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Abstract

Increasing demand for both greater parallelism and faster clocks
dictate that future generation architectures will need to decentral-
ize their resources and eliminate primitives that require single cy-
cle global communication. A Raw microprocessor distributes all of
its resources, including instruction streams, register files, memory
ports, and ALUs, over a pipelined two-dimensional mesh intercon-
nect, and exposes them fully to the compiler. Because communi-
cation in Raw machines is distributed, compiling for instruction-
level parallelism (ILP) requires both spatial instruction partitioning
as well as traditional temporal instruction scheduling. In addition,
the compiler must explicitly manage all communication through
the interconnect, including the global synchronization required at
branch points. This paper describes RAWCC, the compiler we have
developed for compiling general-purpose sequential programs to
the distributed Raw architecture. We present performance results
that demonstrate that although Raw machines provide no mecha-
nisms for global communication the Raw compiler can schedule to
achieve speedups that scale with the number of available functional
units.

1 Introduction

Modern microprocessors have evolved while maintaining the faith-
ful representation of a monolithic uniprocessor. While innovations
in the ability to exploit instruction level parallelism have placed
greater demands on processor resources, these resources have re-
mained centralized, creating scalability problem at every design
point in a machine. As processor designers continue in their pursuit
of architectures that can exploit more parallelism and thus require
even more resources, the cracks in the view of a monolithic under-
lying processor can no longer be concealed. An early visible effect
of the scalability problem in commercial architectures is apparent
in the clustered organization of the Multiflow computer [19]. More
recently, the Alpha 21264 [14] duplicates its register file to provide
the requisite number of ports at a reasonable clock speed.

As the amount of on-chip processor resources continues to in-
crease, the pressure toward this type of non-uniform spatial struc-
ture will continue to mount. Inevitably, from such hierarchy, re-
source accesses will have non-uniform latencies. In particular, reg-
ister or memory access by a functional unit will have a gradation
of access time. This fundamental change in processor model will
necessitate a corresponding change in compiler technology. Thus,
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instruction scheduling becomes a spatial problem as well as a tem-
poral problem.

The Raw machine [23] is a scalable microprocessor architec-
ture with non-uniform register access latencies (NURA). As such,
its compilation problem is similar to that which will be encoun-
tered by extrapolations of existing architectures. In this paper, we
describe the compilation techniques used to exploit ILP on the Raw
machine, a NURA machine composed of fully replicated process-
ing units connected via a mostly static programmable network. The
fully exposed hardware allows the Raw compiler to precisely or-
chestrate computation and communication in order to exploit ILP
within basic blocks. The compiler handles the orchestration by per-
forming spatial and temporal instruction scheduling, as well as data
partitioning using a distributed on-chip memory model.

This paper makes three contributions. First, it describes the
space-time scheduling of ILP on a Raw machine, borrowing some
techniques from the partitioning and scheduling of tasks on MIMD
machines. Second, it introduces a new control flow model based
on asynchronous local branches inside a machine with multiple in-
dependent instruction streams. Finally, it shows that independent
instruction streams give the Raw machine the ability to tolerate tim-
ing variations due to dynamic events.

The rest of the paper is organized as follows. Section 2 mo-
tivates the need for NURA machines, and it introduces the Raw
machine as one such machine. Section 3 overviews the space-
time scheduling of ILP on a Raw machine. Section 4 describes
RAWCC, the Raw compiler, and it explains the memory and data
access model RAWCC implements. Section 5 describes the basic
block orchestration of ILP. Section 6 describes the orchestration of
control flow. Section 7 shows the performance of RAWCC. Sec-
tion 8 presents related work, and Section 9 concludes.

2 Architectural motivation and background

Raw machines are made up of a set of simple tiles, each with a por-
tion of the register set, a portion of the on-chip memory, and one of
the functional units. These tiles communicate via a scalable point-
to-point interconnect. This section motivates the Raw architecture.
We examine the scalability problem of modern processors, trace
an architectural evolution that overcomes such problems, and show
that the Raw architecture is at an advanced stage of such an evolu-
tion. We highlight non-uniform register access as an important fea-
ture in scalable machines. We then describe the Raw machine, with
emphasis on features which make it an attractive scalable machine.
Finally, we describe the relationship between a Raw machine and a
VLIW machine.

The Scalability Problem Modern processors are not designed to
scale. Because superscalars require significant hardware resources



to support parallel instruction execution, architects for these ma-
chines face an uncomfortable dilemma. On the one hand, faster
machines require additional hardware resources for both computa-
tion and discovery of ILP. On the other hand, these resources often
have quadratic area complexity, quadratic connectivity, and global
wiring requirements which can be satisfied only at the cost of cycle
time degradation. VLIW machines address some of these problems
by moving the cycle-time elongating task of discovering ILP from
hardware to software, but they still suffer scalability problems due
to issue bandwidth, multi-ported register files, caches, and wire de-
lays.

Up to now, commercial microprocessors have faithfully pre-
served their monolithic images. As pressure from all sources de-
mands computers to be bigger and more powerful, this image will
be difficult to maintain. A crack is already visible in the Alpha
21264. In order to satisfy timing specification while providing the
register bandwidth needed by its dual-ported cache and four func-
tional units, the Alpha duplicates its register file. Each physical
register file provides half the required ports. A cluster is formed by
organizing two functional units and a cache port around each reg-
ister file. Communication within a cluster occurs at normal speed,
while communication across clusters takes an additional cycle.

This example suggests an evolutionary path that resolves the
scalability problem: impose a hierarchy on the organization of hard-
ware resources [22]. A processor can be composed from replicated
processing units whose pipelines are coupled together at the reg-
ister level so that they can exploit ILP cooperatively. The VLIW
Multiflow TRACE machine is a machine which adopts such a so-
lution [19]. On the other hand, its main motivation for this orga-
nization is to provide enough register ports. Communication be-
tween clusters are performed via global busses, which in modern
and future-generation technology would severely degrade the clock
speed of the machine. This problem points to the next step in the
scalability evolution – providing a scalable interconnect. For ma-
chines of modest sizes, a bus or a full crossbar may suffice. But
as the number of components increases, a point to point network
will be necessary to provide the required latency and bandwidth
at the fastest possible clock speed – a progression reminiscent of
multiprocessor evolution.

The result of the evolution toward scalability is a machine with
a distributed register file interconnected via a scalable network. In
the spirit of NUMA machines (Non-Uniform Memory Access), we
call such machines NURA machines (Non-Uniform Register Ac-
cess). Like a NUMA machine, a NURA machine connects its dis-
tributed storage via a scalable interconnect. Unlike NUMA, NURA
pools the shared storage resources at the register level. Because a
NURA machine exploits ILP of a single instruction stream, its in-
terconnect must provide latencies that are much lower than that on
a multiprocessor.

As the base element of the storage hierarchy, any change in the
register model has profound implications. The distributed nature
of the computational and storage elements on a NURA machine
means that locality should be considered when assigning instruc-
tions to functional units. Instruction scheduling becomes a spatial
problem as well as a temporal problem.

Raw architecture The Raw machine [23] is a NURA architec-
ture motivated by the need to design simple and highly scalable
processors. As depicted in Figure 1, a Raw machine comprises a
simple, replicated tile, each with its own instruction stream, and
a programmable, tightly integrated interconnect between tiles. A
Raw machine also supports multi-granular (bit and byte level) op-
erations as well as customizable configurable logic, although this
paper does not address these features.

Each Raw tile contains a simple five-stage pipeline, intercon-
nected with other tiles over a pipelined, point-to-point network.
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Figure 1: A Raw microprocessor is a mesh of tiles, each with a processor
and a switch. The processor contains instruction memory, data memory,
registers, ALU, and configurable logic (CL). The switch contains its own
instruction memory.

The tile is kept simple and devoid of complex hardware resources
in order to maximize the clock rate and the number of tiles that can
fit on a chip. Raw’s network is tightly integrated with the processor
to provide fast, register-level communication. Unlike modern su-
perscalars, the interface to this interconnect is fully exposed to the
software.

The network interface on a Raw machine is integrated directly
into the processor pipeline to support single-cycle sends and re-
ceives of word-sized values. A word of data travels across one tile
in one clock cycle. The network supports both static and dynamic
routing through the static and dynamic switches, respectively. The
static switch is programmable, allowing statically inferable com-
munication patterns to be encoded in the instruction streams of the
switches. This approach eliminates the overhead of composing and
routing a directional header, which in turn allows a single word of
data to be communicated efficiently. Accesses to communication
ports have blocking semantics that provide near-neighbor flow con-
trol; a processor or switch stalls if it is executing an instruction that
attempts to access an empty input port or a full output port. This
specification ensures correctness in the presence of timing varia-
tions introduced by dynamic events such as dynamic memory ref-
erences and I/O operations, and it obviates the lock-step synchro-
nization of program counters required by many statically scheduled
machines. The dynamic switch is a wormhole router that makes
routing decisions based on the header of each message. It includes
additional lines for flow control. This paper focuses on communi-
cation using the static network.

The Raw prototype uses a MIPS R2000 pipeline on its tile. For
the switch, it uses a stripped down R2000 augmented with a route
instruction. Communication ports are added as extensions to the
register space. The bold arrows in Figure 1 shows the organization
of ports for the static network on a single tile. Each switch on a
tile is connected to its processor and its four neighbors via an in-
put port and an output port. It takes one cycle to inject a message
from the processor to its switch, receive a message from a switch
to its processor, or route a message between neighboring tiles. A
single-word message between neighboring processors would take
four cycles. Note, however, that the ability to access the communi-
cation ports as register operands allows useful computation to over-
lap with the act of performing a send or a receive. Therefore, the
effective overhead of the communication can be as low as two cy-
cles.

In addition to its scalability and simplicity, the Raw machine is
an attractive NURA machine for several reasons:

� Multisequentiality: Multisequentiality, the presence of inde-



pendent instruction streams which can handle multiple flows
of control, is useful for four reasons. First, it significantly
enhances the potential amount of parallelism a machine can
exploit [18]. Second, it enables asynchronous global branch-
ing described in Section 6, a means of implementing global
branching on Raw’s distributed interconnect. Third it enables
control localization, a technique we introduce in Section 6 to
allow ILP to be scheduled across branches. Finally, it gives
a Raw machine better tolerance of dynamic events compared
to a VLIW machine, as shown in Section 7.

� Simple, scalable means of expanding the register space: Each
Raw tile contains a portion of the register space. Because
the register set is distributed along with the functional units
and memory ports, the number of registers and register ports
scales linearly with total machine size. Each tile’s individual
register set, however, has only a relatively small number of
registers and register ports, so the complexity of the register
file will not become an impediment to increasing the clock
rate. Additionally, because all physical registers are architec-
turally visible, the compiler can use all of them to minimize
the number of register spills.

� A compiler interface for locality management: The Raw ma-
chine fully exposes its hardware to the compiler by exporting
a simple cost model for communication and computation.
The compiler, in turn, is responsible for the assignment of
instructions to Raw tiles. Instruction partitioning and place-
ment is best performed at compile time because the algo-
rithms require a very large window of instructions and the
computational complexity is greater than can be afforded at
run-time.

� Mechanism for precise orchestration: Raw’s programmable
static switch is an essential feature for exploiting ILP on
the Raw machine. First, it allows single-word register-level
transfer without the overhead of composing and routing a
message header. Second, the Raw compiler can use its full
knowledge of the network status to minimize congestion and
route data around hot spots. More importantly, the compile-
time knowledge about the order in which messages will be
received on each tile obviates the run-time overhead of de-
termining the contents of incoming messages.

Relationship between Raw and VLIW machines The Raw ar-
chitecture draws much of its inspiration from VLIW machines.
They both share the common goal of statically scheduling ILP.
From a macroscopic point of view, a Raw machine is the result
of a natural evolution from a VLIW, driven by the desire to add
more computational resources.

There are two major distinctions between a VLIW machine and
Raw machine. First, they differ in resource organization. VLIW
machines of various degrees of scalability have been proposed,
ranging from completely centralized machines to machines with
distributed functional units, register files, and memory [19]. The
Raw machine, on the other hand, is the first ILP microprocessor that
provides a software-exposed, scalable, two-dimensional intercon-
nect between clusters of resources. This feature limits the length of
all wires to the distance between neighboring tiles, which in turn
enables a higher clock rate.

Second, the two machines differ in their control flow model. A
VLIW machine has a single flow of control, while a Raw machine
has multiple flows of control. As explained above, this feature
increases available exploitable parallelism, enables asynchronous
global branching and control localization, and improves tolerance
of dynamic events.

3 Overview of space-time scheduling

The space-time scheduling of ILP on a Raw machine consists of
orchestrating the parallelism within a basic block across the Raw
tiles and handling of the control flow across basic blocks. Basic
block orchestration, in turn, consists of several tasks: the assign-
ment of instructions to processing units (spatial scheduling), the
scheduling of those instructions on the tiles they are assigned (tem-
poral scheduling), the assignment of data to tiles, and the explicit
orchestration of communication across a mesh interconnect, both
within and across basic blocks. Control flow between basic blocks
is explicitly orchestrated by the compiler through asynchronous
global branching, an asynchronous mechanism for implementing
branching across all the tiles using the static network and individual
branches on each tile. In addition, an optimization called control lo-
calization allows some branches in the program to affect execution
on only one tile.

The two central tasks of the basic-block orchestrater are the
assignment and scheduling of instructions. The Raw compiler per-
forms assignment in three steps: clustering, merging, and place-
ment. Clustering groups together instructions, such that instruc-
tions within a cluster have no parallelism that can profitably be
exploited given the cost of communication. Merging reduces the
number of clusters down to the number of processing units by merg-
ing the clusters. Placement performs a bijective mapping from the
merged clusters to the processing units, taking into account the
topology of the interconnect. Scheduling of instructions is per-
formed with a traditional list scheduler.

Other functionalities of the basic-block orchestrater are inte-
grated into this framework as seamlessly as possible. Data assign-
ment and instruction assignment are implemented to allow flow of
information in both directions, thus reflecting the inter-dependent
nature of the two assignment problems. Inter-block and intra-block
communication are both identified and handled in a single, unified
manner. The list scheduler is extended to schedule not only com-
putation instructions but communication instructions as well, in a
manner which guarantees the resultant schedule is deadlock-free.

MIMD task scheduling There are two ways to view Raw’s prob-
lem of assigning and scheduling instructions. From one perspec-
tive, the Raw compiler statically schedules ILP just like a VLIW
compiler. Therefore, a clustered VLIW with distributed regis-
ters and functional units faces a similar problem as the Raw ma-
chine [6][10][12]. From another perspective, the Raw compiler
schedules tasks on a MIMD machine, where tasks are at the gran-
ularity of instructions. A MIMD machine faces a similar assign-
ment/scheduling problem, but at a coarser granularity [1][20][26].

The Raw compiler leverages research in the rich field of MIMD
task scheduling. MIMD scheduling research is applicable to clus-
tered VLIWs as well. To our knowledge, this is the first paper
which attempts to leverage MIMD task scheduling technology for
the scheduling of fine-grained ILP. We show that such technology
produces good results despite having fine-grained tasks (i.e., single
instructions).

4 RAWCC

RAWCC, the Raw compiler, is implemented using the SUIF com-
piler infrastructure [24]. It compiles both C and FORTRAN pro-
grams. The Raw compiler consists of three phases. The first phase
performs high level program analysis and transformations. It con-
tains Maps [7], Raw’s compiler managed memory system. The
memory provided by Maps and the data access model is briefly
described below. The initial phase also includes traditional tech-
niques such as memory disambiguation, loop unrolling, and array
reshape, plus a new control optimization technique to be discussed



in Section 6. In the future, it will be extended with the advanced
ILP-enhancing techniques discussed in Section 8.

The second phase, the space-time scheduler, performs the schedul-
ing of ILP. Its two functions, basic block orchestration and con-
trol orchestration, are described in Section 5 and Section 6, respec-
tively.

The final phase in RAWCC generates code for the processors
and the switches. It uses the MIPS back-end developed in Machine
SUIF [21], with a few modifications to handle the communication
instructions and communication registers.

Memory and data access model Memory on a Raw machine is
distributed across the tiles. The Raw memory model provides two
ways of accessing this memory system, one for static reference and
one for dynamic reference. A reference is static if every invocation
of it can be determined at compile-time to refer to memory on one
specific tile. We call this property the static residence property.
Such a reference is handled by placing it on the corresponding tile
at compile time. A non-static or dynamic reference is handled by
disambiguating the address at run-time in software, using the dy-
namic network to handle any necessary communication.

The Raw compiler attempts to generate as many static refer-
ences as possible. Static references are attractive for two reasons.
First, they can proceed without any of the overhead due to dynamic
disambiguation and synchronization. Second, they can potentially
take advantage of the full memory bandwidth. This paper focuses
on results which can be attained when the Raw compiler succeeds
in identifying static references. A full discussion of the compiler
managed memory system, including issues pertaining to dynamic
references, can be found in [7]. In Section 7, we do make one
observation relevant to dynamic references: decoupled instruction
streams allow the Raw machine to tolerate timing variations due to
events such as dynamic memory accesses.

Static references can be created through intelligent data map-
ping and code transformation. For arrays, the Raw compiler dis-
tributes them through low order interleaving, which interleaves the
arrays element-wise across the memory system. For array refer-
ences which are affine functions of loop indices, we have developed
a technique which uses loop unrolling to satisfy the static residence
property. Our technique is a generalization of an observation made
by Ellis [12]. Details are presented in [8].

Scalar values communicated within basic blocks follow a data-
flow model, so that the tile consuming a value receives it directly
from the producer tile. To communicate values across basic block
boundaries, each program variable is assigned a home tile. At the
beginning of a basic block, the value of a variable is transferred
from its home to the tiles which use the variable. At the end of a
basic block, the value of a modified variable is transferred from the
computing tile to its home tile.

5 Basic block orchestrater

The basic block orchestrater exploits the ILP within a basic block
by distributing the parallelism within the basic block across the
tiles. It transforms a single basic block into an equivalent set of in-
tercommunicating basic blocks that can be run in parallel on Raw.
Orchestration consists of assignment and scheduling of instruc-
tions, assignment of data, and the orchestration of communication.
This section first gives the implementation details of how the or-
chestrater performs these functions, followed by a general discus-
sion of its design.

Figure 2 shows the phase ordering of the basic block orches-
trater. Each phase is described in turn below. To facilitate the expla-
nation, Figure 3 shows the transformations performed by RAWCC
on a sample program.

Communication
Code Generator

   Initial Code
Transformation

Instruction
Partitioner

   Event
Scheduler

Data & Instruction
        Placer

Global Data
 Partitioner

Figure 2: Phase ordering of the basic block orchestrater.

Initial code transformation Initial code transformation massages
a basic block into a form suitable for subsequent analysis phases.
Figure 3a shows the transformations performed by this phase. First,
renaming converts statements of the basic block to static single as-
signment form. Such conversion removes anti-dependencies and
output-dependencies from the basic block, which in turn exposes
available parallelism. It is analogous to hardware register renam-
ing performed by superscalars.

Second, two types of dummy instructions are inserted. Read
instructions are inserted for variables which are live-on-entry and
read in the basic block. Write instructions are inserted for variables
which are live-on-exit and written within the basic block. These
instructions simplify the eventual representation of stitch code, the
communication needed to transfer values between the basic blocks.
This representation in turn allows the event scheduler to overlap the
stitch code with other work in the basic block.

Third, expressions in the source program are decomposed into
instructions in three-operand form. Three-operand instructions are
convenient because they correspond closely to the final machine in-
structions and because their cost attributes can easily be estimated.
Therefore, they are logical candidates to be used as atomic parti-
tioning and scheduling units.

Finally, the dependence graph for the basic block is constructed.
A node represents an instruction, and an edge represents a true flow
dependence between two instructions. Each node is labeled with
the estimated cost of running the instruction. For example, the node
for a floating point add in the example is labeled with two cycles.
Each edge represents a word of data transfer.

Instruction partitioner The instruction partitioner partitions the
original instruction stream into multiple instruction streams, one
for each tile. It does not bind the resultant instruction streams to
specific tiles – that function is performed by the instruction placer.
When generating the instruction streams, the partitioner attempts
to balance the benefits of parallelism against the overheads of com-
munication. Figure 3b shows a sample output of this phase.

Certain instructions have constraints on where they can be par-
titioned and placed. Read and write instructions to the same vari-
able have to be mapped to the processor on which the data resides
(see global data partitioner and data and instruction placer below).
Similarly, loads and stores satisfying the static residence property
must be mapped to a specific tile. The instruction partitioner per-
forms its duty without considering these constraints. They are taken
into account in the global data partitioner and in the data and in-
struction placer.
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Figure 3: An example of the program transformations performed by RAWCC. (a) shows the initial program undergoing transformations made by initial code
transformation; (b) shows result of instruction partitioner; (c) shows result of global data partitioner; (d) shows result of data and instruction placer, (e)
shows result of communication code generator; (f) shows final result after event scheduler.



Partitioning is performed through clustering and merging phases
introduced in Section 3. We describe each in turn:

Clustering: Clustering attempts to partition instructions to mini-
mize run-time, assuming non-zero communication cost but infinite
processing resources. The cost of communication is modeled as-
suming an idealized uniform network whose latency is the average
latency of the actual network. The phase groups together instruc-
tions that either have no parallelism, or whose parallelism is too
fine-grained to be exploited given the communication cost. Sub-
sequent phases guarantee that instructions with no mapping con-
straints in the same cluster will be mapped to the same tile.

RAWCC employs a greedy technique based on the estimation
of completion time called Dominant Sequent Clustering [26]. Ini-
tially, each instruction node belongs to a unit cluster. Communi-
cation between clusters is assigned a uniform cost. The algorithm
visits instruction nodes in topological order. At each step, it selects
from the list of candidates the instruction on the longest execution
path. It then checks whether the selected instruction can merge into
the cluster of any of its parent instructions to reduce the estimated
completion time of the program. Estimation of the completion time
is dynamically updated to take into account the clustering decisions
already made, and it reflects the cost of both computation and com-
munication. The algorithm completes when all nodes have been
visited exactly once.

Merging: Merging combines clusters to reduce the number of
clusters down to the number of tiles, again assuming an idealized
switch interconnect. Two useful heuristics in merging are to main-
tain load balance and to minimize communication events. The Raw
compiler currently uses a locality-sensitive load balancing tech-
nique which tries to minimize communication events unless the
load imbalance exceeds a certain threshold. We plan to consider
other strategies, including an algorithm based on estimating com-
pletion time, in the future.

The current algorithm is as follows. The Raw compiler initial-
izes N empty partitions (where N is the number of tiles), and it
visits clusters in decreasing order of size. When it visits a cluster,
it merges the cluster into the partition with which it communicates
the most, unless such merging results in a partition which is 20%
larger than the size of an average partition. If the latter condition
occurs, the cluster is placed into the smallest partition instead.

Global data partitioner To communicate values of data elements
between basic blocks, a scalar data element is assigned a “home”
tile location. Within basic blocks, renaming localizes most value
references, so that only the initial reads and the final write of a vari-
able need to communicate with its home location. Like instruction
mapping, the Raw compiler divides the task of data home assign-
ment into data partitioning and data placement.

The job of the data partitioner is to group data elements into
sets, each of which is to be mapped to the same processor. To pre-
serve locality as much as possible, data elements which tend to be
accessed by the same thread should be grouped together. To parti-
tion data elements into sets which are frequently accessed together,
RAWCC performs global analysis. The algorithm is as follows.
For initialization, a virtual processor number is arbitrarily assigned
to each instruction stream on each basic block, as well as to each
scalar data element. In addition, statically analyzable memory ref-
erences are first assigned dummy data elements, and then those ele-
ments are assigned virtual processor numbers corresponding to the
physical location of the references. Furthermore, the access pat-
tern of each instruction stream is summarized with its affinity to
each data element. An instruction stream is said to have affinity
for a data element if it either accesses the element, or it produces
the final value for the element in that basic block. After initial-
ization, the algorithm attempts to localize as many references as

possible by remapping the instruction streams and data elements.
First, it remaps instruction streams to virtualized processors given
fixed mapping of data elements. Then, it remaps data elements to
virtualized processors given fixed mappings of instruction streams.
Only the true data elements, not the dummy data elements corre-
sponding to fixed memory references, are remapped in this phase.
This process repeats until no incremental improvement of locality
can be found. In the resulting partition, data elements mapped to
the same virtual processor are likely related based on the access
patterns of the instruction streams.

Figure 3c shows the partitioning of data values into such affinity
sets. Note that variables introduced by initial code transformation
(e.g., y 1 and tmp 1) do not need to be partitioned because their
scopes are limited to the basic block.

Data and instruction placer The data and instruction placer maps
virtualized data sets and instruction streams to physical processors.
Figure 3d shows a sample output of this phase. The placement
phase removes the assumption of the idealized interconnect and
takes into account the non-uniform network latency. Placement of
each data partition is currently driven by those data elements with
processor preferences, i.e., those corresponding to fixed memory
references. It is performed before instruction placement to allow
cost estimation during instruction placement to account for the lo-
cation of data. In additional to mapping data sets to processors, the
data placement phase also locks the dummy read and write instruc-
tions to the home locations of the corresponding data elements.

For instruction placement, RAWCC uses a swap-based greedy
algorithm to minimize the communication bandwidth. It initially
assigns clusters to arbitrary tiles, and it looks for pairs of mappings
that can be swapped to reduce the total number of communication
hops.

Communication code generator The communication code gen-
erator translates each non-local edge (an edge whose source and
destination nodes are mapped to different tiles) in the dependence
graph into communication instructions which route the necessary
data value from the source tile to the destination tile. Figure 3e
shows an example of such transformation. Communication instruc-
tions include send and receive instructions on the processors as
well as route instructions on the switches. New nodes are inserted
into the graph to represent the communication instructions, and the
edges of the source and destination nodes are updated to reflect the
new dependence relations arising from insertion of the communica-
tion nodes. To minimize the volume of communication, edges with
the same source are serviced jointly by a single multicast operation,
though this optimization is not illustrated in the example.

The current compilation strategy assumes that network con-
tention is low, so that the choice of message routes has less impact
on the code quality compared to the choice of instruction parti-
tions or event schedules. Therefore, communication code gener-
ation in RAWCC uses dimension-ordered routing; this spatial as-
pect of communication scheduling is completely mechanical. If
contention is determined to be a performance bottleneck, a more
flexible technique can be employed.

Event scheduler The event scheduler schedules the computation
and communication events within a basic block with the goal of
producing the minimal estimated run-time. Because routing in Raw
is itself specified with explicit switch instructions, all events to be
scheduled are instructions. Therefore, the scheduling problem is a
generalization of the traditional instruction scheduling problem.

The job of scheduling communication instructions carries with
it the responsibility of ensuring the absence of deadlocks in the
network. If individual communication instructions are scheduled
separately, the Raw compiler would need to explicitly manage the
buffering resources on each communication port to ensure the ab-



sence of deadlock. Instead, RAWCC avoids the need for such man-
agement by treating a single-source, multiple-destination commu-
nication path as a single scheduling unit. When a communication
path is scheduled, contiguous time slots are reserved for instruc-
tions in the path so that the path incurs no delay in the static sched-
ule. By reserving the appropriate time slot at the node of each
communication instruction, the compiler automatically reserves the
corresponding channel resources needed to ensure that the instruc-
tion can eventually make progress.

Though event scheduling is a static problem, the schedule gen-
erated must remain deadlock-free and correct even in the presence
of dynamic events such as cache misses. The Raw system uses the
static ordering property, implemented through near-neighbor flow
control, to ensure this behavior. The static ordering property states
that if a schedule does not deadlock, then any schedule with the
same order of communication events will not deadlock. Because
dynamic events like cache misses only add extra latency but do not
change the order of communication events, they do not affect the
correctness of the schedule.

The static ordering property also allows the schedule to be stored
as compact instruction streams. Timing information needs not be
preserved in the instruction stream to ensure correctness, thus obvi-
ating the need to insert no-op instructions. Figure 3f shows a sam-
ple output of the event scheduler. Note, first, the proper ordering
of the route instructions on the switches, and, second, the success-
ful overlap of computation with communication on P0, where the
processor computes and writes z while waiting on the value of y 1.

RAWCC uses a single greedy list scheduler to schedule both
computation and communication. The algorithm keeps track of a
ready list of tasks. A task is either a computation or a communi-
cation path. As long as the list is not empty, it selects and sched-
ules the task on the ready list with the highest priority. The priority
scheme is based on the following observation. The priority of a task
should be directly proportional to the impact it has on the comple-
tion time of the program. This impact, in turn, is lower-bounded by
two properties of the task: its level, defined to be its critical path
length to an exit node; and its average fertility, defined to be the
number of descendent nodes divided by the number of processors.
Therefore, we define the priority of a task to be a weighted sum of
these two properties.

Discussion There are two reasons for decomposing the space-time
instruction scheduling problem into multiple phases. First, given a
machine with a non-uniform network, empirical results have shown
that separating assignment from scheduling yields superior perfor-
mance [25]. Furthermore, given a graph with fine-grained paral-
lelism, having a clustering phase has been shown to improve per-
formance [11].

In addition, the space-time scheduling problem, as well as each
of its subproblems, is NP complete [20]. Decomposing the problem
into a set of greedy heuristics enables us to develop an algorithm
which is computationally tractable. The success of this approach,
of course, depends heavily on carefully choosing the problem de-
composition. The decomposition should be such that decisions
made be an earlier phase should not inhibit subsequent phases from
making good decisions.

We believe that separating the clustering and scheduling phases
was a good decomposition decision. The benefits of dividing merg-
ing and placement have been less clear. Combining them so that
merging is sensitive to the processor topology may be preferable,
especially because on a Raw machine some memory instructions
have predetermined processor mappings. We intend to explore this
issue in the future.

The basic block orchestrater integrates its additional responsi-
bilities relatively seamlessly into the basic space-time scheduling
framework. By inserting dummy instructions to represent home

tiles, inter-basic-block communication can be represented the same
way as intra-basic-block communication. The need for explicit
communication is identified through edges between instructions
mapped to different tiles, and communication code generation is
performed by replacing these edges with a chain of communica-
tion instructions. The resultant graph is then presented to a vanilla
greedy list scheduler, modified to treat each communication path as
a single scheduling unit. This list scheduler is then able to gener-
ate a correct and greedily optimized schedule for both computation
and communication.

Like a traditional uniprocessor compiler, RAWCC faces a phase
ordering problem with event scheduling and register allocation. Cur-
rently, the event scheduler runs before register allocation; it has
no register consumption information and does not consider regis-
ter pressure when performing the scheduling. The consequence is
two-fold. First, instruction costs may be underestimated because
they do not include spill costs. Second, the event scheduler may
expose too much parallelism, which cannot be efficiently utilized
but which comes at a cost of increased register pressure. The ex-
perimental results for fpppp-kernel in Section 7 illustrate this prob-
lem. We are exploring this issue and have examined a promising
approach which adjusts the priorities of instructions based on how
the instructions effect the register pressure. In addition, we intend
to explore the possibility of cooperative inter-tile register alloca-
tion.

6 Control orchestration

Raw tiles cooperate to exploit ILP within a basic block. Between
basic blocks, the Raw compiler has to orchestrate the control flow
on all the tiles. This orchestration is performed through asynchronous
global branching. To reduce the need to incur the cost of this global
orchestration and expand the scope of the basic block orchestrater,
the Raw compiler performs control localization, a control optimiza-
tion which localizes the effects of a branch in a program to a single
tile.

Asynchronous global branching The Raw machine implements
global branching asynchronously in software by using the static
network and local branches. First, the branch value is broadcasted
to all the tiles through the static network. This communication
is exported and scheduled explicitly by the compiler just like any
other communication, so that it can overlap with other computa-
tion in the basic block. Then, each tile and switch individually
performs a branch without synchronization at the end of its basic
block execution. Correct execution is ensured despite introducing
this asynchrony because of the static ordering property.

The overhead of global branching on a Raw machine is explicit
in the broadcast of the branch condition. This contrasts with the
implicit overhead of global wiring incurred by global branching in
VLIWs and superscalars. Raw’s explicit overhead is desirable for
three reasons. First, the compiler can hide the overhead by over-
lapping it with useful work. Second, this branching model does
not require dedicated wires used only for branching. Third, the
approach is consistent with the Raw philosophy of eliminating all
global wires, which taken as a whole enables a much faster clock
speed.

Control localization Control localization is the technique of treat-
ing a branch-containing code sequence as a single unit during as-
signment and scheduling. This assignment/scheduling unit is called
a macro-instruction. The technique is a control optimization made
possible though Raw’s independent flows of control, which allows
a Raw machine to execute different macro-instructions concurrently
on different tiles. By localizing the effects of branches to individual
tiles, control localization avoids the broadcast cost of asynchronous



Benchmark Source Lang. Lines Primary Seq. RT Description
of code Array size (cycles)

fpppp-kernel Spec92 FORTRAN 735 - 8.98K Electron Interval Derivatives
btrix Nasa7:Spec92 FORTRAN 236 15�15�15�5 287M Vectorized Block Tri-Diagonal Solver
cholesky Nasa7:Spec92 FORTRAN 126 3�32�32 34.3M Cholesky Decomposition/Substitution
vpenta Nasa7:Spec92 FORTRAN 157 32�32 21.0M Inverts 3 Pentadiagonals Simultaneously
tomcatv Spec92 FORTRAN 254 32�32 78.4M Mesh Generation with Thompson’s Solver
mxm Nasa7:Spec92 FORTRAN 64 32�64, 64�8 2.01M Matrix Multiplication
life Rawbench C 118 32�32 2.44M Conway’s Game of Life
jacobi Rawbench C 59 32�32 2.38M Jacobi Relaxation

Table 1: Benchmark characteristics. Column Seq. RT shows the run-time for the uniprocessor code generated by the Machsuif MIPS compiler.

macroins

(a) (b)

Figure 4: An illustration of control localization. (a) shows a control
flow graph before control localization. Each oval is an instruction, and the
dashed box marks the code sequence to be control localized. (b) shows the
control flow graph after control localization.

global branching.
Figure 4 shows an example of control localization. In the figure,

4a shows a control flow graph before control localization, with the
dashed box marking the sequence of code to be control localized.
4b shows the control flow graph after control localization, where
the original branch has been hidden inside the macro-instruction.
Note that control localization has merged the four original basic
blocks into a single macro-extended basic block, within which ILP
can be orchestrated by the basic block orchestrater.

To control localize a code sequence, the Raw compiler does the
following. First, the Raw compiler verifies that the code sequence
can in fact be placed on a single tile, which means that either (1) all
its memory operations refer to a single tile, or (2) enough mem-
ory operations and all their preceding computations can safely be
separated from the code sequence so that (1) is satisfied. Next, the
compiler identifies the input variables the code sequence requires
and the output variables the code sequence generates. These vari-
ables are computed by taking the union of their corresponding sets
over all possible paths within the code sequence. In addition, given
a variable for which a value is generated on one but not all paths of
the program, the variable has to be considered as an input variable
as well. This input is needed to allow the code sequence to pro-
duce a valid value of the variable independent of the path traversed
inside it. The result of identifying these variables is that the code
sequence can be assigned and scheduled like a regular instruction
during basic block orchestration.

In practice, control localization has been invaluable in allowing
RAWCC to use unrolling to expose parallelism in inner loops con-
taining control flow. Currently, RAWCC adapts the simple policy
of localizing into a single macro-instruction every localizable for-
ward control flow structure, such as arbitrary nestings of IF-THEN-

Benchmark N=1 N=2 N=4 N=8 N=16 N=32

fpppp-kernel 0.48 0.68 1.36 3.01 6.02 9.42
btrix 0.83 1.48 2.61 4.40 8.58 9.64
cholsky 0.88 1.68 3.38 5.48 10.30 14.81
vpenta 0.70 1.76 3.31 6.38 10.59 19.20
tomcatv 0.92 1.64 2.76 5.52 9.91 19.31
mxm 0.94 1.97 3.60 6.64 12.20 23.19
life 0.94 1.71 3.00 6.64 12.66 23.86
jacobi 0.89 1.70 3.39 6.89 13.95 38.35

Table 2: Benchmark Speedup. Speedup compares the run-time of the
RAWCC-compiled code versus the run-time of the code generated by the
Machsuif MIPS compiler.

ELSE constructs and case statements. This simple policy has en-
abled us to achieve the performance reported in Section 7. A more
flexible approach which varies the granularity of localization will
be exploited in the future.

7 Results

This section presents some early performance results of the Raw
compiler. We show the performance of the Raw compiler as a
whole, and then we measure the portion of the performance due
to high level transformations and advanced locality optimizations.
In addition, we study how multisequentiality can reduce the sensi-
tivity of performance to dynamic disturbances.

Experiments are performed on the Raw simulator, which simu-
lates the Raw prototype described in Section 2. Latencies of the ba-
sic instructions are as follows: 2-cycle load, 1-cycle store, 1-cycle
integer add or subtract; 12-cycle integer multiply; 35-cycle integer
divide; 2-cycle floating add or subtract; 4-cycle floating multiply;
and 12-cycle floating divide.

The benchmarks we select include programs from the Raw bench-
mark suite [4], program kernels from the nasa7 benchmark of Spec92,
tomcatv of Spec92, and the kernel basic block which accounts for
50% of the run-time in fpppp of Spec92. Since the Raw proto-
type currently does not support double-precision floating point, all
floating point operations in the original benchmarks are converted
to single precision. Table 1 gives some basic characteristics of the
benchmarks.

Speedup We compare results of the Raw compiler with the results
of a MIPS compiler provided by Machsuif [21] targeted for a MIPS
R2000. Table 2 shows the speedups attained by the benchmarks for
Raw machines of various number of tile. The results show that the
Raw compiler is able to exploit ILP profitably across the Raw tiles
for all the benchmarks. The average speedup on 32 tiles is 19.7.

All the benchmarks except fpppp-kernel are dense matrix ap-
plications. These applications perform particularly well on a Raw
machine because arbitrarily large amount of parallelism can be ex-
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Figure 5: Breakdown of speedup on 32 tiles into base component, high-
level component, and advanced-locality component.

posed to the Raw compiler by unrolling the loop. Currently, the
Raw compiler unrolls loops by the minimum amount required to
guarantee the static residence property referred to in Section 4,
which in most of these cases expose as many copies of the inner
loop for scheduling of ILP as there are number of processors. The
only exception is btrix. Its inner loops handle array dimensions of
either five or fifteen. Therefore, the maximum parallelism exposed
to the basic block orchestrater is at most five or fifteen.

Many of these benchmarks have been parallelized on multipro-
cessors by recognizing do-all parallelism and distributing such par-
allelism across the processors. Raw detects the same parallelism
by partially unrolling a loop and distributing individual instructions
across tiles. The Raw approach is more flexible, however, because
it can schedule do-across parallelism contained in loops with loop
carried dependences. For example, several loops in tomcatv con-
tain reduction operations, which are loop carried dependences. In
multiprocessors, the compiler needs to recognize a reduction and
handle it as a special case. The Raw compiler handles the depen-
dence naturally, the same way it handles any other arbitrary loop
carried dependences.

The size of the datasets in these benchmarks is intentionally
made to be small to feature the low communication overhead of
Raw. Traditional multiprocessors, with their high overheads, would
be unable to attain speedup for such datasets [2].

Most of the speedup attained can be attributed to the exploita-
tion of ILP, but unrolling plays a beneficial role as well. Unrolling
speeds up a program by reducing its loop overhead and exposing
scalar optimizations across loop iterations. This latter effect is most
evident in the jacobi and life benchmarks, where consecutive itera-
tions share loads to the same array elements that can be optimized
through common subexpression elimination.

Fpppp-kernel is different from the rest of the applications in
that it contains irregular fine-grained parallelism. This application
stresses the locality/parallelism tradeoff capability of the instruc-
tion partitioner. For the fpppp-kernel on a single tile, the code gen-
erated by the Raw compiler is significantly worse than that gener-
ated by the original MIPS compiler. The reason is that the Raw
compiler attempts to expose the maximal amount of parallelism
without regard to register pressure. As the number of tiles in-
creases, however, the number of available registers increases cor-
respondingly, and the spill penalty of this instruction scheduling
policy reduces. The net result is excellent speedup, occasionally
attaining more than a factor of two speedup when doubling the
number of tiles.
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Figure 6: Speedup of applications in the presence of dynamic disturbances
for two machine models. The left graph shows results for a machine with a
single pc which must stall synchronously; the right graph shows results for
a Raw machine with multiple pcs which can stall asynchronously.

Speedup breakdown Figure 5 divides the speedup for 32 tiles
for each application into three components: base, high-level, and
advanced-locality. The base speedup is the speedup from a base
compiler which uses simple unrolling and moderate locality opti-
mization.

High-level shows the additional speedup when the base com-
piler is augmented with high level transformations, which include
control localization and array reshape. 1 Array reshape refers to
the technique of tailoring the layout of an array to avoid hotspots in
memory accesses across consecutive iterations of a loop. It is im-
plemented by allocating a tailored copy of an array to a loop when
the loop has a layout preference which differs from the actual lay-
out. This technique incurs the overhead of array copying between
the global and the tailored array before and after the loop, but most
loops do enough computation on the arrays to make this overhead
worthwhile. Btrix, cholesky, and vpenta benefit from this trans-
formation, while life and tomcatv get their speedup improvements
from control localization.

Advanced-locality shows the performance gain from advanced
locality optimizations. These optimizations include the use of lo-
cality sensitive algorithms for data partitioning and for the merging
phase during instruction partitioning, as described in Section 5. The
figure shows that all applications except btrix and fpppp attain siz-
able benefits from these optimizations. The average performance
gain of all the applications is 60%.

Effects of dynamic events The Raw compiler attempts to stati-
cally orchestrate all aspects of program execution. Not all events,
however, are statically predictable. Some dynamic events include
I/O operations and dynamic memory operations with unknown tile
locations. We study the effects of run-time disturbances such as
dynamic memory operations on a Raw machine. We model the
disturbances in our simulator as random events which happen on
loads and stores, with a 5% chance of occurrence and an average
stall time of 100 cycles. We examine the effects of such distur-
bances on two machine models. One is a faithful representation of
the Raw machine; the other models a synchronous machine with a
single instruction stream. On a Raw machine, a dynamic event only
directly effects the processor on which the event occurs. Other tiles
can proceed independently until they need to communicate with
the blocked processor. On the synchronous machine, however, a
dynamic event stalls the entire machine immediately. This behav-
ior is similar to how a VLIW responds to a dynamic event. 2

1Array reshape is currently hand-applied; it is in the process of being automated.
2Many VLIWs support non-blocking stores, as well as loads which block on use

instead of blocking on miss. These features reduce but do not eliminate the adverse
effects of stalling the entire machine, and they come with a potential penalty in clock



Figure 6 shows the performance of each machine model in the
presence of dynamic events. Speedup is measured relative to the
MIPS-compiled code simulated with dynamic disturbances. The
results show that asynchrony on Raw reduces the sensitivity of
performance to dynamic disturbances. Speedup for the Raw ma-
chine is on average 2.9 times better than that for the synchronous
machine. In absolute terms, the Raw machine still achieves re-
spectable speedups for all applications. On 32 tiles, speedup on
fpppp is 3.0, while speedups for the rest of the applications are at
least 7.6.

8 Related work

Due to space limitations, we only discuss past work that is closely
related to the problem of space-time scheduling of ILP, which is the
focus of this paper. For a comparison of Raw to other architectures,
please refer to [23].

The MIMD task scheduling problem is similar to Raw’s space-
time instruction scheduling problem, with tasks at the granular-
ity of instructions. RAWCC adapts a decomposed view of the
problem influenced by MIMD task scheduling. Sarkar, for exam-
ple, employs a three step approach: clustering, combined merg-
ing/placement, and temporal scheduling [20]. Similarly, Yang and
Gerasoulis uses clustering, merging, and temporal scheduling, with-
out the need for placement because they target a machine with a
symmetric network [25]. Overall, the body of work on MIMD task
scheduling is enormous; readers are referred to [1] for a survey of
some representative algorithms. One major distinction between the
problems on MIMD and on Raw is that on Raw certain tasks (static
memory references) have predetermined processor mappings.

In the domain of ILP scheduling, the Bulldog compiler faces a
problem which most resembles that of the Raw compiler, because it
targets a VLIW machine which distributes not only functional units
and register files but memory as well, all connected together via a
partial crossbar [12]. Therefore, it too has to handle memory ref-
erences which have predetermined processor mappings. Bulldog
adopts a two-step approach, with an assignment phase followed
by a scheduling phase. Assignment is performed by an algorithm
called Bottom-Up Greedy (BUG), a critical-path based mapping al-
gorithm that uses fixed memory and data nodes to guide the place-
ment of other nodes. Like the approach adopted by the clustering
algorithm in RAWCC, BUG visits the instructions topologically,
and it greedily attempts to assign each instruction to the processor
that is locally the best choice. Scheduling is then performed by
greedy list scheduling.

There are two key differences between the Bulldog approach
and the RAWCC aapproach. First, BUG performs assignment in a
single step which simultaneously addresses critical path, data affin-
ity, and processor preference issues. RAWCC, on the other hand,
divides assignment into clustering, merging, and placement. Sec-
ond, the assignment phase in BUG is driven by a greedy depth-first
traversal that maps all instructions in a connected subgraph with a
common root before processing the next subgraph. As observed
in [19], such a greedy algorithm is often inappropriate for parallel
computations such as those obtained by unrolling parallel loops. In
contrast, instruction assignment in RAWCC uses a global priority
function that can intermingle instructions from different connected
components of the data dependence graph.

Other work has considered compilation for several kinds of
clustered VLIW architectures. A LC-VLIW is a clustered VLIW
with limited connectivity which requires explicit instructions for
inter-cluster register-to-register data movement [9]. Its compiler
performs scheduling before assignment, and the assignment phase
uses a min-cut algorithm adapted from circuit partitioning which

speed.

tries to minimize communication. This algorithm, however, does
not directly attempt to optimize the execution length of input DAGs.

Three other pieces of work discuss compilation algorithms for
clustered VLIWs with full connectivity. The Multiflow compiler
uses a variant of BUG described above [19]. UAS (Unified Assign-
and-Schedule) performs assignment and scheduling of instructions
in a single step, using a greedy, list-scheduling-like algorithm [6].
Desoli describes an algorithm targeted for graphs with a large de-
gree of symmetry [10]. The algorithm bears some semblance to
the Raw partitioning approach, with a clustering-like phase and a
merging-like phase. One difference between the two approaches is
the algorithm used to identify clusters. In addition, Desoli’s clus-
tering phase has a threshold parameter which limits the size of the
clusters. This parameter is adjusted iteratively to look for the value
which yields the best execution times. The Raw approach, in con-
trast, allows the graph structure to determine the size of the clusters.

The structure of the Raw compiler is also similar to that of the
Virtual Wires compiler for mapping circuits to FPGAs [5], with
phases for partitioning, placement, and scheduling. The two com-
pilation problems, however, are fundamentally different from each
other, because a Raw machine multiplexes its computational re-
sources (the processors) while an FPGA system does not.

Many ILP-enhancing techniques have been developed to in-
crease the amount of parallelism available within a basic block.
These techniques include control speculation [16], data specula-
tion [22], trace/superblock scheduling [13] [15], and predicated ex-
ecution [3]. With some adjustments, many of these techniques are
applicable to Raw.

Raw’s techniques for handling control flow are related to sev-
eral research ideas. Asynchronous global branching is similar to
autonomous branching, a branching technique for a clustered VLIW
with an independent i-cache on each cluster [6]. The technique
eliminates the need to broadcast branch targets by keeping a branch
on each cluster.

Control localization is related to research in two areas. It re-
sembles hierarchical reduction [17] in that they both share the idea
of collapsing control constructs into a single abstract node. They
differ in motivation and context. Control localization is used to
enable parallel execution of control constructs on a machine with
multiple instruction streams, while hierarchical reduction is used to
enable loops with control flow to be software pipelined on a VLIW.
In addition, control localization is similar with Multiscalar execu-
tion model [22], where tasks with independent flows of control are
assigned to execute on separate processors.

It is useful to compare control localization to predicated execu-
tion [3]. Control localization enables the Raw machine to perform
predicated execution without extra hardware or ISA support. A lo-
cal branch can serve the same role as a predicate, permitting an
instruction to execute only if the branch condition is true. Control
localization, however, is more powerful than predicated execution.
A single branch can serve as the predicate for multiple instructions,
in effect amortizing the cost of performing predicated execution
without the ISA support for predicates. Moreover, control localiza-
tion utilizes its fetch bandwidth more efficiently than predicated ex-
ecution. For IF-THEN-ELSE constructs, the technique fetches only
the path which is executed, unlike predicated execution which has
to fetch both paths.

9 Conclusion

This paper describes how to compile a sequential program to a
next generation processor that has asynchronous, physically dis-
tributed hardware that is fully-exposed to the compiler. The com-
piler partitions and schedules the program so as to best utilize the
hardware. Together, they allow applications to use instruction-level
parallelism to achieve high levels of performance.



We have introduced the resource allocation (partitioning and
placement) algorithms of the Raw compiler, which are based on
MIMD task clustering and merging techniques. We have also de-
scribed asynchronous global branching, the method which the com-
piler uses for orchestrating sequential control flow across a Raw
processor’s distributed architecture. In addition, we have intro-
duced an optimization, which we call control localization, which
allows the system to avoid the overheads of global branching by
localizing the branching code to a single tile.

Finally, we have presented performance results which demon-
strate that for a number of sequential benchmark codes, our system
can find and exploit a significant amount of parallelism. This paral-
lel speedup scales with the number of available functional units, up
to 32. In addition, because each Raw tile has its own independent
instruction stream, the system is relatively tolerant to variations in
latency that the compiler is unable to predict.

Although the trend in processor technology favors distributing
resources, the resulting loss of the synchronous monolithic view of
the processor has prevented computer architects from readily adapt-
ing this trend. In this paper we show that, with the help of novel
compiler techniques, a fully distributed processor can provide scal-
able instruction level parallelism and can efficiently handle control-
flow. We believe that compiler technology can enable very efficient
execution of general-purpose programs on next generation proces-
sors with fully distributed resources.
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