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Abstract

This paper presents modulo unrolling, a code transfor-
mation technique for enabling array references to be ac-
cessed through the fast static network on a Raw machine. A
Raw machine comprises of a mesh of simple, replicated tiles
connected by an interconnect which supports fast, static
near-neighbor communication. Like all other resources,
memory is distributed across the tiles. Management of the
memory can be performed by well known techniques which
generate the requisite communication code on distributed
address-space architectures. On the other hand, the fast,
static network provides the compiler with a simple interface
to optimize such communication. This paper addresses the
problem of taking advantage of such static communication
for memory accesses. The requirement for static memory
communication is the compile-time knowledge of the exact
communication required for each memory reference. This
knowledge, in turn, can be obtained if a memory reference
refers exclusively to memory residing on a single processing
tile. We introduce modulo unrolling as a technique which
allows the static communication of a large class of array
accesses. We show how this technique achieves the goal of
static communication by using a relatively small unroll fac-
tor. For a set of dense matrix scientific applications, we are
able to access all the array references on the static network,
enabling scalable speedups on the RAW machine.

1. Introduction

Architectures of modern microprocessors have at-
tempted to increase performance by aggressively exploit-
ing instruction-level parallelism (ILP). Yet designing a truly
scalable architecture to exploit ILP has proved elusive. In-
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creasing parallelism places increasing pressure on required
register-file and memory bandwidth. Multi-ported register
files and memories are only partial solutions because they
do not scale. Current designs have explored complex mem-
ory systems with several memory banks connected with
global buses, with arbitration performed by complex and
non-scalable hardware logic. Run-time cost for this com-
plexity is paid even when exact compile-time prediction
of memory locations accessed is possible. Multiprocessors
provide truly distributed resources, but they incur very high
communication costs, restricting them to exploiting coarse-
grained parallelism only.

The Raw machine [13] aims to provide truly distributed
resources at communication costs low enough to exploit
ILP. It distributes the register files, memories and ALUs
across a two dimensional mesh of identical tiles, and it sup-
ports single-cycle near-neighbor communication through a
programmable, software-controlled static network. Dis-
tributed memory provides scalable memory bandwidth,
with fast access to memories of remote tiles through the
static network. A slower dynamic network provides mech-
anism for compiler-unanalyzable accesses.

The use of a software-controlled static network to con-
nect the distributed memory on Raw opens up new chal-
lenges and opportunities for the compiler. A major new
task of the compiler is to predict the locations of memory
accesses. If the compiler can predict which tile a memory
access refers to, then the access can be made on the fast
static network. This process is termed static promotion. For
fallback, accesses which cannot be statically promoted are
made on the slower dynamic network. The larger the class
of accesses which can be statically promoted, the better the
performance will be.

This paper presents modulo unrolling, a code transfor-
mation technique for the static promotion of a large class of
array references. This technique is applicable for array ac-
cesses having indices which are affine functions of enclos-
ing loop induction variables. These accesses are common
in scientific codes, an important class of applications. We



also present supporting memory-system optimizations for
scientific code. The techniques have been implemented in
RAWCC, the Raw parallelizing compiler. We present per-
formance results of this compiler. We have also developed
strategies to efficiently compile dynamic accesses on Raw,
but they are beyond the scope of this paper.

Static promotion for Raw is related to the concept
of memory-bank disambiguation [6] for distributed bank
architectures, such as certain VLIWs. Techniques for
memory-bank disambiguation also aim to determine the
memory bank accessed by a reference at compile-time.
Static promotion refers to the enabling techniques such as
intelligent data layout and code transformation which make
memory disambiguation possible.

The problem of memory back disambiguation can be
made trivial by placing all data on one processor. However
this approach sequentializes all the accesses to that proces-
sor, creates a network hot-spot, and wastes parallel band-
width to the distributed memory system. In contrast, our
technique allows static promotion to be performed on dis-
tributed objects, enabling the concurrent accesses to differ-
ent memory banks and the full utilization of memory band-
width.

The rest of the paper is organized as follows. Section 2
gives an overview of the Raw architecture and compiler.
Section 3 overviews static promotion on Raw architectures.
Section 4 describes modulo unrolling, a static promotion
strategy for arrays. Section 5 describes other optimizations
for array accesses on Raw. Section 6 presents some ex-
perimental results. Section 7 describes related work, while
Section 8 concludes.

2. Overview of the Raw System

This section gives an overview of the Raw system, which
includes the architecture and the compiler.

2.1. Raw Architecture

The Raw architecture [13] is a simple, distributed,
software-exposed architecture motivated by the desire to
scale and maximize the amount of computational resources.
Figure 1 depicts the layout of a Raw microprocessor. The
design features a two-dimensional mesh of identical tiles,
with each tile having its own instruction stream, register
file, memory, ALU, and switch. Each processor on a tile
is a simple, RISC pipeline. The switches implement both a
static network and a dynamic network. The static network is
under the control of the instruction streams on the switches,
while the dynamic network routes messages conventionally
by reading the headers of messages.

The features mentioned result in a design whose re-
sources can scale easily. They also enable a fast clock,
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Figure 1. A Raw microprocessor is a mesh of tiles, each
with a processor and a switch. The processor contains in-
struction memory, data memory, registers, and ALU. The
switch contains its own instruction memory.

since there is no complex logic and no wire is longer than
the inter-tile distance. Static network routing and register-
level access enable fast communication, with the latency of
communication between neighboring tiles being as low as
two cycles. Such low latency allows exploitation of fine-
grained ILP. This contrasts with multiprocessors which are
restricted to coarse-grain parallelism due to much larger
network latencies. This architecture is fully exposed to the
compiler, which through sophisticated analysis, is able to
extract and schedule a very high degree of instruction level
parallelism from ordinary sequential programs.

2.2. The Raw compiler

Figure 2 outlines the structure of RAWCC, the Raw
compiler implemented using the SUIF compiler infrastruc-
ture [15]. RAWCC accepts sequential C or FORTRAN pro-
grams and automatically parallelizes them for a Raw ma-
chine. The compiler consists of two main phases, the
compiler-managed memory system called Maps [4] and the
space-time scheduler. Maps uses the information provided
by pointer and array analysis to perform static promotion
and transformations related to dynamic accesses. This pa-
per focuses on modulo unrolling, one method of static pro-
motion used in Maps. An overview of the complete sys-
tem can be found in [4]. The space-time scheduler [9] par-
allelizes each basic block of the program across the pro-
cessors, obeying dependence and serialization requirements
specified by Maps.

3. Static Promotion

The static network has no packetization, dynamic rout-
ing, or demultiplexing overhead and can communication
values between neighboring tiles in as low as two cycles.
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Figure 2. Structure of Raw compiler

It can be invoked when the source and the destination of a
message are known at compile-time. To employ the static
network to communicate a memory reference value, the
compiler must be able to determine that the reference refers
exclusively to memory on a single, statically-known tile.
This property of the memory reference is called the static
residence property, and references satisfying this property
are static references. References which do not satisfy this
property are dynamic references, and they are communi-
cated using the dynamic network.

The process of producing and identifying static refer-
ences is called static promotion. Static promotion can
be achieved through a combination of intelligent mapping
of data to tiles and code transformation. This section
overviews the static promotion strategy for scalars and array
accesses on Raw.

Scalar Static Promotion Scalar variables are assigned to
home tile locations. Direct accesses to these variables sat-
isfy the static residence property trivially, and they can be
statically promoted. Indirect accesses through pointers can-
not be promoted unless every value accessed by a pointer
resides on the same processor. Currently, RAWCC does not
promote these indirect accesses. Pointer analysis and proper
mapping of scalars to home tile locations can enable such
promotion, but they are beyond the scope of this paper.

Array Static Promotion The criteria for choice of a good
data layout for arrays are as follows. A good data layout
scheme should be amenable to easy static promotion across
a wide range of possible accesses to that data. In addition,
it must place data corresponding to accesses having high
temporal locality onto different tiles, so that the accesses
can occur in parallel. Finally, it should attempt to maximize
data locality, in that accesses are allocated close to where
they are most often required by the space-time scheduler.

Based on these criteria, arrays are uniformly laid out in

a low-order interleaved manner. In low-order interleaving,
consecutive elements of the data structure are interleaved in
a round-robin manner across successive tiles in the Raw ma-
chine. The low order bits of the address specify the tile loca-
tion of the memory. This layout is desirable since spatially
close array accesses, such as A[i] and A[i+1], are also often
temporally close. Low-order interleaving places these on
different tiles, thus allowing ILP parallelism between their
accesses. For certain programs, one can employ more tai-
lored layouts, but that would destroy the uniformity which
makes memory disambiguation and static promotion possi-
ble without extensive inter-procedural analysis.

Given this distribution of array data, static promotion of
many array accesses can be achieved through modulo un-
rolling. The next section presents this technique in detail.

4. Modulo Unrolling

This section describes modulo unrolling, a technique for
the static promotion of a common classes of array accesses.
As a motivating example, consider the code in Figure 3(a).
Using low-order interleaving for a Raw machine with four
tiles, the data layout of A is as shown in Figure 3(b), i.e., any
element A[i] is stored on the tile given by the array offset
modulo the number of tiles(N ), which equals i modulo 4.
In the loop, successive A[i] accesses refer to memory on
tile 0, 1, 2, 3, 0, 1, 2, 3 ... . The edges out of the tiles
in Figure 3(b) point to the program accesses which refer
to that tile. As we can see, the A[i] access in Figure 3(a)
refers to memory on all four tiles. Hence the access cannot
be executed on the static network, because static network
execution requires every access made by a given instruction
to refer to memory on the same tile.

There is however a way to transform the code to enable
static promotion. Figure 3(c) shows the result of unrolling
the code in Figure 3(a) by a factor of four. Now, each access
always refer to memory on the same tile. Specifically, A[i]
always refers to tile 0, A[i+1] to tile 1, A[i+2] to tile 2, and
A[i+3] to tile 3.

The above example leads us to the following intuition:
when using low-order interleaving to lay out arrays, it may
be possible to unroll loops by some factor to statically pro-
mote the array accesses in those loops. Note that full un-
rolling of loops would statically promote all array accesses
in the loops. However, full unrolling can be prohibitively
expensive in terms of code size, and it is not even possi-
ble for loops with unknown loop bounds. The challenge is
to devise a method using partial unrolling, whose resulting
code size is independent of the data size, and which allows
the static promotion of references in loops with unknown
loop bounds.

This section presents modulo unrolling, a technique
which enables the static promotion of all array accesses
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(c)(b)(a)

for    i    =    0   to   99  do

endfor

A[0]
A[4]
A[8]
....

A[1]
A[5]
A[9]
....

A[2]
A[6]
A[10]

....

A[3]
A[7]
A[11]
....

Tile 0 Tile 1 Tile 2 Tile 3

Unrolling
Modulo

for    i    =    0   to   99  step  4  do

endfor

A[ i  + 1] =  ....

A[ i  + 2] =  ....

A[ i  + 3] =  ....

A[ i  + 0] =  ....A[ i ] =  ...

Figure 3. Example of array static promotion. (a) shows the original code. (b) shows the distribution of array A a Raw machine
with four tiles. (c) shows the code after unrolling. After unrolling, each access refers to memory on only one tile.

whose index expressions are affine functions of enclosing
loop induction variables. 1 Affine array accesses along with
scalar variables form the bulk of the accesses in dense-
matrix scientific codes.

Modulo unrolling is presented in three parts. Section 4.1
derives expressions for the minimum unroll factors re-
quired. After unrolling by those factors, the targeted array
references will refer to memory on a single tile, but the iden-
tity of that tile may not be determinable at compile time.
Section 4.3 outlines additional transformations which are
required in some cases to make this tile compile-time de-
terminable. Section 4.4 describes how the tile numbers and
local offset expressions are actually determined.

4.1. Calculating unroll factors

The following theorem formally states the conditions for
modulo unrolling, and the minimum unroll factors required.

Theorem 1 Consider an affine access to a d-dimensional
array in a k-dimensional loop nest. Let vj be the induction
variable for the jth loop dimension. Assume the arrays are
low-order interleaved on the row-major address. If all loop
dimensions j ( 8j 2 [1::k] ) are unrolled by a factor Uj

given by the formula below, or any multiple, then each cor-
responding access in the unrolled code will always access
memory on the same tile across iterations.

We define Uj in terms of Dj:

Dj = N = gcd (N;

dX

i=1

ci;j

dY

l=i+1

MAXl)

Uj = lcm(Dj ; sj) / sj
1An affine function of a set of variables is defined as a linear com-

bination of those variables, plus a constant. As an example, given i,j as
enclosing loop variables, A[i+2j+3][2j] is an affine access, but A[i*j + 4]
is not.

where:

ci;j is coefficient of vj in the ith array
dimension ( 8i 2 [1::d];8j 2 [1::k] )

ci;k+1 is constant factor in the ith array
dimension ( 8i 2 [1::d] )

N is number of tiles on Raw machine
MAXi is size of the ith array dimension 8i 2 [1::d]
sj is step size of loop dimension j.

The above formula was derived by choosing to low-order
interleave the array on its row-major address. Note that this
choice is completely independent of the choice of major or-
dering in the remaining code generation. The row-major
choice in the above is used to partition the array and com-
putation in one particular manner: once that partitioning is
done, any ordering can be used on the resultant new local
arrays.

Due to lack of space, we present this and most other re-
sults in this section without proof. The proof proceeds along
the following lines. First, for the given array access, a sym-
bolic expression for its row-major address is written down
in terms of the loop induction variables. Next, we derive
the address for the same access in the next unrolled iter-
ation by substituting in the variable plus the unroll factor.
The desired condition of static promotion is that these two
addresses refer to the same tile. This will be true if the
difference between the two expressions is a multiple of N ,
namely that the difference is zero in modulo N arithmetic.
It can be shown that the smallest unroll factor satisfying this
condition is Dj . Uj represents a correction made for non-
unit step size.

Note that Theorem 1 provides the unroll factors induced
by a single access. The overall unroll factor of a loop is the
lcm of the unroll factors induced by the different accesses
in the loop.

Modulo unrolling handles arbitrary affine functions with
few other restrictions. Within its framework, it handles im-
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real X[IMAX][JMAX], Y[IMAX][JMAX]

for I=2 to M-1 do
for J=2 to M-1 do

X[I][J] = 0.9 * X[I][1]
Y[I][J] = 0.9 * ((1.0 - X[I][1]) * Y[1][J] + X[I][1] * Y[M][J])

endfor

(a)

ACCESS UNROLL FACTORS
Abstract Expression Without padding With padding

(JMAX = 29) (JMAX padded to 32)

X[I][J ] Loop I DI = UI = N= gcd(N; 1 � JMAX + 0 � 1) 8= gcd(8; 29) = 8 8= gcd(8; 32) = 1
Loop J DJ = UJ = N= gcd(N; 0 � JMAX + 1 � 1) 8= gcd(8; 1) = 8 8= gcd(8; 1) = 8

X[I][1] Loop I DI = UI = N= gcd(N; 1 � JMAX + 0 � 1) 8= gcd(8; 29) = 8 8= gcd(8; 32) = 1
Loop J DJ = UJ = N= gcd(N; 0 � JMAX + 0 � 1) 8= gcd(8; 0) = 1 8= gcd(8; 0) = 1

Overall Loop I 8 1
Loop J 8 8

(b)

Figure 4. Modulo unrolling for code fragment from Tomcatv. (a) shows the code fragment. (b) shows the unroll factors computed
for two of the accesses for N = 8 and X and Y array sizes being 29�29. The unroll factors are shown with and without the padding
optimization. The last row shows the overall unroll factor computed to be the LCM of all 7 accesses.

perfectly nested loops, non-unit loop step sizes, and hand-
linearized multidimensional arrays. It also handles un-
known loop bounds, but code with unknown lower bounds
may require additional transformations as explained in Sec-
tion 4.3.

Bounds on unroll factors Unrolling incurs the cost in-
creased code size. It can be shown that the unroll factor U j

derived in Theorem 1 is provably at most N , the number
of tiles. In the worst case, since all the k loop dimensions
may be unrolledN ways, the overall code growth is at most
a factor of N k. For k >=2 this can be large. In practice,
however, the overall code growth is often limited to N irre-
spective of k.

4.2. Padding Optimization

For most of the simple index functions which occur in
practice, a simple optimization enables us to restrict the
overall code growth. The optimization arises out of the fol-
lowing observation. It can be shown that if the last dimen-
sion size MAXd is a multiple of the number of tiles N , and
the affine function representing the last array dimension in-
dex refers to at most one loop variable, then at most one of
the loops in the enclosing loop nest needs to be unrolled for
that access. This would imply that the overall code growth
would be limited to N , irrespective of k. This leads to the
padding optimization: pad the last array dimension size to
be a multiple ofN for all arrays. This is profitable whenever

there are accesses to the array whose last dimension refer to
at most one loop variable. In addition, padding the last di-
mension greatly simplifies the code generation, as shown in
Section 4.4.

As an example of how modulo unrolling is used to au-
tomatically compute the unroll factors, consider Figure 4.
Figure 4(a) shows a code fragment from Tomcatv, one of
the Spec92 benchmarks. Figure 4(b) shows the unroll fac-
tors computed using modulo unrolling for the X [I ][J ] and
X [I ][1] accesses on different rows, for both I and J loops.
The last row shows the overall unroll factors. The sec-
ond columm shows the expressions for unroll factors using
the formula in Theorem 1. Assuming N = 8 and array
sizes for the X and Y arrays being 29 � 29, the third and
fourth columns show the unroll factors with and without
the padding optimization. In the fourth column, the last di-
mension size JMAX = 29 is assumed to be padded to 32,
the next multiple of N . As we can see, the unroll factors
for the X [I ][J ] access for the I and J loops are 1 and 8 af-
ter padding. They would have been larger (8 and 8) without
padding. If the unroll factors induced by all the accesses are
similarly computed (not shown), and the LCM per dimen-
sion taken, this will yield the overall unroll factors in the
last row.

In some cases the padding optimization fails to bound the
overall code growth to N . These include cases which are
not simple index functions, as well as cases where the loop
nest contains multiple simple index functions which some-
times may induce unrolls on different loop dimensions. For
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these cases, if the code growth is deemed excessive, the ar-
ray accesses can simply be executed on the dynamic net-
work, thus avoiding any code growth. The dynamically exe-
cuted accesses however do not interfere with the promotion
of other accesses.

4.3. Additional transformations

After the code is unrolled by the factors dictated by The-
orem 1, all affine array accesses will always refer to the
same tile. In addition in most cases after unrolling, the tile
numbers of the accesses are compile-time constants. How-
ever, for a loop with an unknown lower bound and a non-
unit step size, the repeating pattern of tile numbers may de-
pend on the lower bound. As an example, consider the code
in Figure 5. When the lower bound lb is 0, the tiles refer-
enced by successive accesses is 0, 2, 0, 2, ..., but if lb is
2 the pattern changes to 1, 3, 1, 3, ... . As a result, static
promotion is not possible.

for i=lb to 99 step 2 do
A[i] = ...

endfor

Figure 5. Example loop with unknown lower bound and
non-unit step size

To allow static promotion for a loop with unknown loop
bounds and non-unit step size, a switch statement is needed
in the output code. The switch is made on the value of lb
mod N and has Dj / Uj cases, each executing the original
loop unrolled by a factor Uj but with different patterns of
tile numbers.

4.4. Affine code generation

Once loops are unrolled and any required additional
transformations performed, each affine access will refer to
the same tile. This section outlines how the constant tile
numbers and the expressions for local offsets within the tiles
are actually computed.

Code generation effectively distributes a single array of
S elements in the original program across the tiles, so that
each tile has an array of size dS=Ne. Using low-order in-
terleaving, the tile number of an access is its global offset
modulo N , and the local offset is the global offset divided
by N . When the last dimension is padded, as is done be-
cause of the padding optimization above, the tile number is
simply the last dimension modulo N . In addition, the local
offset is obtained by replacing the last dimension index with
the index divided by N .

Strip mining While this last observation may be used to
generate code directly, we automate this process by strip
mining the last dimension by N and strength reducing the
divide operations. This process is very similar to that used
in [2] for a different purpose. Strip mining replaces the last
dimension by itself divided by N , and it adds a new dimen-
sion at the end with index being the original last dimen-
sion index mod N . The division expressions are strength
reduced in all cases, and the mod expressions representing
tile numbers are reduced to constants using compiler knowl-
edge of the modulo values of loop variables combined with
modulo arithmetic [2].

Startup and cleanup code Note that unrolling may gen-
erate cleanup code after the unrolled loop if the number of
iterations is not a multiple of the unroll factor. In addition,
we generate startup code when the lower bound is unknown
so that we can start the main unrolled loop at the next higher
multiple of N , thus making the tile numbers known inside
the main loop.

idiv4 = 0;
for i=0 to 99 step 4 do

A[idiv4][0] = ...
A[idiv4][1] = ...
A[idiv4][2] = ...
A[idiv4][3] = ...
idiv4++

endfor

Figure 6. Statically promoted code for example in Fig-
ure 3

Figure 6 shows the final result of array static promotion
on the original code in Figure 3 for a four-tile Raw machine.
The code is first unrolled by N = 4 and the last array di-
mension is strip mined by N = 4. The division expression
is strength reduced to the variable ’idiv4’. The new last di-
mension in Figure 6 represents the tile numbers, which have
been reduced to the constants 0, 1, 2 and 3. The tile access
pattern in the transformed loop is 0, 1, 2, 3, 0, 1, 2, 3 ... as in
the original code, except that now each access always refer
to the same tile. This transformed code is finally mapped by
the space-time scheduler to the Raw executable.

5. Other optimizations for array accesses

This section outlines two additional optimizations for ar-
ray accesses on Raw, dependence elimination and array per-
mutation transformation.

Dependence elimination Dependence edges are intro-
duced between accesses which the compiler can either de-
termine to be the same or is unable to prove to be differ-
ent. Unnecessary dependence edges restrict ILP, since they
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Benchmark Source Lang. Lines Primary Seq. RT Description
of code Array size (cycles)

fpppp-kernel Spec92 Fortran 735 - 8.98K Electron Interval Derivatives
btrix Nasa7:Spec92 Fortran 236 15�15�15�5 287M Vectorized Block Tri-Diagonal Solver
cholesky Nasa7:Spec92 Fortran 126 3�32�32 34.3M Cholesky Decomposition/Substitution
vpenta Nasa7:Spec92 Fortran 157 32�32 21.0M Inverts 3 Pentadiagonals Simultaneously
tomcatv Spec92 Fortran 254 32�32 78.4M Mesh Generation with Thompson’s Solver
mxm Nasa7:Spec92 Fortran 64 32�64, 64�8 2.01M Matrix Multiplication
life Rawbench C 118 32�32 2.44M Conway’s Game of Life
jacobi Rawbench C 59 32�32 2.38M Jacobi Relaxation

Table 1. Benchmark characteristics. Column Seq. RT shows the run-time for the uniprocessor code generated by the Machsuif
MIPS compiler.

imply access sequentialization and thus restrict scheduling
freedom. For scientific codes containing affine array ac-
cesses, three simple rules suffice to disambiguate most ac-
cesses which can be disambiguated. First, accesses deter-
mined to refer to different tiles by the method in Section 4
are always memory independent. Second, even among ac-
cesses referring to the same processor, accesses belonging
to the same uniformly generated set differing by a non-zero
constant must also be memory independent. 2 Finally, ac-
cesses to different un-aliased arrays are always different.

Array permutation transformation Sometimes the static
promotion technique described in Section 4 may demand
that the outer loop in a loop nest be unrolled and leave the
inner loop as is. This is ineffective in terms of exposing
ILP within basic blocks, because the basic blocks are now
all very small. Array permutation transformation is a so-
lution which replaces instances of the array inducing the
outer loop unrolls by a permuted but otherwise identical ar-
ray, such that accesses to the array now induce unrolls on
inner loop. When all loops in a program request the same
permutation, we change the orientation of the original ar-
ray to match the permutation. When different loops request
conflicting permutations, it might be profitable to copy from
one permutation array to another in between loops.

Array permutation is currently performed by hand in
places where it is profitable. It can be automated by dis-
covering requested permutations and using a cost model to
determine when copying is profitable.

6. Experimental Results

This section presents some performance results of the
Raw compiler which implements modulo unrolling. Experi-
ments are performed on the Raw simulator, which simulates

2Two affine array accesses are in the same uniformly generated set if
they access the same array, and their index expressions differ by at most a
constant. For example, A[i] and A[i+2] are in the same uniformly gener-
ated set, but A[i] and A[i+j] are not [1].

Benchmark N=1 N=2 N=4 N=8 N=16 N=32

fpppp-kernel 0.48 0.68 1.36 3.01 6.02 9.42
btrix 0.83 1.48 2.61 4.40 8.58 9.64
cholesky 0.88 1.68 3.38 5.48 10.30 14.81
vpenta 0.70 1.76 3.31 6.38 10.59 19.20
tomcatv 0.92 1.64 2.76 5.52 9.91 19.31
mxm 0.94 1.97 3.60 6.64 12.20 23.19
life 0.94 1.71 3.00 6.64 12.66 23.86
jacobi 0.89 1.70 3.39 6.89 13.95 38.35

Table 2. Benchmark Speedup. Speedup compares the run-
time of the RAWCC-compiled code versus the run-time of
the code generated by the Machsuif MIPS compiler.

the Raw prototype described in Section 2.1. A description
of parameters of the Raw prototype, including instruction
and communication latencies can be found in [9].

The benchmarks we select include programs from the
Raw benchmark suite [3], program kernels from the nasa7
benchmark of Spec92, tomcatv of Spec92, and the ker-
nel basic block which accounts for 50% of the run-time
in fpppp of Spec92. Since the Raw prototype currently
does not support double-precision floating point, all floating
point operations in the original benchmarks are converted to
single precision. Table 1 gives some basic characteristics of
the benchmarks.

Speedup We compare results of the Raw compiler with
the results of a MIPS compiler provided by Machsuif [12]
targeted for an R2000. Table 2 shows the speedups attained
by the benchmarks for Raw machines of various sizes. Note
that these speedups do not measure the advantage Raw is at-
taining over modern architectures due to a faster clock, nor
do they measure the disadvantages of single-issue versus
multiple-issue. The results show that the Raw compiler is
able to exploit ILP profitably across the Raw tiles for all the
benchmarks. The average speedup on 32 tiles is 19.7.

The speedup numbers demonstrate the effectiveness of
the static promotion. The modulo unrolling strategy is able
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Benchmark N=1 N=2 N=4 N=8 N=16 N=32

fpppp-kernel 0.48 0.68 1.36 3.01 6.02 9.42
btrix 0.83 1.92 1.74 2.80 3.79 4.84
cholsky 0.88 0.92 1.31 1.82 1.78 1.75
vpenta 0.70 1.00 1.29 1.48 1.45 1.33
tomcatv 0.92 1.43 2.14 2.69 2.81 2.81
mxm 0.94 1.49 2.08 2.70 2.64 2.48
life 0.94 1.22 2.62 3.91 4.16 4.26
jacobi 0.89 1.06 1.47 2.08 2.30 2.24

Table 3. Benchmark Speedup under trivial static promo-
tion, where all arrays are mapped to a single tile.

to statically promote all array accesses in these applica-
tions. For some of the applications we achieve close to
linear speedup. Note that the speedups are attained from
sequential code using automatic parallelization, and not for
code tailored to any high-performance architecture.

Most of the speedup attained can be attributed to the ex-
ploitation of ILP, but unrolling plays a beneficiary role as
well. In RAWCC, unrolling speeds up a program by expos-
ing scalar optimizations across loop iterations. This latter
effect is most evident in jacobi and life, where consecu-
tive iterations share loads to same array elements which can
be eliminated through common subexpression elimination.
The large number of such shared references in jacobi ex-
plains why it achieves super-linear speedup. For most other
applications, this shared effect was less significant.

Table 3 shows the speedup of the applications using the
trivial static promotion technique of mapping all arrays to
a single tile. The resulting speedups no longer scale to 32
tiles. Mapping all the memory to one tile limits the memory
bandwidth, creates a communication hotspot, and prevents
locality of access while exploiting ILP. In contrast, intelli-
gent static promotion using modulo unrolling do not suffer
from any of these defects.

Table 4 shows the code growth factor for all the bench-
marks using modulo unrolling and using full unrolling on
an eight-tile machine. The code growth factor is the ra-
tio of the code size after the given transformation to the
original code size. The code sizes are collected in terms
of intermediate instructions of the SUIF intermediate for-
mat. For fppp-kernel, the code does not grow for because
it has no array accesses and no loops. For six out of eight
benchmarks, the code growth factor for modulo unrolling
(with padding) is either close to or less than the number of
tiles (N = 8). As observed in Section 4.1, the overall un-
roll factors for most commonly occurring affine accesses,
namely those with simple index expressions, are bounded
by N . The two exceptions, mxm and btrix, have larger code
growth because of the exception noted in Section 4.2. They
contain multiple simple index functions in the same loop
which induce unrolls on different loop dimensions. Never-

Benchmark Code growth factor
Modulo unrolling Full unrolling

fppp-kernel 1.0 1.0
btrix 15.3 5868.9
cholesky 8.6 1894.3
vpenta 7.2 367.3
tomcatv 9.8 331.0
mxm 28.1 1389.3
life 10.2 633.6
jacobi 8.1 512.6

Table 4. Code growth factor of benchmarks using mod-
ulo unrolling and using full unrolling on 8 processors. For
most, the code is about 8 times larger with modulo un-
rolling. Code growth will increase further with data size
for full unrolling, but not for modulo unrolling.

theless, the code growth in all cases is much less than for
full unrolling, a naive alternative approach to static promo-
tion of accesses to distributed memory. Even when possible,
the full unrolling factors increase with data size, while the
modulo unrolling factors do not.

7. Related Work

Memory bank disambiguation was introduced by Ellis in
the Bulldog Compiler [6] targeting a point-to-point VLIW
machine. For such VLIWs, he shows that successful dis-
ambiguation means that an access can be executed through
a fast “front door” to a memory bank, while an unsuccess-
ful access must be sent over a slower “back door.” However,
most VLIWs today use global buses for communication, not
a point-to-point network. VLIW machines of various de-
grees of scalability have been proposed, ranging from com-
pletely centralized machines to machines with distributed
functional units, register files, and memory [10]. The lack
of point-to-point VLIWs seems to explain the dearth of
work on memory bank disambiguation for compiling for
VLIWs.

The modulo unrolling scheme we propose is a descen-
dant of a simple technique presented by Ellis [6]. He ob-
serves that unrolling can sometimes help disambiguate ac-
cesses, but he does not attempt to formalize the observa-
tion or propose an algorithm. Instead, his technique is re-
stricted to certain array accesses which must be user identi-
fied, and he relies on user annotations to provide the unroll
factors needed for disambiguation. In contrast, we present a
fully automated and formalized technique for dense matrix
codes. This involves a theory to predict the unroll factors
required for affine function accesses along with a method to
automatically generate code in which the processor number
for each array access is known.

A different type of memory disambiguation is relevant
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on the more typical bus-based VLIW machines such as
the Multiflow Trace [10]. Relative memory disambigua-
tion [10] aims to discover if two memory access can refer
to the same memory location. Successful disambiguation
implies that accesses can be executed in parallel. Hence,
relative memory disambiguation is more closely linked to
dependence and pointer analysis techniques than to static
promotion.

Loop unrolling has been applied for other purposes by
researchers. Some techniques for software pipeline [8] uses
symbolic loop unrolling internally to decide the software
pipeline schedule. Unrolling has been studied as a method
to increase ILP by Weiss [14] and Davidson [5]. Loop un-
rolling is typically combined with register renaming [11, 7]
to increase ILP further by removing anti and output depen-
dences. While RAWCC uses unrolling primarily for static
promotion, it nevertheless obtains the benefit of the in-
creased ILP as well. We have implemented renaming in
our compiler using conventional techniques to fully exploit
the benefits of unrolling.

8. Conclusions

This paper presents modulo unrolling, a technique for
performing memory bank disambiguation of array refer-
ences at compile-time. On a Raw machine, where the com-
munication channels between the memory banks and the
processors are exposed to the compiler, the technique has
allowed the Raw compiler to manage the memory resources
statically and efficiently for dense matrix application.

This paper shows that modulo unrolling performs static
promotion by unrolling loops by a small factor, usually no
more than the amount which is needed to expose enough
parallelism to the available processors. In addition to static
promotion, modulo unrolling has two other benefits. First,
it enables full exploitation of the bandwidth of the machine.
Second, it increases parts of programs which we can stat-
ically analyze, which in turn enables the compiler to or-
chestrate significant amount of ILP. For a set of scientific
dense matrix applications, the technique has enabled the
Raw compiler to extract instruction level parallelism scal-
able with the number of processors.
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