
PARALLELIZING COMPILER TECHNIQUES

BASED ON LINEAR INEQUALITIES

A DISSERTATION SUBMITTED TO

THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Saman Prabhath Amarasinghe

January 1997

iii

Copyright  1997

by

Saman Prabhath Amarasinghe

All rights reserved

iv

v

I certify that I have read this dissertation and that in my opinion it is fully adequate,

in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Monica S. Lam

(Principal Adviser)

I certify that I have read this dissertation and that in my opinion it is fully adequate,

in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

John L. Hennessy

I certify that I have read this dissertation and that in my opinion it is fully adequate,

in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Anoop Gupta

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies

vi

vii

Abstract

Shared-memory multiprocessors, built out of the latest microprocessors, are becoming a

widely available class of computationally powerful machines. These affordable multipro-

cessors can potentially deliver supercomputer-like performance to the general public.

To effectively harness the power of these machines it is important to find all the available

parallelism in programs. The Stanford SUIF interprocedural parallelizer we have devel-

oped is capable of detecting coarser granularity of parallelism in sequential scientific appli-

cations than previously possible. Specifically, it can parallelize loops that span numerous

procedures and hundreds of lines of codes, frequently requiring modifications to array data

structures such as array privatization. Measurements from several standard benchmark

suites demonstrate that aggressive interprocedural analyses can substantially advance the

capability of automatic parallelization technology.

However, locating parallelism is not sufficient in achieving high performance. It is critical

to make effective use of the memory hierarchy. In parallel applications, false sharing and

cache conflicts between processors can significantly reduce performance. We have devel-

oped the first compiler that automatically performs a full suite of data transformations (a

combination of transposing, strip-mining and padding). The performance of many bench-

marks improves drastically after the data transformations.

We introduce a framework based on systems of linear inequalities for developing compiler

algorithms. Many of the whole program analyses and aggressive optimizations in our com-

piler employ this framework. Using this framework general solutions to many compiler

problems can be found systematically.

viii

ix

To my late father

Dharmasiri Amarasinghe

x

xi

Acknowledgments

I would like to thank my advisor Monica Lam, without whose unbounded energy, immense

enthusiasm, demand for excellence and intellectual vigor (and many all-nighters) this

research would not be possible. Krishna Saraswat graciously agreed to be my orals chair-

man. John Hennessy and Anoop Gupta provided invaluable comments as members of my

thesis and orals committees. It was a deep honor and a privilege to receive wisdom and

guidance from John Hennessy.

My time at Stanford was spent on several joint projects with many talented and brilliant

individuals. The early work on array privatization was done with Dror Maydan, who is a

pleasure to work with. The locality optimization work was done with Jennifer Anderson, a

valued friend and a great collaborator. The interprocedural parallelizer project was a joint

effort with Mary Hall, Brian Murphy, and Shih-Wei Liao. Mary is a great motivator and it

was lively and fun to work with her. I greatly enjoyed and learned from my work with the

SUIF compiler team, especially Jennifer Anderson, Robert French, Mary Hall, David

Heine, Shih-Wei Liao, Amy Lim, Dror Maydan, Brian Murphy, Jason Nieh, Martin Rinard,

Patrick Sathyanathan, Dan Scales, Alex Seibulescu, Mike Smith, Steve Tjiang, Chau-Wen

Tseng, Bob Wilson, Chris Wilson, and Michael Wolf.

Jeff Erickson, Mary Hall, David Heine, Michael Margolis, and Mary McDevitt read many

drafts of this thesis and provided me with invaluable comments.

I was fortunate to have a great collection of family, friends, and Hammaraskjöld buddies

who kept me relatively sane during my time at Stanford. Chand Samaratunga, Nalin Kula-

tilaka, Hemantha Jayawardana and the rest of the crew at Lanka Internet Services, Ltd. pro-

xii

vided me with a challenging distraction during my last few years at Stanford. I am

especially in debt to my wife Pranita who provided constant support, strength and compan-

ionship when it was most needed.

This work was supported in part by DARPA contracts DABT63-91-K-0003, and

DABT63-94-C-0054 and a graduate fellowship from Intel Corporation. Beatrice Fu was

my mentor at Intel.

xiii

Table of Contents

Abstract ... vii

Acknowledgments... xi

Table of Contents... xiii

List of Figures .. xix

CHAPTER 1. Introduction .. 1

1.1. Thesis Overview... 2
1.1.1. Framework for Compiler Development ... 2
1.1.2. Locating Coarse-Grain Parallelism .. 2
1.1.3. Optimizing for the Memory Hierarchy... 3
1.1.4. Optimizing Communication ... 4

1.2. Organization of the Thesis.. 4

CHAPTER 2. The Linear Inequalities Framework.. 5

2.1. Systems of Linear Inequalities ... 6

2.2. Code Generation... 8
2.2.1. Iteration Space .. 8
2.2.2. Scanning a Polyhedron ... 9
2.2.3. Generating Efficient Loop Bounds... 16

2.2.3.1. Simplifying the inequalities ... 16
2.2.3.2. Eliminating simple redundant inequalities................................... 17
2.2.3.3. Determining the elimination order ... 19

2.3. Linear Inequalities with Symbolic Coefficients ... 20
2.3.1. SPMD Code Generation Example.. 21

2.4. Linear Inequality Representation for Data and Processor Spaces.......................... 22
2.4.1. Data Space .. 23
2.4.2. Processor Space .. 24

2.5. Related Work.. 24

2.6. Chapter Summary... 25

xiv

CHAPTER 3. Coarse-Grain Parallelism... 27

3.1. Parallelism in Sequential Scientific Programs ... 28
3.1.1. Data Dependence Analysis... 28
3.1.2. Extracting Fine-Grain Parallelism.. 29

3.2. Coarse-Grain Parallelism.. 29

3.3. Advanced Array Analyses.. 31
3.3.1. Beyond Location-Based Dependences ... 31
3.3.2. Multiple Array Accesses .. 33
3.3.3. Array Reshapes Across Procedure Boundaries .. 35

3.4. Chapter Summary... 36

CHAPTER 4. Interprocedural Array Analysis .. 37

4.1. Interprocedural Framework .. 38
4.1.1. The Regions Graph... 39
4.1.2. Data-Flow Analysis .. 40

4.1.2.1. Bottom-up traversal for forward and backward flow order 42
4.1.2.2. Top-down traversal for flow-insensitive order 45

4.2. Loop Context Propagation.. 48
4.2.1. The Data-Flow Problem ... 48

4.2.1.1. The local value function... 49
4.2.1.2. The transfer function.. 49
4.2.1.3. The map operator ... 50

4.3. Array Data-Flow Analysis.. 50
4.3.1. Array Index Sets ... 50
4.3.2. The Flow Value of the Array Data-Flow Problem..................................... 52
4.3.3. The Data-Flow Problem ... 53

4.3.3.1. The local value function... 53
4.3.3.2. The transfer function.. 54
4.3.3.3. The meet operator .. 55
4.3.3.4. The closure operator... 55
4.3.3.5. The map operator ... 55

4.4. Parallel Loop Detection.. 55
4.4.1. Location-Based Dependences .. 56
4.4.2. Value-Based Dependences ... 56

4.5. Determining the Outermost Parallel Loops.. 57

4.6. Related Work.. 58

4.7. Chapter Summary... 59

CHAPTER 5. Array Summary Representation... 61

5.1. Convex Array Section .. 62

5.2. Array Section Descriptors .. 65

5.3. Sparse Array Regions ... 65

5.4. Operations on Convex Regions .. 67
5.4.1. Empty Test.. 67
5.4.2. Intersection Operator .. 67
5.4.3. Union Operator... 68

5.4.3.1. A simple merge algorithm.. 69
5.4.3.2. Merge algorithm in the presence of auxiliary variables............... 72

5.4.4. Projection Operator .. 72

xv

5.4.5. Containment Test.. 75
5.4.6. Equivalence Test .. 75
5.4.7. Subtraction Operator .. 76
5.4.8. Simplify and Clean-up.. 77

5.4.8.1. Simplify coefficients and tighten the bounds............................... 78
5.4.8.2. Eliminate unused auxiliary variables ... 78
5.4.8.3. Normalize the offsets ... 80
5.4.8.4. Eliminate redundant auxiliary variables 80
5.4.8.5. Eliminate redundant inequalities.. 82

5.5. Operations on Array Section Descriptors... 82
5.5.1. Empty Test.. 83
5.5.2. Intersection Operator .. 84
5.5.3. Union Operator... 84
5.5.4. Projection Operator .. 85
5.5.5. Containment Test.. 87
5.5.6. Equivalence Test .. 88
5.5.7. Subtraction Operator .. 89

5.6. Related Work.. 90

5.7. Chapter Summary... 93

CHAPTER 6. Array Reshapes Across Procedure Boundaries................................ 95

6.1. Reshapes in FORTRAN ... 96
6.1.1. Parameter Reshapes.. 96
6.1.2. Equivalences... 96
6.1.3. Different Common Block Declarations.. 96

6.2. The Array Reshape Problem .. 99
6.2.1. Algorithm Overview... 101

6.3. Array Reshapes due to Parameter Passing ... 102

6.4. Array Reshapes in Equivalences .. 105

6.5. Array Reshapes in Common Blocks... 107

6.6. Related Work.. 109

6.7. Chapter Summary... 110

CHAPTER 7. Experimental Results in Coarse-Grain Parallelism....................... 111

7.1. Experimental Setup .. 111
7.1.1. The Compiler System... 112
7.1.2. Multiprocessors .. 113

7.2. Examples of Coarse-Grain Parallelism .. 113

7.3. Benchmark Programs ... 117
7.3.1. SPEC95fp Benchmark Suite... 117
7.3.2. SPEC92fp Benchmark Suite... 119
7.3.3. Nas Parallel Benchmark Suite ... 119
7.3.4. Perfect Club Benchmark Suite ... 119

7.4. Applicability of Advanced Analyses.. 119
7.4.1. Static Measurements... 120
7.4.2. Dynamic Measurements ... 122

7.4.2.1. Parallelism coverage .. 122
7.4.2.2. Granularity of parallelism .. 128
7.4.2.3. Program speedup.. 128

xvi

7.4.3. Discussion... 128
7.4.3.1. SPEC95fp benchmarks... 128
7.4.3.2. SPEC92fp benchmarks... 129
7.4.3.3. Nas benchmarks .. 129
7.4.3.4. Perfect benchmarks... 130

7.5. Related Work.. 131

7.6. Chapter Summary... 132

CHAPTER 8. Improving Memory Performance with Data Transformations 135

8.1. Problem Statement.. 136
8.1.1. False Sharing Misses .. 136
8.1.2. Cache Conflict Misses.. 138

8.2. Data Transformations ... 139
8.2.1. Data Transformation Model ... 140

8.2.1.1. Strip-mining primitive.. 140
8.2.1.2. Permutation primitive .. 141

8.2.2. Legality... 142
8.2.3. Algorithm Overview... 143

8.2.3.1. Example of a two-dimensional block distribution 144
8.2.3.2. Example of a cyclic distribution .. 144
8.2.3.3. Example of a block-cyclic distribution 146

8.2.4. Data Transformation Algorithm... 148
8.2.5. Code Generation... 153

8.3. Modulo and Division Optimization.. 154
8.3.1. Modulo and division simplification.. 155
8.3.2. Optimizing when data within the strip is accessed................................... 156
8.3.3. Optimizing when data in single strip is accessed after cyclic distribution 157
8.3.4. Optimizing when data in a strip and its neighbors are accessed 157
8.3.5. Optimizing when access is by a sequential loop 157
8.3.6. Extended strength reduction optimization.. 160

8.4. Evaluation... 162
8.4.1. Experimental Setup .. 162
8.4.2. Results .. 165

8.4.2.1. Vpenta .. 165
8.4.2.2. LU Decomposition... 167
8.4.2.3. Five-Point Stencil... 169
8.4.2.4. Erlebacher .. 170
8.4.2.5. Swm256 ... 172
8.4.2.6. Tomcatv ... 174

8.5. Related Work.. 175

8.6. Chapter Summary... 176

CHAPTER 9. Communication Generation and Optimization for
Distributed Address-Space Machines 177

9.1. Determining Communication ... 178
9.1.1. Location-Centric Approach .. 178
9.1.2. Value-Centric Approach... 180

9.2. Problem Domain... 182
9.2.1. Data Decompositions.. 184

xvii

9.2.2. Computation Decompositions .. 184

9.3. Communication .. 185
9.3.1. Using Data Decompositions and the Owner-Computes Rule 185
9.3.2. Using Computation Decompositions and the Exact Data-Flow

Information ... 187
9.3.2.1. Finalization... 188

9.4. Code Generation for Distributed Address-Space Machines................................. 189
9.4.1. Generating Computation and Communication Code 189
9.4.2. Merging Loop Nests ... 190
9.4.3. Local Address Space .. 192

9.5. Communication Optimizations... 194
9.5.1. Eliminating Redundant Communication .. 194

9.5.1.1. Redundant communication due to self reuse 195
9.5.1.2. Redundant communication due to group reuse.......................... 195
9.5.1.3. Other forms of redundancies.. 197

9.5.2. Communication Aggregation ... 197
9.5.2.1. Multi-casting .. 198

9.6. Related Work.. 198

9.7. Chapter Summary... 201

CHAPTER 10. Conclusion... 203

Bibliography .. 207

Index.. 219

xviii

xix

List of Figures

CHAPTER 1. ... 1

CHAPTER 2. ... 5

Figure 2-1. Example loop nest ... 9

Figure 2-2. System of inequalities describing the iteration space.. 9

Figure 2-3. Convex polyhedron representing the iteration space... 10

Figure 2-4. Projecting for all the possible scanning orders.. 12

Figure 2-5. Loop nests generated by projecting the polyhedron.. 13

Figure 2-6. Example with tight bounds on the iteration space... 14

Figure 2-7. Transposed loop nests.. 15

Figure 2-8. Algorithm for creating efficient loop bounds .. 17

Figure 2-9. Algorithm for simplifying an inequality.. 18

Figure 2-10. Algorithm for eliminating simple redundant inequalities ... 18

Figure 2-11. Algorithm for calculating the weights that order the elimination of redundant
inequalities... 19

Figure 2-12. Example DOALL loop nest... 21

Figure 2-13. Iteration space.. 22

Figure 2-14. System of inequalities describing the iteration space.. 23

Figure 2-15. Compiler generated SPMD loop nest .. 23

CHAPTER 3. ... 27

Figure 3-1. Example fromappbt ... 32

Figure 3-2. Dependences for the elements read by the 4th iteration of the k loop 33

Figure 3-3. Example of an array privatization fromspec77... 34

Figure 3-4. Example of multiple regions across loops fromspec77 .. 34

Figure 3-5. An example with two array reshapes fromturb3d ... 35

CHAPTER 4. ... 37

Figure 4-1. Example program .. 40

Figure 4-2. Regions graph of the example program in Figure 4-1... 41

Figure 4-3. Bottom-up, forward-flow traversal .. 43

Figure 4-4. Algorithm for bottom-up regions-based data-flow analysis...................................... 44

Figure 4-5. Top-down, flow-insensitive pass needing selective procedure cloning..................... 46

xx

Figure 4-6. Algorithm for top-down analysis. ... 47

Figure 4-7. An example of loop contexts for a loop nest... 49

CHAPTER 5. ... 61

Figure 5-1. A loop nest with an array access ... 63

Figure 5-2. Summarizing the array access patterns ... 64

Figure 5-3. A simple example creating sparse access pattern.. 66

Figure 5-4. An array summary with an auxiliary variable... 67

Figure 5-5. Examples of unions of two convex sections resulting in a non-convex section 68

Figure 5-6. Two examples of loop nests where the convex array sections can be merged after
union operator.. 69

Figure 5-7. Examples of convex array sections that can be merged after union operator. 70

Figure 5-8. Attempts to merge two convex array sections without any special treatment on
auxiliary variables ... 71

Figure 5-9. Attempts to merge different sparse patterns into a single sparse pattern using a new
auxiliary variable... 73

Figure 5-10. Attempts to merge two convex array sections... 74

Figure 5-11. Algorithm for the containment test ... 75

Figure 5-12. Algorithm for the equivalence test .. 76

Figure 5-13. An example of a subtraction of two convex sections resulting in a single
non-convex section.. 76

Figure 5-14. Algorithm for subtracting two convex array sections ... 77

Figure 5-15. The driver for the simplify and clean-up algorithms... 78

Figure 5-16. Algorithm for tightening the integer bounds... 79

Figure 5-17. Algorithm for eliminating inequalities and auxiliary variables that do not create any
sparse patterns ... 79

Figure 5-19. Algorithm for removing redundant auxiliary variables... 80

Figure 5-18. Algorithm for normalizing the offsets of the inequalities with auxiliary variables .. 81

Figure 5-20. Algorithm for removing inequalities that are obviously redundant 82

Figure 5-21. Algorithm for inserting a convex array section to an array section descriptor 83

Figure 5-22. Algorithm for the intersection operator... 84

Figure 5-23. Algorithm for the union operator .. 85

Figure 5-24. Post-pass after the union operator ... 86

Figure 5-25. Algorithm for the projection operator ... 87

Figure 5-26. Algorithm for the containment test ... 88

Figure 5-27. Example of the operator , where containment is difficult to detect......... 89

Figure 5-28. Algorithm for the equivalence test .. 89

Figure 5-29. Example of equivalent array section descriptors where detection byIsEquivalent
operator is not possible.. 90

Figure 5-30. Algorithm for the subtraction operator.. 91

Figure 5-31. Example of a subtraction that needs multiple iterations ... 92

CHAPTER 6. ... 95

Figure 6-1. Examples of parameter reshapes ... 97

Figure 6-2. Aliasing using the equivalence operator ... 98

Figure 6-3. Example of a common block reshape fromhydro2d ... 98

Figure 6-4. Example fromturb3d with two array reshapes .. 100

D1 D2⊆

xxi

Figure 6-5. The array reshape inturb3d .. 101
Figure 6-6. Calculating an array summary across an array reshape... 103

Figure 6-6. Calculating an array summary across an array reshape... 103

Figure 6-7. Code segment representing the reshape in the Definition 6-1................................. 104

Figure 6-8. Code segment representing the equivalence in the Definition 6-2. 106

CHAPTER 7. ... 111

Figure 7-1. Characteristics of the two multiprocessor systems used for the experiments 114

Figure 7-2. Parallelizable regions from a code segment inspec77 .. 115

Figure 7-3. Parallelizable regions from a code segment inturb3d.. 116

Figure 7-4. Parallel speedup forturb3d on a 8 processor AlphaServer 117

Figure 7-5. Benchmark descriptions, data-set sizes and execution times 118

Figure 7-6. Static Measurements: Number of parallel loops found by each technique 121

Figure 7-7. Dynamic Measurements on the AlphaServer forSPEC95fp................................. 123

Figure 7-8. Dynamic Measurements on the Challenge forSPEC92fp..................................... 124

Figure 7-9. Dynamic Measurements on the Challenge forNas using the small data set.......... 125

Figure 7-10. Dynamic Measurements on the AlphaServer forNas using the large data set....... 126

Figure 7-11. Dynamic Measurements on the Challenge forPerfect... 127

Figure 7-12. Summary of the experimental results .. 133

CHAPTER 8. ... 135

Figure 8-1. False Sharing ... 137

Figure 8-2. Cache Conflicts.. 138

Figure 8-3. Making data accessed by each processor contiguous in memory 139

Figure 8-4. The indices of array accesses at each stage of transformation.
The number in the upper right corner shows the linearized address
of the data. ... 141

Figure 8-5. Example array declaration in HPF .. 143

Figure 8-6. Transformation process of an array with (BLOCK, BLOCK) distribution............. 145

Figure 8-7. A (BLOCK, BLOCK) distributed array before and after transformations.............. 146

Figure 8-8. Transformation process of an array with (CYCLIC, *) distribution 147

Figure 8-9. A (CYCLIC, *) distributed array before and after transformations 148

Figure 8-10. Transformation process of an array with a (CYCLIC(b), *) distribution................ 149

Figure 8-11. A (CYCLIC(2), *) distributed array before and after transformations 150

Figure 8-12. Algorithm for calculating new array dimensions .. 151

Figure 8-13. Algorithm for calculating new array indices ... 152

Figure 8-14. Example program segment .. 153

Figure 8-15. Program segment after data transformation .. 154

Figure 8-16. List of algebraic simplifications performed by the compiler on expression with
modulo and division operations... 155

Figure 8-17. Optimize when the loop is accessing only a single strip of the array...................... 156

Figure 8-18. Optimize when a loop with a step size access a single strip of the array 158

Figure 8-19. Optimize when the loop is accessing two neighboring strip of the array. 159

Figure 8-20. Optimize when the loop is accessing multiple strips... 160

Figure 8-21. Optimize using strength reduction... 161

Figure 8-22. 32 node DASH multiprocessor.. 163

xxii

Figure 8-23. Compiler optimizations performed for the experiments ... 164

Figure 8-24. Performance ofVpenta .. 166

Figure 8-26. LU Decomposition code.. 167

Figure 8-25. Performance ofLU decomposition ... 168

Figure 8-27. Five-point stencil code .. 170

Figure 8-28. Performance of 5-point stencil .. 171

Figure 8-29. Performance ofErlebacher.. 172

Figure 8-30. Performance ofswm256 .. 173

Figure 8-31. Performance oftomcatv ... 174

CHAPTER 9. ... 177

Figure 9-1. Different approaches to code generation for distributed memory machines........... 179

Figure 9-2. Simple 2-deep loop nest .. 180

Figure 9-3. The exact data-flow information ... 181

Figure 9-4. Examples of some data decompositions for an NxN array onto
a 2-dimensional processor space ... 186

Figure 9-5. Inequalities defining the communication sets for first context, with producer-
consumer relationship, in Figure 9-3... 189

Figure 9-6. Computation and communication code for the Example 9-2.................................. 191

Figure 9-7. Merging multiple loop nests.. 193

Figure 9-8. The Example 9-2 with multiple read accesses .. 196

Figure 9-9. The exact data-flow information for the example from Figure 9-8......................... 196

Figure 9-10. Aggregated communication .. 199

CHAPTER 10. .. 203

1

1 Introduction

Shared-memory multiprocessors, built out of the latest microprocessors, are now becoming

widely used as medium- and high-powered servers. These affordable multiprocessors can

potentially deliver supercomputer-like performance to the general public. Today, these

machines are mainly used in a multi-programming mode, increasing system throughput by

running several independent applications in parallel. The multiple processors can also be

used together to accelerate the execution of single applications. Automatic parallelization

is a promising technique that allows ordinary sequential programs to take advantage of

multiprocessors [24,43,71,87].

Multiprocessors present more difficult challenges to parallelizing compilers than do vector

machines, their initial target. Effective use of a vector architecture involves parallelizing

repeated arithmetic operations on large data streams (e.g., innermost loops in array-ori-

ented programs). On a multiprocessor, however, parallelizing innermost loops typically

does not provide sufficiently largegranularity of parallelism —not enough work is per-

formed in parallel to overcome the overhead of synchronization and communication among

processors. To utilize a multiprocessor effectively, the compiler must exploitcoarse-grain

parallelism, locating large computations that can execute independently in parallel.

Locating coarse-grain parallelism is not sufficient to obtain parallel performance. It is crit-

ical to make effective use of the memory hierarchy to achieve high performance. Over the

last decade, microprocessor speeds have been steadily improving at a rate of 50% to 100%

every year [82]. Meanwhile, memory access times have been improving at the rate of only

7% per year [82]. A common technique used to bridge this gap between processor and

memory speeds is to employ one or more levels of caches. However, it has been notoriously

difficult to use caches effectively for numeric applications. In fact, various past machines

2

built for scientific computations—such as the Cray C90, Cydrome Cydra-5 [126] and the

Multiflow Trace [42]—were all built without caches. However, current multiprocessor

systems include complex memory hierarchies and multiple levels of caches. Given that the

processor-memory gap continues to widen, exploiting the memory hierarchy is critical to

achieving high performance on modern architectures.

1.1. Thesis Overview

1.1.1. Framework for Compiler Development

A successful parallelizing compiler needs to perform many whole program analyses and

aggressive optimizations. Creating a compiler that is capable of performing these analyses

and optimizations on an arbitrary program, written in one of many programming styles, is

a daunting task for compiler writers. One important method used by compiler writers to

tackle the complexity of the development process is to take advantage of proven frame-

works. We introduce one such framework for parallelizing compilers based on systems of

linear inequalities. Many of the problems in parallelizing compilers for scientific applica-

tions involve comprehensive analysis and aggressive optimizations on loop nests and data

arrays. The iteration space of the loop nests, the data space of the arrays, and the index

space of the processors are multi-dimensional integer spaces, and thus can be represented

using systems of linear inequalities. We show the usefulness of this framework by applying

it in developing many advanced analysis and optimization techniques.

1.1.2. Locating Coarse-Grain Parallelism

Finding coarse-grain parallelism requires major improvements over standard analysis for

parallelization. A loop is often not parallelizable unless the compiler modifies the data

structures it accesses. For example, it is very common for each iteration of a loop to define

and use the same variable. The compiler must give each processor a private copy of the

variable for the loop to be parallelizable. The compiler needs to perform array data-flow

analysis to determine if an array is privatizable [52,113]. We have developed a unified

array analysis algorithm using an array summary representation based on the linear ine-

qualities framework. Using this representation, we calculate data-flow information more

3

accurately than any other previous analysis, and we also perform the data-dependence anal-

ysis at the same precision as the exact data dependence test.

Furthermore, the existence of array reshapes in FORTRAN, where the same memory loca-

tions are accessed using different array shapes, further complicates interprocedural array

analysis. In order to perform the aggressive whole program analysis, required to find

coarse-grain parallelism, the compiler must analyze the programs in the presence of array

reshapes to determine their effect on the rest of the analysis. Previously, array reshapes

were handled only within a limited domain [137]. We have developed a linear inequalities-

based algorithm that can analyze a large class of array reshapes.

Using these advanced array analysis techniques we have developed a fully functional inter-

procedural parallelizer in the Stanford SUIF compiler system that is capable of detecting

coarse-grain parallelism. We show that automatic parallelization can succeed with many

existing sequential dense matrix scientific applications by applying our compiler to more

than 115,000 lines of FORTRAN code in 39 programs from four benchmark suites.

1.1.3. Optimizing for the Memory Hierarchy

The effective utilization of the memory hierarchy is critical to achieving high performance.

Recent work on code transformations to improve cache performance has been shown to

improve uniprocessor system performance significantly [33,147]. Making effective use of

the memory hierarchy on multiprocessors is even more important to performance but also

more difficult to achieve.

We have developed the first compiler that automatically performs a full suite of data trans-

formations on the original array layouts to improve memory system performance of cache-

coherent multiprocessors. Our algorithm restructures the layout of the data in the shared

address space such that each processor is assigned a contiguous segment of memory. We

ran our compiler on a set of application programs and measured their performance. Our

results show that the compiler can effectively optimize for parallelism and memory sub-

system performance.

4

1.1.4. Optimizing Communication

We have developed a systematic approach, based on the linear inequalities framework, for

code generation and optimization of communication for distributed memory machines.

This problem involves manipulation of all three spaces: iteration, data and processor. It

also demonstrates the flexibility and usefulness of the linear inequalities framework. This

framework can handle a large class of computation and data decompositions as well as

complex array access functions. We represent data decompositions, computation decom-

positions, and inter-processor communication as systems of linear inequalities. We have

also developed several communication optimizations within the same unified framework.

These optimizations include eliminating redundant messages, aggregating messages, and

hiding communication latency by overlapping communication with computation.

1.2. Organization of the Thesis

The organization of this thesis is as follows. In Chapter 2, we introduce our framework for

parallelizing compilers based on systems of linear inequalities. We discuss the need for

coarse-grain parallelism and the requirements for obtaining it in Chapter 3. We present our

array data-flow algorithm in Chapter 4 and the linear inequalities-based summary repre-

sentation in Chapter 5. In Chapter 6, we introduce a linear inequalities-based algorithm that

can analyze a large class of array reshapes. In Chapter 7, we show that automatic parallel-

ization can succeed with many existing sequential dense matrix scientific applications by

applying our compiler to more than 115,000 lines of FORTRAN code in 39 programs from

four benchmark suites. The unique problems posed by multiprocessor caches are discussed

in Chapter 8. We introduce a data transformation algorithm that changes the original array

layouts to improve memory system performance. A collection of communication code

generation and communication optimization algorithms for distributed address-space

machines is defined in Chapter 9. We conclude in Chapter 10.

5

2 The Linear Inequalities Framework

The first generation of compilers was capable only of a simple translation of programs writ-

ten in a high-level programming language into a low-level machine language. However,

modern compilers perform many complex transformations that are necessary to optimize

programs to obtain good performance from today’s complex computers. Creating a com-

piler that is capable of performing these complex transformations on an arbitrary program,

written in one of many programming styles, is a daunting task for the compiler writer. Com-

pilers have become very large and complex software systems that require highly skilled

compiler writers and many people-years of development. One important method used by

compiler writers to tackle the complexity of the development process is to take advantage

of proven frameworks. Use of tools such as parser generators [96] and data-flow frame-

works [90] can help create robust and powerful compilers with relative ease.

The next generation of compilers, aimed at parallel architectures, such as shared memory

multiprocessors, needs to perform even more complex whole program analysis techniques

and aggressive optimizations. A framework that can be used to develop many of the new

analyses and optimizations is essential to the success of these parallelizing compilers. The

framework should be robust and applicable to a wide class of input programs. Compiler

writers should be able to use this framework to create effective general solutions in a sys-

tematic manner. In this chapter, we introduce one such framework based on systems of

linear inequalities.

Many of the critical requirements of parallelizing compilers for scientific applications

involve comprehensive analyses and aggressive optimizations on loop nests and data

arrays. By representing the iteration space of the loop nests and the data space of the arrays

as multi-dimensional integer spaces, we can perform these novel analyses and optimiza-

6

tions through a mathematical manipulation of the spaces. The compiler can analyze an

input program by creating index sets associated with the spaces and perform optimizations

by manipulating these index sets. Representing arbitrary sets of coordinates accurately is

not practical in a compiler. However, many of the iteration and data spaces found in prac-

tice are multi-dimensional convex regions. Thus, we focus on the domain of index sets that

can be represented using convex polyhedrons.

This chapter is organized as follows. In the next section we will define the linear inequality

representation used throughout this thesis. We introduce the use of this framework by

describing a code generation algorithm in Section 2.2. We have extended linear inequali-

ties, as described in Section 2.3, to handle simple non-linear systems with symbolic coef-

ficients. The data and processor spaces used in this thesis are introduced in Section 2.4. We

present related work in Section 2.5.

2.1. Systems of Linear Inequalities

We use a unified framework based on linear inequalities to handle multi-dimensional inte-

ger spaces such as iteration, data and processor spaces that are used in analyses and opti-

mization techniques for next-generation compilers [9]. We represent all possible values of

a set of integer variables as ann-dimensional discrete cartesian space,

where thek-th axis corresponds to variable . Coordinate corresponds

to the value .

A parameterized convex polyhedron in then-dimensional space of the variables ,

parameterized by symbolic constants , is represented by a system of linear ine-

qualities with the variables and the symbolic constants . All the solu-

tions satisfying the inequalities correspond to the integer points within the polyhedron.

v1 … vn, ,() Zn∈

vk x1 … xn, ,[] Zn∈

v1 x1= … vn xn=, ,

v1 … vn, ,

u1 … uk, ,

v1 … vn, , u1 … uk, ,

7

Definition 2-1: A parameterized convex polyhedron of n dimensions

and k parameters is represented by the system of inequalities

where all a’s, b’s and c’s are integers, are integer symbolic constants and

 are integer variables.

In our compiler algorithms, we use projection as one of the key transformations in manip-

ulating systems of linear inequalities [47]. Suppose we project ann-dimension polyhedron,

, onto the ()-dimensional subspace orthogonal to the axis representing variable .

The resulting polyhedron in the ()-dimensional subspace, , is derived by elimi-

nating the variable from the system of inequalities of .

Projection of ann-dimensional polyhedron onto an ()-dimensional space can be

achieved using a single step of Fourier-Motzkin elimination [48,127]. Fourier-Motzkin

elimination can produce a large number of superfluous constraints. We can determine if a

constraint is superfluous as follows. We replace the constraint in question with its negation,

and if the new system does not have an integer solution then the constraint is superfluous.

To check if a system has an integer solution, we again use Fourier-Motzkin elimination.

Since the Fourier-Motzkin elimination algorithm checks if a real solution exists for a sys-

tem, a branch-and-bound technique is needed to check for the existence of an integer solu-

tion [127].

Each integer point in the original polyhedron is mapped to an integer point in the polyhe-

dron created by the projection operation. However, the projected polyhedron may contain

integer points with no corresponding points in the original polyhedron. If

then . But, given , there

may or may not exist an such that . Consider the example where

has a single constraint involving : . We know that must be even. However,

Sn Z
k P Z

n
 
 

→:

Sn u1 … uk, ,() v1 … v, ,
n

()
a

1
b1

1
u1 … bk

1
uk c1

1
v1 … cn

1
vn+ + + + + + 0≥

……………

a
m

b1
m

u1 … bk
m

uk c1
m

v1 … cn
m

vn+ + + + + + 0≥ 
 
 
 
 

=

u1 … uk, ,

v1 … vn, ,

Sn n 1– vn

n 1– Sn 1–

vn Sn

n 1–

x1 … xn, ,[] Sn∈ x1 … xn 1–, ,[] Sn 1–∈ x1 … xn 1–, ,[] Sn 1–∈

xn x1 … xn, ,[] Sn∈ Sn

vn v1 2vn= v1

8

this constraint is not captured in the projected polyhedron and can be an odd

number in .

2.2. Code Generation

As a simple example of how linear inequalities framework can be used in compilers, we

present a code generation algorithm based on linear inequalities [9]. Ancourt and Irigoin

presented an algorithm for generation of loop nests after loop transformation by a series of

projections of the transformed iteration space [10,11]. In the following, we briefly describe

their algorithm, and our heuristics for finding tight and efficient loop bounds.

2.2.1. Iteration Space

The iterations of ann-deep loop nest are given by an iteration set where each element is an

iteration in the iteration space .

A parameterized convex polyhedron can be used to represent the iteration space of a loop

nest when the loop bounds of the nest are affine expressions of outer loop indices and sym-

bolic constants. Within this scope of a loop nest, the convex polyhedron representing the

iteration space is formally defined as follows:

Definition 2-2: For the n-deep loop nest

where are symbolic constants (variables unchanged within the loop),

are the loop index variables and , are affine functions, the iteration set,

, is given by the parameterized convex polyhedron

Sn 1– v1

Sn 1–

ℑ Z
n⊆

DO = ,

DO = ,

....

DO = ,

i1 l1 v1 … vm, ,() h1 v1 … vm, ,()

i2 l2 v1 … vm i, , ,
1

() h2 v1 … vm i, , ,
1

()

in ln v1 … vm i1 … in 1–, , , , ,() hn v1 … vm i1 … in 1–, , , , ,()

v1 … vm, , i1 … in, ,

l k hk

I
n

v1 … vm, ,()

I
n

v1 … vm, ,() i1 … i, ,
n

() ℑ∈
k 1 … n, ,=

i k lk v1 … vm i, , ,
1

… i, ,
k 1– 

 ≥

i k hk v1 … vm i, , ,
1

… i, ,
k 1– 

 ≤ 
 
 
 
 

=

9

Figure 2-2 shows the system of inequalities describing the iteration space of the example

loop nest in Figure 2-1. Each integer point within the convex polyhedron corresponds to a

valid iteration of the loop nest. The graphical representation of the convex polyhedron of

the iteration space is illustrated in Figure 2-3.

2.2.2. Scanning a Polyhedron

The iteration space representation of a loop nest does not specify the order of execution of

the iterations. When generating a loop nest from an iteration space, we need to provide a

lexicographical order for execution of the iterations.

Figure 2-1. Example loop nest

DO I = 1, N

DO J = 1, I

DO K = J, 2N-I

.....

Figure 2-2. System of inequalities describing the iteration space

I
3

N() I J K, ,()
I 1– 0≥ N I– 0≥
J 1– 0≥ I J– 0≥
K J– 0≥ 2N I– K– 0≥ 

 
 
 
 

=

10

Definition 2-3: Given iterations , is

lexicographically less than iff there exists such that

and .

We generate a loop nest from a parameterized convex polyhedron, , with

symbolic constants and unknowns . The integer points within the

Figure 2-3. Convex polyhedron representing the iteration space

K

I

J

0

N

N

N

2N

i1 … in, ,() j1 … jn, ,(), Zn∈ i1 … in, ,()

j1 … jn, ,() k n≤ 0 l k<≤ i l∀ j l=

i k jk<

S
n

u1 … um, ,()

u1 … um, , v1 … vn, ,

11

polyhedron are converted to iterations of the loop nest. The order in which the points are

visited, the lexicographical ordering of the iterations, is given by thescanning order.The

scanning order indicates that the index variable of thek-th outermost loop is

. The index of a loop is incremented by one every iteration, and has a finite lower and

upper bound. The loop bounds are expressions of symbolic constants and outer

loop indices. The problem that remains is, what should the bounds of the loops be such that

the loop nest contains an iteration with indices iff is a solution

to ?

We find the bounds of the loop nest in the reverse scanning order. To find the bounds for

loop index , we rewrite the constraints in the form of

and . Any inequalities not involving need not be

considered here. The integer lower and upper bounds for are given simply by

We next project the original polyhedron onto the space to obtain an

()-dimensional parameterized convex polyhedron represented by a set of constraints

involving the symbolic constants and the variables . We can then

repeat the process in the reverse scanning order for variables .

The system of inequalities in Figure 2-2 represents a three-dimensional iteration space. For

this iteration space, six possible scanning orders can be used to generate a loop nest. The

projections necessary for generating loop nests for all the six scanning orders are illustrated

in Figure 2-4. The six loops nests generated are given in Figure 2-5. Each loop is marked

with the projection number that created the loop bounds. The three-dimensional polyhe-

dron of the original iteration space has three possible projections, resulting in three two-

dimensional polyhedrons(planes). The inequalities of the projected variable are the bounds

of the inner loops. Each of the three planes have two possible projections, creating six one-

dimensional polyhedrons(lines). These six lines provide the bounds for the outer loop. Note

that the lexicographical order of the original loop nest in Figure 2-1 is given by the scan-

ning order . A loop nest with the same scanning order is generated by the projec-

v1 … vn, ,()

vk

u1 … um, ,

x1 … xn, ,[] x1 … xn, ,[]

S
n

vn cl
k
vn l k u1 … um v, , ,

1
… vn 1–, ,()≥

ch
k
vn hk u1 … um v, , ,

1
… vn 1–, ,()≤ vn

vn

MIN
lk u1 … um v, , ,

1
… vn 1–, ,()

cl
k

--- vn MIN
hk u1 … um v, , ,

1
… vn 1–, ,()

ch
k

--≤ ≤
kk

v1 … vn 1–, ,()

n 1–

u1 … um, , v1 … vn 1–, ,

vn 1– … v1, ,

I J K, ,()

12

Figure 2-4. Projecting for all the possible scanning orders

K

I J

13

10

1
1

5

2

6

4

15

14

1
2

7

1 2

3

9

8

J

J

J

J

I

I

I

K

K

K
I

K

13

tions numbered , and the bounds of the loop nest generated by our algorithm

are identical to the original loop nest.

Figure 2-5. Loop nests generated by projecting the polyhedron

Number
Third

Projection
Second

Projection
First

Projection

15 DO i = 1, N

9 DO j = 1, i

3 DO k = j, 2N-i

13 DO i = 1, N

7 DO k = 1, 2N-i

2 DO j = 1, min(k, i)

14 DO j = 1, N

8 DO i = j, N

3 DO k = j, 2N-i

10 DO j = 1, N

4 DO k = j, 2N-j

1 DO i = j, min(N, 2N-k)

12 DO k = 1, 2N-1

6 DO i = 1, min(N, 2N-k)

2 DO j = 1, min(k, i)

11 DO k = 1, 2N-1

5 DO j = 1, min(k, 2N-k)

1 DO i = j, min(N,2N-k)

3 9 15→ →

14

While the algorithm described above is correct, the generated code can be inefficient.

Although the iteration space is dense, the presence of tight bounds may create gaps in the

iterations. We demonstrate this using the example loop, in Figure 2-6(a), with the iteration

space given in Figure 2-6(b). The iteration space is graphically represented in Figure 2-

6(c), where the valid iterations are the dark dots in the shaded region. Although the dimen-

Figure 2-6. Example with tight bounds on the iteration space

DO J = 0, 6

DO I = 4*J, 4*J + 1

.....

(a) Example loop nest

I
2 () I J,()

J 0– 0≥ 6 J– 0≥
I 4J– 0≥ 4J 1 I–+ 0≥ 

 
 

=

(b) Iteration Space

I

J

0 25

0

6

(c) Graphical representation of the iteration space

15

sionI has iterations between 0 and 25, not all of them are valid. An inefficient loop nest is

generated when we transpose the dimensions. In the new loop nest, given in Figure 2-7(a),

the outer loop contains iterations that do not have any useful computation; they simply

compute the bounds of the innerJ loop just to find that the inner loop has no iterations.

This form of inefficiency can be eliminated as follows. We need not create a loop nest for

, when the bounds on can be expressed as , where , and

are integers such that and , and is an induction variable of an outer

loop. Then, we can simply eliminate the loop for from the loop nest by replacing all ref-

erences to by and replacing the loop with:

DO = , ,

DO = ,

Figure 2-7. Transposed loop nests

DO I = 0, 25

DO J = (2+I)/4, I/4

.....

(a) Loop nest with empty iterations

DO II = 0, 25, 4

DO I = II to MIN(II+1, 25)

J = II/4

.....

(b) Optimized loop nest

vn vn vk β– αvn vk γ–≤ ≤ α β γ

α 1> 0 β γ– α<≤ vk

vn

vn
vk γ–

α
------------- vk

vk′ α l γ– α 1–+
α

----------------------------- γ+ h α

vk vk′ min vk′ β γ–+ h,()

16

wherel andh are the lower and upper bounds of the original loop , and is a new loop

index. Furthermore, when , the loop does not need strip-mining and can be

replaced with:

DO = , ,

Note that the floor functions can be eliminated using integer division. The example loop

nest in Figure 2-7(a) can be optimized, as given in Figure 2-7(b), since the bounds fit this

definition with , and .

2.2.3. Generating Efficient Loop Bounds

The Fourier-Motzkin elimination step used to generate the loop bounds produces a large

number of redundant constraints. We iterate over all the constraints created by the Fourier-

Motzkin elimination step, removing as many redundant constraints as possible. The order

in which the constraints are checked for elimination determines the constraints that will be

left at the end, which will constitute the bounds of the loop. We have developed a set of

heuristics to simplify the system of inequalities, and to pick the order for eliminating the

constraints so that the loop bounds generated are simple and efficient [9]. The outline of

the algorithm is given in Figure 2-8. First, we simplify the system of inequalities. Then we

attempt to eliminate the constraints in the given order. To check if a constraint is redundant,

we replace the constraint in question with its negation. If the new system does not have an

integer solution, then the constraint is redundant and can be eliminated.

2.2.3.1. Simplifying the inequalities

First, we simplify the inequalities by dividing all the coefficients by the greatest common

divisor and finding the smallest integer offset. It is valid to round off the offset since we

are interested only in integer solutions. The algorithm for normalizing the inequalities is

given in Figure 2-9.

vk vk′

β γ= vk

vk α l γ– α 1–+
α

----------------------------- γ+ h α

α 4= β 1= γ 0=

17

2.2.3.2. Eliminating simple redundant inequalities

Next, we eliminate some of the redundant inequalities using a simple algorithm such that

no two inequalities with identical coefficients exist in the system. Figure 2-10 contains the

algorithm.

Figure 2-8. Algorithm for creating efficient loop bounds

where is a system of inequalities with index variables , from outer to inner

loops respectively, and is a system of inequalities containing the loop bounds for .

for each inequality do

for each inequality in the order of weights do

Remove inequality from

if then

for each inequality do

if the variable is not used in inequalitythen

Remove inequality from

return

EfficientBounds S i1 … in, ,(),() S′→
S i1 … in, ,()

S′ in

I S∈

I Simplify I()=

S EliminateRedundant S()=

W CalculateWeights S i1 … in, ,{ }, 
 =

I S∈ W

I S

S I¬{ }∩ ∅≠

S S I{ }∩=

I S∈

in I

I S

S

18

Figure 2-9. Algorithm for simplifying an inequality

where are inequalities such that and

are integers

return

Simplify I() I ′→
I I ′, I a0 a1i1 … akik+ + + 0≥{ }= a0 … an, ,

g gcd a1 … ak, ,()=

a0

g

a1

g
----- i1 …

ak

g
----- i k+ + + 0≥

Figure 2-10. Algorithm for eliminating simple redundant inequalities

where and are systems of inequalities

for all pairs of inequalities and

 where are

integer constantsdo

if then

Remove from

else

Remove from

return

EliminateRedundant S() S′→
S S′

c1 a1i1 … akik+ + + 0≥{ } S∈
c2 a1i1 … akik+ + + 0≥{ } S∈ c1 c2 a1 … an, , , ,

c1 c2≥

c1 a1i1 … akik+ + + 0≥ S

c2 a1i1 … akik+ + + 0≥ S

S

19

2.2.3.3. Determining the elimination order

Finally, we order the elimination of redundant inequalities, such that complex inequalities

that can generate expensive loop bounds are eliminated before the inequalities that generate

efficient loop bounds. The elimination order is determined by weights generated in the

algorithm in Figure 2-11. The inequalities with higher weights will become candidates for

elimination before the inequalities with lower weights.

Figure 2-11. Algorithm for calculating the weights that order the elimination of
redundant inequalities

where is a system of inequalities with index variables from outer to inner

loops respectively, and is the set of weights for the elimination ordering

for all inequalities

where and are integer constants and

 are loop invariant variablesdo

while and do

if there exist then

if then

Return

CalculateWeights S i1 … in, ,(),() W→
S i1 … in, ,()

W

ao a1v1 … akkk b1i1 … bnin+ + + + ++ 0≥{ } S∈
a0 … ak, , b1 … bn, ,

v1 … vk, ,

c n 1–=

c 1> bc 0=

c c 1–=

a– o a1– v1 …– ak– kk b1– i1 …– bn– in 0≥{ } S∈

c c 2n–=

bn 1≠

c c n+=

W ao a1v1 … akkk b1i1 … bnin+ + + + ++ 0≥{ } 
  c=

W

20

The least expensive loop bounds are the pairs of inequalities that form an equality, because

the loop can be replaced by a single assignment statement. The inequalities that create loop

bounds with floor and ceiling calculations are the most expensive and are therefore

assigned highest weights. Otherwise, bound expressions with only outer or no loop index

variables receive higher weights since loop invariant bound expressions can be moved out

of the inner loops.

2.3. Linear Inequalities with Symbolic Coefficients

We have extended Fourier-Motzkin elimination to handle simple non-linear systems [9].

The variables of the linear inequalities can have a restricted form of symbolic coefficients.

Definition 2-4: A linear inequality with symbolic coefficients is of the form

where are integer variables, are symbolic constants and

, are integers.

The scope of the systems that are allowed is limited to cases where the result of the Fourier-

Motzkin elimination also creates inequalities that conform to Definition 2-4.

Theorem 2-1: For the two inequalities with symbolic coefficients

where are integer variables, are symbolic constants and

, are integers, the Fourier-Motzkin

elimination step to eliminate the variable creates another inequality conforming to

Definition 2-4 iff either

i) There exist integers p and q such that , or

ii) (, or

,) and

ao
o

a± 1
o
u1… am

o± um± ao
1

a1
1
u1+ … am

1
um+ 

 
v1…± ao

n
a1

n
u1+ … am

n
um+ 

 
vn± 0≥

v1 … vn, , u1 … um, , 0>

x y,∀ 0 x n≤ ≤() and 0 y m≤ ≤() ay
x

0≥

ao
o

a± 1
o
u1… am

o± um± ao
1

a1
1
u1+ … am

1
um+ 

 
v1…± ao

n
a1

n
u1+ … am

n
um+ 

 
vn– 0≥ and

bo
o

b± 1
o
u1… bm

o± um± bo
1

b1
1
u1+ … bm

1
um+ 

 
v1…± bo

n
b1

n
u1+ … bm

n
um+ 

 
vn+ 0≥ ,

v1 … vn, , u1 … um, , 0>

x y,∀ 0 x n≤ ≤() and 0 y m≤ ≤() ay
x

by
x, 0≥

in

y∀ 0 y m≤ ≤() pay
n

qby
n

=

y∀ 1 y m≤ ≤() ay
n

0=

x y,∀ 0 x n 1–≤ ≤() and 1 y m≤ ≤() by
x

0=

21

(, or

,)

This class of systems is important because it enables the compiler to handle symbolic block

sizes in Single Program Multiple Data(SPMD) code generation as shown below. Other-

wise, the number of iterations attached to each processors has to be determined at compile

time.

2.3.1. SPMD Code Generation Example

We illustrate the use of linear inequalities with symbolic coefficients by an example, where

we generate an SPMD loop nest after parallelization. The loop nest, given in Figure 2-12,

has the inner loop marked parallel. We need to generate an SPMD loop nest to execute

this loop in parallel. The Figure 2-13 shows the iteration space of the loop nest. The shaded

area represents the iterations that need to be executed. Iterations of the loop are distrib-

uted across processors such that each processor is assigned an equal size block of iterations.

We need to create a system of inequalities to represent the iteration space. Using this iter-

ation space, we can generate a single program that will assign blocks of iterations of the

loop and execute the correct iterations in the corresponding processor. However, neither

the number of processors nor the number of iterations of the loop is known at compile-

time. Therefore, we cannot create a linear system with integer coefficients to represent the

iteration space. However, a system of inequalities with symbolic coefficients can be cre-

y∀ 1 y m≤ ≤() by
n

0=

x y,∀ 0 x n 1–≤ ≤() and 1 y m≤ ≤() ay
x

0=

J

Figure 2-12. Example DOALL loop nest

DO I = 0, U

DOALL J = 0, MIN(2*I, V)

.....

J

J

J

22

ated, as given by Figure 2-14, to represent the iteration space. The first five inequalities are

the loop bounds of the input program. The last two inequalities distribute iterations of

the loop across the processors. The processor identification number is the variable .

Now, applying Fourier-Motzkin elimination with the scanning order , we generate

the SPMD loop nest given in Figure 2-15. Using the number of processors, , which is a

run-time constant, we generate code to calculate the appropriate block size at run-time.

2.4. Linear Inequality Representation for Data and Processor Spaces

The two other important multi-dimensional integer spaces used in our compiler are the

array data spaceA and the processor spaceP.

Figure 2-13. Iteration space

I

J

0 U
0

V

b

p1b

p0

b

J x

I J,()

P

23

2.4.1. Data Space

Manipulating arrays is critical for analysis and optimizations when compiling dense matrix

scientific applications. Accesses to multi-dimensional arrays can be represented using sys-

tems of linear inequalities, providing a convenient framework for array analysis and opti-

mization. For example, the array summary representation defined in Chapter 5 is based on

systems of linear inequalities.

Figure 2-14. System of inequalities describing the iteration space

I
2

U V b x, , ,() I J,()

I 0≥ U I– 0≥
J 0≥ 2I J– 0≥

V J– 0≥
J bx– 0≥ bx b 1– J–+ 0≥ 

 
 
 
 
 
 

=

Figure 2-15. Compiler generated SPMD loop nest

P = NumProcs()

x = MyProcID()

b = (min(V, 2*U)+P-1)/P

DO I = max((1+b*x)/2, 0), U

DO J = max(b*x, 0), min(2*I, V, -1+b+b*x)

.....

24

Definition 2-5: The index set of an m-dimensional data array, with the declaration

, is given by

2.4.2. Processor Space

When generating code for multiprocessors as well as when performing communication

optimizations, compilers need to operate on the processor space. Again, it is convenient to

represent the processor space as a system of linear inequalities. The SPMD code generation

example in Section 2.3.1 introduced a simple one-dimensional processor space. Chapter 9

uses virtual and physical processor spaces extensively in communication code generation

and communication optimization algorithms.

Definition 2-6: For a q-dimensional processor space, where are the number of

processors in each dimension, the index set of the processor space is

2.5. Related Work

Researchers have used integer and linear programming techniques to solve many individ-

ual problems in parallelizing compilers. For example, compiler problems such as exact

data-dependence analysis [110,119], array analysis based on array summary information

[137], instruction scheduling for superscalars [5], automatic data layout for minimizing

communication [21], and code generation after loop transformations [10,11] have been

solved using linear and integer programming. In this thesis, we introduce a framework

based on linear inequalities that is used for many purposes, such as representing array sum-

maries in interprocedural data-flow analysis, solving for the array reshapes, identifying

modulo and division optimizations, and generating and optimizing communication code

for distributed address-space machines.

l1 u1: … lm um:, ,()

A a1 … a, ,
m

() A∈
k 1 … m, ,=

∀ l k ak uk≤ ≤

 
 
 
 
 

= .

r1 … rq, ,

P p1 … pq, ,() P∈
k 1 … q, ,=

∀ 0 pk rk<≤
 
 
 

= .

25

Ancourt and Irigoin used a series of projections to generate loop nests after loop transfor-

mation [10,11]. We have introduced a set of heuristics to simplify the loop bounds gener-

ated by their algorithm. We have also extended their algorithm to handle simple non-linear

systems.

2.6. Chapter Summary

In this chapter, we describe the linear inequalities framework used for developing advanced

compiler analyses and optimizations. The framework is used in compiler algorithms to rep-

resent and manipulate iteration, array and processor spaces. We introduce the use of this

framework by describing an algorithm for code generation. We have extended the linear

inequalities framework to handle simple non-linear systems with symbolic coefficients.

26

27

3 Coarse-Grain Parallelism

Shared-memory multiprocessors are now a widely available class of computationally pow-

erful machines. As hardware technology advances make pervasive parallel computing a

possibility, it is ever more important that tools be developed to simplify parallel program-

ming. Parallelizing compilers that automatically parallelize sequential applications are crit-

ical tools, because they free programmers from the difficult task of explicitly managing

parallelism. A large body of research and development effort has focused on developing

parallelizing compilers for scientific applications. In Section 3.1 we focus on the major

issues involved in detecting parallelism in sequential scientific applications.

Current parallelizing compilers have not succeeded in obtaining good parallel performance

on symmetric shared-memory multiprocessors. These parallelizers, based on vectorization

technology, are generally capable of finding only inner loop parallelism. The inability to

parallelize computation that occurs outside the inner loops reduces the effectiveness of

these compilers. Furthermore, multiprocessors need to perform an expensive synchroniza-

tion operation after executing each parallel region. Parallelizing the inner loops creates par-

allel regions with relatively small amounts of computation; thus the cost of synchronization

can easily overwhelm the benefits of the parallel execution. For parallelizing compilers to

target multiprocessors effectively, it is necessary to locatecoarse-grain parallelism; that is,

to find outer loops with independent computations that can perform a significant amount of

work without any synchronization.

This chapter provides an overview of parallelizing sequential scientific applications for

shared-memory multiprocessors. In Section 3.2 we will introduce coarse-grain parallelism.

We focus on the advanced array analyses required for obtaining coarse-grain parallelism in

Section 3.3.

28

3.1. Parallelism in Sequential Scientific Programs

Scientific applications are typically computationally intensive, and thus can benefit

immensely from parallelization. The domain of applications we are interested is dense

matrix scientific applications written in FORTRAN [150]. Within this domain, loop nests

dominate the computation and multi-dimensional arrays hold most of the data structures.

A parallelizing compiler determines loops that can be parallelized by analyzing accesses

to scalar and array variables within the loops. One of the most difficult parts of this paral-

lelization process is array analysis. For the references to each array data structure, array

analysis determines if executing the iterations of a loop in parallel does not violate the

semantics of the original serial ordering. Current parallelizers accomplish this usingdata

dependence analysis.

3.1.1. Data Dependence Analysis

Current parallelizing compilers use data dependence analysis to check whether the parallel

execution of a loop violates serial ordering constraints between any write operation and

any other write or read operation to the same memory location [151]. Data dependence

analysis is performed on each pair of references to the same array, where two references

are said to bedependent if any of the locations accessed by one reference is also accessed

by the other [149]. A dependence is said to beloop-carried by a loop if the dependence

occurs between two iterations for the same instance of the loop. Thus, according to the data

dependence test, a loop can be parallelized if there are noloop-carried data dependences.

Definition 3-1: For an m-deep loop nest with two array accesses , to the same

array in the loop body, if there exist iterations and such that

 and , and array access at iteration accesses the

same memory location as at , and

i) is a write access and is a read access, then there exists a true-

dependence carried at the k-th loop.

ii) is a read access and is a write access, then there exists an anti-

dependence carried at the k-th loop.

X X′

i1 … im, ,() i ′1 … i ′m, ,()

i j i ′j=
j 1… k 1–=

∀ i k i ′k< a i1 … im, ,()

a′ i ′1 … i ′m, ,()

X X′

X X′

29

iii) both and are write accesses, then there exists an output-dependence

carried at the k-th loop.

The compilers perform a data dependence test on each pair of accesses within the candidate

loop for parallelization. Determining the data dependences of loop nests where the loop

bounds and array indices are affine functions of the loop indices is equivalent to integer

programming [110]. Many practical algorithms have been devised to find the data depen-

dence information exactly [19,110,120,149,151].

3.1.2. Extracting Fine-Grain Parallelism

The first-generation parallelizers start the parallelization process by performing a series of

symbolic analyses such as constant propagation, induction variable identification and loop-

invariant code motion. These analyses increase the ability of finding parallel loops. Next,

each loop nest is analyzed to identify parallelizable loops. These analyses are performed

intraprocedurally; thus a procedure call within the loop will eliminate it as a candidate for

parallel execution. Since the presence of any scalar definition within the loop creates a

loop-carried dependence, the parallelizer attempts to eliminate this dependence by apply-

ing scalar privatization or scalar reduction [149]. When the scalar value used in each iter-

ation is created within the same iteration, the loop-carried data dependence can be

eliminated by giving each processor a private copy of the variable. Further, a reduction

(e.g., computation of a commutative and associative operation such as sum, product, or

maximum of the scalar) can be parallelized by having each processor compute a partial

reduction locally and update the global result at the end. Finally, the parallelizer performs

data dependence analysis on all pairs of accesses to the same array within the loop. After

these analyses and optimizations, if the compiler does not find any loop-carried array

dependences and can eliminate all the loop-carried scalar dependences, then the loop can

be parallelized.

3.2. Coarse-Grain Parallelism

The first generation of parallelizing compilers targeted for vector supercomputers focused

on finding inner-most parallel loops with only a few simple operations that can be con-

verted into vector operations [4,32,125].

X X′

30

Multiprocessors are more powerful than vector machines in that they can execute different

threads of control simultaneously. The processors can execute different segments of code

in parallel, each of which can be arbitrarily complex.

The current parallelizing compilers, developed from vectorizing compiler technology, do

not effectively obtain good performance on multiprocessors [23,131]. Parallelizing just

inner loops is not adequate for multiprocessors for two reasons. First, inner loops may not

make up a significant portion of the computation, thus limiting the parallel speedup by lim-

iting the amount of parallelism. Second, multiprocessors need to perform an expensive

synchronization operation at the end of each parallel region. When parallelizing inner

loops, which normally contain only small amounts of computation, the cost of frequent

synchronization and load imbalance can potentially overwhelm the benefits of paralleliza-

tion. Thus, for a parallelizing compiler to target a multiprocessor effectively, it must iden-

tify outer parallelizable loops to extract coarse-grain parallelism.

However, detecting coarse-grain parallelism is much more complicated than finding inner

loop parallelism, requiring whole program analyses and aggressive optimizations. Inter-

procedural analysis is necessary for obtaining coarse-grain parallelism. If programs are

written in a modular style, it is natural that coarse-grain parallel loops will span multiple

procedures. For this reason, procedure boundaries must not pose a barrier to analysis [23].

This can be accomplished by applying data-flow analysis techniques across procedure

boundaries using an interprocedural framework. Although many interprocedural analyses

for parallelization have been proposed [70,80,81,86,108], they have rarely been adopted in

practice. The primary obstacle to progress in this area has been the fact that effective inter-

procedural compilers are substantially harder to build than their intraprocedural counter-

parts. Moreover, there is an inherent trade-off between performing analysis efficiently and

obtaining precise results. A successful interprocedural compiler must handle the complex-

ity of the compilation process, while maintaining reasonable efficiency without sacrificing

too much precision.

It is also critical to go beyond the restrictive data-dependence test in analyzing arrays when

detecting coarse-grain parallelism. We need to perform parallelism-enhancing optimiza-

31

tions on arrays, such as array privatization, to expose the inherent parallelism in the algo-

rithms of the program.

3.3. Advanced Array Analyses

Much of the inherent parallelism that is available in an abstract algorithm can be hidden by

the implementation of the algorithm. We can expose some of these inherent parallelism by

using complex analyses such as array data-flow analysis and by performing aggressive

optimizations such as array privatization and array reductions.

3.3.1. Beyond Location-Based Dependences

Traditional data dependence analysis checks if two iterations of the loop access the same

memory location. However, the only dependence that requires data to be communicated

between iterations of a loop is aflow-dependence,where adata value used by an iteration

is defined in a previous iteration.

Definition 3-2: For an m-deep loop nest with a write access and a read access to

the same array, there exists a loop-carried flow-dependence at the k-th loop iff there exist

iterations and such that and , and

read at iteration uses the data written by at iteration .

Thus, when there are no value-based flow-dependences between a write and a read access,

a loop can be parallelized even if there exist location-based dependences. However, this

requires us to assign a private copy of the array to each processor.

Array privatization is crucial for parallelizing ordinary scientific applications because pro-

grammers tend to reuse the same array space for multiple purposes. This creates memory-

based dependences while there are no value-based dependences requiring sequential exe-

cution. A simple example motivating the need for value-based dependences is shown in

Figure 3-1. It is a 160-line loop taken from theNas sample benchmarkappbt. Figure 3-2

shows both location-based and value-based dependences for the read accesses to the array

TM in the 4-th iteration of the outermost loop. All iterations of the outermost loop write to

the samelocations of the arrayTM that are read in the 4-th iteration. Thus, as shown in

X X′

i1 … im, ,() i ′1 … i ′m, ,() i j i ′j=
j 1… k 1–=

∀ i k i ′k<

X′ i ′1 … i ′m, ,() X i1 … im, ,()

32

Figure 3-2(a), the location-based data dependence analysis will find a loop-carried true-

dependence at the outermost loop, suppressing parallelization of the loop. However, the

datavalues read in the 4-th iteration are defined by the write instructions of the same iter-

ation, as shown in Figure 3-2(b). Consequently, we can parallelize the outermost loop by

allocating a private copy ofTM to each processor.

Finding privatizable arrays can be achieved byarray data-flow analysis, which extends

scalar data-flow analysis to individual array elements [28,53,55,111,112,121,122]. Using

array data-flow analysis, if we can determine that an array in a loop, with loop-carried true-

, anti- or output-dependences, does not contain any loop-carried flow-dependences, we can

still parallelize the loop by allocating a private copy of the array to each processor. When

privatizing an array, we need to performinitialization at the beginning of the parallel

region andfinalization at the end of the parallel region. We need to initialize the array by

copying all values, that are used within the loop but are defined outside, from the original

array to each private copy. We finalize the array by copying those values that are defined

within the loop from the private copies to the original array.

An example of array privatization with initialization is shown in Figure 3-3. The figure

shows a portion of a 1002-line interprocedural loop in thePerfect benchmarkspec77.

Figure 3-1. Example fromappbt

DO K = 2, NZ-1

DO M = 1, 5

DO N = 1, 5

TM(1:5,M) = ...

DO M = 1, 5

DO N = 1, 5

... = TM(N,M)

33

Here, part of arrayZE, the second row, is modified before it is referenced; the remainder

of the array is not modified at all in the loop. ArrayZE is privatizable in the outer loop by

giving each processor a private copy with all but the second row initialized with the original

values.

3.3.2. Multiple Array Accesses

To locate coarse-grain parallelism successfully, we must analyze very large interprocedural

loops with numerous array accesses. When numerous reads and writes to an array are inter-

leaved in multiple loop nests, it is more difficult to keep track of the order of the elements

accessed. Figure 3-4, which is extracted fromspec77, illustrates the complexity of the

Figure 3-2. Dependences for the elements read by the 4-th iteration of the k loop

k=2

k=3

k=2

k=3

k=4k=4

(a) Location-based dependences (b) Value-based dependences

Write Operation

Read Operation

Two dimensional arrayTM, where each
element location is high-lighted

34

Figure 3-3. Example of an array privatization fromspec77

DO LAT = 1, 38

DO K=1, 12

ZE(2,K) = RELVOR(K)

// UVGLOB reads the entire

// Kth column of array ZE

CALL UVGLOB(...,ZE(1,K),...)

ZE(2,K) = ABSVOR(K)

Figure 3-4. Example of multiple regions across loops fromspec77

DO LAT = 1, 38

W(1:2,1:UB) = ...

W(3:36,1:UB) = ...

W(62:96,1:UB) = ...

W(37:48,1:UB) = ...

W(51:61,1:UB) = ...

W(49:50,1:UB) = ...

...= W(1:2,1:UB)+

W(33:34,1:UB)+

W(65:66,1:UB)

... = W(3:32,1:UB)+

W(35:64,1:UB)+

W(67:96,1:UB)

35

problem. Each statement in array notation here corresponds to a doubly nested loop. In

order to determine that the arrayW is privatizable, we need to infer from the collection of

write operations thatW defines all the elements before they are read.

3.3.3. Array Reshapes Across Procedure Boundaries

The existence of array reshapes further complicates interprocedural analysis. An example

of an array reshape is given in Figure 3-5. The code segment is a part of an interprocedural

loop from theTURB3d program of theSPEC95fp benchmark suite. In this segment, a

three-dimensional arrayU in the caller is treated as a vector inDCFT. The FORTRAN-77

standard allows array reshapes with equivalence statements, in parameter passing, and with

different common block definitions [150]. To perform the aggressive whole program anal-

Figure 3-5. An example with two array reshapes fromturb3d

DIMENSION U(66,64,64)

...

DO K=1,64

CALL DCFT(U(1,1,K),33)

...

DO J=1,64

CALL DCFT(U(1,J,1),33*64)

...

SUBROUTINE DCFT(X, INCX)

REAL*8 X(*)

DO I=1,33

DO II=1,64

... = X((I-1)*2+(II-1)*2*INCX+1)

... = X((I-1)*2+(II-1)*2*INCX+2)

...

36

ysis required in finding coarse-grain parallelism, it is necessary for the compiler to analyze

the programs in the presence of these features and determine their effect on the rest of the

analysis.

3.4. Chapter Summary

It is necessary to locate coarse-grain parallelism for compilers to target multiprocessors

effectively. However, obtaining coarse-grain parallelism requires many advanced analyses

and optimizations such as interprocedural analysis, array privatization and array reshape

analysis.

37

4 Interprocedural Array Analysis

Automatic detection of coarse-grain parallelism is challenging as it requires a large suite of

robust analysis techniques to work together. Furthermore, the original program may need

to be transformed before it can be parallelized. Detecting and enabling parallelism require

sophisticated analyses on array and scalar variables. These analysis techniques need to

operate across procedural boundaries seamlessly. For a parallelizing compiler to work in

practice it must not only be sufficiently powerful, but also robust and efficient.

Most of these analyses are formulated as interprocedural data-flow problems. As solving

interprocedural data-flow problems is very complex, we have developed a framework,

described in Section 4.1, to cope with the complexity involved in building such a system.

The parallelization process is composed of multiple phases. The first set of phases consists

of a large suite of interprocedural symbolic analyses on scalar variables. These analyses

include constant propagation, common sub-expression recognition, loop invariant code

motion, and induction variable detection. These symbolic analyses provide detailed and

accurate information about the input program, which enhances the effectiveness of array

analyses and parallelization. The next set of phases includes parallelization analyses on

scalar variables. These analyses identify scalar dependences, and perform optimizations,

such as scalar privatization and scalar reductions. More information on scalar analyses can

be found in [74]. The scalar analyses are followed by the array analyses and parallelization,

which include the following four phases:

• The first phase propagates loop context information to the nested loops.

• The second phase performs the array data-flow analyses necessary for dependence

testing and parallelization.

38

• The third phase performs data-dependence and privatization tests to determine which

loops can be executed in parallel.

• The last phase identifies the outermost parallel loops and transforms the code to exe-

cute them in parallel.

The outline of this chapter is as follows. We introduce the interprocedural framework in

Section 4.1 The four phases of array analysis are described in Sections 4.2, 4.3, 4.4 and 4.5

respectively. We compare our approach to related works in Section 4.6, and we summarize

in Section 4.7.

4.1. Interprocedural Framework

Traditional intraprocedural data-flow analysis frameworks help reduce development time

and improve correctness by capturing the common features in a single module [90]. In an

interprocedural setting, a framework is even more important because of the increased com-

plexity in collecting and managing information about all the procedures in a program.

Thus, when building the parallelizer, we rely on an interprocedural framework that encap-

sulates the common features of interprocedural analysis [74,76].

Traditional intraprocedural data-flow frameworks areflow-sensitive. That is, they derive

data-flow results along each possible control flow path through the procedure. Straightfor-

ward interprocedural adaptation of flow-sensitive intraprocedural analysis is not sufficient

to maintain the same precision over the entire program. For example, interprocedural anal-

ysis using thesupergraph [117] program representation, where individual control flow

graphs for the procedures in the program are linked together at procedure call and return

points, loses context sensitivity by propagating information alongunrealizable paths

[104]. This occurs when the analysis propagates calling context information from one

caller through a procedure and returns the side-effect information to a different caller. Fur-

thermore, iterative analysis over this structure is slow because of the large number of con-

trol flow paths through which information flows.

Full interprocedural precision was previously obtained either by inline substitution or by

tagging data-flow values with a path history through the call graph [79,117,128,130].

39

However, these methods do not exploit the common case in which many calls to a proce-

dure have the same context. Thus, they require excessive space and are expensive and

impractical. Inlining the procedure bodies at all the call sites in the program can result in

code explosion, and tagging of the data-flow values with all possible paths can result in

rapid multiplication of the tags. Our interprocedural framework utilizes path-specific infor-

mation only when it can provide opportunities for improved optimization. The system

incorporatesselective procedure cloning, a program restructuring technique in which the

compiler replicates the analysis results in the context of distinct calling environments [44].

By applying cloning selectively according to the unique data-flow information it exposes,

the interprocedural system can obtain the same precision as full inlining without unneces-

sary replication.

4.1.1. The Regions Graph

Region-based analysis collects information at the boundaries of program regions: basic

blocks, loop bodies and loops (restricted to DO loops), procedure calls, procedure bodies,

and procedures. The interprocedural framework represents a program as a set ofregions,

one for each loop body and procedure body in the program. Within a region, inner loop

nests are represented by “loop” nodes, procedure call sites by “procedure” nodes, and the

remaining basic blocks in the region by “basic block” nodes. These nodes and their control

flow edges necessarily define a directed acyclic graph. The regions have a single entry and

a single exit defined by the “start” node and the “end” node, respectively. Therefore, a

region is a four-tuple where is the set of nodes, is the set of edges,

is the start node and is the end node. Associated with each “loop” or “procedure” node

is the region representing the corresponding loop body or procedure body, respectively. We

say that a region is animmediate subregionof another region if represents the body

of a node in region . A program’s regions and their immediate subregion relationships

define aregions graph of the program. The regions graph of any FORTRAN-77 program,

which by definition does not contain recursive function calls, is also a directed acyclic

graph.

R N E s e, , ,() N E s

e

R Q R

Q

40

The regions graph of the example program segment in Figure 4-1 is shown in Figure 4-2.

In Figure 4-2, the regions are enclosed in gray polygons and the immediate subregion rela-

tionship is represented by gray dotted lines. For each region, the start and end nodes are

represented by black ovals, the loop and procedure nodes by gray ovals and basic block

nodes by white ovals. Control flow between the nodes within each region is represented by

arrows. Each node is annotated with the corresponding code.

4.1.2. Data-Flow Analysis

Data-flow analysis is composed of one or more traversals through the regions graph where

each traversal propagates the flow values in a single sweep over the nodes of the graph. We

can choose the order in which to visit the regions and the nodes within each region inde-

Figure 4-1. Example program

...

IF X > 0 THEN

DO I = 2, X

CALL FOO(I,A)

IF A(I) > 0 THEN

Y = Y + A(I)

ELSE

Y = Y - A(I)

ELSE

DO J= 2, -X

CALL FOO(J,A)

DO K= 2, -X

CALL FOO(K,A)

SUBROUTINE FOO(I,B)

B(I) = B(I-1) + B(I) + B(I+1)

...

41

Figure 4-2. Regions graph of the example program in Figure 4-1.

CALL FOO(J,A)

CALL FOO(K,A)

Y = Y + A(I)

B(I) = B(I-1)

IF X > 0 THEN

DO I = 2, X
DO J = 2, -X

DO K = 2, -X

Y = Y - A(I)

CALL FOO(I,A)

IF A(I) > 0 THEN

Basic Block Nodes

Loop and Procedure Nodes

Start and End Nodes

Regions

42

pendently. The regions can be visited either in atop-down or abottom-up order. In the top-

down order, we visit a region before its immediate subregions, and vice versa in a bottom-

up traversal. Each region is a directed acyclic graph and the nodes in the region can be vis-

ited in aforward-flow or backward-flow order. In a forward-flow order, we visit a node

before its successors in the control-flow graph, and vice versa in a backward-flow order.

In addition to these two flow-sensitive methods of propagation, nodes can be visited in a

flow-insensitivemethod which ignores the control flow within the region and treats all the

nodes as a single summary node. Next, we define bottom-up traversal for forward-flow and

backward-flow order, and top-down traversal for flow-insensitive order.

4.1.2.1. Bottom-up traversal for forward and backward flow order

In a bottom-up traversal of a regions graph, we analyze the program starting from the leaf

procedures in the call graph. Each procedure is analyzed once, after all its callee proce-

dures have been analyzed. Within each procedure, analysis is performed from inner loops

to outer loops. In the regions graph representation of the program, this is achieved by vis-

iting the regions in the directed acyclic graph in a post-order traversal. Thus, each node is

visited only once in a bottom-up traversal pass. Figure 4-3 shows the bottom-up, forward-

flow propagation for the regions graph example in Figure 4-2. The ordering of the traversal

is given by the arrows in the diagram.

In a forward-flow pass, the analysis calculates theflow value at each node, summarizing

the cumulative effect of traversing through all the possible paths between two points of the

program represented by the start node of the region and the current node. In a backward-

flow pass, the flow value of a node summarizes the cumulative effect of traversing, in

reverse direction, through all the possible paths between the program points represented by

the current node and the end node of the region. We calculate thelocal values as an inter-

mediate step in calculating the flow values. The local value of a node summarizes the

cumulative effect of traversing through all the paths of the program segment represented

by the node.

The algorithm for bottom-up traversal is given in Figure 4-4. We start by calculating the

local values for each node.We define the function that provides the local value forLoc

43

Figure 4-3. Bottom-up, forward-flow traversal

44

Figure 4-4. Algorithm for bottom-up regions-based data-flow analysis

for each procedure from leaf procedures to main (bottom to top)do

for each region from innermost to outermost ofdo

for all nodes do

if is a basic block nodethen

if is a loop nodethen

if is a call-site nodethen

if is the start node or the end nodethen

if forward-flow problemthen

for each node do

else if backward-flow problemthen

for each node do

P

R N E s e, , ,()= P

n N∈

n

ln Loc n()=

n

R′ ImmediateSubregion n()=

ln VR′
∗=

n

R′ ImmediateSubregion n()=

ln VR′n
⇑=

n

ln =

n N∈

Vn
n′ n,() E∈

Vn′ ln,
 
 
 

Τ=

VR Ve=

n N∈

Vn
n n′,() E∈

Vn′ ln,
 
 
 

Τ=

VR Vs=

45

each basic block node. For loop nodes and call site nodes, we derive the local values from

the flow values of the immediate subregions. At each loop node, we apply the closure oper-

ator to the flow value of the immediate subregion (the loop body) and create a local-value

that describes the effect of the entire loop. At a procedure call node, we apply the map oper-

ator that maps the flow value of the immediate subregion (the procedure body) from the

callee space to the caller space by mapping the formals to actuals.

The local value of the start or end nodes is set to the initial flow value. Next, we calculate

the flow value, , at each node by using the meet operator to combine the incoming flow

values from multiple control-flow edges, and then applying the transfer function to the

combined incoming flow-value and the local value of the node. After propagating the flow

value through all the nodes, we find the flow value, , for the region.

4.1.2.2. Top-down traversal for flow-insensitive order

The only top-down traversal used in this thesis is flow-insensitive. Thus, we omit the for-

ward-flow and backward-flow orders from the description. The general algorithm for a top-

down traversal can be found in [76].

A flow-insensitive, top-down pass is used to propagate information into loop bodies and

down the call chain. A flow value at a node is the cumulation of the local information of all

the enclosing loops and procedure calls. The top-down analysis starts at the “main” proce-

dure and moves toward the leaf procedures by following the call chains. Within each pro-

cedure, the analysis is performed from outer loops to inner loops. We analyze each region

by propagating the incoming flow value through the nodes. Then, for loop and procedure

nodes, we propagate the flow value to the immediate subregion. When the immediate sub-

region is a loop body, we analyze that region using this flow value. However, if the imme-

diate subregion is a procedure body and if the procedure is called by multiple call sites, we

may need procedure cloning. A procedure is cloned only if none of the clones created thus

far has the same incoming flow value. Figure 4-5 shows the top-down, flow-insensitive

propagation for the example code segment in Figure 4-1. The ordering of the traversal is

given by the arrows in the diagram. We assume the flow values propagated to the subrou-

tine FOO from the last two call sites are the same. Thus they both share a single clone,

Vn

VR

46

Figure 4-5. Top-down, flow-insensitive pass needing selective procedure cloning

47

which will be analyzed once when the flow value is propagated by the first call-site. The

first call to subroutineFOO has a separate clone since its flow value is different.

The algorithm for top-down traversal is given in Figure 4-6. The subroutine

recursively descends through the regions graph starting from the outermost region of the

“main” procedure. The flow value of the region, , is the incoming flow value. We find

TopDown

Figure 4-6. Algorithm for top-down analysis. Initiated with the call
TopDown RMAIN ,()

: where region , and is the initial flow value

for all nodes do

for all loop nodes do

for all call site nodes do

Let be the procedure called by

Let be the set of cloned regions for procedure

if there exist an such that then

Make the immediate subregion of

else

Add to

Make the immediate subregion of

TopDown R V,() R N E s e, , ,()= V

n N∈

ln Loc n()=

Vn V ln,()Τ=

n N∈

TopDown ImmediateSubregion n() Vn,()

n N∈

p n

Cp p

R′ Cp∈ VR′ Vnn
⇓=

R′ n

R′ Clone p()=

TopDown R′ Vnn
⇓,

 
 

R′ Cp

R′ n

VR

48

the flow value at each node by applying the transfer function,T, to the flow-value of the

region and the local value, , of the node. Next, at loop and procedure call nodes,

we propagate the flow value to the immediate subregion. At a loop node, we analyze the

immediate subregion with this flow value. At a procedure call node, we use the map oper-

ator to map the flow value of the call site node from the caller space to the callee space.

Then we check the set of clones for the procedure to see if reanalysis is needed. If no clone

exists with the same flow value, we create a new clone for the procedure and analyze it

with the incoming flow value.

4.2. Loop Context Propagation

Each static instance of the program, denoted by a node in the regions graph, can have mul-

tiple dynamic invocations due to the execution of the enclosing loop nest. These invoca-

tions have different values for the index variables of the enclosing loop nest, which are

often used in array access functions and inner loop bounds. The loop context captures the

values of these index variables for each dynamic instance. We use the loop context infor-

mation in array analyses, such as in data dependence analysis, to derive more accurate

results.

The loop context at a node describes the bounds of the loop index variables in the node’s

enclosing loops. We represent the loop context concisely using a system of linear inequal-

ities, a representation that is precise within the domain of affine loop bound expressions.

The example in Figure 4-7 shows the system of inequalities representing the loop context

of a loop nest.

4.2.1. The Data-Flow Problem

Loop context propagation is a single top-down, flow-insensitive traversal over the regions

graph of the program. The analysis starts with an empty context at the outermost region of

the “main” procedure and propagates the context in a top-down manner. At each loop node,

we include the bounds of the loop index variable in the current context and propagate them

to the loop body. If multiple call sites propagate different contexts to a procedure, the pro-

cedure is cloned. To reduce the number of clones created, we simplify the context by elim-

Loc n()

49

inating information that has no effect on the array analyses. The analyses of the caller’s

array accesses cannot be improved by knowing the bounds of the variables in the callee that

are not accessible to the caller. Thus, we eliminate from the context the variables that are

not accessible to the caller. We define the algorithm for loop context propagation by pro-

viding the functions used in the top-down pass algorithm in Section 4.1.2.2.

4.2.1.1. The local value function

The local value is the empty system for all but the loop nodes. The system of inequalities

representing the loop bounds provides the local value at each loop node. For the loop

, with the corresponding noden, the local value is:

4.2.1.2. The transfer function

The transfer function incorporates the local constraints into the system of inequalities of the

incoming flow-value from the enclosing loop nest. LetC be the context of the outer loop

DO i = 1, M

DO j = i, N

Figure 4-7. An example of loop contexts for a loop nest

i() 1 i M≤ ≤{ }

i j,() 1 i M≤ ≤
i j N≤ ≤ 

 
 

DO i = l to u

Loc n() l i u≤ ≤{ } n is a loop node

{ } otherwise



=

50

nest andt be the local constraints of the loop, then the transfer function to derive the flow

value for the body of the loop is:

4.2.1.3. The map operator

The map operator first eliminates the inaccessible variables and then transforms the

context across the procedure boundary. In the elimination step, loop index variables that

are not accessible at the procedure body are projected away from the context using Fourier-

Motzkin elimination. Next, the variables of the context that are actual variables of the

callee space are renamed to the corresponding formal variables in the caller space.

4.3. Array Data-Flow Analysis

Array data-flow analysis is the most important phase in the parallelization process. This

analysis summarizes the array accesses of the sub-region at each loop node. We use this

information to parallelize loops by identifying arrays without any data dependences. The

information also helps increase the available parallelism by identifying privatizable arrays

that would otherwise prevent the parallelization of a loop. We perform the analysis using

a single traversal over the regions graph of the program. For simplicity, in the following

discussion we assume that the program contains only a singlen-dimensional array. The

analysis can be easily extended to the general case with multiple arrays.

4.3.1. Array Index Sets

In array data-flow analysis, we are required to summarize the effects of multiple dynamic

instances of many different accesses to the array. The array summaries need to capture the

access information at the granularity of array indices. This can be achieved by using an

index setrepresentation for the array summaries.

Definition 4-1: The index set of the array is denoted by. Each array index of the array

is an n-tuple such that if and only if

 where, from innermost to outermost dimension, are the

lower bounds and are the upper bounds of the array.

C t,()Τ C t∧=

n
⇓

A

a1 … an, ,() Z
n∈ a1 … an, ,() A∈

l ii 1 … n, ,=
∀ ai ui≤ ≤ l1 … ln, ,

u1 … un, ,

51

The set of all the possible array summaries is the power set of .

In array data-flow analysis, we generate a summary for the array at each node of the regions

graph. These summaries represent the accesses to the array within the subregion of the

node. The accesses in the subregion, enclosed in loop nests and procedure bodies, can have

multiple dynamic invocations at each invocation of the node. Moreover, the nodes are also

enclosed within loop nests and procedure calls, and thus have multiple dynamic instances

themselves. Therefore, at each node we need the ability to summarize not only the effect of

all dynamic invocations within the subregion but also differences among the multiple invo-

cations of the node. Creating a separate summary for each dynamic instance of a node is

not viable. Therefore, we generate a summary at a node that is valid for all the dynamic

instances of that node. However, the use of a simple array index set is not sufficient to pro-

duce an accurate summary that is valid for all the dynamic instances of the node. This

requires the summary information to be parameterized by the instances of the loop context

of the node. Thus, we define aparameterized index set, a set of array indices that are param-

eterized by the variables defining the dynamic instance.

Definition 4-2: A parameterized index set of an array at a node with a context C is a

function where, for all instances , the function .

One or more parameters can be eliminated from a parameterized index set by assigning

them actual integer values. We define aprojection function that eliminates a parameter by

assigning a value range to that parameter. For each integer value in the range, a new param-

eterized index set is created. The projection function returns the union of these parameter-

ized index sets.

Definition 4-3: The projection function maps a parameterized index set to a

parameterized index set such that , where

 are integer variables, l and u are upper bound and lower bound

expressions.

A

r i1 … i x, ,() C∈ r i 1 … i x, ,() A⊆

r

r ′ r ′ proj r k l u, , ,()=

r ′ i1 … i k 1– i k 1+ … i x, , , , ,() r i 1 … i x, ,()
l i k u≤ ≤
∪=

i1 … i k … i x, , , ,

52

We also define a reshape operator to transform an array index set across procedure bound-

aries. The operator transforms an array index set of a formal array vari-

able at the callee procedure to the corresponding array index set of the actual array at the

call site . The reshape operator is an injective mapping from indices of a formal array at

a called procedure to the indices of the corresponding actual array at the call site. An

inverse mapping from call site in the caller to callee can also be defined.

4.3.2. The Flow Value of the Array Data-Flow Problem

The array data-flow analysis calculates four parameterized index sets at each node. These

sets, at a node , contain the indices that are accessed in a program section defined by the

node and its subgraph. The four sets are:

• Theread set , which contains all the array indices that may be used by a read access

in a valid execution path of the program section.

• The exposed read set , which contains all the array indices that may be used by a

read array access in a valid execution path but have no preceding write array access in

the same path. These exposed read accesses use values that were defined outside the

program section.

• Thewrite set , which contains all the array indices that may be defined by a write

access in some valid execution path of the program section.

• Themust write set , which contains the array indices that are definitely defined by a

write access in all the valid execution paths of the program section.

Thus, array data-flow analysis calculates a four-tuple at node , where:

 =

 =

 =

 =

reshapen r() r

n

n

n

R

E

W

M

R E W M, , ,〈 〉 n

R a array elementa may be used inn{ }
E a array elementa may be an outward exposed use inn{ }
W a array elementa may be defined inn{ }
M a array elementa must be defined inn{ }

53

We have defined the above four sets such that these values do not need to be exact. It is not

always possible to find the exact set of indices that are accessed when the corresponding

code is executed since that information may be undecidable at compile time. Therefore, the

exact parameterized index set for many of the array access functions, loop bound expres-

sions, etc., cannot be created at compile time. Furthermore, the operators on array index

sets in a given representation may not be exact. Thus, we calculate a valid approximation

of the exact value in our algorithm. Let be the exact parameterized index set for all

the reads in a program segment, for all the exposed reads, for all the writes

and for all the must writes. The value is a valid approximation for

that program segment if and only if are over approximations of the exact value and

 is an under approximation of the exact value. That is, , ,

 and .

4.3.3. The Data-Flow Problem

The array data-flow analysis is defined as a single top-down, backward-flow problem in the

regions-based data-flow framework. The algorithm for array data-flow analysis is defined

by providing the functions needed by the top-down pass in Section 4.1.2.2.

4.3.3.1. The local value function

The local value function generates a four-tuple for the array accesses

in each basic block. While the conversion of array accesses with affine access functions to

a parameterized index set is exact, we also need to generate conservative approximations

when exact information is not available. If multiple array accesses are present in a basic

block, we create multiple nodes with a single array access per node when building the

regions graph. The local value for the array at a basic block with a context descriptor

is the four-tuple . When the basic block has:

i) no accesses to the array, the four-tuple is .

ii) a read access where are functions known at compile-

time and parameterized by the context , the four-tuple is

.

Rexact

Eexact Wexact

Mexact R E W M, , ,〈 〉

R E W, ,

M R Rexact⊇ E Eexact⊇

W Wexact⊇ M Mexact⊆

Loc R E W M, , ,〈 〉

n C

R E W M, , ,〈 〉

∅ ∅ ∅ ∅, , ,〈 〉

A f1 … fn, ,() f1 … fn, ,

C

f1 … fn, ,(){ } f1 … fn, ,(){ } ∅ ∅, , ,〈 〉

54

iii) a write access where are functions known at compile-

time and parameterized by the context , the four-tuple is

.

iv) a read access where at least one of is not known at

compile time, the four-tuple is .

v) a write access where at least one of is not known at

compile time, the four-tuple is .

vi) an unknown access, the four-tuple is .

The local value, , is always a valid approximation of the array indices

accessed by the program segment in node and its subgraph. For , and of part

i, and of part ii and iv and of part iii and v, the empty set is the exact result

since there are no accesses to the array. In all other cases of , and , the result is

either the exact array index or an over approximation given by the entire index set .

The set is either the exact array index or an under approximation given by the

empty set . Thus, the local value is a valid approximation of the array

accesses in the basic block .

4.3.3.2. The transfer function

The transfer function takes the local value at a node and an

incoming flow value as input and creates the outgoing flow value

If the local value and incoming flow value are valid approximations, the outgoing flow

value is also a valid approximation. The resulting parameterized index sets and

 are supersets of the exact value and is a subset of the exact value.

Since is a superset of the exact value and is a subset, is also a superset

of the exact value. Thus is a superset of the exact value. This con-

forms to the definition of the flow value.

A f1 … fn, ,() f1 … fn, ,

C

∅ ∅ f1 … fn, ,(){ } f1 … fn, ,(){ }, , ,〈 〉

A f1 … fn, ,() f1 … fn, ,

A A ∅ ∅, , ,〈 〉

A f1 … fn, ,() f1 … fn, ,

∅ ∅ A ∅, , ,〈 〉

A A A ∅, , ,〈 〉

Loc n()

n W R E

R E W ∅

W R E

A

M

∅ Loc n()

n

Τ Rloc Eloc Wloc Mloc, , ,〈 〉

Rin Ein Win Min, , ,〈 〉

Rloc Rin∪ E,
loc

Ein Mloc–()∪ Wloc Win∪ Mloc Min∪, ,〈 〉 .

Rloc Rin∪

Wloc Win∪ Mloc Min∪

Ein Mloc Ein Mloc–

Eloc Ein Mloc–()∪

55

4.3.3.3. The meet operator

The meet operator of two flow values, and , produces

the flow value

4.3.3.4. The closure operator

The closure operator takes the flow value at the immediate subgraph of the

loop node of the loop and returns the flow value for the loop node

where is a new variable. The projection operator, , is given in Definition 4-3.

4.3.3.5. The map operator

The map operator takes a flow value at a procedure node and returns the flow

value for the call-site node

The function is defined in Section 4.3.1.

4.4. Parallel Loop Detection

At each loop, we need to determine if that loop can be executed in parallel. We are only

interested in the variables declared outside the scope of the loop and modified inside the

loop body. We test these variables for loop-carried dependences and perform optimizations

to eliminate the loop-carried dependences when possible. In this presentation we assume

that testing of the scalar variables has already been done. All the scalar variables should be

candidates for either privatization or reduction optimizations. For all the array variables, we

use the results of the data-flow problem to identify if the loop can execute in parallel with

respect to each array.

R1 E1 W1 M1, , ,〈 〉 R2 E2 W2 M2, , ,〈 〉

R1 R2∪ E1 E2∪ W1 W2∪ M1 M2∩, , ,〈 〉 .

R E W M, , ,〈 〉

DO i = l to u

proj R i l u, , ,() proj E proj M
i
i ′

i ′ l i 1–, , , 
 – i l u, , , 

 , ,

proj W i l u, , ,() proj M i l u, , ,(),
〈 〉,

i ′ proj

R E W M, , ,〈 〉

n

reshapen R() reshapen E() reshapen W() reshapen M(), , ,〈 〉 .

reshapen

56

4.4.1. Location-Based Dependences

First we perform a location-based data-dependence test to identify the existence of loop-

carried true-, anti-, and output-dependences in the array.

Theorem 4-1: At the loop with the flow value

, there is a loop-carried true-

dependence iff such that .

Theorem 4-2: At the loop with the flow value

 there is a loop-carried anti-

dependence iff such that .

Theorem 4-3: At the loop with the flow value

, there is a loop-carried

output-dependence iff s. t.

.

4.4.2. Value-Based Dependences

If a location-based loop-carried dependence exists for any array, the loop may still be par-

allelized if there are no value-based, loop-carried flow-dependences or if the dependences

are due to a reduction operation. When there are no loop-carried flow-dependences, the

location-based dependences can be eliminated by giving each processor a private copy of

the array. When a memory location updated using a commutative and associative reduction

operation, the accesses will create a loop-carried dependence. However, we can safely par-

allelize the loop by replacing the reduction with a parallel version since the ordering of the

commutative updates need not be preserved. The updates are applied to a local copy during

the parallel execution of the loop. The program performs a global accumulation following

the parallel loop execution. Array reductions are futher described in [75,76].

Theorem 4-4: At the loop with the flow value

, the array cannot be

privatized iff such that .

DO i n = 0 to u

R i1 … in, ,() E i1 … in, ,() W i1 … in, ,() M i1 … in, ,(), , ,〈 〉

k l, 1 k l< u≤ ≤∃ W i1 … in 1– k, , ,() R i1 … in 1– l, , ,()∩ ∅≠

DO i n = 0 to u

R i1 … in, ,() E i1 … in, ,() W i1 … in, ,() M i1 … in, ,(), , ,〈 〉

k l, 1 k l< u≤ ≤∃ R i1 … in 1– k, , ,() W i1 … in 1– l, , ,()∩ ∅≠

DO i n = 0 to u

R i1 … in, ,() E i1 … in, ,() W i1 … in, ,() M i1 … in, ,(), , ,〈 〉

k l, 1 k l< u≤ ≤∃

W i1 … in 1– k, , ,() W i1 … in 1– l, , ,()∩ ∅≠

DO i n = 0 to u

R i1 … in, ,() E i1 … in, ,() W i1 … in, ,() M i1 … in, ,(), , ,〈 〉

k l, 1 k l< u≤ ≤∃ W i1 … in 1– k, , ,() E i1 … in 1– l, , ,()∩ ∅≠

57

However, it may not be possible to produce efficient code for a privatized array due to the

need forfinalization. At the end of the loop, the original copy of the privatized array must

have the most up-to-date values. But all the updates within the loop nests were made to the

private copy. Thus, we need to identify the last update to each location and copy it to the

original array. In general this is a very expensive operation. Hence, we restrict privatization

to arrays where the last iteration of the loop will be overwriting all the indices updated by

any previous iteration. In this case, we can create the correct final values for the original

array by allowing the processor that executes the last iteration to use the original array

while all the other processors use a private copy.

Theorem 4-5: At the loop with the flow value

, the array can be finalized

after privatization, by assigning the original array to the processor executing the last

iteration, iff .

4.5. Determining the Outermost Parallel Loops

Determining the outermost parallel loops is defined as a single data-flow problem in a top-

down, flow-insensitive pass using the regions-based interprocedural data-flow framework.

After solving the data-flow problem, we assign each loop a value from the set

. The outermost parallel loops will be markedparallel

while the outer sequential loops and loops inside parallel regions will be markedouterSeq

and innerSeq respectively. The algorithm for determining the outermost parallel loops is

defined by providing the functions needed by the top-down pass algorithm in

Section 4.1.2.2.

• We define the local value at each node to be

• The transfer function is defined as

• The closure operator

DO i n = 0 to u

R i1 … in, ,() E i1 … in, ,() W i1 … in, ,() M i1 … in, ,(), , ,〈 〉

k 1 … u, ,=
∀ W i1 … in 1– k, , ,() W i1 … in 1– u, , ,()⊆

outerSeq parallel innerSeq, ,{ }

Loc n() parallel n is a parallel loop

outerSeq otherwise



=

V∗ V=

58

• The map operator

We parallelize the outermost parallel loops after the appropriate transformations to imple-

ment scalar and array privatization and reduction for the loops.

4.6. Related Work

Researchers have discovered that it is necessary to go beyond the traditional scalar data-

flow and array data dependence analysis in automatic parallelization of sequential scien-

tific applications. Successful parallelization requires advanced analysis techniques such as

array data-flow analysis used for array privatization [52,113,131]. There have been two

major approaches in finding data-flow information for array elements. The first approach

builds on data dependence analysis, and the second on scalar data-flow analysis.

The first approach, pioneered by Feautrier, uses the same framework as the data depen-

dence analysis. This approach finds the perfect data-flow information for arrays in the

domain of loop nests where the loop bounds and array indices are affine functions of the

loop indices [53,54,55]. We have devised a more efficient algorithm than Feautrier’s for

obtaining data-flow information that is applicable to many common cases found in practice

[112]. Several other researchers have taken a similar approach to data-flow analysis

[28,121,122].

However, none of these algorithms handle general control flow in a direct or efficient man-

ner. Extending the pair-wise data dependence framework is not efficient in handling a large

number of array accesses. Furthermore, the presence of multiple writes makes solving the

exact data-flow problem very complex and prohibitively expensive. Thus, this approach is

not practical for large coarse-grain loop nests with complex control flow and a multitude

of array accesses.

V l,()Τ
outerSeq V outeSeq=() l outerSeq=()∧
parallel V outerSeq=() l parallel=()∧
innerSeq V parallel=() V innerSeq=()∨






=

V
n
⇑ V=

59

The other approach, used in our algorithm, is based on extending the scalar data-flow

framework. Array data-flow analysis is formulated as a problem in the data-flow frame-

work. Instead of representing an array with a single bit, the set of data touched within a

region/interval in the flow graph is approximated by an array index set. In this approach,

we are able to efficiently handle arbitrary control flow by using conservative meet opera-

tors and multiple accesses by merging summary information. Many researchers have pro-

posed this approach for array data-flow analysis [18,45,64,66,124,137,142]. The greatest

improvement of our algorithm over previous work is the increased accuracy of our array

region representation.

Our array summary representation, based on sets of convex polyhedrons, is most similar to

the single convex polyhedron representation used in the PIPS project [45,46,86]. However,

we will show in Chapter 5 that our representation is more accurate. Furthermore, their algo-

rithm restricts write regions to be either a single over or an under approximation. In our

algorithm, we calculate both an over approximation (write) and an under approximation

(must write). Thus, we are not forced to lose under approximation information, required for

array privatization, in the presence of over approximations.

Unlike many of these previous studies, we have implemented our array data-flow algorithm

in a full interprocedural parallelizer. We demonstrate the applicability of our analysis in

Chapter 7, by automatically parallelizing a large collection of benchmark programs.

Another implementation of interprocedural array data-flow analysis can be found in the

Polaris parallelizing compiler [22,25]. In their algorithm, array privatization is applied only

to the cases where all the values used in an iteration are defined before they are used in the

same iteration [142]. However, array privatization is also applicable to loops in which iter-

ations use values computed outside the loop, where the private copies must be initialized

with these values before parallel execution begins. Our algorithm identifies privatizable

arrays that require initialization.

4.7. Chapter Summary

This chapter presents the array analyses used in our parallelizer. Our algorithm calculates

both location-based and value-based dependences to locate parallelizable loops. We first

60

introduce the interval-based interprocedural framework used by the algorithm. The array

analysis is divided into four phases. The first phase propagates the loop context informa-

tion used to increase the precision of array analysis. Next, we derive array data-flow infor-

mation at each loop using an array summary representation. Then, we use the array data-

flow information to identify data-dependences and privatizable arrays. Finally, we identify

the outermost parallel loops.

61

5 Array Summary Representation

For the array analysis defined in the previous chapter to be practical, we must have an

expressive, compact, and efficient array summary representation. In this chapter we define

such a representation based on systems of linear inequalities.

Since no practical array summary representation can precisely represent any arbitrary

access pattern, we need to find a compact representation with the ability to precisely repre-

sent many access patterns found in practice. The array summary representation should effi-

ciently execute operations on array index sets such as union, intersection, difference, and

projection. The cost of maintaining the array summaries as well as performing operations

on them increases with the precision of the representation. Thus in designing the summary

representation, we have to arrive at a balance between precision and cost. The array sum-

maries need to maintain sufficient precision to perform the required analysis without losing

information for most cases found in practice. But the cost of generating and maintaining

the information should not be prohibitively expensive.

We have imposed an additional requirement on the precision of the array summary repre-

sentation. We want the data dependence test based on the summary representation to be at

least as precise as the pair-wise array data dependence test that it will replace [110]. The

pair-wise data dependence test is exact over the affine domain. An array access is in the

affine domain when the index function of the array access and lower and upper bounds of

the enclosing loops of interest are affine expressions with respect to loop index variables

and loop constants.

We have developed an array summary representation based on systems of linear inequali-

ties that satisfy the above criteria. We represent convex regions of an array by a system of

62

linear inequalities called aconvex array section. We use a list of convex array sections, an

array section descriptor, as the general representation of array summaries.

In this chapter we introduce the convex array sections in Section 5.1 and array section

descriptors in Section 5.2. We show how to create a convex array section for a sparse

region in Section 5.4. The operations on convex array sections and array section descrip-

tors are defined in Sections 5.4. and 5.5. respectively. The related works are given in

Section 5.6. As in Chapter 4, we simplify the following discussion by assuming that the

program contains only a singlen-dimensional array.

5.1. Convex Array Section

We use convex array sections as a practical representation for the parameterized index sets

introduced by Definition 4-2. A convex array section can precisely represent the class of

parameterized index sets, where all the indices of the index set can be represented as a set

of integer points within a multi-dimensional convex polyhedron. We use a system of linear

inequalities to describe this convex polyhedron. The inequalities are parameterized by the

variables of the loop context associated with the parameterized index set as well as the set

of dimension variablesof the array. These special dimension variables hold the index

values of each dimension of the array.

Definition 5-1: A convex array section

defines a parameterized index set where are the variables of the loop context

associated with the parameterized index set, are variables representing each of

the dimensions of the n-dimensional array, and all c’s are integers.

Figure 5-2 shows the different parameterized index sets of the regions graph for the exam-

ple in Figure 5-1. The innermost region, with only one array access, is represented by a

convex array section that denotes a single array index. The convex array section is param-

R a1 … an, ,()

c0
1

c1
1
a1 … cn

1
an cn 1+

1
i1 … cn x+

1
i x+ + + + + + 0≥

………

c0
m

c1
m

a1 … cn
m

an cn 1+
m

i1 … cn x+
m

ix+ + + + + + 0≥ 
 
 
 
 

=

i1 … i x, ,

a1 … an, ,

63

eterized by the loop index variablesI andJ, the loop invariant variablesM, N and C and

dimension variablesa1 anda2. The region that includes the innermost loop,J, is repre-

sented by a convex array section containing the array elements accessed by all the iterations

of the loopJ for a given iteration of the loopI. The parameterized index set describing the

entire region is a convex array section containing the array elements accessed by all itera-

tions of both loops.

Next, we define the index setA and the empty set using the convex array section repre-

sentation.

Definition 5-2: The index set of all the indices of the array is given by the convex array

section

where integers and are the lower and upper bounds of the array

dimensions.

Definition 5-3: The empty set is given by the convex array section in canonical form

where the system of inequalities is always false.

DO I = 1, M

DO J = 1, N

A(J+C, I+J) = ...

Figure 5-1. A loop nest with an array access

∅

A a1 a2 … an, , ,()
u1 a1 l1≤ ≤

…
un an ln≤ ≤ 

 
 
 
 

=

l1 … ln, , u1 … un, ,

∅ a1 a2 … an, , ,() 0 1>{ }=

64

Next, we express an affine array access function using the convex array section represen-

tation. This formulation is used in calculating the local values as defined in Section 4.3.3.1.

Definition 5-4: An affine array access

is represented by the convex array section

where, all c’s are integers and are the variables of the loop context associated

with the array access.

DO I = 1, M

DO J = 1, N

A(J+C, I+J) = ...

Figure 5-2. Summarizing the array access patterns

a1 a2,()
C 1+ a1 N C+≤ ≤

1 a2 a1 C+– M≤ ≤
 
 
 
 
 

a1 a2,()

1 I M≤ ≤
1 J N≤ ≤

a1 J C+=

a2 I J+= 
 
 
 
 
 
 

a1 a2,()
1 I M≤ ≤

C 1+ a1 N C+≤ ≤

a1 I+ a2 C+= 
 
 
 
 

A c0
1

c1
1
i1… cx

1
i x+ + …… c0

n
c1

n
i1… cx

n
ix+ +, , 

 

a1 … an, ,()
a1 c0

1
c1

1
i1 … cx

1
i x+ + +=

…

an c0
n

c1
n
i1 … cx

n
ix+ + += 

 
 
 
 

i1 … i x, ,

65

5.2. Array Section Descriptors

Although each affine array access can be represented using a convex array section, many

operations on these convex array sections produce non-convex results. By using a single

convex section to approximate a non-convex region, we lose a significant degree of preci-

sion. Because of this loss of accuracy, approximating non-convex regions using a convex

section is unacceptable. Therefore, for parameterized index sets we need a more general

representation than the convex array sections. We use anarray section descriptor, a list of

convex array sections, to represent a general array index set. Each array section descriptor

can have one or more convex array sections. Thus, non-convex regions can be represented

using multiple convex array sections. In theory, any arbitrary array index set can be repre-

sented using a list of convex array sections by dividing the index set into convex regions.

However, in practice we avoid creating large lists.

Definition 5-5: An array section descriptor D is a list of convex array sections

, where an array index iff .

We use a canonical form for the array section descriptor, where, for a given array section

descriptor ,

i) there does not exist such that

ii) there does not exist , such that is contained in

These properties do not affect the functionality of the array section descriptors but help

make the implementation more concise. We allow overlapping convex sections in an array

section descriptor. Requiring convex array sections of a descriptor to be non-overlapping

would not increase the precision of the results. However, it would make the operations on

array section descriptors more complicated and expensive.

5.3. Sparse Array Regions

A convex array section, as defined in Definition 5-1, can only represent index sets which

aredense convex polyhedrons, where all the integer points within the convex polyhedron

are in the index set. However, in practice we need to represent sparse convex polyhedrons,

where only a subset of integer points within a convex region are in the index set. The exam-

R1 … Ri … Rk, , , ,{ } a1 … an, ,() D∈ a1 … an, ,() Ri∈

D

Ri D∈ Ri ∅≡

Ri Rj, D∈ i j≠ Ri Rj

66

ple loop in Figure 5-3 accesses only the even elements of the array, resulting in a sparse

access pattern. There are two possible methods of representing a sparse pattern within our

framework. One way is to fragment the sparse region into a set of dense convex regions.

However, the number of regions required is not known at compile-time for many parame-

terized accesses. Furthermore, the number of dense convex regions is dependent on the size

of the sparse region, which can be quite large. Instead, we choose to construct a single

system usingauxiliary variables, special variables used in creating linear constraints to

represent the sparse nature of the access patterns. These variables can be viewed as addi-

tional dimensions of the parameterized convex polyhedron. The Figure 5-4 shows how an

auxiliary variable is used to represent a non-dense array region for the loop nest given in

Figure 5-3. In this case, all the even indices of the one-dimensional array between indices

1 andN are represented using an auxiliary variable .

When the same sparse pattern arises in multiple sections, each section introduces a unique

auxiliary variable. Thus, union, intersection or subtraction operations on two of these sec-

tions will create a section that has multiple redundant auxiliary variables representing the

same sparse pattern. In Section 5.4.8, we show how to simplify the resulting section by

eliminating these redundant auxiliary variables. We also handle auxiliary variables as a

special case in our union algorithm given in Section 5.4.3.

α

DO I = 1, N

A(2I)

Figure 5-3. A simple example creating sparse access pattern

67

5.4. Operations on Convex Regions

We define several operations useful for manipulating array index sets. Some of these oper-

ators, such as subtraction, are only approximations of the set operators.

5.4.1. Empty Test

The operator is a boolean function that returns false if the convex array section

contains any valid array indices. An empty array region implies that no integer solution

exists for the system of inequalities. Therefore, the empty test is implemented using Fou-

rier-Motzkin elimination, which finds the existence of an integer solution for the system.

5.4.2. Intersection Operator

The intersection operator finds the common array indices in multiple array sections. The

function returns a convex array section , where and are

convex array sections of the same array. The implementation of the intersection operator is

very simple. The inequalities of both systems are combined to form a single system. Inter-

secting two sections with no common array indices will result in a system of inequalities

DO I = 1, N

A(2I)

Figure 5-4. An array summary with an auxiliary variable

a()
1 I N≤ ≤
a 2I=

 
 
 
 
 

a() α∃ 2 a 2N≤ ≤
a 2α=

 
 
 
 
 

IsEmpty

R1 R2,()Intersect R1 R2∩ R1 R2

68

with no solution. We eliminate these systems by checking for empty sections after the

intersection. Moreover, the resulting system may have many redundant inequalities and

auxiliary variables. The algorithms to eliminate the redundant inequalities and auxiliary

variables are given in Section 5.4.8.

5.4.3. Union Operator

A union of two convex array sections contains all the array indices of both sections. How-

ever, as shown by the two examples in Figure 5-5, the union of two convex sections may

not be convex. In our algorithm, we keep both convex array sections to precisely represent

the resulting region. Since this requires a list of convex array sections in the representation,

the definition of the union operator will be deferred until Section 5.5.3.

In many instances found in practice, the union of two convex regions is a single convex

region. This is illustrated by the two examples in Figure 5-6. The array index sets for the

examples are given in Figure 5-7. In the first example, the odd and even indices of a one-

dimensional array are written by two write statements. The two convex array sections of

the write statements can be merged into a single convex array section. In the second exam-

ple, the elements of the lower triangle and the diagonal of a two dimensional array are

updated separately. The two sections can be merged into a single convex array section rep-

resenting both regions.

Figure 5-5. Examples of unions of two convex sections resulting in a non-convex section

69

5.4.3.1. A simple merge algorithm

First, we describe a merge algorithm that attempts to merge two convex array sections with-

out any special treatment of the auxiliary variables. Merging two convex array sections

where one is contained in the other is trivial. The result of the merge is the convex array

section that contains the other. However, merging two arbitrary convex array sections, even

when the result is convex, is non-trivial. All the elements of each input convex array region

are in the result of the merge.

We have developed an algorithm, presented in Figure 5-8, that will merge two convex array

sections when the merge can be performed by eliminating exactly one inequality from each

convex array section. The negation operator, , used in the algorithm is implemented by

negating all the coefficients and the offset of the inequality and subtracting one from the

offset. Since it is not always possible to merge two convex array sections, themergeSimple

algorithm returns a tuple with a convex array section and a boolean. If a valid merge is

found, a tuple with the convex array section andtrue will be returned; otherwise, the bool-

ean value of the returned tuple will befalse.

Figure 5-6. Two examples of loop nests where the convex array sections can be
merged after union operator.

DO I = 1, M

A(2I) = ..

A(2I+1) = ...

DO I = 1, M

A(I,I)

DO I = 1, M-1

DO J = 1, I-I

¬

70

Figure 5-7. Examples of convex array sections that can be merged after union operator.

DO I = 1, M

A(2I) =

A(2I+1) =

a()
1 I M≤ ≤
a 2I 1+=

 
 
 
 
 

a()
1 I M≤ ≤

a 2I=
 
 
 
 
 

a() 2 a 2M 1+≤ ≤ 
 
 

a1 a2,()
1 a1 M≤ ≤

a1 a2=
 
 
 
 
 

a1 a2,()
1 a2 M 1–≤ ≤

1 a1 M a2–≤ ≤
 
 
 
 
 

a1 a2,()
1 a2 M≤ ≤

1 a1 M a2– 1+≤ ≤
 
 
 
 
 

DO I = 1, M-1

A(J, I)

DO J = 1, I-I

A(I, I)

DO I = 1, M

71

Figure 5-8. Attempts to merge two convex array sections without any special
treatment on auxiliary variables

where , and are convex array sections

if then

return

else if then

return

else

for each linear inequality do

if then

Remove inequality from

for each linear inequality do

if then

Remove inequality from

if and

where and are single linear inequalitiesthen

remove from

remove from

if then

return

return

MergeSimple R1 R2,() R true false,{ },〈 〉→
R1 R2 R

IsContained R1 R2,()

R2 true,〈 〉

IsContained R2 R1,()

R1 true,〈 〉

R1′ R1=

I R1∈

IsEmpty Inter t R2 I¬{ },()sec()

I R1′

R2′ R2=

I R2∈

IsEmpty Inter t R1 I¬{ },()sec()

I R2′

R1′ I1{ }≡ R2′ I2{ }≡
I1 I2

I1 R1

I2 R2

IsEmpty Inter t R1 R2 I1¬{ } I2¬{ }, , , 
 sec 

 

Inter t R1 R2,()sec true,〈 〉

∅ false,〈 〉

72

5.4.3.2. Merge algorithm in the presence of auxiliary variables

When both sections have auxiliary variables, themergeSimple algorithm considers these

auxiliary variables as separate variables, and thus does not succeed in merging the sparse

access patterns. However, we can successfully merge many sparse patterns when the prop-

erties of the auxiliary variables are taken into account. The algorithmmergeAuxVars in

Figure 5-9 attempts to merge two sparse patterns given by two different auxiliary variables

into a single sparse pattern with a new auxiliary variable. Themerge algorithm, in Figure 5-

10, eliminates the inequalities of sparse patterns that are combined using themergeAuxVars

algorithm and merged the reduced system using themergeSimple algorithm.

5.4.4. Projection Operator

We define a general projection operator, , that projects away a

set of variables from a given system of inequalities using Fourier-Motzkin elim-

ination. The resulting system does not have any inequalities with the variables .

The projection operator defined in Definition 4-3 is implemented using this operator. The

operator,proj, takes a system of inequalities and eliminates the -th index variable, ,

from the system. The range of the -th index variable is between the lower and the upper

bound affine expressions and , respectively. Thus, the resulting system of

 is given by . The resulting

system does not have any inequalities with the variable . However, the result may not be

exact since the index variable may have contributed to a sparse pattern. In that case, elim-

ination of the variable creates a dense region, including the array indices not present in the

original region. Therefore, we include the original inequalities with the index variable back

into the result by changing the index variable to a new auxiliary variable. If there are no

sparse patterns, the clean-up algorithm, given in Section 5.4.8, will eliminate the inequal-

ities with the auxiliary variable.

Project R v1 … vn, ,{ }, 
 

v1 … vn, ,

v1 … vn, ,

R k ik

k

l u

proj R k l u, , ,() Project R l ik u≤ ≤{ }, 
 Intersect ik{ }, 

 

i k

73

Figure 5-9. Attempts to merge different sparse patterns into a single sparse pattern
using a new auxiliary variable.

where

all c’s, are integers and are variables

if and then

else if and and and s.t. then

else if and and and s.t. then

else

return

return

MrgeAuxVars R1 α1 R2 α2, , ,() R true false,{ },〈 〉→

R1

l– 1 c1
1
i1– …– c1

k
ik– n1α1+ 0≥

u1 c1
1
i1 … c1

k
ik n1α1–+ + + 0≥ 

 
 
 
 

,=

R2

l– 2 c2
1
i1– …– c2

k
ik– n2α2+ 0≥

u2 c2
1
i1 … c2

k
ik n2α2–+ + + 0≥ 

 
 
 
 

,=

l1 l2 u1 u2 n1 n2, , , , , i1 … i k, ,

c1
1

c2
1

= c1
k

c2
k

= n1 n2=

l min l1 l2,()=

u max u1 u2,()=

c1
1

c2
1

= c1
k

c2
k

= l1 l2≤ u1 u2≥ k∃ kn1 n2=

l l 1=

u u1=

c1
1

c2
1

= c1
k

c2
k

= l2 l1≤ u2 u1≥ k∃ kn2 n1=

l l 2=

u u2=

∅ false,〈 〉

R
l– c1

1
i1– …– c1

k
ik– n1α+ 0≥

u c1
1
i1 … c1

k
ik n1α–+ + + 0≥ 

 
 
 
 

= whereα is a new auxiliary variable

R true,〈 〉

74

Figure 5-10. Attempts to merge two convex array sections

where , and are convex array sections.

for each auxiliary variable used by the inequalities ofdo

for each auxiliary variable used by the inequalities ofdo

if then

if then

return

else

return

Merge R1 R2,() R true false,{ },〈 〉→
R1 R2 R

R′ { }=

α1 R1

R1
α

I I R1∈ and variableα1 is in I{ }=

α2 R2

R2
α

I I R2∈ and variableα2 is in I{ }=

R
α

bool,〈 〉 mergeAuxVars R1
α α1 R2

α α2, , , 
 

=

bool true=

R1 I I R1∈ and variableα1 is not in I{ }=

R2 I I R2∈ and variableα2 is not in I{ }=

R′ R′ R
α, 

 
Intersect=

R bool,〈 〉 mergeSimple R1 R2,()=

bool true=

R R′,()Intersect true,〈 〉

∅ false,〈 〉

75

5.4.5. Containment Test

The IsContained operator checks if all indices of one convex array section are included in

the other convex array section. For two convex array sections, and , the operator

 returns true if and only if .The implementation of the con-

tainment test is given in Figure 5-11.

5.4.6. Equivalence Test

The operator returns true if the two convex array sections are equivalent.

However, for two convex array sections to be equivalent, the systems do not have to be

identical. Thus, the implementation of the equivalence test, given in Figure 5-12, identifies

equivalent array sections by examining the parameterized array indices of both sections.

R1 R2

IsContained R1 R2,() R1 R2⊆

Figure 5-11. Algorithm for the containment test

where and are convex array sections

if then

return

if then

return

for each inequality do

if then

return

return

IsContained R1 R2,() true false,{ }→
R1 R2

IsEmpty R1()

true

IsEmpty R1 R2,()Intersect()

false

r R2∈

IsEmpty R1 r¬,()Intersect()

false

true

IsEquivalent

76

5.4.7. Subtraction Operator

Subtraction of two convex array sections creates an array section containing the indices of

the first section that are not present in the second section. Precise subtraction of two convex

array sections can result in a non-convex section, as shown in Figure 5-13. Thus, we define

the subtraction operator, , which is precise if the result can be repre-

sented by a single convex array section. When no precise single system exists, we create

an approximate result that satisfies the property . The

Figure 5-12. Algorithm for the equivalence test

where and are convex array sections

return

IsEquivalent R1 R2,() true false,{ }→
R1 R2

IsContained R1 R2,()() and IsContained R2 R1,()()

Figure 5-13. An example of a subtraction of two convex sections resulting in a single
non-convex section

Subtract R1 R2,()

R1 R2– Subtract R1 R2,() R1⊆ ⊆

77

algorithm for the subtraction operator is given in Figure 5-14. The result of

 is the empty set if all indices of are also in . Otherwise, we find

a single inequality in that slices the part of that is contained in . If there is more

than a single inequality that slices the part of that is contained in , then the result of

the subtraction is non-convex.

5.4.8. Simplify and Clean-up

The above definitions of the operations—such as intersection, merge and projection—are

fairly simple. Although these operators produce correct results, the resulting convex array

sections are not simple and concise. In fact, the resulting convex array sections produced

Subtract R1 R2,() R1 R2

R2 R1 R2

R1 R2

Figure 5-14. Algorithm for subtracting two convex array sections

where , and are convex array sections

if then

return

else if then

return

else

for each inequality do

if then

return

return

Substract R1 R2,() R→
R1 R2 R

IsEmpty Inter t R1 R2,()sec()

R1

IsContained R1 R2,()

∅

i R2∈

IsContained Inter tsec R1 i{ },() R2,()

Inter tsec R1 i¬{ },()

R1

78

by these operators have many unnecessary inequalities and auxiliary variables. Thus, we

use the algorithms, given in the next five sections, to simplify a convex array section. The

algorithms are invoked in the order given in Figure 5-15.

5.4.8.1. Simplify coefficients and tighten the bounds

Using the algorithm in Figure 5-16, we simplify the coefficients of each inequality by

dividing the coefficients by the greatest common divisor. This also tightens the inequalities

to the closest integer solution since the offset is moved to the closest integer.

5.4.8.2. Eliminate unused auxiliary variables

In creating a sparse pattern, the auxiliary variable should have a non-unit coefficient. Fur-

thermore, there should be at least one inequality providing a lower bound for the auxiliary

variable and another inequality providing an upper bound. Using the algorithm shown in

Figure 5-17, we eliminate auxiliary variables and the associated inequalities if they do not

contribute to a sparse pattern.

Figure 5-15. The driver for the simplify and clean-up algorithms

where and are convex array sections.

return

SimplifyCleanup R() R′→
R R′

R ImproveBounds R()=

R RemoveUnusedAux R()=

R NormalizeAux R()=

R RemoveRedundantAux R()=

R RemoveSimpleRedundant R()=

R

79

Figure 5-16. Algorithm for tightening the integer bounds

where and are convex array sections

for all inequalities such that where

 are integer constantsdo

return

ImproveBounds R() R′→
R R′

I R∈ I c a1i1 … akik+ + + 0≥{ }=

c a1 … an, , ,

g gcd a1 … ak, ,()=

I c
g

a1

g
----- i1 …

ak

g
----- i k+ + + 0≥{ }=

R

Figure 5-17. Algorithm for eliminating inequalities and auxiliary variables that do not
create any sparse patterns

where and are convex array sections

for all auxiliary variables in do

if not inequalities such that

and where and are linear expressions

and are integers such that then

return

RemoveUnusedAux R() R′→
R R′

α R

∃ I1 I2, R∈ I1 c1 r1 n1α+ + 0≥{ }=

I2 c2 r2 n2– α+ 0≥{ }= r1 r2

c1 c2 n1 n2, , , n1 n2, 1>

R project Rα,()=

R

80

5.4.8.3. Normalize the offsets

We normalize the offsets of the inequalities with auxiliary variables using the algorithm in

Figure 5-18. We find each pair of inequalities with the same linear expression that repre-

sents the lower bound and upper bound of a sparse pattern and normalize the offsets such

that the offset of the upper bound is always between zero and the coefficient of the auxil-

iary variable. Again, we eliminate the pair of inequalities if they do not contribute to a

sparse pattern.

5.4.8.4. Eliminate redundant auxiliary variables

When two or more convex array sections are combined using operations such as union and

intersection, the same sparse pattern that occurred in multiple input sections is repeated in

the result using multiple auxiliary variables. The algorithm in Figure 5-19 removes these

redundant inequalities and auxiliary variables.

Figure 5-19. Algorithm for removing redundant auxiliary variables

where and are convex array sections

for all auxiliary variables in do

for all auxiliary variables in such that do

if and

then

return

RemoveRedundantAux R() R′→
R R′

α R

β R α β≠

IsEmpty R α β>{ },()Intersect()
IsEmpty R α β<{ },()Intersect()

R project Rβ,()=

R

81

Figure 5-18. Algorithm for normalizing the offsets of the inequalities with auxiliary
variables

where and are convex array sections

for all auxiliary variables in do

 is an integer such that there exist wheret is

an affine expression

if not there exist such that and is

an affine expressionthen

for all inequalities where integer ,

and is a linear expressiondo

for all inequalities where integer

 and is a linear expressiondo

if then

for all inequalities where

integer and is a linear expressiondo

return

NormalizeAux R() R′→
R R′

α R

n t n– α 0≥{ } R∈

t′ m– α 0≥{ } R∈ m n≠ t′

ol ou ∞–= =

c r n– α+ 0≥{ } R∈ c 0>
r

ol max ol n c
n
---, 

 =

c′– r ′ nα+ + 0≥{ } R∈
c′ 0> r

ou max ou nc′
n
----, 

 =

ou ol=

c″± r″ n– α+ 0≥{ } R∈
c″ 0≥ r″

c″ c″ ol–=

R

82

5.4.8.5. Eliminate redundant inequalities

Finally, we remove many redundant inequalities using the algorithm given in Figure 5-20.

However, the system may still retain redundant inequalities after this algorithm. These

redundant inequalities can be found only by using the Fourier-Motzkin elimination tech-

nique. Since Fourier-Motzkin elimination is expensive, we do not use it in the clean-up

code that gets called frequently.

5.5. Operations on Array Section Descriptors

In this section, we define the operators that are used to manipulate array section descrip-

tors. These operators are used in the array data-flow analysis algorithm given in

Section 4.3. Unlike convex array sections, array section descriptors can represent non-

convex array index sets. The operators on array section descriptors are built using the oper-

ators defined for convex array sections presented in the previous section. The operators

IsEmpty, Intersect, Union, andProject are exact under the representation of array section

descriptors, while our definitions ofSubtract and IsContained produce approximate

results. However, our algorithm is able to find the exact results forSubtract andIsCon-

Figure 5-20. Algorithm for removing inequalities that are obviously redundant

where and are convex array sections

for all inequalities where is an integer and

 is a linear expressiondo

for all inequalities where integer do

Remove the inequality from

return

RemoveSimpleRedundant R() R′→
R R′

c r+ 0≥{ } R∈ c

r

d r+ 0≥{ } R∈ d c>

d r+ 0≥{ } R

R

83

tained operators for a large class of inputs found in practice. The algorithm in Figure 5-21

is used to insert a new convex array section into the list of convex array sections in an array

section descriptor in order to maintain the properties of array section descriptors described

in Section 5.2.

5.5.1. Empty Test

The boolean function determines if an array section descriptor has any valid indi-

ces. The empty test returnstrue when the list of convex array sections in the array section

descriptor is empty.

Figure 5-21. Algorithm for inserting a convex array section to an array section descriptor

where and are array section descriptors and is a convex array section.

if not then

for each convex array section do

if then

Remove from

if then

return

Insert into the list of convex array sections in

return

Add D R,() D′→
D D′ R

IsEmpty R()

R′ D∈

IsContained R′ R,()

R′ D

IsContained R R′,()

D

R D

D

IsEmpty

84

5.5.2. Intersection Operator

The intersection operator obtains the common array indices in two array section descrip-

tors for a given array. Figure 5-22 illustrates the implementation of the intersection opera-

tor.

5.5.3. Union Operator

The union of two array section descriptors contains all the array indices of both sections.

The algorithm for the union operator is given in Figure 5-23. The array section descriptor

produced by this algorithm will have multiple convex array sections that may be merged

into a single section. Merging convex array sections has two advantages. First, merging

reduces the number of convex array sections in an array section descriptor, thus reducing

the complexity and the storage requirements. This was found to be necessary in practice.

Second, merging increases the precision of theIsContained andIsEquivalent operators.

Merging is performed after the simple algorithm for the union operator using a post-pass,

given in Figure 5-24, which iterates over the convex array sections in the array section

Figure 5-22. Algorithm for the intersection operator

where , and are array section descriptors.

for each convex array section do

for each convex array section do

return

D1 D2,()Intersect D→
D1 D2 D

D { }=

R1 D1∈

R2 D2∈

D Add D Inter t R1 R2,()sec,()=

D

85

descriptor until no two convex array sections can be merged. Multiple iterations are needed

since merging two convex array sections can enable yet another merge that was not possi-

ble before the first merge. In the algorithm, holds the convex regions created in the cur-

rent iteration, holds the regions created during the previous iteration of the merge, and

 holds the rest of the regions. Each iteration of the merge first compares all pairs of

convex regions in for possible merges and includes any merged region in . Next,

each region in is checked against the rest of the regions in for possible merges. This

is repeated until no more merging is possible.

5.5.4. Projection Operator

The projection operator projects away an index variable from all the convex array sections

in the array section descriptor. Since the projection operator increases the size of each

convex region, some of the resulting convex regions may become candidates for merging.

The implementation of the projection operator,proj, is given in Figure 5-25.

Figure 5-23. Algorithm for the union operator

where , and are array section descriptors.

for each convex array section do

return

Union D1 D2,() D→
D1 D2 D

D D1=

R2 D2∈

D Add D R2,()=

D Merge D()=

D

DN

DC

DF

DC DN

DC DF

86

Figure 5-24. Post-pass after the union operator

where and are array section descriptors.

,

while do

,

Let

for each where do

for each where do

if then

Remove and from the list

 Add to the list

for each do

for each do

if then

Remove from the list

Remove from the list

Add to the list

Add the convex array sections in the list to the list

return

Merge D() D′→
D D′

DN D= DF { }=

DN { }≠

DC DN= DN { }=

DC R1 R2 … Rm, , ,{ }=

Ri 2 i m≤ ≤

Rj 1 j i<≤

R v,〈 〉 merge Ri Rj,()=

v true=

Ri Rj DC

R DN

RC DC∈

RF DF∈

R v,〈 〉 merge RC RF,()=

v true=

RC DC

RF DF

R DN

DC DF

D DF=

D

87

5.5.5. Containment Test

The containment test determines if all the indices of one array section descriptor are con-

tained in the other. However, our implementation of the containment test, given in

Figure 5-26, is not precise. The operator is conservative and it may returnfalse in some

cases when one array section descriptor is fully contained in the other. The difficulty of

finding containment is illustrated in Figure 5-27, which shows that the single convex array

section of the array section descriptor is contained by two different convex array sec-

tions in the array section descriptor . However, this condition occurs infrequently in

practice, since many adjacent convex array sections are merged into a single convex array

section whenever possible. Therefore, we have not implemented the more expensive test

that checks for containment by multiple convex array sections.

Figure 5-25. Algorithm for the projection operator

where and are array section descriptors, is an index variable and , are

affine expressions.

for each convex array section do

return

proj D i l u, , ,() D′→
D D′ i l u

D′ { }=

R D∈

D′ Add D′ Proj R i l u, , ,(),()=

D′ merge D′()=

D′

D1

D2

88

5.5.6. Equivalence Test

The equivalence test determines if two array section descriptors contain identical parame-

terized index sets. The implementation of the equivalent test is given in Figure 5-28. Since

the equivalence test is implemented using the containment test, it is also not precise. There

may be equivalent array section descriptors, as in the example given in Figure 5-29, that

our implementation will conservatively assume to be different.

Figure 5-26. Algorithm for the containment test

where and are array section descriptors.

for each convex array section do

for each convex array section do

if then

break

if then

return

return

IsContained D1 D2,() true false,{ }→
D1 D2

R1 D1∈

found false=

R2 D2∈

IsContained R1 R2,()

found true=

found false=

false

true

89

5.5.7. Subtraction Operator

The subtraction operator creates an array section descriptor with array indices that are

present in the first array section descriptor but not in the second. The subtraction operator,

as defined by the algorithm in Figure 5-30, is not precise. This is because we use the sub-

traction operator for convex array sections, which is also not precise, to define the subtrac-

tion of array section descriptors. We attempt to subtract the convex array sections multiple

Figure 5-27. Example of the operator , where containment is difficult to detectD1 D2⊆

D2

D1

Figure 5-28. Algorithm for the equivalence test

where and are array section descriptors.

return

IsEquivalent D1 D2,() true false,{ }→
D1 D2

IsContained D1 D2,()() and IsContained D2 D1,()()

90

times since the result of one subtraction may enable other subtractions. Figure 5-31 shows

an example where, when subtracting array section descriptors from,

the convex array section cannot be subtracted from the single convex array section of

until the convex array section is subtracted from .

5.6. Related Work

Many researchers have used an array index set representation in performing array data-

flow analysis [18,64,66,124,137,142]. Accuracy of their analyses is defined by the preci-

sion of the summary index set representation. These algorithms use different forms of reg-

ular section descriptors as the array index set representation. Each regular section can be

used only to precisely represent a limited domain of rectilinear, triangular or diagonal

spaces [81]. More complex spaces can be represented using multiple regular sections

[142].

The scope of data-flow and data-dependence analysis performed using regular section

information is much more restricted than using a representation based on linear inequali-

ties. For example, our data dependence analysis, which uses an array region representation

Figure 5-29. Example of equivalent array section descriptors where detection by
IsEquivalent operator is not possible

D1

D2

D2 R1 R2,{ }= D1

R1

D1 R2 D1

91

Figure 5-30. Algorithm for the subtraction operator

where , and are array section descriptors.

for each convex array section do

while do

for each convex array section do

if then

break

else if then

break

return

Substract D1 D2,() D→
D1 D2 D

D { }=

R1 D1∈

iter true=

iter true=

iter false=

R2 D2∈

R Subtract R1 R2,()=

R φ=

R1 φ=

R R1≠

R1 R=

iter true=

D Add D R1,()=

D

92

based on linear inequalities, is as accurate as the traditional data dependence analysis,

which is exact for a pair of array accesses in the domain of loop nests where the loop

bounds and array indices are affine functions of the loop indices.

Triolet et al. first proposed using a system of linear inequalities to represent an array index

set [137]. This representation was used for data dependences analysis. Their algorithm did

not create exact convex regions in many situations, such as sparse access patterns, but pro-

vided approximations using a convex hull of all the indices. In the PIPS project, an index

set using an integer-lattice was proposed but not implemented due to practical consider-

ations [87]. Our representation for the index sets is most similar to their current represen-

tation, which uses a single convex polyhedron as the index set [45,46]. However, there are

many access patterns found in practice that cannot be precisely represented by a single

convex region. For example, multiple write accesses, described in Figure 3-4, can only be

precisely represented using a set of convex regions. Thus, even for the array data depen-

dence analysis using the summary information to obtain the same precision as the pair-wise

data dependence test [110], a summary based on a single convex region is not sufficient.

Figure 5-31. Example of a subtraction that needs multiple iterations

D1

D2

R1

R2

93

5.7. Chapter Summary

In this chapter we introduce an array summary representation based on lists of systems of

linear inequalities. Using this representation, we find data-flow information more accu-

rately than any other previous summary representation. We are also able to perform the

data-dependence analysis at the same precision as the exact data dependence test [110].

We have defined the set operators used for manipulating array summaries, in this represen-

tation. Our intersection, union and projection operators and the empty test are exact. How-

ever, the subtraction operator and the containment and equivalence tests we have defined

are approximations of the exact result.

94

95

6 Array Reshapes Across Procedure
Boundaries

The continuing success of FORTRAN as the leading language for programming scientific

applications depends heavily upon the ability of FORTRAN programs to outperform pro-

grams written in other popular languages. For example, many computationally intensive

algorithms coded using FORTRAN can outperform the same algorithms written using C++

by more than a factor of two [78]. Compilers are able to obtain superior performance from

FORTRAN programs because many modern language features that hinder compiler opti-

mizations, such as aliasing and dynamic memory allocation, are absent or are severely

restricted in the FORTRAN language. A lack of these features makes it possible for com-

pilers to safely perform many aggressive optimizations, such as statement and iteration

reorganization, vectorization, and parallelization, on FORTRAN programs.

However, the FORTRAN-77 language standard has three specific features,parameter

reshapes, equivalences anddifferent common block declarations, that can suppress many

aggressive whole program analyses, needed for finding coarse grain parallelism. It is nec-

essary for an interprocedural compiler to analyze the programs in the presence of these fea-

tures and determine their effect on the rest of the analysis. Current interprocedural

compilers use ad-hoc heuristics and specialized techniques to handle the common cases

found in practice. We introduce a systematic approach, based on the linear inequalities

framework, to analyze the three classes of reshapes found in FORTRAN programs.

In Section 6.1 we will further describe the three different reshapes found in FORTRAN.

Next, we define the array reshape problem in Section 6.2 and provide an overview of our

solution. Sections 6.3, 6.4 and 6.5 detail the algorithms for solving array reshapes that occur

96

in parameter passing, equivalences and common blocks respectively. We compare our

approach to related works in Section 6.6.

6.1. Reshapes in FORTRAN

A reshape occurs when a data structure defined using one shape is also accessed using a

different shape within the program. The FORTRAN-77 definition allows three classes of

reshapes: parameter reshapes, equivalences, and different common block declarations

[150]. Equivalences can affect intraprocedural analysis while the other two affect only

interprocedural analysis.

6.1.1. Parameter Reshapes

The FORTRAN-77 definition does not restrict the actual parameters of the caller and the

formal parameter of the corresponding callee to be of the same type. This provides the pro-

grammer an opportunity to reshape data structures. Figure 6-1 illustrates four examples of

reshapes. In Figure 6-1(a), an element of an array in the caller is mapped to a scalar in the

callee routine. The real and imaginary parts of a complex variable are mapped to a two-

element array in Figure 6-1(b). A simple array reshape is shown in Figure 6-1(c), where a

single column of the arrayY is mapped to the vectorR.

6.1.2. Equivalences

The FORTRAN language, using the equivalence operation, allows the creation of an alias

to a scalar or array data structure. The equivalence operation accepts an element of a data

structure and an element of the alias structure as input, and aligns the alias structure with

the memory layout of the data structure such that the two elements refer to the same

memory location. In the example in Figure 6-2, the two-dimensional arrayB is aliased with

the second half of the tenth plain of the three-dimensional arrayA.

6.1.3. Different Common Block Declarations

Common block structures, used for global variable declaration, provide another opportu-

nity for the programmers to reshape data structures. The common block definition specifies

the memory layout of the variables declared in a common block. By not requiring that mul-

97

REAL*8 W(100)

CALL TESTA(W(10))

...

SUBROUTINE TESTA(P)

REAL*8 P

P = ...

Figure 6-1. Examples of parameter reshapes

COMPLEX*16 X

CALL TESTB(X)

...

SUBROUTINE TESTB(Q)

REAL*16 Q(2)

....

 (b) A scalar is mapped to an array

 (a) An array element mapped to a scalar

INTEGER Y(100,100)

CALL TESTB(Y(10))

...

SUBROUTINE TESTC(R)

INTEGER R(100)

....

 (c) A slice of an array is mapped to a vector

98

tiple definitions of the same common block be identical, the FORTRAN language allows

reshaping and overlapping of data structures between different procedures. The example

in Figure 6-3 is extracted from the programhydro2d in theSPEC92fp benchmark suite

[143]. The common blockvar1 in the example has two different definitions, one with four

two-dimensional arrays of elements and the other with a single large vector. Thus,

the array element in procedureINIVAL is the same element accessed by

 in procedureASW02.

Figure 6-2. Aliasing using the equivalence operator

REAL*8 A(100,100,100)

REAL*8 B(100,50)

EQUIVALENCE A(10,50,1), B(1,1)

....

102 4×

EN a b,()

H1 102b a 306+ +()

Figure 6-3. Example of a common block reshape fromhydro2d

PROGRAM ASW02

PARAMETER(MP=102, NP=4)

COMMON /VAR1/ H1(4*MP*NP)

....

SUBROUTINE INIVAL

COMMON /VAR1/ RO(MP,NP), EN(MP,NP), GZ(MP,NP), GR(MP,NP)

....

99

6.2. The Array Reshape Problem

In the interprocedural data-flow analysis algorithm described in Section 4.3, we need to

propagate the array summary information across procedure boundaries. Propagating an

array summary across procedure boundaries requires us to map the summary describing an

index set of the formal array to one that defines the corresponding index set for the actual

array. Since the FORTRAN-77 language allows the formal and actual array variables to

have different dimension sizes, this mapping is not a trivial renaming operation.

Since FORTRAN implements both formal and actual array structures by mapping them to

the same linear memory segment, one solution is to perform array data-flow analysis using

linearized array accesses [31]. Multi-dimensional array accesses are linearized by convert-

ing them to linear offsets of the memory locations. All the linearized arrays have the same

shape, thus eliminating any reshape problem. However, the regions in multi-dimensional

arrays have to be represented as very complex lattice patterns in a one-dimensional linear-

ized space. Thus, linearizing all the accesses is not a practical solution.

Another solution is to include information describing the relationship between the elements

of the formal and the actual arrays in the index set of the formal array. Adding an equality

that equates the linearized expressions of the access functions of both shapes to the index

set of the formal array is sufficient to make it a valid index set for the actual array. However,

the array section created is a complex set of inequalities even when it represents a simple

region. Many parameter reshapes that are found in practice map between simple regions.

The index set of the actual array, with an equality of linearized access functions, will not

directly describe these simple regions. We will demonstrate this using two parameter

reshapes in the programturb3d (Figure 6-4) described previously in Section 3.3.3. The ele-

ments of the arrayX that are read by the call are graphically shown in Figure 6-5. The rela-

tionship between the arrayX and the arrayU, after the call to DCFT, is given by the

equality , where are

dimension variables. Adding this equality to the index sets of the arrayX will create,

X1 1– U3 K–() 64 U2 1–+() 64 U1 1–+= X1 U1 U2 U3, , ,

U1 U2 U3, ,() X1∃
1 X1 4224≤ ≤

X1 1– U3 K–() 64 U2 1–+() 64 U1 1–+= 
 
 

,

100

a valid index set for the arrayU. However, not directly visible from the index set is the fact

that the elements accessed by the arrayX in DCFT are mapped to a simple plane in the first

two dimensions of the arrayU. We need a sufficiently powerful analysis technique to iden-

tify these simple mappings and continue analyzing the caller without these complex equal-

ities which will result in conservative approximations.

Instead of relying on a few special common cases to pattern match and find the simple

reshapes, we have developed a general algorithm based on systems of linear inequalities.

When the reshape can be described within the affine framework this algorithm is capable

of transforming array summaries between different shapes of an array and identifying the

simple regions [72,75,76]. We use this algorithm to implement the map operators and

 defined in Chapter 4.

Figure 6-4. Example fromturb3d with two array reshapes

DIMENSION U(66,64,64)

...

DO K=1,64

CALL DCFT(U(1,1,K),33)

...

SUBROUTINE DCFT(X, INCX)

REAL*8 X(*)

DO I=1,33

DO II=1,64

... = X((I-1)*2+(II-1)*2*INCX+1)

... = X((I-1)*2+(II-1)*2*INCX+2)

...

⇑

⇓

101

6.2.1. Algorithm Overview

The array summary reshape algorithm creates a system of inequalities for each reshape

problem. The system consists of the convex array region in the original shape of the array,

an equality that equates the linearized expressions of the access functions of both shapes

and inequalities describing the two array shapes. We then use projection to eliminate the

dimension variables in the original array. When there is a simple mapping, we can extract

that simple mapping information from the system because it will be given by the integer

solution to the system. This key property of integer systems is illustrated using the follow-

ing simple system. In the following system of inequalities,

Figure 6-5. The array reshape inturb3d

1

2

3

66

64

64K

4224
66

Array U(66,64,64)

Array X(*)

i j k, ,() 100i 100j k+= 0 k≤ 100<,{ }

102

there are many real solutions for, and . But there is only a single integer solution,

 and , which can be found by integer programming [127]. This property of

integer systems allows us to precisely extract many of the simple reshape regions that

occur in practice.

By using this algorithm on the reshape in Figure 6-5, we can determine that the result of

the reshape is a simple plane of the arrayU. The original array region, given in Figure 6-

6(a), is the convex array section that describes the elements of the arrayX read by the first

call to DCFT. The special system of inequalities of the reshape problem, given in Figure 6-

6(b), includes the array section of the original shape, bounds on the dimensions, and the

equality of the linearized access functions. By eliminating the dimension variable , the

integer solver finds that the only solution for and is a plane in the first two

dimensions of the arrayU. Thus, we are able to find the convex array region ofU with the

simple region description as shown in the Figure 6-6(c).

6.3. Array Reshapes due to Parameter Passing

We define an array reshape caused by parameter passing as any mapping between an array

access as the actual parameter and an array as the corresponding formal parameter. We

assume that the elements of both arrays are of the same type.

Definition 6-1: An array is reshaped in parameter passing when an n-dimensional array

A, declared as in the caller space, is passed as an actual

parameter of a procedure call, using the access , to the m-dimensional

array B, declared as in the callee space, where ,

, and integers and are affine expressions.

Figure 6-7 shows a code segment representing the array reshape given by the above defi-

nition. When the entire array is passed as an actual parameter, the access function becomes

the lower bound. Hence, the actual parameter is equivalent to the array access

.

i j k

i j= k 0=

X1

U1 U2, U3

A l1
A

u1
A: … ln

A
un

A:, , 
 

A f1 … f, ,
n

()

B l1
B

u1
B: … lm

B
um

B:, , 
 

l1
A … ln

A, ,

l1
B … lm

B, , u1
A … un

A, , u1
B … um

B, , f1 … f, ,
n

A l1
A … ln

A, , 
 

103

By using this definition of an array reshape between an actual and a formal parameter at a

procedure call, we can formally describe our algorithm for mapping an index set of the

actual array to the corresponding index set of the formal array.

Figure 6-6. Calculating an array summary across an array reshapeFigure 6-6. Calculating an array summary across an array reshape

(a) Convex array region in the original shape

(b) System of inequalities before projection

(c) After projection, convex array region in the new shape

X1() 1 X1 4224≤ ≤{ }

1 X1 4224≤ ≤ 1 U1 66≤ ≤

1 K 64≤ ≤ 1 U2 64≤ ≤

1 U2 64≤ ≤

X1 1– U3 K–() 64 U2 1–+() 66 U1 1–+=

U1 U2 U3, ,()

1 U1 66≤ ≤

1 U2 64≤ ≤

U3 K= 
 
 
 
 

104

Theorem 6-1: Given an array section descriptor of the formal array B at a

procedure call according to Definition 6-1, the corresponding array section descriptor at

the call site after the array summary reshape is given by

 where

and , are the dimension variables of the arrays A and B respectively.

Figure 6-7. Code segment representing the reshape in the Definition 6-1.

DIMENSION A(l 1
A:u 1

A,...,l n
A:u n

A)

INTEGER f 1,...,f n

...

f 1 = ...

...

f n = ...

CALL FOO(...,A(f 1,...,f n),...)

...

SUBROUTINE FOO(...,B,...)

DIMENSION B(l 1
B:u 1

B,...,l m
B:u m

B)

...

DB

reshape DB() Project DB R{ },()Intersect b1 … b, ,
m

{ }, 
 =

R

l1
A

a1 u1
A≤ ≤

…

ln
A

an un
A≤ ≤

l1
B

b1 u1
B≤ ≤

…

lm
B

bm um
B≤ ≤

ai fi–() uj
A

l j
A

1+– 
 

j 1=

i 1–

∏ 
 
 

i 1=

n

∑ bi l i
B

– 
 

uj
B

l j
B

1+– 
 

j 1=

i 1–

∏ 
 
 

i 1=

m

∑=
 
 
 
 
 
 
 
 
 
 
 

=

a1 … a, ,
n

b1 … b, ,
m

105

In some reshapes found in practice, the lower and upper bounds of many dimensions of the

actual and formal arrays are the same. If the lower and upper bounds are the same for inner

dimensions and the entire array is passed as the actual parameter, we can reduce the com-

plexity of the projection operation by making the equality of linearized access functions

simpler. Theorem 6-2 redefines array summary reshapes due to parameter passing, when

the first difference of lower and upper bounds between the actual and the formal is at the

k-th dimension.

Theorem 6-2: Given an array section descriptor of the formal array B at a

procedure call according to Definition 6-1, and , and the

array access function used as the actual parameter is , the corresponding

array section descriptor at the call site after the array summary reshape is given by

 where

and , are the dimension variables of the arrays A and B respectively.

6.4. Array Reshapes in Equivalences

An array reshape occurs with an equivalence when both structures in an equivalence state-

ment are arrays.

Definition 6-2: An array reshape occurs in an equivalence operation when the two

accesses given to the equivalence operator are and where

A is an n-dimensional array declared as and B is an m-

dimensional array declared as , and , ,

, , and are integers.

DB

l i
A

l i
B

= andui
A

ui
B

=
1 i k 1–≤ ≤

∀

A l1
A … ln

A, , 
 

reshape DB() Project DB R{ },()Intersect b1 … b, ,
m

{ }, 
 =

R

a1 b1=

…
ak 1– bk 1–=

uk
A

ak uk
A≤ ≤

…

un
A

an un
A≤ ≤

uk
B

bk uk
B≤ ≤

…

um
B

bm um
B≤ ≤

ai l i
A

– 
 

uj
A

l j
A

1+– 
 

j k=

i 1–

∏ 
 
 

i k=

n

∑ bi l i
B

– 
 

uj
B

l j
B

1+– 
 

j k=

i 1–

∏ 
 
 

i k=

m

∑= 
 
 
 
 
 
 
 
 
 
 

= ,

a1 … a, ,
n

b1 … b, ,
m

A c1
A … cn

A, , 
 

B c1
B … cm

B, , 
 

A l1
A

u1
A: … ln

A
un

A:, , 
 

B l1
B

u1
B: … lm

B
um

B:, , 
 

l1
A … ln

A, , l1
B … lm

B, ,

u1
A … un

A, , u1
B … um

B, , c1
A … cn

A, , c1
B … cm

B, ,

106

The Figure 6-7 shows a code segment representing the equivalence given by the above def-

inition.When performing array data-flow analysis on a program with an array equivalence,

we need to map the array region information of the alias structure to that of the original

structure. The algorithm for this mapping is very similar to the one for aliasing due to

parameter reshapes. In this algorithm, we assume that the elements of both arrays are of

the same type.

Theorem 6-3: Given an array section descriptor of an aliased array of an

equivalence operation defined in Definition 6-2, the corresponding array section

descriptor of the original array is given by

 where

and , are the dimension variables of the arrays A and B respectively.

The optimization of the parameter reshape algorithm, given in Theorem 6-2, can also be

applied to the equivalence reshape algorithm.

Figure 6-8. Code segment representing the equivalence in the Definition 6-2.

DIMENSION A(l 1
A:u 1

A,...,l n
A:u n

A)

DIMENSION B(l 1
B:u 1

B,...,l m
B:u m

B)

EQUIVALENCE A(c1
A,...,c n

A), B(c 1
B,...,c m

B)

...

DB

reshape DB() Project DB R{ },()Intersect b1 … b, ,
m

{ }, 
 =

R

l1
A

a1 u1
A≤ ≤

…

ln
A

an un
A≤ ≤

l1
B

b1 u1
B≤ ≤

…

lm
B

bm um
B≤ ≤

ai ci
A

– 
 

uj
A

l j
A

1+– 
 

j 1=

i 1–

∏ 
 
 

i 1=

n

∑ bi ci
B

– 
 

uj
B

l j
B

1+– 
 

j 1=

i 1–

∏ 
 
 

i 1=

m

∑=
 
 
 
 
 
 
 
 
 
 
 

=

a1 … a, ,
n

b1 … b, ,
m

107

6.5. Array Reshapes in Common Blocks

We need to perform an array summary reshape when mapping a summary of an array

declared in a common block of the caller to a callee where the common block has a different

definition. We extend our array summary reshape algorithm to handle common block

reshapes. We start by defining the shape of a common block.

Definition 6-3: A shape of a common block C has arrays that are contiguous in

memory where the k-th array, , is an -dimensional array of -byte elements

declared as .

The common blocks can have scalar variables and, in this analysis, we treat them as one-

dimensional arrays with one element. Next, we define the offset to the starting memory

location of thek-th array defined in a common block. Since all arrays of a common block

are laid out in contiguous memory in the order they are declared, the start offset of an array

is calculated by summing the amount of memory allocated to all the previous arrays. The

dimension sizes of the arrays are known at compile-time; thus the starting offset is a com-

pile-time constant. In the following discussion, we use the notation given in Definition 6-3

without further description.

Definition 6-4: The starting offset, in bytes, for the k-th array, , of the shape of the

common block C is

By checking the memory locations allocated to each array for any overlap, we can deter-

mine if arrays in two common block definitions share elements. Since the offset is a com-

pile-time constant, this can be determined at compile time.

Definition 6-5: The two arrays and , declared in the respective shapes and

 of the common block C, have common elements () iff

 and ,

where is the k-th array of and is the -th array of .

SC m

Ak nk ek

Ak l1
k

u1
k: … lnk

k
unk

k:, , 
 

Ak SC

start SC Ak,() ei uj
i

l j
i

1+– 
 

j 1=

ni

∏ 
 
 

i 1=

k 1–

∑= ˙

Ak A′k′ SC

S′C common Ak A′k′,()

start S′C A′k′,() start SC Ak 1+,()< start SC Ak,() start S′C A′k′ 1+,()<

Ak SC Ak′ k′ S′C

108

If two arrays in different shapes of the common block share common elements, we can find

the mapping between these elements by extending the algorithm developed for array sum-

mary reshapes. We provide an exact mapping only when the elements of both arrays are of

the same type and the elements are aligned with each other. Note that the descriptor are not

mapped to a single array, because the array may be overlapped with multiple arrays in the

other shape.

Theorem 6-4: For the two arrays and such that ,

, and , the elements of the array

section descriptor of the array that are common to the array are given by

 where,

and the dimension variables of the arrays and are and .

Since arrays in different common block shapes can overlap, an array section descriptor of

an array in one shape will be mapped into multiple array section descriptors in the second

shape.

Theorem 6-5: An array section descriptor of the array of the common block

shape of the common block C with respect to the common block shape of the same

common block is a set of array descriptors , where for all k such that

Ak A′k′ common Ak A′k′,() true=

ek e′k′= start SC Ak,() start S′C A′k′,()≡ mod ek()

DA′k′
Ak A′k′

map DA′k′
A′k′ Ak, , 

  Project DA′k′
R{ }, 

 Intersect a′1 a′2 … a′, , ,
n′

{ }, 
 =

R
u1

k
a1 u1

k≤ ≤

…

unk

k
ank

unk

k≤ ≤

x x′=

u′1
k′

a′1 u′1
k′≤ ≤

…

u′n′k′

k′
a′n′k′

u′n′k′

k′≤ ≤ 
 
 
 
 
 
 

= ,

x ek ai l i
k

– 
 

uj
k

l j
k

1+– 
 

j 1=

i 1–

∏ 
 
 

i 1=

nk

∑ start SC Ak,()+=
 
 
 

,

x′ e′k′ a′i l ′i
k′

– 
 

u′j
k′

l ′j
k′

1+– 
 

j 1=

i 1–

∏ 
 
 

i 1=

n′k′

∑ start S′C A′k′,()+=
 
 
 

,

Ak A′k′ a1
k … ank

k, , a′1
k′ … a′n′k′

k′, ,

DA′k′
A′k′

S′C SC

DAi
… DAj

, ,{ }

109

, is an array of the common block shape and

and

6.6. Related Work

Many previous interprocedural analyzers did not address the array reshape problem. One

way to avoid array reshape analysis is to perform inline substitution and generate equiva-

lence statements to describe the reshapes that occur in parameter passing and in common

blocks [67]. This approach only shifted the reshapes of parameters and common blocks to

the reshapes of equivalences.

Another proposed scheme to eliminate the reshape problem is to linearize all the array

accesses [31]. However, performing array analyses using these linearized accesses is more

complex than using multi-dimensional arrays. For example, in array data-flow analysis,

many simple regions in multi-dimensional arrays get converted into complex lattice pat-

terns in a one-dimensional linearized space.

Simple array reshape analysis is used in a few interprocedural analyzers [137]. Their scope

was limited to a class of reshapes where the formal array declaration is identical to the

lower dimensions of the actual array. These simple reshapes are performed by including the

upper dimension information of the actual array with the renamed array section of the

formal array.

We have designed the first algorithm capable of handling many complex reshape patterns

that occur in practice. Using integer projections, we are able to handle many array reshapes

that occur in parameter passing, equivalences, and different common block declarations.

i k j≤ ≤ Ak SC common A′k′ Ak,() true=

DAk

map DA′k′
A′k′ Ak, , 

 
ek e′k′= and

start SC Ak,() start S′C A′k′,()≡ mod ek()

Ak{ } otherwise










=

110

Recently, a similar parameter reshape algorithm that uses integer programming was pro-

posed by Creusillet and Irigoin [45]. Their algorithm was an extension of our earlier algo-

rithm [75], which did not eliminate lower dimensions, as presented in Theorem 6-2.

6.7. Chapter Summary

In this chapter we introduce a systematic approach for analyzing array reshapes. We

present algorithms to handle array reshapes that occur in parameter passing, equivalences

and different common block declarations. The algorithms are based on the linear inequal-

ities framework. We create a special system of inequalities and use integer projection to

map an array summary of one shape to the corresponding summary of the other shape.

These algorithms are capable of detecting many simple reshape patterns found in practice.

111

7 Experimental Results in Coarse-Grain
Parallelism

In this chapter, we evaluate the impact of coarse grain parallelization analysis. We have

implemented the interprocedural array analysis described in the previous four chapters as

a part of the Stanford SUIF compiler. We show that the SUIF parallelizer is capable of

locating large coarse-grain parallel loops in sequential programs without any user interven-

tion. We also provide an empirical evaluation of the compiler system by using it to paral-

lelize more than 115,000 lines of FORTRAN code from 39 programs in four benchmark

suites. We evaluate the effectiveness of using interprocedural analysis, including two

advanced array analysis techniques: array privatization and array reduction [76].

We present static counts of the parallelizable loops found using each of these techniques.

Static loop counts, though, are not good indicators of whether parallelization is successful.

Specifically, parallelizing just one outermost loop can have a profound impact on a pro-

gram’s performance. Dynamic measurements provide much more insight into whether a

program may benefit from parallelization. Thus, in addition to static measurements on the

benchmark suites, we also present a series of results gathered from executing the programs

on a parallel machine. We present overall speedup results, and other measurements of some

of the factors that determine the speedup. We also provide results that identify the contri-

butions of the analysis components of our system.

7.1. Experimental Setup

Our compiler system automatically parallelizes sequential applications without relying on

any user directives. Parallelized programs generated by our compiler are executed on

cache-coherent shared address-space multiprocessors.

112

7.1.1. The Compiler System

Our experimental setup is based on the Stanford SUIF compiler. The compiler takes a

sequential FORTRAN program as input, performs a large suite of analyses to parallelize

the code, and outputs the results as a SPMD (Single Program Multiple Data) parallel C ver-

sion of the program that can be compiled by native C compilers on a variety of architec-

tures. The resulting C program is linked to a parallel run-time system that currently runs

on several bus-based shared memory architectures (Silicon Graphics Challenge and Power

Challenge, and Digital 8400 multiprocessors [57]) and scalable shared-memory architec-

tures (Stanford DASH [105] and Kendall Square KSR-1 [94]).

We have developed an interprocedural parallelizer with advanced array analyses and opti-

mizations, that is capable of detecting coarse-grain parallelism [75,76,71]. The parallelizer

is integrated as a part of the SUIF compiler system [144]. Other advanced optimizations

such as loop transformations [146], data and computation co-location [13], data transfor-

mations (Chapter 8), synchronization elimination [140], compiler-directed page coloring

[30], and compiler-inserted prefetching [116] have also been implemented in the SUIF

compiler system. Detection of coarse-grain parallelism, in combination with these other

optimizations, can achieve significant performance improvements for sequential scientific

applications on multiprocessors. The SUIF compiler system has demonstrated this by

obtaining the highest knownSPEC92fp andSPEC95fp ratios to date [8,73].

However, in this chapter we focus only on the ability of the compiler to detect coarse-grain

parallelism. Thus, to obtain parallel executions, we have adopted a very simple parallel

code generation strategy that does not include the locality optimizations. The compiler par-

allelizes only the outermost loop that the analysis has proven to be parallelizable. Our com-

piler suppresses parallel execution if the overhead involved is expected to overwhelm the

benefits. The run-time system estimates the amount of computation in each parallelizable

loop using the knowledge of the iteration count at run time, and runs the loop sequentially

if it is considered too fine-grained to have any parallelism benefit. The iterations of a par-

allel loop are evenly divided between the processors at the time the parallel loop is

spawned.

113

7.1.2. Multiprocessors

We evaluate the effectiveness of coarse grain parallelism by executing the parallelized

SPMD loop nests using two different bus-based shared-memory multiprocessors. A sum-

mary of the Silicon Graphics Challenge and the Digital AlphaServer 8400 multiprocessors

is given in Figure 7-1.

The Silicon Graphics Challenge multiprocessor used in the experiments is a bus-based

shared-memory multiprocessor containing 8 MIPS R4400 microprocessors, a single-issue

superpipelined processor. The floating point unit of the R4400 is not fully pipelined, i.e., it

cannot issue a new floating point instruction to the same functional unit every clock cycle.

The R4400 has 16 Kbytes of on-chip instruction cache and 16 Kbytes of on-chip data cache.

The data interface to the off-chip cache is 128 bits wide and runs at a half or a third of the

on-chip clock rate. The multiprocessor interconnect used in the Challenge is called Power-

Path-2. PowerPath-2 is a wide, split transaction bus capable of a sustained transfer rate of

1.2 Gigabytes per second. The bus implements a write invalidate cache coherency protocol

and has independent 256-bit data bus and 40-bit address bus. The block size used in the

Challenge is 128 bytes. The independent data and address buses provide support for split

transactions and the PowerPath-2 can have up to eight outstanding read transactions [82].

The Digital AlphaServer 8400 used in the experiments is a bus-based shared-memory mul-

tiprocessor containing 8 Digital 21164 Alpha processors. The Digital 21164 Alpha is a

quad-issue superscalar microprocessor with two 64-bit integer and two 64-bit floating point

pipelines [49]. There are two levels of caches on-chip: 8 KB instruction/ 8 KB data level 1

cache, and 96 KB of combined level 2 cache. The memory system allows multiple out-

standing off-chip memory accesses. Each processor has 4 MB of 10ns external cache. The

architecture provides 32 integer and 32 floating-point registers. The 256-bit data bus, which

operates at 75MHz, supports 265ns memory read latencies and 2.1 GB per second of data

bandwidth. Banked memory modules are attached to the bus [57].

7.2. Examples of Coarse-Grain Parallelism

Not only do some of the SUIF-parallelized loops execute for a long time, they can also be

very large. The largest loop SUIF parallelizes is fromspec77 of thePerfect benchmark

114

suite [97], consisting of 1002 lines of code from the original loop and its invoked proce-

dures. An outline of the loop is shown in Figure 7-2. The boxes represent procedures and

the lines represent procedure invocations. The outer parallel loop, marked using light gray

shading, contains 60 subroutine calls to 13 different procedures. Within this loop, the com-

piler found 48 interprocedural privatizable arrays, 5 interprocedural reduction arrays and

27 other arrays accessed independently.

Another example of a large coarse-grain parallel loop discovered by the SUIF compiler is

in theSPEC95fp programturb3d. The four main computation loops in theturb3d com-

pute a series of three-dimensional FFTs. While these loops are parallelizable, they all have

a complex control structure containing large amounts of code, as shown in Figure 7-3.

Each parallel loop, as indicated in the diagram, consists of over 500 lines of code spanning

eight or nine procedures, with up to 42 procedure calls. It is necessary to parallelize these

Machine Silicon Graphics Challenge Digital AlphaServer 8400

Number of processors 8 8

Main memory 768 MB 4 GB

System bus bandwidth 1.2 GB/sec 2.1 GB/sec

Operating system IRIX 5.3 OSF1 V3.2

Processor MIPS R4400 Digital Alpha 21164

Clock speed 200 MHz 300 MHz

On-chip cache
16 KB Instruction +
16 KB Data

8 KB Instruction + 8 KB Data

96 KB combined second level

External cache 4 MB 4 MB

Uniprocessor SPECfp92 131 513

Figure 7-1. Characteristics of the two multiprocessor systems used for the experiments

115

Figure 7-2. Parallelizable regions from a code segment inspec77

Procedure Procedure call

A parallel loop nest found by Single coarse-grain
parallel regionfirst generation parallelizers

GLOOP

PLN2

SUMPLS

SUMPLV

LEGUV

UVGLOB

GFIDI

SYMASY

FL22

GOZRIM

PSU22
MSU22

FFS99

FFA99

116

outer loops to get any significant speedup. The key to discovering the parallelism is inter-

procedural array analysis. The compiler is able to determine that iterations of the outer

loops operate on independent planes of the arrays across the procedure calls. The analysis

is further complicated by the array reshapes found in the program, of which an example is

given in Figure 6-4. Once parallelized,turb3d speeds up by over 5.8 times on a 8-proces-

sor Digital AlphaServer 8400, as shown in Figure 7-4.

Figure 7-3. Parallelizable regions from a code segment inturb3d

Procedure Procedure call

A parallel loop nest found by Single coarse-grain
parallel regionfirst generation parallelizers

T
he

 fo
ur

 c
oa

rs
e-

gr
ai

n
pa

ra
lle

l l
oo

ps

TURB3D

ZFFT

XYFFT

DRCFT

DCRFT

DCFT

CFFT

FFTZ1

TRANS

FFTZ2

117

7.3. Benchmark Programs

To evaluate our parallelization analysis, we measured its success at parallelizing four stan-

dard benchmark suites described in Figure 7-5: the Fortran programs from theSPEC95fp

and SPEC92fp benchmark suites, the sampleNas benchmarks, and the Perfect Club

benchmark suite. We have made a very small number of modifications to the original pro-

grams, mainly to fix bugs. These are explicitly stated in the benchmark descriptions.

7.3.1.SPEC95fp Benchmark Suite

SPEC95fp is a set of 10 floating-point programs created by an industry-wide consortium

and is currently the industry standard in benchmarking uniprocessor architectures and com-

pilers. In our analysis, we omitfpppp because it contains very little loop-level parallelism

and has many type errors in the original Fortran source.

Figure 7-4. Parallel speedup forturb3d on a 8 processor AlphaServer

0 2 4 6 8
0

2

4

6

8

Number of Processors

S
pe

ed
up

1 3 5 7

1

3

5

7

Traditional fine-grain parallelism

Coarse-grain parallelism

118

Program Length Description
Execution time (seconds)

Challenge AlphaServer

SPEC95fp
tomcatv 190 lines mesh generation 314.4

swim 429 lines shallow water model 282.1

su2cor 2332 lines quantum physics 202.9

hydro2d 4292 lines Navier-Stokes 350.1

mgrid 484 lines multigrid solver 367.3

applu 3868 lines parabolic/elliptic PDEs 393.4

turb3d 2100 lines isotropic, homogeneous turbulence 347.7

apsi 7361 lines mesoscale hydrodynamic model 193.3

wave5 7764 lines 2-D particle simulation 217.4

SPEC92fp
doduc 5334 lines Monte Carlo simulation 20.0 4.8

mdljdp2 4316 lines equations of motion 45.5 19.4

wave5 7628 lines 2-D particle simulation 42.9 12.6

tomcatv 195 lines mesh generation 19.8 9.2

ora 373 lines optical ray tracing 89.6 21.5

mdljsp2 3885 lines equations of motion, single precision 40.5 19.5

swm256 487 lines shallow water model 129.0 42.6

su2cor 2514 lines quantum physics 156.1 20.1

hydro2d 4461 lines Navier-Stokes 110.0 31.6

nasa7 1105 lines NASA Ames Fortran kernels 143.7 59.0

Nas

appbt 4457 lines block tridiagonal PDEs
123x52 grid 10.0 2.3
643x52 grid 3,039.3

applu 3285 lines parabolic/elliptic PDEs
123x52 grid 4.6 1.2
643x52 grid 2,509.2

appsp 3516 lines
scalar pentadiagonal
PDEs

123x52 grid 7.7 2.2

643x52 grid 4,409.0

buk 305 lines integer bucket sort
65,536 elements 0.6 0.3

8,388,608 elements 45.7

cgm 855 lines sparse conjugate gradient
1,400 elements 5.4 2.0

14,000 elements 93.2

embar 135 lines
random number
generator

256 iterations 4.6 1.4

65,536 iterations 367.4

fftpde 773 lines 3-D FFT PDE
643 grid 26.3 6.2

2563 grid 385.0

mgrid 676 lines multigrid solver
323 grid 0.6 0.2

2563 grid 127.8

Perfect
adm 6105 lines pseudospectral air pollution model 20.2 6.4

arc2d 3965 lines 2-D fluid flow solver 185.0 46.4

bdna 3980 lines molecular dynamics of DNA 63.7 12.4

dyfesm 7608 lines structural dynamics 18.3 3.8

flo52 1986 lines transonic inviscid flow 24.1 7.2

mdg 1238 lines moleclar dynamics of water 194.5 62.1

mg3d 2812 lines depth migration 410.9 250.7

ocean 4343 lines 2-D ocean simulation 71.8 23.6

qcd 2327 lines quantum chromodynamics 9.6 3.1

spec77 3889 lines spectral analysis weather simulation 124.6 20.7

track 3735 lines missile tracking 6.2 1.8

trfd 485 lines 2-electron integral transform 21.1 5.5

Figure 7-5. Benchmark descriptions, data-set sizes and execution times

119

7.3.2.SPEC92fp Benchmark Suite

SPEC92fp is a set of 14 floating-point programs from the 1992 version of the SPEC

benchmark suite. The programstomcatv, swm256, su2cor, hydro2d, wave5 andfpppp

are the same asSPEC95fp, but with smaller data sets. Because the interprocedural analysis

is available only for FORTRAN, we omitalvinn andear, the two C programs, andspice,

a program of mixed Fortran and C code. We also omitfpppp for the same reasons given

above.

7.3.3.Nas Parallel Benchmark Suite

Nas is a suite of eight programs used for benchmarking parallel computers. NASA pro-

vides sample sequential programs plus application information, with the intention that they

can be rewritten to suit different machines. We use all the NASA sample programs except

for embar. We substitute forembar a version from Applied Parallel Research(APR) that

separates the first call to a function, which initializes static data, from the other calls. We

present results for both small and large data set sizes.

7.3.4. Perfect Club Benchmark Suite

Perfect is a set of sequential codes used to benchmark parallelizing compilers. We present

results on 12 of 13 programs here.Spice contains pervasive type conflicts and parameter

mismatches in the original FORTRAN source that violate the FORTRAN-77 standard.

This program is considered to have very little loop-level parallelism. We corrected a few

type declarations and parameters passed inarc2d, bdna, dyfesm, mgrid, mdg and

spec77.

7.4. Applicability of Advanced Analyses

In this section we present static and dynamic measurements to assess the impact of the array

analysis components. We define abaseline system that serves as a basis of comparison

throughout this section. The baseline refers to our system without any of the advanced array

analyses. It performs intraprocedural data dependence, and lacks the capability to privatize

arrays or recognize reductions. Note that the baseline system is much more powerful than

many existing parallelizing compilers as it contains all the interprocedural scalar analysis

120

[76]. Our full system, in addition to the analyses in the baseline system, performs array

reduction and privatization analysis and carries out all the analyses interprocedurally. We

also separately measure the impact of the three components: interprocedural analysis, array

reductions, and array privatization.

7.4.1. Static Measurements

The table in Figure 7-6 counts the number of parallel loops found by the SUIF compiler

using different combinations of techniques. The first column of the table is the total

number of loops in each program. The last column indicates the counts of all parallelizable

loops, including those nested within other parallel loops which would consequently not be

executed in parallel under our parallelization strategy. Columns 2 through 9 indicate the

combinations of techniques needed to parallelize each of these loops. The second column

gives the number of loops that are parallelizable in the baseline system. The next three col-

umns measure the applicability of the intraprocedural versions of advanced array analyses.

We separately measure the effect of including reduction recognition, privatization, and

both reduction recognition and privatization. The next set of four columns includes inter-

procedural data dependence analysis. Similarly, the eighth and ninth columns measure the

effect of adding interprocedural privatization, with and without reduction recognition.

We see from this table that the advanced array analyses are applicable to a majority of the

programs in the benchmark suite, and several programs can take advantage of all the inter-

procedural array analyses. Although the techniques do not apply uniformly to all the pro-

grams, the frequency with which they are applicable for this relatively small set of

programs demonstrates that the techniques are general and useful. We observe that many

of the parallelizable loops do not require any new array techniques. However, the coarse-

grained loops, parallelized with advanced array analyses, often contain a significant potion

of the overall computation of the program and, as shown below, can make a substantial dif-

ference in overall performance.

121

of
loops

Parallel Loops
Intraprocedural Interprocedural

TotalArray Reduction ✔ ✔ ✔ ✔

Array Privatization ✔ ✔ ✔ ✔

SPEC95fp
tomcatv 16 10 10
swim 24 22 22
su2cor 117 89 89
hydro2d 163 155 155
mgrid 46 35 35
applu 168 127 10 6 6 149
turb3d 70 55 3 4 62
apsi 298 169 2 171
wave5 362 307 307

SPEC92fp
doduc 280 230 7 237
mdljdp2 33 10 2 1 2 15
wave5 364 198 198
tomcatv 18 10 10
ora 8 5 3 8
mdljsp2 32 10 2 1 2 15
swm256 24 24 24
su2cor 128 65 3 1 69
hydro2d 159 147 147
nasa7 133 59 1 6 66

Nas
appbt 192 139 3 18 6 3 169
applu 168 117 4 6 6 3 136
appsp 198 142 3 12 6 3 166
buk 10 4 4
cgm 31 17 2 19
embar 8 3 1 1 5
fftpde 50 25 25
mgrid 56 38 38

Perfect
adm 267 172 2 2 176
arc2d 227 190 190
bdna 217 111 28 1 140
dyfesm 203 122 5 2 1 5 135
flo52 186 148 1 7 156
mdg 52 35 1 2 38
mg3d 155 104 2 106
ocean 135 102 1 6 109
qcd 157 92 7 99
spec77 378 281 13 2 17 1 314
track 91 51 3 1 55
trfd 38 15 5 1 21

TOTAL 5262 2635 95 66 0 68 5 10 11 2890

Figure 7-6. Static Measurements: Number of parallel loops found by each technique

122

7.4.2. Dynamic Measurements

We also measure the dynamic impact of each of the advanced array analyses. We present

the results forNas benchmark with both small and large data sets. The three benchmarks

with small execution times—SPEC92fp, Nas with small dataset andPerfect—are exe-

cuted on the Silicon Graphics Challenge multiprocessors, and the results are given in Fig-

ures 7-8, 7-10 and 7-11 respectively. The other two benchmarks,SPEC95fp andNas with

the large data set, are tested on the Digital AlphaServer, and the results are given in Figures

7-7 and 7-9.

While parallel speedups measure the overall effectiveness of a parallel system, they are

also highly machine dependent. Not only do speedups depend on the number of processors,

they are sensitive to many aspects of the architecture, such as the cost of synchronization,

the interconnect bandwidth, and the memory subsystem. Furthermore, speedups measure

the effectiveness of the entire compiler system and not just the parallelization analysis.

Thus, to capture more precisely how well the parallelization analysis performs, we mea-

sure theparallelism coverage and thegranularity of parallelism, as explained below.

7.4.2.1. Parallelism coverage

We term the overall percentage of time spent in parallelized regions as theparallelism cov-

erage. The coverage measurements are taken by running the programs on a single proces-

sor of the multiprocessor. As the coverage results are reported in relative terms, they are

less sensitive to differences between processors. Parallel coverage is an important metric

for measuring the effectiveness of parallelization analysis. By Amdahl’s law, programs

with low coverage will not achieve good parallel speedup. For example, a program with a

parallel coverage of 80% can at most speedup by 2.5 on 4 processors. High coverage is

indicative that the compiler analysis is locating significant amounts of parallelism in the

computation.

In the figures, we present the contribution of each analysis component to the parallel cov-

erage of the SUIF compiler. These coverage measurements were taken by recording the

specific array analyses that apply to each parallelized loop, and instrumenting the sequen-

123

Figure 7-7. Dynamic Measurements on the AlphaServer forSPEC95fp

0

20

40

60

80

100

(A) Applicable % of Computation

0

20

40

60

80

100

(B) Parallelism Coverage (%)

1 us

10 us

100 us

1 ms

10 ms

100 ms

1 sec

(D) Speedup on 8 Processors

0

2

4

6

8

(C) Granularity of Parallelism

Intra- Inter-

Data Dependence Analysis

+ Array Reduction

+ Array Privatization

+ Array Reduction
+ Array Privatization

procedural
Techniques

Baseline:

SUIF:

Intraprocedural

Data Dependence Analysis
Array Privatization
Array Reduction

Interprocedural Scalar Analysis

Interprocedural Scalar Analysis
Data Dependence Analysis

1

3

5

7

9

10

11

12

hy
dr

o2
d

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

to
m

ca
tv

sw
im

su
2c

or

hy
dr

o2
d

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

to
m

ca
tv

sw
im

su
2c

or

hy
dr

o2
d

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

to
m

ca
tv

sw
im

su
2c

or

hy
dr

o2
d

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

w
av

e5

to
m

ca
tv

sw
im

su
2c

or

124

Intra- Inter-

Data Dependence Analysis

+ Array Reduction

+ Array Privatization

+ Array Reduction
+ Array Privatization

procedural
Techniques

1 us

10 us

100 us

1 ms

10 ms

100 ms

1 sec

10 sec

100 sec

to
m

ca
tv

or
a

m
dl

js
p2

sw
m

25
6

s2
uc

or

hy
dr

o2
d

na
sa

7

do
du

c

m
dl

jd
p2

w
av

e5

0

1

2

3

4

to
m

ca
tv

or
a

m
dl

js
p2

sw
m

25
6

s2
uc

or

hy
dr

o2
d

na
sa

7

do
du

c

m
dl

jd
p2

w
av

e5

Figure 7-8. Dynamic Measurements on the Challenge forSPEC92fp

0

20

40

60

80

100

(A) Applicable % of Computation

(1) SPEC92FP

to
m

ca
tv

or
a

m
dl

js
p2

sw
m

25
6

s2
uc

or

hy
dr

o2
d

na
sa

7

do
du

c

m
dl

jd
p2

w
av

e5

0

20

40

60

80

100

to
m

ca
tv

or
a

m
dl

js
p2

sw
m

25
6

s2
uc

or

hy
dr

o2
d

na
sa

7

do
du

c

m
dl

jd
p2

w
av

e5

(B) Parallelism Coverage (%)

(D) Speedup on 4 Processors(C) Granularity of Parallelism

Baseline:

SUIF:

Intraprocedural

Data Dependence Analysis
Array Privatization
Array Reduction

Interprocedural Scalar Analysis

Interprocedural Scalar Analysis
Data Dependence Analysis

125

Intra- Inter-

Data Dependence Analysis

+ Array Reduction

+ Array Privatization

+ Array Reduction
+ Array Privatization

procedural
Techniques

1 us

10 us

100 us

1 ms

10 ms

100 ms

1 sec

10 sec

Figure 7-9. Dynamic Measurements on the Challenge forNas using the small data set

0

20

40

60

80

100

(A) Applicable % of Computation

0

20

40

60

80

100

(B) Parallelism Coverage (%)

(D) Speedup on 4 Processors

0

1

2

3

4

(C) Granularity of Parallelism

Baseline:

SUIF:

Intraprocedural

Data Dependence Analysis
Array Privatization
Array Reduction

Interprocedural Scalar Analysis

Interprocedural Scalar Analysis
Data Dependence Analysis

ap
pb

t

ap
pl

u

ap
ps

p

bu
k

cg
m

em
ba

r

fft
pd

e

m
gr

id

ap
pb

t

ap
pl

u

ap
ps

p

bu
k

cg
m

em
ba

r

fft
pd

e

m
gr

id

ap
pb

t

ap
pl

u

ap
ps

p

bu
k

cg
m

em
ba

r

fft
pd

e

m
gr

id

ap
pb

t

ap
pl

u

ap
ps

p

bu
k

cg
m

em
ba

r

fft
pd

e

m
gr

id

126

Intra- Inter-

Data Dependence Analysis

+ Array Reduction

+ Array Privatization

+ Array Reduction
+ Array Privatization

procedural
Techniques

Figure 7-10. Dynamic Measurements on the AlphaServer forNas using the large data set

0

20

40

60

80

100

(A) Applicable % of Computation

0

20

40

60

80

100

(B) Parallelism Coverage (%)

1 us

10 us

100 us

1 ms

10 ms

100 ms

1 sec

10 sec

100 sec

(D) Speedup on 8Processors

0

2

4

6

8

(C) Granularity of Parallelism

Baseline:

SUIF:

Intraprocedural

Data Dependence Analysis
Array Privatization
Array Reduction

Interprocedural Scalar Analysis

Interprocedural Scalar Analysis
Data Dependence Analysis

ap
pb

t

ap
pl

u

ap
ps

p

bu
k

cg
m

em
ba

r

fft
pd

e

m
gr

id

1000 sec

ap
pb

t

ap
pl

u

ap
ps

p

bu
k

cg
m

em
ba

r

fft
pd

e

m
gr

id

ap
pb

t

ap
pl

u

ap
ps

p

bu
k

cg
m

em
ba

r

fft
pd

e

m
gr

id

1

3

5

7

ap
pb

t

ap
pl

u

ap
ps

p

bu
k

cg
m

em
ba

r

fft
pd

e

m
gr

id

127

Intra- Inter-

Data Dependence Analysis

+ Array Reduction

+ Array Privatization

+ Array Reduction
+ Array Privatization

procedural
Techniques

Figure 7-11. Dynamic Measurements on the Challenge forPerfect

0

20

40

60

80

100

(A) Applicable % of Computation

0

20

40

60

80

100

(B) Parallelism Coverage (%)

1 us

10 us

100 us

1 ms

10 ms

(C) Granularity of Parallelism

0

1

2

3

4

(D) Speedup on 4 Processors

Baseline:

SUIF:

Intraprocedural

Data Dependence Analysis
Array Privatization
Array Reduction

Interprocedural Scalar Analysis

Interprocedural Scalar Analysis
Data Dependence Analysis

ad
m

qc
d

m
dg

tr
ac

k

bd
na

dy
fe

sm

ar
c2

d

tr
fd

sp
ec

77

m
g3

d

flo
52

oc
ea

n

ad
m

qc
d

m
dg

tr
ac

k

bd
na

dy
fe

sm

ar
c2

d

tr
fd

sp
ec

77

m
g3

d

flo
52

oc
ea

n

ad
m

qc
d

m
dg

tr
ac

k

bd
na

dy
fe

sm

ar
c2

d

tr
fd

sp
ec

77

m
g3

d

flo
52

oc
ea

n

ad
m

qc
d

m
dg

tr
ac

k

bd
na

dy
fe

sm

ar
c2

d

tr
fd

sp
ec

77

m
g3

d

flo
52

oc
ea

n

128

tial code to determine the execution time of each of the loops. We also show a comparison

of the parallelism coverage achieved by the SUIF and the baseline compiler.

Overall, we observe rather good coverage (above 80%) for all 9 programs inSPEC95fp,

8 of the 10 programs inSPEC92fp, 7 of the 8Nas programs and 6 of the 12Perfect

benchmarks. A third of the programs spend more than 50% of their execution time in loops

that require advanced array analysis techniques.

7.4.2.2. Granularity of parallelism

A program with high coverage is not guaranteed to achieve parallel speedup because of a

number of factors. The granularity of parallelism extracted is a particularly important fac-

tor, as frequent synchronizations can slow down a fine-grain parallel computation. To

quantify this property, we define a program’s granularity as the average execution time

spent in its parallel regions when the program is executed on a single processor. In the fig-

ures, we show a comparison between the granularity achieved by the SUIF and the baseline

compiler.

7.4.2.3. Program speedup

The final result we present is a set of speedup measurements. Speedups are calculated as

ratios between the execution time of the original sequential program and the parallel exe-

cution time. The parallel speedup results are also shown in the figures. Note that the speed-

ups were obtained without any futher optimizations that are enabled by parallelization. The

speedups of many of these programs can be improved by performing optimizations to

improve data locality and reduce communication and synchronization [8,73].

7.4.3. Discussion

7.4.3.1.SPEC95fp benchmarks

Array privatization has an impact onapplu and interprocedural analysis is required for

turb3d. The overall coverage of the programs is above 80%. However,apsi andwave5

do not yield any parallel speedup due to the small granularity of the parallel regions. The

programswim shows superlinear speedup because its working set fits into the multipro-

129

cessor’s aggregate cache. The performance oftomcatv andswim can be further improved

by memory optimizations (Chapter 8).

7.4.3.2.SPEC92fp benchmarks

Figure 7-8(B) shows that while the impact of array privatization is minimal, array reduction

analysis dramatically increases the parallel speedup ofmdljsp2 andmdljdp2. Although

mdljsp2, mdljdp2 andnasa7 required array privatization, onlynasa7 had any visible

benefit from this optimization. However, the compiler achieves good overall results in par-

allelizing SPEC92fp. Coverage is above 80% for 8 of the 10 programs, and we achieve

speedups on all eight.

The results also show that high coverage is necessary but not sufficient for high speedups.

Programs with a fine granularity of parallelism, even those with high coverage such as

su2cor, tomcatv andnasa7, tend to have lower speedups. Another important factor that

affects speedups is data locality. Two of these programs,tomcatv andnasa7, have poor

memory behavior. We will show that the performance of these programs can be improved

significantly via data and loop transformations to improve cache locality (Chapter 8), and

by using techniques to minimize synchronization [140].

7.4.3.3.Nas benchmarks

We have gathered results for theNas benchmark on two different multiprocessors using

two different datasets as given in Figures 7-9 and 7-10. The results on the different multi-

processors are quite similar. The advanced array analyses in SUIF are important to the suc-

cessful parallelization of theNas benchmarks. Comparing SUIF with the baseline system,

we observe that the array analyses have two important effects. Array privatization enables

the compiler to locate significantly more parallelism in two of the programs,cgm and

embar. Array reductions increase the granularity of parallelism inappbt, applu and

appsp by parallelizing an outer loop instead of inner loops nested inside it. Observe that,

in appbt with the large dataset, finding an outer loop even when the coverage is at 100%

has a significant impact on performance.

130

The improvements in coverage and granularity inNas translate to good speedup results.

Six of the eight programs yield speedups. In both experiments,buk yields no speedup due

to low coverage, which is not surprising as it implements a bucket sort algorithm. With the

small dataset,applu is too fine-grained to yield any speedup. Overall, the advanced array

analyses are important forNas; more than half of the benchmark suite would not speed up

without these techniques.

7.4.3.4.Perfect benchmarks

As displayed in Figure 7-11(B)-(D), the array privatization analysis significantly improves

the parallelism coverage ofspec77and trfd while some improvements occur inflo52,

mdg andocean. Granularity is increased forspec77 andtrfd, and speedup is achieved in

the case oftrfd. Although little parallel speedup is observed onspec77, the improvement

over the baseline system confirms the validity of our preference for outer loop parallelism.

As a whole, SUIF doubles the number of programs that achieve a speedup from 2 to 4. The

loops requiring array privatization inadm, bdna anddyfesm had no impact on parallel

execution.

The overall parallelization ofPerfect was not as successful as for the other two benchmark

suites. As Figure 7-11 indicates, there are two basic problems. Half of the programs have

coverage below 80%. Furthermore, the parallelism found is rather fine-grained, with most

of the parallelizable loops taking less than 100µs on a uniprocessor. In fact, had the run-

time system not suppressed the parallelization of fine-grained loops inPerfect, the results

would have been much worse. Thus, not only is the coverage low, the system can only

exploit a fraction of the parallelism extracted.

We now examine the difficulties in parallelizingPerfect to determine the feasibility of

automatic parallelization and to identify possible future research directions. We found that

some of these programs are simply not parallelizable as implemented. Some of these pro-

grams contain a lot of input and output (e.g.mg3d andspec77); their speedup depends

on the success of parallelizing I/O. Further, “dusty deck” features of these programs, such

as the use ofequivalence constructs inocean, obscure information from analysis. In con-

131

trast, most of theSPEC95fp, SPEC92fp andNas programs are cleanly implemented, and

are thus more amenable to automatic parallelization.

Many of these programs, particularlyocean, adm, andmdg, have key computational

loops that are safe to parallelize, but they are beyond the scope of the techniques imple-

mented in SUIF.ocean andadm contain non-linear array subscripts involving multiplica-

tive induction variables that are beyond the scope of the higher-order induction variable

recognition algorithm in the SUIF compiler. There will always be extensions to an auto-

matic parallelization system that can improve its effectiveness for some programs. None-

theless, there is a fundamental limitation to static parallelization. Some programs cannot be

parallelized with only compile-time information. For example, the main loop inadm is

parallelizable only if the problem size, which is unknown at compile time, is even. A prom-

ising solution is to have the program check if the loop is parallelizable at run time, using

dynamic information. Interprocedural analysis and optimization can play an important part

in such an approach by improving the efficiency of the run-time tests. Analysis can derive

highly optimized run-time tests and hoist them to less frequently executed portions of the

program, possibly even across procedure boundaries. The interprocedural analysis in our

system provides an excellent starting point for work in this area.

The advanced analysis can also form the basis for a useful interactive parallelization sys-

tem. Even when the analyses are not strong enough to determine that a loop is paralleliz-

able, the results can be used to isolate the problematic areas and focus the users’ attention

on them. For example, our compiler finds in the programqcd a 617-line interprocedural

loop that would be parallelizable if not for a small procedure. Examination of that proce-

dure reveals that it is a random number generator, which a user can potentially modify to

run in parallel. By requesting very little help from the user, the compiler can parallelize the

loop and perform all the tedious privatization and reduction transformations automatically.

7.5. Related Work

Previous evaluations of interprocedural parallelization systems have provided static mea-

surements of the number of additional loops parallelized as a result of interprocedural anal-

ysis [81,84,108,138]. We have compared our results with a recent empirical study, which

132

examines theSpec89 andPerfect benchmark suites [84]. When considering only those

loops containing calls for the set of 16 programs used in that study, the SUIF system is able

to parallelize more than five times as many loops [76]. The key difference between the two

systems is that SUIF contains full interprocedural array analysis, including array privatiza-

tion and reduction recognition.

The Polaris compiler system is also a fully implemented parallelizer using advanced anal-

yses [24,142]. However, Polaris performs no interprocedural analysis, instead relying on

full inlining of the programs to obtain interprocedural information. It is difficult to make

direct comparison between the two systems. For example, optimizations such as unused

procedure elimination, which eliminates some loops, and selective procedure inlining,

which creates copies of some loops, make the parallel loop counts different. The latest

results from the Polaris compiler can be found in [22].

7.6. Chapter Summary

We have a fully implemented interprocedural parallelizer with advanced array analyses

and we have evaluated its effectiveness by parallelizing more than 115,000 lines of FOR-

TRAN code from 39 programs in four benchmark suites. Out of 5,262 loops found in these

programs we were able to parallelize more than 55%, of which 255 required advanced

analyses. However, since static loop counts alone do not provide a good measurement of

coarse grain parallelism, we measured the dynamic behavior of these programs.

Figure 7-12 summarizes the impact of the improvements from the advanced array analyses

on coverage, granularity and speedup in the three benchmark suites. The first row contains

the number of programs reported from each benchmark suite. The second row shows how

many programs have their coverage increased to above 80% after adding the advanced

array analyses. The third row gives the number of programs that have increased granularity

(but similar coverage) as a result of the advanced array analyses. The fourth row shows

how these significant improvements affect overall performance. Overall, 75% of the pro-

grams obtained parallel coverage over 80% and half the programs were able to achieve

higher than 50% of the ideal speedup.

133

SPEC95fp SPEC92fp Nas Perfect

Total number of programs 9 10 8 12

Programs with improved coverage (> 80%) 1 3 3 1

Programs with increased granularity 1 0 2 2

Programs with improved speedup
(> 50% of the perfect speedup)

2 1 5 2

Figure 7-12. Summary of the experimental results

134

135

8 Improving Memory Performance with
Data Transformations

It is ideal to provide the programmer with uniform access to an unlimited amount of the

fastest memory available. However, it is neither technologically feasible nor economically

viable to build such machines, computer designers thus attempt to create the illusion of

having uniform and fast access to memory by exploitinglocality of reference commonly

found in programs. Modern computers are designed with a hierarchical memory subsystem

to take advantage of the locality of reference in programs, and deliver fast access times to

a large amount of data stored in the memory system. Small amounts of fast memory or a

cache are located closer to the processor to shield the programs from the high latency of the

larger memory in the lower levels of the hierarchy. While these caches can provide a tre-

mendous performance boost for the programs with locality, they are very sensitive to the

memory access patterns of the programs. Many simple and common access patterns found

in practice can trigger unexpected problems in the performance of the caches. Two such

problems that occur in multiprocessor caches arefalse sharing misses andcache conflict

misses. Large cache lines cause false sharing in multiprocessors. When different processors

modify different data that happen to be co-located on the same cache line, the cache line

bounces back and forth between the two caches. Cache conflict misses occur when access-

ing an array with a stride such that some accesses will be mapped to the same cache loca-

tion. Although the cache may be empty, the data has to be fetched from memory every time

the access is repeated.

Recent work on code transformations to improve cache performance has been shown to

improve uniprocessor system performance significantly [33,147]. Making effective use of

the memory hierarchy on multiprocessors is even more important to performance, but also

136

more difficult to achieve. This is true for bus-based shared address space machines

[50,51], and even more so for scalable shared address space machines [26] such as the

Stanford DASH [105] and FLASH multiprocessors [101], MIT ALEWIFE [1], Kendall

Square’s KSR-1 [94], the Convex Exemplar [115], and the Silicon Graphics Origin. The

memory on remote processors in these architectures constitutes yet another level in the

memory hierarchy. The differences in access times among cache, local, and remote

memory can be very large. For example, on the DASH multiprocessor, the ratio of access

times between the first-level cache, second-level cache, local memory, and remote

memory is roughly 1:10:30:100. Therefore, it is important to minimize the number of

accesses to all the slower levels of the memory hierarchy.

This chapter is organized as follows. In Section 8.1, we define the problem of false sharing

misses and conflict misses that occur in multiprocessor caches. We propose a compiler

algorithm to eliminate them in Section 8.2, by performing data transformations that will

make all array elements assigned to each processor contiguous in memory. The array

access functions created by the data transformations are inefficient. Therefore, in

Section 8.3, we propose a set of optimizations to simplify access functions. We have

implemented this algorithm and Section 8.4 evaluates its impact. We compare our

approach to related works in Section 8.5. Finally, we summarize in Section 8.6.

8.1. Problem Statement

In this chapter, we focus on false sharing misses and conflict misses. We introduce a com-

piler algorithm to eliminate these two classes of problems by transforming data arrays in

the programs [7,12].

8.1.1. False Sharing Misses

In a modern computer, data is transferred in fixed-size units known as cache lines, which

are typically 4 to 128 bytes long [82]. A computation is said to havespatial localityif it

uses multiple words in a cache line before the line is displaced from the cache. While spa-

tial locality is common to both uni- and multiprocessors, false sharing is unique to multi-

processors. False sharing occurs when different processors use different data that happen

137

to be co-located on the same cache line. Even if a processor re-uses a data item, the item

may no longer be in the cache due to an intervening access by another processor to a dif-

ferent word in the same cache line.

Assuming the FORTRAN convention that arrays are allocated in column-major order, our

example contains is a significant amount of false sharing, as shown in Figure 8-1. If the

number of rows accessed by each processor is smaller than the number of words in a cache

line, every cache line is shared by at least two processors. Each time one of these lines is

accessed, unwanted data is brought into the cache. Furthermore, when one processor writes

part of the cache line, that line is invalidated in the other processor’s cache. This particular

combination of computation mapping and data layout will result in extremely poor cache

performance.

Figure 8-1. False Sharing

Processor 1
Cache

Processor 2
Cache

Data assigned to
the first processor

Data assigned to
the second processor

A cache line

The direction of
the contiguous
elements in
memory

138

8.1.2. Cache Conflict Misses

Another problematic characteristic of data caches is that they typically have a small set-

associativity; that is, each memory location can be cached only in a small number of cache

locations. Conflict misses occur whenever different memory locations contend for the

same cache location. Since each processor only operates on a subset of the data, the

addresses accessed by each processor may be distributed throughout the shared address

space.

Consider what happens to the example in Figure 8-2. If the arrays are of size

and the target machine has a direct-mapped cache of size 64KB. Assuming that REALs are

1024 1024×

Figure 8-2. Cache Conflicts

Processor 1
Cache

memory to cache mapping

Data assigned to
the first processor A cache line

The direction of
the contiguous
elements in
memory

139

4B long, the elements in every 16-th column will map to the same cache location and cause

conflict misses. This problem exists even if the caches are set associative.

8.2. Data Transformations

As shown in the previous section, the cache performance on a multiprocessor depends on

the pattern of the data layout in memory. Instead of simply obeying the data layout conven-

tion used by the input language (e.g. column-major in FORTRAN and row-major in C), we

can improve the cache performance by customizing the data layout for a specific program.

We observe that multiprocessor cache performance problems can be minimized by making

the data accessed by each processor contiguous in the shared address space, an example of

which is shown in Figure 8-3. Such a layout enhances spatial locality, minimizes false shar-

ing and also minimizes conflict misses.

Figure 8-3. Making data accessed by each processor contiguous in memory

Data assigned to
the first processor

The direction of
the contiguous
elements in
memory

cache
lines

140

The importance of optimizing memory subsystem performance for multiprocessors has

also been confirmed by several studies of hand optimizations on real applications. Singh

et al. explored performance issues on scalable shared address space architectures; they

improved cache behavior by transforming two-dimensional arrays into four-dimensional

arrays so that each processor’s local data are contiguous in memory [132]. Torrellas et al.

[135] and Eggers et al. [50,51] also showed that improving spatial locality and reducing

false sharing resulted in significant speedups for a set of programs on shared-memory

machines.

8.2.1. Data Transformation Model

To facilitate the design of our data layout algorithm, we have developed a data transforma-

tion model that is analogous to the well-known loop transformation theory [20,148]. We

represent ann-dimensional array as ann-dimensional polytope whose boundaries are given

by the array bounds, and the interior integer points represent all the elements in the array.

As with sequential loops, the ordering of the axes is significant. In the rest of this chapter,

we assume the FORTRAN convention of column-major ordering by default. For clarity the

array dimensions are 0-based, which means that for ann-dimensional array with array

bounds , the linearized address for array element is

Next, we introduce two primitives,strip-mining andpermutation, that are used in combi-

nation to perform the data transformations.

8.2.1.1. Strip-mining primitive

Strip-mining an array dimension re-organizes the original data in that dimension as a two-

dimensional structure. For example, strip-mining a one-dimensional,d-element array with

strip sizeb turns the array into a array. Figure 8-4(a) shows the data in the original

array, and Figure 8-4(b) shows the new indices in the strip-mined array. The first column

of this strip-mined array is highlighted in the figure. The number in the upper right corner

of each square shows the linear address of the data item in the new array. Thei-th element

in the original array now has coordinates in the strip-mined array. Given

d1 d2 … dn××× i1 … in, ,()

… in dn 1–× in 1–+() dn 2–× in 2–+() … i3+×() d2× i2+() d1× i1+ ⋅

b d
b
---×

i mod b i
b
---, 

 

141

that block sizes are positive, with the assumption that arrays are 0-based, we can replace

the floor operators in array access functions with integer division assuming truncation. The

address of the element in the linear memory space is . Strip-mining,

on its own, does not change the layout of the data in memory. It must be combined with

permutation transformations to have an effect.

8.2.1.2. Permutation primitive

A permutation transformT maps ann-dimensional array space to anothern-dimensional

space; that is, if is the original array index vector, the transformed array indices is

. The array bounds must also be transformed similarly.

Figure 8-4. The indices of array accesses at each stage of transformation.
The number in the upper right corner shows the linearized address
of the data.

(a) Original array

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

0
0

1
1

2
2

3
3

(b) Strip-mined array

4
0, 1

5
1, 1

6
2, 1

7
3, 1

8
0, 2

9
1, 2

10
2, 2

11
3, 2

0
0, 0

1
1, 0

2
2, 0

3
3, 0

(c) The final array after permutation

4
1, 1

7
1, 2

10
1, 3

5
2, 1

8
2, 2

11
2, 3

3
0, 1

6
0, 2

9
0, 3

1
1, 0

2
2, 0

0
0, 0

i
b
--- b× i mod b+ i=

i j

j T i=

142

For example, an array transpose maps to . Using matrix notation this

becomes

The result of transposing the array in Figure 8-4(b) is shown in Figure 8-4(c). Figure 8-4(c)

shows the data in the original layout. Each item is labeled with its new indices in the trans-

posed array in the center. The new linearized address is in the upper right corner. As high-

lighted in the diagram, this example shows how a combination of strip-mining and

permutation can make every fourth data element in a linear array contiguous to each other.

In a cyclically distributed array, this could be used to make each processor’s share of data

contiguous.

In theory, we can generalize permutations to other unimodular transforms. For example,

rotating a two-dimensional array by 45 degrees makes data along a diagonal contiguous,

which may be useful if a loop accesses the diagonal in consecutive iterations. There are

two plausible ways of laying the data out in memory. The first is to embed the resulting

parallelogram in the smallest enclosing rectilinear space, and the second is to simply place

the diagonals consecutively, one after the other. However, the former consumes an exces-

sive amount of storage, and the latter generates complex address calculations. Further-

more, we do not expect unimodular transforms other than permutations to be important in

practice. Thus, we have not implemented general unimodular data transformations.

8.2.2. Legality

Unlike loop transformations, which must satisfy data dependences, any combinations of

strip-mining and permutation is a valid data transformation. On the other hand, loop trans-

forms have the advantage that they affect only one specific loop nest; performing an array

data transform requires that all accesses to the array in the entire program use the new lay-

out. Current programming languages such as C and FORTRAN have features that can

make these transformations difficult. The compiler cannot restructure an array unless it can

guarantee that all possible accesses of the same data can be updated accordingly. For exam-

i1 i2,() i2 i1,()

0 1

1 0

i1
i2

i2
i1

=

143

ple, in FORTRAN, the storage for a common block array in one procedure can be re-used

to form a completely different set of data structures in another procedure. In C, pointer

arithmetic and type casting can prevent data transformations.

8.2.3. Algorithm Overview

The data transformation algorithm uses data decompositions that are either provided by the

programmer using a language such as HPF (High Performance FORTRAN) [83] or auto-

matically generated by a compiler algorithm [2,13,16,21,68,107,129]. Figure 8-5 is an

example of a data decomposition specification using the HPF language. In the example, the

arrayA is mapped to a two-dimensional processor grid by two-dimensional blocks using

the templateT. The HPF decomposition format allows the distribution of each dimension

of an array to be independently specified. Each dimension of an array can be either allo-

cated to the same processor (denoted by *), or distributed in a block, cyclic,or block-cyclic

manner. Our algorithm supports data decompositions provided in the HPF decomposition

format.

Given the HPF data decompositions, many equivalent memory layouts make each proces-

sor’s data contiguous in the shared address space. Our current implementation simply

retains the original data layout as much as possible. That is, all the data accessed by the

Figure 8-5. Example array declaration in HPF

DIMENSION A(N, N)

!HPF$ PROCESSORS P(2, 2)

!HPF$ TEMPLATE T(N, N)

!HPF$ DISTRIBUTE T(BLOCK, BLOCK) ONTO P

!HPF$ ALIGN A(I, J) WITH T(I, J)

....

144

same processor maintain the original relative ordering. We expect this compilation phase

to be followed by another algorithm that analyzes the computation executed by each pro-

cessor and improves the cache performance by reordering data and operations on each pro-

cessor [33,61,147].

Next, we present three examples of data transformations applied to a two-dimensional

array with , and decompositions.

These examples illustrate how we apply the permutation and strip-mining primitives to

transform the data such that array elements assigned to each processor are contiguous in

memory.

8.2.3.1. Example of a two-dimensional block distribution

This example illustrates the transformation process of a distributed

two-dimensional array. The steps of the transformation process are given in Figure 8-6.

Figure 8-6(a) is a graphical representation of the memory layout of the array where the ele-

ments assigned to the first processor are highlighted. The access functions and the dimen-

sion sizes are given by Figures 8-6(b) and 8-6(c) respectively. We assume that the

dimensions of the array are , and are the number of processors in the pro-

cessor grid. In the first step of the transformation, the inner dimension is strip-mined with

a strip size of . The identifier of the processor owning the data is specified by the

second of the strip-mined dimensions. Then, the three dimensions are permuted such that

the processor dimension is made outermost.

We further demonstrate this transformation by using a array, given in Figure 8-

7(a), where the elements are distributed to six processors on a grid. The offset in the

memory is given in the upper right corner of each element and the elements assigned to the

fist processor are highlighted. In the transformed array, in Figure 8-7(b), the elements of

the first processor are now assigned to contiguous locations in memory.

8.2.3.2. Example of a cyclic distribution

The next example is the transformation of a two-dimensional array distributed in a

 manner. The steps of the transformation process are given in Figure 8-6.

BLOCK BLOCK,() CYCLIC *,() CYCLIC b() *,()

BLOCK BLOCK,()

d1 d2× P1 P2×

d1

P1

12 4×

3 2×

CYCLIC *,()

145

The inner dimension is first strip-mined with a strip size of , where is the number of

processors. The identifier of the processor owning the data is specified by the first of the

strip-mined dimensions. Next, the three dimensions are permuted such that the processor

dimension is made outermost.

Figure 8-6. Transformation process of an array with (BLOCK, BLOCK) distribution

1

2

3

1

2

3

i 1

i 2

(a
)

M
em

or
y

La
yo

ut
(b

)
A

cc
es

s
F

un
ct

io
ns

(c
)

A
rr

ay
 B

ou
nd

s

i1

i2

i1 mod
d1

P1

i1
d1

P1
------⁄

i2

i1 mod
d1

P1

i2

i1
d1

P1
------⁄

d1

d2 
 
 
 
  d1

P1

P1

d2 
 
 
 
 
 
  d1

P1

d2

P1 
 
 
 
 
 
 

P P

146

We expand on the example in Figure 8-9(a), where a array is distributed on three

processors. The transformed array, in Figure 8-9(b), has elements of the first processor

assigned to contiguous locations in memory.

8.2.3.3. Example of a block-cyclic distribution

We illustrate a more complex transformation where a two-dimensional array with a

 decomposition is made contiguous in memory. The transformation can

be represented as two strip-mining operations and a permutation, as shown in Figure 8-10.

In Figure 8-10(a), the four-dimensional data arrays in the last two steps are shown as a flat

Figure 8-7. A (BLOCK, BLOCK) distributed array before and after transformations

10
10, 0

9
9, 0

8
8, 0

7
7, 0

6
6, 0

5
5, 0

4
4, 0

11
11, 0

22
10, 1

21
9, 1

20
8, 1

19
7, 1

18
6, 1

17
5, 1

16
4, 1

23
11, 1

34
10, 2

33
9, 2

32
8, 2

31
7, 2

30
6, 2

29
5, 2

28
4, 2

27
3, 2

26
2, 2

25
1, 2

24
0, 2

35
11, 2

46
10, 3

45
9, 3

44
8, 3

43
7, 3

42
6, 3

41
5, 3

40
4, 3

39
3, 3

38
2, 3

37
1, 3

36
0, 3

47
11, 3

(a) before transformation

34
2 , 0, 2

33
1, 0, 2

32
0, 0, 2

19
3, 0, 1

18
2, 0, 1

17
1, 0, 1

16
0, 0, 1

35
3, 0, 2

38
2 , 1, 2

37
1, 1, 2

36
0, 1, 2

23
3, 1, 1

22
2, 1, 1

21
1, 1, 1

20
0, 1, 1

39
3, 1, 2

42
2, 2, 2

41
1, 2, 2

40
0, 2, 2

27
3, 2, 1

26
2, 2, 1

25
1, 2, 1

24
0, 2, 1

11
3, 2, 0

10
2, 2, 0

9
1, 2, 0

8
0, 2, 0

43
3, 2, 2

46
2, 3, 2

45
1, 3, 2

44
0, 3, 2

31
3, 3, 1

30
2, 3, 1

29
1, 3, 1

28
0, 3, 1

15
3, 3, 0

14
2, 3, 0

13
1, 3, 0

12
0, 3, 0

47
3, 3, 2

(b) after transformation

3
3, 0

2
2, 0

1
1, 0

0
0, 0

15
3, 1

14
2, 1

13
1, 1

12
0, 1

3
3, 0, 0

2
2, 0, 0

1
1, 0, 0

0
0, 0, 0

7
3, 1, 0

6
2, 1, 0

5
1, 1, 0

4
0, 1, 0

12 4×

CYCLIC b() *,()

147

structure where the inner two dimensions are represented by a tile and the outer two dimen-

sions are the placement of these tiles. The inner dimension is first strip-mined with strips

of size of . Then, the second of the strip-mined dimensions is strip-mined again with a

strip size of , where is the number of processors. The identifier of the processor owning

the data is specified by the first strip-mined dimension of the latter strip-mining step. Thus,

the four dimensions are permuted such that this processor dimension is made outermost.

Figure 8-8. Transformation process of an array with (CYCLIC, *) distribution

i 1

i 2

1

2

3

1

2(a
)

M
em

or
y

La
yo

ut
(b

)
A

cc
es

s
F

un
ct

io
ns

(c
)

A
rr

ay
 B

ou
nd

s

3

i1

i2

i1 mod P

i1 P⁄

i2

i1 P⁄

i2
i1 mod P

d1

d2 
 
 
 
  P

d1

P

d2 
 
 
 
 
 
  d1

P

d2

P 
 
 
 
 
 
 

b

P P

148

The array, given in Figure 8-11(a), is distributed on three processors using the

 decomposition. After the transformation, as shown in Figure 8-11(b),

the elements of the first processor are contiguous in memory.

8.2.4. Data Transformation Algorithm

We have developed a data transformation algorithm that will change the data layout in

memory such that array elements assigned to each processor are made contiguous in mem-

ory. The algorithm uses the HPF decomposition information of the array to create the new

array dimensions and array access functions. Figure 8-12 gives the algorithm for trans-

Figure 8-9. A (CYCLIC, *) distributed array before and after transformations

10
10, 0

8
8, 0

7
7, 0

5
5, 0

4
4, 0

2
2, 0

1
1, 0

11
11, 0

22
10, 1

20
8, 1

19
7, 1

17
5, 1

16
4, 1

14
2, 1

13
1, 1

23
11, 1

34
10, 2

32
8, 2

31
7, 2

29
5, 2

28
4, 2

26
2, 2

25
1, 2

35
11, 2

46
10, 3

44
8, 3

43
7, 3

41
5, 3

40
4, 3

38
2, 3

37
1, 3

47
11, 3

(a) before transformation

19
3, 0, 1

34
2, 0, 2

18
2, 0, 1

33
1, 0, 2

17
1, 0, 1

32
0, 0, 2

16
0, 0, 1

35
3, 0, 2

23
3, 1, 1

38
2, 1, 2

22
2, 1, 1

37
1, 1, 2

21
1, 1, 1

36
0, 1, 2

20
0, 1, 1

39
3, 1, 2

27
3, 2, 1

42
2, 2, 2

26
2, 2, 1

41
1, 2, 2

25
1, 2, 1

40
0, 2, 2

24
0, 2, 1

43
3, 2, 2

31
3, 3, 1

46
2, 3, 2

30
2, 3, 1

45
1, 3, 2

29
1, 3, 1

44
0, 3, 2

28
0, 3, 1

47
3, 3, 2

(b) after transformation

3
3, 0, 0

2
2, 0, 0

1
1, 0, 0

0
0, 0, 0

7
3, 1, 0

6
2, 1, 0

5
1, 1, 0

4
0, 1, 0

11
3, 2, 0

10
2, 2, 0

9
1, 2, 0

8
0, 2, 0

15
3, 3, 0

14
2, 3, 0

13
1, 3, 0

12
0, 3, 0

9
9, 0

6
6, 0

3
3, 0

0
0, 0

21
9, 1

18
6, 1

15
3, 1

12
0, 1

33
9, 2

30
6, 2

27
3, 2

24
0, 2

45
9, 3

42
6, 3

39
3, 3

36
0, 3

12 4×

CYCLIC 2() *,()

149

forming array dimensions. In this presentation, the innermost dimension of the array is

given by index 1, while higher indices indicate outer dimensions. Furthermore, indicates

the number of processor dimensions inserted into the array, and is the number of pro-

cessors in the -th processor dimension. The new array dimensions are calculated by

Figure 8-10. Transformation process of an array with a (CYCLIC(b), *) distribution

i 1

i 2

1

2

3

1
2

3

4

(a
)

M
em

or
y

La
yo

ut
(b

)
A

cc
es

s
F

un
ct

io
ns

(c
)

A
rr

ay
 B

ou
nd

s

i1

i2

i1 mod b

i1 b⁄

i2

i1 mod b

i1 b⁄() mod P

i1 Pb()⁄

i2

i1 mod b

i1 Pb()⁄

i2
i1 b⁄() mod P

d1

d2 
 
 
 
  b

d1

b

d2 
 
 
 
 
 
  b

P

d1

Pb

d2 
 
 
 
 
 
 
  b

d1

Pb

d2

P 
 
 
 
 
 
 
 

p

Pp

p

150

applying transformations on each dimension with a block, cyclic, or block-cyclic decom-

position. Each block or cyclic dimension is sub-divided into two dimensions, and the pro-

cessor dimension is moved outermost. Each dimension with a block-cyclic decomposition

is subdivided into three dimensions. Again, the processor dimension is moved outermost.

The transformation applied to each of the dimensions corresponds to a combination of

strip-mining and permutation transformations, as described in the algorithm overview sec-

tion. The algorithm to transform accesses to the distributed array, given in Figure 8-13, is

similar to the previous algorithm. The new array access function is calculated by applying

Figure 8-11. A (CYCLIC(2), *) distributed array before and after transformations

10
10, 0

9
9, 0

8
8, 0

5
5, 0

4
4, 0

3
3, 0

2
2, 0

11
11, 0

22
10, 1

21
9, 1

20
8, 1

17
5, 1

16
4, 1

15
3, 1

14
2, 1

23
11, 1

34
10, 2

33
9, 2

32
8, 2

29
5, 2

28
4, 2

27
3, 2

26
2, 2

35
11, 2

46
10, 3

45
9, 3

44
8, 3

41
5, 3

40
4, 3

39
3, 3

38
2, 3

47
11, 3

(a) before transformation

34
0,1,0,2

19
1,1,0,1

18
0,1,0,1

33
1,0,0,2

32
0,0,0,2

17
1,0,0,1

16
0,0,0,1

35
1,1,0,2

38
0,1,1,2

23
1,1,1,1

22
0,1,1,1

37
1,0,1,2

36
0,0,1,2

21
1,0,1,1

20
0,0,1,1

39
1,1,1,2

42
0,1,2,2

27
1,1,2,1

26
0,1,2,1

41
1,0,2,2

40
0,0,2,2

25
1,0,2,1

24
0,0,2,1

43
1,1,2,2

46
0,1,3,2

31
1,1,3,1

30
0,1,3,1

45
1,0,3,2

44
0,0,3,2

29
1,0,3,1

28
0,0,3,1

47
1,1,3,2

(b) after transformation

7
7, 0

6
6, 0

1
1, 0

0
0, 0

19
7, 1

18
6, 1

13
1, 1

12
0, 1

31
7, 2

30
6, 2

25
1, 2

24
0, 2

43
7, 3

42
6, 3

37
1, 3

36
0, 3

3
1,1,0,0

2
0,1,0,0

1
1,0,0,0

0
0,0,0,0

7
1,1,1,0

6
0,1,1,0

5
1,0,1,0

4
0,0,1,0

11
1,1,2,0

10
0,1,2,0

9
1,0,2,0

8
0,0,2,0

15
1,1,3,0

14
0,1,3,0

13
1,0,3,0

12
0,0,3,0

151

a combination of strip-mining and permutation transformations to each dimension with a

block, cyclic, or block-cyclic decomposition.

We have made one minor local optimization to our algorithm. If the highest dimension of

the array is distributed as BLOCK, no permutation is necessary since the processor dimen-

sion is already in the outermost position; thus no strip-mining is necessary either since, as

discussed above, strip-mining on its own does not change the data layout.

Figure 8-12. Algorithm for calculating new array dimensions

where , is the block size, and

 are array dimension sizes.

for down to do

Let where

are updated dimension sizes

if (and)

or then

if then

return

NewDimsize x1 … xn, ,() d1 … dn, ,(),() d′1 …,()→
xk * BLOCK CYCLIC CYCLIC b(), , ,{ }∈

1 k n≤ ≤
∀ b

d1 … dn, ,()

D d1 … dn, ,()=

p 1=

k n= 1

D … dk 1– dk d′k 1+ … d′m, , , , ,()= d′k 1+ … d′m, ,

xk BLOCK= k n<

xk CYCLIC=

D … dk 1–
dk

Pp
------ d′k 1+ … d′m Pp, , , , , ,

 
 
 

=

p p 1+=

xk CYCLIC b()=

D … dk 1– b
d1

Ppb
--------- d′k 1+ … d′m Pp, , , , , , ,

 
 
 

=

p p 1+=

D

152

Figure 8-13. Algorithm for calculating new array indices

where , is the block size

 are array index functions and are array dimension sizes.

for down to do

Let where are

updated array index functions

if and then

if then

if then

return

NewIndex x1 … xn, ,() i1 … in, ,() d1 … dn, ,(), ,() i ′1 …,()→
xk * BLOCK CYCLIC CYCLIC b(), , ,{ }∈

1 k n≤ ≤
∀ b

i1 … in, ,() d1 … dn, ,()

I i 1 … in, ,()=

p 1=

k n= 1

I … i k 1– i k i ′k 1+ … i ′m, , , , ,()= i ′k 1+ … i ′m, ,

xk BLOCK= k n<

I … i k 1– i, ,
k

mod
dk

Pp
------ i ′k 1+ … i ′m

ik
dk

Pp

------------, , , ,

 
 
 
 
 

=

p p 1+=

xk CYCLIC=

I … i, k 1–

i k
Pp
------ i ′k 1+ … i ′m ik mod Pp, , , , ,

 
 
 

=

p p 1+=

xk CYCLIC b()=

I … i k 1– i, ,
k

mod b
ik

Ppb
--------- i ′k 1+ … i ′m

ik
b
--- 

 
mod Pp, , , , ,

 
 
 

=

p p 1+=

I

153

Our current implementation is restricted to handling only the decompositions that map a

single array dimension to one processor dimension. Handling general affine decomposi-

tions is a straightforward extension to our algorithm. However, they rarely occur in prac-

tice, and the corresponding data transformations would result in complex array access

functions.

8.2.5. Code Generation

We illustrate code generation after data transformations using the example program seg-

ment in Figure 8-14. The data transformation of the arrayA is the same as the example in

Section 8.2.3.2. After applying the transformations, the code segment is given in Figure 8-

15.

The exact dimensions of a transformed array often depend on the number of processors,

which may not be known at compile time. For example, if is the number of processors

and is the size of the dimension, the strip sizes used in CYCLIC and BLOCK distribu-

Figure 8-14. Example program segment

DIMENSION A(N, N)

!HPF$ PROCESSORS P(nproc)

!HPF$ TEMPLATE T(N, N)

!HPF$ DISTRIBUTE T(CYCLIC, *) ONTO P

!HPF$ ALIGN A(I, J) WITH T(I, J)

DO J = 2, 99

DO I = lb, ub

A(I, J) = ...

ENDDO

ENDDO

P

d

154

tions are and , respectively. As discussed above, strip-mining a -element array

dimension with strip size produces a subarray of size . This total size can be

greater than , but is always less than . We can still allocate the array statically

provided that we can bound the value of the block size. If is the largest possible block

size, we simply need to add elements to the original dimension.

8.3. Modulo and Division Optimization

Producing the correct array index functions for transformed arrays is straightforward.

However, the modified index functions now contain modulo and division operations; if

these operations are performed on every array access, the overhead will be much greater

than any performance gained by improved cache behavior. In this section, we introduce a

set of optimizations that eliminates most of the modulo and division instructions that are

introduced by the data transformation algorithm. In performing these optimizations, we

exploit fundamental properties of these operations, as well as the specialized knowledge

the compiler has about these address calculations. We also use simple extensions to stan-

dard compiler techniques such as loop invariant removal and induction variable recogni-

tion to move some of the division and modulo operators out of inner loops [3]. The

optimizations, described below, have proved to be important and effective in practice.

Figure 8-15. Program segment after data transformation

DIMENSION A(0:(N+nproc-1)/nproc, N, 0:nproc)

DO J = 2, 99

DO I = lb, ub

A((I-1)/nproc+1, J, mod(I-1,nproc)+1) = ...

ENDDO

ENDDO

P d
P
--- d

b b d
b
---×

d d b 1–+

bmax

bmax 1–

155

8.3.1. Modulo and division simplification

We exploit fundamental properties of modulo and division operations [63] to simplify

expressions with these operations. Figure 8-16 is the list of simplifications performed on

expressions with modulo and division operations by the compiler. In the list, are

expressions and are integers. The modulo operation is denoted by %.

f f1 f2 g, , ,

c c1 c2 d, , ,

Figure 8-16. List of algebraic simplifications performed by the compiler on expression
with modulo and division operations

.

If and

If and

f1g f2+() g% ⇒ f2 g%

f1g f2+() g⁄ ⇒ f1 f2+ g⁄

c1f1 c2f2+() d% ⇒ c1 d%() f1 c2 d%() f2+() d%

c1f1 c2f2+() d⁄ ⇒ c1 d%() f1 c2 d%() f2+() d⁄ c1 d⁄() f1 c2 d⁄() f2+ +

cf1g f2+() dg% ⇒ c d%() f1g f2+() dg%

cf1g f2+() dg()⁄ ⇒ c d%() f1g f2+() dg()⁄ c d⁄() f1+

0 f g<≤ g 0>

f g% ⇒ f

f g⁄ ⇒ 0

g– f 0<≤ g 0>

f g% ⇒ g f+

f g⁄ ⇒ 1–

156

8.3.2. Optimizing when data within the strip is accessed

When eliminating modulo and division instructions, we take advantage of the fact that a

processor often addresses only elements within a single strip-mined partition of the array.

An example of such an SPMD loop is given in Figure 8-17(a). Figure 8-17(b) shows the

access functions of the array and highlights the elements accessed in executing the loop by

the processorx. By formulating a problem within the framework of linear inequalities, the

Figure 8-17. Optimize when the loop is accessing only a single strip of the array

idiv = myid

imod = 0

DO I = b*myid+1, min(b*myid+b,100)

A(imod, J, idiv) = ...

imod = imod + 1

ENDDO

 (b) Elements accessed by executing the loop in the processorx

b-1
J

x-1

0
J

x+1

0
J
x

1
J
x

b-1
J
x

(a) Original loop

DO I = b*myid+1, min(b*myid+b,100)

A(mod(I-1,b), J, (I-1)/b) = ...

ENDDO

(c) Loop after optimization

157

compiler can determine that in the range of to the

expression is constant, and is a linear expression. Thus, we can

eliminate the modulo and division operations and generate the more efficient code given in

Figure 8-17(c).

8.3.3. Optimizing when data in single strip is accessed after cyclic distribution

We can also simplify the access functions when a processor accesses array elements in a

single strip using a loop with a non-unit step size. An example SPMD loop is given in

Figure 8-18(a) and the elements accessed by a processor are illustrated in Figure 8-18(b).

Within the iterations of the loop nest executed by each processor, the function

 is constant and is incremented by one. Thus, we are able to elim-

inate the modulo and division operations and generate code given in Figure 8-18(c).

8.3.4. Optimizing when data in a strip and its neighbors are accessed

It is more difficult to eliminate modulo and division operations when the data accessed in

a loop crosses the boundaries of strip-mined partitions. We optimize the cases where only

the first or last few iterations cross such a boundary, as in the example loop in Figure 8-

19(a). Figure 8-19(b) shows the array elements in two neighboring strips accessed in a

single processor by the read access. Within most of the iterations of the loop nest, the func-

tion is constant, and the function is continuous. We simply peel

off those iterations and apply the optimization given in Section 8.3.2. The program segment

after the optimizations appears in Figure 8-19(c).

8.3.5. Optimizing when access is by a sequential loop

An array is distributed across processors mainly due accesses from parallel loops. In the

previous optimizations, we eliminate the modulo and division instructions in the accesses

of parallel loops. However, there can be other sequential loop nests that access the same

transposed data arrays. The modulo and division operations in such access functions can

adversely affect the execution of these loop nests. One such example loop is given in

Figure 8-20(a), where the access pattern is shown in Figure 8-20(b). For these loops, we

b myid 1+× min b myid b+× 100,()

i 1–() b⁄ mod i 1– b,()

mod i 1– b,() i 1–() b⁄

i 1–() b⁄ mod i 1– b,()

158

enable other optimizations by strip-mining the loop. Figure 8-20(c) illustrates the results

of the strip-mining and the subsequent optimizations of the example.

Figure 8-18. Optimize when a loop with a step size access a single strip of the array

idiv = (lb-1)/P

imod = mod(lb-1,P)

DO I = lb to ub step P

A(idiv, J, imod) = ...

idiv = idiv + 1

ENDDO

 (b) Elements accessed by executing the loop in the processorx

(a) Original loop

(c) Loop after optimization

b-1
J

x-1

0
J

x+1

0
J
x

1
J
x

b-1
J
x

DO I = lb to ub step P

A((I-1)/P, J, mod(I-1,P)) = ...

ENDDO

159

DO I = max(2,b*myid+1), min(b*myid+b,100)

A(mod(I-1,b), J, (I-1)/b) = A(mod(I-2,b), J, (I-2)/b)

ENDDO

Figure 8-19. Optimize when the loop is accessing two neighboring strip of the array.

idiv = myid

imod = 0

IF(max(2,b*myid+1) <= min(b*myid+1,100)) THEN

A(imod, J, idiv) = A(b, J, idiv-1)

ENDDO

imod = imod + 1

DO I = b*myid+2, min(b*myid+b,100)

A(imod, J, idiv) = A(imod-1, J, idiv)

imod = imod + 1

ENDDO

 (b) Elements accessed by executing the loop in the processorx

(a) Original loop

(c) Loop after optimization

b-2
J

x-1

b-1
J
x

b-1
J

x-1

0
J
x

b-2
J
x

0
J

x+1

160

8.3.6. Extended strength reduction optimization

Finally, when all the other optimizations have failed to eliminate modulo and division

instructions from the inner loop, we use a technique akin to strength reduction. This opti-

mization is applicable when the modulo operation is an affine expressions of the loop

index. Any division operations sharing the same operands can also be optimized along with

DO I = 1, 100

A(mod(I-1,b), J, (I-1)/b) = ...

ENDDO

Figure 8-20. Optimize when the loop is accessing multiple strips

DO t = 0, ceiling(100/b)

imod = 0

DO I = b*t+1, min(b*t+b,100)

A(imod, J, t) = ...

imod = imod + 1

ENDDO

ENDDO

 (b) Elements accessed by the execution of the loop

(a) Original loop

(c) Loop after optimization

0
J
1

b-1
J
1

0
J
0

b-1
J
0

0
J

n-1

b-1
J

n-1

0
J

n-2

b-1
J

n-2

161

the modulo operation. In each iteration through the loop, we increment the modulo oper-

and. Only when the result is found to exceed the modulus must we perform the modulo and

the corresponding division operations. Consider the example in Figure 8-21(a). Combining

the optimization described with the additional information in this example that the modulus

is a multiple of the stride, we obtain the more efficient code shown in Figure 8-21(b).

jmodst = mod(c,4)

jmod = mod(4*a+c,64)

jdiv = (4*a+c)/64

DO J = a, b

A(jmod, jdiv) = ..

jmod = jmod + 4

IF(jmod >= 64) THEN

jmod = jmodst

jdiv = jdiv + 1

ENDIF

ENDDO

DO J = a, b

A(mod(4*J+c,64), (4*J+c)/64) = ...

ENDDO

(a) Original loop

Figure 8-21. Optimize using strength reduction

(b) Loop after optimization

162

8.4. Evaluation

We have implemented the data transformation algorithm and modulo and division optimi-

zations on the SUIF compiler infrastructure [6,133,144]. We evaluate the usefulness of our

techniques by applying them to a set of benchmark programs and executing them on a

cache-coherent NUMA architecture.

8.4.1. Experimental Setup

The inputs to the SUIF compiler are either sequential FORTRAN or C programs. The

output is a parallelized C program that contains calls to a portable run-time library. The

parallelized program is compiled on the parallel machine using the native C compiler.

Our target machine is the Stanford DASH multiprocessor. DASH has a cache-coherent

NUMA architecture. The machine we used for our experiments, described in Figure 8-22,

consists of 32 processors, organized into 8 clusters of 4 processors each. Each processor is

a 33MHz MIPS R3000, that has a 64KB first-level cache and a 256KB second-level cache.

Both the first- and second-level caches are direct-mapped and have 16B lines. Each cluster

has 28MB of main memory. A directory-based protocol is used to maintain cache coher-

ence across clusters. It takes a processor 1 cycle to retrieve data from its first-level cache,

about 10 cycles from its second-level cache, 30 cycles from its local memory and 100-130

cycles from a remote memory. The DASH operating system allocates memory to clusters

at the page level. The page size is 4KB and pages are allocated to the first cluster that

touches the page. We compiled the C programs produced by SUIF using gcc version 2.5.8

at optimization level -O3.

To focus on the memory hierarchy issues, our benchmark suite includes only those pro-

grams that exhibit a significant amount of parallelism. Several of these programs were

identified as having memory performance problems in a simulation study [136]. We com-

piled each program under each of the methods described below. The compiler steps are

given in Figure 8-23. We plot the speed up of the parallelized code on the DASH machine.

All speedups are calculated over the best sequential version of each program.

163

a) Par: We compiled the program with the basic parallelizer pass in the SUIF system.

This parallelizer has capabilities similar to a traditional shared-memory compiler. It

has a loop optimizer that applies unimodular transformations to one loop at a time to

expose outermost loop parallelism and to improve data locality among the accesses

within the loop [147,148].

b) CompDecomp: We first applied the basic parallelizer to analyze the individual loops,

then applied a compiler algorithm to find the computation and the corresponding data

decompositions that minimize communication across processors [13]. These compu-

tation decompositions are passed to a code generator which schedules the parallel

Interface Interface Interface Interface
Directory Directory Directory Directory

Figure 8-22. 32 node DASH multiprocessor

M
ai

n
m

em
or

y

R3000

1st level cache

2nd level cache

Directory
Interface

M
ai

n
m

em
or

y

R3000

1st level cache

2nd level cache

Directory
Interface

M
ai

n
m

em
or

y

R3000

1st level cache

2nd level cache

Directory
Interface

M
ai

n
m

em
or

y

R3000

1st level cache

2nd level cache

Directory
Interface

M
ai

n
m

em
or

y

R3000

1st level cache

2nd level cache

M
ai

n
m

em
or

y

R3000

1st level cache

2nd level cache

M
ai

n
m

em
or

y
R3000

1st level cache

2nd level cache

M
ai

n
m

em
or

y

R3000

1st level cache

2nd level cache

Interconnection Network

164

Figure 8-23. Compiler optimizations performed for the experiments

FORTRAN C

Front End

Classical Optimizations

Parallelization Analysis

Locality optimizations to

Data Transformations

Modulo/division Elimination

minimize communication

Synchronization Elimination

Parallel Executable

Synchronization Elimination

Parallel ExecutableParallel Executable

(a) Par (b) CompDecomp (c) DataTrans

T
he

 S
U

IF
 C

om
pi

le
r

In
fr

as
tr

uc
tu

re

Data Transformations

Modulo/division Elimination

Back-end CompilerBack-end Compiler Back-end Compiler

SPMD Code GenerationSPMD Code Generation SPMD Code Generation

165

loops and inserts calls to the run-time library. The code generator also takes advan-

tage of this information to minimize synchronization in the parallel program [140].

The data layouts are left unchanged.

c) DataTrans: Finally, we include the data transformations described in this chapter.

Using the data decompositions calculated by the communication minimization algo-

rithm [13], the compiler reorganizes the arrays in the parallelized code to improve

spatial locality. After transforming the array accesses, the access functions are simpli-

fied using modulo and division optimizations described in Section 8.3.

8.4.2. Results

We present performance results for six selected kernels and small programs that require

data transformations. We briefly describe the programs and discuss the opportunities for

optimization. All of these programs have high parallel coverage but poor parallel perfor-

mance. We show that, using data transformation optimizations, we can obtain a significant

improvement in parallel performance in many of these programs.

8.4.2.1. Vpenta

Vpenta is one of the kernels innasa7, a program in theSPEC92 floating-point bench-

mark suite. This kernel simultaneously inverts three pentadiagonal matrices. The perfor-

mance results are shown in Figure 8-24. The base compiler interchanges the loops in the

original code so that the outer loop is parallelizable and the inner loop carries spatial local-

ity. Without such optimizations, the program would not even achieve the slight speedup

obtained with the base compiler.

For this particular program, the base compiler’s parallelization scheme is the same as the

results from the computation decomposition algorithm. However, since the compiler can

determine that each processor accesses exactly the same partition of the arrays across the

loops, the synchronization optimization algorithm can eliminate barriers between some of

the loops. This accounts for the slight increase in performance of the computation decom-

position version over the base compiler.

166

This program operates on a set of two-dimensional and three-dimensional arrays. Each

processor accesses a block of columns for the two-dimensional arrays; thus no data reor-

ganization is necessary for these arrays. However, each plane of the three-dimensional

array is partitioned into blocks of rows, each of which is accessed by a different processor.

This presents an opportunity for our compiler to change the data layout and make the data

accessed contiguous on each processor. With the improved data layout, the program finally

runs with a decent speedup. We observe that the performance dips slightly when there are

about 16 processors, and drops significantly when there are 32 processors. This perfor-

mance degradation stems from increased cache conflicts between accesses within the same

processor. Further data and computation optimizations that focus on operations on the

same processor would be useful.

Figure 8-24. Performance ofVpenta

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

24

28

32
S

pe
ed

up

Number of Processors

Par

CompDecomp

DataTrans

167

8.4.2.2. LU Decomposition

Our next program isLU decomposition without pivoting. The code is shown in Figure 8-

26 and the speedups for each version ofLU decomposition are displayed in Figure 8-25

for two different data set sizes (and).

The parallelization algorithm identifies the second loop as the outermost parallelizable loop

nest, and distributes its iterations uniformly across processors in a block fashion. As the

number of iterations in this parallel loop varies with the index of the outer sequential loop,

each processor accesses different data each time through the outer loop. A barrier placed

after the distributed loop is used to synchronize between iterations of the outer sequential

loop. The computation decomposition algorithm minimizes true-sharing by assigning all

operations on the same column of data to the same processor. To minimize the load imbal-

ance, the columns and operations on the columns are distributed across the processor in a

cyclic manner. By fixing the assignment of computation to processors, the compiler

replaces the barriers at the end of each execution of the parallel loop with locks. Even

though this version has good load balance, good data re-use and inexpensive synchroniza-

tion, the local data accessed by each processor is scattered in the shared address space,

256 256× 1024 1024×

Figure 8-26.LU Decomposition code

DOUBLE PRECISION A(N,N)

DO 10 I 1 = 1,N

DO 10 I 2 = I 1+1, N

A(I 2,I 1) = A(I 2,I 1) / A(I 1,I 1)

DO 10 I 3 =I 1+1, N

A(I 2,I 3) = A(I 2,I 3) -A(I 2,I 1)*A(I 1,I 3)

10 CONTINUE

168

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

24

28

32

36

Figure 8-25. Performance ofLU decomposition

S
pe

ed
up

Number of Processors

Par

CompDecomp

DataTrans

S
pe

ed
up

Number of Processors

Par

CompDecomp

DataTrans

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

24

28

32

(a
)

25
6x

25
6

da
ta

 s
et

(b
)

10
24

x1
02

4
da

ta
 s

et

169

increasing the chances of interference in the cache between columns of the array. The inter-

ference is highly sensitive to the array size and the number of processors; the effect of the

latter can be seen in Figure 8-25. This interference effect can be especially pronounced if

the array size and the number of processors are both powers of 2. For example, for the

 matrix, every 8th column maps to the same location in DASH’s direct-

mapped 64K cache. The speedup for 31 processors is 5 times better than that for 32 proces-

sors.

The data transformation algorithm restructures the columns of the array so that each pro-

cessor’s cyclic columns are put into a contiguous region of memory. After restructuring,

the performance stabilizes and is consistently high. In this case the compiler is able to take

advantage of inexpensive synchronization and data re-use. Speedups become super-linear

in some cases due to the fact that once the data is partitioned among enough processors,

each processor’s working set fits into local memory.

8.4.2.3. Five-Point Stencil

The code for our next example, a five-point stencil, is shown in Figure 8-27. Figure 8-28

shows the resulting speedups for each version of the code. The parallelization pass simply

distributes the outermost parallel loop across the processors, and each processor updates a

block of array columns. The values of the boundary elements are exchanged in each time

step. The computation decomposition algorithm assigns two-dimensional blocks to each

processor, since this mapping has a better computation-to-communication ratio than a one-

dimensional mapping. However, without also changing the data layout, the performance is

worse than the base version because now each processor’s partition is non-contiguous (In

Figure 8-28, the number of processors in each of the two dimensions is also shown under

the total number of processors).

After the data transformation is applied, the program has good spatial locality as well as

less communication, and thus we achieve a speedup of 29 on 32 processors. Note that the

performance is very sensitive to the number of processors. This is due to the fact that each

DASH cluster has 4 processors and the amount of communication across clusters differs

significantly for different two-dimensional mappings.

1024 1024×

170

8.4.2.4. Erlebacher

Erlebacher is a 600-line FORTRAN benchmark from ICASE that computes three-dimen-

sional tridiagonal solutions. It includes a number of fully parallel computations, inter-

leaved with multi-dimensional reductions and computational wavefronts in all three

dimensions caused by forward and backward substitutions. Partial derivatives are com-

puted in all three dimensions with three-dimensional arrays. Figure 8-29 shows the result-

ing speedups for each version of Erlebacher.

The parallelization analysis always parallelizes the outermost parallel loop. This strategy

yields local accesses in the first two phases of Erlebacher when computing partial deriva-

tives in the X and Y dimensions, but ends up causing non-local accesses in the Z dimen-

Figure 8-27. Five-point stencil code

REAL A(N,N), B(N,N)

C Initialize B

 ...

C Calculate Stencil

DO 30 time = 1,NSTEPS

...

DO 10 I 1 = 1, N

DO 10 I 2 = 2, N

A(I 2,I 1) = 0.20*(B(I 2,I 1)+B(I 2-1,I 1)+

x B(I 2+1,I 1)+B(I 2,I 1-1)+B(I 2,I 1+1))

10 CONTINUE

...

30 CONTINUE

171

sion. The computation decomposition algorithm improves the performance of Erlebacher

slightly over the base-line version. It finds a computation decomposition so that no non-

local accesses are needed in the Z dimension. The major data structures in the program are

the input array and DUX, DUY and DUZ which are used to store the partial derivatives in

the X, Y and Z dimensions, respectively. Since it is only written once, the input array is

replicated. Each processor accesses a block of columns for arrays DUX and DUY, and a

block of rows for array DUZ. Thus in this version of the program, DUZ has poor spatial

locality.

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

24

28

32

Figure 8-28. Performance of 5-point stencil

S
pe

ed
up

Number of Processors

Par

CompDecomp

DataTrans

1x
1

2x
1

2x
2

4x
2

3x
3

4x
3

4x
4

5x
4

6x
4

5x
5

7x
4

8x
4

6x
5

172

Our data transformation algorithm restructures DUZ so that local references are contiguous

in memory. Because two-thirds of the program are perfectly parallel with all local accesses,

the optimizations only realize a modest performance improvement.

8.4.2.5. Swm256

Swm256 is a 500-line program from theSPEC92 benchmark suite. It performs a two-

dimensional stencil computation that applies finite-difference methods to solve shallow-

water equations. The speedups forswm256 are shown in Figure 8-30.

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

24

28

32

Figure 8-29. Performance of Erlebacher

S
pe

ed
up

Number of Processors

Par

CompDecomp

DataTrans

173

Our base compiler is able to achieve good speedups by parallelizing the outermost parallel

loop in all the frequently executed loop nests. The decomposition phase discovers that it

can, in fact, parallelize both of the loops in the 2-deep loop nests in the program, without

incurring any major data reorganization. The compiler chooses to exploit parallelism in

both dimensions simultaneously in an attempt to minimize the communication to compu-

tation ratio. Thus, the computation decomposition algorithm assigns two-dimensional

blocks to each processor.

However, the data accessed by each processor is scattered, causing poor cache perfor-

mance. Fortunately, when we apply both the computation and data decomposition algo-

rithm to the program, the program regains the performance lost and is slightly better than

that obtained with the base compiler.

Figure 8-30. Performance ofswm256

S
pe

ed
up

Number of Processors

Par

CompDecomp

DataTrans

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

24

28

32

174

8.4.2.6. Tomcatv

Tomcatv is a 200-line mesh generation program from theSPEC92 floating-point bench-

mark suite. Figure 8-31 shows the resulting speedups for each version oftomcatv. Tom-

catv contains several loop nests that have dependences across the rows of the arrays, and

other loop nests that have no dependences. Since the parallelization algorithm always par-

allelizes the outermost parallel loop, each processor accesses a block of array columns in

the loop nests with no dependences. However, in the loop nests with row dependences,

each processor accesses a block of array rows. As a result, there is little opportunity for

data re-use across loop nests. Additionally, there is poor cache performance in the row-

dependent loop nests because the data accessed by each processor is not contiguous in the

shared address space. The computation decomposition pass selects a computation decom-

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

24

28

32

Figure 8-31. Performance oftomcatv

S
pe

ed
up

Number of Processors

Par

CompDecomp

DataTrans

175

position so that each processor always accesses a block of rows. The row-dependent loop

nests still execute completely in parallel.

This version oftomcatv exhibits good temporal locality; however, the speedups are still

poor due to poor cache behavior. After transforming the data to make each processor’s rows

contiguous, the cache performance improves. Whereas the maximum speedup achieved by

the base version is 5, the fully optimizedtomcatv achieves a speedup of 18.

8.5. Related Work

Previous work on compiler algorithms for optimizing memory hierarchy performance has

focused primarily on loop transformations. Unimodular loop transformations, loop fusion,

and loop nest blocking restructure computation to increase uniprocessor cache re-use

[33,61,147]. Copying data into contiguous regions has been studied as a means for reducing

cache interference [103,134].

Several researchers have proposed algorithms to transform computation and data layouts

to improve memory system performance [39,89]. The same optimizations are intended to

change the data access patterns to improve locality on both uniprocessors and shared

address space multiprocessors. These algorithms use only array permutation transforma-

tions, they do not consider strip-mining. By using strip-mining in combination with permu-

tation, our compiler is able to optimize spatial locality by making the data used by each

processor contiguous in the shared address space. This means, for example, that our com-

piler can achieve good cache performance by creating cyclic and multi-dimensional

blocked distributions.

Compile-time data transformations have also been used to eliminate false-sharing in

explicitly parallel C code [88]. The domain of that work is quite different from ours; we

consider both data and computation transformations, and the code is parallelized automat-

ically. Their compiler statically analyzes a parallel program to determine the data accessed

by each processor, and then tries to group the data together. Two different transformations

are used to aggregate the data. Their compiler turns groups of vectors that are accessed by

different processors into an array structure. Each structure contains the aggregated data

176

accessed by a single processor. References to the original data structures are replaced with

pointers to the newly allocated per-processor data structures. Their compiler also aligns

data structures that have no locality (e.g. locks) with cache line boundaries to avoid false-

sharing.

Optimizing address calculations with modulo and division operations has been studied in

the context of block-cyclic decompositions in HPF compilers for distributed address space

machines. The complex access functions are replaced by a finite state machine created by

the compiler, that generates the correct access pattern when executed at runtime [37,95].

In contrast, our modulo and division optimizations are capable of completely eliminating

many of the modulo and division operations generated in practice. Thus, we do not have

to pay for the overhead of executing a finite state machine at runtime for most of the access

functions created with modulo and division operations. However, address generation using

a finite state machine can be included as a fall-back technique when the access functions

are too complex and cannot be optimized.

8.6. Chapter Summary

We have developed the first compiler that automatically performs a full suite of data trans-

formations on original array layouts to improve the memory system performance of cache-

coherent multiprocessors. Using a combination of strip-mining and permutation transfor-

mations, our algorithm restructures the layout of the data in the shared address space such

that each processor is assigned a contiguous region of memory. We ran our compiler on a

set of application programs and measured their performance on the Stanford DASH mul-

tiprocessor. Our results show that the compiler can effectively optimize parallelism in con-

junction with memory subsystem performance.

177

9 Communication Generation and
Optimization for Distributed
Address-Space Machines

Locating parallelism is sufficient to generate parallel programs for cache-coherent shared

address-space machines. However, as we discussed in the previous chapter, much more

analysis and optimization is required to obtain good parallel performance. For example, the

compiler needs to explicitly decompose the computation and data across the processors to

exploit the data locality and minimize the communication overhead.

Finding computation and data decompositions is necessary when generating code for dis-

tributed address space machines. Furthermore, the compiler is faced with the additional

problem of managing the memory and the communication explicitly. The parallel programs

created by the compiler must issue explicit communication instructions. It is also necessary

to perform many communication optimizations in order to obtain good parallel perfor-

mance.

Given a computation and data decomposition, the techniques described in this chapter auto-

matically produce an SPMD program with the necessary receive and send instructions,

optimize the communication by eliminating redundant communication and aggregating

small messages into large messages, allocate space locally on each processor, and translate

global data addresses to local addresses. The communication code generation and commu-

nication optimization techniques described in this chapter are again based on our linear ine-

qualities framework.

Since the combined problem of locating coarse-grain parallelism and determining compu-

tation and data decompositions that minimize communication is very complex, many com-

178

piler systems for distributed address-space machines rely on users to supply the data

decompositions. Languages such as High Performance FORTRAN [83], FORTRAN-

D[85] and Vienna FORTRAN [36] allow the programmer to annotate the sequential pro-

gram with data decompositions. Our algorithms can use this decomposition information in

lieu of compiler-generated data and computation decomposition information.

The organization of this chapter is as follows. In Section 9.1., we describe two different

approaches for generating communication: the traditional location-centric approach with

user-specified data decompositions, and a novel value-centric approach based on exact

data-flow information and computation decompositions. We formally describe the domain

of our technique in Section 9.2. Section 9.3. presents a mathematical representation for

communication. We describe our code generation technique and our communication opti-

mizations in Sections 9.4 and 9.5.

9.1. Determining Communication

9.1.1. Location-Centric Approach

Many of the existing compilers developed for distributed memory machines have a similar

basic approach to how they generate code from user-specified data decompositions

[14,98,85,114,123,139].

For simplicity, in the following discussion we assume that there is only one loop nest that

contains one read access and one write access to the same array. The argument obviously

holds for the general case with multiple loops and arrays. Three domains are manipulated

in the compilation process: the iteration space , the array elements spaceA, and the pro-

cessor spaceP. Each array access function in the source program specifies the data used by

each iteration in the loop. That is, each read or write access function, denoted by

 respectively, maps an iteration to the array indices of the data read or written.

The user-specified data decompositionD: maps each array location to a processor.

From the read and write access functions and the data decomposition, the compiler auto-

matically derives the computation decompositionC: which maps each iteration in

the loop to a processor.

ℑ

fr fw, :ℑ A→

A P→

ℑ P→

179

To derive the computation decomposition, the compiler applies theowner-computes rule:

each assignment statement is performed by the processor that owns the data. Therefore,

given a write access functionfw and a data decompositionD, the computation decomposi-

tion isC = Dfw. Under the owner-computes rule, no communication is needed to implement

the write accesses. Communication is needed for a read access in iterationi if the data read

is resident on a different processor, i.e. . The relationships between iteration

space, array space, and the processor space are shown in Figure 9-1(a); processor

receives data from processor if .

To minimize the communication cost, the compiler tries to maximize the intervals between

communication. All the data needed within the interval are sent in one message. This opti-

mization is based on data dependence analysis given in Definition 3-1. Themaximum level

of a dependence between two references is simply the maximum loop nest level that carries

a dependence between the references. If the maximum level of all dependences involving

a read access isk, the compiler needs to communicate only once in each iteration of thek-

th loop. Thus, the maximum level information is useful for reducing the communication

Ci Dfr i≠

pr

ps pr ps≠

Array Space

Processor Space

Iteration Space

Figure 9-1. Different approaches to code generation for distributed memory machines

fr

D

f

D

(b) Value-centric

Internal

Dinit

External

fr

D

A

P

ℑ i r iw i ri

aw

psps ps

ar ainit

pr prpr

fw

CCCC C

(b) Location Centric

180

frequency. All the data accessed within the interval requiring communication are summa-

rized by a regular section description [81]. In this way, the same data used multiple times

within the interval are transferred only once.

In summary, this approach deduces the computation decompositions from the user-speci-

fied data decompositions, using the owner-computes rule; it uses data dependence analysis

to reduce the number of messages; finally, it uses the concept of regular sections to reduce

redundant data transfers.

9.1.2. Value-Centric Approach

Instead of location-based data dependence analysis, communication identification can be

based on less restrictive value-based data-flow information. Let us use the simple example

in Figure 9-2 to illustrate the difference.

Data dependence analysis on this program will produce the dependence vectors {[+, 3], [0,

3]}, meaning that the read access in iteration may be data dependent on all itera-

tions such that , and . Exact data-flow analysis, however, is

able to determine precisely that the first three iterations of the innermost loop read data

defined outside the loop, and the rest of the iterations use the value defined three iterations

earlier, i.e., . Also, the first three iterations read data,X[0:2], whose

values are not generated by this program. The exact data-flow information is given in

Figure 9-3.

Figure 9-2. Simple 2-deep loop nest

DO T = 1, 100

DO I = 3, N

X[I] = X[I-3]

tr i r,[]

tw iw,[] iw i r 3–= tw tr≤

tw iw,[] tr i r 3–,[]=

181

The problem of finding precise array data-flow information was first formulated by Feau-

trier [53,54,55], and is described in Section 4.6.

The exact data-flow information maps an instance of a read operation to the very write

instance that produces the value read, provided such a write exists. This mapping is denoted

by , where and are the loop indices of the read and write instances respec-

tively. If the instances within a context do not read any value written within the loop, we

denote these instances by the mapping , where is the loop index of the read

instance and is the array location of the data at the beginning of the loop.

This information differs from that produced by data dependence analysis in two major

ways. First, exact data-flow information can distinguish between different instances of the

same array access. For example, exact data-flow analysis can determine that the first three

iterations of the inner loop in Figure 9-2 have dependence relationships different from all

the other iterations. Second, the exact data-flow analysis specifies precisely the last write

instance that generates the value read by a particular read instance. Data dependence anal-

ysis, on the other hand, cannot discriminate between writes to the same location.

The exact data-flow information can be used for communication identification in the fol-

lowing manner. For read instances with the mapping , that do not read any of the values

written within the code being analyzed, the compiler can simply load all the non-local data

onto a processor before executing any of the code. Given a computation decomposition and

an initial data decomposition produced by an earlier compiler phase, the technique to gen-

Figure 9-3. The exact data-flow information

tr i r,[]
write in iteration tr i r 3–,[] i r 6≥

array locaiton i r 3–() at start i r 6<



=

µ i r iw→: i r iw

τ i r a→: i r

a

τ

182

erate the necessary communication code is no different from that used in the location-cen-

tric approach. Communication and computation are more tightly-coupled for read

instances with a corresponding write instance. In this case, the mapping specifies all the

pairs of iterations that share a producer and consumer relationship. By applying the com-

putation decomposition function on the related iterations, we can derive the identity of the

processors that write and read the same value. If the writer and reader are different proces-

sors, then communication is necessary. This technique is depicted in Figure 9-1(b).

The data decompositions generated from the earlier compiler phase serve only as interfaces

with other sections of the program. In general, we can generate the necessary communica-

tion from the exact data-flow information and computation decompositions, and not data

decompositions. We can also change the data layout when called for by the computation

decompositions. Thus, this approach can support a wider range of data decompositions.

Locations written to can be replicated or mapped to different processors over time. Further-

more, this approach does not rely on the restriction of the owner-computes rule.

Using the data-flow information, we can easily eliminate redundant data transfers. While

accessing the samelocation may require multiple data transfers since the value at the loca-

tion may or may not have changed, eachvalue needs to be transferred once and only once.

Moreover, the perfect producer and consumer information enables the compiler to issue the

send immediately after the data is produced, and to issue the receive just before the data is

used. This maximizes the chances that the communication is overlapped with computation.

9.2. Problem Domain

In this section, we formally define the scope of our technique. We show how we can rep-

resent all the information useful for communication and computation code generation as

sets of linear inequalities. This model and our techniques discussed in the next section are

useful for both value-centric and location-centric approaches.

The scope of our technique is limited to programs consisting of a set of loop nests, where

the bounds of the loop nests are affine expressions of outer loop indices and symbolic con-

stants. The array accesses are also affine functions of loop indices and symbolic constants.

µ

183

Our technique can also handle conditional statements that contain no loops. Each assign-

ment within the conditional statement is treated as an unconditional assignment; depending

on the outcome of the condition, it assigns to the variable either the newly computed value

or the variable’s current value.

We can handle loops given by Definition 2-2, array index sets given by Definition 2-5 and

virtual and physical processors given by Definition 2-6. The read and write access func-

tions, and are affine functions such that

, where , and is a

symbolic constant vector.

To support cyclic decompositions where data or computation are distributed to processors

in a round-robin manner, we introduce the notion of a virtual processor array. The compu-

tation and data decompositions map the computation and data to the virtual processor

space. Let be the dimensions of the virtual processor space, the index set of this

virtual processor array is thus

Our physical processor array has the same number of dimensions as the virtual processor

array. Let be the physical processor array dimensions, .

The physical processor index set is

Thek-th dimension of data elements or loop iterations are distributed across the physical

processors in a cyclic manner whenever . The mapping from the virtual to the phys-

ical processor space, is defined as where

. Since only in the latter stages of the optimizations will the

compiler be operating in the physical processor space, we will simply refer to virtual pro-

cessors as processors.

fr fr1
… frm

, , 
 = fw fw1

… fwm
, , 

 =

f v i, 1 … i, ,
n

() a1 … am, ,()= i1 … i, ,
n

() I∈ a1 … am, ,() A∈ v

u1 … uq, ,

P p p1 … pq, ,()= P∈ k∀ 1 … q, ,= 0 pk uk<≤{ }=

u'1 … u'q, , u′k uk k∀ 1 … q, ,=,≤

P′ p′ p′1 … p′q, ,()= P∈ k∀ 1 … q, ,= 0 pk u′k<≤{ }=

u′k uk<

π:P P→ π p() p′=

k 1 … q, ,=
∀ p′k pk mod u′k=

184

9.2.1. Data Decompositions

Definition 9-1: The data decomposition relation is a set of array element and

processor pairs , such that iff the processor has a copy of the array

element . Data decompositions can be written as

where is an extended unimodular matrix, , , , are integer vectors, B is an

integer matrix and is a vector of symbolic constants such that and

.

The scope of data decompositions defined in this chapter is larger than the decompositions

used Chapter 8, which are typically used in existing distributed memory machine compil-

ers. The matrix determines if the array is reversed or skewed. When the array has more

dimensions than that of the processor space, the 0 columns of theextended unimodular

matrix chooses the dimensions to be mapped onto the same processor. The entire array

can be shifted with respect to the processor array using the integer vector . Since the data

block size is often a function of the number of processors engaged in the computation, it is

useful not to determine the block size at compile time. We can handle some symbolic block

sizes of the form ; the scope of our technique is discussed in Section 2.3. The over-

lap of array elements between processors is determined by vectors . Figure 9-4

illustrates how we can use this scheme to describe several common data decompositions.

The grid in each example represents the first processors in the system; each

panel is a picture of the entire data array, and the shaded portion represents the data allo-

cated locally to that specific processor.

9.2.2. Computation Decompositions

Computation decompositions have a scope similar to that of data decompositions, except

that an iteration can be mapped onto only one processor.

D

a p,() a p,() D∈ p

a

D a p,() A P×∈
U a t–() b Bu+() p dl–≥

U a t–() b Bu+() p 1+() dh+< 
 
 

=

U t dl dh, b

u b Bu+ 0≥

dl dh, 0≥

U

U

t

b Bu+

dl dh, 0≥

2 2× 2 2×

185

Definition 9-2: The computation decomposition relation is a set of iteration and

processor pairs such that processor executes iteration iff .

computation decompositions can be written as

where is an extended unimodular matrix, , are integer vectors, B is an integer

matrix and is a vector of symbolic constants such that .

The computation decompositions can be either generated automatically by an earlier com-

piler phase [13] or manually by the user. Theorem 9-1 shows how to derive computation

decompositions from user-specified data decompositions.

Theorem 9-1: Assuming that written data are not replicated, the computation

decomposition as derived from data decomposition , using the owner-computes rule, is

9.3. Communication

In this section we define the communication between processors for both location-centric

and value-centric approaches.

Definition 9-3: A communication set is a set of elements

, where iff processor needs

to send the value in location in iteration to processor for use in iteration .

9.3.1. Using Data Decompositions and the Owner-Computes Rule

If we use the owner-computes rule, no communication is necessary for write operations.

We use Theorem 9-2 to find all the necessary communication for each read access within

the loop nest. We use the user-specified data decomposition to find the owner of the data

C

i p, 
  p i i p, 

  C∈

C i p, 
  I P×∈ b Bu+ 

  p U i t– 
  b Bu+ 

  p 1+ 
 <≤

 
 
 
 
 

=

U t b

u b Bu+ 0>

D

C i p, 
  I P×∈ a A∈ s.t. a p,() D∈ a fw v i, 

 =∧∃

 
 
 
 
 

=

M

ir pr is ps a, , , , 
  I P I P A××××∈ i r pr is ps a, , , , 

  M∈ ps

a is pr i r

186

Figure 9-4. Examples of some data decompositions for an NxN array onto
a 2-dimensional processor space

U b+Bu t dl dh

1

0

0

1

0

0

0

0

0

0

N

N

(a) Full replication.

1

0

0

1

15

0

0

0

0

0

1

N

(a) Blocked rows with overlap.

1

0

0

1

x

x

0

1

0

0

0

0

(a) Square blocks with symbolic block sizes, shifted right by 1.

1

2

-1

1

8

16

1

-1

0

0

0

0

(a) Skewed rectangular blocks.

p0

p1

a0

a1

187

read. We use the computation decomposition derived from Theorem 9-1 to find the proces-

sor reading the data. If these two processors are not the same, communication is needed.

Theorem 9-2: The communication set required by the access function for a set of

iterations under computation decomposition and data decomposition is the set of

elements , where , , ,

, and

9.3.2. Using Computation Decompositions and the Exact Data-Flow Information

Definition 9-4: An exact data-flow analysis partitions the iteration set of a loop nest into

contexts so that a single mapping function will apply to each context. If the values read by

the iterations in a context are written within the loop, then the context has alast-

write relation . The last-write relation of the context is a set of iteration pairs

 such that iff and is the iteration that generates the value

read in iteration . A context can be written as and a read-

write relation can be written as , where and

are vectors of affine expressions.

It is sometimes necessary to introduce auxiliary variables so that the last-write relations can

be represented as linear inequalities. Some of the read-write relations need to be expressed

as or , where , are integers. We can introduce an aux-

iliary variable , and rewrite these relations as and ,

respectively.

If an iteration reads data written within the loop, then communication is needed only if the

iterations sharing the read-write relation are executed by different processors (Theorem 9-

3). If an iteration uses data written outside the loop, then we use the initial data decompo-

sition to determine the owner of the data (Theorem 9-4). Theorem 9-4 is similar to Theorem

9-2, except that the sends can precede the computation of the loop since the values needed

are not generated within the loop.

f

ι C D

ir pr is ps a, , , , 
  I P I P A× ×××∈ i r pr, 

  C∈ a ps, 
  D∈ i r ι∈

a fr v ir, 
 = i s i r= ps pr≠

ι I⊆

µ µ ι

i r i s, 
  i r i s, 

  µ∈ i r ι∈ i s I∈

i r ι i I∈ q v i, 
  0≥{ }

µ i r i s, 
  I I×∈ q′ v ir is, , 

  0≥{ } q q′

i β modα()≡ i β modα()≡ α β

u i β– αu= αu i β– αu α+< <

188

Theorem 9-3: The communication set that satisfies the last-write relation under

computation decomposition is the set of elements

where , , , .

Theorem 9-4: The communication set required by an access function within a context

 of read iterations where the value used is generated outside the loop nest, under

computation decomposition and an initial data decomposition , is the set of elements

, where , , ,

, and .

Communication decompositions, data decompositions, iteration contexts, access functions

and last-write relations can all be expressed as systems of linear inequalities. The

constraint, however, cannot be expressed as a conjunction of inequalities. We break down

the inequality into a set of disjunctive conditions. For example, for a one-dimensional pro-

cessor array, the constraint is represented by . We represent the

necessary communication as a set of communication sets, with each one satisfying all the

other inequalities and one of the disjunctive conditions.

Suppose the second loop in our program in Figure 9-2 is distributed as blocks of 32 itera-

tions across a linear array of processors. That is, processorp executes iteration [t, i] iff

We will use this computation decomposition throughout the rest of the chapter. Figure 9-

5 shows the communication sets for first context where the data is produced by a write from

Figure 9-3.

9.3.2.1. Finalization

Data produced within the loop nest may need to be written back to its home location in the

“final” data layout. We need to identify which written values are live at exit, and this can

be derived from the exact data-flow information. For example, this is shown to be a sub-

µ

C ir pr is ps a, , , , 
  I P× I× P A××∈

i r pr, 
  i s ps, 

 , C∈ i r i s, 
  µ∈ a fr v ir, 

  fs v is, 
 = = ps pr≠

f

ι

C D

ir pr is ps, a, , , 
  I P× I× P× A×∈ i r pr, 

  C∈ a ps, 
  D∈ i r ι∈

a fr v i, 
 = i s 0= ps pr≠

ps pr≠

ps pr≠ ps pr> ps pr<∨

32p 0 1
t

i
32 p 1+()<≤

189

problem in calculating last write trees [112]. The set of inequalities generated, in conjunc-

tion with the final data distribution, defines the communication set for finalization.

9.4. Code Generation for Distributed Address-Space Machines

We use the code generation algorithm defined in Section 2.2. for generating SPMD loop

nests with communication operations. When block sizes are not known at compile time,

linear inequalities with symbolic coefficients, described in Section 2.3., are used.

9.4.1. Generating Computation and Communication Code

To find the computation allotted to each processor, we scan the elements in a computation

decomposition relationC lexicographically in , or simply ,

order. The loops enumerate the processors. The inner loops enumerate the iterations

Figure 9-5. Inequalities defining the communication sets for first context, with
producer-consumer relationship, in Figure 9-3

Context

Access function

Computation decomposition for
read iterations

Computation decomposition for
write iterations

Constraint

tr 0≥ T t– r 0≥

i r 3– 0≥ N i– r 0≥

i r 6– 0≥

ts tr– 0≥ tr ts– 0≥

i s i r 3+– 0≥ i r i s 3–– 0≥

i r 3– a– 0≥ a ir– 3+ 0≥

i r 32pr– 0≥ 32pr 31 i r–+ 0≥

i s 32ps– 0≥ 32ps 31 i s–+ 0≥

ps pr≠ ps pr> ps pr<

p1 … pq i1 …in, , , ,() p i, 
 

p i

190

to be executed for each value of . The SPMD code to be executed by each processor is

as follows. Each processor checks to see if its processor number is within the bounds of the

 loops. If so, the code it executes is simply the loops parameterized by its processor

number. In the case where the computation decomposition is cyclic, each processor must

iterate through the virtual processors it represents. Examples 9-6(a) and 9-6(b) show the

computation code for our example from Figure 9-2. The rest of the figure shows the com-

munication code for the communication sets in Figure 9-5. Note that no communication is

necessary when .

To generate the receive and send code for a communication set , we scan lexico-

graphically in and order, respectively. In the receive

loop nest, the loops enumerate the processors involved in receiving data. The loops

specify the iterations when processor needs to receive data. By definition, the , and

 loops are degenerate loops containing only one iteration. The data to be received is the

value in location on processor in iteration . Conversely, the loops in the send

loop nest enumerate all the senders. The loops specify the iterations when processor

needs to send some messages. The loops identify the receivers of each message. The

loops specify the iterations when processor needs the data. The loop is a degenerate

loop containing the address of the data to be sent. If auxiliary variables have been intro-

duced to handle modulo constraints, the auxiliary variables are placed last in the lexico-

graphic order for both loops.

9.4.2. Merging Loop Nests

To generate the complete program for a processor, we need to merge a processor’s com-

putation code with its receive and send codes for each communication set.

A naive technique is to make each processor iterate through the entire loop nest in the

source program. In each iteration, a processor checks whether the iteration belongs to its

computation domain, and whether it is to take part in each of the communication sets.

Checking such conditions in the innermost loop would be exorbitantly expensive. Some of

this inefficiency can be eliminated by standard data-flow optimizations such as algebraic

p

p i

ps pr>

M M

pr i r ps is a, , , , 
  ps is pr i r a, , , , 

 

pr i r

pr ps is

a

a ps is ps

is ps

pr i r

pr a

191

Figure 9-6. Computation and communication code for the Example 9-2.

if p >= 0 and p <= N / 32 then

DO t = 0, T

DO i = MAX(32 p, 3), MIN(32 p + 31, N)

X[i] = X[i - 3]

(a) Computation code: scanning C in order.

DO pv = p p, N / 32 step P

DO t = 0, T

DO i = MAX(32 p v, 3), MIN(32 p v + 31, N)

X[i] = X[i - 3]

(b) Computation code when virtual processors are mapped toP physical processors ().

if p r >= 1 and p r <= N / 32 then

DO t r = 0, T

DO i r = 32 p r, MIN(32 p r + 2, N)

ps = p r - 1

t s = t r

i s = i r - 3

a = i r - 3

receive X[a] from iteration (t s, i s) in processor (p s)

(c) Receive code: scanning first context in order.

if p s >= 0 and p s <= N/ 32 - 1 then

DO t s = 0, T

DO i s = 32 p s + 29, MIN(32 p s + 31, N - 3)

pr = p s + 1

t r = t s

i r = i s + 3

a = i s

send X[a] to iteration (t r, i r) in processor (p r)

(d) Send code: scanning first context in order.

p t i, ,()

pv pp

pr tr i r ps ts is a, , , , , ,()

ps ts is pr tr i r a, , , , , ,()

192

simplification, invariant code motion, strength reduction, and common subexpression

elimination.

Since all the conditions tested are affine expressions, we can potentially eliminate all run-

time checks by splitting loops. Suppose we need to merge the loops given in Figure 9-7(a).

Instead of generating the code in Figure 9-7(b) with excessive guards, we generate multi-

ple loop nests, shown in Figure 9-7(c)

If the relative magnitude between the bounds of the individual loops is not known at com-

pile time, loop splitting can expand the program size by a significant amount. Our compiler

uses loop splitting only on inner loops, and also when the relative magnitudes between the

loop bounds are known. We have also developed a dynamic splitting scheme that we use

on the outer loops. The compiler does not generate all the possible combinations statically.

Instead, each processor determines its bounds for all the iteration sets, sorts the bounds, and

interprets the sorted list to determine the loops it has to execute. Finally, for iteration sets

that are a function only of outermost loop variables, we insert dynamic checks into the

bodies of the outer loops.

9.4.3. Local Address Space

Typically, a processor on a parallel machine touches only a part of an array. Since data sets

processed by these programs are often very large, it is essential that the compiler allocates,

on each processor, only enough storage for the data used by the processor.

The following is a simple approach to the memory allocation problem. We allocate on each

processor the smallest rectangular region that covers all the data read or written by the pro-

cessor, and we copy all the received data from the communication buffer into its respective

home location in the array before it is accessed. Given a computation decompositionC and

an access function f, the set of locations touched by processorp is

. By scanning the inequalities lexicographi-

cally in order, the bounds we obtain on are the bounds for thek-th dimen-

sion of the bounding box covering accessf. If there are multiple accesses to the same array,

a A∈ i i p, 
  C∈ a f v i, 

 =∧∃{ }

p ak i, , 
  ak

193

we simply find the bounding box of the rectangular boxes for all the accesses to that array.

Note that this formulation allows local data spaces on different processors to overlap.

Figure 9-7. Merging multiple loop nests.

DO i = 0, 200
receive(...)

DO i = 100, 300

send(...)

(a) Two loop nests to be merged.

DO i = 0, 300

if 0 <= i and i <= 200 then

receive (...)

if 100 <= i and i <= 300 then

send (...)

(b) Naive merge of the loop nests with excessive checking.

DO i = 0, 99

receive(...)
DO i = 100, 200

receive(...)

send(...)

DO i = 201, 300

send(...)

(c) Optimized merge

194

The above algorithm is inadequate if the rectilinear bounding box of the data accessed is

larger than the available local memory on the processor, while the data actually used fit in

the local memory. Also, a processor’s local memory may not be large enough to fit all the

data that a processor will eventually use in a computation. In that case, we need to manage

the memory dynamically.

The exact data-flow information provides a more efficient way to manage the data that has

been received from other processors. The compiler knows precisely which values are read

by every instance of the read access. Instead of first copying all the received data to its

home locations, a processor can simply read the values directly from the communication

buffers. The compiler also has information that tells when the buffer is no longer needed,

and can manage the buffer space effectively.

9.5. Communication Optimizations

Since the above algorithms generate a receive and a send message for every read access to

remote data, the code is correct but inefficient. It is essential that we eliminate the redun-

dant messages and amortize the message sending overhead by batching the communica-

tion.

9.5.1. Eliminating Redundant Communication

Ancourt has also studied the problem of eliminating redundant communication [11]. Given

a set of iterations and accesses, Ancourt’s algorithm can construct a set of loop nests that

fetches all the data touched without any duplication. This algorithm is adequate for remov-

ing redundant traffic if no communication is required within the loop nest. In general,

transfers of data with the same address are redundant only if the values transferred are iden-

tical.

We separate redundancy into two categories. We say that there isself reuse when multiple

instances of a single read access use the same data andgroup reuse when instances of dif-

ferent read accesses use the same data. We discuss each of these in turn below.

195

9.5.1.1. Redundant communication due to self reuse

Read instances that have different data-flow relationships often are amenable to different

communication optimizations. By partitioning the read instances into different contexts

according to their data-flow patterns, the exact data-flow information makes it easier to

detect and eliminate redundancy. Our algorithm applies Theorem 9-5 to the communication

set of each context to detect redundancy caused by self reuse.

Theorem 9-5: Given a communication set M, communications ,

 are redundant due to self reuse if , ,

and .

All elements in a communication set with identical , and refer to the same values;

all elements with identical , , and are redundant messages. Thus, we wish to

replace the set of redundant messages with . This can be achieved

by projecting the set onto the space, and constraining the upper bound of

to be identical to its lower bound. There are two complications. First, if the lower bound of

 is expressed as a conjunction of multiple inequalities involving outer loop indices, then

the communication set containing the minimum ’s is no longer convex. The algorithm

needs to divide the communication set into multiple convex sets. The second complication

arises from the fact that a projected image may contain points that do not correspond to a

solution in the original system. In many cases, a simple test can determine that no such

degeneracies are present [112].

9.5.1.2. Redundant communication due to group reuse

Detection of reuse between arbitrary accesses to the same matrix can be expensive. How-

ever, one prevalent form of reuse can be incorporated and exploited easily within our

model: the set ofuniformly generated references [60]. Array index functions of uniformly

generated references are affine functions of loop indices and symbolic constants, and they

differ only in the constant terms. For example,X[i] andX[i+3] are uniformly generated ref-

erences; so areB[2i+3j+1, 3j+n+3] andB[2i+3j+10, 3j+n+2], but notC[i] andC[j]. Reuse

between uniformly generated references has been exploited successfully in improving

cache locality [147,146]. Uniformly generated references are quite common in real pro-

i r pr is ps a, , , , 
 

i ′r p′r i ′s p′s a′, , , ,() M∈ pr p′r= ps p′s= i s i ′s=

a a′=

i s ps a

is ps pr a

min ir 
  pr is ps a, , , , 

 

ps is pr a, , , 
  i r

i r

i r

196

grams, so much so that specialized languages and compilers have been built to translate

them into efficient code [29,77].

We can represent a set of uniformly generated references by their convex hull, and describe

the data flow information with a single mapping from write to read iterations. For the

example in Figure 9-8, the set of accessesX[i], X[i - 1], X[i - 2] and X[i - 3] can be repre-

sented by the access function , where and . The exact data-

flow information for all the accesses are given in Figure 9-9.

Figure 9-8. The Example 9-2 with multiple read accesses

DO T = 1, 100

DO I = 3, N

X[I] = f(X[I], X[I-1],X[I-2],X[I-3])

f i() f i() i u–= 0 u 3≤ ≤

Figure 9-9. The exact data-flow information for the example from Figure 9-8

tr i r,[]
array locaiton i r u–() at start

i r u– 3< or

tr 1= u 0=,

write in iteration tr 1– i r,[] tr 1> u 0=,

write in iteration tr i r u–,[] i r u– 3≥ u 0>,









=

197

Note that the convex hull may contain more data than that accessed within an iteration;

however, since a processor is typically responsible for a contiguous block of iterations, this

method is unlikely to cause any significant unnecessary traffic.

9.5.1.3. Other forms of redundancies

Redundancy may also arise from cyclic decompositions, where a physical processor emu-

lates multiple virtual processors. Given a virtual to physical processor mapping ,

communication can be eliminated if . Also, com-

munications , are redundant if

, , and .

Communication sets derived from data decompositions that replicate data may also contain

redundancy. In our definition of communication sets, we consider communication to be

necessary as long as there is a processor that owns a copy of the data needed by another

processor. That means communication is generated even if the processor already owns a

copy of the data. To eliminate this redundancy, we eliminate all the communication ele-

ments such that . Furthermore, two communication ele-

ments , are redundant due to replicated data if

, , and . The technique to eliminate this redundancy is

similar to that of removing redundant communication due to self-reuse.

9.5.2. Communication Aggregation

Whether aggregation of small messages into large messages is necessary depends on the

machine architecture. For example, machines such as the iWarp [65] and CM-5 [118] sup-

port fine-grain communication, while machines such as the Intel iPSC have significant

overhead in processing every message. Again, we classify message aggregation into two

kinds: self aggregation, where messages generated by different instances of the same

access are aggregated, andgroup aggregation, where messages generated by different

accesses are aggregated. For group aggregation, we simply aggregate all messages that

have the same sender, receiver and dependence level into one message.

π:P P→

i r pr is ps a, , , , 
  M∈ π pr 

  π ps 
 =

i r pr is ps a, , , , 
  i ′r p′r i ′s p′s a′, , , ,() M∈

π pr 
  π p′r()= ps p′s= i s i ′s= a a′=

i r pr is ps a, , , , 
  M∈ a pr, 

  D∈

i r pr is ps a, , , , 
  i ′r p′r i ′s p′s a′, , , ,() M∈

pr p′r= ps p′s≠ i s i ′s= a a′=

198

While group aggregation reduces the number of messages by a small constant, self aggre-

gation can potentially eliminate many more messages. Our self aggregation algorithm also

takes advantage of the partitions created by the exact data-flow analysis. All instances

within the same communication set have the same dependence level. If the dependence

level of a communication set isk, it is obviously legal to batch all the messages within an

iteration of loopk and send the data at the end of the iteration. This can result in significant

overhead reduction if loopk is not the innermost loop.

The algorithm to aggregate the communication of a communication set at levelk is as fol-

lows. To generate the send code, we scan the communication set lexicographically in

 order. Each instance of the loops

 produces one message, and each instance of the loops con-

tributes an item to the message. Redundancy elimination would have caused to take on

only the value of the earliest iteration on the receiver side using the value. Similarly, we

create the receive loop nest by scanning the polyhedron in

 order. Iterations in loops use the data

from the same message. Note that for each message, the order in which the sender packs

the data is the same as the unpacking order. Figure 9-10 shows the receive and send code

for the first context in Figure 9-3 after communication aggregation.

9.5.2.1. Multi-casting

Many systems provide optimized routines for multi-casting. To take advantage of these

routines, we need to determine if the same message is sent to multiple processors. We scan

a communication set to be aggregated at levelk lexicographically in

 order. If the bounds of are independent of , the

data sent to each processor are identical.

9.6. Related Work

There is a large body of research on language extensions and compiler support for distrib-

uted memory machines. Some notable projects are, Al [141], Blaze [100], Crystal [106],

FORTRAN-D [85,139], Id Nouveau [123], Kali [114,98], Pandore [15], Pandore II [14],

ps is1
… i sk 1–

pr isk
… i sn

i r a, , , , , , , , , 
 

ps is1
… i sk 1–

pr, , , , i sk
… i sn

, ,

i r

pr i r1
… i rk 1–

ps is i rk
… i rn

a, , , , , , , , , 
  i s i, rk

… i rn
, ,

ps is1
… i sk 1–

pr a isk
… i sn

i r, , , , , , , , , 
  a pr

199

Figure 9-10. Aggregated communication

if p r >= 1 and p r <= N / 32 then

DO t r = 0, T

ps = p r - 1

receive data into buffer from processor p s

index = 0

DO i s = 32 p r - 3, MIN(32 p r - 1, N - 3)

t s = t r

i r = i s + 3

a = i r - 3

X[a] = buffer[index]

index = index + 1

(a) Receive code after aggregated communication.

if p s >= 0 and p s <= (N - 32)/ 32 then

DO t s = 0, T

pr = p s + 1

index = 0

DO i s = 32 p s + 29, MIN(32 p s + 31, N - 3)

t r = t s

i r = i s + 3

a = i s

buffer[index] = X[a]

index = index + 1

send the data in buffer to processor p r

(b) Send code after aggregated communication

200

SUPERB [62] and Vienna Fortran [35,36]. Many of these efforts converged on the devel-

opment of High Performance Fortran (HPF) as an industry-wide standard language to sup-

port distributed memory machines, which extends FORTRAN-90 with data decomposition

information [83,99].

The current HPF compilers [27,69,17], as well as most of the previous compilers for dis-

tributed memory machines, use regular section descriptors [81] to summarize iteration and

data spaces as well as communication. However, regular sections can be used only to pre-

cisely represent a limited domain of rectilinear, triangular or diagonal spaces, creating spu-

rious communication. Our approach for communication code generation can handle any

iteration and data spaces and communication patterns that can be represented using sys-

tems of linear inequalities. A recent compiler for HPF also uses a similar linear algebra

framework [40]. However, our extension to linear inequalities, to allow symbolic coeffi-

cients, further expands this domain such that we can represent distributions with symbolic

block sizes.

Two algorithms for merging loop nests were proposed contemporaneously by [34,41].

These algorithms use linear inequalities to identify the common ranges of iterations and

split the iteration space. In addition, they introduce heuristics to limit the exponential

growth of the program. A similar algorithm was later introduced by [93].

All the compilers for distributed address space machines use a location-centric approach

to communication identification. Array privatization present the only opportunity for

reducing spurious communication created by this approach. The value-centric approach

we introduced creates communication only when there is a producer-consumer relation-

ship. Recently, many studies have taken a fundamentally different approach for minimiz-

ing communication based on producer-consumer relationships [56,92,109]. These

algorithms optimally reschedule each instance of each statement while maintaining the

producer-consumer relationships.

201

9.7. Chapter Summary

This chapter presents three main results. First, we have developed a systematic approach,

based on a mathematical model, for communication code generation. We can handle a large

class of computation and data decompositions as well as complex array access functions

within this framework. We represent data decompositions, computation decompositions,

and communication as systems of linear inequalities. We have shown that the various code

generation and communication optimization problems can be solved by projecting the

polyhedra represented by systems of inequalities onto lower dimensional spaces. This

method is applicable to both the location- and value-centric approaches. Many optimiza-

tions can be expressed within this framework.

Second, we have developed several communication optimizations within the same unified

framework. These optimizations include eliminating redundant messages, aggregating

messages, and hiding the communication latency by overlapping the communication with

computation. These optimizations are essential to achieving an acceptable performance on

distributed memory machines [123].

Third, we have proposed a value-centric approach to deriving the fine-grain communica-

tion for machines with a distributed address space. Previous approaches are location-cen-

tric: communication is derived from data decompositions; optimizations are performed

using data dependence tests [19], an analysis that determines if accesses may refer to the

same location. In this approach, code generation is performed from computation decompo-

sitions using a data-flow analysis technique that is based on values instead of locations.

This approach enables a more general set of data and computation decompositions and

allows for more communication optimizations.

202

203

10Conclusion

From the inception of the first electronic computer, architects have been striving to design

the ultimate computer by simply connecting many smaller ones [82]. Such multiprocessors,

which can bypass many of the physical limitations of uniprocessor performance, were

expected to become ubiquitous in computing. However, so far they have not achieved the

predicted performance gains for general purpose computing, mainly because of the inabil-

ity to create parallel software, either explicitly by a programmer or automatically by a com-

piler [59]. Parallel programs are hard to develop, difficult to debug and expensive to main-

tain. The current generation of parallelizing compilers cannot extract parallel performance

from sequential programs even with extensive user intervention. Thus, the adoption of par-

allel computing has been much slower than that anticipated 30 years ago [59].

Recent developments in compiler technologies have the potential to deliver the much antic-

ipated breakthrough in parallel computing [8]. Compilers have played a critical role in two

recent major breakthroughs in performance for general purpose computing: reduced

instruction set computers (RISC) and instruction level parallelism (ILP) in microproces-

sors. Compilers translate complex operations into simple instructions for RISC processors

[38] and schedule instructions for parallel execution in microprocessors with ILP [102,58].

Since the compilers are able to perform these techniques consistently and reliably without

any user intervention, these technologies have been widely used, helping to revolutionize

the microprocessor.

For multiprocessors to be widely accepted as general purpose computers, compilers must

consistently, predictably, and transparently, deliver good parallel performance on sequen-

tial programs. Achieving this goal presents a series of difficult challenges for the compiler

writer. Scientific applications require the development of compilers that identify coarse-

204

grain parallelism and perform memory optimizations. Non-scientific applications written

in languages such as C and C++, require development of compilers with advanced tech-

niques such as pointer alias analysis [145].

This thesis represents a step towards making multiprocessors accepted as general purpose

computers. In this thesis, we have developed a set of compiler techniques that extract par-

allel performance from sequential dense matrix scientific applications. We have shown

that a parallelizing compiler can obtain parallel speedups consistently without user inter-

vention for this class of applications. This thesis makes the following contributions:

• We have shown that the linear inequalities framework is effective in parallelizing and

optimizing scientific applications, and that general solutions to many of these com-

piler problems can be found in a systematic manner. We have used this framework

extensively for many purposes, such as representing array summaries in interproce-

dural data-flow analysis, solving for the array reshapes, identifying modulo and divi-

sion optimizations, generating communication code for distributed address-space

machines, and performing communication optimizations. This framework is being

used at Stanford and elsewhere for developing many other compiler algorithms, such

as synchronization optimizations [140], interprocedural propagation in computation

and data co-location information, predicated data-flow analysis, and communication

analysis for software DSM [91]. This framework allowed us to rapidly prototype and

test many algorithms and ideas for next-generation compilers.

• We have implemented an array analysis algorithm using an array summary representa-

tion based on lists of systems of linear inequalities. This approach is driven by the

need to compute both location-based and value-based dependences. Using this repre-

sentation, we find data-flow information more accurately than any other previous sum-

mary representation. We are also able to perform the data-dependence analysis at the

same precision as the exact data dependence test [110].

205

• We have designed the first algorithm capable of handling simple reshape patterns that

occur in practice. Using integer projections, this algorithm handles array reshapes that

occur in parameter passing, equivalences, and different common block declarations.

• We have developed a fully functional interprocedural parallelizer incorporating many

advanced array analysis techniques, such as array privatization, array reduction and

array reshape analysis. We have evaluated their effectiveness by parallelizing more

than 115,000 lines of FORTRAN code from 39 programs in four benchmark suites,

and obtaining a parallel coverage over 80% for more than three fourths of the pro-

grams. The robustness of the system enabled us to perform such a large and realistic

experiment.

• We have developed the first compiler that automatically performs a full suite of data

transformations on the array layouts to improve memory system performance of

cache-coherent multiprocessors. Our data transformation model uses a combination of

strip-mining and permutation transformations to restructure the layout of the data in

the shared address space such that each processor is assigned a contiguous segment of

memory.

• We have created a unified approach for communication code generation and optimiza-

tions for distributed address-space machines. We showed that optimizations such as

eliminating redundant messages, aggregating messages, and hiding communication

latency by overlapping the communication with computation can be formulated using

the linear inequalities framework. We also proposed a novel value-centric approach to

deriving fine-grain communication.

We have shown that a powerful and complete set of analyses and optimization techniques

can significantly improve the parallel performance of sequential applications.

206

207

Bibliography

[1] A. Agarwal, D. Chaiken, G. D’Souza, K. Johnson, and D. Kranz et. al. “The MIT Alewife
machine: A large-scale distributed memory multiprocessor.” InScalable Shared Memory
Multiprocessors. Kluwer Academic Publishers, 1991.

[2] A. Agarwal, D. Kranz, and V. Natarajan. “Automatic paritioning of parallel loops for
cache-coherent multiprocessors.” InProceedings of the 1993 International Conference on
Parallel Processing, St. Charles, IL, August 1993.

[3] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, second edition, 1986.

[4] J. R. Allen. “Unifying vectorization, parallelization, and optimization: The Ardent
compiler.” In L. Kartashev and S. Kartashev, editors,Proceedings of the Third
International Conference on Supercomputing, 1988.

[5] E. R. Altman, R. Govindarajan, and G. R. Gao. “Scheduling and mapping: Software
pipelining in the presence of structural hazards.” InProceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation ’95, June 1995.

[6] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and A. W. Lim. “An overview of a
compiler for scalable parallel machines.” InProceedings of the Sixth Workshop on
Languages and Compilers for Parallel Computing, Portland, OR, August 1993.

[7] S. P. Amarasinghe, J. M. Anderson, M. S Lam, and C.-W. Tseng. “An overview of the
SUIF compiler for scalable parallel machines.” InProceedings of the Seventh SIAM
Conference on Parallel Processing for Scientific Computing, pages 662–667, San
Francisco, CA, February 1995.

[8] S. P. Amarasinghe, J. M. Anderson, C. S. Wilson, S.-W. Liao, R. S. French, M. W. Hall,
B. R. Murphy, and M. S. Lam. “Multiprocessors from a software perspective.”IEEE
Micro, 16(3):52–61, June 1996.

[9] S. P. Amarasinghe and M. S. Lam. “Communication optimization and code generation for
distributed memory machines.” InProceedings of the SIGPLAN ’93 Conference on
Programming Language Design and Implementation, pages 126–138, Albuquerque, NM,
June 1993.

208

[10] C. Ancourt and F. Irigoin. “Scanning polyhedra with do loops.” InProceedings of the
Third ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 39–50, Williamsburg, VA, April 1991.

[11] M. Ancourt. Génération Automatique de Codes de Transfert pour Multiprocesseurs à
Mémoires Locales. PhD thesis, Université Paris VI, March 1991.

[12] J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. “Data and computation
transformations for multiprocessors.” InProceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 166–178, Santa
Barbara, CA, July 1995.

[13] J. M. Anderson and M. S. Lam. “Global optimizations for parallelism and locality on
scalable parallel machines.” InProceedings of the SIGPLAN ’93 Conference on
Programming Language Design and Implementation, pages 112–125, Albuquerque, NM,
June 1993.

[14] F. Andr’e, O. Ch’eron, and J.-L. Pazat. “Compiling sequential programs for distributed
memory parallel computers with Pandore II.” InProceedings of the Third Workshop on
Compilers for Parallel Computers, pages 213–242, Vienna, Austria, July 1992.

[15] F. Andr’e, J. Pazat, and H. Thomas. “Pandore: A system to manage data distribution.” In
J. Saltz and P. Mehrotra, editors,Languages, Compilers, and Run-Time Environments for
Distributed Memory Machines. North-Holland, Amsterdam, The Netherlands, 1992.

[16] B. Appelbe and B. Lakshmanan. “Optimizing parallel programs using affinity regions.” In
Proceedings of the 1993 International Conference on Parallel Processing, pages 246–249,
St. Charles, IL, August 1993.

[17] Applied Parallel Research, Placerville, CA.Forge 90 Distributed Memory Parallelizer:
User’s Guide, version 8.0 edition, 1992.

[18] V. Balasundaram and K. Kennedy. “A technique for summarizing data access and its use
in parallelism enhancing transformations.” InProceedings of the SIGPLAN ’89
Conference on Programming Language Design and Implementation, Portland, OR, June
1989.

[19] U. Banerjee.Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Boston, MA, 1988.

[20] U. Banerjee, R. Eigenmann, A. Nicolau, and D. Padua. “Automatic program
parallelization.”Proceedings of the IEEE, 81(2):211–243, February 1993.

[21] B. Bixby, K. Kennedy, and U. Kremer. “Automatic data layout using 0-1 integer
programming.” InProceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 111–122, Montreal, Canada, August 1994.

[22] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee,
D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu. “Parallel programming with
polaris.” IEEE Computer, 29(12):78–82, December 1996.

209

[23] W. Blume and R. Eigenmann. “Performance analysis of parallelizing compilers on the
Perfect Benchmarks programs.”IEEE Transactions on Parallel and Distributed Systems,
3(6):643–656, November 1992.

[24] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,
W. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. “Effective automatic
parallelization with Polaris.”International Journal of Parallel Programming, May 1995.

[25] W. Blume et al. “Polaris: The next generation in parallelizing compilers,.” InProceedings
of the Seventh Workshop on Languages and Compilers for Parallel Computing, Ithaca, NY,
August 1994.

[26] W. J. Bolosky and M. L. Scott. “False sharing and its effect on shared memory
performance.” InProceedings of the USENIX Symposium on Experiences with Distributed
and Multiprocessor Systems (SEDMS IV), pages 57–71, San Diego, CA, September 1993.

[27] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. “A compilation approach for
Fortran 90D/HPF compilers on distributed memory MIMD computers.” InProceedings of
the Sixth Workshop on Languages and Compilers for Parallel Computing, Portland, OR,
August 1993.

[28] T. Brandes. “The importance of direct dependences for automatic parallelism.” In
Proceedings of the Second International Conference on Supercomputing, St. Malo, France,
July 1988.

[29] M. Bromley, S. Heller, T. McNerney, and G. Steele, Jr. “Fortran at ten gigaflops: The
Connection Machine convolution compiler.” InProceedings of the SIGPLAN ’91
Conference on Programming Language Design and Implementation, Toronto, Canada,
June 1991.

[30] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and M. S. Lam. “Compiler-
directed page coloring for multiprocessors.” InProceedings of the Seventh International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VII), Cambridge, MA, October 1996.

[31] M. Burke and R. Cytron. “Interprocedural dependence analysis and parallelization.” In
Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction, Palo Alto, CA,
June 1986.

[32] D. Callahan, K. Kennedy, and U. Kremer. “A dynamic study of vectorization in PFC.”
Technical Report TR89-97, Dept. of Computer Science, Rice University, July 1989.

[33] S. Carr, K. S. McKinley, and C.-W. Tseng. “Compiler optimizations for improving data
locality.” In Proceedings of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-VI), pages 252–262, San
Jose, CA, October 1994.

[34] Z. Chamski. “Nested loop sequences: Towards efficient loop structures in automatic
parallelization.” Technical Report RR-2094, INRIA Rennes, October 1993.

210

[35] B. Chapman, P. Mehrotra, and H. Zima. “Handling distributed data in Vienna Fortran
procedures.” InProceedings of the Fifth Workshop on Languages and Compilers for
Parallel Computing, New Haven, CT, August 1992.

[36] B. Chapman, P. Mehrotra, and H. Zima. “Programming in Vienna Fortran.”Scientific
Programming, 1(1):31–50, Fall 1992.

[37] S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber, and S.-H. Teng. “Generating local
addresses and communication sets for data-parallel programs.”Journal of Parallel and
Distributed Computing, 26(1):72–84, April 1995.

[38] F. C. Chow. A Portable Machine-Independent Global Optimizer–Design and
Measurements. PhD thesis, Stanford University, December 1983.

[39] M. Cierniak and W. Li. “Unifying data and control transformations for distributed shared
memory machines.” InProceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation ’95, June 1995.

[40] Fabien Coelho.Contributions to HPF Compilation. PhD thesis, Ecole des Mines de Paris,
October 1996.

[41] J.-F. Collard, P. Feautrier, and T. Risset. “Construction of do loops from systems of affine
constraints.” Technical Report 93-15, Ecole normale supÈrieure de Lyon, May 1993.

[42] R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Papworth, and P. K. RodmanRodman. “A
VLIW architecture for a trace scheduling compiler.” InProceedings of the Second
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-II), October 1987.

[43] K. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKinley, J. M. Mellor-Crummey,
L. Torczon, and S. K. Warren. “The ParaScope parallel programming environment.”
Proceedings of the IEEE, 81(2):244–263, February 1993.

[44] K. Cooper, M. W. Hall, and K. Kennedy. “A methodology for procedure cloning.”
Computer Languages, 19(2):105–117, February 1993.

[45] B. Creusillet and F. Irigoin. “Interprocedural array region analyses.” InProceedings of the
8th International Workshop on Languages and Compilers for Parallel Computing.
Springer-Verlag, August 1995.

[46] B. Creusillet and F. Irigoin. “Exact vs. approximate array region analyses.” InProceedings
of the 9th International Workshop on Languages and Compilers for Parallel Computing.
Springer-Verlag, August 1996.

[47] G. Dantzig.Linear Programming and Extensions. Princeton University Press, Princeton,
NJ, 1963.

[48] G. Dantzig and B. Eaves. “Fourier-Motzkin elimination and its dual.”Journal of
Combinatorial Theory (A), 14:288–297, 1973.

211

[49] J. H. Edmondson et al. “Internal organization of the Alpha 21164, a 300-MHz 64-bit quad-
issue CMOS RISC microprocessor.”Digital Technical Journal, 7(1), 1995. Special
Edition.

[50] S. J. Eggers and T. E. Jeremiassen. “Eliminating false sharing.” InProceedings of the 1991
International Conference on Parallel Processing, pages 377–381, St. Charles, IL, August
1991.

[51] S. J. Eggers and R. H. Katz. “The effect of sharing on the cache and bus performance of
parallel programs.” InProceedings of the Third International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-III), pages 257–
270, Boston, MA, April 1989.

[52] R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua. “Experience in the automatic
parallelization of four Perfect benchmark programs.” In U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, editors,Languages and Compilers for Parallel Computing,
Fourth International Workshop, Santa Clara, CA, August 1991. Springer-Verlag.

[53] P. Feautrier. “Array expansion.” InProceedings of the Second International Conference on
Supercomputing, St. Malo, France, July 1988.

[54] P. Feautrier. “Parametric integer programming.”Operationnelle/Operations Research,
22(3):243–268, September 1988.

[55] P. Feautrier. “Dataflow analysis of scalar and array references.”International Journal of
Parallel Programming, 20(1):23–52, February 1991.

[56] P. Feautrier. “Towards automatic distribution.” Technical Report 92.95, Institut Blaise
Pascal/Laboratoire MASI, December 1992.

[57] D. M. Fenwick, D. J. Foley, W. B. Gist, S. R. VanDoren, and D. Wissell. “The Alphaserver
8000 series: High-end server platform development.”Digital Technical Journal, 7(1),
1995. Special Edition.

[58] J. Fisher. “Trace scheduling: A technique for global microcode compaction.”IEEE
Transactions on Computers, C-30(7):478–490, July 1981.

[59] M. J. Flynn. “Parallel processors were the future...and may yet be.”IEEE Computer,
29(12):151–152, December 1996.

[60] D. Gannon, W. Jalby, and K. Gallivan. “Strategies for cache and local memory
management by global program transformations.” InProceedings of the First International
Conference on Supercomputing. Springer-Verlag, Athens, Greece, June 1987.

[61] D. Gannon, W. Jalby, and K. Gallivan. “Strategies for cache and local memory
management by global program transformation.”Journal of Parallel and Distributed
Computing, 5(5):587–616, October 1988.

[62] M. Gerndt.Automatic Parallelization for Distributed-Memory Multiprocessing Systems.
PhD thesis, University of Bonn, December 1989.

212

[63] R. L. Graham, D. E. Knuth, and O. Patashnik.Concrete Mathematics. Addison-Wesley,
Reading, MA, 1989.

[64] E. D. Granston and A. Veidenbaum. “Detecting redundant accesses to array data.” In
Proceedings of Supercomputing ’91, Albuquerque, NM, November 1991.

[65] T. Gross, S. Hinrichs, G. Lueh, D. O’Hallaron, J. Stichnoth, and J. Subhlok. “Compiling
task and data parallel programs for iWarp.” InProceedings of the Workshop on Languages,
Compilers, and Run-Time Environments for Distributed Memory Multiprocessors,
Boulder, CO, October 1992.

[66] T. Gross and P. Steenkiste. “Structured dataflow analysis for arrays and its use in an
optimizing compiler.” Software—Practice and Experience, 20(2):133–155, February
1990.

[67] J. Grout. “Inline expansion for the polaris research compiler.” Master’s thesis, University
of Illinois at Urbana-Champaign, May 1995.

[68] M. Gupta and P. Banerjee. “Demonstration of automatic data partitioning techniques for
parallelizing compilers on multicomputers.”IEEE Transactions on Parallel and
Distributed Systems, 3(2):179–193, March 1992.

[69] M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri, K. Wang, D. Shields, W.-M. Ching, and
T. Ngo. “An hpf compiler for the ibm sp2.” InProceedings of Supercomputing ’95, San
Diego, CA, December 1995.

[70] M. Haghighat and C. Polychronopoulos. “Symbolic analysis: A basis for parallelization,
optimization, and scheduling of programs.” InProceedings of the Sixth Workshop on
Languages and Compilers for Parallel Computing, Portland, OR, August 1993.

[71] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S. Lam. “Detecting
coarse-grain parallelism using an interprocedural parallelizing compiler.” InProceedings
of Supercomputing ’95, San Diego, CA, December 1995.

[72] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S. Lam.
“Interprocedural parallelization analysis: Preliminary results.” Technical Report CSL-TR-
95-665, Dept. of Computer Science, Stanford University, March 1995.

[73] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, E. Bugnion,
and M. S. Lam. “Maximizing multiprocessor performance with the suif compiler.”IEEE
Computer, 29(12):84–89, December 1996.

[74] M. W. Hall, J. Mellor-Crummey, A. Carle, and R. Rodriguez. “FIAT: A framework for
interprocedural analysis and transformation.” InProceedings of the Sixth Workshop on
Languages and Compilers for Parallel Computing, Portland, OR, August 1993.

[75] M. W. Hall, B. R. Murphy, and S. P. Amarasinghe. “Interprocedural analysis for
parallelization: Design and experience.” InProceedings of the Seventh SIAM Conference
on Parallel Processing for Scientific Computing, pages 650–655, San Francisco, CA,
February 1995.

213

[76] M. W. Hall, B. R. Murphy, S. P. Amarasinghe, S.-W. Liao, and M. S. Lam.
“Interprocedural analysis for parallelization.” InProceedings of the 8th International
Workshop on Languages and Compilers for Parallel Computing. Springer-Verlag, August
1995.

[77] L. Hamey, J. Webb, and I. Wu. “An architecture independent programming language for
low-level vision.” Computer Vision, Graphics, and Image Processing, 48(2):246–264,
November 1989.

[78] S. W. Haney. “Is c++ fast enough for scientific computing?”Computers in Physics,
8(6):690–694, November 1994.

[79] W.L. Harrison. “The interprocedural analysis and automatic parallelization of Scheme
programs.”Lisp and Symbolic Computation, 2(3/4):179–396, October 1989.

[80] P. Havlak. Interprocedural symbolic analysis. PhD thesis, Rice University, Dept. of
Computer Science, May 1994.

[81] P. Havlak and K. Kennedy. “An implementation of interprocedural bounded regular
section analysis.”IEEE Transactions on Parallel and Distributed Systems, 2(3):350–360,
July 1991.

[82] J. L. Hennessy and D. A. Patterson.Computer Architecture A Quantitative Approach.
Morgan Kaufmann Publishers, San Mateo, CA, 1990.

[83] High Performance Fortran Forum. “High Performance Fortran language specification.”
Scientific Programming, 2(1-2):1–170, 1993.

[84] M. Hind, M. Burke, P. Carini, and S. Midkiff. “An empirical study of precise
interprocedural array analysis.”Scientific Programming, 3(3):255–271, 1994.

[85] S. Hiranandani, K. Kennedy, and C.-W. Tseng. “Compiling Fortran D for MIMD
distributed-memory machines.”Communications of the ACM, 35(8):66–80, August 1992.

[86] F. Irigoin. “Interprocedural analyses for programming environments.” InNSF-CNRS
Workshop on Evironments and Tools for Parallel Scientific Programming, September
1992.

[87] F. Irigoin, P. Jouvelot, and R. Triolet. “Semantical interprocedural parallelization: An
overview of the PIPS project.” InProceedings of the 1991 ACM International Conference
on Supercomputing, Cologne, Germany, June 1991.

[88] T. Jeremiassen and S. Eggers. “Reducing false sharing on shared-memory multiprocessors
through compile-time data transformations.” InProceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 179–188, Santa
Barbara, CA, July 1995.

[89] Y. Ju and H. Dietz. “Reduction of cache coherence overhead by compiler data layout and
loop transformation.” In U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors,
Languages and Compilers for Parallel Computing, Fourth International Workshop, pages
344–358, Santa Clara, CA, August 1991. Springer-Verlag.

214

[90] J. Kam and J. Ullman. “Global data flow analysis and iterative algorithms.”Journal of the
ACM, 23(1):159–171, January 1976.

[91] P. Keleher and C.-W. Tseng. “Improving the compiler/software dsm interface: Preliminary
experiences.” InProceedings of the First SUIF Compiler Workshop, Stanford University,
Stanford, CA, January 1996.

[92] W. Kelly and W. Pugh. “Minimizing communication while preserving parallelism.” In
Proceedings of the 1996 ACM International Conference on Supercomputing, pages 52–60,
May 1996.

[93] W. Kelly, W. Pugh, and E. Rosser. “Code generation for multiple mappings.” Technical
Report CS-TR-3317.1, Dept. of Computer Science, University of Maryland, December
1994.

[94] Kendall Square Research, Waltham, MA.KSR1 Principles of Operation, revision 6.0
edition, October 1992.

[95] K. Kennedy, N. Nedeljkovic, and A. Sethi. “A linear-time algorithm for computing the
memory access sequence in data-parallel programs.” InProceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, July 1995.

[96] B. W. Kernighan and R. Pike.The UNIX Programming Environment. Prentice Hall Inc,
Eaglewood Cliffs, NJ, 1984.

[97] D. Klappholz, K. Psarris, and X. Kong. “On the perfect accuracy of an approximate
subscript analysis test.” InProceedings of the 1990 ACM International Conference on
Supercomputing, Amsterdam, The Netherlands, June 1990.

[98] C. Koelbel. “Compile-time generation of regular communications patterns.” In
Proceedings of Supercomputing ’91, pages 101–110, Albuquerque, NM, November 1991.

[99] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel.The High Performance
Fortran Handbook. The MIT Press, Cambridge, MA, 1994.

[100] C. Koelbel, P. Mehrotra, and J. Van Rosendale. “Semi-automatic domain decomposition
in BLAZE.” In S. Sahni, editor,Proceedings of the 1987 International Conference on
Parallel Processing, pages 521–524, St. Charles, IL, August 1987.

[101] J. Kuskin, D. Ofelt, M. Heinrich, , J. Heinlein, R. Simoni, K. Charachorloo, J. Chapin,
D. nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. “The
stanford flash multiprocessor.” InProceedings of the 21th International Symposium on
Computer Architecture, pages 302–313, Chicago, IL, April 1994.

[102] M. S. Lam. “Software pipelining: An effective scheduing technique for VLIW machines.”
In Proceedings of the SIGPLAN ’88 Conference on Programming Language Design and
Implementation, Atlanta, GA, June 1988.

215

[103] M. S. Lam, E. E. Rothberg, and M. E. Wolf. “The cache performance and optimizations of
blocked algorithms.” InProceedings of the Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-IV),
pages 63–74, Santa Clara, CA, April 1991.

[104] W. Landi, B. Ryder, and S. Zhang. “Interprocedural modification side effect analysis with
pointer aliasing.” InProceedings of the SIGPLAN ’93 Conference on Programming
Language Design and Implementation, Albuquerque, NM, June 1993.

[105] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy. “The
DASH prototype: Implementation and performance.” InProceedings of the 19th
International Symposium on Computer Architecture, pages 92–105, Gold Coast, Australia,
May 1992.

[106] J. Li and M. Chen. “Compiling communication-efficient programs for massively parallel
machines.”IEEE Transactions on Parallel and Distributed Systems, 2(3):361–376, July
1991.

[107] J. Li and M. Chen. “The data alignment phase in compiling programs for distributed-
memory machines.”Journal of Parallel and Distributed Computing, 13(2):213–221,
October 1991.

[108] Z. Li and P. Yew. “Efficient interprocedural analysis for program restructuring for parallel
programs.” InProceedings of the ACM SIGPLAN Symposium on Parallel Programming:
Experience with Applications, Languages, and Systems (PPEALS), New Haven, CT, July
1988.

[109] A. W. Lim and M. S. Lam. “Maximizing parallelism and minimizing synchronization with
affine transforms.” InProceedings of the Twenty-forth Annual ACM Symposium on the
Principles of Programming Languages, January 1997.

[110] D. E. Maydan.Accurate Analysis of Array References. PhD thesis, Dept. of Computer
Science, Stanford University, September 1992.

[111] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. “Data dependence and data-flow
analysis of arrays.” InProceedings of the Fifth Workshop on Languages and Compilers for
Parallel Computing, New Haven, CT, August 1992.

[112] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. “Array data-flow analysis and its use in
array privatization.” InProceedings of the Twentieth Annual ACM Symposium on the
Principles of Programming Languages, pages 2–15, Charleston, SC, January 1993.

[113] D. E. Maydan, J. L. Hennessy, and M. S. Lam. “Effectiveness of data dependence
analysis.” In Proceedings of the NSF-NCRD Workshop on Advanced Compilation
Techniques for Novel Architectures, 1992.

[114] P. Mehrotra and J. Van Rosendale. “Programming distributed memory architectures using
Kali.” In Advances in Languages and Compilers for Parallel Computing, Irvine, CA,
August 1990. The MIT Press.

216

[115] P. Michielse. “Programming the convex exemplar series spp system.” In J. Dongarra and
J. Wasniewski, editors,Proceedings of the first International Workshop in Parallel
Scientific Computing, pages 374–382. Springer-Verlag, June 1994.

[116] T. Mowry, M. S. Lam, and A. Gupta. “Design and evaluation of a compiler algorithm for
prefetching.” In Proceedings of the Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-V), pages 62–73,
Boston, MA, October 1992.

[117] E. Myers. “A precise inter-procedural data flow algorithm.” InConference Record of the
Eighth Annual ACM Symposium on the Principles of Programming Languages,
Williamsburg, VA, January 1981.

[118] J. Palmer and G. Steele, Jr. “Connection Machine model CM-5 system overview.” In
Frontiers ’92: The 4th Symposium on the Frontiers of Massively Parallel Computation,
McLean, VA, October 1992.

[119] W. Pugh. “The Omega test: A fast and practical integer programming algorithm for
dependence analysis.” InProceedings of Supercomputing ’91, Albuquerque, NM,
November 1991.

[120] W. Pugh. “A practical algorithm for exact array dependence analysis.”Communications of
the ACM, 35(8):102–114, August 1992.

[121] W. Pugh and D. Wonnacott. “Eliminating false data dependences using the Omega test.”
In Proceedings of the SIGPLAN ’92 Conference on Programming Language Design and
Implementation, San Francisco, CA, June 1992.

[122] H. Ribas. “Obtaining dependence vectors for nested-loop computations.” InProceedings
of the 1990 International Conference on Parallel Processing, St. Charles, IL, August 1990.

[123] A. Rogers and K. Pingali. “Process decomposition through locality of reference.” In
Proceedings of the SIGPLAN ’89 Conference on Programming Language Design and
Implementation, Portland, OR, June 1989.

[124] C. Rosene.Incremental Dependence Analysis. PhD thesis, Dept. of Computer Science,
Rice University, March 1990.

[125] R. G. Scarborough and H. G. Kolsky. “A vectorizing Fortran compiler.”IBM Journal of
Research and Development, 30(2):163–171, March 1986.

[126] M. Schlansker and M. McNamara. “The Cydra 5 computer system architecture.” In
Proceedings of the 1988 IEEE International Conference on Computer Design: VLSI in
Computers and Processors (ICCD ’88), October 1988.

[127] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons,
Chichester, Great Britain, 1986.

[128] M. Sharir and A. Pnueli. “Two approaches to interprocedural data flow analysis.” In
S. Muchnick and N.D. Jones, editors,Program Flow Analysis: Theory and Applications.
Prentice Hall Inc, 1981.

217

[129] T. J. Sheffler, R. Schreiber, J. R. Gilbert, and S. Chatterjee. “Aligning parallel arrays to
reduce communication.” InFrontiers ’95: The 5th Symposium on the Frontiers of
Massively Parallel Computation, pages 324–331, McLean, VA, February 1995.

[130] O. Shivers.Control-Flow Analysis of higher-order languages. PhD thesis, Carnegie
Mellon University, School of Computer Science, Pittsburgh, PA, May 1991.

[131] J. P. Singh and J. L. Hennessy. “An empirical investigation of the effectiveness of and
limitations of automatic parallelization.” InProceedings of the International Symposium on
Shared Memory Multiprocessors, Tokyo, Japan, April 1991.

[132] J.P. Singh, T. Joe, A. Gupta, and J. L. Hennessy. “An empirical comparison of the Kendall
Square Research KSR-1 and Stanford DASH multiprocessors.” InProceedings of
Supercomputing ’93, pages 214–225, Portland, OR, November 1993.

[133] Stanford SUIF Compiler Group. “SUIF: A parallelizing & optimizing research compiler.”
Technical Report CSL-TR-94-620, Computer Systems Laboratory, Stanford University,
May 1994.

[134] O. Temam, E. D. Granston, and W. Jalby. “To copy or not to copy: A compile-time
technique for assessing when data copying should be used to eliminate cache conflicts.” In
Proceedings of Supercomputing ’93, pages 410–419, Portland, OR, November 1993.

[135] J. Torrellas, M. S. Lam, and J. L. Hennessy. “Shared data placement optimizations to
reduce multiprocessor cache miss rates.” InProceedings of the 1990 International
Conference on Parallel Processing, pages 266–270, St. Charles, IL, August 1990.

[136] E. Torrie, C-W. Tseng, M. Martonosi, and M. W. Hall. “Evaluating the impact of advanced
memory systems on compiler-parallelized codes.” InProceedings of the International
Conference on Parallel Architectures and Compilation Techniques (PACT), June 1995.

[137] R. Triolet, F. Irigoin, and P. Feautrier. “Direct parallelization of CALL statements.” In
Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction, Palo Alto, CA,
June 1986.

[138] R. Triolet, F. Irigoin, and P. Feautrier. “Direct parallelization of call statements.” In
Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction, m SIGPLAN
Notices 21(7), pages 176–185. ACM, July 1986.

[139] C.-W. Tseng.An Optimizing Fortran D Compiler for MIMD Distributed-Memory
Machines. PhD thesis, Dept. of Computer Science, Rice University, January 1993.

[140] C-W. Tseng. “Compiler optimizations for eliminating barrier synchronization.” In
Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 144–155, Santa Barbara, CA, July 1995.

[141] P.-S. Tseng. “A parallelizing compiler for distributed memory parallel computers.” In
Proceedings of the SIGPLAN ’90 Conference on Programming Language Design and
Implementation, White Plains, NY, June 1990.

[142] P. Tu.Automatic Array Privatization and Demand-Driven Symbolic Analysis. PhD thesis,
Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1995.

218

[143] J. Uniejewski. “SPEC Benchmark Suite: Designed for today’s advanced systems.” SPEC
Newsletter Volume 1, Issue 1, SPEC, Fall 1989.

[144] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S. W. K.
Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hennessy. “SUIF: An
infrastructure for research on parallelizing and optimizing compilers.”ACM SIGPLAN
Notices, 29(12):31–37, December 1994.

[145] Robert P. Wilson and Monica S. Lam. “Efficient context-sensitive pointer analysis for C
programs.” InProceedings of the SIGPLAN ’95 Conference on Programming Language
Design and Implementation, pages 1–12, June 1995.

[146] M. E. Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis, Dept. of
Computer Science, Stanford University, August 1992.

[147] M. E. Wolf and M. S. Lam. “A data locality optimizing algorithm.” InProceedings of the
SIGPLAN ’91 Conference on Programming Language Design and Implementation, pages
30–44, Toronto, Canada, June 1991.

[148] M. E. Wolf and M. S. Lam. “A loop transformation theory and an algorithm to maximize
parallelism.” IEEE Transactions on Parallel and Distributed Systems, 2(4):452–471,
October 1991.

[149] M. J. Wolfe.Optimizing Supercompilers for Supercomputers. The MIT Press, Cambridge,
MA, 1989.

[150] X3J3 Subcommittee.American National Standard Programming Language Fortran
(X3.9-1978). American National Standards Institute, New York, NY, 1978.

[151] H. Zima and B. Chapman.Supercompilers for Parallel and Vector Computers. Addison-
Wesley, New York, NY, 1991.

219

Index

A
adm 118, 121, 131
affine 183
affine domain 61
affine expression 8
affine function 29
aggregation 197
Al 198
ALEWIFE 136
algebric simplification 155
anti-dependence 28, 56
appbt 31, 32, 118, 121
Applied Parallel Research 119
applu 118, 121
appsp 118, 121
apsi 118, 121
arc2d 118, 121
array data-flow analysis 2, 32
array elements space 178
array privatization 31, 58, 59, 205
array reduction 31, 205
array reshape 3, 110, 205
array section descriptor 62, 65, 82, 104, 106
array summary representation 204
auxiliary variable 66, 68, 71, 72, 78, 79, 80, 81, 187, 190

B
backward-flow 42, 45, 53
bdna 118, 121
Blaze 198
block 143, 144
block size 189
block-cyclic 143, 146
bottom-up 42
buk 118, 121

C
C++ 95
cache 1
cache conflict miss 135
cache line 137
cache performance 3
call graph 38
cgm 118, 121
clean-up 77
closure operator 45, 55, 57
CM-5 197
coarse-grain parallelism 1, 2, 3, 4, 27, 30, 33, 36, 37,

112, 113, 203

code generation 201
common block 96, 107, 143
common block declarations 110, 205
common subexpression elimination 192
communication 177, 185, 197
communication code generation 205
communication optimization 194, 201
communication set 185
CompDecomp 163
computation decomposition 4, 178, 182, 185, 188, 201
conflict misses 136, 139
containment test 75, 87
Convex 136
convex array section 62, 63, 65
convex hull 197
convex polyhedron 59, 62
convex region 61
Cray C90 2
Crystal 198
cyclic 143, 144, 190, 197
cyclic decomposition 183
Cydrome Cydra-5 2

D
DASH 112, 136, 162
data decomposition 4, 178, 181, 184, 197, 201
data dependence analysis 179
data dependences 28, 50, 142, 204
data transformation 3, 4, 176, 205
data value 31
data-flow 37, 204
data-flow analysis 180, 187, 201
data-flow information 181
DataTrans 165
dense convex polyhedron 65
dense matrix scientific application 3
dependence vector 180
dependent 28
different common block declarations 95
Digital Alpha 21164 114
Digital AlphaServer 8400 114, 116
dimension variable 62, 101
discrete cartesian space 6
division 154, 156, 157, 176
doduc 118, 121
dyfesm 118, 121

E
embar 118, 121

220

empty test 67, 83
equivalence 88, 130
equivalence test 75
equivalences 95, 96, 110, 205
Erlebacher 170
Exemplar 136
exposed read set 52

F
false sharing 136, 139, 175
false sharing miss 135, 136
fftpde 118, 121
finalization 32, 57, 188
finite state machine 176
five-point stencil 169
FLASH 136
flo52 118, 121
flow value 42
flow-insensitive 42, 48, 57
flow-sensitive 38
FORTRAN 3, 95, 96, 178
FORTRAN-90 200
FORTRAN-D 178, 198
forward-flow 42, 45
Fourier-Motzkin elimination 7, 16, 67
fpppp 117, 119

G
general affine decompositions 153
general purpose computing 203
granularity of parallelism 1, 128
greatest common divisor 16
group aggregation 197, 198
group reuse 195

H
HPF 143, 176, 200
hydro2d 98, 118, 119, 121

I
ICASE 170
Id Nouveau 198
ILP 203
immediate subregion 39
index set 50, 63
initialization 32
instruction level parallelism 203
integer programming 29
integer solution 7, 101
interprocedural 37, 121
interprocedural parallelizer 59
intersection 67, 84
intraprocedural 121
invariant code motion 192
iPSC 197
iteration space 8, 178
iWarp 197

K
Kali 198
Kendall Square Research 136
KSR 112, 136

L
last write tree 189
last-write 187, 188
level 179
lexicographical 189, 198
lexicographical order 9, 11
linear inequalities 4, 201
linear inequalities framework 4, 95, 200, 205
local address space 192
local value 42, 49, 53, 57
locality of reference 135
location 182
location-based 56, 204
location-based dependence 31
location-centric 178, 182, 200, 201
loop context 37, 48
loop transformation 142, 175
loop transformation theory 140
loop-carried 28, 55
LU decomposition 167

M
map operator 45, 48, 50, 55, 58, 100
maximum level 179
mdg 118, 121, 131
mdljdp2 118, 121
mdljsp2 118, 121
meet operator 45, 55
memory allocation 192
memory hierarchy 2
memory location 31
merge 69, 190
mergeAuxVars 72
mergeSimple 69
merging loop nests 200
mg3d 118, 121, 130
mgrid 118, 121
MIPS R3000 162
MIPS R4400 114
modulo 154, 156, 157, 176
multi-casting 198
multi-dimensional integer spaces 2, 5
Multiflow Trace 2
multiprocessor 1
multiprogramming 1
must write set 52

N
Nas 31, 119, 129
nasa7 118, 121, 165
NUMA 162

O
ocean 118, 121, 131
ora 118, 121
Origin 136
output-dependence 29, 56
owner-computes rule 179, 180, 182, 185

P
Pandore 198
Par 163
parallelism coverage 122

221

parallelizer 163
parallelizing compiler 203
parameter passing 110, 205
parameter reshapes 95
parameterized convex polyhedron 8
parameterized index set 51, 54, 62, 65
Perfect 113, 119, 130
permutation 140, 141, 205
physical processor 183, 197
PIPS 59
pointer alias analysis 204
Polaris 59
polyhedra 201
polyhedron 7
predicated data-flow analysis 204
privatizable 2
privatization 121
privatized 56
processor space 178
producer-consumer relationship 200
proj 72, 85
project 11
projection 11, 72, 105, 201
projection function 51
projection operator 72, 85
projections 7

Q
qcd 118, 121, 131

R
read access 53
read set 52
reduction 121
redundant 194
redundant communication 194
redundant constraint 16
regions 39
regions graph 42
replication 197
reshape 95, 110, 205
reshape operator 52
RISC 203

S
scalar dependences 37
scalar privatization 29, 37
scalar reduction 29, 37
scanning order 11
selective procedure cloning 39
self aggregation 197, 198
self reuse 195
set-associativity 138
Silicon Graphics 136
Silicon Graphics Challange 114
simplify 77
Single Program Multiple Data 21
software DSM 204
sparse access pattern 66
sparse convex polyhedron 65
spec77 34, 113, 118, 121, 130
SPEC92 165, 172, 174
SPEC92fp 98, 117, 119, 129, 131

SPEC95fp 35, 114, 117, 128, 131
speedup 128
Spice 119
SPMD 21, 112, 177, 190
strength reduction 160, 192
strip-mining 140, 205
su2cor 118, 119, 121
subtraction 76
SUIF 112, 113, 120, 130, 162
SUIF compiler 162
summary representation 2
SUPERB 200
supergraph 38
swim 118, 121
swm256 118, 119, 121, 172
symbolic block size 200
symbolic coefficient 20, 21, 189
synchronization optimization 204
system of inequalities 101
system of linear inequalities 6, 62
systems of linear inequalities 2, 4, 204

T
tomcatv 118, 121, 174
top-down 42, 45, 53, 57
Trace 2
track 118, 121
transfer function 45, 48, 49, 54, 57
trfd 118, 121
true-dependence 56
TURB3d 35, 99
turb3d 114, 116, 118, 121
ture-dependence 28

U
uniformly generated references 195
unimodular 175
unimodular matrix 184
unimodular transforms 142
union 68, 84
uniprocessor 203
unrealizable paths 38

V
value 182
value-based 56, 204
value-based flow-dependence 31
value-centric 178, 200, 201, 205
vector machine 1
Vienna FORTRAN 178
Vienna Fortran 200
virtual processor 183, 197
Vpenta 165

W
wave5 118, 119, 121
write access 54
write set 52

