
Maps: A Compiler-Managed Memory System for Raw Machines

Rajeev Barua, Walter Lee, Saman Amarasinghe, Anant Agarwal
M.I.T. Laboratory for Computer Science

Cambridge, MA 02139, U.S.A.
fbarua,walt,saman,agarwalg@lcs.mit.edu

http://cag-www.lcs.mit.edu/raw

Abstract

This paper describes Maps, a compiler managed memory
system for Raw architectures. Traditional processors for
sequential programs maintain the abstraction of a unified
memory by using a single centralized memory system. This
implementation leads to the infamous “Von Neumann bottle-
neck,” with machine performance limited by the large mem-
ory latency and limited memory bandwidth. A Raw archi-
tecture addresses this problem by taking advantage of the
rapidly increasing transistor budget to move much of its
memory on chip. To remove the bottleneck and complex-
ity associated with centralized memory, Raw distributes the
memory with its processing elements. Unified memory se-
mantics are implemented jointly by the hardware and the
compiler. The hardware provides a clean compiler inter-
face to its two inter-tile interconnects: a fast, statically
schedulable network and a traditional dynamic network.
Maps then uses these communication mechanisms to or-
chestrate the memory accesses for low latency and paral-
lelism while enforcing proper dependence. It optimizes for
speed in two ways: by finding accesses that can be sched-
uled on the static interconnect through static promotion,
and by minimizing dependence sequentialization for the
remaining accesses. Static promotion is performed us-
ing equivalence class unification and modulo unrolling;
memory dependences are enforced through explicit synchro-
nization and software serial ordering. We have imple-
mented Maps based on the SUIF infrastructure. This pa-
per demonstrates that the exclusive use of static promotion
yields roughly 20-fold speedup on 32 tiles for our regular
applications and about 5-fold speedup on 16 or more tiles
for our irregular applications. The paper also shows that
selective use of dynamic accesses can be a useful comple-
ment to the mostly static memory system.

1 Introduction

Rapidly improving VLSI technology places billion-transistor
chips within reach in the next decade. Such transistor capac-
ity expands the space of feasible architectural designs from
what is possible today. One trend is to use the increasing
resources to build a powerful centralized processor, with a
large part of the transistor budget devoted to the tasks of
out-of-order issue, dynamic management of instruction level
parallelism, and increasingly sophisticated kinds of specula-
tion. Such an approach, however, makes design and veri-
fication difficult. It entails quadratic hardware complexity

and connectivity, requiring long wires whose performance
does not scale with technology. In addition, the approach
consumes much area while providing diminishing returns,
and it is poorly suited for emerging stream and multimedia
applications which demand simple but plentiful amount of
computing resources and high-throughput IO.

A Raw microprocessor adopts a different approach [15].
It constructs a powerful machine from simple processing
elements, which are replicated and distributed across the
chip. Instruction-level parallelism on this machine can be
orchestrated through space-time scheduling [7]. By keep-
ing the processing elements simple, a Raw microprocessor
can devote a large amount of chip space to memory, thus ad-
dressing the memory bottleneck problem by moving much
of its memory system on chip [2]. For example, a billion-
transistor chip with half its area devoted to memory can con-
tain tens of megabytes of SRAM. Using integrated DRAM
allows at least four times that amount. This memory capac-
ity makes it possible for the working sets of many programs
to be kept entirely on chip.

A critical design issue is how to organize such a large on-
chip memory. A fast, single-banked memory of that size is
generally recognized to be infeasible. An on-chip version
of multi-banked memory suffers from the hardware com-
plexity of a centralized unit servicing multiple processing
elements, and it disrupts the opportunity to exploit on-chip
locality between memory and processing elements. Without
on-chip locality, an average memory access can traverse half
the length of a chip. In a billion-transistor, several-gigahertz
processor, such an access will become a multi-cycle opera-
tion just from the wire delay alone. For example, extrapola-
tions of current treads suggest that crossing a chip will take
eight cycles by 2003 and forty cycles by 2007 [9].

A more natural organization is to distribute the memory
banks along with the processing elements. The Raw micro-
processor adopts this approach. It consists of simple, repli-
cated tiles arranged in a two-dimensional interconnect; each
Raw tile contains both a processing element and a memory
bank, as well as a switch which provides direct connectiv-
ity between neighbors. Unlike traditional memory banks
which serve as subunits of a centralized memory system,
each memory bank on the Raw microprocessor functions
autonomously and is directly addressable by its local pro-
cessing element, without going through a layer of arbitration
logic. This organization enables memory ports which scale
with the number processing elements. It supports fast local
memory accesses without the need for global caches, which
consume on-chip area and introduce a complex coherence

problem.

In accordance with its design principle of keeping the
hardware simple to allow for plentiful resources and a fast
clock, a Raw microprocessor does not contain any special-
ized hardware to support its distributed memory system.
Rather, remote memory accesses are performed through two
general inter-tile interconnects: a fast static network for
compiler analyzable accesses and a slower, fail-safe dy-
namic network. Furthermore, the abstraction of a unified
memory system is implemented entirely in software.

This paper presents Maps, Raw’s compiler managed
memory system which maintains a unified memory abstrac-
tion for sequential programs correctly and efficiently. Maps
manages correctness by enforcing necessary memory de-
pendence through explicit synchronization on the static net-
work and a new technique called software serial ordering. It
manages efficiency by minimizing memory dependence and
by considering the tradeoff between locality, memory paral-
lelism, and the preference for static accesses over dynamic
accesses. These goals are realized through applications of
traditional pointer and array analysis. Static promotion, the
process of creating static accesses, is performed using two
new techniques. Equivalence class unification creates static
accesses by using pointer analysis to guide the placement of
data, while modulo unrolling creates static accesses out of
regular array accesses through unrolling.

From a more general perspective, the static promotion
techniques in this paper describe how to distribute data in
sequential programs across multiple memory banks and how
to disambiguate memory accesses to specific banks. Suc-
cessful distribution enables independent parallel accesses to
memory, while successful disambiguation leads to two ad-
vantages. It allows memory accesses to be orchestrated by
the compiler through the fast static network, and it enables
the compiler to perform locality optimizations based on the
known location of that access. These techniques are appli-
cable to any microprocessor having multiple memory banks
with non-uniform access times and compiler-exposed com-
munication mechanisms.

We have implemented a SUIF-based compiler [16] that
implements Maps by incorporating static promotion and
software serial ordering. We have evaluated it on several
dense matrix applications, stream applications, and irregular
scientific applications. Analysis of current results leads to
two basic conclusions. First, most of our benchmarks de-
rive a significant performance improvement from the higher
bandwidth and finer disambiguation provided by Maps. Sec-
ond, though a purely static memory system usually provides
good performance, a better memory system is a mostly static
one in which dynamic accesses play a complementary but
essential role.

The rest of the paper is organized as follows. Section 2
provides the architectural background, compiler overview,
and the execution model for Maps. Section 3 describes the
traditional analysis techniques leveraged by Maps. Section 4
describes techniques for static promotion. Section 5 de-
scribes support for dynamic accesses. Section 6 presents the
results. Section 7 discusses the related work, and Section 8
concludes.

2 Background

This section provides some background for Maps. It de-
scribes the Raw architecture and its memory mechanisms.
It also gives an overview of the Raw compiler, focusing on
its execution model and the issues faced by its Maps sub-
component.

IMEM
DMEM

REGS

ALU

CL
SMEM

SWITCH

PC

PC

RawTile

Raw P

Figure 1: A Raw microprocessor is a mesh of tiles, each with a
processing element, some memory and a switch. The processing
element contains registers, ALU, and configurable logic (CL). It in-
terfaces with its local instruction and data memory as well as the
switch. The switch contains its own instruction memory.

Raw architecture The Raw architecture [15] is designed
to address the issue of building a scalable architecture in the
face of increasing transistor budgets and wire delays which
do not scale with technology. Figure 1 depicts the layout of
a Raw machine. A Raw machine consists of simple, repli-
cated tiles arranged in a two dimensional mesh. Each tile
has its own processing element, a portion of the chip’s to-
tal memory, and a switch. The processor is a simple RISC
pipeline, and the switch is integrated directly into this pro-
cessor pipeline to support fast register-level communication
between neighboring tiles; a word of data travels across
one tile in one clock cycle. Scalability on this machine is
achieved through the following design guidelines: limiting
the length of the wires to the length of one tile; stripping the
machine of complex hardware components; and organizing
all resources in a distributed, decentralized manner.

Communication on the Raw machine is handled by two
distinct networks, a fast, compiler-scheduled static network
and a traditional dynamic network. The interfaces to both
of these networks are fully exposed to the software. Each
switch on the static network is programmable, allowing stat-
ically inferable communication patterns to be encoded in the
instruction streams of the switches. This approach elimi-
nates the overhead of composing and routing a directional
header, which in turn allows a single word of data to be com-
municated efficiently. Furthermore, it allows the communi-
cation to be integrated into the scheduling of instructions
at compile time. Accesses to communication ports have
blocking semantics that provide near-neighbor flow control;
a processor or switch stalls if it is executing an instruction
that attempts to access an empty input port or a full output
port. This specification ensures correctness in the presence
of timing variations introduced by dynamic events such as
interrupts and I/O, and it obviates the lock-step synchro-

nization of program counters required by many statically
scheduled machines. The dynamic switch is a traditional
wormhole router that makes routing decisions based on the
header of each message while guaranteeing in-order deliv-
ery of messages. It serves as a fall-back mechanism for non-
statically inferable communication. A processor handles dy-
namic messages via either polling or interrupts.

Memory mechanisms From these communication mech-
anisms, the Raw architecture provides three ways of access-
ing memory: local access, remote static access, and dynamic
access, in increasing order of cost. A memory reference can
be a local access or a remote static access if it satisfies the
static residence property — that is, (a) every dynamic in-
stance of the reference must refer to memory on the same
tile, and (b) the tile has to be known at compile time. The ac-
cess is local if the Raw compiler places the subsequent use of
the data on the same tile as its memory location; otherwise,
it is a remote static access. A remote static access works as
follows. The processor on the tile with the data performs the
load, and it places the load value onto the output port of its
static switch. Then, the pre-compiled instruction streams of
the static network route the load value through the network
to the processor needing the data. Finally, the destination
processor accesses its static input port to get the value.

If a memory reference fails to satisfy the static residence
property, it is implemented as a dynamic access. A load
access, for example, turns into a split-phase transaction re-
quiring two dynamic messages: a load-request message fol-
lowed by a load-reply message. Figure 2 shows the com-
ponents of a dynamic load. The requesting tile extracts the
resident tile and the local address from the “global” address
of the dynamic load. It sends a load-request message con-
taining the local address to the resident tile. When a resi-
dent tile receives such a message, it is interrupted, performs
the load of the requested address, and sends a load-reply
with the requested data. The tile needing the data eventually
receives and processes the load-reply through an interrupt,
which stores the received value in a predetermined register
and sets a flag. When the resident tile needs the value, it
checks the flag and fetches the value when the flag is set.
Note that the request for a load needs not be on the same tile
as the use of the load.

Tile x

load_request(x)

Tile y

load_handler

Tile z

load_repl_handler

y=wait_for_load()

Figure 2: Anatomy of a dynamic load. A dynamic load is imple-
mented with a request and a reply dynamic message. Note that the
request for a load needs not be on the same tile as the use of the
load.

Table 1 lists the end-to-end costs of memory operations
as a function of the tile distance. The costs include both
the processing costs and the network latencies. Figure 3
breaks down these costs for a tile distance of two. The mea-
surements show that a dynamic memory operation is sig-
nificantly more expensive than a corresponding static mem-

Distance 0 1 2 3 4

Dynamic store 17 20 21 22 23
Static store 1 4 5 6 7
Dynamic load 28 34 36 38 40
Static load 3 6 7 8 9

Table 1: Cost of memory operations.

ory operation. Part of the overhead comes from the proto-
col overhead of using a general network, but much of the
overhead is fundamental to the nature of a dynamic access.
For example, a dynamic load requires sending a load re-
quest to the proper memory tile, while a static load can opti-
mize away such a request because the memory tile is known
at compile time. The need for flow control and message
atomicity to avoid deadlocks further contributes to the cost
of dynamic messages. Finally the inherent unpredictability
in the arrival order and timing of messages requires expen-
sive reception mechanisms such as polling or interrupts. In
the static network, its blocking semantics combine with the
compile-time ordering and scheduling of static messages to
obviate the need for expensive reception mechanisms.

request memory use

cycles
0 10 20 30 40

net. net.

static store

static load

dynam. store

dynam. load

Figure 3: Breakdown of the cost of memory operations between
tiles two units apart. Highlighted portions represent processor oc-
cupancy, while unlifted portions portion represents network latency.

Compilation overview and execution model Figure 4
outlines the structure of Rawcc, the Raw compiler built on
top of SUIF [16]. Rawcc accepts sequential C or FORTRAN
programs and automatically parallelizes them for a Raw ma-
chine. The compiler consists of two main phases, Maps and
the space-time scheduler.

The goal of Maps is to provide efficient use of hardware
memory mechanisms while ensuring correct execution. This
goal hinges on three issues, identification of static accesses,
support for memory parallelism, and efficient enforcement
of memory dependences. The primary goal of Maps is to
identify static accesses. As shown in Table 1, static ac-
cesses are several times faster than dynamic accesses, and
they enable locality optimization by the space-time sched-
uler to co-locate data with the computation which access it.
In addition, Maps attempts to provide memory parallelism
by distributing data across tiles. Not only does it distribute
different objects to different tiles, it also divides up aggre-
gate objects such as arrays and structs and distributes them
across the tiles. This distribution is important as it enables
parallel accesses to different parts of the aggregate objects.

C or Fortran program

Build cfg

Traditional dataflow optimizations

Raw executable

Space−time scheduler

Pointer analysis/ Array analysis

Static Promotion Maps

Software serial ordering

Figure 4: Structure of the Raw compiler

For correctness, Maps must ensure that the memory ac-
cesses occurring on different tiles obey the dependences im-
plied by the original serial program. Three types of memory
dependences need to be considered: those between static ac-
cesses, those between dynamic accesses, and those between
a static and a dynamic access. Dependences between static
accesses are easily enforced. References mapped to different
memory banks are necessarily non-conflicting, so the com-
piler only needs to avoid reordering potentially dependent
memory accesses on each tile. The real difficulty comes
from dependences involving dynamic accesses, because ac-
cesses made by different tiles may potentially be aliased and
require serialization. Maps uses a combination of explicit
synchronization and a new technique called software serial
ordering to enforce these dependences.

The space-time scheduler follows the analysis and code
transformations in Maps. It parallelizes the computation
in each forward control flow region across the processors.
During this process, it uses the data distribution and disam-
biguation information provided by Maps, and it respects any
dependence and serialization requirements of Maps. Paral-
lelization is achieved by statically distributing the instruc-
tions across the tiles and orchestrating any necessary com-
munication at the register level over the static network. The
decision of how to map instructions is made while consider-
ing the tradeoffs between locality, parallelism, and commu-
nication cost. During execution, the instruction streams on
different tiles cooperate to exploit parallelism in a forward
control flow region one region at a time. Individual instruc-
tion streams proceed in a loosely synchronous manner, com-
municating only when there are register dependences and at
the end of the forward control flow regions. For more details
on the space-time scheduler, please refer to [7].

3 Analysis techniques

Maps employs several traditional analysis techniques to en-
hance the effectiveness of its mechanisms. The techniques
include pointer analysis and array analysis. This section
briefly presents the information they provide.

Pointer analysis is leveraged for three purposes: mini-
mization of dependence edges, equivalence class unification,
and software serial ordering. Maps uses SPAN, a state-of-
the-art pointer analysis package [12]. Pointer analysis deter-
mines the group of abstract data objects each memory ref-

erence can refer to. An abstract object is either a static pro-
gram object, or it is a group of dynamic objects created by
the same memory allocation call in the static program. An
entire array is considered a single object, but each field in a
struct is considered a separate object. Pointer analysis iden-
tifies each abstract object by a unique location set number.
It then annotates each memory reference with a location set
list, a list of location set numbers corresponding to the ob-
jects that the memory reference can refer to. Figure 5(a)
shows pointer analysis applied to a sample program. Object
creation sites are annotated with their assigned location set
numbers. A struct is marked with multiple location set num-
bers, one for each of its field. For simplicity, location set
numbers are assigned only to non-pointer objects; in reality
all objects are assigned such numbers. Each memory refer-
ence is marked with the location set numbers of the objects
it can reference.

Maps defines the concept of alias equivalence classes
from the program’s location set lists. Alias equivalence
classes form the finest partition of the location set numbers
such that each memory access refers to location set numbers
in only one class. Maps derives the classes as follows. First,
it constructs a bipartite graph. A node is constructed for
each abstract object and each memory reference. Edges are
constructed from each memory reference to the abstract ob-
jects corresponding to the reference’s location set list. Then,
Maps finds the connected components of this graph. The
location set numbers in each connected component form a
single alias equivalence class. Note that references in the
same alias class can potentially alias to the same object,
while references in different classes can never refer to the
same object. Figure 5(b) shows the bipartite graph and the
equivalence classes in our sample program.

Maps uses a combination of pointer analysis and ar-
ray analysis to identify any potential dependences between
memory references. The location set lists provided by
pointer analysis give precise object-level dependence infor-
mation: only memory references with common elements in
their location set lists can refer to the same data object and be
potentially memory dependent. For arrays, however, pointer
analysis does not distinguish between references to different
elements in an array, so that reference pairs such as A[1] and
A[2] are analyzed to be dependent. For these references,
Maps uses traditional array dependence analysis to obtain
finer grained dependence information [10].

4 Static promotion of memory accesses

Static promotion is the act of making a reference satisfy the
static residence property. Without analysis, the Raw com-
piler is faced with two unsatisfactory choices: map all the
data to a single tile, which makes all memory accesses triv-
ially static at a cost of no memory parallelism; or distribute
all data, which enables memory parallelism but requires ex-
pensive dynamic accesses. This section describes two com-
piler techniques for static promotion which preserve some
memory parallelism. Section 4.1 describes equivalence class
unification, a general promotion technique based on the use
of pointer analysis to guide the placement of data. Sec-
tion 4.2 describes modulo unrolling, a code transformation
technique applicable to most array references in the loops of

Tile 0 Tile 1

(a) (c)

struct foo {
 int x,y,z;
};

void f(int cond) {
 struct foo f;
 int ctr;
 struct foo *pf, *p;
 int *q, *r;

 pf = (struct foo *)
 malloc(sizeof(struct foo));

 f.y = 2;
 p = cond ? &f : pf;
 p->x = 1;
 q = cond ? &f.y : & f.z;
 *q = 3;
 r = cond ? &f.x : &ctr;
 *r = 4;
}

// assign: 1,2,3
// assign: 4

// assign: 5,6,7
// ref: 2

// ref: 1,5

// ref: 2,3

// ref: 1,4
// equivalence classes:
// {1,4,5}

// equivalence classes:
// {2,3},{6},{7}

struct foo {
 int y,z;
};

void f(int cond) {
 struct foo f;
 int *q;
 // padding for
 // stack alignment

 f.y = 2;
 q = cond ? &f.y : &f.z;
 *q = 3;
}

struct foo {
 int x,padding;
};

void f(int cond) {
 struct foo f;
 int ctr;
 struct foo *pf, *p;
 int *r;

 pf = (struct foo *)
 global_malloc(8);
 p = cond ? &f : pf;
 p->x = 1;
 r = cond ? &f.x : &ctr;
 *r = 4;
}

(b)

1:x

2:y

3:z

5:x

6:y

7:z

4:ctr

f.y = 2

p->x = 1

*q = 3

*r = 4

f

malloc

equivalence classes:
{1,4,5},{2,3},{6},{7}

Figure 5: A sample program processed through pointer analysis and ECU. (a) shows the program annotated with the information provided by
pointer analysis. The arrows represent memory dependences derived from pointer analysis. (b) shows its bipartite graph and its equivalence
classes. (c) shows the program after it is distributed through ECU and space-time scheduling.

scientific applications. Section 4.3 explains the limitations
of static promotion and motivates the need for an effective
dynamic fall-back mechanism.

4.1 Equivalence class uni�cation

Equivalence class unification (ECU) is a static promotion
technique based on pointer analysis. It uses the alias equiv-
alence classes we derive from pointer analysis to help guide
the placement of data. ECU promotes all memory references
in a single alias equivalence class by placing all objects cor-
responding to that class on the same tile. By mapping ob-
jects for every alias equivalence class in such a manner, all
memory references can be statically promoted. By mapping
different alias equivalence classes to different tiles, memory
parallelism can be attained.

Elements in aggregate objects such as arrays and structs
are often accessed close together in the same program. Dis-
tribution and static promotion of arrays are addressed in Sec-
tion 4.2. For structs, SPAN differentiates between accesses
to different fields, so that fields of a struct can be in differ-
ent alias equivalence classes and distributed across the tiles.
Figure 5(c) shows how equivalence class unification is ap-
plied to our sample program. Note that aggregate objects
distributed across more than one tile have the same memory
address on each tile. This property allows a single pointer
to refer to the entire object, and it enables address compu-
tation to be mapped to any arbitrary tile. The alignment re-
quirement is ensured by doing the appropriate padding on
the distributed objects, stack, and heap.

4.2 Modulo unrolling

The major limitation of equivalence class unification is that
an array is treated as a single object belonging to a single
equivalence class. Mapping an entire array to a single mem-
ory bank sequentializes accesses to that array and destroys
the parallelism found in many loops. Therefore, we use a

different strategy to handle the static promotion of array ac-
cesses. First, arrays are laid out in memory through low-
order interleaving. In this scheme, consecutive elements
of an array are interleaved in a round-robin manner across
the memory banks on the Raw tiles. We then apply modulo
unrolling, a code transformation technique which statically
promotes array accesses in loops.

Modulo unrolling is a framework for determining the un-
roll factor needed to statically promote all array references
inside a loop. We illustrate this technique through a simple
example. Consider the source code in Figure 6(a). Using
low-order interleaving, the data layout for array A on a four-
tile Raw machine is shown in Figure 6(b). In the loop, suc-
cessive A[i] accesses refer to memory banks on tile 0, 1, 2,
3, 0, 1, 2, 3, etc. The edges out of any access point to the
memory banks the access refers to. As we can see, the A[i]
access in Figure 6(a) refers to memories on all four tiles.
Hence the access as written cannot be statically promoted.

Intelligent unrolling, however, can enable static promo-
tion. Figure 6(c) shows the result of unrolling the code in
Figure 6(a) by a factor of four. Now, each access always
refers to elements on the same memory bank. Specifically,
A[i] always refers to tile 0, A[i+1] to tile 1, A[i+2] to tile
2, and A[i+3] to tile 3. Therefore, all resulting accesses can
be statically promoted. It can be shown that this technique
is always applicable for loops with array accesses having in-
dices which are affine functions of enclosing loop induction
variables. These accesses are often found in dense matrix
applications and multimedia applications. For a detailed ex-
planation and the symbolic derivation of the unrolling factor,
see [1].

4.3 Uses for dynamic references

A compiler can statically promote all accesses through
equivalence-class unification alone, and modulo unrolling
helps improve memory parallelism during promotion. There
are several reasons, however, why it may be undesirable to

for i = 0 to 99 step 4 do

A[i + 0] =

endfor

A[i + 1] =

A[i + 2] =

A[i + 3] =

(c)(b)(a)

for i = 0 to 99 do

A[i] =

endfor

A[0]
A[4]
A[8]
....

A[1]
A[5]
A[9]
....

A[2]
A[6]
A[10]

....

A[3]
A[7]
A[11]
....

Tile 0 Tile 1 Tile 2 Tile 3

Unrolling
Modulo

Figure 6: Example of modulo unrolling. (a) shows the original code; (b) shows the distribution of array A on a 4-tile Raw machine; (c) shows
the code after unrolling. After unrolling, each access refers to memory on only one tile.

promote all references. First, modulo unrolling sometimes
requires unrolling of more than one dimension of multi-
dimensional loops. This unrolling can lead to excessive code
expansion. To reduce the unrolling requirement, some ac-
cesses in these loops can be made dynamic. In addition,
static promotion may sometimes be performed at the ex-
pense of memory parallelism. For example, indirect array
accesses of the form A[B[i]] cannot be promoted unless the
array A[] is placed entirely on a single tile. This placement,
however, yields no memory parallelism for A[]. Instead,
Maps can choose to forgo static promotion and distribute
the array. Indirect accesses to these arrays would be imple-
mented dynamically, which yields better parallelism at the
cost of higher access latency. Moreover, dynamic accesses
can improve performance by not destroying static memory
parallelism in critical parts of the program. Without it, ar-
rays with mostly affine accesses but a few irregular accesses
would have to be mapped to one tile, thus losing all poten-
tial memory parallelism to the arrays. Finally, dynamic ac-
cesses can increase the resolution of equivalence class uni-
fication. A few isolated “bad references” may cause pointer
analysis to yield very few equivalence classes. By selec-
tively removing these references from promotion considera-
tion, more equivalence classes can be discovered, enabling
better data distribution and improving memory parallelism.
The misbehaving references can then be implemented as dy-
namic accesses.

For these reasons, it is important to have a good fall-
back mechanism for dynamic references. More importantly,
such mechanism must integrate well with the static mecha-
nism. The next section explains how these goals are accom-
modated.

For a given memory access, the choice of whether to
use a static or a dynamic access is not always obvious. Be-
cause of the significantly lower overhead of static accesses,
the current Maps system makes most accesses static by de-
fault, with one exception. Arrays with any affine accesses
are always distributed, and two types of accesses to those
arrays are implemented as dynamic accesses: non-affine ac-
cesses, and affine accesses which require excessive unroll
factors for static promotion. Automatic detection of other
situations which can benefit from dynamic accesses is still
ongoing research. However, Section 6 shows two programs,
Unstructured and Moldyn, whose performance can be im-
proved when dynamic accesses are selectively employed.

5 Support for dynamic accesses

Maps provides mechanisms for correctness and efficiency of
dynamic accesses. For correctness, Maps enforces memory
dependences involving dynamic accesses through static syn-
chronization and software serial ordering. Maps improves
performance by reducing the amount of dependences that
need to be enforced through epochs and memory update op-
erations.

5.1 Enforcing dynamic dependences

Maps handles dependences involving dynamic accesses with
two separate mechanisms, one for the type of dependences
between a static access and a dynamic access, and one for
the type of dependences between two dynamic accesses. A
static-dynamic dependence can be enforced through explicit
synchronization between the static reference and either the
initiation or the completion of the dynamic reference. When
a dynamic store is followed by a dependent static load, this
synchronization requires an extra dynamic store acknowl-
edgment message at the completion of the store. Because
the source and destination tiles of the synchronization mes-
sage are known at compile-time, the message can be routed
on the static network.

Enforcing dependences between dynamic references is
a little more difficult. To illustrate this difficulty, consider
the dependence which orders a dynamic store before a po-
tentially conflicting dynamic load. Because of the depen-
dence, it would not be correct to issue their requests in par-
allel from different tiles. Furthermore, it would not suffice
to synchronize the issues of the requests on different tiles.
This is because there are no timing guarantees on the dy-
namic network: even if the memory operations are issued in
correct order, they may still be delivered in incorrect order.
One obvious solution is complete serialization as shown in
Figure 7(a), where the later memory reference cannot ini-
tiate until the earlier reference is known to complete. This
solution, however, is expensive because it serializes the slow
round-trip latencies of the dynamic requests, and it requires
store completions to be acknowledged with a dynamic mes-
sage.

We propose software serial ordering to efficiently en-
sure such dependences. Figure 7(b) illustrates this tech-
nique. Software serial ordering leverages the in-order de-

P1 P2

M1 M2

P1 P2

M1 M2

T

(a) (b)

loadstore

loadstore

Figure 7: Two methods for enforcing dependences between dy-
namic accesses. P1 and P2 are processing nodes initiating two po-
tentially conflicting dynamic requests; both diagrams illustrate an
instance when the two requests don’t conflict. M1 and M2 are the
destinations of the memory requests. The light arrows are static
messages, the dark arrows are dynamic messages, and the dashed
arrows indicate serialization. The dependence to be enforced is that
the store on P1 must precede the load on P2. In (a), dependence
is enforced through complete serialization. In (b), dependence is
enforced through software serial ordering. T is the turnstile node.
The only serialization point is the launches of the dynamic mem-
ory requests at T. Note that Raw tiles are not specialized; any tile
can serve in any or all of the following roles, as processing node,
memory node, or turnstile node.

livery of messages on the dynamic network between any
source-destination pair of tiles. It works as follows. Each
equivalence class is assigned a turnstile node. The role of
the turnstile is to serialize the request portions of the mem-
ory references in the corresponding equivalence class. Once
memory references go through the turnstile in the right or-
der, correct behavior is ensured from three facts. First, re-
quests destined for different tiles must necessarily refer to
different memory locations, so there is no memory depen-
dence which needs to be enforced. Second, requests des-
tined for the same tile are delivered in order by the dynamic
network, as required by the network’s in-order delivery guar-
antee. Finally, a memory tile handles requests in the order
they are delivered.

Note that in order to guarantee correct ordering of pro-
cessing of memory requests, serialization is inevitable. Our
system keeps this serialization low, and it allows the ex-
ploitation of parallelism available in address computations,
latency of memory requests and replys, and processing time
of memory requests to different tiles. For efficiency, soft-
ware serial ordering employs the static network to handle
synchronization and data transfer whenever possible. Fur-
thermore, different equivalence classes can employ different
turnstiles and issue requests in parallel. Interestingly, though
the system enforces dependences correctly while allowing
potentially dependent dynamic accesses to be processed in
parallel, it does not employ a single explicit check of run-
time addresses.

5.2 Dynamic optimizations

Epochs Without optimizations, all dynamic memory re-
quests in a single alias equivalence class have to go through

a turnstile for the entire duration of the program. If the com-
piler schedules a dynamic memory request on a tile other
than its turnstile, it would have to separately guarantee that
the memory request does not get reordered with any past
or future potentially dependent references on its way to the
memory tile. In the general case, this requirement is pro-
hibitively expensive and provides no benefit.

Sometimes, however, Maps can determine that all the
dynamic memory accesses to an alias equivalence class in a
region of the program are independent from each other. We
can such a region an epoch. A trivial example of an epoch is
a region whose dynamic accesses to an equivalence class are
all loads. Other epoch detection mechanisms include pointer
analysis, array dependence analysis, and relative memory
disambiguation.

In epochs, it would be desirable to disable the turnstile
and allow the accesses to proceed independently and with-
out serialization. Maps supports epochs by placing mem-
ory barriers before and after the region. The barriers are
implemented by explicitly checking for the completion of
all accesses through load-replys or store-acknowledgments.
Though barriers are expensive operations, their costs can
easily be amortized away if an epoch includes one or more
time-intensive loops.

Updates Updates are memory handlers which implement
simple read/modify/write operations on memory elements.
They take advantage of the generality of Raw’s active-
message dynamic network. The compiler migrates simple
read/modify/write memory operations from the main pro-
gram to the memory handlers. The modify operation is re-
quired to be both associative and commutative. Common
examples include increment/decrement, add, multiply, and
max/min.

Updates improve performance of dynamic accesses in
three ways. First, a program can dispatch an update just
like a store and then proceed without waiting for its comple-
tion. Second, an update collapses two expensive and serial
dynamic memory operations, a load and a store, into one.
Finally, the associativity and commutativity of the updates
effectively removes dependences between different updates.
This elimination can help increase the utility of epochs by
finding regions with independent updates to an alias equiva-
lence class.

6 Results

We have implemented Maps on Rawcc, the Raw compiler
based on the SUIF compiler infrastructure [16]. This section
presents evaluation of Maps. Evaluation is performed on a
cycle-accurate simulator of the Raw microprocessor. The
simulator uses a MIPS R2000 as the processing element on
each tile. It faithfully models both the static and dynamic
networks, including any contention effects. Application
speedup is derived from comparison with the performance
of code generated by the Machsuif Mips compiler [14] exe-
cuted on the R2000 processing element of a single Raw tile.
To expose instruction level parallelism across basic blocks,
Rawcc employs loop unrolling and control localization [7].
Inner loops are usually unrolled as many times as there are
number of tiles.

Benchmark Type Source Lines Seq. RT Primary Array Description
of code (cycles) size (words)

Cholesky Dense Mat. Nasa7:Spec92 126 34.3M 16�16�32 Cholesky Decomposition/Substitution
Swim Dense Mat. Spec95 486 96.2M 513�33 Shallow Water Model
Tomcatv Dense Mat. Spec92 254 78.4M 32�32 Mesh Generation with Thompson’s Solver
Vpenta Dense Mat. Nasa7:Spec92 157 21.0M 32�32 Inverts 3 Pentadiagonals Simultaneously
Ocean Dense Mat. Splash/Jade 1174 309.7M 256�256 Ocean Movement Simulation

Adpcm Multimedia Mediabench 295 2.8M 10240 Speech compression
SHA Multimedia Perl Oasis 608 1.0M 512�16 Secure Hash Algorithm
MPEG-kernel Multimedia UC Berkeley 86 14.6K 32�32 MPEG-1 Video Software Encoder kernel

Moldyn Irreg. Sci. CHAOS 805 63M 256�3, 32000�2 Molecular Dynamics
Unstructured Irreg. Sci. CHAOS 850 150M 17377�3 Computational Fluid Dynamics

Table 2: Benchmark characteristics. Column Seq. RT shows the run-time for the uniprocessor code generated by the Machsuif MIPS compiler.

Table 2 gives the characteristics of the benchmarks used
for the evaluation. Benchmarks include five dense matrix
applications, three multimedia applications, and two sci-
entific applications with irregular memory access patterns.
They are all sequential programs. Some benchmarks are full
applications; others are key kernels from full applications.
Cholesky and Vpenta are extracted from Nasa7 of Spec92.
MPEG-kernel is the portion of MPEG which takes up 70%
of the total run-time. Because the Raw simulator currently
does not support double-precision floating point, all floating
point operations are converted to single precision.

Benchmark N=1 N=2 N=4 N=8 N=16 N=32

Cholesky 0.88 1.75 3.33 6.24 10.22 17.15
Swim 0.88 1.43 2.70 4.47 8.97 17.81
Tomcatv 0.92 1.64 2.76 5.52 9.91 19.31
Vpenta 0.78 1.90 3.36 7.06 12.17 20.12
Ocean 0.88 1.16 1.97 3.05 4.09 4.51

Adpcm 0.97 0.99 1.19 1.23 1.13 1.13
SHA 0.96 1.18 1.63 1.53 1.44 1.42
MPEG-kernel 0.90 1.36 2.15 3.46 4.48 7.07

Moldyn array 0.95 1.36 2.38 2.99 4.28 4.38
struct 0.92 0.94 1.60 2.57 3.11 3.59

Unstruct array 0.82 1.21 2.35 3.59 5.22 6.12
struct 0.86 1.29 2.07 3.00 4.10 4.92

Table 3: Benchmark speedup with full distributed static promo-
tion through equivalence class unification and modulo unrolling.
Speedup compares the run-time of the Rawcc-compiled code versus
the run-time of the code generated by the Machsuif MIPS compiler.

Table 3 shows the speedups attained by the benchmarks
for Raw microprocessors for a varying number of tiles.
For Moldyn and Unstructured, we present results for two
different versions. The original versions are written in a
FORTRAN-like style, using array of base types to represent
their data. The new versions have better data abstraction;
they use a collection of structs to represent the program’s
objects.

All the benchmarks except ocean are compiled with full
static promotion. In ocean, dynamic accesses are used for
two purposes. First, affine array accesses in the outer loops
are converted to dynamic accesses in order to avoid multi-
dimensional unroll as required by static promotion through
modulo unrolling. Second, dynamic accesses are used for
array accesses which cannot be determined to be affine with-
out inter-procedural analysis and inlining.

Our results in Table 3 show that Rawcc with Maps is able

to orchestrate the parallelism available in the applications.
To summarize the results, Rawcc is able to attain speedups
in the range of 15-20 for four of the of the five dense ma-
trix codes, and speedups of 4-8 for non-dense matrix codes
with a reasonable amount of ILP. The dense matrix applica-
tions and MPEG-kernel have a lot of parallelism, with loops
whose parallelism scale with the amount of unrolling. Mol-
dyn and Unstructured have a modest amount of parallelism.
They have parallelism both within loop iterations and across
iterations, but loop carried dependences eventually limit the
amount of parallelism exposed by unrolling. Note that the
speedup for Moldyn is obtained without special handling
of the reduction in its time-intensive loop. Its performance
should improve further with reduction recognition. Finally,
Adpcm and SHA have little parallelism. Their work both
within and across iterations is mostly serial.

Comparisons between the two versions of Unstructured
and Moldyn show that our promotion techniques are effec-
tive in providing memory parallelism for both programming
styles. While the struct versions use arrays of structs to rep-
resent their data, the array versions use two-dimensional ar-
rays with the second dimension representing the fields of the
struct. The opportunities for memory parallelism are iden-
tical for both versions, but Maps exposes that parallelism
through different means. Memory parallelism in the ar-
ray versions is exposed through array distribution and mod-
ulo unrolling, while parallelism in the struct version is ex-
posed through equivalence class unification. The different
speedups for the two versions are accounted for by details
concerning address calculation costs and opportunities for
optimization of those costs.

0

4

8

12

16

20

S
p

ee
d

u
p

Trivial promotion

ECU

ECU + Modulo Unrolling

Cholesky
Swim

Tomcatv
Vpenta

Ocean
Adpcm

SHA

MPEG-kernel

Moldyn-array

Moldyn-str
uct

Unstru
ct-array

Unstru
ct-st

ruct

Figure 8: Comparison of 32-tile speedups for trivial static promo-
tion, ECU promotion, and full Maps promotion.

Figure 8 measures the benefits of our static promotion
techniques on overall speedups. It compares the speedups
on 32 tiles for three promotion strategies: no analysis, ECU
only, and full promotion using both ECU and modulo un-
rolling. Without analysis, accesses can be promoted trivially
by mapping all data to one tile. Our results, however, show
that this promotion strategy leads to low speedups ranging
from one to four because it provides no memory parallelism
and no data locality. ECU alone yields sufficient memory
parallelism to attain the modest overall speedups for the ir-
regular applications such as Adpcm, SHA, Moldyn-struct,
and Unstructured-struct. Full Maps promotion, however, is
necessary to exploit the large amount parallelism available
in the more regular applications. Figure 9 breaks down the
utilization of our two techniques in full Maps promotion. It
shows for each application the percentage of aggregate ob-
jects whose references are promoted through ECU versus
those that are promoted through modulo unrolling.

0

20

40

60

80

100

P
er

ce
n

ta
g

e
o

f
ar

ra
ys

ECU

modulo unrolling

Cho
les

ky
Swim

Tom
ca

tv

Vpe
nta

Oce
an

Adp
cm

SHA

M
PEG-k

ern
el

M
old

yn
-ar

ray

M
old

yn
-st

ru
ct

Uns
tru

ct-
arr

ay

Uns
tru

ct-
str

uc
t

Figure 9: Percentage of arrays whose references are promoted
through modulo unrolling versus those that are promoted through
equivalence class unification (ECU).

The results in Figure 8 may have implications beyond
Raw. They show that applications with a lot of ILP often
have high memory bandwidth requirements. These applica-
tions would perform poorly on a system with many func-
tional units but limited memory bandwidth. A Raw machine
with trivial static promotion fits this architectural descrip-
tion, as do superscalars and centralized VLIWs with central-
ized memory systems. In addition, the Raw machine with
trivial promotion suffers high memory latency due to a lack
of locality between the processors and the single memory;
this latency is analogous to the multi-cycle on-chip wire de-
lays conventional designs will likely suffer in future VLSI
technologies. Faced with similar problems, conventional ar-
chitectures may well find that a software-exposed distributed
memory system combined with a Maps compiler can im-
prove its performance the same way it improves the perfor-
mance of a Raw machine.

Memory distribution and utilization We measure the ef-
fectiveness of our compilation techniques in utilizing the
Raw hardware. We consider two metrics: memory distri-
bution and memory bandwidth utilization. In general, bal-
anced data distribution is desirable because it minimizes the
per-tile memory needed to run an application, and it allevi-
ates the need to build large and centralized memory which

is also fast. Memory bandwidth utilization measures how
well an application takes advantage of Raw’s independent
memory banks. It depends on the amount of memory par-
allelism exposed by Maps and the amount of parallelism in
the application.

1 3
5

7
9

11
13

15
17

19
21

23
25

27
29

31

M
P

E
G

-kernel

M
oldyn

A
dpcm

U
nstruct

SH
A

C
holesky

Sw
im

T
om

catv
V

penta
O

cean

0.0

0.2

0.4

0.6

0.8

1.0

M
em

ory allocated to each tile
(norm

alized)

Tile ID Number

Figure 10: Distribution of primary data on a 32-tile Raw machine.
The tiles are sorted in decreasing order of memory consumption.
For each benchmark, the graph displays the memory consumption
on each tile normalized by the memory consumption of the tile with
the largest consumption.

Figure 10 shows the distribution of primary data across
tiles for our benchmarks executing on 32 tiles. Most of the
dense matrix codes are able to fully distribute their data;
Swim and Cholesky are only able to partially distribute their
data because of their small problem sizes, but their distribu-
tions become balanced with larger problem sizes. MPEG-
kernel cannot employ only static memory accesses and still
be fully distributed, but the next subsection shows that with
a small sacrifice in performance, its data can be fully dis-
tributed. The rest of the applications can partially distribute
their data across a range of three to sixteen tiles.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6
to
3
2

V
penta

T
om

catv

C
holesky

Sw
im

O
cean

M
P

E
G

-kernel

U
nstructure

M
oldyn

SH
A

A
dpcm

0%

20%

40%

60%

80%

100%

P
recentage of

m
em

ory references

Number of Tiles

Figure 11: Weighted bandwidth utilization of the memory system
on a 32-tile machine. The graph displays the percentage of memory
references being issued in a time slot when a given number of tiles
is issuing memory requests.

Figure 11 measures the weighted memory bandwidth
utilization of a 32-tile machine. It plots the percentage of
memory references being issued in a clock cycle when a
given number of tiles is simultaneously issuing memory re-
quests. Results show that except for the two highly serial

 static

 dynamic-opt
� dynamic-base

|

0
|

4
|

8
|

12
|

16
|

20
|

24
|

28
|

32

|0

|1

|2

|3

|4

|5

|6

|7

|8

 MPEG-kernel

 Ntiles

 S
pe

ed
up

��

�
�

�

�

 static

 dynamic-opt
� dynamic-base

|

0
|

4
|

8
|

12
|

16
|

20
|

24
|

28
|

32

|0

|1

|2

|3

|4

|5

|6

|7

|8

 Moldyn-loop

 Ntiles

 S
pe

ed
up

�
� � � � �

 static

 dynamic-opt
� dynamic-base

|

0
|

4
|

8
|

12
|

16
|

20
|

24
|

28
|

32
|0

|1

|2

|3

|4

|5

|6

|7

|8

 Unstructured-loop

 Ntiles

 S
pe

ed
up

�

�
�

� � �

Figure 12: Speedups of benchmarks with optimized dynamic accesses.

benchmarks (Adpcm and SHA), all the benchmarks are able
to exploit at least a small amount of parallel memory band-
width. On the positive end, MPEG-kernel and all the dense
matrix applications have at least 20% of their accesses being
performed on cycles which issue five or more accesses, with
Vpenta enjoying 10-way memory parallelism for over 20%
of its accesses.

Exposing memory parallelism through dynamic accesses
Static accesses are usually better than dynamic accesses be-
cause of their low overhead. Sometimes, however, static
accesses can only be attained at the expense of memory
parallelism. MPEG-kernel, Unstructured, and Moldyn are
benchmarks with irregular accesses which can take advan-
tage of high memory parallelism. This section examines the
opportunity of increasing the memory parallelism of these
programs by distributing their arrays and using dynamic ac-
cesses to implement parallel, irregular accesses.

Benchmark N=1 N=2 N=4 N=8 N=16 N=32

MPEG-kernel 0.86 0.80 1.54 1.89 2.55 3.45
Moldyn 0.93 0.44 0.54 0.61 0.67 0.68
Unstruct 0.76 0.24 0.37 0.55 0.73 0.83

Table 4: Benchmark speedup with all arrays distributed, with irreg-
ular array references implemented through dynamic accesses with
software serial ordering.

Table 4 shows the performance of the aforementioned
benchmarks when all arrays are distributed. Irregular ac-
cesses are implemented through dynamic accesses, with
software serial ordering to ensure correctness. Results for
Moldyn and Unstructured are poor, with slowdowns for all
configurations. MPEG-kernel attains speedup but is twice
as slow as its purely static speedup. This result is not sur-
prising: dynamic accesses serialized through a turnstile is
provably slower than corresponding static accesses serial-
ized through a memory node. To reap benefit from the
exposed memory parallelism, serialization of dynamic ac-
cesses has to be reduced through epoch and update optimiza-
tions. Currently, epoch generation has not been automated,
so our evaluation of these techniques uses a hand-coded im-
plementation of epochs. To simplify this task, we apply our
optimizations on a selected loop from each of Moldyn and
Unstructured, in addition to the full MPEG-kernel. The loop

we select from Moldyn accounts for 86% of the run-time.
In Unstructured, many of the loops with irregular accesses
have similar structure; we select one such representative
loop. Figure 12 shows the performance of dynamic refer-
ences when epoch and update optimizations are applied to
these applications, compared with the unoptimized dynamic
performance and the static performance. It shows that the
dynamic optimizations are effective in reducing serialization
and attaining speedup. All three benchmarks benefit from
epochs, while Moldyn and Unstructured benefit from up-
dates as well. Together, the optimizations completely elimi-
nate the turnstile serialization for these applications.

The speedup trends of these applications reflect the
amount of available memory parallelism. For static ac-
cesses, the amount of memory parallelism that can be ex-
posed through ECU is limited to the number of alias equiva-
lence classes. Depending on the access patterns, the amount
of useful memory parallelism may be less than that. This
level of memory parallelism does not scale with the number
of tiles. For a small number of tiles, ECU is able to expose
enough parallelism to satisfy the number of processing ele-
ments. But for larger number of tiles, insufficient memory
parallelism causes the speedup curve to level off.

In contrast, the use of dynamic accesses allow arrays to
be distributed, which in turn exposes memory parallelism
scalable with the number of tiles. As a result, the speedup
curve for optimized dynamic scales better than that for static.
For up to 16 tiles, static outperforms optimized dynamic; for
32 tiles, optimized dynamic actually outperforms static, and
the trend suggests that optimized dynamic will increasingly
outperform static for even larger number of tiles. Note that
for the dynamic experiment, only the irregular accesses were
selectively made dynamic, the affine array accesses and all
scalar data were still accessed on the static network.

Why do we need software serial ordering? As discussed
in the previous section, dynamic accesses using software se-
rial ordering can never perform better than static accesses
promoted through ECU. This section shows how software
serial ordering can be useful, using an example from Un-
structured.

Unstructured contains an array X[] which is accessed
in only two loops, an initialization loop (init) and a usage
loop (use). The initialization loop makes irregular accesses

to X[] and is executed only once. The usage loop makes
affine accesses to X[] and is executed many times. For best
performance, Maps should optimize the placement of X[]
for the usage loop.

Array mapping Loop Access type Speedup

centralized init static serial 1.89
use static serial 3.86
total – 3.85

distributed init dynamic serial 0.59
use static parallel 4.43
total – 4.42

Table 5: An example of overall performance improvement through
the use of software serial ordering. Software serial ordering enables
Maps to distribute a critical array, which optimizes for static paral-
lel access in the critical use loop in exchange for dynamic accesses
with software serial ordering in the non-critical init loop. Perfor-
mance is measured for 32 tiles.

Table 5 compares the performance of the loops when
X[] is placed on one tile to when it is distributed across 32
tiles. When the array is centralized, both init and use at-
tain speedups because they enjoy fast static accesses. When
the array is distributed, however, init suffers slowdown be-
cause it has dynamic serial accesses going through a turn-
stile, while use attain better speedup compared to the cen-
tralized case. For the full program, however, the perfor-
mance of use matters much more. Thus, distributing X[]
provides the better overall performance, despite the over-
head init incurs from software serial ordering.

This example illustrates the general use of software se-
rial ordering. It is a way of enforcing dynamic dependences
which is more efficient than other mechanisms such as com-
plete serialization or placing barriers between the dependent
accesses. It is used not to improve the performance of the
code segment employing it, but as an enabling mechanism
to allow the compiler to improve the parts of the program
that really affect performance. It provides a universal and
efficient handling of dynamic accesses in the absence of ap-
plicable optimizations. The overall utility of dynamic ac-
cesses remains to be seen, but its use with software serial
ordering provides a reasonable starting point on which fur-
ther optimizations can be explored.

7 Related work

Other researchers have parallelized some of the benchmarks
in this paper. Automatic parallelization has been demon-
strated to work well for dense matrix scientific codes [6].
In addition, some irregular scientific applications can be
parallelized on multiprocessors using the inspector-executor
method [3]. Typically these techniques involve user-inserted
calls to a runtime library such as CHAOS [11], and are not
automatic. The programmer is responsible for recognizing
cases amenable to such parallelization, namely those where
the same communication pattern is repeated for the entire
duration of the loop, and inserting several library calls.

In contrast, the Rawcc approach is more general and re-
quires no user intervention. Its generality stems from its
exploitation of ILP rather than coarse-grain parallelism tar-
geted by [3] and [6]. Multiprocessors are mostly restricted to

such coarse-grain parallelism because of their high commu-
nication and synchronization costs. Unfortunately, finding
coarse grain parallelism often requires whole program anal-
ysis by the compiler, which works well only in restricted
domains. A Raw machine can successfully exploit ILP be-
cause of the register-like latencies of the static network. Of
course, Raw can exploit coarse-grain parallelism as well.

Software distributed shared memory schemes on multi-
processors (DSMs) [4] [13] are similar in spirit to Map’s
software approach of managing memory. They emulate in
software the task of cache coherence, one which is tradi-
tionally performed by complex hardware. In contrast, Maps
turns sequential accesses from a single memory image into
decentralized accesses across Raw tiles. This technique en-
ables the parallelization of sequential programs on a dis-
tributed machine.

Static promotion is related to memory bank prediction,
a term used by Fisher [5] for a point-to-point VLIW model.
For such VLIWs, he shows that successful disambiguation
allows an access to be executed through a fast “front door”
to a memory bank, while a non-disambiguated access is sent
to a slower “back door.” Most VLIWs today, however, use
global buses rather than point-to-point networks. The lack
of point-to-point VLIWs seems to explain the dearth of work
on memory bank disambiguation for VLIW compilation.

A different type of memory disambiguation, relative
memory disambiguation, is relevant on the more typical bus-
based VLIW machines such as the Multiflow Trace [8]. Rel-
ative memory disambiguation aims to discover whether two
memory accesses never refer to the same memory location.
Successful disambiguation implies that accesses can be ex-
ecuted in parallel. Hence, relative memory disambiguation
is more closely linked to dependence and pointer analysis
techniques.

Modulo unrolling is related to an observation made by
Fisher [5]. He observes that unrolling can sometimes help
disambiguate accesses. Based on this observation, his com-
piler relies on user annotations to determine the unrolling
factor needed for such disambiguation. In contrast, mod-
ulo unrolling is a fully automated and formalized technique
which computes the necessary unrolling factors needed to
perform such disambiguation for dense matrix codes. It
includes a precise specification of the scope of the tech-
nique and a theory to predict the minimal required unroll
factor [1].

8 Conclusion

Raw microprocessors are designed for aggressive on-chip
memory performance. They distribute their memory and
processing resources over a large number of on-chip tiles
coupled with a point-to-point interconnect. To retain hard-
ware simplicity, the distributed memory system is exposed
to the compiler, so it can provide the abstraction of a unified
memory system to support traditional sequential program-
ming models.

This paper addresses the challenging compiler prob-
lem of orchestrating distributed memory and communica-
tion resources to provide a uniform view of the memory sys-
tem. We present a compiler-managed memory system called

Maps that provides a sequential memory abstraction to the
programmer. The Maps solution attempts to maximize both
memory parallelism and its use of the static interconnect.

Through the application of equivalence class unification
and modulo unrolling, we demonstrate that Maps is able to
statically promote the memory references in our regular sci-
entific applications while obtaining ample amounts of mem-
ory parallelism, as evidenced by the speedups of about 20 on
32 tiles. Surprisingly, we find that the same techniques are
also able to statically promote the memory references in our
irregular applications and achieve sufficient memory paral-
lelism to yield speedups of about 5 on 16 or more tiles. There
are two reasons for this result: first, even irregular applica-
tions contain a modest amount of affine memory accesses,
and they usually contain several distinct equivalence classes,
each of which can be unified on a different tile. Second, the
register-like latency of the static interconnect makes it pos-
sible to extract meaningful speedups on applications with
small amounts of parallelism. This is an important result be-
cause it suggests the feasibility of 8-tile or 16-tile general
purpose microprocessors using an all-static interconnect.

Further, we show that selective use of dynamic refer-
ences may be helpful in certain cases to augment static pro-
motion, as described in section 4.3. One example is when
dynamic support allows arrays with non-affine accesses to
be distributed, possibly exposing more memory parallelism
and attaining better speedups. Another is to use dynamic ac-
cesses for infrequent irregular references to arrays, allowing
more frequently accessed portions to be static promoted via
modulo unrolling. Finally using dynamic accesses for a few
“bad references” may prevent excessive merging of equiv-
alence classes, yielding higher memory parallelism. Soft-
ware serial ordering is introduced as an efficient method of
enforcing dependences between dynamic accesses.

We are encouraged by the results of the Maps approach
to memory orchestration for both the regular and the irregu-
lar benchmarks we have executed on the system. We demon-
strate a high degree of speedup for regular programs and
modest speedups for irregular applications. If the results for
more programs continue to be positive, our software-based
Maps approach will be a viable competitor to hardware sup-
ported coherent memory systems for single chip micros.

Acknowledgments

We thank Martin Rinard and Radu Rugina for their pointer
analysis package, Michael Taylor and Elliot Waingold for
implementing the Raw simulator and debugger, Matthew
Frank for related discussions and providing several bench-
marks, and other members of the Raw group for their sup-
port. We also thank the anonymous reviewers for their con-
structive comments. This research was funded by ARPA
grant #DBT63-96-C-0036.

References

[1] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Mem-
ory Bank Disambiguation using Modulo Unrolling for Raw
Machines. In Proceedings of the ACM/IEEE Fifth Int’l Con-
ference on High Performance Computing(HIPC), Dec 1998.
Also http://www.cag.lcs.mit.edu/raw/.

[2] D. Burger, J. Goodman, and A. Kagi. Memory Bandwidth
Limitations of Future Microprocessors. In Proceedings of
the 23rd International Symposium on Computer Architecture
(ISCA’96), pages 78–101, May 1996.

[3] R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang. Communica-
tion Optimizations for Irregular Scientific Computations on
Distributed Memory Architectures. Journal of Parallel and
Distributed Computing, 22(3), September 1994.

[4] S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. An Inte-
grated Compile-Time/Run-Time Software Distributed Shared
Memory System. In Proceedings of the Seventh International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 186–197, Cambridge,
Massachusetts, October 1–5, 1996.

[5] J. A. Fisher. Very Long Instruction Word Architectures and
the ELI-512. In Proceedings of the 10th Annual International
Symposium on Computer Architecture, pages 140–150, Stock-
holm, Sweden, June 1983.

[6] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Mur-
phy, S.-W. Liao, E. Bugnion, and M. S. Lam. Maximizing
Multiprocessor Performance with the SUIF Compiler. IEEE
Computer, 29(12):84–89, Dec. 1996.

[7] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar,
and S. Amarasinghe. Space-Time Scheduling of Instruction-
Level Parallelism on a Raw Machine. In Proceedings of the
Eighth ACM Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 46–57,
San Jose, CA, Oct. 1998.

[8] P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein,
R. Nix, J. O’Donnell, and J. Ruttenberg. The Multiflow Trace
Scheduling Compiler. In Journal of Supercomputing, pages
51–142, Jan. 1993.

[9] D. Matzke. Will Physical Scalability Sabotage Performance
Gains? Computer, pages 37–39, Sept. 1997.

[10] D. E. Maydan, J. L. Hennessy, and M. S. Lam. Efficient and
Exact Data Dependence Analysis. In Proceedings of the SIG-
PLAN ’91 Conference on Program Language Design and Im-
plementation, Toronto, June 1991.

[11] S. Mukherjee, S. Sharma, M. Hill, J. Larus, A. Rogers,
and J. Saltz. Efficient Support for Irregular Applications on
Distributed-Memory Machines. In Principles and Practice
of Parallel Programming (PPoPP) 1995, pages 68–79, Santa
Clara, CA, July 1995. ACM.

[12] R. Rugina and M. Rinard. Pointer Analysis for Multithreaded
Programs. In Proceedings of the SIGPLAN ’99 Conference on
Program Language Design and Implementation, Atlanta, May
1999.

[13] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta:
A Low Overhead, Software-Only Approach for Supporting
Fine-Grain Shared Memory. In Proceedings of the Seventh
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 174–185,
Cambridge, Massachusetts, October 1–5, 1996.

[14] M. D. Smith. Extending SUIF for Machine-dependent Opti-
mizations. In Proceedings of the First SUIF Compiler Work-
shop, pages 14–25, Stanford, CA, Jan. 1996.

[15] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee,
V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Ama-
rasinghe, and A. Agarwal. Baring It All to Software: Raw
Machines. IEEE Computer, 30(9):86–93, Sept. 1997. Also
available as MIT-LCS-TR-709.

[16] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Ander-
son, S. Tjiang, S. Liao, C.-W. Tseng, M. Hall, M. Lam, and
J. Hennessy. SUIF: An Infrastructure for Research on Paral-
lelizing and Optimizing Compilers. ACM SIGPLAN Notices,
29(12), Dec. 1996.

