, booll= mergeSimpl¢ RR))
if bool = truethen

return [Ontersect(R, R), truél

else

return [J, falsdl

Figure 5-10. Attempts to merge two convex array sections
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5.4.5. Containment Test

ThelsContainedoperator checks if all indices of one convex array section are included in
the other convex array section. For two convex array sectins, Rand , the operator
IsContained R R,) returnstrue if and only R; O R, .The implementation of the con-

tainment test is given in Figure 5-11.

IsContained R R,) - {true, falsg
whereR; andR, are convex array sections

if IsEmpty( R) then
return true
if IsEmpty(Intersect( R, R,)) then
return false
for each inequality R, do
if IsEmpty(Intersect( R, -r)) then
return false

return true

Figure 5-11. Algorithm for the containment test

5.4.6. Equivalence Test

The IsEquivalent operator returns true if the two convex array sections are equivalent.
However, for two convex array sections to be equivalent, the systems do not have to be
identical. Thus, the implementation of the equivalence test, given in Figure 5-12, identifies

equivalent array sections by examining the parameterized array indices of both sections.
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IsEquivalen( R, R,) - {true, falsg
whereR; andR, are convex array sections

return (IsContained R R,))and(IsContained RR,))

Figure 5-12. Algorithm for the equivalence test

5.4.7. Subtraction Operator
Subtraction of two convex array sections creates an array section containing the indices of
the first section that are not present in the second section. Precise subtraction of two convex

array sections can result in a non-convex section, as shown in Figure 5-13. Thus, we define

|

I

Figure 5-13. An example of a subtraction of two convex sections resulting in a single
non-convex section

the subtraction operato§ubtract( R, R,) , which is precise if the result can be repre-
sented by a single convex array section. When no precise single system exists, we create

an approximate result that satisfies the propBity R, [ Subtract{ R, R,) U R; . The
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algorithm for the subtraction operator is given in Figure 5-14. The result of
Subtract( R, R,) is the empty set if all indices &, are alsdRp . Otherwise, we find
a single inequality irR, that slices the partRyf ~ that is contain®,in . If there is more
than a single inequality that slices the parRpf ~ that is containBd in , then the result of

the subtraction is non-convex.

Substrac{ R R,) - R
whereR, ,R, andR are convex array sections

if IsEmpty( Intesec{ R R,)) then
return R,

else iflsContained R R,) then

return [
else
for each inequality 0 R, do
if IsContained Intesec (R, {i}),R,) then
return Intersed (R, {-i})
return R,

Figure 5-14. Algorithm for subtracting two convex array sections

5.4.8. Simplify and Clean-up
The above definitions of the operations—such as intersection, merge and projection—are
fairly simple. Although these operators produce correct results, the resulting convex array

sections are not simple and concise. In fact, the resulting convex array sections produced
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by these operators have many unnecessary inequalities and auxiliary variables. Thus, we
use the algorithms, given in the next five sections, to simplify a convex array section. The

algorithms are invoked in the order given in Figure 5-15.

SimplifyCleanug R - R’
whereR andR’ are convex array sections.

R = ImproveBoundé R

R = RemoveUnusedAg@x) R

R = NormalizeAux R

R = RemoveRedundantA(x) R

R = RemoveSimpleRedund#&n) R

return R

Figure 5-15. The driver for the simplify and clean-up algorithms

5.4.8.1. Simplify coefficients and tighten the bounds
Using the algorithm in Figure 5-16, we simplify the coefficients of each inequality by
dividing the coefficients by the greatest common divisor. This also tightens the inequalities

to the closest integer solution since the offset is moved to the closest integer.

5.4.8.2. Eliminate unused auxiliary variables

In creating a sparse pattern, the auxiliary variable should have a non-unit coefficient. Fur-
thermore, there should be at least one inequality providing a lower bound for the auxiliary
variable and another inequality providing an upper bound. Using the algorithm shown in
Figure 5-17, we eliminate auxiliary variables and the associated inequalities if they do not

contribute to a sparse pattern.
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ImproveBound$ R- R
whereR andR’ are convex array sections

for all inequalitiesl R such thdt= {c+a,i, +
c, a, ..., a, are integer constant®

..+, 20 where

g =g9gcd(q,...,a)
a a
= {|C|+3 +... +X.20
{LgJ gt g%
return R

Figure 5-16. Algorithm for tightening the integer bounds

RemoveUnusedAx)R- R’
whereR andR’ are convex array sections
for all auxiliary variablesx iR do
if not O inequalitiesl, |, 0 R suchthdt = {c,+r; +n,a=0}
andl, = {c,+r,—n,a =20} wherg, and, are linear expressions
andc,, c,, n;, n, are integers such that n, > 1 then

R = project( Ra)

return R

Figure 5-17. Algorithm for eliminating inequalities and auxiliary variables that do not
create any sparse patterns
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5.4.8.3. Normalize the offsets

We normalize the offsets of the inequalities with auxiliary variables using the algorithm in
Figure 5-18. We find each pair of inequalities with the same linear expression that repre-
sents the lower bound and upper bound of a sparse pattern and normalize the offsets such
that the offset of the upper bound is always between zero and the coefficient of the auxil-
lary variable. Again, we eliminate the pair of inequalities if they do not contribute to a

sparse pattern.

5.4.8.4. Eliminate redundant auxiliary variables

When two or more convex array sections are combined using operations such as union and
intersection, the same sparse pattern that occurred in multiple input sections is repeated in
the result using multiple auxiliary variables. The algorithm in Figure 5-19 removes these

redundant inequalities and auxiliary variables.

RemoveRedundantA(x) R R’
whereR andR’ are convex array sections

for all auxiliary variablesx iR do
for all auxiliary variablefd iR such that# 3 do

if IsEmpty(Intersect({ R{a>p})) and
IsEmpty(Intersect( R{a <})) then

R = project( Rp)

return R

Figure 5-19. Algorithm for removing redundant auxiliary variables
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NormalizeAuX R - R’
whereR andR’ are convex array sections

for all auxiliary variablesx iR do

n is an integer such that there exfst-na >0} OR wheaee
an affine expression

if not there exist{t'-ma >0} O R suchthazn and is
an affine expressiotien

ol = ou = —»

for all inequalities{ c+ r-na =0} OR where integer>0
andr is a linear expressicio

= ¢ |0
ol ma%ol thD
for all inequalities{—c' +r' +na =0} O0R where integer
c' >0 andr is alinear expression

_ c' |0
OU = maxou n-
Bou pS |5
if ou = olthen

for all inequalities{ +c" +r"-na =0} O R where
integerc” =20 and"” is alinear expressim

c" =c"-ol

return R

Figure 5-18. Algorithm for normalizing the offsets of the inequalities with auxiliary
variables
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5.4.8.5. Eliminate redundant inequalities

Finally, we remove many redundant inequalities using the algorithm given in Figure 5-20.
However, the system may still retain redundant inequalities after this algorithm. These
redundant inequalities can be found only by using the Fourier-Motzkin elimination tech-
nique. Since Fourier-Motzkin elimination is expensive, we do not use it in the clean-up

code that gets called frequently.

RemoveSimpleRedundgn) R R’
whereR andR’ are convex array sections

for all inequalities{c+r=0} O R where is an integer and
r is a linear expressiato

for all inequalities{d+r>0} OR where integer> c do
Remove the inequalitfyd+r>0} fromR

return R

Figure 5-20. Algorithm for removing inequalities that are obviously redundant

5.5. Operations on Array Section Descriptors

In this section, we define the operators that are used to manipulate array section descrip-
tors. These operators are used in the array data-flow analysis algorithm given in
Section 4.3. Unlike convex array sections, array section descriptors can represent non-
convex array index sets. The operators on array section descriptors are built using the oper-
ators defined for convex array sections presented in the previous section. The operators
ISsEmpty, Intersect, UnigrandProjectare exact under the representation of array section
descriptors, while our definitions ddubtract and IsContainedproduce approximate

results. However, our algorithm is able to find the exact resultSubtractandIsCon-
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tainedoperators for a large class of inputs found in practice. The algorithm in Figure 5-21
is used to insert a new convex array section into the list of convex array sections in an array

section descriptor in order to maintain the properties of array section descriptors described
in Section 5.2.

Add(D, R - D'
whereD andD' are array section descriptorsRnd is a convex array section.

if not ISEmpty( B then
for each convex array secti®ti [0 D do
if IsContained R R) then
RemoveR’ fromD
if IsContained R R then
return D
Insert R into the list of convex array sectiondin

return D

Figure 5-21. Algorithm for inserting a convex array section to an array section descripto

5.5.1. Empty Test

The boolean functiorsEmpty determines if an array section descriptor has any valid indi-
ces. The empty test returtitae when the list of convex array sections in the array section

descriptor is empty.
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5.5.2. Intersection Operator
The intersection operator obtains the common array indices in two array section descrip-
tors for a given array. Figure 5-22 illustrates the implementation of the intersection opera-

tor.

Intersect(D,,D,) - D
whereD, ,D, andD are array section descriptors.

D={}
for each convex array sectiéty [0 D, do
for each convex array sectiéty U D, do
D = Add(D, Intersect( R, R,))

return D

Figure 5-22. Algorithm for the intersection operator

5.5.3. Union Operator

The union of two array section descriptors contains all the array indices of both sections.
The algorithm for the union operator is given in Figure 5-23. The array section descriptor
produced by this algorithm will have multiple convex array sections that may be merged
into a single section. Merging convex array sections has two advantages. First, merging
reduces the number of convex array sections in an array section descriptor, thus reducing
the complexity and the storage requirements. This was found to be necessary in practice.
Second, merging increases the precision ofisi®ntainedandIsEquivalentoperators.
Merging is performed after the simple algorithm for the union operator using a post-pass,

given in Figure 5-24, which iterates over the convex array sections in the array section
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Union(D;, D,) - D
whereD,; ,D, and are array section descriptors.

D =D,

for each convex array sectiéty [ D, do

D = Add(D, Rz)
D = Merge( D
return D

Figure 5-23. Algorithm for the union operator

descriptor until no two convex array sections can be merged. Multiple iterations are needed
since merging two convex array sections can enable yet another merge that was not possi-
ble before the first merge. In the algorithi, holds the convex regions created in the cur-
rent iterationD holds the regions created during the previous iteration of the merge, and
D¢ holds the rest of the regions. Each iteration of the merge first compares all pairs of
convex regions iD.  for possible merges and includes any merged rediyn in . Next,
eachregioni. is checked against the rest of the regidns in for possible merges. This

is repeated until no more merging is possible.

5.5.4. Projection Operator

The projection operator projects away an index variable from all the convex array sections

in the array section descriptor. Since the projection operator increases the size of each
convex region, some of the resulting convex regions may become candidates for merging.

The implementation of the projection operafonj, is given in Figure 5-25.
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Merge(D - D’
whereD andD’' are array section descriptors.

Dy=D, Dp={}
while D # { } do
Do =Dy, Dy={}
LetD. = {Ry, Ry ..., R}
for eachR, wher&€ <i<m do
for eachRj wherd <j <i do
(R, V= merge( R Rj)
if v = truethen
RemoveR, and?j from the lid -
Add R to the listD
for eachR. [ D do
for eachR. 0 D do
[R V= merge( R, R)
if v = truethen
RemoveR. from the lisD .
RemoveR. from the lisD
Add R to the listD
Add the convex array sections in the [t to theDist
D = D,

return D

Figure 5-24. Post-pass after the union operator
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proj(D,i,l,u) - D’
whereD andD' are array section descriptors, is anindex variable and , are
affine expressions

D' = {}
for each convex array sectiéhl] D do

D' = Add(D, Proj (R, i, I,u))
D' = merge( D)

return D'

Figure 5-25. Algorithm for the projection operator

5.5.5. Containment Test

The containment test determines if all the indices of one array section descriptor are con-
tained in the other. However, our implementation of the containment test, given in
Figure 5-26, is not precise. The operator is conservative and it may fasem some

cases when one array section descriptor is fully contained in the other. The difficulty of
finding containment is illustrated in Figure 5-27, which shows that the single convex array
section of the array section descripky is contained by two different convex array sec-
tions in the array section descriptor, . However, this condition occurs infrequently in
practice, since many adjacent convex array sections are merged into a single convex array
section whenever possible. Therefore, we have not implemented the more expensive test

that checks for containment by multiple convex array sections.
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IsContained Q,D,) - {true, falsg
whereD; andD, are array section descriptors.

for each convex array sectiéty [0 D, do
found = false
for each convex array sectiéty [ D, do
if IsContained R R,) then
found = true
break
if found = falsethen
return false

return true

Figure 5-26. Algorithm for the containment test

5.5.6. Equivalence Test

The equivalence test determines if two array section descriptors contain identical parame-
terized index sets. The implementation of the equivalent test is given in Figure 5-28. Since

the equivalence test is implemented using the containment test, it is also not precise. There
may be equivalent array section descriptors, as in the example given in Figure 5-29, that

our implementation will conservatively assume to be different.
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Figure 5-27. Example of the operafdy 1D, , where containment is difficult to detect

IsEquivalent( Q,D,) - {true, falsg
whereD; andD, are array section descriptors.

return (IsContained 0O, D,))and(IsContained D D,))

Figure 5-28. Algorithm for the equivalence test

5.5.7. Subtraction Operator

The subtraction operator creates an array section descriptor with array indices that are

present in the first array section descriptor but not in the second. The subtraction operator,

as defined by the algorithm in Figure 5-30, is not precise. This is because we use the sub-

traction operator for convex array sections, which is also not precise, to define the subtrac-

tion of array section descriptors. We attempt to subtract the convex array sections multiple
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D,

Figure 5-29. Example of equivalent array section descriptors where detection by
IsEquivalentoperator is not possible

times since the result of one subtraction may enable other subtractions. Figure 5-31 shows
an example where, when subtracting array section descripiors { R}, R,} Diyom
the convex array sectidR,  cannot be subtracted from the single convex array section of

D, until the convex array sectidr, is subtracted fiom

5.6. Related Work

Many researchers have used an array index set representation in performing array data-
flow analysis [18,64,66,124,137,142]. Accuracy of their analyses is defined by the preci-
sion of the summary index set representation. These algorithms use different forms of reg-
ular section descriptors as the array index set representation. Each regular section can be
used only to precisely represent a limited domain of rectilinear, triangular or diagonal
spaces [81]. More complex spaces can be represented using multiple regular sections
[142].

The scope of data-flow and data-dependence analysis performed using regular section
information is much more restricted than using a representation based on linear inequali-

ties. For example, our data dependence analysis, which uses an array region representation
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Substrac( Q,D,) - D
whereD, ,D, and are array section descriptors.

D={}
for each convex array sectiéty [0 D, do
iter = true
while iter = true do
iter = false
for each convex array sectiéty [0 D, do
R = Subtrac{ R R))
if R = @then
Ri=0
break

else ifR# R, then

R, = R
iter = true
break

D = Add(D, R)

return D

Figure 5-30. Algorithm for the subtraction operator
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D,

T
/
Rl

D

1

Figure 5-31. Example of a subtraction that needs multiple iterations

based on linear inequalities, is as accurate as the traditional data dependence analysis,
which is exact for a pair of array accesses in the domain of loop nests where the loop

bounds and array indices are affine functions of the loop indices.

Triolet et al. first proposed using a system of linear inequalities to represent an array index
set [137]. This representation was used for data dependences analysis. Their algorithm did
not create exact convex regions in many situations, such as sparse access patterns, but pro-
vided approximations using a convex hull of all the indices. In the PIPS project, an index
set using an integer-lattice was proposed but not implemented due to practical consider-
ations [87]. Our representation for the index sets is most similar to their current represen-
tation, which uses a single convex polyhedron as the index set [45,46]. However, there are
many access patterns found in practice that cannot be precisely represented by a single
convex region. For example, multiple write accesses, described in Figure 3-4, can only be
precisely represented using a set of convex regions. Thus, even for the array data depen-
dence analysis using the summary information to obtain the same precision as the pair-wise

data dependence test [110], a summary based on a single convex region is not sufficient.
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5.7. Chapter Summary

In this chapter we introduce an array summary representation based on lists of systems of
linear inequalities. Using this representation, we find data-flow information more accu-
rately than any other previous summary representation. We are also able to perform the

data-dependence analysis at the same precision as the exact data dependence test [110].

We have defined the set operators used for manipulating array summaries, in this represen-
tation. Our intersection, union and projection operators and the empty test are exact. How-
ever, the subtraction operator and the containment and equivalence tests we have defined

are approximations of the exact result.
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Array Reshapes Across Procedure
Boundaries

The continuing success of FORTRAN as the leading language for programming scientific
applications depends heavily upon the ability of FORTRAN programs to outperform pro-
grams written in other popular languages. For example, many computationally intensive
algorithms coded using FORTRAN can outperform the same algorithms written using C++
by more than a factor of two [78]. Compilers are able to obtain superior performance from
FORTRAN programs because many modern language features that hinder compiler opti-
mizations, such as aliasing and dynamic memory allocation, are absent or are severely
restricted in the FORTRAN language. A lack of these features makes it possible for com-
pilers to safely perform many aggressive optimizations, such as statement and iteration

reorganization, vectorization, and parallelization, on FORTRAN programs.

However, the FORTRAN-77 language standard has three specific fegiaras)eter
reshapesequivalencesanddifferent common block declaratigrthat can suppress many
aggressive whole program analyses, needed for finding coarse grain parallelism. It is nec-
essary for an interprocedural compiler to analyze the programs in the presence of these fea-
tures and determine their effect on the rest of the analysis. Current interprocedural
compilers use ad-hoc heuristics and specialized techniques to handle the common cases
found in practice. We introduce a systematic approach, based on the linear inequalities

framework, to analyze the three classes of reshapes found in FORTRAN programs.

In Section 6.1 we will further describe the three different reshapes found in FORTRAN.
Next, we define the array reshape problem in Section 6.2 and provide an overview of our

solution. Sections 6.3, 6.4 and 6.5 detail the algorithms for solving array reshapes that occur
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in parameter passing, equivalences and common blocks respectively. We compare our

approach to related works in Section 6.6.

6.1. Reshapes in FORTRAN

A reshape occurs when a data structure defined using one shape is also accessed using a
different shape within the program. The FORTRAN-77 definition allows three classes of
reshapes: parameter reshapes, equivalences, and different common block declarations
[150]. Equivalences can affect intraprocedural analysis while the other two affect only

interprocedural analysis.

6.1.1. Parameter Reshapes

The FORTRAN-77 definition does not restrict the actual parameters of the caller and the
formal parameter of the corresponding callee to be of the same type. This provides the pro-
grammer an opportunity to reshape data structures. Figure 6-1 illustrates four examples of
reshapes. In Figure 6-1(a), an element of an array in the caller is mapped to a scalar in the
callee routine. The real and imaginary parts of a complex variable are mapped to a two-
element array in Figure 6-1(b). A simple array reshape is shown in Figure 6-1(c), where a

single column of the array is mapped to the vect&.

6.1.2. Equivalences

The FORTRAN language, using the equivalence operation, allows the creation of an alias
to a scalar or array data structure. The equivalence operation accepts an element of a data
structure and an element of the alias structure as input, and aligns the alias structure with
the memory layout of the data structure such that the two elements refer to the same
memory location. In the example in Figure 6-2, the two-dimensional Brisagliased with

the second half of the tenth plain of the three-dimensional Atray

6.1.3. Different Common Block Declarations
Common block structures, used for global variable declaration, provide another opportu-
nity for the programmers to reshape data structures. The common block definition specifies

the memory layout of the variables declared in a common block. By not requiring that mul-
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REAL*8 W(100)
CALL TESTA(W(10))

SUBROUTINE TESTA(P)
REAL*8 P
P=..

(a) An array element mapped to a scalar

COMPLEX*16 X
CALL TESTB(X)

SUBROUTINE TESTB(Q)
REAL*16 Q(2)

(b) A scalar is mapped to an array

INTEGER Y/(100,100)
CALL TESTB(Y(10))

SUBROUTINE TESTC(R)
INTEGER R(100)

(c) A slice of an array is mapped to a vector

Figure 6-1. Examples of parameter reshapes
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REAL*8 A(100,100,100)
REAL*8 B(100,50)
EQUIVALENCE A(10,50,1), B(1,1)

Figure 6-2. Aliasing using the equivalence operator

tiple definitions of the same common block be identical, the FORTRAN language allows
reshaping and overlapping of data structures between different procedures. The example
in Figure 6-3 is extracted from the prograydro2d in the SPEC92fp benchmark suite

[143]. The common blockarl in the example has two different definitions, one with four
two-dimensional arrays df02x 4 elements and the other with a single large vector. Thus,
the array elemenEN(a b in procedulsIVAL is the same element accessed by

H1 (102 + a+306) in procedureASWO02.

PROGRAM ASWO02
PARAMETER(MP=102, NP=4)
COMMON /VAR1/ H1(4*MP*NP)

SUBROUTINE INIVAL
COMMON /VAR1/ RO(MP,NP), EN(MP,NP), GZ(MP,NP), GR(MP,NP)

Figure 6-3. Example of a common block reshape fngaro2d
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6.2. The Array Reshape Problem

In the interprocedural data-flow analysis algorithm described in Section 4.3, we need to
propagate the array summary information across procedure boundaries. Propagating an
array summary across procedure boundaries requires us to map the summary describing an
index set of the formal array to one that defines the corresponding index set for the actual
array. Since the FORTRAN-77 language allows the formal and actual array variables to

have different dimension sizes, this mapping is not a trivial renaming operation.

Since FORTRAN implements both formal and actual array structures by mapping them to
the same linear memory segment, one solution is to perform array data-flow analysis using
linearized array accesses [31]. Multi-dimensional array accesses are linearized by convert-
ing them to linear offsets of the memory locations. All the linearized arrays have the same
shape, thus eliminating any reshape problem. However, the regions in multi-dimensional
arrays have to be represented as very complex lattice patterns in a one-dimensional linear-

ized space. Thus, linearizing all the accesses is not a practical solution.

Another solution is to include information describing the relationship between the elements
of the formal and the actual arrays in the index set of the formal array. Adding an equality
that equates the linearized expressions of the access functions of both shapes to the index
set of the formal array is sufficient to make it a valid index set for the actual array. However,
the array section created is a complex set of inequalities even when it represents a simple
region. Many parameter reshapes that are found in practice map between simple regions.
The index set of the actual array, with an equality of linearized access functions, will not
directly describe these simple regions. We will demonstrate this using two parameter
reshapes in the prograorb3d (Figure 6-4) described previously in Section 3.3.3. The ele-
ments of the arra){ that are read by the call are graphically shown in Figure 6-5. The rela-
tionship between the array and the array, after the callto DCFT, is given by the
equality X;-1 = ((U;-K)64+U,-1)64+U,; -1, where X;,U;,U,, U; are
dimension variables. Adding this equality to the index sets of the Xwal create,

O 1<X, <4224 0

(Vr Uz Ua) | X,—1= ((U;—K)64+U,-1)64+U, 1 J
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DIMENSION U(66,64,64)

DO K=1,64
CALL DCFT(U(1,1,K),33)

SUBROUTINE DCFT(X, INCX)

REAL*8 X(*)
DO 1=1,33
DO 11=1,64

oo = X((1F1)*2+(11-1)*2*INCX+1)
oo = X((1F1)*2+(11-1)*2*INCX+2)

Figure 6-4. Example froturb3d with two array reshapes

a valid index set for the arr&y. However, not directly visible from the index set is the fact
that the elements accessed by the axrayDCFT are mapped to a simple plane in the first
two dimensions of the arrdy. We need a sufficiently powerful analysis technique to iden-
tify these simple mappings and continue analyzing the caller without these complex equal-

ities which will result in conservative approximations.

Instead of relying on a few special common cases to pattern match and find the simple
reshapes, we have developed a general algorithm based on systems of linear inequalities.
When the reshape can be described within the affine framework this algorithm is capable
of transforming array summaries between different shapes of an array and identifying the
simple regions [72,75,76]. We use this algorithm to implement the map opérators and
[0 defined in Chapter 4.
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Array U(66,64,64)

| . ] Array X(*)

Figure 6-5. The array reshapetumb3d

6.2.1. Algorithm Overview

The array summary reshape algorithm creates a system of inequalities for each reshape
problem. The system consists of the convex array region in the original shape of the array,
an equality that equates the linearized expressions of the access functions of both shapes
and inequalities describing the two array shapes. We then use projection to eliminate the
dimension variables in the original array. When there is a simple mapping, we can extract
that simple mapping information from the system because it will be given by the integer
solution to the system. This key property of integer systems is illustrated using the follow-

ing simple system. In the following system of inequalities,

{ (i,j,k) |100i = 100j +k, 0< k < 100}
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there are many real solutions figrj and k. But there is only a single integer solution,
I =) andk = 0, which can be found by integer programming [127]. This property of
integer systems allows us to precisely extract many of the simple reshape regions that

occur in practice.

By using this algorithm on the reshape in Figure 6-5, we can determine that the result of
the reshape is a simple plane of the atdayrhe original array region, given in Figure 6-

6(a), is the convex array section that describes the elements of th¥ aeead/by the first

call to DCFT. The special system of inequalities of the reshape problem, given in Figure 6-
6(b), includes the array section of the original shape, bounds on the dimensions, and the
equality of the linearized access functions. By eliminating the dimension vaxXiable , the
integer solver finds that the only solution fdg, U, add is a plane in the first two
dimensions of the arrdy. Thus, we are able to find the convex array regidd wfith the

simple region description as shown in the Figure 6-6(c).

6.3. Array Reshapes due to Parameter Passing

We define an array reshape caused by parameter passing as any mapping between an array
access as the actual parameter and an array as the corresponding formal parameter. We

assume that the elements of both arrays are of the same type.

Definition 6-1: An array is reshaped in parameter passing when an n-dimensional array

A, declared asAEI;\:uf, ...,I/::ul:g in the caller space, is passed as an actual
parameter of a procedure call, using the accésd,, ...,fn) , to the m-dimensional
array B, declared asBEI?: u?, ...,Ii:ui% in the callee space, tha?e...,lﬁ :
BB A A anduB B . ; . :

10 Iy Ups oo Uy @ndug, .., U integers andl, ..., f - are affine expressions.

Figure 6-7 shows a code segment representing the array reshape given by the above defi-
nition. When the entire array is passed as an actual parameter, the access function becomes
the lower bound. Hence, the actual parameter is equivalent to the array access

A Al
AD|1, cees lnD'
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{ (X)) |1<X, <4224

(a) Convex array region in the original shape

1< X, <4224 1<U, <66
1<K<64 1<U,<64
1<U,<64

X, -1 = ((Uy—K)64+U,-1)66+U, -1

(b) System of inequalities before projection

0 1<U, <660
O O
E(Ul’ U,, U,) 1< U2S64E
U U; =K [

(c) After projection, convex array region in the new shape

Figure 6-6. Calculating an array summary across an array reshape

By using this definition of an array reshape between an actual and a formal parameter at a
procedure call, we can formally describe our algorithm for mapping an index set of the

actual array to the corresponding index set of the formal array.
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DIMENSION A(l Au Al JAu M
INTEGERf 1,...f |

CALLFOO(..AF  1..f i)

SUBROUTINE FOQO(...,B,...)
DIMENSION B(I ,Bu,B..1 . Bu B

Figure 6-7. Code segment representing the reshape in the Definition 6-1.

Theorem 6-1: Given an array section descriptdd,  of the formal array B at a
procedure call according to Definition 6-1, the corresponding array section descriptor at
the call site after the array summary reshape is given by

reshapg ) = Projec%lntersect( Dg {RY), { k..., bm} Ewhere

pu)

1
e o

5 >

m

>

In

O
o o [

sa,

n i—1
z@u f)|_|DU -] +1$ szb °a o -

i=1 j=1 j=1

S

" bm are the dimension variables of the arrays A and B respectively.
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In some reshapes found in practice, the lower and upper bounds of many dimensions of the
actual and formal arrays are the same. If the lower and upper bounds are the same for inner
dimensions and the entire array is passed as the actual parameter, we can reduce the com-
plexity of the projection operation by making the equality of linearized access functions
simpler. Theorem 6-2 redefines array summary reshapes due to parameter passing, when
the first difference of lower and upper bounds between the actual and the formal is at the

k-th dimension.

Theorem 6-2: Given an array section descriptdd;  of the formal array B at a

procedure call according to Definition 6-1, and< gk 1 I,A = IiB anduiA = uiB , and the
array access function used as the actual parametfié\r[qb_L ﬁ% , the corresponding

array section descriptor at the call site after the array summary reshape is given by
reshape ) = Projec%lntersect( D {R}). { R ..., bm} Ewhere

0 O

B _ A A B B 0

E a, = b, U, <a <u, u, <b, <u, E

0 0

R=10 & 1= by 4 Aca <? B<b <u? 4,

E N - u,sa,su, Unsbpsuy E
[]n 0 ji—1 m 0 i—1

(] Al—=0A A _ [] B~ LB B

i =k i=k i =k i=k

anda,, ...,a ,b;,...,b_ are the dimension variables of the arrays A and B respectively.
n m

6.4. Array Reshapes in Equivalences

An array reshape occurs with an equivalence when both structures in an equivalence state-

ment are arrays.

Definition 6-2: An array reshape occurs in an equivalence operation when the two

. , L] A AD L] B
accesses given to the equivalence operatorﬁqﬂel, s G v oo Co] where
A A AD
A is an n-dimensional array declared a@DI ..,I DU and B IS an m-
B B
dimensional array declared angll.ul,...,Im mD , anb[lA A A P
A A B B A A andct B i
Uy, ...,U,, U, ...,u_, ¢y, ...,C, andcg, ..., c_ are integers.
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The Figure 6-7 shows a code segment representing the equivalence given by the above def-
inition.When performing array data-flow analysis on a program with an array equivalence,
we need to map the array region information of the alias structure to that of the original
structure. The algorithm for this mapping is very similar to the one for aliasing due to
parameter reshapes. In this algorithm, we assume that the elements of both arrays are of

the same type.

DIMENSION A(l Au A JAu A
DIMENSION B(I ,Bu 8.1 Bu B
EQUIVALENCE A(c;A...c /A, Blc 8..c D

Figure 6-8. Code segment representing the equivalence in the Definition 6-2.

Theorem 6-3: Given an array section descriptdDg of an aliased array of an
equivalence operation defined in Definition 6-2, the corresponding array section
descriptor of the original array is given by

reshapg ) = Projec%lntersect( Dg {RY), { b ..., bm} Ewhere

g A 5 0
0 Ilsalsu1 Ilsblsu1 0
O O
] ]
R = E I/:sansuﬁ Imsbmsu E
% " Og A0 0A A M On 8008 B E
E ZEDai—CiDH Epj—lj +1/= ZDDbi_CiDI_l J.—Ij +1%E
i=1 =1 i=1 j=1

anda,, ...,a_,b,,...,b_ are the dimension variables of the arrays A and B respectively.
n m

The optimization of the parameter reshape algorithm, given in Theorem 6-2, can also be

applied to the equivalence reshape algorithm.
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6.5. Array Reshapes in Common Blocks

We need to perform an array summary reshape when mapping a summary of an array
declared in a common block of the caller to a callee where the common block has a different
definition. We extend our array summary reshape algorithm to handle common block

reshapes. We start by defining the shape of a common block.

Definition 6-3: A shapeS. of a common block C has  arrays that are contiguous in

memory where the k-th arra;Ak , is ap  -dimensional arrayepf -byte elements
declared asA, I1 ul, ...,I " u':]k% .

The common blocks can have scalar variables and, in this analysis, we treat them as one-
dimensional arrays with one element. Next, we define the offset to the starting memory
location of thek-th array defined in a common block. Since all arrays of a common block
are laid out in contiguous memory in the order they are declared, the start offset of an array
is calculated by summing the amount of memory allocated to all the previous arrays. The
dimension sizes of the arrays are known at compile-time; thus the starting offset is a com-
pile-time constant. In the following discussion, we use the notation given in Definition 6-3

without further description.

Definition 6-4: The starting offset, in bytes, for the k-th array, , of the si&pe  of the

common block C is

start(S, A) =

g M i
Ee'j —Iﬁl%.

||M|

By checking the memory locations allocated to each array for any overlap, we can deter-
mine if arrays in two common block definitions share elements. Since the offset is a com-

pile-time constant, this can be determined at compile time.

Definition 6-5: The two arraysA, and\',, , declared in the respective sh&pes and
S of the common block C, have common elemeotsmmon 4 A',.) ) iff
start(S., A',) <start(, A, ;) and start(, A) <start(Sc, Ay, ,) .

whereA, isthe k-th array dd. an8l,, isthé -th arraySf
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If two arrays in different shapes of the common block share common elements, we can find
the mapping between these elements by extending the algorithm developed for array sum-
mary reshapes. We provide an exact mapping only when the elements of both arrays are of
the same type and the elements are aligned with each other. Note that the descriptor are not
mapped to a single array, because the array may be overlapped with multiple arrays in the

other shape.

Theorem 6-4: For the two arraysA, and\',, such thebmmonr( 4 A',)) = true ,

e = €, andstart(&, A) sstart(S,, A',) (mode,) , the elements of the array

section descriptoD 3 of the arraf,  that are common to the aAgy are given by
ma[%D A Projec%lntersecED R EI {a,a,...a} Ewhere,
= k K k =
E u€a; su; uy sa; suy E
R=[] = ¥ D,
T :
[ unksanKSUnk u’nksa'nksw . O
0 " O a
%:ngma IDH Du 1! +1%+start(§:,Ak)ET
i=1 j=1
0 n'y DD , i—1 0 0

Ik’ 1
—I + 1%+ start(Sq, A'y) EI

%
1]
™M
00
o
N
o0
—1
=

and the dimension variables of the arrafys gl aalkr,e.., a:,(]k aiﬁd e al

Since arrays in different common block shapes can overlap, an array section descriptor of
an array in one shape will be mapped into multiple array section descriptors in the second

shape.

Theorem 6-5: An array section descriptod Ay of the arr@y,,  of the common block
shapeS'. of the common block C with respect to the common block§hape  of the same

common block is a set of array descriptgf®,, ..., D, } , where for all k such that
i j
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i<k<j, A is an array of the common block shage aoimor( A., A) = true

and
0
e =€, and

%maﬁjD LA AL Kok
B U Ao start($., A,) =start(S., A',) (mode)

D, = [

<« 0

O .
E {AL otherwise

6.6. Related Work

Many previous interprocedural analyzers did not address the array reshape problem. One
way to avoid array reshape analysis is to perform inline substitution and generate equiva-
lence statements to describe the reshapes that occur in parameter passing and in common
blocks [67]. This approach only shifted the reshapes of parameters and common blocks to

the reshapes of equivalences.

Another proposed scheme to eliminate the reshape problem is to linearize all the array
accesses [31]. However, performing array analyses using these linearized accesses is more
complex than using multi-dimensional arrays. For example, in array data-flow analysis,
many simple regions in multi-dimensional arrays get converted into complex lattice pat-

terns in a one-dimensional linearized space.

Simple array reshape analysis is used in a few interprocedural analyzers [137]. Their scope
was limited to a class of reshapes where the formal array declaration is identical to the
lower dimensions of the actual array. These simple reshapes are performed by including the
upper dimension information of the actual array with the renamed array section of the

formal array.

We have designed the first algorithm capable of handling many complex reshape patterns
that occur in practice. Using integer projections, we are able to handle many array reshapes

that occur in parameter passing, equivalences, and different common block declarations.
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Recently, a similar parameter reshape algorithm that uses integer programming was pro-
posed by Creusillet and Irigoin [45]. Their algorithm was an extension of our earlier algo-

rithm [75], which did not eliminate lower dimensions, as presented in Theorem 6-2.

6.7. Chapter Summary

In this chapter we introduce a systematic approach for analyzing array reshapes. We
present algorithms to handle array reshapes that occur in parameter passing, equivalences
and different common block declarations. The algorithms are based on the linear inequal-
ities framework. We create a special system of inequalities and use integer projection to
map an array summary of one shape to the corresponding summary of the other shape.

These algorithms are capable of detecting many simple reshape patterns found in practice.
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Experimental Results in Coarse-Grain
Parallelism

In this chapter, we evaluate the impact of coarse grain parallelization analysis. We have
implemented the interprocedural array analysis described in the previous four chapters as
a part of the Stanford SUIF compiler. We show that the SUIF parallelizer is capable of
locating large coarse-grain parallel loops in sequential programs without any user interven-
tion. We also provide an empirical evaluation of the compiler system by using it to paral-
lelize more than 115,000 lines of FORTRAN code from 39 programs in four benchmark
suites. We evaluate the effectiveness of using interprocedural analysis, including two

advanced array analysis techniques: array privatization and array reduction [76].

We present static counts of the parallelizable loops found using each of these techniques.
Static loop counts, though, are not good indicators of whether parallelization is successful.
Specifically, parallelizing just one outermost loop can have a profound impact on a pro-
gram’s performance. Dynamic measurements provide much more insight into whether a
program may benefit from parallelization. Thus, in addition to static measurements on the
benchmark suites, we also present a series of results gathered from executing the programs
on a parallel machine. We present overall speedup results, and other measurements of some
of the factors that determine the speedup. We also provide results that identify the contri-

butions of the analysis components of our system.

7.1. Experimental Setup

Our compiler system automatically parallelizes sequential applications without relying on
any user directives. Parallelized programs generated by our compiler are executed on

cache-coherent shared address-space multiprocessors.
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7.1.1. The Compiler System

Our experimental setup is based on the Stanford SUIF compiler. The compiler takes a
sequential FORTRAN program as input, performs a large suite of analyses to parallelize
the code, and outputs the results as a SPMD (Single Program Multiple Data) parallel C ver-
sion of the program that can be compiled by native C compilers on a variety of architec-
tures. The resulting C program is linked to a parallel run-time system that currently runs
on several bus-based shared memory architectures (Silicon Graphics Challenge and Power
Challenge, and Digital 8400 multiprocessors [57]) and scalable shared-memory architec-
tures (Stanford DASH [105] and Kendall Square KSR-1 [94]).

We have developed an interprocedural parallelizer with advanced array analyses and opti-
mizations, that is capable of detecting coarse-grain parallelism [75,76,71]. The parallelizer
Is integrated as a part of the SUIF compiler system [144]. Other advanced optimizations
such as loop transformations [146], data and computation co-location [13], data transfor-
mations (Chapter 8), synchronization elimination [140], compiler-directed page coloring
[30], and compiler-inserted prefetching [116] have also been implemented in the SUIF
compiler system. Detection of coarse-grain parallelism, in combination with these other
optimizations, can achieve significant performance improvements for sequential scientific
applications on multiprocessors. The SUIF compiler system has demonstrated this by
obtaining the highest knowBPEC92fp andSPEC95fp ratios to date [8,73].

However, in this chapter we focus only on the ability of the compiler to detect coarse-grain
parallelism. Thus, to obtain parallel executions, we have adopted a very simple parallel
code generation strategy that does not include the locality optimizations. The compiler par-
allelizes only the outermost loop that the analysis has proven to be parallelizable. Our com-
piler suppresses parallel execution if the overhead involved is expected to overwhelm the
benefits. The run-time system estimates the amount of computation in each parallelizable
loop using the knowledge of the iteration count at run time, and runs the loop sequentially
if it is considered too fine-grained to have any parallelism benefit. The iterations of a par-
allel loop are evenly divided between the processors at the time the parallel loop is

spawned.
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7.1.2. Multiprocessors

We evaluate the effectiveness of coarse grain parallelism by executing the parallelized
SPMD loop nests using two different bus-based shared-memory multiprocessors. A sum-
mary of the Silicon Graphics Challenge and the Digital AlphaServer 8400 multiprocessors

is given in Figure 7-1.

The Silicon Graphics Challenge multiprocessor used in the experiments is a bus-based
shared-memory multiprocessor containing 8 MIPS R4400 microprocessors, a single-issue
superpipelined processor. The floating point unit of the R4400 is not fully pipelined, i.e., it
cannot issue a new floating point instruction to the same functional unit every clock cycle.
The R4400 has 16 Kbytes of on-chip instruction cache and 16 Kbytes of on-chip data cache.
The data interface to the off-chip cache is 128 bits wide and runs at a half or a third of the
on-chip clock rate. The multiprocessor interconnect used in the Challenge is called Power-
Path-2. PowerPath-2 is a wide, split transaction bus capable of a sustained transfer rate of
1.2 Gigabytes per second. The bus implements a write invalidate cache coherency protocol
and has independent 256-bit data bus and 40-bit address bus. The block size used in the
Challenge is 128 bytes. The independent data and address buses provide support for split

transactions and the PowerPath-2 can have up to eight outstanding read transactions [82].

The Digital AlphaServer 8400 used in the experiments is a bus-based shared-memory mul-
tiprocessor containing 8 Digital 21164 Alpha processors. The Digital 21164 Alpha is a
quad-issue superscalar microprocessor with two 64-bit integer and two 64-bit floating point
pipelines [49]. There are two levels of caches on-chip: 8 KB instruction/ 8 KB data level 1
cache, and 96 KB of combined level 2 cache. The memory system allows multiple out-
standing off-chip memory accesses. Each processor has 4 MB of 10ns external cache. The
architecture provides 32 integer and 32 floating-point registers. The 256-bit data bus, which
operates at 75MHz, supports 265ns memory read latencies and 2.1 GB per second of data

bandwidth. Banked memory modules are attached to the bus [57].

7.2. Examples of Coarse-Grain Parallelism

Not only do some of the SUIF-parallelized loops execute for a long time, they can also be

very large. The largest loop SUIF parallelizes is fspac77 of thePerfect benchmark
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Silicon Graphics Challenge

Digital AlphaServer 8400

Machine

Number of processors 8 8

Main memory 768 MB 4GB

System bus bandwidth 1.2 GB/sec 2.1 GB/sec
Operating system IRIX 5.3 OSF1V3.2
Processor MIPS R4400 Digital Alpha 21164
Clock speed 200 MHz 300 MHz

16 KB Instruction + 8 KB Instruction + 8 KB Data

On-chip cache 16 KB Data 96 KB combined second leve
External cache 4 MB 4 MB
Uniprocessor SPECfp92 451 513

Figure 7-1. Characteristics of the two multiprocessor systems used for the experiments

suite [97], consisting of 1002 lines of code from the original loop and its invoked proce-

dures. An outline of the loop is shown in Figure 7-2. The boxes represent procedures and
the lines represent procedure invocations. The outer parallel loop, marked using light gray
shading, contains 60 subroutine calls to 13 different procedures. Within this loop, the com-
piler found 48 interprocedural privatizable arrays, 5 interprocedural reduction arrays and

27 other arrays accessed independently.

Another example of a large coarse-grain parallel loop discovered by the SUIF compiler is
in the SPEC95fp programturb3d. The four main computation loops in ttueb3d com-

pute a series of three-dimensional FFTs. While these loops are parallelizable, they all have
a complex control structure containing large amounts of code, as shown in Figure 7-3.
Each parallel loop, as indicated in the diagram, consists of over 500 lines of code spanning

eight or nine procedures, with up to 42 procedure calls. It is necessary to parallelize these
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A parallel loop nest found by Single coarse-grain
first generation parallelizers parallel region

Figure 7-2. Parallelizable regions from a code segmespen77
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CFFT

Y

DCFT

The four coarse-grain parallel loops

D Procedure —  Procedure call
=4 A parallel loop nest found by Single coarse-grain
= first generation parallelizers parallel region

Figure 7-3. Parallelizable regions from a code segmenti3d

outer loops to get any significant speedup. The key to discovering the parallelism is inter-
procedural array analysis. The compiler is able to determine that iterations of the outer
loops operate on independent planes of the arrays across the procedure calls. The analysis
Is further complicated by the array reshapes found in the program, of which an example is
given in Figure 6-4. Once parallelizeédrb3d speeds up by over 5.8 times on a 8-proces-

sor Digital AlphaServer 8400, as shown in Figure 7-4.
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o0—0a Traditional fine-grain parallelism

Speedup
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—o Coarse-grain parallelism

0O 1 2 3 4 5 6 7 8
Number of Processors

Figure 7-4. Parallel speedup torb3d on a 8 processor AlphaServer

7.3. Benchmark Programs

To evaluate our parallelization analysis, we measured its success at parallelizing four stan-
dard benchmark suites described in Figure 7-5: the Fortran programs fr8REGO5fp

and SPEC92fp benchmark suites, the samplas benchmarks, and the Perfect Club
benchmark suite. We have made a very small number of modifications to the original pro-

grams, mainly to fix bugs. These are explicitly stated in the benchmark descriptions.

7.3.1.SPEC95fp Benchmark Suite

SPEC95fp is a set of 10 floating-point programs created by an industry-wide consortium
and is currently the industry standard in benchmarking uniprocessor architectures and com-
pilers. In our analysis, we onfgippp because it contains very little loop-level parallelism

and has many type errors in the original Fortran source.
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Execution time (seconds

Program Length Description Challenge | AlphaServe
SPEC95fp
tomcatv 190 lines| mesh generation 314.4
swim 429 lines| shallow water model 282.1
su2cor 2332 lines| quantum physics 202.9
hydro2d 4292 lines| Navier-Stokes 350.1
mgrid 484 lines| multigrid solver 367.3
applu 3868 lines| parabolic/elliptic PDEs 393.4
turb3d 2100 lines| isotropic, homogeneous turbulence 347.7
apsi 7361 lines| mesoscale hydrodynamic model 193.3
waveb 7764 lines| 2-D particle simulation 217.4
SPEC92fp
doduc 5334 lines| Monte Carlo simulation 20.0 4.8
mdljdp2 4316 lines| equations of motion 455 19.4
waveb 7628 lines| 2-D particle simulation 42.9 12.6
tomcatv 195 lines| mesh generation 19.8 9.2
ora 373 lines| optical ray tracing 89.6 215
mdljsp2 3885 lines| equations of motion, single precision 40.5 19.5
swm256 487 lines| shallow water model 129.0 42.6
su2cor 2514 lines| quantum physics 156.1 20.1
hydro2d 4461 lines| Navier-Stokes 110.0 31.6
nasa’7 1105 lines NASA Ames Fortran kernels 143.7 59.0
Nas
. - 12°x5% grid 10.0 2.3
appbt 4457 lines| block tridiagonal PDEs 64fx5fgrid 3.039.3
. . e 12°x5° grid 4.6 1.2
applu 3285 lines| parabolic/elliptic PDEs 64fx5fgrid 2.500.2
. scalar pentadiagonal 12°x5° grid 7.7 2.2
appsp 3516 lines PDEs P ’ 643x5% grid 4,409.0
. . 65,536 elements 0.6 0.3
buk 305 lines| integer bucket sort 8,388,608 elements a5l7
cgm 855 lines| sparse conjugate gradient 1,400 elements Sf 2,0
14,000 elements 93,2
embar 135 lines random number 256 i.terati.ons 4.6 1.4
generator 65,536 iterations 367.4
. 64° grid 26.3 6.2
fitpde 773 lines| 3-D FFT PDE 256? grid 3850
. . o 32° grid 0.6 0.2
mgrid 676 lines| multigrid solver 256 grid 1978
Perfect
adm 6105 lines| pseudospectral air pollution model 20.2 6.4
arc2d 3965 lines| 2-D fluid flow solver 185.0 46.4
bdna 3980 lines| molecular dynamics of DNA 63.7 12.4
dyfesm 7608 lines| structural dynamics 18.3 3.8
flo52 1986 lines| transonic inviscid flow 24.1 7.2
mdg 1238 lines| moleclar dynamics of water 194.5 62.1
mg3d 2812 lines| depth migration 410.9 250.7
ocean 4343 lines 2-D ocean simulation 718 23.6
gcd 2327 lines| quantum chromodynamics 9.6 3.1
spec77 3889 lines| spectral analysis weather simulation 124.6 20.7
track 3735 lines| missile tracking 6.2 1.8
trfd 485 lines| 2-electron integral transform 21.1 55

Figure 7-5. Benchmark descriptions, data-set sizes and execution times
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7.3.2.SPEC92fp Benchmark Suite

SPECO92fp is a set of 14 floating-point programs from the 1992 version of the SPEC
benchmark suite. The programesncatv, swm256, su2cor, hydro2d, wave5 andfpppp

are the same &PEC95fp, but with smaller data sets. Because the interprocedural analysis
is available only for FORTRAN, we omalvinn andear, the two C programs, arspice,

a program of mixed Fortran and C code. We also tppjpp for the same reasons given

above.

7.3.3.Nas Parallel Benchmark Suite

Nas is a suite of eight programs used for benchmarking parallel computers. NASA pro-
vides sample sequential programs plus application information, with the intention that they
can be rewritten to suit different machines. We use all the NASA sample programs except
for embar. We substitute foembar a version from Applied Parallel Research(APR) that
separates the first call to a function, which initializes static data, from the other calls. We

present results for both small and large data set sizes.

7.3.4. Perfect Club Benchmark Suite

Perfect is a set of sequential codes used to benchmark parallelizing compilers. We present
results on 12 of 13 programs he$pice contains pervasive type conflicts and parameter
mismatches in the original FORTRAN source that violate the FORTRAN-77 standard.
This program is considered to have very little loop-level parallelism. We corrected a few
type declarations and parameters passedré2d, bdna, dyfesm, mgrid, mdg and

spec’7.

7.4. Applicability of Advanced Analyses

In this section we present static and dynamic measurements to assess the impact of the array
analysis components. We defindaselinesystem that serves as a basis of comparison
throughout this section. The baseline refers to our system without any of the advanced array
analyses. It performs intraprocedural data dependence, and lacks the capability to privatize
arrays or recognize reductions. Note that the baseline system is much more powerful than

many existing parallelizing compilers as it contains all the interprocedural scalar analysis
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[76]. Our full system, in addition to the analyses in the baseline system, performs array
reduction and privatization analysis and carries out all the analyses interprocedurally. We
also separately measure the impact of the three components: interprocedural analysis, array

reductions, and array privatization.

7.4.1. Static Measurements

The table in Figure 7-6 counts the number of parallel loops found by the SUIF compiler
using different combinations of techniques. The first column of the table is the total
number of loops in each program. The last column indicates the counts of all parallelizable
loops, including those nested within other parallel loops which would consequently not be
executed in parallel under our parallelization strategy. Columns 2 through 9 indicate the
combinations of techniques needed to parallelize each of these loops. The second column
gives the number of loops that are parallelizable in the baseline system. The next three col-
umns measure the applicability of the intraprocedural versions of advanced array analyses.
We separately measure the effect of including reduction recognition, privatization, and
both reduction recognition and privatization. The next set of four columns includes inter-
procedural data dependence analysis. Similarly, the eighth and ninth columns measure the

effect of adding interprocedural privatization, with and without reduction recognition.

We see from this table that the advanced array analyses are applicable to a majority of the
programs in the benchmark suite, and several programs can take advantage of all the inter-
procedural array analyses. Although the techniques do not apply uniformly to all the pro-
grams, the frequency with which they are applicable for this relatively small set of
programs demonstrates that the techniques are general and useful. We observe that many
of the parallelizable loops do not require any new array techniques. However, the coarse-
grained loops, parallelized with advanced array analyses, often contain a significant potion
of the overall computation of the program and, as shown below, can make a substantial dif-

ference in overall performance.
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Parallel Loops

# of Intraprocedural Interprocedural
Array Reduction loops O O O O | Total
Array Privatization O O O O
SPEC95fp
tomcatv 16 10 10
swim 24 22 22
su2cor 117 89 89
hydro2d 163| 155 155
mgrid 46 35 35
applu 168 127 10 6 6 149
turb3d 70 55 3 4 62
apsi 298| 169 2 171
waveb 362| 307 307
SPEC92fp
doduc 280| 230 7 237
mdljdp2 33 10 2 1 2 15
waveb 364| 198 198
tomcatv 18 10 10
ora 8 5 3 8
mdljsp2 32 10 2 1 2 15
swm256 24 24 24
su2cor 128 65 3 1 69
hydro2d 159| 147 147
nasa7 133 59 1 6 66
Nas
appbt 192 139 3 18 6 3 169
applu 168 117 4 6 6 3 136
appsp 198| 142 3 12 6 3 166
buk 10 4 4
cgm 31 17 2 19
embar 8 3 1 1 5
fftpde 50 25 25
mgrid 56 38 38
Perfect
adm 267| 172 2 2 176
arc2d 227| 190 190
bdna 217, 111 28 140
dyfesm 203| 122 5 2 1 5 135
flo52 186| 148 1 7 154
mdg 52 35 1 2 38
mg3d 155| 104 2 106
ocean 135| 102 1 6 109
gcd 157 92 7 99
spec77 378 281 13 2 17 1 314
track 91 51 3 1 55
trfd 38 15 5 1 21
TOTAL 5262| 2635 95 66 D 68 5 10 11 2890

Figure 7-6. Static Measurements: Number of parallel loops found by each technique
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7.4.2. Dynamic Measurements

We also measure the dynamic impact of each of the advanced array analyses. We present
the results foNas benchmark with both small and large data sets. The three benchmarks
with small execution times-SPEC92fp, Nas with small dataset anderfect—are exe-

cuted on the Silicon Graphics Challenge multiprocessors, and the results are given in Fig-
ures 7-8, 7-10 and 7-11 respectively. The other two benchns?E£95fp andNas with

the large data set, are tested on the Digital AlphaServer, and the results are given in Figures
7-7 and 7-9.

While parallel speedups measure the overall effectiveness of a parallel system, they are
also highly machine dependent. Not only do speedups depend on the number of processors,
they are sensitive to many aspects of the architecture, such as the cost of synchronization,
the interconnect bandwidth, and the memory subsystem. Furthermore, speedups measure
the effectiveness of the entire compiler system and not just the parallelization analysis.
Thus, to capture more precisely how well the parallelization analysis performs, we mea-

sure theparallelism coveragand thegranularity of parallelismas explained below.

7.4.2.1. Parallelism coverage

We term the overall percentage of time spent in parallelized regionspsdiielism cov-

erage The coverage measurements are taken by running the programs on a single proces-
sor of the multiprocessor. As the coverage results are reported in relative terms, they are
less sensitive to differences between processors. Parallel coverage is an important metric
for measuring the effectiveness of parallelization analysis. By Amdahl's law, programs
with low coverage will not achieve good parallel speedup. For example, a program with a
parallel coverage of 80% can at most speedup by 2.5 on 4 processors. High coverage is
indicative that the compiler analysis is locating significant amounts of parallelism in the

computation.

In the figures, we present the contribution of each analysis component to the parallel cov-
erage of the SUIF compiler. These coverage measurements were taken by recording the

specific array analyses that apply to each parallelized loop, and instrumenting the sequen-
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tial code to determine the execution time of each of the loops. We also show a comparison

of the parallelism coverage achieved by the SUIF and the baseline compiler.

Overall, we observe rather good coverage (above 80%) for all 9 progr&R&@95fp,
8 of the 10 programs iBPEC92fp, 7 of the 8Nas programs and 6 of the Rerfect
benchmarks. A third of the programs spend more than 50% of their execution time in loops

that require advanced array analysis techniques.

7.4.2.2. Granularity of parallelism

A program with high coverage is not guaranteed to achieve parallel speedup because of a
number of factors. The granularity of parallelism extracted is a particularly important fac-
tor, as frequent synchronizations can slow down a fine-grain parallel computation. To
guantify this property, we define a program’s granularity as the average execution time
spent in its parallel regions when the program is executed on a single processor. In the fig-
ures, we show a comparison between the granularity achieved by the SUIF and the baseline

compiler.

7.4.2.3. Program speedup

The final result we present is a set of speedup measurements. Speedups are calculated as
ratios between the execution time of the original sequential program and the parallel exe-
cution time. The parallel speedup results are also shown in the figures. Note that the speed-
ups were obtained without any futher optimizations that are enabled by parallelization. The
speedups of many of these programs can be improved by performing optimizations to

improve data locality and reduce communication and synchronization [8,73].

7.4.3. Discussion

7.4.3.1.SPEC95fp benchmarks

Array privatization has an impact @pplu and interprocedural analysis is required for
turb3d. The overall coverage of the programs is above 80%. Howapsrandwave5

do not yield any parallel speedup due to the small granularity of the parallel regions. The

programswim shows superlinear speedup because its working set fits into the multipro-
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cessor’'s aggregate cache. The performantenoéatv andswim can be further improved

by memory optimizations (Chapter 8).

7.4.3.2.SPEC92fp benchmarks

Figure 7-8(B) shows that while the impact of array privatization is minimal, array reduction
analysis dramatically increases the parallel speedupdtj§p2 andmdljdp2. Although
mdljsp2, mdljdp2 andnasa7 required array privatization, onlyasa7 had any visible
benefit from this optimization. However, the compiler achieves good overall results in par-
allelizing SPEC92fp. Coverage is above 80% for 8 of the 10 programs, and we achieve

speedups on all eight.

The results also show that high coverage is necessary but not sufficient for high speedups.
Programs with a fine granularity of parallelism, even those with high coverage such as
su2cor, tomcatv andnasa?, tend to have lower speedups. Another important factor that
affects speedups is data locality. Two of these progreamsiaty andnasa?, have poor
memory behavior. We will show that the performance of these programs can be improved
significantly via data and loop transformations to improve cache locality (Chapter 8), and

by using techniques to minimize synchronization [140].

7.4.3.3.Nas benchmarks

We have gathered results for tNhas benchmark on two different multiprocessors using

two different datasets as given in Figures 7-9 and 7-10. The results on the different multi-
processors are quite similar. The advanced array analyses in SUIF are important to the suc-
cessful parallelization of thgas benchmarks. Comparing SUIF with the baseline system,

we observe that the array analyses have two important effects. Array privatization enables
the compiler to locate significantly more parallelism in two of the progragm, and

embar. Array reductions increase the granularity of parallelisnappbt, applu and

appsp by parallelizing an outer loop instead of inner loops nested inside it. Observe that,
in appbt with the large dataset, finding an outer loop even when the coverage is at 100%

has a significant impact on performance.
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The improvements in coverage and granularitias translate to good speedup results.
Six of the eight programs yield speedups. In both experim@uiktsyields no speedup due

to low coverage, which is not surprising as it implements a bucket sort algorithm. With the
small datasetapplu is too fine-grained to yield any speedup. Overall, the advanced array
analyses are important fdlas; more than half of the benchmark suite would not speed up

without these techniques.

7.4.3.4 Perfect benchmarks

As displayed in Figure 7-11(B)-(D), the array privatization analysis significantly improves
the parallelism coverage spec77andtrfd while some improvements occur fin52,

mdg andocean. Granularity is increased fepec77 andtrfd, and speedup is achieved in

the case ofrfd. Although little parallel speedup is observedspec77, the improvement

over the baseline system confirms the validity of our preference for outer loop parallelism.
As a whole, SUIF doubles the number of programs that achieve a speedup from 2 to 4. The
loops requiring array privatization adm, bdna anddyfesm had no impact on parallel

execution.

The overall parallelization d?erfect was not as successful as for the other two benchmark
suites. As Figure 7-11 indicates, there are two basic problems. Half of the programs have
coverage below 80%. Furthermore, the parallelism found is rather fine-grained, with most
of the parallelizable loops taking less than u80n a uniprocessor. In fact, had the run-
time system not suppressed the parallelization of fine-grained lo&gsfect, the results

would have been much worse. Thus, not only is the coverage low, the system can only

exploit a fraction of the parallelism extracted.

We now examine the difficulties in parallelizifgrfect to determine the feasibility of
automatic parallelization and to identify possible future research directions. We found that
some of these programs are simply not parallelizable as implemented. Some of these pro-
grams contain a lot of input and output (en@3d andspec77); their speedup depends

on the success of parallelizing 1/0. Further, “dusty deck” features of these programs, such

as the use aquivalenceconstructs irocean, obscure information from analysis. In con-
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trast, most of th&€PEC95fp, SPEC92fp andNas programs are cleanly implemented, and

are thus more amenable to automatic parallelization.

Many of these programs, particulawgean, adm, andmdg, have key computational

loops that are safe to parallelize, but they are beyond the scope of the techniques imple-
mented in SUIFocean andadm contain non-linear array subscripts involving multiplica-

tive induction variables that are beyond the scope of the higher-order induction variable
recognition algorithm in the SUIF compiler. There will always be extensions to an auto-
matic parallelization system that can improve its effectiveness for some programs. None-
theless, there is a fundamental limitation to static parallelization. Some programs cannot be
parallelized with only compile-time information. For example, the main logaim is
parallelizable only if the problem size, which is unknown at compile time, is even. A prom-
ising solution is to have the program check if the loop is parallelizable at run time, using
dynamic information. Interprocedural analysis and optimization can play an important part
in such an approach by improving the efficiency of the run-time tests. Analysis can derive
highly optimized run-time tests and hoist them to less frequently executed portions of the
program, possibly even across procedure boundaries. The interprocedural analysis in our

system provides an excellent starting point for work in this area.

The advanced analysis can also form the basis for a useful interactive parallelization sys-
tem. Even when the analyses are not strong enough to determine that a loop is paralleliz-
able, the results can be used to isolate the problematic areas and focus the users’ attention
on them. For example, our compiler finds in the proggach a 617-line interprocedural

loop that would be parallelizable if not for a small procedure. Examination of that proce-
dure reveals that it is a random number generator, which a user can potentially modify to
run in parallel. By requesting very little help from the user, the compiler can parallelize the

loop and perform all the tedious privatization and reduction transformations automatically.

7.5. Related Work

Previous evaluations of interprocedural parallelization systems have provided static mea-
surements of the number of additional loops parallelized as a result of interprocedural anal-

ysis [81,84,108,138]. We have compared our results with a recent empirical study, which
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examines th&pec89 andPerfect benchmark suites [84]. When considering only those
loops containing calls for the set of 16 programs used in that study, the SUIF system is able
to parallelize more than five times as many loops [76]. The key difference between the two
systems is that SUIF contains full interprocedural array analysis, including array privatiza-

tion and reduction recognition.

The Polaris compiler system is also a fully implemented parallelizer using advanced anal-
yses [24,142]. However, Polaris performs no interprocedural analysis, instead relying on
full inlining of the programs to obtain interprocedural information. It is difficult to make
direct comparison between the two systems. For example, optimizations such as unused
procedure elimination, which eliminates some loops, and selective procedure inlining,
which creates copies of some loops, make the parallel loop counts different. The latest

results from the Polaris compiler can be found in [22].

7.6. Chapter Summary

We have a fully implemented interprocedural parallelizer with advanced array analyses
and we have evaluated its effectiveness by parallelizing more than 115,000 lines of FOR-
TRAN code from 39 programs in four benchmark suites. Out of 5,262 loops found in these
programs we were able to parallelize more than 55%, of which 255 required advanced
analyses. However, since static loop counts alone do not provide a good measurement of

coarse grain parallelism, we measured the dynamic behavior of these programs.

Figure 7-12 summarizes the impact of the improvements from the advanced array analyses
on coverage, granularity and speedup in the three benchmark suites. The first row contains
the number of programs reported from each benchmark suite. The second row shows how
many programs have their coverage increased to above 80% after adding the advanced
array analyses. The third row gives the number of programs that have increased granularity
(but similar coverage) as a result of the advanced array analyses. The fourth row shows
how these significant improvements affect overall performance. Overall, 75% of the pro-

grams obtained parallel coverage over 80% and half the programs were able to achieve

higher than 50% of the ideal speedup.

132



SPEC95fp | SPEC92fp
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Perfect

Total number of programs
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Programs with improved coverage (> 80%)

Programs with increased granularity

Programs with improved speedup
(> 50% of the perfect speedup)

Figure 7-12. Summary of the experimental results
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8 Improving Memory Performance with
Data Transformations

It is ideal to provide the programmer with uniform access to an unlimited amount of the
fastest memory available. However, it is neither technologically feasible nor economically
viable to build such machines, computer designers thus attempt to create the illusion of
having uniform and fast access to memory by exploiteglity of referencecommonly

found in programs. Modern computers are designed with a hierarchical memory subsystem
to take advantage of the locality of reference in programs, and deliver fast access times to
a large amount of data stored in the memory system. Small amounts of fast memory or a
cache are located closer to the processor to shield the programs from the high latency of the
larger memory in the lower levels of the hierarchy. While these caches can provide a tre-
mendous performance boost for the programs with locality, they are very sensitive to the
memory access patterns of the programs. Many simple and common access patterns found
in practice can trigger unexpected problems in the performance of the caches. Two such
problems that occur in multiprocessor cachedase sharing missesndcache conflict
missesLarge cache lines cause false sharing in multiprocessors. When different processors
modify different data that happen to be co-located on the same cache line, the cache line
bounces back and forth between the two caches. Cache conflict misses occur when access-
ing an array with a stride such that some accesses will be mapped to the same cache loca-
tion. Although the cache may be empty, the data has to be fetched from memory every time

the access is repeated.

Recent work on code transformations to improve cache performance has been shown to
improve uniprocessor system performance significantly [33,147]. Making effective use of

the memory hierarchy on multiprocessors is even more important to performance, but also
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more difficult to achieve. This is true for bus-based shared address space machines
[50,51], and even more so for scalable shared address space machines [26] such as the
Stanford DASH [105] and FLASH multiprocessors [101], MIT ALEWIFE [1], Kendall
Square’s KSR-1 [94], the Convex Exemplar [115], and the Silicon Graphics Origin. The
memory on remote processors in these architectures constitutes yet another level in the
memory hierarchy. The differences in access times among cache, local, and remote
memory can be very large. For example, on the DASH multiprocessor, the ratio of access
times between the first-level cache, second-level cache, local memory, and remote
memory is roughly 1:10:30:100. Therefore, it is important to minimize the number of

accesses to all the slower levels of the memory hierarchy.

This chapter is organized as follows. In Section 8.1, we define the problem of false sharing
misses and conflict misses that occur in multiprocessor caches. We propose a compiler
algorithm to eliminate them in Section 8.2, by performing data transformations that will
make all array elements assigned to each processor contiguous in memory. The array
access functions created by the data transformations are inefficient. Therefore, in
Section 8.3, we propose a set of optimizations to simplify access functions. We have
implemented this algorithm and Section 8.4 evaluates its impact. We compare our

approach to related works in Section 8.5. Finally, we summarize in Section 8.6.

8.1. Problem Statement
In this chapter, we focus on false sharing misses and conflict misses. We introduce a com-
piler algorithm to eliminate these two classes of problems by transforming data arrays in

the programs [7,12].

8.1.1. False Sharing Misses

In a modern computer, data is transferred in fixed-size units known as cache lines, which
are typically 4 to 128 bytes long [82]. A computation is said to kpadial localityif it

uses multiple words in a cache line before the line is displaced from the cache. While spa-
tial locality is common to both uni- and multiprocessors, false sharing is unique to multi-

processors. False sharing occurs when different processors use different data that happen
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to be co-located on the same cache line. Even if a processor re-uses a data item, the item

may no longer be in the cache due to an intervening access by another processor to a dif-

ferent word in the same cache line.

Assuming the FORTRAN convention that arrays are allocated in column-major order, our
example contains is a significant amount of false sharing, as shown in Figure 8-1. If the
number of rows accessed by each processor is smaller than the number of words in a cache
line, every cache line is shared by at least two processors. Each time one of these lines is
accessed, unwanted data is brought into the cache. Furthermore, when one processor writes
part of the cache line, that line is invalidated in the other processor’s cache. This particular

combination of computation mapping and data layout will result in extremely poor cache

performance.
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Processor1 Processor 2
Cache Cache
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the first processor The direction of
. the contiguous
A cache line elements in
Data assigned to memory

the second processor

Figure 8-1. False Sharing
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8.1.2. Cache Conflict Misses
Another problematic characteristic of data caches is that they typically have a small set-

associativity; that is, each memory location can be cached only in a small number of cache
locations. Conflict misses occur whenever different memory locations contend for the
same cache location. Since each processor only operates on a subset of the data, the

addresses accessed by each processor may be distributed throughout the shared address

space.

Consider what happens to the example in Figure 8-2. If the arrays are bd234ze 1024
and the target machine has a direct-mapped cache of size 64KB. Assuming that REALs are

memory to cache mapping

Processor 1
Cache

The direction of
Data assigned to . the contiguous
the first processor I:I A cache line elements in

memory

Figure 8-2. Cache Conflicts
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4B long, the elements in every 16-th column will map to the same cache location and cause

conflict misses. This problem exists even if the caches are set associative.

8.2. Data Transformations
As shown in the previous section, the cache performance on a multiprocessor depends on

the pattern of the data layout in memory. Instead of simply obeying the data layout conven-
tion used by the input language (e.g. column-major in FORTRAN and row-major in C), we

can improve the cache performance by customizing the data layout for a specific program.
We observe that multiprocessor cache performance problems can be minimized by making
the data accessed by each processor contiguous in the shared address space, an example of

which is shown in Figure 8-3. Such a layout enhances spatial locality, minimizes false shar-

ing and also minimizes conflict misses.

ESENLEN

N
N NN
[ IS SN |

The direction of
Data assigned to cache the contiguous

the first processor lines elements in

D:l memory

Figure 8-3. Making data accessed by each processor contiguous in memory
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The importance of optimizing memory subsystem performance for multiprocessors has
also been confirmed by several studies of hand optimizations on real applications. Singh
et al. explored performance issues on scalable shared address space architectures; they
improved cache behavior by transforming two-dimensional arrays into four-dimensional
arrays so that each processor’s local data are contiguous in memory [132]. Torrellas et al.
[135] and Eggers et al. [50,51] also showed that improving spatial locality and reducing
false sharing resulted in significant speedups for a set of programs on shared-memory

machines.

8.2.1. Data Transformation Model

To facilitate the design of our data layout algorithm, we have developed a data transforma-
tion model that is analogous to the well-known loop transformation theory [20,148]. We
represent an-dimensional array as ardimensional polytope whose boundaries are given

by the array bounds, and the interior integer points represent all the elements in the array.
As with sequential loops, the ordering of the axes is significant. In the rest of this chapter,
we assume the FORTRAN convention of column-major ordering by default. For clarity the
array dimensions are 0-based, which means that fordimensional array with array

boundsd, xd, x ... xd_ , the linearized address for array elenfept.., i ) IS

(G ((ixdy_y#i ) xd i) X +ig) Xdy+in) xdy +iy O

Next, we introduce two primitivestrip-miningandpermutation that are used in combi-

nation to perform the data transformations.

8.2.1.1. Strip-mining primitive

Strip-mining an array dimension re-organizes the original data in that dimension as a two-
dimensional structure. For example, strip-mining a one-dimensobeément array with

strip sizeb turns the array into & x g array. Figure 8-4(a) shows the data in the original
array, and Figure 8-4(b) shows the new indices in the strip-mined array. The first column
of this strip-mined array is highlighted in the figure. The number in the upper right corner
of each square shows the linear address of the data item in the new ariaty dleenent

in the original array now has coordina@smod b, HJE in the strip-mined array. Given
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034567891011

(b) Strip-mined array

o3[ 6 9101 4 710202 5] 8] 11
0,10,2]0,3 ! 1,11 1,21 1,3 ! 2,112,223

(c) The final array after permutation

Figure 8-4. The indices of array accesses at each stage of transformation.
The number in the upper right corner shows the linearized address
of the data.

that block sizes are positive, with the assumption that arrays are 0-based, we can replace
the floor operators in array access functions with integer division assuming truncation. The
address of the element in the linear memory spaigedb +imodb =i . Strip-mining,

on its own, does not change the layout of the data in memory. It must be combined with

permutation transformations to have an effect.

8.2.1.2. Permutation primitive
A permutation transfornt maps am-dimensional array space to anothedimensional
space; that is, if s the original array index vector, the transformed array ilj?dices is

r =Ti.The array bounds must also be transformed similarly.
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For example, an array transpose mdps i,) (tgi,) . Using matrix notation this

{01} iy — P
10|, iy

The result of transposing the array in Figure 8-4(b) is shown in Figure 8-4(c). Figure 8-4(c)

becomes

shows the data in the original layout. Each item is labeled with its new indices in the trans-
posed array in the center. The new linearized address is in the upper right corner. As high-
lighted in the diagram, this example shows how a combination of strip-mining and
permutation can make every fourth data element in a linear array contiguous to each other.
In a cyclically distributed array, this could be used to make each processor’s share of data

contiguous.

In theory, we can generalize permutations to other unimodular transforms. For example,
rotating a two-dimensional array by 45 degrees makes data along a diagonal contiguous,
which may be useful if a loop accesses the diagonal in consecutive iterations. There are
two plausible ways of laying the data out in memory. The first is to embed the resulting
parallelogram in the smallest enclosing rectilinear space, and the second is to simply place
the diagonals consecutively, one after the other. However, the former consumes an exces-
sive amount of storage, and the latter generates complex address calculations. Further-
more, we do not expect unimodular transforms other than permutations to be important in

practice. Thus, we have not implemented general unimodular data transformations.

8.2.2. Legality

Unlike loop transformations, which must satisfy data dependences, any combinations of
strip-mining and permutation is a valid data transformation. On the other hand, loop trans-
forms have the advantage that they affect only one specific loop nest; performing an array
data transform requires that all accesses to the array in the entire program use the new lay-
out. Current programming languages such as C and FORTRAN have features that can
make these transformations difficult. The compiler cannot restructure an array unless it can

guarantee that all possible accesses of the same data can be updated accordingly. For exam-
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ple, in FORTRAN, the storage for a common block array in one procedure can be re-used
to form a completely different set of data structures in another procedure. In C, pointer

arithmetic and type casting can prevent data transformations.

8.2.3. Algorithm Overview

The data transformation algorithm uses data decompositions that are either provided by the
programmer using a language such as HPF (High Performance FORTRAN) [83] or auto-
matically generated by a compiler algorithm [2,13,16,21,68,107,129]. Figure 8-5 is an
example of a data decomposition specification using the HPF language. In the example, the
arrayA is mapped to a two-dimensional processor grid by two-dimensional blocks using
the templatd’. The HPF decomposition format allows the distribution of each dimension

of an array to be independently specified. Each dimension of an array can be either allo-
cated to the same processor (denoted by *), or distributeblacla, cyclicor block-cyclic
manner. Our algorithm supports data decompositions provided in the HPF decompaosition

format.

DIMENSION A(N, N)

IHPF$ PROCESSORS P(2, 2)

IHPF$ TEMPLATE T(N, N)

IHPF$ DISTRIBUTE T(BLOCK, BLOCK) ONTO P
IHPF$ ALIGN A(l, J) WITH T(l, J)

Figure 8-5. Example array declaration in HPF

Given the HPF data decompositions, many equivalent memory layouts make each proces-
sor's data contiguous in the shared address space. Our current implementation simply

retains the original data layout as much as possible. That is, all the data accessed by the
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same processor maintain the original relative ordering. We expect this compilation phase
to be followed by another algorithm that analyzes the computation executed by each pro-
cessor and improves the cache performance by reordering data and operations on each pro-
cessor [33,61,147].

Next, we present three examples of data transformations applied to a two-dimensional
array with (BLOCK, BLOCK) , (CYCLIC,*) and(CYCLIC (b),*) decompositions.

These examples illustrate how we apply the permutation and strip-mining primitives to
transform the data such that array elements assigned to each processor are contiguous in

memory.

8.2.3.1. Example of a two-dimensional block distribution

This example illustrates the transformation process @aOCK, BLOCK) distributed
two-dimensional array. The steps of the transformation process are given in Figure 8-6.
Figure 8-6(a) is a graphical representation of the memory layout of the array where the ele-
ments assigned to the first processor are highlighted. The access functions and the dimen-
sion sizes are given by Figures 8-6(b) and 8-6(c) respectively. We assume that the
dimensions of the array adg xd, ,aRdxP, are the number of processors in the pro-
cessor grid. In the first step of the transformation, the inner dimension is strip-mined with

a strip size o{%l . The identifier of the processor owning the data is specified by the
second of the' stfip-mined dimensions. Then, the three dimensions are permuted such that

the processor dimension is made outermost.

We further demonstrate this transformation by usirtPa 4 array, given in Figure 8-
7(a), where the elements are distributed to six processor8 srka grid. The offset in the
memory is given in the upper right corner of each element and the elements assigned to the
fist processor are highlighted. In the transformed array, in Figure 8-7(b), the elements of

the first processor are now assigned to contiguous locations in memory.

8.2.3.2. Example of a cyclic distribution
The next example is the transformation of a two-dimensional array distributed in a

(CYCLIC, *) manner. The steps of the transformation process are given in Figure 8-6.
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(a) Memory Layout
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Figure 8-6. Transformation process of an array with (BLOCK, BLOCK) distribution

The inner dimension is first strip-mined with a strip sizé’of , whtre is the number of
processors. The identifier of the processor owning the data is specified by the first of the
strip-mined dimensions. Next, the three dimensions are permuted such that the processor

dimension is made outermost.
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11 35| 47 35
11,0 11,2 11,3 3,0,23,1,
10 34| 46 34
10,0 10, 2 10, 3 2,0 32
9 33| 45 33
9,0 9,293 1,071,
8 32 44 32
8,0 8,2] 8,3 0,0, 20,
7 31| 43 19
7,0 7,273 3,0, 13
6 30| 42 18
6,0 6,2 6,3 2,0,12,
5 29| 41 17
50 52|53 1,0, 11,
4 28| 40 16
4,0 4,2 4,3 0,010,1, 1
3 271 39 3
3,0 32|33 3,031
2 26 38 2
2,0 22|23 2,0,d2,1
1 25 37 1
1,0 1,213 1,0,d1,1
0 24 36 0
0,0 02|03 0,0,4o,1
—
(a) before transformation (b) after transformation

Figure 8-7. A (BLOCK, BLOCK) distributed array before and after transformations

We expand on the example in Figure 8-9(a), whet@ a 4 array is distributed on three
processors. The transformed array, in Figure 8-9(b), has elements of the first processor

assigned to contiguous locations in memory.

8.2.3.3. Example of a block-cyclic distribution

We Illustrate a more complex transformation where a two-dimensional array with a
(CYCLIC (b), *) decomposition is made contiguous in memory. The transformation can
be represented as two strip-mining operations and a permutation, as shown in Figure 8-10.

In Figure 8-10(a), the four-dimensional data arrays in the last two steps are shown as a flat
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Figure 8-8. Transformation process of an array with (CYCLIC, *) distribution

structure where the inner two dimensions are represented by a tile and the outer two dimen-
sions are the placement of these tiles. The inner dimension is first strip-mined with strips
of size ofb . Then, the second of the strip-mined dimensions is strip-mined again with a
strip size ofP , wher® is the number of processors. The identifier of the processor owning
the data is specified by the first strip-mined dimension of the latter strip-mining step. Thus,

the four dimensions are permuted such that this processor dimension is made outermost.
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11 23| 35| 47 35| 39| 43| 47
11,0 11,111, 2| 11,3 3,0,23,1,23,2,43,3,2
10| 22| 34| 46 19 31 27f 31
10,0] 10,1] 10, 2] 10,3 3,0,13,1, 13,2 13,3, 1
9| 21 33| 45 3 71 11
9,0]191[92(93 3,0,03,1,03,2,(3, 3,
8| 20 32| 44 34 38 42| 46
8,01 81)|8,2]8,3 2,0,22,1,22,2,32,3,2
7| 19| 31 43 18 22| 26/ 30
7,0{71({72]73 2,0,12,1,12,212,3,1
6] 18| 30 42 2 6] 10| 14
6,0]16,16,2(6,3 2,0,02,1,92, 2,42, 3,
5( 171 29| 41 33| 37| 41| 45
50]51]|52]|5,3 1,0,41, 1,791, 2,241, 3, 2
4] 16 28| 40 171 21 25| 29
40]41]142]43 1,0,11,1,11,2 91,3, 1
3] 151 27| 39 1 5 9] 13
3,0131(32]33 1,0,01,1,4d1,2,d1, 3,
2| 14| 26 38 32| 36| 40| 44
2,0 2122|223 0,0,40,1, 70,2, 70,3, 2
1| 13| 25 37 16| 20| 24| 28
1,01 1,1]11,2]13 0,0, 70,1, 70,2 70,3, 1
0] 12| 24| 36 0 4 8| 12
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(a) before transformation (b) after transformation

Figure 8-9. A (CYCLIC, *) distributed array before and after transformations

The 12x 4 array, given in Figure 8-11(a), is distributed on three processors using the
(CYCLIC (2), *) decomposition. After the transformation, as shown in Figure 8-11(b),

the elements of the first processor are contiguous in memory.

8.2.4. Data Transformation Algorithm

We have developed a data transformation algorithm that will change the data layout in
memory such that array elements assigned to each processor are made contiguous in mem-
ory. The algorithm uses the HPF decomposition information of the array to create the new

array dimensions and array access functions. Figure 8-12 gives the algorithm for trans-
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Figure 8-10. Transformation process of an array with a (CYCLIC(b), *) distribution

forming array dimensions. In this presentation, the innermost dimension of the array is

given by index 1, while higher indices indicate outer dimensions. Furthermore, indicates

the number of processor dimensions inserted into the arra)FBpand is the number of pro-

cessors in the -th processor dimension. The new array dimensions are calculated by
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(a) before transformation (b) after transformation

Figure 8-11. A (CYCLIC(2), *) distributed array before and after transformations

applying transformations on each dimension with a block, cyclic, or block-cyclic decom-

position. Each block or cyclic dimension is sub-divided into two dimensions, and the pro-

cessor dimension is moved outermost. Each dimension with a block-cyclic decomposition
Is subdivided into three dimensions. Again, the processor dimension is moved outermost.
The transformation applied to each of the dimensions corresponds to a combination of
strip-mining and permutation transformations, as described in the algorithm overview sec-
tion. The algorithm to transform accesses to the distributed array, given in Figure 8-13, is

similar to the previous algorithm. The new array access function is calculated by applying

150



NewDimsiz¢ ( X ...,x,), (d,...,d))) - (d';,...)
where 1<EL<n X, 0 {*,BLOCK,CYCLIC,CYCLIC (b)} ,b is the block size, an
(dy, ..., d;) “are array dimension sizes.

D= (d,...,d)
p=1
for k = ndownto 1 do

LetD = (...,d,_,,d,,d, 4 ...,d" ) whered', ,,....d
are updated dimension sizes

if (x, = BLOCK and k<n )
orx, = CYCLIC then

O de | . , 0
D = E“"dk_l’{P_p—"dk”’ o d PpD
p=p+l
if x, = CYCLIC (b) then
O d; , , 0
D = E...,dk_l, b,{P_—‘,dkﬂ, e d PpD
p=p+l

return D

Figure 8-12. Algorithm for calculating new array dimensions

a combination of strip-mining and permutation transformations to each dimension with a

block, cyclic, or block-cyclic decomposition.

We have made one minor local optimization to our algorithm. If the highest dimension of
the array is distributed as BLOCK, no permutation is necessary since the processor dimen-
sion is already in the outermost position; thus no strip-mining is necessary either since, as

discussed above, strip-mining on its own does not change the data layout.
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NewIndex ( % ... X), (ip ooeri ), (dp oo d)) = (', .00)

where 1<Dk<n X 0 {*,BLOCK,CYCLIC,CYCLIC (b)} ,b isthe block size

(i, ...,i) are array index functions an@l,, ..., d) are array dimension sizes.
L= (i .ip)
p=1

for k = ndownto 1 do

Letl = (...,|k_1,|k,| WPTRE m) wherei Kep el are
updated array index functions

if X, = BLOCK and k<n then

0 d | 0
. . . . k
| = D---"k—r'kmOd{P—k—‘" TR il
O p k|0
O pp O
p=p+l
if x, = CYCLIC then
o0 L 0
| = E...,Ik_l, P—p,l PETRI m,lkmodeE
p=p+l
if x, = CYCLIC (b) then
O [ i O
_ i A k ., - DkD
| = E...,lk_l,lkmodb, P_pb’l ke oo | oy DBDmodeE

p=p+l

return |

Figure 8-13. Algorithm for calculating new array indices
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Our current implementation is restricted to handling only the decompositions that map a
single array dimension to one processor dimension. Handling general affine decomposi-
tions is a straightforward extension to our algorithm. However, they rarely occur in prac-

tice, and the corresponding data transformations would result in complex array access

functions.

8.2.5. Code Generation

We illustrate code generation after data transformations using the example program seg-
ment in Figure 8-14. The data transformation of the afrég/the same as the example in
Section 8.2.3.2. After applying the transformations, the code segment is given in Figure 8-
15.

DIMENSION A(N, N)

IHPF$ PROCESSORS P(nproc)

IHPF$ TEMPLATE T(N, N)

IHPFS$ DISTRIBUTE T(CYCLIC, *) ONTO P
IHPFS$ ALIGN A(l, J) WITH T(l1, J)

DO J =2, 99
DO | = Ib, ub
Al J) = ...
ENDDO
ENDDO

Figure 8-14. Example program segment

The exact dimensions of a transformed array often depend on the number of processors,
which may not be known at compile time. For exampl®, if is the number of processors

andd is the size of the dimension, the strip sizes used in CYCLIC and BLOCK distribu-
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DIMENSION A(O:(N+nproc-1)/nproc, N, O:nproc)

DO J=2,99
DO I =1Ib, ub
A((I-1)/mproc+1, J, mod(l-1,nproc)+1) = ...
ENDDO
ENDDO

Figure 8-15. Program segment after data transformation

tions areP and ¢ , respectively. As discussed above, strip-minthg a -element array
d

dimension with strip sizé& produces a subarray of biz : . This total size can be
greater thard , but is always less thithh b—1 . We can still allocate the array statically
provided that we can bound the value of the block siz®, If is the largest possible block

size, we simply need to adl ., —1  elements to the original dimension.

8.3. Modulo and Division Optimization

Producing the correct array index functions for transformed arrays is straightforward.
However, the modified index functions now contain modulo and division operations; if
these operations are performed on every array access, the overhead will be much greater
than any performance gained by improved cache behavior. In this section, we introduce a
set of optimizations that eliminates most of the modulo and division instructions that are
introduced by the data transformation algorithm. In performing these optimizations, we
exploit fundamental properties of these operations, as well as the specialized knowledge
the compiler has about these address calculations. We also use simple extensions to stan-
dard compiler techniques such as loop invariant removal and induction variable recogni-
tion to move some of the division and modulo operators out of inner loops [3]. The

optimizations, described below, have proved to be important and effective in practice.
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8.3.1. Modulo and division simplification

We exploit fundamental properties of modulo and division operations [63] to simplify
expressions with these operations. Figure 8-16 is the list of simplifications performed on
expressions with modulo and division operations by the compiler. In thifist,, g are

expressions and, c;, c,,d  are integers. The modulo operation is dendted by

(f,g+f,) %g 0O f,%g
(fg+f,)7g 0O f, +f,/g
(c,fi+c,f,) %d O ((c;%d)f + (c,%d)f,) %d
(c,fi+c,f)/7d O ((c,%d)f,+ (c,%d)f,)/d+ (c,/d)f + (c,/d)f,
(cf,g+f) %dg 0O ((c%d)f,g+f,) %dg

(chg+f)/(d9 O ((c%dfg+t)/(dg + (c/d)f;

If 0<sf<gandg>0
f%g O f

f/g O O

If g<f<O0andg>0
f%g 0O g+f

ff/g O -1

Figure 8-16. List of algebraic simplifications performed by the compiler on expression
with modulo and division operations
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8.3.2. Optimizing when data within the strip is accessed

When eliminating modulo and division instructions, we take advantage of the fact that a
processor often addresses only elements within a single strip-mined partition of the array.
An example of such an SPMD loop is given in Figure 8-17(a). Figure 8-17(b) shows the
access functions of the array and highlights the elements accessed in executing the loop by

the processax. By formulating a problem within the framework of linear inequalities, the

DO | = b*myid+1, min(b*myid+b,100)
A(mod(l-1,b), J, (I-1)/b) = ...

ENDDO
(a) Original loop
— 0 1 b-1 —
J J J
X X X
(b) Elements accessed by executing the loop in the processor
idiv = myid
imod =0
DO | = b*myid+1, min(b*myid+b,100)
A(imod, J, idiv) = ...
imod =imod + 1
ENDDO

(c) Loop after optimization

Figure 8-17. Optimize when the loop is accessing only a single strip of the array
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compiler can determine that in the rangdefmyid+1 mim(bx myid+ H100) the
expression(i—1) /b is constant, amtbd( i—1, b) is a linear expression. Thus, we can
eliminate the modulo and division operations and generate the more efficient code given in
Figure 8-17(c).

8.3.3. Optimizing when data in single strip is accessed after cyclic distribution

We can also simplify the access functions when a processor accesses array elements in a
single strip using a loop with a non-unit step size. An example SPMD loop is given in
Figure 8-18(a) and the elements accessed by a processor are illustrated in Figure 8-18(b).
Within the iterations of the loop nest executed by each processor, the function
mod( i—1, b) isconstantandi —1) /b isincremented by one. Thus, we are able to elim-

inate the modulo and division operations and generate code given in Figure 8-18(c).

8.3.4. Optimizing when data in a strip and its neighbors are accessed

It is more difficult to eliminate modulo and division operations when the data accessed in
a loop crosses the boundaries of strip-mined partitions. We optimize the cases where only
the first or last few iterations cross such a boundary, as in the example loop in Figure 8-
19(a). Figure 8-19(b) shows the array elements in two neighboring strips accessed in a
single processor by the read access. Within most of the iterations of the loop nest, the func-
tion (i—1) /b is constant, and the functiomod( i— 1, b) Is continuous. We simply peel

off those iterations and apply the optimization given in Section 8.3.2. The program segment

after the optimizations appears in Figure 8-19(c).

8.3.5. Optimizing when access is by a sequential loop

An array is distributed across processors mainly due accesses from parallel loops. In the
previous optimizations, we eliminate the modulo and division instructions in the accesses
of parallel loops. However, there can be other sequential loop nests that access the same
transposed data arrays. The modulo and division operations in such access functions can
adversely affect the execution of these loop nests. One such example loop is given in

Figure 8-20(a), where the access pattern is shown in Figure 8-20(b). For these loops, we
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DOI=Ibtoubstep P
A((I-1)/P, J, mod(I-1,P)) = ...

ENDDO
(a) Original loop
— 0 1 b-1 —
J J J
X X X
(b) Elements accessed by executing the loop in the processor
idiv = (Ib-1)/P

imod = mod(lb-1,P)
DO I =Ibto ub step P

A(idiv, J, imod) = ...
idiv=1idiv + 1
ENDDO

(c) Loop after optimization

Figure 8-18. Optimize when a loop with a step size access a single strip of the array

enable other optimizations by strip-mining the loop. Figure 8-20(c) illustrates the results

of the strip-mining and the subsequent optimizations of the example.
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DO | = max(2,b*myid+1), min(b*myid+b,100)
A(mod(l-1,b), J, (I-1)/b) = A(mod(l-2,b), J, (I-2)/b)

ENDDO
(a) Original loop
— b-1 0 b-2 : —
J J J
x-1 X X
(b) Elements accessed by executing the loop in the processor
idiv = myid
imod =0

IF(max(2,b*myid+1) <= min(b*myid+1,100)) THEN
A(imod, J, idiv) = A(b, J, idiv-1)

ENDDO

imod =imod + 1

DO | = b*myid+2, min(b*myid+b,100)
A(imod, J, idiv) = A(imod-1, J, idiv)
imod =imod + 1

ENDDO

(c) Loop after optimization

Figure 8-19. Optimize when the loop is accessing two neighboring strip of the array.
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DO1=1, 100

A(mod(l-1,b), J, (I-1)/b) = ...

ENDDO
(a) Original loop
0 b-1 [ 0 b-1
J J J J
0 0 1 1

0
J
n-2

b-1

n-2

n-1

b-1

n-1

(b) Elements accessed by the execution of the loop

DO t =0, ceiling(100/b)
imod =0

DO | = b*t+1, min(b*t+b,100)

A(imod, J,t) = ...
imod =imod + 1
ENDDO
ENDDO

(c) Loop after optimization

Figure 8-20. Optimize when the loop is accessing multiple strips

8.3.6. Extended strength reduction optimization

Finally, when all the other optimizations have failed to eliminate modulo and division
instructions from the inner loop, we use a technique akin to strength reduction. This opti-
mization is applicable when the modulo operation is an affine expressions of the loop

index. Any division operations sharing the same operands can also be optimized along with
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the modulo operation. In each iteration through the loop, we increment the modulo oper-
and. Only when the result is found to exceed the modulus must we perform the modulo and
the corresponding division operations. Consider the example in Figure 8-21(a). Combining
the optimization described with the additional information in this example that the modulus

is a multiple of the stride, we obtain the more efficient code shown in Figure 8-21(b).

DOJ=a,b
A(mod(4*J+c,64), (4*J+c)/64) = ...
ENDDO

(a) Original loop

jmodst = mod(c,4)
jmod = mod(4*a+c,64)
jdiv = (4*a+c)/64
DOJ=a,b
A(jmod, jdiv) = ..
jmod =jmod + 4
IF(jmod >= 64) THEN
jmod = jmodst
jdiv =jdiv + 1
ENDIF
ENDDO

(b) Loop after optimization

Figure 8-21. Optimize using strength reduction
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8.4. Evaluation

We have implemented the data transformation algorithm and modulo and division optimi-
zations on the SUIF compiler infrastructure [6,133,144]. We evaluate the usefulness of our
techniques by applying them to a set of benchmark programs and executing them on a

cache-coherent NUMA architecture.

8.4.1. Experimental Setup
The inputs to the SUIF compiler are either sequential FORTRAN or C programs. The
output is a parallelized C program that contains calls to a portable run-time library. The

parallelized program is compiled on the parallel machine using the native C compiler.

Our target machine is the Stanford DASH multiprocessor. DASH has a cache-coherent
NUMA architecture. The machine we used for our experiments, described in Figure 8-22,
consists of 32 processors, organized into 8 clusters of 4 processors each. Each processor is
a 33MHz MIPS R3000, that has a 64KB first-level cache and a 256KB second-level cache.
Both the first- and second-level caches are direct-mapped and have 16B lines. Each cluster
has 28MB of main memory. A directory-based protocol is used to maintain cache coher-
ence across clusters. It takes a processor 1 cycle to retrieve data from its first-level cache,
about 10 cycles from its second-level cache, 30 cycles from its local memory and 100-130
cycles from a remote memory. The DASH operating system allocates memory to clusters
at the page level. The page size is 4KB and pages are allocated to the first cluster that
touches the page. We compiled the C programs produced by SUIF using gcc version 2.5.8

at optimization level -O3.

To focus on the memory hierarchy issues, our benchmark suite includes only those pro-
grams that exhibit a significant amount of parallelism. Several of these programs were
identified as having memory performance problems in a simulation study [136]. We com-
piled each program under each of the methods described below. The compiler steps are
given in Figure 8-23. We plot the speed up of the parallelized code on the DASH machine.

All speedups are calculated over the best sequential version of each program.
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Figure 8-22. 32 node DASH multiprocessor

b)

Par: We compiled the program with the basic parallelizer pass in the SUIF system.
This parallelizer has capabilities similar to a traditional shared-memory compiler. It
has a loop optimizer that applies unimodular transformations to one loop at a time to

expose outermost loop parallelism and to improve data locality among the accesses

within the loop [147,148].

CompDecomp We first applied the basic parallelizer to analyze the individual loops,
then applied a compiler algorithm to find the computation and the corresponding data
decompositions that minimize communication across processors [13]. These compu-
tation decompositions are passed to a code generator which schedules the parallel
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Figure 8-23. Compiler optimizations performed for the experiments
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loops and inserts calls to the run-time library. The code generator also takes advan-
tage of this information to minimize synchronization in the parallel program [140].

The data layouts are left unchanged.

c) DataTrans: Finally, we include the data transformations described in this chapter.
Using the data decompositions calculated by the communication minimization algo-
rithm [13], the compiler reorganizes the arrays in the parallelized code to improve
spatial locality. After transforming the array accesses, the access functions are simpli-

fied using modulo and division optimizations described in Section 8.3.

8.4.2. Results

We present performance results for six selected kernels and small programs that require
data transformations. We briefly describe the programs and discuss the opportunities for
optimization. All of these programs have high parallel coverage but poor parallel perfor-
mance. We show that, using data transformation optimizations, we can obtain a significant

improvement in parallel performance in many of these programs.

8.4.2.1. Vpenta

Vpenta is one of the kernels imasa7, a program in th&PEC92 floating-point bench-

mark suite. This kernel simultaneously inverts three pentadiagonal matrices. The perfor-
mance results are shown in Figure 8-24. The base compiler interchanges the loops in the
original code so that the outer loop is parallelizable and the inner loop carries spatial local-
ity. Without such optimizations, the program would not even achieve the slight speedup

obtained with the base compiler.

For this particular program, the base compiler’s parallelization scheme is the same as the
results from the computation decomposition algorithm. However, since the compiler can
determine that each processor accesses exactly the same partition of the arrays across the
loops, the synchronization optimization algorithm can eliminate barriers between some of
the loops. This accounts for the slight increase in performance of the computation decom-

position version over the base compiler.
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Figure 8-24. Performance Wpenta

This program operates on a set of two-dimensional and three-dimensional arrays. Each
processor accesses a block of columns for the two-dimensional arrays; thus no data reor-
ganization is necessary for these arrays. However, each plane of the three-dimensional
array is partitioned into blocks of rows, each of which is accessed by a different processor.
This presents an opportunity for our compiler to change the data layout and make the data
accessed contiguous on each processor. With the improved data layout, the program finally
runs with a decent speedup. We observe that the performance dips slightly when there are
about 16 processors, and drops significantly when there are 32 processors. This perfor-
mance degradation stems from increased cache conflicts between accesses within the same
processor. Further data and computation optimizations that focus on operations on the

same processor would be useful.
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8.4.2.2. LU Decomposition

Our next program iU decomposition without pivoting. The code is shown in Figure 8-
26 and the speedups for each versiohlidecomposition are displayed in Figure 8-25
for two different data set size46x 256 ah@24x 1024 ).

DOUBLE PRECISION A(N,N)
DO 101 ;=1,N
DO101 ,=1 4+1,N
Al 2,1 D=A0 21 DITAT 1,1 9)
DO 101 3= 1+1,N
Al 21 3)=A0 2,1 3)-Al 21 )*A0 1,1 3)
10 CONTINUE

Figure 8-26LU Decomposition code

The parallelization algorithm identifies the second loop as the outermost parallelizable loop
nest, and distributes its iterations uniformly across processors in a block fashion. As the
number of iterations in this parallel loop varies with the index of the outer sequential loop,
each processor accesses different data each time through the outer loop. A barrier placed
after the distributed loop is used to synchronize between iterations of the outer sequential
loop. The computation decomposition algorithm minimizes true-sharing by assigning all
operations on the same column of data to the same processor. To minimize the load imbal-
ance, the columns and operations on the columns are distributed across the processor in a
cyclic manner. By fixing the assignment of computation to processors, the compiler
replaces the barriers at the end of each execution of the parallel loop with locks. Even
though this version has good load balance, good data re-use and inexpensive synchroniza-

tion, the local data accessed by each processor is scattered in the shared address space,
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increasing the chances of interference in the cache between columns of the array. The inter-
ference is highly sensitive to the array size and the number of processors; the effect of the
latter can be seen in Figure 8-25. This interference effect can be especially pronounced if
the array size and the number of processors are both powers of 2. For example, for the
1024x 1024 matrix, every 8th column maps to the same location in DASH’s direct-
mapped 64K cache. The speedup for 31 processors is 5 times better than that for 32 proces-

SOrs.

The data transformation algorithm restructures the columns of the array so that each pro-
cessor’s cyclic columns are put into a contiguous region of memory. After restructuring,
the performance stabilizes and is consistently high. In this case the compiler is able to take
advantage of inexpensive synchronization and data re-use. Speedups become super-linear
in some cases due to the fact that once the data is partitioned among enough processors,

each processor’s working set fits into local memory.

8.4.2.3. Five-Point Stencil

The code for our next example, a five-point stencil, is shown in Figure 8-27. Figure 8-28
shows the resulting speedups for each version of the code. The parallelization pass simply
distributes the outermost parallel loop across the processors, and each processor updates a
block of array columns. The values of the boundary elements are exchanged in each time
step. The computation decomposition algorithm assigns two-dimensional blocks to each
processor, since this mapping has a better computation-to-communication ratio than a one-
dimensional mapping. However, without also changing the data layout, the performance is
worse than the base version because now each processor’s partition is non-contiguous (In
Figure 8-28, the number of processors in each of the two dimensions is also shown under

the total number of processors).

After the data transformation is applied, the program has good spatial locality as well as
less communication, and thus we achieve a speedup of 29 on 32 processors. Note that the
performance is very sensitive to the number of processors. This is due to the fact that each
DASH cluster has 4 processors and the amount of communication across clusters differs

significantly for different two-dimensional mappings.
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REAL A(N,N), B(N,N)
C Initialize B

C Calculate Stencil
DO 30 time = 1,NSTEPS

DO101 ;=1,N
DO 101 ,=2,N
Al 51 1)=020%B(I o1 )+B( »-1,1 1)+
x B(I 2+11 +B(I 20 1-1+B( ol 1+1))
10 CONTINUE

30 CONTINUE

Figure 8-27. Five-point stencil code

8.4.2.4. Erlebacher

Erlebacher is a 600-line FORTRAN benchmark from ICASE that computes three-dimen-
sional tridiagonal solutions. It includes a number of fully parallel computations, inter-
leaved with multi-dimensional reductions and computational wavefronts in all three
dimensions caused by forward and backward substitutions. Partial derivatives are com-
puted in all three dimensions with three-dimensional arrays. Figure 8-29 shows the result-

ing speedups for each version of Erlebacher.

The parallelization analysis always parallelizes the outermost parallel loop. This strategy
yields local accesses in the first two phases of Erlebacher when computing partial deriva-

tives in the X and Y dimensions, but ends up causing non-local accesses in the Z dimen-
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Figure 8-28. Performance of 5-point stencil

sion. The computation decomposition algorithm improves the performance of Erlebacher
slightly over the base-line version. It finds a computation decomposition so that no non-
local accesses are needed in the Z dimension. The major data structures in the program are
the input array and DUX, DUY and DUZ which are used to store the partial derivatives in
the X, Y and Z dimensions, respectively. Since it is only written once, the input array is
replicated. Each processor accesses a block of columns for arrays DUX and DUY, and a
block of rows for array DUZ. Thus in this version of the program, DUZ has poor spatial

locality.

171



32

O Par
[0 CompDecomp

28

24
€ DataTrans

20

16

Speedup

12

0o 4 8 12 16 20 24 28 32
Number of Processors

Figure 8-29. Performance of Erlebacher

Our data transformation algorithm restructures DUZ so that local references are contiguous
in memory. Because two-thirds of the program are perfectly parallel with all local accesses,

the optimizations only realize a modest performance improvement.

8.4.2.5. Swm256
Swm256 is a 500-line program from tH&PEC92 benchmark suite. It performs a two-
dimensional stencil computation that applies finite-difference methods to solve shallow-

water equations. The speedupsdam?256 are shown in Figure 8-30.
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Our base compiler is able to achieve good speedups by parallelizing the outermost parallel
loop in all the frequently executed loop nests. The decomposition phase discovers that it
can, in fact, parallelize both of the loops in the 2-deep loop nests in the program, without
incurring any major data reorganization. The compiler chooses to exploit parallelism in
both dimensions simultaneously in an attempt to minimize the communication to compu-
tation ratio. Thus, the computation decomposition algorithm assigns two-dimensional

blocks to each processor.

However, the data accessed by each processor is scattered, causing poor cache perfor-
mance. Fortunately, when we apply both the computation and data decomposition algo-
rithm to the program, the program regains the performance lost and is slightly better than

that obtained with the base compiler.
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8.4.2.6. Tomcatv

Tomcatv is a 200-line mesh generation program from3R&C92 floating-point bench-

mark suite. Figure 8-31 shows the resulting speedups for each versioncatv. Tom-

catv contains several loop nests that have dependences across the rows of the arrays, and
other loop nests that have no dependences. Since the parallelization algorithm always par-
allelizes the outermost parallel loop, each processor accesses a block of array columns in
the loop nests with no dependences. However, in the loop nests with row dependences,
each processor accesses a block of array rows. As a result, there is little opportunity for
data re-use across loop nests. Additionally, there is poor cache performance in the row-
dependent loop nests because the data accessed by each processor is not contiguous in the

shared address space. The computation decomposition pass selects a computation decom-
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Figure 8-31. Performance twfimcatv
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position so that each processor always accesses a block of rows. The row-dependent loop

nests still execute completely in parallel.

This version otomcatv exhibits good temporal locality; however, the speedups are still
poor due to poor cache behavior. After transforming the data to make each processor’s rows
contiguous, the cache performance improves. Whereas the maximum speedup achieved by

the base version is 5, the fully optimizgedncatv achieves a speedup of 18.

8.5. Related Work

Previous work on compiler algorithms for optimizing memory hierarchy performance has
focused primarily on loop transformations. Unimodular loop transformations, loop fusion,
and loop nest blocking restructure computation to increase uniprocessor cache re-use
[33,61,147]. Copying data into contiguous regions has been studied as a means for reducing

cache interference [103,134].

Several researchers have proposed algorithms to transform computation and data layouts
to improve memory system performance [39,89]. The same optimizations are intended to
change the data access patterns to improve locality on both uniprocessors and shared
address space multiprocessors. These algorithms use only array permutation transforma-
tions, they do not consider strip-mining. By using strip-mining in combination with permu-
tation, our compiler is able to optimize spatial locality by making the data used by each
processor contiguous in the shared address space. This means, for example, that our com-
piler can achieve good cache performance by creating cyclic and multi-dimensional

blocked distributions.

Compile-time data transformations have also been used to eliminate false-sharing in
explicitly parallel C code [88]. The domain of that work is quite different from ours; we
consider both data and computation transformations, and the code is parallelized automat-
ically. Their compiler statically analyzes a parallel program to determine the data accessed
by each processor, and then tries to group the data together. Two different transformations
are used to aggregate the data. Their compiler turns groups of vectors that are accessed by

different processors into an array structure. Each structure contains the aggregated data
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accessed by a single processor. References to the original data structures are replaced with
pointers to the newly allocated per-processor data structures. Their compiler also aligns
data structures that have no locality (e.g. locks) with cache line boundaries to avoid false-

sharing.

Optimizing address calculations with modulo and division operations has been studied in
the context of block-cyclic decompositions in HPF compilers for distributed address space
machines. The complex access functions are replaced by a finite state machine created by
the compiler, that generates the correct access pattern when executed at runtime [37,95].
In contrast, our modulo and division optimizations are capable of completely eliminating
many of the modulo and division operations generated in practice. Thus, we do not have
to pay for the overhead of executing a finite state machine at runtime for most of the access
functions created with modulo and division operations. However, address generation using
a finite state machine can be included as a fall-back technique when the access functions

are too complex and cannot be optimized.

8.6. Chapter Summary

We have developed the first compiler that automatically performs a full suite of data trans-
formations on original array layouts to improve the memory system performance of cache-
coherent multiprocessors. Using a combination of strip-mining and permutation transfor-
mations, our algorithm restructures the layout of the data in the shared address space such
that each processor is assigned a contiguous region of memory. We ran our compiler on a
set of application programs and measured their performance on the Stanford DASH mul-
tiprocessor. Our results show that the compiler can effectively optimize parallelism in con-

junction with memory subsystem performance.
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Communication Generation and
Optimization for Distributed
Address-Space Machines

Locating parallelism is sufficient to generate parallel programs for cache-coherent shared
address-space machines. However, as we discussed in the previous chapter, much more
analysis and optimization is required to obtain good parallel performance. For example, the
compiler needs to explicitly decompose the computation and data across the processors to

exploit the data locality and minimize the communication overhead.

Finding computation and data decompositions is necessary when generating code for dis-
tributed address space machines. Furthermore, the compiler is faced with the additional
problem of managing the memory and the communication explicitly. The parallel programs
created by the compiler must issue explicit communication instructions. It is also necessary
to perform many communication optimizations in order to obtain good parallel perfor-

mance.

Given a computation and data decomposition, the techniques described in this chapter auto-
matically produce an SPMD program with the necessary receive and send instructions,
optimize the communication by eliminating redundant communication and aggregating
small messages into large messages, allocate space locally on each processor, and translate
global data addresses to local addresses. The communication code generation and commu-
nication optimization techniques described in this chapter are again based on our linear ine-

gualities framework.

Since the combined problem of locating coarse-grain parallelism and determining compu-

tation and data decompositions that minimize communication is very complex, many com-
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piler systems for distributed address-space machines rely on users to supply the data
decompositions. Languages such as High Performance FORTRAN [83], FORTRAN-
D[85] and Vienna FORTRAN [36] allow the programmer to annotate the sequential pro-
gram with data decompositions. Our algorithms can use this decomposition information in

lieu of compiler-generated data and computation decomposition information.

The organization of this chapter is as follows. In Section 9.1., we describe two different
approaches for generating communication: the traditional location-centric approach with
user-specified data decompositions, and a novel value-centric approach based on exact
data-flow information and computation decompositions. We formally describe the domain
of our technique in Section 9.2. Section 9.3. presents a mathematical representation for
communication. We describe our code generation technique and our communication opti-

mizations in Sections 9.4 and 9.5.

9.1. Determining Communication

9.1.1. Location-Centric Approach

Many of the existing compilers developed for distributed memory machines have a similar
basic approach to how they generate code from user-specified data decompositions
[14,98,85,114,123,139].

For simplicity, in the following discussion we assume that there is only one loop nest that
contains one read access and one write access to the same array. The argument obviously
holds for the general case with multiple loops and arrays. Three domains are manipulated
in the compilation process: the iteration space |, the array elementAspackthe pro-

cessor spade Each array access function in the source program specifies the data used by
each iteration in the loop. That is, each read or write access function, denoted by
f.f,.0 — A respectively, maps an iteration to the array indices of the data read or written.
The user-specified data decompositizmA — P maps each array location to a processor.

From the read and write access functions and the data decomposition, the compiler auto-
matically derives the computation decompositi@nl — P which maps each iteration in

the loop to a processor.
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To derive the computation decomposition, the compiler appliesvther-computes rule

each assignment statement is performed by the processor that owns the data. Therefore,
given a write access functidpand a data decompositin the computation decomposi-

tion isC = Df,,. Under the owner-computes rule, no communication is needed to implement
the write accesses. Communication is needed for a read access in itef#tieata read

is resident on a different processor, i@&.# Df i . The relationships between iteration
space, array space, and the processor space are shown in Figure 9-1(a); pppcessor

receives data from processmr  pjf# pg

a a. .
Array Spacea ' it
fW fr fI’
D lteration Space] D i D =1y i;  Pu
5 / Fo9r
Processor Spacp \ Y Y

pr ps pr pS pr pS

Internal External
(b) Location Centric (b) Value-centric

Figure 9-1. Different approaches to code generation for distributed memory machines

To minimize the communication cost, the compiler tries to maximize the intervals between
communication. All the data needed within the interval are sent in one message. This opti-
mization is based on data dependence analysis given in Definition 3-thakimaum level

of a dependence between two references is simply the maximum loop nest level that carries
a dependence between the references. If the maximum level of all dependences involving
a read access ks the compiler needs to communicate only once in each iteration lof the

th loop. Thus, the maximum level information is useful for reducing the communication
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frequency. All the data accessed within the interval requiring communication are summa-
rized by a regular section description [81]. In this way, the same data used multiple times

within the interval are transferred only once.

In summary, this approach deduces the computation decompositions from the user-speci-
fied data decompositions, using the owner-computes rule; it uses data dependence analysis
to reduce the number of messages; finally, it uses the concept of regular sections to reduce

redundant data transfers.

9.1.2. Value-Centric Approach
Instead of location-based data dependence analysis, communication identification can be
based on less restrictive value-based data-flow information. Let us use the simple example

in Figure 9-2 to illustrate the difference.

DO T =1, 100
DO =3, N
X[I] = X[I-3]

Figure 9-2. Simple 2-deep loop nest

Data dependence analysis on this program will produce the dependence vectors {[+, 3], [O,
3]}, meaning that the read access in iteratfen i | may be data dependent on all itera-

tions [t i,] suchthat, =i -3 ,anf,st . Exactdata-flow analysis, however, is

r
able to determine precisely that the first three iterations of the innermost loop read data
defined outside the loop, and the rest of the iterations use the value defined three iterations
earlier,i.e.,[t,,i,] = [t,i —3] .Also,the firstthree iterations read d&fa2], whose

values are not generated by this program. The exact data-flow information is given in

Figure 9-3.
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Figure 9-3. The exact data-flow information

The problem of finding precise array data-flow information was first formulated by Feau-
trier [53,54,55], and is described in Section 4.6.

The exact data-flow information maps an instance of a read operation to the very write
instance that produces the value read, provided such a write exists. This mapping is denoted

byu:i. - i,,wherei. and, are the loop indices of the read and write instances respec-

w
tively. If the instances within a context do not read any value written within the loop, we
denote these instances by the mapping - a , where s the loop index of the read

instance ana@ is the array location of the data at the beginning of the loop.

This information differs from that produced by data dependence analysis in two major
ways. First, exact data-flow information can distinguish between different instances of the
same array access. For example, exact data-flow analysis can determine that the first three
iterations of the inner loop in Figure 9-2 have dependence relationships different from all
the other iterations. Second, the exact data-flow analysis specifies precisely the last write
instance that generates the value read by a particular read instance. Data dependence anal-

ysis, on the other hand, cannot discriminate between writes to the same location.

The exact data-flow information can be used for communication identification in the fol-

lowing manner. For read instances with the mapping , that do not read any of the values

written within the code being analyzed, the compiler can simply load all the non-local data

onto a processor before executing any of the code. Given a computation decomposition and

an initial data decomposition produced by an earlier compiler phase, the technique to gen-
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erate the necessary communication code is no different from that used in the location-cen-
tric approach. Communication and computation are more tightly-coupled for read
instances with a corresponding write instance. In this case, the mapping specifies all the
pairs of iterations that share a producer and consumer relationship. By applying the com-
putation decomposition function on the related iterations, we can derive the identity of the
processors that write and read the same value. If the writer and reader are different proces-

sors, then communication is necessary. This technique is depicted in Figure 9-1(b).

The data decompositions generated from the earlier compiler phase serve only as interfaces
with other sections of the program. In general, we can generate the necessary communica-
tion from the exact data-flow information and computation decompositions, and not data
decompositions. We can also change the data layout when called for by the computation
decompositions. Thus, this approach can support a wider range of data decompositions.
Locations written to can be replicated or mapped to different processors over time. Further-

more, this approach does not rely on the restriction of the owner-computes rule.

Using the data-flow information, we can easily eliminate redundant data transfers. While
accessing the sanmcationmay require multiple data transfers since the value at the loca-
tion may or may not have changed, eaalueneeds to be transferred once and only once.
Moreover, the perfect producer and consumer information enables the compiler to issue the
send immediately after the data is produced, and to issue the receive just before the data is

used. This maximizes the chances that the communication is overlapped with computation.

9.2. Problem Domain

In this section, we formally define the scope of our technique. We show how we can rep-
resent all the information useful for communication and computation code generation as
sets of linear inequalities. This model and our techniques discussed in the next section are

useful for both value-centric and location-centric approaches.

The scope of our technique is limited to programs consisting of a set of loop nests, where
the bounds of the loop nests are affine expressions of outer loop indices and symbolic con-

stants. The array accesses are also affine functions of loop indices and symbolic constants.
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Our technique can also handle conditional statements that contain no loops. Each assign-
ment within the conditional statement is treated as an unconditional assignment; depending
on the outcome of the condition, it assigns to the variable either the newly computed value

or the variable’s current value.

We can handle loops given by Definition 2-2, array index sets given by Definition 2-5 and

virtual and physical processors given by Definition 2-6. The read and write access func-

ti_ons, f = %‘frl, ...,frm% and f, = Efwl, ...,fwmg are affine functions such that
f (v i, ...,in) = (a ...,a,) , where (i, ...,in) or,(a,...,a,) DA andv is a

symbolic constant vector.

To support cyclic decompositions where data or computation are distributed to processors
in a round-robin manner, we introduce the notion of a virtual processor array. The compu-
tation and data decompositions map the computation and data to the virtual processor

space. Let,, ..., u, be the dimensions of the virtual processor space, the index set of this

q
virtual processor array is thus

P={p=(p,...py) OP |Ok=1,..,q Osp, <up}

Our physical processor array has the same number of dimensions as the virtual processor

array. Letu';, ..., U, be the physical processor array dimensigps u,, k=1, ..., q

q
The physical processor index set is

PP = {p' = (p'y ... P OP |Ok=1,...,q Osp,<u’}

Thek-th dimension of data elements or loop iterations are distributed across the physical

processors in a cyclic manner whenewgr< u, . The mapping from the virtual to the phys-
ical processor space, TGP - P is defined asm(p) = p' where
‘o 1[] . P’ = p, modu’,. Since only in the latter stages of the optimizations will the

compiler be operating in the physical processor space, we will simply refer to virtual pro-

CesSSO0rs as processaors.
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9.2.1. Data Decompositions
Definition 9-1: The data decomposition relatiorD is a set of array element and
processor pairs(a, p) , suchthdta, p) 0D iff the procespor has a copy of the array

elementa . Data decompositions can be written as

- U(a-T) 2 (b+Byp-4g
D= 0U(ap OAxP
O U(a-t) < (b+BU) (p+1) +d, -

OO

whereU is an extended unimodular matrix, (:_Ild_h b, , are integer vectors, B is an
integer matrix ando is a vector of symbolic constants such thaBu=0 and
d,d,=0.

The scope of data decompositions defined in this chapter is larger than the decompositions
used Chapter 8, which are typically used in existing distributed memory machine compil-
ers. The matriXJ determines if the array is reversed or skewed. When the array has more
dimensions than that of the processor space, the 0 columns eftémelecunimodular

matrix U chooses the dimensions to be mapped onto the same processor. The entire array
can be shifted with respect to the processor array using the integertvector . Since the data
block size is often a function of the number of processors engaged in the computation, it is
useful not to determine the block size at compile time. We can handle some symbolic block
sizes of the fornb + Bu ; the scope of our technique is discussed in Section 2.3. The over-
lap of array elements between processors is determined by v&ctd]r& 0 . Figure 9-4
illustrates how we can use this scheme to describe several common data decompositions.
The 2 x 2 grid in each example represents the frgt2 processors in the system; each
panel is a picture of the entire data array, and the shaded portion represents the data allo-

cated locally to that specific processor.

9.2.2. Computation Decompositions
Computation decompositions have a scope similar to that of data decompositions, except
that an iteration can be mapped onto only one processor.
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Definition 9-2: The computation decomposition relatiol© is a set of iteration and
processor pair%i_, p H such that procesgor  executes iteration Hﬁﬁp_ HD C

computation decompositions can be written as

0 0
Oq _ _ _ _rd
C = Egi P HO1IxP | +Bup <UF -Tg<pp +Bu%+1gg
0 O
whereU is an extended unimodular matiix, b, are integer vectors, B is an integer

matrix ando is a vector of symbolic constants such bhat Bu> 0

The computation decompositions can be either generated automatically by an earlier com-
piler phase [13] or manually by the user. Theorem 9-1 shows how to derive computation

decompositions from user-specified data decompositions.

Theorem 9-1: Assuming that written data are not replicated, the computation

decomposition as derived from data decomposilon , using the owner-computes rule, is
E O
C= Egi‘,p%m IxP |laOA st (ap) ODDa= T, i‘%
0 O

9.3. Communication

In this section we define the communication between processors for both location-centric

and value-centric approaches.

Definition 9-3: A communication set M is a set of elements
H_, P, iy P aHD I xPx|xPxA, WhereH_r, P, iy Pg aHD M iff processop, needs

to send the value in locaticm in iteratiop  to procesgor  for use in iterafion

9.3.1. Using Data Decompositions and the Owner-Computes Rule
If we use the owner-computes rule, no communication is necessary for write operations.
We use Theorem 9-2 to find all the necessary communication for each read access within

the loop nest. We use the user-specified data decomposition to find the owner of the data
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Figure 9-4. Examples of some data decompositions for an NxN array onto
a 2-dimensional processor space
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read. We use the computation decomposition derived from Theorem 9-1 to find the proces-

sor reading the data. If these two processors are not the same, communication is needed.

Theorem 9-2: The communication set required by the access funétion  for a set of
iterations1 under computation decompositidn  and data decompo$ition s the set of
elements_, p;., iy, p, @00 1 xP x| xP x A, whereH, p,50C , =8, p,A0D i, O1

a = fwigl = i; andpg#p,

r

9.3.2. Using Computation Decompositions and the Exact Data-Flow Information

Definition 9-4: An exact data-flow analysis partitions the iteration set of a loop nest into
contextsso that a single mapping function will apply to each context. If the values read by
the iterations in a contextd |  are written within the loop, then the context lest-a
write relation p. The last-write relationy of the context is a set of iteration pairs

o @H such thatH_r, FSHD poifi 01 and 01 is the iteration that generates the value
read in iterationi, . A context can be written & 0| |q%v, i_Ez 0} and a read-
write relation i can be written a$ Eﬁ QED | x| |agv i, ngz 0} ,whee agd

are vectors of affine expressions.

It is sometimes necessary to introduce auxiliary variables so that the last-write relations can
be represented as linear inequalities. Some of the read-write relations need to be expressed
asi=[( (moda) orizf (moda) ,wherex B areintegers. We can introduce an aux-
iliary variableu, and rewrite these relations iaspp = au auw<i—-pB<au+a ,

respectively.

If an iteration reads data written within the loop, then communication is needed only if the
iterations sharing the read-write relation are executed by different processors (Theorem 9-
3). If an iteration uses data written outside the loop, then we use the initial data decompo-
sition to determine the owner of the data (Theorem 9-4). Theorem 9-4 is similar to Theorem
9-2, except that the sends can precede the computation of the loop since the values needed

are not generated within the loop.
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Theorem 9-3: The communication set that satisfies the last-write relafion  under
computation decompositiod  is the set of elemgﬁtsﬁr, iy Py aHD I xPx|xPxA

— L — L L ~LI L - _ gL ~U = =
Whereﬁ_’ PO H_’ P00 C g lsglK a = frlib' ko= st s PsZ Py -

Theorem 9-4: The communication set required by an access fun€tion  within a context
| of read iterations where the value used is generated outside the loop nest, under
computation decompositiocd  and an initial data decomposflion , is the set of elements
5., P iy pyan01 xPxIxPxA, where H,pa0C, mpa0D, 01,

_fl FU = i
a-= frli%,l 1 = 0 andp #p, .

Communication decompositions, data decompositions, iteration contexts, access functions
and last-write relations can all be expressed as systems of linear inequaliti§§¢‘ﬁpe
constraint, however, cannot be expressed as a conjunction of inequalities. We break down
the inequality into a set of disjunctive conditions. For example, for a one-dimensional pro-
cessor array, the constraipt# p, is represente@ oyp, Lp <p, . We represent the
necessary communication as a set of communication sets, with each one satisfying all the

other inequalities and one of the disjunctive conditions.

Suppose the second loop in our program in Figure 9-2 is distributed as blocks of 32 itera-

tions across a linear array of processors. That is, progessecutes iteratior,[i] iff

32p< o 1]“}<32(p+1)

We will use this computation decomposition throughout the rest of the chapter. Figure 9-
5 shows the communication sets for first context where the data is produced by a write from

Figure 9-3.

9.3.2.1. Finalization
Data produced within the loop nest may need to be written back to its home location in the
“final” data layout. We need to identify which written values are live at exit, and this can

be derived from the exact data-flow information. For example, this is shown to be a sub-
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Figure 9-5. Inequalities defining the communication sets for first context, with
producer-consumer relationship, in Figure 9-3

problem in calculating last write trees [112]. The set of inequalities generated, in conjunc-

tion with the final data distribution, defines the communication set for finalization.

9.4. Code Generation for Distributed Address-Space Machines
We use the code generation algorithm defined in Section 2.2. for generating SPMD loop
nests with communication operations. When block sizes are not known at compile time,

linear inequalities with symbolic coefficients, described in Section 2.3., are used.

9.4.1. Generating Computation and Communication Code
To find the computation allotted to each processor, we scan the elements in a computation
decomposition relatiol€ lexicographically in(py, ..., Pq ig, nd) ,OF simpI)Hp, i_H ,

order. Thep loops enumerate the processors. The inner  loops enumerate the iterations
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to be executed for each valuepf . The SPMD code to be executed by each processor is
as follows. Each processor checks to see if its processor number is within the bounds of the
p loops. If so, the code it executes is simplythe  loops parameterized by its processor
number. In the case where the computation decomposition is cyclic, each processor must
iterate through the virtual processors it represents. Examples 9-6(a) and 9-6(b) show the
computation code for our example from Figure 9-2. The rest of the figure shows the com-
munication code for the communication sets in Figure 9-5. Note that no communication is

necessary whep_ > p,

To generate the receive and send code for a communicatidvh set , Wl scan lexico-
graphically in Hﬁr i Pg g aH andHﬁs, ig P i aH order, respectively. In the receive
loop nest, theﬁr loops enumerate the processors involved in receiving dat_p. The loops
specify the iterations when procesﬁpr needs to receive data. By definitiﬁg, fpe , and
a loops are degenerate loops containing only one iteration. The data to be received is the
value in locationa on processﬁg in iterati@n . Converselyﬁghe loops in the send
loop nest enumerate all the senders. T_l;he loops specify the iterations when pm_nscessor
needs to send some messages.ﬁhe loops identify the receivers of each mesfrage. The
loops specify the iterations when processor  needs the data. The loop is a degenerate
loop containing the address of the data to be sent. If auxiliary variables have been intro-
duced to handle modulo constraints, the auxiliary variables are placed last in the lexico-

graphic order for both loops.

9.4.2. Merging Loop Nests
To generate the complete program for a processor, we need to merge a processor’'s com-

putation code with its receive and send codes for each communication set.

A naive technique is to make each processor iterate through the entire loop nest in the
source program. In each iteration, a processor checks whether the iteration belongs to its
computation domain, and whether it is to take part in each of the communication sets.
Checking such conditions in the innermost loop would be exorbitantly expensive. Some of

this inefficiency can be eliminated by standard data-flow optimizations such as algebraic
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if p>=0and p<=N/32then
DOt=0,T
DO i = MAX(32 p, 3), MIN(32 p + 31, N)
X[i] = X[i - 3]

(a) Computation code: scanning C(p, t, i) order.

DOpy=p p, N/32stepP
DOt=0,T
DOi=MAX(32p ,3),MIN(32p v T 31, N)

X[i] = X[i - 3]

(b) Computation code when virtual processpys  are mappephysical processorq%

ifp ,>>=1andp ,<=N/32then

DOt,=0,T
DOi,=32p ,MIN(B2p ,+2,N)
Ps=pP (- 1
te=t .
is=i -3
a=i ,-3
receive X[a] from iteration (t <1 o inprocessor (p A
(c) Receive code: scanning first context(ipr, t, ir, Pty iS, a) order.

ifp ¢>=0andp (<=N/32-1then

DOt¢=0,T
DOi¢=32p ¢+29, MIN@32p st31,N-3)
Pr=p s+1
t,=t o
i,=i ¢+3
a=i g
send X[a] to iteration (t n 1) in processor (p )

(d) Send code: scanning first context(ips, tg is, P L, ir, a) order.

Figure 9-6. Computation and communication code for the Example 9-2.
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simplification, invariant code motion, strength reduction, and common subexpression

elimination.

Since all the conditions tested are affine expressions, we can potentially eliminate all run-
time checks by splitting loops. Suppose we need to merge the loops given in Figure 9-7(a).
Instead of generating the code in Figure 9-7(b) with excessive guards, we generate multi-

ple loop nests, shown in Figure 9-7(c)

If the relative magnitude between the bounds of the individual loops is not known at com-
pile time, loop splitting can expand the program size by a significant amount. Our compiler
uses loop splitting only on inner loops, and also when the relative magnitudes between the
loop bounds are known. We have also developed a dynamic splitting scheme that we use
on the outer loops. The compiler does not generate all the possible combinations statically.
Instead, each processor determines its bounds for all the iteration sets, sorts the bounds, and
interprets the sorted list to determine the loops it has to execute. Finally, for iteration sets
that are a function only of outermost loop variables, we insert dynamic checks into the

bodies of the outer loops.

9.4.3. Local Address Space
Typically, a processor on a parallel machine touches only a part of an array. Since data sets
processed by these programs are often very large, it is essential that the compiler allocates,

on each processor, only enough storage for the data used by the processor.

The following is a simple approach to the memory allocation problem. We allocate on each
processor the smallest rectangular region that covers all the data read or written by the pro-
cessor, and we copy all the received data from the communication buffer into its respective
home location in the array before it is accessed. Given a computation decom@aitibn
an access functionf, the set of locations touched by processpr is

{adA |D_%_, pED Clha-= f_%v, i_%} . By scanning the inequalities lexicographi-
cally in Hp A i_H order, the bounds we obtainap  are the bounds fd-tthelimen-

sion of the bounding box covering accegbthere are multiple accesses to the same array,
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DOi=0, 200
receive(...)

DO i =100, 300
send(...)

(&) Two loop nests to be merged.

DOi=0, 300
if 0 <=iandi<= 200 then
receive (...)
if 100 <=i and i <= 300 then
send (...)

(b) Naive merge of the loop nests with excessive checking.

DOi=0,99

receive(...)
DO i =100, 200

receive(...)

send(...)
DO i =201, 300

send(...)

(c) Optimized merge

Figure 9-7. Merging multiple loop nests.

we simply find the bounding box of the rectangular boxes for all the accesses to that array.

Note that this formulation allows local data spaces on different processors to overlap.
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The above algorithm is inadequate if the rectilinear bounding box of the data accessed is
larger than the available local memory on the processor, while the data actually used fit in
the local memory. Also, a processor’s local memory may not be large enough to fit all the
data that a processor will eventually use in a computation. In that case, we need to manage

the memory dynamically.

The exact data-flow information provides a more efficient way to manage the data that has
been received from other processors. The compiler knows precisely which values are read
by every instance of the read access. Instead of first copying all the received data to its
home locations, a processor can simply read the values directly from the communication
buffers. The compiler also has information that tells when the buffer is no longer needed,

and can manage the buffer space effectively.

9.5. Communication Optimizations

Since the above algorithms generate a receive and a send message for every read access to
remote data, the code is correct but inefficient. It is essential that we eliminate the redun-
dant messages and amortize the message sending overhead by batching the communica-

tion.

9.5.1. Eliminating Redundant Communication

Ancourt has also studied the problem of eliminating redundant communication [11]. Given

a set of iterations and accesses, Ancourt’s algorithm can construct a set of loop nests that
fetches all the data touched without any duplication. This algorithm is adequate for remov-
ing redundant traffic if no communication is required within the loop nest. In general,
transfers of data with the same address are redundant only if the values transferred are iden-

tical.

We separate redundancy into two categories. We say that tseteremusavhen multiple
instances of a single read access use the same dafeapdeusavhen instances of dif-

ferent read accesses use the same data. We discuss each of these in turn below.
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9.5.1.1. Redundant communication due to self reuse

Read instances that have different data-flow relationships often are amenable to different
communication optimizations. By partitioning the read instances into different contexts
according to their data-flow patterns, the exact data-flow information makes it easier to
detect and eliminate redundancy. Our algorithm applies Theorem 9-5 to the communication

set of each context to detect redundancy caused by self reuse.

Theorem 9-5: Given a communication set M, communicatioHE,pTr,E, Py aH ,

(i P'ri's P's @) OM are redundant due to self reus@jf = p’; p,= p's ig.= i's

anda = a .

All elements in a communication set with identicalp,,  @nd refer to the same values;
all elements with identical, p, p, an@l are redundant messages. Thus, we wish to
replace the set of redundant messages BrmhnHTrH P, iy Py aH . This can be achieved
by projecting the set onto tlﬁﬁs, iy P aH space, and constraining the upper baund of

to be identical to its lower bound. There are two complications. First, if the lower bound of
i_r is expressed as a conjunction of multiple inequalities involving outer loop indices, then
the communication set containing the minimym s is no longer convex. The algorithm
needs to divide the communication set into multiple convex sets. The second complication
arises from the fact that a projected image may contain points that do not correspond to a
solution in the original system. In many cases, a simple test can determine that no such

degeneracies are present [112].

9.5.1.2. Redundant communication due to group reuse

Detection of reuse between arbitrary accesses to the same matrix can be expensive. How-
ever, one prevalent form of reuse can be incorporated and exploited easily within our
model: the set afiniformly generated referencf&0]. Array index functions of uniformly
generated references are affine functions of loop indices and symbolic constants, and they
differ only in the constant terms. For exam{g] andX[i+3] are uniformly generated ref-
erences; so a2i+3j+1, 3j+n+3] andB[2i+3j+10, 3j+n+2], but notCJ[i] andC[j]. Reuse
between uniformly generated references has been exploited successfully in improving

cache locality [147,146]. Uniformly generated references are quite common in real pro-
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grams, so much so that specialized languages and compilers have been built to translate
them into efficient code [29,77].

We can represent a set of uniformly generated references by their convex hull, and describe

the data flow information with a single mapping from write to read iterations. For the

example in Figure 9-8, the set of accessids X[i - 1], X[i - 2] andX]i - 3] can be repre-

DO T=1, 100

DO I=3,N
X[I] = FOXT], X[1-1],X[1-2], X[1-3])

Figure 9-8. The Example 9-2 with multiple read accesses

sented by the access functib(i) , Whe(e = i—u @rdu< 3 . The exact data-

flow information for all the accesses are given in Figure 9-9.

[t 0] =

5

i,—u<3 or
E array locaiton(i,_ —u) atstart '
0 t=1L,u=0
E write in iteration [t — 1,1 ] t>Lu=0
E write in iteration [t,, i —u] i, —u=z3u>0

Figure 9-9. The exact data-flow information for the example from Figure 9-8

196



Note that the convex hull may contain more data than that accessed within an iteration;
however, since a processor is typically responsible for a contiguous block of iterations, this

method is unlikely to cause any significant unnecessary traffic.

9.5.1.3. Other forms of redundancies

Redundancy may also arise from cyclic decompositions, where a physical processor emu-
lates multiple virtual processors. Given a virtual to physical processor maping P ,
communicationH_r, P, iy Py aHD M can be eIiminatedr’rHﬁrH =T SH . Also, com-
munications Hﬁ P i Py aH . (iI'mphispsa) OM are redundant if

nHﬁrH: m(p'y),ps = P's, iy = i'sanda = & .

Communication sets derived from data decompositions that replicate data may also contain
redundancy. In our definition of communication sets, we consider communication to be
necessary as long as there is a processor that owns a copy of the data needed by another
processor. That means communication is generated even if the processor already owns a
copy of the data. To eliminate this redundancy, we eliminate all the communication ele-
mentsHﬁ, P, iy Py aHD M such thaﬁa, ﬁHD D . Furthermore, two communication ele-
mentslﬁrr, P iy Py aH (i phi'sP'sa) OM are redundant due to replicated data if

P, = Py, PZP's, Iy = I's anda = @ . The technique to eliminate this redundancy is

similar to that of removing redundant communication due to self-reuse.

9.5.2. Communication Aggregation

Whether aggregation of small messages into large messages is necessary depends on the
machine architecture. For example, machines such as the iWarp [65] and CM-5 [118] sup-
port fine-grain communication, while machines such as the Intel iPSC have significant
overhead in processing every message. Again, we classify message aggregation into two
kinds: self aggregationwhere messages generated by different instances of the same
access are aggregated, agrdup aggregationwhere messages generated by different
accesses are aggregated. For group aggregation, we simply aggregate all messages that

have the same sender, receiver and dependence level into one message.

197



While group aggregation reduces the number of messages by a small constant, self aggre-
gation can potentially eliminate many more messages. Our self aggregation algorithm also
takes advantage of the partitions created by the exact data-flow analysis. All instances
within the same communication set have the same dependence level. If the dependence
level of a communication setksit is obviously legal to batch all the messages within an
iteration of loogk and send the data at the end of the iteration. This can result in significant

overhead reduction if lodpis not the innermost loop.

The algorithm to aggregate the communication of a communication set &t iewaasl fol-

lows. To generate the send code, we scan the communication set lexicographically in

%ps, gy oo, iSk Py isk, gl a% order. Each instance of the loops

1 -1 n
Poi.,...,i. ,p, produces one message, and each instance of theiLE;opsi con-
S Sl Sk—l r Sn

tributes an item to the message. Redundancy elimination would have E,aused to take on
only the value of the earliest iteration on the receiver side using the value. Similarly, we
create the receive loop nest by scanning the polyhedron in

E‘ﬁr, P P g oo by ,a% order. lterations in loopg, i, , ...,i,  use the data
1 -1 n k n

from the same message. Note that for each message, the order in which the sender packs

the data is the same as the unpacking order. Figure 9-10 shows the receive and send code

for the first context in Figure 9-3 after communication aggregation.

9.5.2.1. Multi-casting

Many systems provide optimized routines for multi-casting. To take advantage of these
routines, we need to determine if the same message is sent to multiple processors. We scan
a communication set to be aggregated at levdel lexicographically in

Eﬁs isl, iSk_l’ P& isk' iSn’ ﬂ% order. If the bounds @ are independenpof | the

data sent to each processor are identical.

9.6. Related Work

There is a large body of research on language extensions and compiler support for distrib-
uted memory machines. Some notable projects are, Al [141], Blaze [100], Crystal [106],
FORTRAN-D [85,139], Id Nouveau [123], Kali [114,98], Pandore [15], Pandore Il [14],
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ifp >=1landp | <=N/32then
DOt, =0,T

Ps=p -1

receive data into buffer from processor p

index =0

DOig=32p -3, MIN@32p r -1, N-3)
tg=t
ipy=i ¢+3
a=i ;-3
X[a] = buffer[index]
index = index + 1

(a) Receive code after aggregated communication.

ifp ¢>=0andp ¢ <=(N-32)/32then
DOts=0,T
pr=p st1
index =0
DOig=32p 4+29 MIN@B2p s +31,N-3)
t, =t o
ip=i ¢+3
a=i g
buffer[index] = X[a]
index = index + 1
send the data in buffer to processor p

(b) Send code after aggregated communication

Figure 9-10. Aggregated communication
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SUPERB [62] and Vienna Fortran [35,36]. Many of these efforts converged on the devel-
opment of High Performance Fortran (HPF) as an industry-wide standard language to sup-
port distributed memory machines, which extends FORTRAN-90 with data decomposition

information [83,99].

The current HPF compilers [27,69,17], as well as most of the previous compilers for dis-
tributed memory machines, use regular section descriptors [81] to summarize iteration and
data spaces as well as communication. However, regular sections can be used only to pre-
cisely represent a limited domain of rectilinear, triangular or diagonal spaces, creating spu-
rious communication. Our approach for communication code generation can handle any
iteration and data spaces and communication patterns that can be represented using sys-
tems of linear inequalities. A recent compiler for HPF also uses a similar linear algebra
framework [40]. However, our extension to linear inequalities, to allow symbolic coeffi-
cients, further expands this domain such that we can represent distributions with symbolic

block sizes.

Two algorithms for merging loop nests were proposed contemporaneously by [34,41].
These algorithms use linear inequalities to identify the common ranges of iterations and
split the iteration space. In addition, they introduce heuristics to limit the exponential

growth of the program. A similar algorithm was later introduced by [93].

All the compilers for distributed address space machines use a location-centric approach
to communication identification. Array privatization present the only opportunity for
reducing spurious communication created by this approach. The value-centric approach
we introduced creates communication only when there is a producer-consumer relation-
ship. Recently, many studies have taken a fundamentally different approach for minimiz-
ing communication based on producer-consumer relationships [56,92,109]. These
algorithms optimally reschedule each instance of each statement while maintaining the

producer-consumer relationships.
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9.7. Chapter Summary

This chapter presents three main results. First, we have developed a systematic approach,
based on a mathematical model, for communication code generation. We can handle a large
class of computation and data decompositions as well as complex array access functions
within this framework. We represent data decompositions, computation decompositions,
and communication as systems of linear inequalities. We have shown that the various code
generation and communication optimization problems can be solved by projecting the
polyhedra represented by systems of inequalities onto lower dimensional spaces. This
method is applicable to both the location- and value-centric approaches. Many optimiza-

tions can be expressed within this framework.

Second, we have developed several communication optimizations within the same unified
framework. These optimizations include eliminating redundant messages, aggregating
messages, and hiding the communication latency by overlapping the communication with
computation. These optimizations are essential to achieving an acceptable performance on

distributed memory machines [123].

Third, we have proposed a value-centric approach to deriving the fine-grain communica-
tion for machines with a distributed address space. Previous approaches are location-cen-
tric. communication is derived from data decompositions; optimizations are performed
using data dependence tests [19], an analysis that determines if accesses may refer to the
same location. In this approach, code generation is performed from computation decompo-
sitions using a data-flow analysis technique that is based on values instead of locations.
This approach enables a more general set of data and computation decompositions and

allows for more communication optimizations.
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1 O Conclusion

From the inception of the first electronic computer, architects have been striving to design
the ultimate computer by simply connecting many smaller ones [82]. Such multiprocessors,
which can bypass many of the physical limitations of uniprocessor performance, were
expected to become ubiquitous in computing. However, so far they have not achieved the
predicted performance gains for general purpose computing, mainly because of the inabil-
ity to create parallel software, either explicitly by a programmer or automatically by a com-
piler [59]. Parallel programs are hard to develop, difficult to debug and expensive to main-
tain. The current generation of parallelizing compilers cannot extract parallel performance
from sequential programs even with extensive user intervention. Thus, the adoption of par-

allel computing has been much slower than that anticipated 30 years ago [59].

Recent developments in compiler technologies have the potential to deliver the much antic-
ipated breakthrough in parallel computing [8]. Compilers have played a critical role in two
recent major breakthroughs in performance for general purpose computing: reduced
instruction set computers (RISC) and instruction level parallelism (ILP) in microproces-
sors. Compilers translate complex operations into simple instructions for RISC processors
[38] and schedule instructions for parallel execution in microprocessors with ILP [102,58].
Since the compilers are able to perform these techniques consistently and reliably without
any user intervention, these technologies have been widely used, helping to revolutionize

the microprocessor.

For multiprocessors to be widely accepted as general purpose computers, compilers must
consistently, predictably, and transparently, deliver good parallel performance on sequen-
tial programs. Achieving this goal presents a series of difficult challenges for the compiler

writer. Scientific applications require the development of compilers that identify coarse-
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grain parallelism and perform memory optimizations. Non-scientific applications written
in languages such as C and C++, require development of compilers with advanced tech-

niques such as pointer alias analysis [145].

This thesis represents a step towards making multiprocessors accepted as general purpose
computers. In this thesis, we have developed a set of compiler techniques that extract par-
allel performance from sequential dense matrix scientific applications. We have shown
that a parallelizing compiler can obtain parallel speedups consistently without user inter-

vention for this class of applications. This thesis makes the following contributions:

* We have shown that the linear inequalities framework is effective in parallelizing and
optimizing scientific applications, and that general solutions to many of these com-
piler problems can be found in a systematic manner. We have used this framework
extensively for many purposes, such as representing array summaries in interproce-
dural data-flow analysis, solving for the array reshapes, identifying modulo and divi-
sion optimizations, generating communication code for distributed address-space
machines, and performing communication optimizations. This framework is being
used at Stanford and elsewhere for developing many other compiler algorithms, such
as synchronization optimizations [140], interprocedural propagation in computation
and data co-location information, predicated data-flow analysis, and communication
analysis for software DSM [91]. This framework allowed us to rapidly prototype and

test many algorithms and ideas for next-generation compilers.

* We have implemented an array analysis algorithm using an array summary representa-
tion based on lists of systems of linear inequalities. This approach is driven by the
need to compute both location-based and value-based dependences. Using this repre-
sentation, we find data-flow information more accurately than any other previous sum-
mary representation. We are also able to perform the data-dependence analysis at the

same precision as the exact data dependence test [110].
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* We have designed the first algorithm capable of handling simple reshape patterns that
occur in practice. Using integer projections, this algorithm handles array reshapes that

occur in parameter passing, equivalences, and different common block declarations.

* We have developed a fully functional interprocedural parallelizer incorporating many
advanced array analysis techniques, such as array privatization, array reduction and
array reshape analysis. We have evaluated their effectiveness by parallelizing more
than 115,000 lines of FORTRAN code from 39 programs in four benchmark suites,
and obtaining a parallel coverage over 80% for more than three fourths of the pro-
grams. The robustness of the system enabled us to perform such a large and realistic

experiment.

* We have developed the first compiler that automatically performs a full suite of data
transformations on the array layouts to improve memory system performance of
cache-coherent multiprocessors. Our data transformation model uses a combination of
strip-mining and permutation transformations to restructure the layout of the data in
the shared address space such that each processor is assigned a contiguous segment of

memory.

* We have created a unified approach for communication code generation and optimiza-
tions for distributed address-space machines. We showed that optimizations such as
eliminating redundant messages, aggregating messages, and hiding communication
latency by overlapping the communication with computation can be formulated using
the linear inequalities framework. We also proposed a novel value-centric approach to

deriving fine-grain communication.

We have shown that a powerful and complete set of analyses and optimization techniques

can significantly improve the parallel performance of sequential applications.
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