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Abstract

As field programmable gate array (FPGA) technology has steadily improved,
FPGAs have become viable alternatives to other technology implementations
for high-speed classes of digital signal processing (DSP) applications. In par-
ticular, radar front-end signal processing, an application formerly dominated
by custom very large scale integration (VLSI) chips, may now be a prime can-
didate for migration to FPGA technology. As this thesis demonstrates, current
FPGA devices have the power and capacity to implement a FIR filter with the
performance and specifications of an existing, in-system, front-end signal pro-
cessing custom VLSI chip. A 512-tap, 18-bit FIR filter was built that could
achieve sample rates of 7 MHz (with a clock rate of 117 MHz) using Xilinx Vir-
tex FPGA technology, and was demonstrated through simulation and hard-
ware implementation. Distributed arithmetic, bit-level systolic arrays,
parallel multiplier/accumulator (MAC) cells, fast FIR algorithms, and fre-
quency domain filtering were investigated to determine the most optimal
structure for a FPGA FIR design, with distributed arithmetic resulting in the
best performance. A custom VHDL cell-based layout tool was designed to
improve the placement strategies of the Xilinx FPGA place and route tools,
and improved the speed performance of the distributed arithmetic design by
37%.
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Chapter 1

Introduction

1.1 Thesis Overview

As field programmable gate array (FPGA) technology has steadily improved,

reconfigurable computing using FPGAs has become a viable alternative to

other technology implementations, including custom very large scale integra-

tion (VLSI) devices and processor-based systems, for high-speed classes of dig-

ital signal processing (DSP). In particular, radar front-end signal processing,

an application formerly dominated by custom VLSI chips, may now be a prime

candidate for migration to FPGA technology.

To demonstrate the feasibility of using reconfigurable computing to imple-

ment radar front-end signal processing, FPGA-based DSP solutions meeting

the specifications of an existing, in-system, radar front-end custom VLSI chip

were investigated. These specifications required a 512-tap real finite impulse

response (FIR) filter be built that could operate on 16-bit data and 18-bit coef-

ficients while outputting results with 18-bits of precision with a sample rate of

5 MHz and a clock rate of 40 MHz. Two banks of coefficients were required so

that one could be active while another was loaded in the background. The

designs were implemented in the largest FPGA available today, the Xilinx Vir-

tex XCV1000.

The designs considered included distributed arithmetic, bit-level systolic

arrays, parallel multiplier/accumulator (MAC) cells, fast FIR algorithms, and

frequency domain filtering. Implementations using distributed arithmetic,
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parallel MAC cells, and fast FIR filtering were built and simulated. All of

these designs met the custom VLSI chip’s design specifications and exceeded

its performance, with a distributed arithmetic design using linear-systolic

cells having the best performance (7 MHz sample rate). An eight-tap distrib-

uted arithmetic design was implemented on an Annapolis Micro Systems

Starfire reconfigurable-computing engine.

To improve upon a poor linear-systolic design placement strategy by the

synthesis and FPGA tools, a custom VHDL placement tool, CELL_MAKER, was

built that could read VHDL, extract user placement constraints, and construct

a placement strategy for the final FPGA. This tool improved the performance

of the linear design by 37% due to layout alone.

This thesis demonstrates that current FPGA devices have the power and

capacity to implement a FIR filter with the performance and specifications of

an existing, in-system, front-end signal processing custom VLSI chip.

1.2 Contributions

This thesis contributes new research or data in several areas:

1. A unique parallel MAC design using shift registers to store the inputs

when multiple taps per MAC are computed instead of using RAM to store the

multiplier outputs was constructed, simulated, and area and performance

results were determined.

2. A distributed arithmetic design was built that did not require constant

coefficients. Instead, it could operate on two banks of coefficients (one active,

one loadable), and was built, simulated, and implemented in hardware. Two

variations of this design, one using a tree approach for summing the individ-
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ual cell’s outputs together, and the other using a linear-systolic approach were

built, and area and performance results were determined.

3. A new approach to reducing a parallel MAC design’s area using fast FIR

algorithms was developed. A filter using this approach was constructed, simu-

lated, and area and performance results were determined.

4. Area figures for a pipelined radix-2 FFT-based filter in the frequency

domain were calculated.

5. The performance limitations of the linear-systolic distributed arithmetic

design (which should have been the fastest design) were determined to be due

to the placement strategy of the design, as it was not placed in a linear-sys-

tolic fashion. A custom tool was built to solve this problem that could read

user-inserted constraints in the design’s VHDL code and generate a file with

placement constraints for the Xilinx place and route tools to use. This tool

improved the design’s performance by 37%.

6. The power and performance in terms of billions of operations per second

(GOPS) were calculated for the linear-systolic distributed arithmetic design.

1.3 Outline of Thesis

Chapter 2 discusses the background for the research in this thesis, including

reconfigurable computing for DSP using FPGAs, trends in FPGA develop-

ment, and radar front-end signal processing. Chapter 3 gives an overview of a

custom VLSI design built and used at MIT Lincoln Laboratory for a particular

radar front-end signal processing system, including a description of its fea-

tures, architecture, and an analysis of its output precision due to internal

round-off noise. Chapter 4 discusses the problem this thesis investigated,



18

which was building a FPGA implementation to meet the specifications of the

custom VLSI chip, and why a FPGA implementation would be beneficial.

Chapter 5 gives an overview of the FPGA used in this thesis, the Xilinx Virtex.

Chapter 6 provides a background on each of the algorithms or design tech-

niques investigated for implementing a FPGA-based FIR filter, and Chapter 7

presents the particulars and implementations of each algorithm or technique

as applied to the design problem discussed in Chapter 4 within a Virtex

FPGA. Chapter 8 introduces the custom placement tool, its motivation, opera-

tion, and results as applied to the linear-systolic distributed arithmetic

design. Chapter 9 summarizes the area and performance results for each

implementation built in a Virtex FPGA, and calculates the power and GOPS

for the best implementation (linear-systolic distributed arithmetic after using

the custom placement tool). Chapter 10 discusses how an eight-tap version of

the distributed arithmetic design was implemented in real hardware, and

Chapter 11 presents the conclusions of this thesis.
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Chapter 2

Background

2.1 Radar Digital Signal Processing Development

Until recently, the first few stages of radar signal processing after an

incoming radar signal was acquired were performed in the analog domain. As

analog to digital converters (ADCs) have become faster in recent years, and

digital hardware has become more capable, the trend has been to move the

analog to digital converter closer to the radar antenna in the signal processing

chain and perform more processing in the digital domain. Digital hardware

offers more robust system stability, more flexibility in waveform and filter

design, the ability to develop adaptive processing algorithms such as beam-

forming, adaptive nulling, or space-time adaptive processing that require fast

changes in hardware configurations and system coefficients, and an easier

upgrade path as digital electronics continue to advance. [MMT00]

As more and more front-end radar signal processing functions are moved

into the digital domain, the signal processing requirements for the digital

hardware executing them increases dramatically. This is due to fast ADC sam-

pling rates, large numbers of sensor channels, and stringent requirements on

filter designs. The computational demands range from tens to hundreds of bil-

lion operations per second (GOPS), as data throughputs often range in the

hundreds of megabytes per second (MBytes/sec). Further restrictions on the

digital hardware include size, weight, power, environment, and shock con-

straints as digital radar systems are fielded in platforms ranging from early
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warning radars, unmanned air vehicles, fighters, and space-borne surveillance

and targeting radars. [MMT00]

For the past several years, commercially available digital signal processors

(DSPs) or reduced instruction set (RISC) microprocessors have not been able

to meet the system requirements for front-end radar signal processing. How-

ever, this processing is often very regular, is highly parallel, and is usually

independent of the data. Therefore, most implementations to date have used

either commercially available, dedicated, computing engines or custom very

large scale integrated-circuit (VLSI) designs. [MMT00, Hau98, BAK96]

One such custom VLSI design was recently fielded at MIT Lincoln Labora-

tory that is capable of operating at 100 GOPS. It has the ability to change

banks of coefficients in a few milliseconds, and is channel parallel, meaning it

can be scaled to many hundreds of GOPS as the number of radar input chan-

nels is increased. [MMT00, Gre96]

2.2 Reconfigurable Computing for Digital Signal Processing

In the late 1980s and early 1990s, the conventional wisdom where hardware

was fixed at design time and software contained the flexibility in a system was

reexamined. The presence of chips (such as field programmable gate arrays, or

FPGAs) that could adapt to the current demands of an application lead to the

adoption of “generic” hardware, in which FPGAs, microcontrollers, and other

reprogrammable parts could be combined together on a single board that

could be reconfigured to serve many different applications. A computing

device would not need to be as generic as a microprocessor, as reconfigurable

elements could form special-purpose hardware to solve a specific problem, but
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would be flexible enough to change that special-purpose function to another

function upon demand. [Hau98, BAK96]

The ability of a system to change its functionality in hardware instead of in

just software lead to the development of reconfigurable computing. Hardware

was now able to become the medium for general-purpose computing, as it

could adapt itself to compute algorithms normally handled by a processor. As

the requirements for the algorithms changed, so could the hardware. Because

the algorithms were being executed directly by hardware instead of by a com-

puter that was fetching and decoding instructions sequentially, they would

gain the performance boost inherent in being executed, in parallel, by process-

ing units precisely designed for the algorithm. [Hau98, BAK96]

Currently, reconfigurable computing is a niche research field—it is not

applicable for all applications. However, for applications characterized by

deeply pipelined, highly parallel, and integer arithmetic processing, reconfig-

urable computing machines have shown performance improvements of an

order of magnitude or more at a low cost. This is because current reconfig-

urable computing mediums are usually characterized by arrays of highly-rep-

licated, pipelined, functional blocks. An algorithm that can be broken into

many parallel tasks will map well into this architecture, especially if it is eas-

ily pipelined. A more complicated, irregular, structure will not map well into

this architecture, as the number of unique functional units required to imple-

ment an irregular algorithm may surpass the capacity of even a large sized

configurable computer. [Hau98, VH98]

A microprocessor achieves a variety of different functions temporally by

executing multiple functions sequentially, during different cycles, while recon-



22

figurable computing solutions achieve a variety of functions spatially by hav-

ing different logic elements compute different functions. Therefore,

microprocessors will execute irregular computations and complex data-flow

manipulations better, while reconfigurable computing machines can be supe-

rior for data-parallel applications, where large amounts of data must be acted

on in a similar manner. Some examples of tasks that are suitable for config-

urable computing include: image processing, pattern matching, target recogni-

tion, cryptography, filtering, convolution, FFTs, and some database tasks

[Hau98, VH98].

FPGAs are a good medium for custom computing applications because of

their highly-replicated regular structure of configurable logic combined with

many pipeline registers that can be easily programmed to perform a series of

parallel computing tasks. As FPGAs have grown in capacity, improved in per-

formance, and decreased in cost, FPGA based custom computing machines

have become an ideal medium for DSP applications. Several studies per-

formed by Xilinx, researchers at BYU, Intel, and other institutions have

shown that a single FPGA can outperform a DSP chip by an order of magni-

tude or more for pipelined, parallel DSP applications [ASR98, PH95, Gos96a,

Xila, Kna95, VH98, Con96].

As FPGA technology has improved over the past several years, it may now

be feasible to field a reconfigurable computing solution to the radar front-end

signal processing problem instead of a custom VLSI solution. Such a solution

would be more cost effective (typically FPGAs have a much lower cost per-part

than custom chips due to non-recurring engineering costs and time-to-market

factors for production runs of 100,000 to 400,000 units [Liu95]) and will
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require less time and fewer resources for design, development, testing, and

fielding than custom VLSI. In addition, because of the high demand and gen-

eral purpose nature of FPGA devices, FPGA manufactures have the ability to

reap the benefits of the latest reductions in lithography feature size, enabling

FPGAs to take advantage of technologies that may not be available for custom

VLSI for a significant period of time. Finally, the most significant benefit of

using reconfigurable computing would be the ability of a system to adapt its

configuration dynamically, in-system, a benefit previously only available to

software running on slow microprocessor-based designs. [MM99]

There is a range of signal processing requirements (typically data through-

puts exceeding gigabytes per second) for especially demanding applications

which exceeds the maximum performance FPGAs can deliver, and for which

custom VLSI devices are still the only viable solution. However, for many sys-

tems, FPGAs are becoming powerful enough to meet the system’s signal pro-

cessing demands and may be a better choice than a custom VLSI solution

given the benefits of reconfigurable computing described above.

2.3 FPGA Trends

Shrinking process geometry and reduced supply voltages in FPGAs have

resulted in enormous growth in terms of their computational capability and

power efficiency [MMT00]. The growth in FPGA computational capability ver-

sus process geometry is shown in Figure 2.1. Curves are shown for FPGAs, the

Motorola Power PC, and custom VLSI for comparison purposes. The data for

the custom VLSI is based on several development efforts at MIT Lincoln Lab-

oratory over the past several years [MMT00].
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Figure 2.1 shows that FPGAs offer an intermediate capability between

that offered by programmable processors and custom VLSI. Presently, FPGAs

are about an order of magnitude more capable than programmable processors,

and an order of magnitude less capable than full custom VLSI. Furthermore,

the gap between FPGAs and microprocessors is widening, as FPGA vendors

use increased density to increase the number of logic cells, whereas micropro-

cessor developers often use increased density for caches and reducing die size.

[MMT00]

The growth in the computational capability of FPGAs for DSP applications

as a function of time is shown in Figure 2.2 in billions of 16-bit arithmetic

operations per second. Within the last 5 years, the computational capability of

FPGAs have increased by an order of magnitude every two years. It is now

feasible to explore the implementation of complex DSP systems using FPGAs

as computational building blocks.

Figure 2.1: Growth in FPGA Performance Versus Process Geometry
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2.4 Radar Front-End Digital Signal Processing

A typical radar signal processing flow is illustrated in Figure 2.3. In this flow,

the first stage of digital filtering is what is referred to in this thesis as front-

end radar signal processing. This stage of filtering converts the data from real

ADC samples to complex digital in-phase and quadrature (DIQ) samples, and

is referred to as DIQ sampling [Sti98]. DIQ sampling is important to preserve

the target's Doppler information. Although the remaining processing stages,

Doppler filtering, adaptive nulling, and post-nulling processing, can be very

demanding, it is the first stage of digital filtering that has the most stringent

Figure 2.2: Growth of Computational Capability for Xilinx FPGAs
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processing requirements that have necessitated custom VLSI designs until

now. The rest of the signal processing flow is described extensively in [War94].

The DIQ filtering is designed to extract one sideband after ADC sampling,

map the sideband to baseband, and remove any remaining spectrum images

and DC offsets. The exact DIQ filter coefficients depend on the characteristics

of the bandwidth present in the transmitted pulse, and are required to be

dynamically alterable. The DIQ architecture for the custom VLSI design is

shown in Figure 2.4, and is described in detail in [MMT00, Sti98, War94]. As

the figure shows, the DIQ architecture requires two finite impulse response

(FIR) filters followed by decimation. This design required a filter with 208

complex taps.

Figure 2.3: Typical Radar Signal Processing Flow

Figure 2.4: Digital In-phase and Quadrature Sampling Architecture
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Chapter 3

Custom VLSI Implementation

3.1 Overview

A custom VLSI implementation of the DIQ architecture in Figure 2.4 was

begun in 1996 and finished in 1998 at MIT Lincoln Laboratory. It was con-

cluded that no commercially available DSP or RISC processors or dedicated

filtering chips would meet the processing requirements of the DIQ filtering

stage, leaving a custom solution as the only alternative. The design that was

chosen was a custom chip made up of a mix of standard cells and datapath

multiply-accumulate (MAC) cells [Gre96]. The overall system consisted of sev-

eral boards using these custom chips, and is described in detail in [MMT00].

The custom VLSI chip, designed using 1996 process technology, is shown in

Figure 3.1. The standard cells are used in the chip control interface, barrel bit

selector, and downsampler. The datapath blocks form the MAC cells. There

are a total of 64 MACs available on the chip. Depending on the input sample

rate and mode, these MACs can be used either as 64, 128, or 256 complex taps,

or as 128, 256, or 512 real taps. Since the chip was to compute the in-phase (I)

and quadrature (Q) data from real ADC data, 32 MACs processed up to 128

real taps for the I samples and, in parallel, another 32 MACs up to 128 taps

for the Q samples. [Gre96, MMT00]

For the specific technology demonstration discussed in Section 2.4, ADC

samples arrive at 10 MHz. Samples alternate between the I computation and

the Q computation. Thus, two sets of outputs are computed at 10 MHz (5 MHz
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for I and Q), each using 104 real taps. Since there are two real operations per

tap (a multiply and an add), the total computation throughput for these

parameters is 2.08 GOPS. These operations are performed on 18-bit sign

extended data (from 14 bit ADC samples) using 18-bit coefficients. The result-

ing outputs (I and Q samples) are selected from the most significant 24 bits.

[MMT00, Gre96]

The key features of this chip are: [MMT00, Gre96]

• 2.08 GOPS in DIQ mode

• 5.02 GOPS in 512-tap real mode

Figure 3.1: Custom VLSI Chip
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• 40 MHz operating frequency (tested to 44 MHz)

• 18-bit input data and coefficients; 24-bit output data

• 585 mil x 585 mil die size

• 1.5 million transistors

• 0.65 mm feature size

• CMOS using three-layer metal

• Designed for 4 watts power dissipation; measured 3.2 watts in operation

• DIQ mode throughput/power = 0.65 GOPS/W

• 512-tap real mode throughput/power = 1.57 GOPS/W

3.2 Custom VLSI Architecture

A block diagram of the custom VLSI chip’s architecture is shown in Figure 3.2.

As was discussed in Section 3.1, the custom VLSI chip consists of 64 MAC

units. Each MAC unit contains a multiplier, accumulator and intermediate

storage memory, and two banks of coefficient memory. The two banks of coeffi-

cient memory allows one set of coefficients to be active and is used by the mul-

tipliers while a new set can be loaded into the other coefficient bank. Once the

new set has been loaded, it can now become active, allowing the chip to

instantly change from one set of coefficients to another.

Each MAC, by using the accumulator and intermediate storage memory, is

capable of forming the products of the current chip input and up to eight filter

taps (i.e. eight coefficients). These products are accumulated together as

required within the MAC, and then added to the other MACs’ results when a

new input is present. If the MACs are operating in their eight tap mode, they

must run at a clock rate eight times the input sample rate so that all eight
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taps’ products are computed each time a new input arrives. In this mode, the

64 MACs can compute a 512-tap real filter, the mode used as a benchmark for

a FPGA implementation (Chapter 4).

3.3 Custom VLSI Noise Analysis

As shown in Figure 3.2, the multiplier in each MAC multiplies an 18-bit input

by an 18-bit coefficient. This would produce a 36-bit output. However, to keep

the logic downstream of the multiplier a reasonable size, the bit-width of the

multiplier’s output has been reduced to 24-bits by a rounder. The rest of the

chip uses full-precision, i.e., each time a summation is performed (the only

operation that occurs after the multiplication), the summation’s output grows

a bit to handle the one-bit word growth normal in addition. [Gre96, OS89]

Rounding is performed by adding the most significant bit (shifted right to

bit position 0) of the bits to be removed to the bits that are to remain. For

Figure 3.2: Custom VLSI Chip Architecture
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example, when rounding the 36-bit multiplication output to 24 bits, the top

24-bits of the 36-bit output are kept and added to the 11th bit of the 36-bit out-

put. Since each bit represents 1⁄2 the power of the bit to its left, adding the

most significant bit of the part of a number to be rounded off to the bits on its

left is the same as rounding the bits on its left up by one if the bits on the right

are greater than 0.5, the typical method of rounding in math. However, since

the rounded result is no longer exact (because bits were removed), noise is

introduced. This noise can be approximated as additive noise added at the

rounder with a mean of zero and a variance of ([OS89, OW75])

(3.1)

where B is the number of bits the result has been rounded to. The noise

approximation is modeled simply as additive noise as shown in Figure 3.3.

[OS89, OW75]

Examining Figure 3.2 with the rounders replaced with noise sources (as

shown in Figure 3.3) shows that the noise sources will simply be added

together. Since they are assumed to be independent, their means and vari-

ances can be summed, giving a total noise source for the 512-tap custom VLSI

Figure 3.3: Rounding Noise Approximation
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chip filter with 24-bit rounded multiplier outputs a mean of zero and a vari-

ance of ([OS89, OW75])

(3.2)

With the chip’s output variance computed, the number of bits required for a

single rounder to achieve the variance in Equation (3.2) can be solved (i.e. if

the custom VLSI chip had only one rounder at its output instead of 512 sepa-

rate rounders):

(3.3)

This means that the final output of the custom VLSI chip is the same as if the

filter had no rounding internally, and the output was rounded to 19.5 bits.

Therefore, only the upper 19 bits of the chip’s 24-bit output are exact; the

extra bits in the chip’s output data bus contain noise introduced by the round-

ing at each multiplier.

To experientially determine the chip’s output precision, a fixed-point MAT-

LAB simulation of the custom VLSI chip was built. The simulation performed

24-bit rounding at the output of each multiplier as described above, and com-

pared this filtered output for a random set of data and coefficients with the

ideal convolution of the data and coefficients. The difference of the ideal convo-

lution’s results and the rounding filter’s results was equal to the noise intro-

duced by rounding. The variance of this difference (the rounding noise

variance) was then computed and used in Equation (3.3) to compute the num-

ber of valid bits output by the custom VLSI chip. This simulation indicated

σe
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that (with several different sets of random data and coefficients) the custom

VLSI chip actually outputs 18 bits of valid data.
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Chapter 4

Problem

4.1 FPGA Benefits to Radar Front-End Signal Processing

As FPGA technologies become more capable, the same filtering operations

currently implemented in custom VLSI devices can now be attempted to be

implemented in a FPGA. a FPGA implementation would have several major

benefits:

1. Reduction in design, manufacturing, and testing costs, time, and

resources relative to custom VLSI designs.

2. Flexibility to implement different filtering functions using the same re-

programmable FPGA devices.

3. Ability to upgrade the design to higher ADC sampling rates by substi-

tuting more capable FPGA devices commensurate with the Moore's law pro-

gression in silicon technology (without requiring the new fabrication runs

custom chips necessitate).

4. Wider vendor sources of FPGA technologies than available with custom

VLSI designs.

The most limiting factor in permitting the use of FPGAs to date for the

more advanced classes of DSP applications (in particular, radar front-end sig-

nal processing) is their inability to reach the required throughputs with high

precision, which are on the order of several billion GOPS with at least 16-bits.

Most high performance demonstrations to date are based on a few bits of pre-

cision. Therefore, this thesis attempts to demonstrate that FPGA technology
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can implement filtering fast enough to allow the benefits of reconfigurable

computing to be applied to radar front-end signal processing DSP functions.

4.2 Problem

To demonstrate the current state of FPGA technology and its application to

front-end signal processing, FPGA implementations meeting the design

requirements of MIT Lincoln Laboratory’s custom VLSI FIR chip discussed in

Chapter 3 were created. The FPGA designs were required to:

• Perform 512-tap real FIR filtering

• Accept 16-bit data at a maximum input rate of 5 MHZ

• Operate with a maximum chip clock frequency of 40 MHz (eight times

the input rate)

• Output data with the same precision as the custom VLSI chip (18-bits as

described in Section 3.3)

• Use two swapable banks of 18-bit coefficients, one active and one load-

able

• Have coefficient banks that must be able to be switched every 1 ms (i.e.

reloading all 512 coefficients must take place in less than 1 ms)

• Fit into the largest Xilinx FPGA available, the Virtex XCV1000.

The 512-tap real FIR filter specification was chosen as this is the mode in

which the custom VLSI chip runs the most efficiently. Although the chip is

used in-system in an in-phase and quadrature mode, the MACs are not fully

utilized, so building an efficient FPGA design would not be a fair comparison.

In the 512-tap design, each of the 64 custom VLSI MACs perform eight filter

tap operations per input sample. The 512-tap design allows a direct perfor-
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mance comparison between the two types of hardware. Once a FPGA design

can meet the 512-tap real mode filtering requirements of the custom VLSI

chip, it will easily be able to meet those of the DIQ mode, as moving to that

mode simply changes the manner in which the internal filter results are

summed together.

The maximum input rate in the design specifications for the custom VLSI

chip operating in its 512-tap real FIR filter mode is 5 MHz. In this mode, the

chip requires a clock rate eight times the sample rate since it is processing

eight taps per input sample. Therefore, the maximum clock rate is 40 MHz,

although the custom VLSI chip was tested to 44 MHz.

16-bit inputs were chosen as the custom VLSI chip is currently being used

with an ADC with a 14-bit output, and it is unlikely the VLSI chip would oper-

ate with an ADC of more than 16-bits in the future. The only reason for hav-

ing the custom VLSI chip designed to accommodate 18-bit input data was to

facilitate word growth if several custom A1000 chips were used in a cascaded

mode.

Two banks of coefficients were used in the custom VLSI chip, and are

required for the FPGA so that one bank stores the active filter’s coefficients

while the other bank is being loaded with new coefficients. The banks may

then be swapped by an external control so that the new coefficients may

become instantly active.

Although the need to change coefficients could be viewed as an ideal appli-

cation for reconfiguration, using swapable coefficient banks is more efficient.

It has been proposed that the ability of a FPGA to be reconfigured in-system

be used to implement a single filter with fixed coefficients that is reconfigured
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when a coefficient switch is desired. The design requirements specify an

instantaneous switch between the active coefficients and the new set of loaded

coefficients, which prohibits using a single bank of coefficients that could be

changed via the FPGA’s reconfiguration ability. The filter would be inactive

during the reconfiguration time, which is unacceptable.

One solution might be to have one filter operational while a second filter

was being configured in the same chip. This would require the FPGA to have

partial reconfiguration ability, and wouldn’t save any space over two coeffi-

cient banks, because two filters would still have to be present in the chip dur-

ing coefficient updates. In addition, the filter coefficients would have to be

known in advance so that configurations using constant coefficients could be

mapped, placed, and routed by the Xilinx software to be ready for loading into

the FPGA. These configurations would then have to be stored off-chip to be

recalled and loaded into the FPGA. In most applications, the filter responses

are not known beforehand, so creating and storing every configuration for

every set of possible coefficients is not feasible.
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Chapter 5

Xilinx Virtex FPGA Technology

5.1 FPGA Selection

The Xilinx Virtex FPGA was chosen to implement the 512-tap FIR design

because of several factors. At the time of this thesis, the Virtex XCV1000, with

1,124,022 gates, had the most capacity of any commercially available FPGA

[Xil98b]. The Virtex series of FPGAs were also determined to be ideal for DSP

applications as they had been designed with vector-based routing intended to

carry large data busses within the chip instead of traditional FPGA routing

schemes designed more for control logic [Xil98a]. In addition, PC-based recon-

figurable computing boards from Annapolis Micro Systems, a company that

MIT Lincoln Laboratory and DARPA are working with to develop reconfig-

urable computing solutions, are available with Virtex devices and could be

used to implement solutions developed in this thesis in real hardware. Finally,

prior Xilinx knowledge finalized the decision to use Xilinx Virtex FPGAs for

this thesis.

5.2 Virtex Overview

FPGAs are similar to custom designed chips in that they implement specific

circuitry for a particular function. The major difference is that a FPGA is con-

figured by a bitstream instead of by being hardwired through fabrication at a

factory. This means that a FPGA’s internal circuitry may be altered an unlim-

ited number of times.
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FPGAs may be classified as “coarse-grained” or “fine-grained,” referring to

the number and complexity of each basic logic element in the FPGA. Xilinx

Virtex series chips are coarse-grained, and have logic units based on look-up

tables (LUTs) and registers. The basic Virtex logic element is a Configurable

Logic Block (CLB) slice. Two slices are present in each CLB. Each slice con-

tains two 4-input, 1-output LUTs and two registers. The interconnections

between these elements are configured by multiplexors controlled by SRAM

cells programmed by a user’s bitstream. The LUTs allow any function of five

inputs, any two functions of four inputs, or some functions of up to nine inputs

to be created within a CLB slice. The outputs of these functions may be regis-

tered, or the registers may be used independently of the LUTs. This structure

allows a very powerful method of implementing arbitrary, complex digital

logic. [Xil98a]

The Xilinx slices also have the ability to implement distributed memory

instead of logic. Each 4-input LUT in a slice may be used to implement a 16x1

ROM or RAM, or the two LUTs may be combined together to create a 32x1

ROM or RAM or a 16x1 dual-port RAM. This allows each slice to trade logic

resources for memory in order to maximize the resources available for a par-

ticular application. A block diagram of a Xilinx Virtex CLB showing both

slices is illustrated in Figure 5.1. [Xil98a]

The CLBs in a Virtex FPGA are connected via programmable interconnect

called the general purpose routing. This interconnect consists of differing

length lines, some connecting adjacent CLBs together, while some span the

entire length of the chip and others are designed for high fan-out signals such

as clocks. The connections between the interconnect and the CLBS are con-
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trolled by switch matrices called general routing matrices (GRMs). The pro-

grammable interconnect allows mappings that require local communication to

be handled efficiently along with requirements for arbitrary, longer-distance,

routing demands. In addition to the programmable interconnect, there are a

few dedicated routing resources. One example is the carry-chains between

CLBs that allow high-speed carry propagation through a series of slices,

enabling high-speed adders and other arithmetic units to be designed in a

chain of CLBs. Connections between the internal routing and the external

world are made through Input/Output Blocks, or IOBs, which contain input/

output registers and connect directly to a package pin. [Xil98a]

The Virtex FPGAs also include 4,096-bit block RAM units on the edges of

the FPGA. These resources are ideal when large amounts of memory are

required that would not use the small, distributed CLB-based memory effi-

Figure 5.1: Block Diagram of Virtex CLB (Two Slices)

4-Input 
LUT

4-Input 
LUT

Carry & 
Control

May also be configured as: two 16x1, 
one 16x2, or one 32x1 edge-triggered 

single-port RAM or one 16x1 
edge-triggered dual-port RAM

S/R

D
Q

CE

Carry & 
Control

Carry Out

Carry In

S/R

D
Q

CE

4-Input 
LUT

4-Input 
LUT

Carry & 
Control

S/R

D
Q

CE

Carry & 
Control

Carry Out

Carry In

S/R

D
Q

CE

Slice 1 Slice 0

Contains support for high-speed 
addition and multiplication, and logic to 

implement boolean functions across 
both slices



42

ciently. Finally, the Virtex also has advanced clock management resources

built in, including a delay locked loop (DLL) that reduces clock skew and can

divide (by up to 16) or multiply (by 2) external clocks for slower or faster inter-

nal clocking. Figure 5.2 shows a block diagram of a Virtex series chip. [Xil98a]

The highly replicated, register rich architecture of the Virtex makes it suit-

able for custom computing applications. Each slice can perform a two-bit com-

putation or look-up, allowing a systolic structure of processors to be built out

of the regular array of CLBs in a Virtex. There are cases when a finer grain

Figure 5.2: Virtex Block Diagram
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structure may be more efficient, as the CLB structure may not be the most

efficient medium for very small systolic-cell based arithmetic (for example, the

bit-level systolic FIR filter design investigated in this thesis).

The largest Virtex, the XCV1000, has 12,288 CLB slices and 131,072 block

RAM bits [Xil98a].

5.3 Computational Unit Implementation

To illustrate the capacity of a slice, two commonly used DSP computational

units, an adder and a multiplier, are presented with their area in terms of

CLB slices.

The Virtex has dedicated fast-carry chain resources built into each CLB.

Two adder bits can fit into a single slice so that a b-bit adder consumes b⁄2 CLB

slices. A 16-bit adder would require 8 slices. [Xil98a]

The Virtex also has dedicated multiplication resources so that two multi-

plication bits can fit into a single slice. An a-bit by b-bit multiplier requires

approximately

(5.1)

CLB slices.1 A 16x16-bit multiplier would require about 152 slices.

1.  Based on an optimized multiplier built for Virtex by Xilinx.

b b2 b 1–( )a+log
2

---------------------------------------------
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Chapter 6

Algorithms and Techniques

6.1 Overview

Several different algorithms or filtering techniques were investigated for

implementing a FIR filter in a FPGA device. These included FIR filtering

using parallel multipliers and accumulators, a bit-level systolic array, distrib-

uted arithmetic, fast FIR algorithms, and frequency domain filtering. The spe-

cifics of each are discussed in this chapter.

6.2 FIR Filtering

A FIR filter computes the discrete convolution of an input and a finite-

length filter response  This convolution can be written as

(6.1)

where N is the length of the filter response and is referred to as the

number of taps in the filter.

6.3 Parallel Multipliers and Accumulators

The most direct realization of a FIR filter is to calculate the output using

parallel multipliers and accumulators (MACs). The parallel MAC structure is

illustrated in Figure 6.1, and is derived directly from the FIR convolution in

Equation (6.1) [OS89]. In this structure, each MAC computes the product of

x n[ ]

h n[ ].

y n[ ] h k[ ]x n k–[ ],
k 0=

N 1–

∑=

h n[ ],

y n[ ]
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the delayed input and the tap’s active coefficient. The outputs from each mul-

tiplier are then accumulated together to produce the filter’s output.

The structure in Figure 6.1 has long combinatorial delays through the

accumulation chain, so the summer tree network shown in Figure 6.2 or the

transposed form shown in Figure 6.3 are often used in actual FIR computa-

tional hardware. Both forms produce the same output, but can have their

accumulation chains pipelined to increase performance. The benefit of the

transposed form is that each MAC communicates only with adjacent MACs, as

Figure 6.3 shows. This allows the MACs to be placed in a linear systolic fash-

ion, where adjacent MACs are placed next to each other in a line so that each

MAC only has routes to and from its nearest neighbors. This maximizes the

performance of the design while minimizing its area. The tree network

Figure 6.1: Direct Parallel Multiplier and Accumulator FIR Structure
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requires long, complicated route lengths to the inputs of each stage of adders

as the number of MACs that have been summed together for a given adder

increases and the MACs grow farther apart. This prohibits a simple linear dis-

tribution of MAC cells and slows the design’s performance due to the long

routes.

One problem with the transposed form of the parallel MAC filter is that it

requires a large fan-out on the X input signals, as they must connect to every

MAC. To reduce this fan-out while maintaining pipelining in the accumulation

chain and allowing the MACs to be placed in a linear systolic fashion, an addi-

tional stage of pipelining in both the inputs and outputs of each MAC can be

introduced into the direct filter as shown in Figure 6.4.

Figure 6.2: Parallel MAC Filter With Summer Tree
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A frequent method used to decrease the area of a parallel MAC approach to

FIR filtering is to increase the number of taps computed per MAC. This is the

technique used in the custom VLSI chip [Gre96, MM99, MMT00]. One varia-

tion of this technique is shown in Figure 6.5. In this figure, a single multiplier

is re-used eight times to compute the product of eight X values multiplied by

eight coefficients for each input into the filter. An eight-word deep RAM stores

the eight coefficients for the tap, and a seven-word long shift register stores

the X values.

This architecture is similar to the one used in the custom VLSI chip (see

Section 3.2 and Figure 3.2), except that shift registers have been used to store

multiple input values for each MAC instead of RAM storing the multiplier’s

outputs. The result is the same except that storing multiple inputs per tap

Figure 6.3: Transposed Form Parallel MAC Filter
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requires less memory since the inputs are only 16-bits long versus the 24-bit

multiplier outputs.

The shift registers are loaded with a new value at the beginning of each

eight-clock cycle. The shift registers are then fed their outputs back into their

inputs for the next seven clock cycles. This moves the input that was shifted

into the register at the beginning of the eight clock cycles to the second shift

register position at the beginning of the next eight clock cycles so that the next

new value is loaded into the first position. After eight clock cycles, this input

becomes the new value to the next MAC’s shift registers. At the same time,

the shift registers are arranged so that eight consecutive input values are sup-

Figure 6.4: Direct Form Pipelined MAC Fir Filter
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plied to the multiplier to be multiplied by eight consecutive coefficient values.

These will be added together by the final accumulator shown in Figure 6.5.

The output of the first two MACs’ shift registers and coefficient registers

(i.e. the multiplier inputs) are shown in Table 6.1 for two-tap MACs. With

eight-tap MACs, the movement of inputs through the shift registers produces

the same effect with 64 multipliers as if 512 multipliers had been used with a

clock rate equal to the sample rate.

6.4 Bit-Level Systolic Array

An approach which has proven to be a very efficient VLSI implementation at

MIT Lincoln Laboratory [Son] is a fully-efficient bit-level systolic structure by

Chin-Liang Wang [WWC88]. With this technique, single-bit processors com-

pute each tap’s multiplication partial products and accumulate tap outputs

together in a systolic array. As inputs propagate through the array, filtered

outputs are produced. The systolic nature of this approach lends itself well to

Mac 0 Mac1

Clock
Cycle

MAC
Input

Shift Register Coeff
Output

MAC
Input

Shift Register Coeff
Output

Chip
OutputIn Out In Out

0 x[0] x[0] h[1] h[3]
x[0]*h[0]

1 x[0] x[0] h[0] h[2]

2 x[1] x[1] x[0] h[1] h[3] x[0]*h[1]+
x[1]*h[0]3 x[1] x[1] h[0] h[2]

4 x[2] x[2] x[1] h[1] x[0] x[0] h[3] x[0]*h[2]+
x[1]*h[1]+
x[2]*h[0]5 x[2] x[2] h[0] x[0] x[0] h[2]

Table 6.1: Two Taps Per MAC FIR Filter Example
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VLSI, and would be ideal for a FPGA if it was area-efficient, as it would limit

the routing requirements in the FPGA to local connections between CLBs.

The configuration of this array and the logic required to implement each

cell is shown in Figure 6.6. Since this technique did not turn out to be efficient

in a FPGA architecture (see Section 7.3), the derivation if its structure will not

be included here (see [Son, WWC88] for more information). It is presented to

show the differences between architectures optimized for a FPGA’s coarse-

grained structure versus architectures optimized at the transistor level for a

VLSI approach.

Figure 6.5: Eight Taps Per MAC FIR Filter
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Figure 6.6: Bit-Level Systolic Array
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6.5 Distributed Arithmetic

The following section describes DA, and is drawn from information presented

in [MM99, Whi89, Gos96a, Gos95, Gos96b, New95, Xilb].

DA works by distributing the bit arithmetic of the sum-of-products (also

called the vector dot product) used to calculate the FIR filter output given in

Equation (6.1). This equation will be re-written as

(6.2)

where

A FIR filter is typically implemented with some variation of Figure 6.1 or

Figure 6.3, where a summation of the results of N multipliers each calculating

an  product produce the output for a given n.

The number format used in the custom VLSI chip and in the FPGA design

is 2’s complement fractional fixed-point. In this format, the binary point is to

the right of the most significant bit so that the most significant bit of a number

represents -1, and each subsequent bit represents a power of 1⁄2. Using this

format, the variable  may be written as

(6.3)

where is the bth bit of , and B is the number of bits in the input vari-

able.

Substituting Equation (6.3) into Equation (6.2) gives (n has been dropped,

as we are only concerned with a single given output sample)

y n( ) Akxk n( ),
k 0=

N 1–

∑=

Ak h k[ ].=

Akxk n( )

xk

xk x– k0 xkb2 b– ,
b 1=

B 1–

∑+=

xkb xk
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(6.4)

which when rewritten, gives

(6.5)

Explicitly writing out the summations results in the DA equation

(6.6)

Each multiplication of a term and an term is the product of a coeffi-

cient word with an input bit. This can be implemented by using an AND gate

between each bit of the coefficient word and the input bit. Each scaling factor

can be implemented by shifting the data to be scaled right i bits.

Equation (6.6) therefore becomes the summation of the scaled summation of a

series of AND gates. This operation could be performed in parallel (as

described in Section 6.3), or bit-serially, where each clock cycle a single bit

from every is multiplied by the corresponding forming one bracketed

term in Equation (6.6). These partial products are then accumulated together

with the appropriate scaling to produce a final multiplier output. An example

of bit-serial multiplication for a single coefficient and input is shown in

Figure 6.7.

y Ak x– k0 xkb2 b–

b 1=

B 1–

∑+
 
 
 

,
k 0=

N 1–

∑=

y xk0 Ak 2 b– xkb Ak
k 0=

N 1–

∑
 
 
 

.
b 1=

B 1–

∑+
k 0=

N 1–

∑–=

y x00 A0 x10 A1 … x N 1–( )0 AN 1–+ + +( )[ ]–=

x01 A0 x11 A1 … x N 1–( )1 AN 1–+ + +[ ]2 1–+

…

x0 B 1–( ) A0 x1 B 1–( ) A1 … x N 1–( ) B 1–( ) AN 1–+ + +[ ]2B 1– .+

xkb Ak

(2 i– )

xk Ak,
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As Figure 6.7 illustrates, each clock cycle a single partial product consist-

ing of one bit of the input multiplied by the coefficient is produced. This

partial product is then added to an accumulating sum of partial products,

which has been shifted right one bit (multiplied by 1⁄2). This operation pro-

duces the following result for a four-bit input (with each term in parenthesis

being computed each clock cycle):

(6.7)

which when simplified, gives

(6.8)

and finally, results in the product of the input and the coefficient after four

clock cycles:

(6.9)

Figure 6.7: Bit-Serial Multiplier

Reg
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1/2
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partial product
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xk Ak

yk xk3 Ak( )2 1– xk2 Ak+( )2 1– xk1 Ak+( )2 1– xk0 Ak,–=

yk xk3 Ak2 3– xk2 Ak2 2– xk1 Ak2 1– xk0 Ak,–+ +=

yk xk Ak.=
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To maintain full-precision, the accumulator must be able to hold the entire

multiplied result. The number of bits required is the number of bits in the

input data + the number of bits in the coefficients.

The MAC structure in Figure 6.1 can be implemented with the bit-serial

multiplier in Figure 6.7 as shown in Figure 6.8.

In Figure 6.8, a parallel input to the FIR is converted into a serial stream

of bits. Each clock cycle, one bit of the input is presented to the first scaling

accumulator, and placed into a serial shift register for the next tap, so that

each tap’s input sample is presented to each scaling accumulator in a serial

fashion. Each tap takes B clock cycle to produce a product, which are then

summed together to produce an output sample. However, as the bracketed

terms in Equation (6.6) show, the partial products computed by each AND

Figure 6.8: Four MAC Filter Using Bit-Serial Multiplier
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gate can be summed together first, then accumulated with scaling. In this

method, one bracketed term in Equation (6.6) is computed each clock cycle, so

B clock cycles are still required, yet each tap requires less hardware, since

only one master scaling accumulator is now necessary. The new FIR structure

is shown in Figure 6.9.

To maintain full precision in this case, the scaling accumulator is now

required to hold the number of bits in the input + the number of bits in the

coefficients + the number of bits added due to word growth through the adder

stages (1 bit per stage).

If the coefficients for the filter are constant, then the output of the summer

tree depends solely on the single-bit inputs to each tap. With this being the

case, the storage registers for the coefficients, the AND gates, and the summer

Figure 6.9: Serial Distributed Arithmetic FIR
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tree can all be replaced by a single look-up-table addressed by the single-bit

shift register outputs as shown in Figure 6.10.

With four taps as shown in Figure 6.10, a LUT with 16 entries is required.

Each 4-bit address into the LUT can be thought of as being a sum of coeffi-

cients: if a particular address bit is high, then that address’ sum should

include the corresponding coefficient. Table 6.2 shows the 16 locations in the

LUT, and what values they should hold.

Figure 6.10: Serial Distributed FIR Using LUT

LUT Address LUT Output

x3b x2b x1b x0b Sum

0 0 0 0 0

0 0 0 1 A0

0 0 1 0 A1

Table 6.2: Contents of 4-Tap LUT
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To keep the output of the LUT at full precision, the LUT should be two bits

larger than the size of the coefficients to accommodate for word growth

through the additions in Table 6.2.

The 16x1 RAM units within the Xilinx CLBs are ideal candidates for this

sort of DA scheme. One bit of a single 4-input LUT can fit into one of these

units with no unused logic.

For FIR filters larger than 4-taps, the filter can be broken into four tap

groups, each constructed as shown in Figure 6.10. For example, a 16-tap FIR

is shown in Figure 6.11. To eliminate overflow, each adder stage must grow by

one bit, and the scaling accumulator must also grow accordingly in size (the

0 0 1 1 A0 + A1

0 1 0 0 A2

0 1 0 1 A0 + A2

0 1 1 0 A1 + A2

0 1 1 1 A0 + A1 + A2

1 0 0 0 A3

1 0 0 1 A0 + A3

1 0 1 0 A1 + A3

1 0 1 1 A0 + A1 + A3

1 1 0 0 A2 + A3

1 1 0 1 A0 + A2 + A3

1 1 1 0 A1 + A2 + A3

1 1 1 1 A0 + A1 + A2 + A3

LUT Address LUT Output

Table 6.2: Contents of 4-Tap LUT (Continued)
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scaling accumulator could drop the lower bits in its accumulation if less preci-

sion is required).

Although larger LUTs could be used with less adders, LUTs larger than

four inputs do not save space. For example, a five-input LUT would require 32-

entries and take up two 16x1 RAM units (an entire slice). However, if these

two 16x1 RAM units were used separately, they could each be addressed by

four taps, allowing an entire slice to handle eight taps. The extra adder

needed to sum the two four-input LUTs together would not significantly

increase the area enough to justify a five-input LUT.

6.5.1 Parallel Distributed Arithmetic

A benefit of distributed arithmetic is that it easily allows a trade-off to be

made between the filter’s area and performance. By doubling the filter’s area,

the filter’s throughput or sample rate can be doubled without changing the

clock rate that the individual filter components operate at. In the serial dis-

tributed arithmetic (SDA) designs discussed above, a clock rate B times the

sample rate is required, as one clock cycle is needed to look up a partial prod-

uct for each bit of x. However, by taking advantage of a feature inherent in the

DA equation, Equation (6.6), fewer clock cycles can be required per input sam-

ple. Presently, one term in the equation has been computed per clock cycle.

However, any number of terms can be computed per clock cycle (referred to as

parallel distributed arithmetic, or PDA). For example, if two terms are com-

puted per clock cycle, then B⁄2 clock cycles are required to compute an output.

To compute two terms per clock cycle, two identical SDA FIR filters as

described above must be constructed. Each filter will compute one term in

Equation (6.6) so that two terms are computed per clock cycle. One filter will
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Figure 6.11: 16-Tap Serial Distributed FIR
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compute outputs for even input sample bits, and the other filter will compute

outputs for odd input sample bits. For example, on the first clock cycle, the

first filter will compute the output term associated with while the other

filter computes the output term associated with These outputs are then

added together with the first filter’s output (the bit 0 term) scaled by 1⁄2, and

then sent to the scaling accumulator. Each clock cycle, the scaling accumulator

scales its registered accumulation by 1⁄4 to accommodate for the fact that it is

handling two partial products per clock cycle instead of one. The 2-bit PDA

approach requires twice as much area as the serial approach, but has twice

the performance, and is illustrated in Figure 6.12.

6.6 Fast FIR Algorithm

The class of fast FIR algorithms (FFA) attempt to increase the parallelism of

the FIR structure without a linear increase in area [PP97, CKJ+98]. Tradi-

tionally, to double the throughput of a FIR filter without increasing the clock

rate of the filter itself, the filter area would have to be doubled.

Figure 6.12: 2-Bit Parallel Distributed Arithmetic FIR
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Doubling the throughput of a FIR filter without changing its internal clock

rate means that two outputs are to be calculated each clock cycle. These two

outputs will be referred to as and Producing two outputs per

clock cycle would require two inputs per clock cycle as well, and

 This leads to the following set of equations:

(6.10)

where and represent the even inputs and outputs, and and repre-

sent the odd inputs and outputs.

Two polyphase decompositions of the filter will be required, one containing

the even samples of the original filter, the other the odd:

(6.11)

where is the original filter, and N is the length of

the original filter.

The above equations give the following z-transforms:

(6.12)

which leads to the following two-parallel polyphase representation of the FIR

filter:

y 2 j[ ] y 2 j 1+[ ].

x 2 j[ ]

x 2 j 1+[ ].

x0 j[ ] x 2 j[ ]=

x1 j[ ] x 2 j 1+[ ]=

y0 j[ ] y 2 j[ ]=

y1 j[ ] y 2 j 1+[ ],=

x0 y0 x1 y1

h0 k[ ] h 2k[ ]=

h1 k[ ] h 2k 1+[ ],=

h n[ ] k 0 1 … N 2⁄ 1,–, , ,=

X X 0 X 1z 1–+=

H H0 H1z 1–+=

Y Y 0 Y 1z 1– ,+=
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(6.13)

Equation (6.13) says that to double the throughput of the overall FIR filter

two of each of the length N⁄2 polyphase filters would be required as

shown in Figure 6.13, resulting in an overall filter with twice as many taps as

the original filter (four length N⁄2 filters).

Two input samples are collected at a time and passed into the filter struc-

ture as illustrated in Figure 6.13, which produces two output samples. Each

filter block shown in the figure is only running as fast as the original filter,

however, so the throughput has been doubled. The FFA approach takes advan-

tage of a rewriting of the polyphase equations derived from Equation (6.13):

(6.14)

which implies that

Figure 6.13: Traditional Two-Parallel FIR Filter Implementation
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(6.15)

The structure that implements Equation (6.15) is shown in Figure 6.14 for the

same overall filter inputs and outputs. This filter only requires 1.5 times as

many taps as the original, non-parallel, filter, although the coefficients for the

middle FIR element in the figure must be pre-computed before being loaded

into the FIR element. This is not an issue for most applications, as such a com-

putation can be performed external to the filter.

Each of the three filter blocks shown in Figure 6.14 may have the FFA

algorithm applied to it, resulting in the filter shown in Figure 6.15. This filter

can process four inputs and outputs per clock cycle, with an area increase of

2.25 times the original filter size versus four times for a normal polyphase

implementation, as the four-parallel FFA requires 9N⁄16 taps instead of 16N

taps. This process may be carried out recursively, increasing the throughput of

the filter without a linear increase in area.

6.7 Frequency Domain Filtering

Instead of using convolution to calculate the output response for a FIR filter

(as the techniques discussed above used), the filtering can be performed in the

frequency domain. Convolution in the time domain is simply a multiplication

Figure 6.14: Two-Parallel FFA Implementation
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operation in the frequency domain, so such an operation requires a transfor-

mation from the time domain into the frequency domain by a fast Fourier

transform (FFT), a point multiplication of the input signal’s spectrum by the

filter’s spectrum, and a transformation back into the time domain by an

inverse fast Fourier transform (IFFT). The benefit of this technique is that it

requires much less computational hardware than any of the approaches dis-

cussed so far using convolution. A FFT’s computational requirements scales

on the order of  versus N for convolution approaches.

The FFT is derived from the discrete Fourier transform (DFT), which is

used to transform discrete time waveforms into discrete frequency spectrums

[OS89, GW75]. The DFT is defined by

Figure 6.15: Four-Parallel FFA Implementation
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(6.16)

where

(6.17)

is a complex data sample at time n, is a complex frequency sample

at frequency k⁄N, and N is the number of frequency samples to calculate. is

sometimes referred to as a “twiddle factor.” The DFT requires on the order of

computational requirements, so a more efficient method of computing the

DFT is required. If N is an integer power of r, i.e. then an especially

easy representation of the DFT appears, the radix-r FFT, where

Equation (6.16) can be calculated iteratively in v stages:

(6.18)

with

(6.19)

and [GW75]. This is referred to as

“decimation in frequency.” For the algorithm is especially simple. At

each stage, the algorithm passes through the entire array of N complex num-

bers, two at a time, generating a new array of N numbers. The basic numerical
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computation operates on a pair of numbers at a time, and is referred to as a

“butterfly.” The decimation in frequency FFT structure is shown in

Figure 6.16 for and a butterfly is shown in Figure 6.17. The

numbers below each node in Figure 6.16 represent the z term in the twiddle

factor for that butterfly. A radix-4 FFT also exists, where four outputs are

computed per butterfly for four inputs [OS89, GW75].

6.7.1 Pipelined FFT

A nice feature of the FFT is that it can be easily pipelined by stage, as each

stage needs only data from the proceeding stage. Each vertical grouping of

butterflies in Figure 6.16 is referred to as a stage. Only one butterfly needs to

be calculated in each stage at a time, although (to maximize the sample rate),

each stage must have a butterfly calculated each clock cycle. Therefore, the

Figure 6.16: Eight-Point Decimation-In-Frequency FFT

Figure 6.17: Decimation-In-Frequency Butterfly
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FFT can be built in a pipelined fashion, with each stage handled by a single

pipelined butterfly.

Each pipelined butterfly needs shift register storage words long (where

m is the stage number, with 0 being the right-most stage) to align its inputs

and outputs correctly. For example, the first stage has butterflies that process

inputs four samples apart in time. A shift register four words long is required

to store the first four inputs, then output those four inputs to the top of that

stage’s butterfly as the next four inputs arrive at the bottom of the butterfly to

compute the correct butterfly outputs. The top output of the butterfly are sent

to the next stage while the bottom outputs are put into the shift register,

which are then shifted out after the four butterflies have been computed. An

example of a pipeline module is shown in Figure 6.18, and an eight-point pipe-

lined FFT architecture is shown in Figure 6.19. [GW75]

The twiddle factors can be arranged so that they may be sent to all of the

modules from a common memory if they are retrieved at the correct time,

reducing memory requirements. [GW75]

Figure 6.18: Pipelined FFT Butterfly Module
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6.7.2 FFT Convolution

Performing convolution with a FFT (i.e. transforming to the frequency

domain, multiplying, and transforming back to the time domain) requires a

FFT at least twice as large as the length of the filter to avoid time-aliasing in

computing the DFT of the filter coefficients [OS89]. If a filter is N taps long,

the FFT of the filter will have to be 2N points (with zero padding used to

extend the N taps to 2N inputs for a 2N-point FFT). The convolution is per-

formed by retrieving a block of N inputs, performing a 2N-point FFT (with

zero-padding filling out the inputs) on them, multiplying them by the 2N filter

frequency components previously transformed to the frequency domain by

FFT, and performing an IFFT on the multiplication outputs. However, since

only N inputs were taken and N outputs should be produced from the filter for

a given block, and the 2N-point IFFT produces 2N outputs, only the last N

IFFT outputs should be used as filter outputs, as the first N IFFT outputs do

not represent correct values of the convolution of the filter and the block of

inputs [OS89]. This process is termed overlap-save.

Figure 6.19: Eight-Point Pipelined FFT Architecture Block Diagram
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6.7.3 Noise Analysis

A fixed-point FFT requires a considerable amount of rounding, as each stage

has a multiplier that increases the stage’s bit-length drastically. Rounding is

required to reduce the stage’s output to a manageable size. The noise analysis

for a fixed-point FFT is complex, and is described in detail in [OW75, OS89]

The important result is that each stage’s butterfly’s outputs require a scaling

factor of 1⁄2 to keep their adders from overflowing, which also reduces the final

total amount of noise at the output. A MATLAB model of a fixed-point FFT with

scaling at each butterfly was constructed to measure the final frequency

domain filtering process’s precision for given FFT, coefficient frequency spec-

trum, and IFFT word lengths.
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Chapter 7

Implementation

7.1 Verification

To verify the functionality of the designs that were actually implemented

below, a custom 512-tap FIR filter was constructed in C++ that could output

full-precision fixed-point 2’s complement results.1 The output of this simula-

tion was compared, bit-for-bit, with the output of each simulated FPGA design

to ensure that each design was fully operational.

7.2 Parallel Multipliers and Accumulators

In the custom VLSI chip, each multiplier was re-used eight times per input

sample, as shown in Figure 6.5. This meant that each tap would compute

eight products and accumulate them together every input sample for eight

separate coefficients. In this manner, 64 MACs were all that were needed to

compute a 512-tap filter. However, each MAC needed to operate at a clock rate

eight times that of the input data rate, so for a 5 MHz sample rate, a 40 MHz

clock was required.

In an Xilinx Virtex series FPGA, a 16-bit by 18-bit parallel multiplier

would require 163 slices (measured, not calculated). Therefore, the multipliers

alone in a parallel MAC structure similar to Figure 6.5 would require 10,432

slices, which is near the Virtex XCV1000’s capacity (12,288 slices). The addi-

1.  Courtesy of Michael Killoran, MIT Lincoln Laboratory
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tional registers and control logic required for this design would push this

number higher.

To decrease the area required by the MAC structure, the number of taps

each MAC calculates could be increased. For example, each MAC could com-

pute the product of 16 coefficients and the input word per input. This would

halve the multipliers’ area to 5,216 slices, but would double the clock rate to

80 MHz. The clock doubling could be handled internally by one of the Virtex

Digital Locked Loops (DLL).

If each MAC was responsible for 16 taps, the coefficient storage for a single

bank for a single MAC would require 9 slices since a slice contains two 16x1

RAM blocks, and one RAM block could hold a single bit for all 16 taps. 18-bit

coefficients would therefore require 18 RAM blocks which can be contained

within 9 slices. Two coefficient banks are required by the design specifications,

so 18 slices are needed per MAC for coefficient storage. With 32 MACs, this

means that 576 slices will be required for coefficient storage.

A 32-MAC, 512-tap filter was built using the architecture shown in

Figure 6.5. The details of an individual MAC are shown in Figure 7.1. Double

banking has been handled by two coefficient storage RAMs per MAC. The

active bank’s coefficient RAM is addressed by a looping counter that selects

the coefficient to be multiplied by the X value output from the shift register.

The loadable bank’s coefficient RAM is addressed by the current coefficient

load address, is write-select enabled, and is clocked by a coefficient load signal

so that new coefficients may be loaded into it while the active bank is operat-

ing. A pipelined parallel multiplier produces the product of the current X

value and the current coefficient. A rounder unit reduces the multiplier’s out-
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put bit width (which is the size of the input plus the size of the coefficient) to a

smaller width. As this architecture is the same as that used in the custom

VLSI design, the MAC output width was chosen to be 24-bits like it was in the

custom design to maintain the same precision.

The full, operational, 32-MAC filter (with accumulator, summers, and glue

logic) required 7,816 slices.

7.3 Bit-Level Systolic Array

In the structure shown in Figure 6.6, each cell’s output is required to be regis-

tered in order to pipeline the array. The three outputs from each main cell

each require a register, so the cell requires at least one and a half CLBs. Each

main cell also must compute two functions of four inputs (each of which can fit

into a Virtex LUT) and needs to store one bit of a coefficient (without dual-

banking as required by the design specifications). A CLB LUT may be used to

Figure 7.1: 16-Tap Parallel MAC Unit
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store this bit. Therefore, each main cell requires three registers and three

LUTs. Two main cells may be contained within three slices, which would con-

tain six LUTs and six registers, without dual-banking.

According to Wang [WWC88], the number of main cells required for the

systolic array is where B = the number of bits in the input, N =

the number of taps, and For a 512-tap, 18-bit filter, the number of

main cells required for the systolic array is 13,824. This would require 20,736

slices to implement. Since this structure is bit-level pipelined, one output is

produced every B clock cycles, or every 16 clock cycles for the 16-bit design.

Therefore, for a 5 MHz input and output sample rate, the array will have to

operate at 80 MHz, which is above the design requirements, although this

may be handled by the Virtex DLL circuitry. In addition to the main array,

there are other cells required for the design that would also increase the area.

This architecture was used for a full-custom, transistor mask-level design,

1024-tap FIR filter that could operate with a clock rate up to 640 MHz, and a

sample rate up to 20 MHz with a 0.6 fabrication process. The reason that

this design was so efficient for a full-custom chip versus a FPGA is that it

requires a very fine-grained architecture. The basic cell in the bit-level systolic

array is only three registers and a few logic gates, which takes up very little

area on a custom chip. However, for a coarse-grained FPGA such as the Virtex,

the simplicity of a single cell is actually a drawback, area-wise. A better

approach for a FPGA design is to use cell sizes that more appropriately map

into the FPGA’s architecture, such as those used in distributed arithmetic.

B L+( ) N ,⋅

L N2 .log=

µm
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7.4 Distributed Arithmetic

The distributed arithmetic approach as presented in Section 6.5 can easily be

expanded to 512-taps, but two problems remain. First of all, the DA coeffi-

cients are constant, but the design requirements demand two swapable, load-

able coefficient banks. Second, a SDA filter requires B clock cycles to process a

single input sample. For a 5 MHz input, this means a 16-tap filter must run at

80 MHz, which is twice as fast as the design specifications allow.

7.4.1 Distributed Arithmetic Four-Tap Group

To solve the first problem, two banks of LUTs are used for each four-tap group.

One bank is used as the active LUT—this is the LUT that is addressed by the

shift-register outputs—and one bank is loadable by the user. Therefore, the

user can load all of the LUT values into one bank of the FIR filter in the back-

ground while the old LUT values stored in the other bank are active. By tog-

gling a bank select line, the two banks are switched so that the previously

loadable bank is now active, and the previously active bank is now loadable.

Figure 7.2 shows the complete block diagram for a single four-tap group

including the shift registers and the double-banking LUTs as described above.

The four-tap group accepts a serial data input (from the last tap’s shift regis-

ter of the previous group), and produces a serial data output for the next

group’s first tap’s shift register. A bank selection line selects (through multi-

plexors) which bank of LUTs are active, and which are used for loading new

coefficients. Each bank is 20-bits long due to two-bit word growth in comput-

ing the LUT contents. The active bank is addressed by the four shift register

outputs. The bank’s output is the group’s output. The loadable bank is

addressed by an external set of coefficient address lines that select which of
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the 16 bank addresses is being written. A group coefficient load enable line

selects whether this group is to have its coefficients updated versus another

group, and a bank write clock line writes the data into the correct bank (the

bank being loaded). A separate clock was used for each bank’s LUT write clock

to minimize the amount of logic local to a group.

Pipelining was inserted in the four-tap group so that the combinational

delay between pipeline registers has been kept to a minimum to increase per-

formance. In addition, as shown, the bank selection line has been pipelined

between four-tap groups. This prevents a single bank selection line from hav-

Figure 7.2: Four-Tap Group
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ing to drive all the multiplexors in every four-tap group, which would lead to a

very high fan-out and a slow signal, decreasing the overall system perfor-

mance. One drawback is that changing coefficient banks will take 128 clock

cycles during which the new bank selection signal is propagated through its

pipelining registers. Any outputs produced during that time will consist of

outputs from both coefficient banks, and will be incorrect responses from

either bank’s filter. This drawback is addressed below with the linear-network

summer tree. In addition, coefficients in a given four-tap’s stand-by registers

cannot be altered after a bank selection switch until the new bank selection

signal has propagated to that four-tap, or else the wrong bank would be

updated.

A single four-tap group requires 36 slices.

A 512-tap filter using an expanded version of Figure 6.11 with the four-tap

group in Figure 7.2 was built. This filter was designed with full-precision,

meaning that every adder stage grew by one bit (so no rounding was required),

and the scaling accumulator was large enough to hold the entire 43-bit result.

This 512-tap filter required 6,203 slices.

7.4.2 Linear Summer Network

The summer tree used to create the full 512-tap partial product is a large bot-

tleneck in the design discussed above. The large summer tree requires long

routing lengths to provide the inputs for the last few adders, and is not geo-

metrically easy to fit into a FPGA without wasting area or introducing even

longer wire lengths. A linear design was created, where each four-tap group

has a summer associated with it that adds the previous four-tap group’s out-

put to its own output. This sum is pipelined, and sent onto the next tap. Due
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to the added stage of pipelining between the summers at each four-tap group,

a stage of pipelining must be inserted between each group’s serially cascaded

input value. This will keep the outputs and inputs correctly synchronized. The

linear summer technique is illustrated in Figure 7.3.

With the linear technique applied, the design is more efficient as each four-

tap group has one summer attached to it that needs to communicate with only

adjacent groups, so all of the groups may be stacked together. There are no

long routing lengths required in this design like there are in the summer tree

technique. To minimize wasted area, each summer is only as many bits long

as required to protect against overflow. For example, the summer for the sec-

ond four-tap group need only be 21 bits long because it is adding the 20-bit

result of the first group to the 20-bit result of the second group. The third

group’s summer needs to be 21-bits long, as it is adding three 20-bit results.

Figure 7.3: Linear Summer Network for SDA
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The forth group’s summer needs to be 22-bits long, as it is adding four 20-bit

results. The number of extra bits per summer can be found by taking the inte-

ger portion of , where i is the four-tap group’s number.

A benefit of the combination of the linear network and pipelining the bank

selection line as discussed Section 7.4.1 is that, upon the execution of a bank

switch (inverting the bank selection signal), the four-tap groups sequentially

switch their coefficient banks from stand-by to active each clock cycle. Outputs

being formed by the four-tap groups and being passed along through the lin-

ear summer network before the banks were switched will continue to have

partial products generated using the old coefficients added to them as they

move down the summer network’s pipelining chain. Since the outputs and the

bank selection signal propagate through the network at the same rate, the

first output after the bank selection switch will only have partial products

generated with the new coefficients added to it. The coefficient banks in a

given four-tap group will swap at the same time this output enters the group,

resulting in the correct partial product being summed to the output by the

group. This means that no incorrect data will be generated during a bank

switch; rather, the filter’s output will seamlessly change from one filter

response to the next.

This technique has two small drawbacks. First of all, it is slightly larger

than the summer tree technique. The 512-tap SDA linear adder tree required

6,378 slices. Although the number of adders is the same for both techniques,

the adder tree requires less adders as the adder bit size grows, whereas the

linear network requires more. For example, the adder tree only requires two

24-bit adders, whereas the linear network requires 63 24-bit adders. However,

i2log
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as long as the design still fits within a Virtex device, this is acceptable. The

second drawback is that the output has a latency of 128 clock cycles due to the

pipelining of each four-tap group’s output. In most signal processing applica-

tions, small latencies such as this are not detrimental.

7.4.3 Achieving 40 MHz Performance For 5 MHz Data Rate

The serial distributed arithmetic design as described above requires a clock

rate 16 times faster than the input data rate. For a 5 MHz data rate, this

means the serial filters must run at 80 MHz. The design specifications require

a clock eight times faster than the input rate, or 40 MHz. Two solutions exist

to solve this problem. The first is to operate the internal SDA filter at 80 MHz,

using the Virtex DLL to multiply the external 40 MHz clock up to a 80 MHz

internal clock rate. The second is to use 2-bit PDA, with two 512-tap SDA fil-

ters placed on the chip as shown in Figure 6.12. A clock rate eight times faster

than the sample rate would be required for this design, and the internal filters

would only have to operate at 40 MHz, yet the design would require twice as

much area as a SDA design. The trade-off between the two techniques is speed

versus area. The DLL design requires the internal filter to work twice as fast

as the 2-bit PDA design, whereas the 2-bit PDA design requires twice as much

area. Unfortunately, the 2-bit PDA design requires 12,756 slices for the 512-

tap linear-network filter alone (without the scaling accumulator and addi-

tional glue logic), which is larger than the XCV1000. For this reason, the DLL

SDA design was chosen.
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7.5 Fast FIR Algorithm

A new, unique application of the FFA algorithm was developed and analyzed

for the filtering problem in this thesis, although it is not limited to FPGA

implementations.

The parallel MAC approach to the filtering problem described in

Section 6.3 can be combined with the FFA algorithm in Section 6.6 to derive

small filtering structures. In the parallel MAC approach implementation (see

Section 7.2), 64 MACs were used to calculate a 512-tap FIR response by hav-

ing each MAC perform eight multiplications per input word, so that each MAC

handled eight filter taps. This could be increased to 16 taps per MAC, so that

32 MACs would be needed with an 80 MHz clock rate (provided the external

clock is multiplied to 80 MHz from 40 MHz by the DLL).

If each MAC was, in turn, now responsible for 32 taps, only 16 MACs would

be required, but a 160 MHz clock would be needed. The new FFA approach

would take the polyphase decomposition of the filter as described in

Section 6.6. Each polyphase filter (i.e. or ) would be half the size of the

original 512-tap filter, or 256-taps. Applying the FFA algorithm would require

three 256-tap filters as shown in Figure 6.14. Each of these smaller filters

would now have to run at only half the original filter’s sample rate, or 2.5 MHz

to maintain an overall sample rate of 5 MHz (the FFA approach allows an

overall throughput twice that of the individual filters’ sample rates). Each

polyphase filter could be implemented with eight MACs, where each MAC

handled 32 taps. The benefit is that the sample rate of each filter is now only

2.5 MHz, meaning that each MAC would only have to run at 80 MHz to com-

H0 H1
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pute the results from 32 taps per input. With no change in clock rate, the total

number of MACs would be decreased to 24 from the original 32.

One major change is that the middle filter ( in Figure 11) would be

multiplying 17-bit inputs by 19-bit coefficients because of the one-bit word

growth through the addition of before the filter and the one-

bit word growth in the addition of to compute the filter’s coeffi-

cients. Therefore, the middle polyphase filter would be slightly larger than the

other two filters. The overall FFA filter will also be slightly larger due to the

five extra summers and the delay element, but this extra logic is insignificant

when compared to a single MAC. Finally, the size of each MAC will grow as

each MAC will have to have registers to store 32 coefficients and inputs

instead of 16.

If each MAC was responsible for 64 taps (doubling the clock rate to 160

MHz again), and the FFA algorithm was applied again (i.e., a 4-parallel FFA

implementation as in Figure 6.15), the new filter would require 9 polyphase

filters of length 128 taps. Each polyphase filter would now be comprised of two

MACs, and would need to only operate at 1.25 MHz, resulting in an overall

frequency rate of 80 MHz. The total number of MACs would now be 18 instead

of 24 or 32. Again, however, several of the polyphase filters will have to handle

larger inputs and coefficients (specifically, one will multiply 18-bit inputs by

20-bit coefficients, and four will multiply 17-bit inputs by 19-bit coefficients),

more adders will be required, and each MAC will have to store 64 coefficients

and inputs, so the net gain in area will be smaller than it appears by simply

looking at the number of MACs saved.

H0 H1+

x 2k[ ] x 2k 1+[ ]+

h0 k[ ] h1 k[ ]+
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Each individual polyphase filter is similar in design to the filter shown in

Figure 6.5. The 64-tap MAC used in the 4-parallel FFA is similar to the one

shown in Figure 7.1, except that the input shift register and the coefficient

banks are each 64 words long. The output of each MAC was chosen to be 24-

bits as it was in the 32-MAC filter in Section 7.2. All of the summations from

the output of each MAC to the output of the overall filter were sized to main-

tain full precision. Because of the larger input and coefficient bit widths in

several of the filters, however, it was unknown whether having 24-bit MAC

outputs would maintain the same numerical precision for the overall filter as

for the custom VLSI chip. To verify this, a MATLAB simulation of the FFA filter

was constructed with fixed-point arithmetic and 24-bit rounding at the output

of each MAC filter. This simulation showed that the FFA approach with 24-bit

MAC outputs created a final FIR filter output with 17.7 bit precision, slightly

less than the custom VLSI approach. This precision was deemed acceptable,

as increasing the bit-width of each MAC output would drastically increase the

filter size.

A 16-bit input, 18-bit coefficient MAC in the FFA filter required 163 slices.

The overall size of the FFA filter was 6,900 slices. One drawback to this design

is that the overall filter is not regular or systolic like the distributed arith-

metic design. It also has a large number of high fan-out signals (the active

coefficient RAM bank address lines and the start_new_input control signal).

However, only the logic internal to each MAC is required to run at the full 80

MHz internal clock rate. This logic is regular (as Figure 6.5 shows), can be

placed in a somewhat systolic fashion (although there are still a number of

high fan-out signals), and is highly pipelinable. The FFA summer network
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must only run at 1⁄4 the sample rate (1.25 MHz), as this network calculates, in

parallel, four filter outputs simultaneously and needs to produce its outputs

only once every four sample clocks.

Therefore, while the overall filter cannot be placed as easily within a FPGA

as the distributed arithmetic design while trying to minimize route lengths,

the parts of the filter that do need to run fast can be placed efficiently. The

main performance bottleneck is being able to drive the high fan-out signals

that connect to every MAC fast enough to meet the performance of the inter-

nal polyphase filter logic.

7.6 Frequency Domain Filtering

For the frequency domain filtering implementation, a 1024-point FFT and

IFFT are required (see Section 6.7.2). However, since the input data is real,

both the real and imaginary parts of the FFT may be used to hold the real

input data [OW75, OS89]. Therefore, a 1024-point FFT can be calculated with

a 512-point FFT structure. A radix-2 FFT and IFFT were chosen as a radix-4

FFT, which is easy to implement [OS89], would require a 1024-point FFT

structure, and would be bigger than a 512-point radix-2 FFT.

The next step for the frequency domain filtering implementation was to

determine the bit-size required for the FFTs in order to meet the custom VLSI

chip’s output precision. A MATLAB simulation of filter using a fixed-point

radix-2 FFT and IFFT was created and run with different values for the FFT

bit-width, filter frequency spectrum bit-width, point multiplication output

rounding width, and IFFT bit-width. The minimum bit-width to maintain
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approximately 18 bits of output precision was determined for each variable

separately, and is shown in Table 7.1.

The bold bit-widths in Table 7.1 were used together in a final simulation of

the frequency domain filtering technique. The output precision was measured

to be 17.881 bits, which was determined to be closed enough to the custom

VLSI output precision, as adding a bit to any of the parameters above would

drastically increase the technique’s area.

With the bit-widths above, a preliminary area calculation was made for

multipliers and memory. Using the equation in Section 5.3, the 31-bit x 31-bit

multipliers in the FFT would require about 542 slices. The point multiplica-

tion would be multiplying the FFT’s 31-bit result by a 29-bit filter spectrum

value, which would require about 512 slices. The IFFT multipliers would be

multiplying 36-bit numbers by 36-bit numbers, and would require about 723

slices.

Parameter Bit-Width Output Precision

FFT bit-width 30 17.704

31 18.802

Filter spectrum bit-
width

28 17.973

29 19.589

Point multiplication
rounded output width

34 17.487

35 18.465

IFFT bit-width 35 17.536

36 18.512

Table 7.1: Frequency Domain Filtering Output Precision
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Assuming a 512-point FFT was being used as described above, the FFT

and IFFT would each have 9 stages, so 18 butterfly pipeline stages would be

required total. With four multipliers per stage to compute each stage’s com-

plex twiddle factor multiplication and four multipliers for the complex point

multiply, the multipliers would require 47,588 slices. Since the multipliers are

full-parallel, the clock rate for this implementation would be equal to the sam-

ple rate.

If the clock rate was quadrupled and each multiplier was reused four times

per input sample (i.e. one multiplier per complex multiply), the multipliers

would require 11,897 slices. Reusing the multipliers any more times would be

difficult, as a single multiplier would have to perform the multiplications for

multiple pipeline stages of the FFT or IFFT. Assuming that this was easy to

implement and the clock rate was made to be 16 times the sample rate (as it

was in the FFA and DA implementations), the multipliers would now require

2,974 slices.

Each pipeline stage requires words of storage for its delay line (see fig-

ure Figure 6.18), where m is the stage number. This means that 511 complex

words of storage are required for the FFT and 511 complex words are required

for the IFFT. 256 complex twiddle factors are required for each FFT, but may

be shared between the FFT and IFFT. Two banks of 1,024 complex words are

required for the frequency spectrum storage so that one bank may be loaded

while the other is active. Each complex word requires two RAM words of stor-

age. With 31-bit words for the FFT delay storage, 29-bit words for the fre-

quency spectrum storage, 36-bit words for the IFFT delay storage, and 36-bit

2m
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words for the twiddle factor memory (to accommodate the 36-bit IFFT require-

ment), the total filter requires 205,690 bits of memory storage.

One advantage of this implementation is that much of the memory storage

consists of large blocks of RAM where only a single location needs to be

accessed at a time. This means that the Virtex block RAM could be used for

this application. The Virtex XCV1000 has 131,072 bits of block RAM. Assum-

ing that all of this memory could be used, 74,618 bits would remain and could

be accommodated by the distributed RAM within the CLBs. 74,618 bits of

RAM would require 2,332 slices.

Therefore, the frequency multiplication technique for a 512-tap filter

would require 5,306 slices for memory and multipliers alone. The control logic

for this implementation is complex and would be area-intensive, especially

with a single multiplier being re-used 16 times per input sample. In addition,

adders, pipeline registers, twiddle factor distribution logic, and the control

logic to implement the overlap-save method necessary to filter the continuous

input stream would increase the area dramatically. As a reference, in the dis-

tributed arithmetic design, which had much simpler control and datapath

logic, the four-tap groups required 4,608 slices out of 6,378 slices, leaving

1,770 slices for control and summation. Even with only 1,500 slices of control

and datapath logic, the FFT algorithm would require more slices than the dis-

tributed arithmetic approach and about the same as the FFA algorithm.

Although the pipelined FFT algorithm is (hence the name) highly pipelin-

able, a design reusing a single multiplier sixteen times would not be regular

and would require long route lengths due to the complex nature of its control,

reducing its performance compared to the other, more regular designs dis-
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cussed earlier. Therefore, the FFT algorithm was ruled as being larger and

slower than the DA or FFA designs, and was not implemented.

One point to note with the FFT algorithm is that moving from a 512-tap fil-

ter to a 1024-tap filter would require a smaller area increase than moving

from a 512-tap filter to a 1024-tap filter using a FIR approach, as such a move

requires the addition of one stage to the FFT and IFFT and twice as much

twiddle factor and spectrum storage memory, whereas the FIR techniques

would require a doubling of area. The FFT algorithm’s area benefits would

become even more obvious as the filter’s size increased further, as each dou-

bling of taps requires a doubling of area but a small increase in frequency

spectrum filtering area.
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Chapter 8

CELL_MAKER Custom Layout Tool

8.1 Motivation

One of the benefits of using VHDL to describe a gate-level design such as a

FPGA or custom VLSI design is the ability to create parameterizable modules

that can be instantiated in higher levels of the design hierarchy. For example,

a delay line could be created in VHDL with a variable number of bits and a

variable number of delay stages. When this delay line module is instantiated,

the exact sizing of a particular instance is specified at compile time in the

VHDL as part of the instantiation code. It is also often easier to write, simu-

late, debug, and modify VHDL than schematics. VHDL also gives the user the

ability to write high-level, portable code that can be synthesized into a partic-

ular architecture, although for reasons discussed below, this benefit of VHDL

is not being used for the designs in this thesis.

The problem with using VHDL for FPGA designs is that there is no way

presently (with the Xilinx Foundation software using Synopsys FPGA Express

for synthesis) to communicate the desired layout of a VHDL design to the

placement software. In the designs discussed in Chapter 7, a single small cell

was often replicated many times in a systolic fashion. For example, in the DA

approach, the 4-tap group was replicated 128 times. Each group only con-

nected to the two adjacent groups, creating a linear systolic network. Because

of this, care and time could be taken to place the components that make up

one group, and then this placement could be replicated to all the instantia-
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tions of the 4-tap group. Ensuring that consecutive groups were placed adja-

cent to each other would result in the most efficient design.

Unfortunately, VHDL has no method of describing this process, and the

placement tools do not have the knowledge that the design was created in a

systolic fashion. As a result, in the linear DA design for example, the compo-

nents from different four-tap groups and the rest of the logic were inter-

spersed among each other in a seemingly haphazard fashion. Many signals

that should have been short if the systolic approach was taken ended up long,

as components that should have been near each other were far apart on the

chip. For example, the connection from the last four-tap group to the scaling

accumulator spanned the entire width of the chip, as the two cells were not

placed next to each other as they should be for maximum performance. The

delay along this route was 6 ns alone. Constraining the design’s placement

would drastically improve its performance.

Although some tools (e.g. Synopsys) allow attributes (such as placement

constraints) to be passed from VHDL to the synthesized netlist for instanti-

ated components, this feature is very limited. Components created as part of a

generate statement (for example, a bank of registers x-bits long could be cre-

ated by using a generate statement to duplicate a single register x times) are

created during the synthesis process, and cannot have attributes attached to

them. In addition, writing a long string of attribute statements can be tedious

and error-prone.

A tool, CELL_MAKER, was developed for this thesis to read in VHDL code,

extract basic placement constraints added as comments by the user, and cre-

ate a user constraints (UCF) file describing the placement constraints for
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every component in the VHDL code. This tool allowed a cell that is replicated

many times to be placed once, and the replication strategy (e.g. linear systolic)

to be specified in order to create the best placement. The only limitation is

that instantiated library components from the Xilinx FPGA library (e.g. regis-

ters, RAMs, adder primitives, etc.) must be used within the VHDL instead of

high-level, synthesizable code (e.g. using the + operator for addition). The rea-

son is that the tool cannot infer the components that would be generated by

high-level code. All the components must be explicitly instantiated so that

placement constraints can be attached to them unless the synthesizable code

can be placed within a single CLB or slice. A special provision for that situa-

tion has been provided within CELL_MAKER.

8.2 Operation

Placement constraints are specified as comments in the VHDL code for

CELL_MAKER. A placement constraint comment is placed after the component

name and before the generic map or port map statement in an instantiated

component. A constrained instance takes the following form, where the con-

straints are shown in bold (anything after a “--” in VHDL is considered a com-

ment):

<instance> : <component>
-- cell_const <constraint_type> <constraint>
[ -- cell_const param <parameter> => <cm_expression> ]
[ -- (more param statements...) ]

generic map (
...)
port map (
...);

The code above shows the two statements that are available when constrain-

ing an instance. The constraint_type statement must always be first and can
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only occur once. This command constrains the placement of the instance, and

is described in Section 8.2.1. The second statement is optional and may occur

several times. This is used for passing parameters into the instantiated com-

ponent, and is described in Section 8.2.2.

8.2.1 RLOC Placement Constraints

The basic form of a placement constraint is the same as the Xilinx LOC con-

straint, which takes the form (for Virtex): “R <row> C <column> [S <slice>],”

where <row>, <column>, and <slice> are replaced with “cm_expressions.” This

new form of an expression is described in Section 8.2.4. Rows are numbered

from top to bottom within the chip, and columns are numbered from left to

right. The left slice in a CLB is slice 1, and the right slice is slice 0.

Three constraint types are available: rloc, rloc_clb, and rloc_clb_all.

Although these constraints use the word “rloc,” they will ultimately be turned

into Xilinx LOC constraints by the custom tool, not Xilinx RLOC constraints.

Rloc_clb is intended to be used on instantiated FPGA components such as flip-

flops or adder carry chain multiplexors that can be located within a specific

CLB or slice. The other two constraints are used on instantiated VHDL com-

ponents, i.e. components that are written in VHDL and have an entity and

architecture that will be synthesized into the design and contain more VHDL

components or instantiated FPGA components.

The rloc constraint is used on a VHDL component with instantiated VHDL

or FPGA components within it, and is of the form “R <row> C <column>” (i.e.

no slice is specified). When the custom tool encounters a rloc constraint on a

component, it adds the row and column numbers specified in the rloc con-

straint to all of the row and column numbers in constraints within the compo-
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nent. For example, if a component has a particular instance located at row 4,

column 3, and that component has been instantiated in a higher level of the

VHDL hierarchy with a constraint of row 10, column 20, the instance within

the component will now be placed at row 14, column 23. In this manner, the

relative locations of components within a VHDL entity can be specified rela-

tive to row 0, column 0 (e.g. row 4, column 3 in our example). When that entity

is instantiated in a higher level of hierarchy, the entire entity can be located

as if it were one cell at a particular location with its row 0, column 0 located

wherever the constraint on its instantiation specifies it should be located (row

10, column 20 in this example). All of the components in the entity will be

located relative to that location as they are described within the entity as if

that location were row 0, column 0.

The final placement locations for individual FPGA components is deter-

mined by tracing through the VHDL hierarchy from the top-most entity down

to the individual FPGA components, adding the rloc row and column values

for each instantiated component as the program progresses through the hier-

archy.

Rloc_clb_all is a special constraint that is used only on VHDL components

that contain logic or FPGA components that can fit within a single CLB or

slice, and may contain a slice number. This constraint specifies that all of the

logic within the component should be placed within the specified CLB or slice.

This is useful when it is easier to describe a logic function with VHDL com-

mands (for example, a multiplexor or boolean logic) than with instantiated

components, but the logic needs to be located within a particular CLB or slice.

No location constraints should be used within the component’s VHDL code as
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the tool will not look at them. In addition a special flag must be included on

any entity that will have rloc_clb_all constraints attached to it as described

below.

8.2.2 Parameter Passing

CELL_MAKER allows constants from an entity’s generic block to be used within

a constraint’s expression. If there are parameters that are only to be used by

constraints and not within the VHDL code itself that need to be passed into an

entity, they may be passed along to an instantiated component with

“cell_const param” statements. The parameters that may be passed to an

entity are described in its entity declaration as shown in the following code:

entity <entity_name> is
-- [cell_const paramdef <parameter> [ :=

<default_cm_expression> ] ]
-- [ (more paramdef statements... ) ]
-- [ cell_const flag clb_all_entity]

generic (
);
map (
);

end <entity_name>;

The declaration of a parameter allows the parameter to have a default value if

it is not given a value when it is instantiated. If a parameter has a default

value, and is given a value during instantiation, the default value will be

ignored. If it does not have a default value, it will require a value upon instan-

tiation. The default value may use any parameters declared earlier within the

entity block in its expression.

The clb_all_entity flag statement must be included if this entity is to have a

rloc_clb_all constraint attached to it instead of the normal rloc constraint

attached to VHDL component. This is purely to ensure the user attaches the



979797

correct constraint and gets the correct behavior out of the system. An entity

with this flag would have no parameters, as it cannot have any constraints

within its code that could use the parameters.

8.2.3 Generate statements

One of the driving motivations for CELL_MAKER was the desire to place large,

systolic, designs efficiently. The tool facilitates this by allowing the range vari-

able within a “for” generate statement to be used within constraints or expres-

sions passed as parameters into instantiated components. The example below

illustrates how this can be used to replicate a component easily while con-

straining its location.

reg_block : for i in 0 to 15 generate
reg_instance : register_component

-- cell_const rloc_clb R -i/2 C 0 S 1
port map ( ... );

end generate;

In this example, two registers are placed in each CLB, with the reg_instance

corresponding to i = 0 placed in row 0, column 0, slice 1, and the reg_instance

corresponding to i = 15 placed in row -7, column 0, slice 1. This register bank

is therefore a vertical bank of registers with the least significant bit at the bot-

tom of the bank.

One work-around for Synopsys FPGA Express had to be made in order to

get this tool to work correctly. Normally, when a component is instantiated

within a generate statement, FPGA Express gives each replicated instance a

name of the type “<instance_name>_<i>,” where instance_name is the name of

the instance in the VHDL code, and i is the generate statement’s range vari-

able’s value for that instance. However, when the instantiated component is
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an entity written in VHDL with generic constants, this naming scheme

changes to a much less intuitive system that was uncovered through experi-

mentation, and is beyond the scope of this paper. However, CELL_MAKER was

modified to compensate for this special condition.

8.2.4 Cm_expressions and Conditional Constraints

Two more features were built into CELL_MAKER to make constraining compo-

nents easier. The first was the definition of a “cm_expression.” This expression

can use the following VHDL operators with normal VHDL precedence to com-

pute a value:

(, ), -, +, *, / (integer division), MOD.

In addition to normal equations, a cm_expression may take the following form:

<expr1> when <expr2> else <cm_expression>

In this form, expr1 is used as the expression’s value when expr2 evaluates to

true. If expr2 is false, then cm_expression is evaluated and used as the expres-

sion’s value (the “else” cm_expression may contain more “when” statements).

Expr2 may use the following VHDL operators:

and, or, not, =, /= (not equals), <, >, <=, >=.

Finally, CELL_MAKER has been given the ability to include rloc_clb constraints

conditionally. The usage of this feature is:

-- cell_const rloc_clb (R <row> C <col> [S <slice>]) when <expr>

If expr evaluates as true, then the constraint is attached to the instance, other-

wise it is not and the instance will be unconstrained.
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8.2.5 Output

The final output of CELL_MAKER is a Xilinx user constraints file (UCF) file,

with lines of the form:

INST <instance_hierarchy_name> LOC = CLB_<final_location>;

A line is included for each instantiated component that has no VHDL code (i.e.

a FPGA component) and a rloc_clb constraint that evaluates true if it is a con-

ditional constraint (conditional constraints that evaluate false are still

included in the file, but are commented out), and for each block of logic and

components in a VHDL entity with a rloc_clb_all constraint attached to the

entity.

CELL_MAKER can also include a user-created UCF file at the beginning of

its generated UCF file if the user wishes to add additional timing constraints,

pin-locking constraints, or manually-entered placement constraints.

8.2.6 CELL_MAKER Example

A small example with three VHDL entities is shown below to demonstrate

CELL_MAKER’s functionality (this example is to show CELL_MAKER’s usage,

and would result in a bizarre, non-ideal layout for a real design):

entity example1 is
-- cell_const paramdef clb_slice
-- cell_const paramdef def_ex:= 1

generic ( X : in integer) ;
port ( ... );

end example1;

architecture rtl of example1 is
begin

ex_block : for i in 0 to X - 1 generate
ex_inst : FPGA_component

-- cell_const rloc_clb R -i*2 C 0 when i<1 else 3 S clb_slice
port map ( ... );

end generate;
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ex_cond_inst : another_FPGA_component
-- cell_const rloc_clb (R 0 C 1 S 0) when def_ex + X = 2

port map (... );
end rtl;

entity example2 is
-- cell_const flag clb_all_entity

port (
signal a, b : in std_logic;
signal c : out std_logic);

end example2;

architecture rtl of example2 is
begin

c <= a and b;
end rtl;

entity example3 is
-- cell_const paramdef top_param := 30

port ( ... );
end example3;

architecture rtl of example3 is
begin

example1_inst : example1
-- cell_const rloc R 10 C top_param
-- cell_const param clb_slice => 1

generic map ( X => 2 )
port map ( ... );

example2_inst : example2
-- cell_const rloc_clb_all R 20 C 40 S 0

port map ( a => a, b => b, c => c );
end rtl;

The UCF file output from CELL_MAKER with example3 the top-most entity is:

INST example1_inst/ex_inst_0 LOC=CLB_R10C30.S1;
INST example1_inst/ex_inst_1 LOC=CLB_R8C33.S1;
# COND: INST example1_inst/ex_cond_inst LOC=CLB_R10C31.S0;
INST example2_inst/* LOC=CLB_R20C40.S0;

After the VHDL code has been synthesized with FPGA Express, it will be

turned into a EDIF file that contains a net-list of the design, library symbols
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representing the bottom-most instantiated components within the VHDL

hierarchy (the FPGA components), and library symbols representing high-

level VHDL statements. This EDIF file along with the UCF file created by

CELL_MAKER are then passed into the Xilinx tools to create a FPGA with func-

tionality and placement described by the user. The “# COND” in line 3 indi-

cates that the constraint on ex_cond_inst within example1_inst was a

conditional constraint that evaluated as false (# is a comment character in a

UCF file). If it was evaluated as true, there would be no “# COND.” Line 4 indi-

cates that all logic and components within example2_inst should be located in

slice R20C40.S0.

8.3 CELL_MAKER on Linear Systolic DA Design

As mentioned earlier, the linear systolic design was not placed well within the

Virtex XCV1000, resulting in long route lengths that decreased performance.

The final placed and routed version of this design’s layout is shown in

Figure 8.1, and had a maximum clock rate of 86 MHz (see Section 9.1). This

design had the best performance out of 20 different placements run by the Xil-

inx tools via their multi-pass place and route feature, yet was still slower than

the summer tree design (see Section 9.1). As Figure 8.1 shows and as was dis-

cussed in Section 8.1, the placement strategy did not take advantage of any of

the systolic, regular, design features built into the linear DA design.

The linear systolic DA design from Section 7.4 was constrained with the

CELL_MAKER constraints described above so that the four tap groups were

placed in a linear chain as shown in the top of Figure 8.2. A parallel-to-serial

shift register at the input of the first four-tap group change the 16-bit X input



102

into serial data for the DA algorithm, and a scaling accumulator at the output

of the last four-tap group produced full 43-bit outputs.

CELL_MAKER was run on the linear systolic DA design with constraints

added to the VHDL code, and the UCF file was applied to the Xilinx tools. The

final placed and routed design with CELL_MAKER constraints is shown in the

bottom of Figure 8.2. The performance increased from 86 MHz to 118 MHz

(see Section 9.1) with the improved, systolic layout, a 37% improvement due to

layout alone. The performance bottleneck was no longer unnecessarily long

route lengths, as adder chain delays and connections between adjacent cells

now limited the design.

Figure 8.1: Placed and Routed Linear Systolic DA Design
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Figure 8.2: CELL_MAKER Applied to Linear Systolic DA Design
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Chapter 9

Results

9.1 Implementation Results

The area and performance results for the different designs presented in

Chapter 7 are shown in Table 9.1. Performance results were obtained from the

Xilinx Timing Analyzer, which reports worst-case timing statistics. All designs

were implemented in a -6 speed grade Virtex XCV1000.

All of the designs that were implemented (the designs in Table 9.1 with

performance results) exceeded the design specifications for the custom VLSI

chip described in Chapter 4. Each design was able to fit within a single

Design Area (CLB
Slices)

Performance
(MHz)

Max Sample
Rate (MHz)a

a. Each design requires a clock rate 16 times faster than the sample rate, so max sam-
ple rate = performance / 16

Performance/
Area ( )b

b. Ratio of performance to area of design

32 Parallel MACs 7,816 85.157 5.322 10.895

Bit-Level Systolic
Array

> 20,736c

c. 20,736 slices are required for the bit-level systolic array’s main array cells only

N/A N/A N/A

Summer Tree DA 6,253 92.842 5.803 14.846

Linear Systolic DA 6,446 85.955 5.372 13.335

Linear Systolic DA w/
CELL_MAKER Con-
straints

6,446 117.509 7.3443 18.230

4x4 FFA 6,900 85.164 5.323 12.343

Frequency Domain > 6,800d

d. A minimum of 5,306 slices are required for multipliers and RAM if each multiplier
is re-used 16 times which would require complex control logic. A low-bound estimate
of 1,500 slices was used for all other logic in the design.

N/A N/A N/A

Table 9.1: Area and Performance Results

x10 3–
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XCV1000, and may be able to fit within a XCV600, which has 6,912 CLB

slices. Each design was able to run with a coefficient load clock of at least 25

MHz, meaning that they all had dual banked coefficients that were able to be

loaded within 1 ms. The implemented designs all had close to 18-bit output

precision, and performed 512-tap FIR filtering on 16-bit inputs and 18-bit

coefficients.

In Table 9.1, the column “performance/area” gives a figure of merit for each

design taking into account both its performance and area by simply taking the

ratio of the two measurements. The fastest design and the design with the

best performance for a given area was the linear systolic design placed with

CELL_MAKER constraints. The summer tree DA design was the smallest

design. The summer tree design may have benefited with constraints applied

to it as well, but a placement strategy was not able to be derived that could

limit route lengths to adjacent cells as was done in the linear tree design.

Therefore, a constrained summer tree design would never be able to meet the

performance of the constrained linear systolic design.

With a sample rate of 7.3 MHz, and 512 multiply and add operations (two

operations) performed each clock cycle, the linear tree DA design can perform

7.475 billion operations per second (GOPS). The custom VLSI chip was able to

perform at 5.02 GOPS [Gre96], so the FPGA solution’s performance exceeded

the performance of the custom VLSI chip designed with 1996 process technol-

ogy.
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9.2 Power Consumption

The Virtex requires the following processing power according to the documen-

tation on the Annapolis Micro Systems Virtex-based Starfire board (see

Chapter 10) [Ann99]:

(9.1)

where is the number of flip flops clocked by the processing clock, and

is the frequency of the processing clock in MHz. For the linear DA

design, about 6,700 flip-flops and shift registers are clocked by the processing

clock, so the power consumption for the design is 12.14 watts with a 117 MHz

clock.

With 7.475 billion operations performed per second at 12.14 watts, the

throughput/power factor for the linear DA design is 0.62 GOPS/Watt. The cus-

tom VLSI chip’s throughput/power for its 512-tap real mode was 1.57 GOPS/

Watt, or 2.5 times better than the FPGA design.

Power
NFF FMHz⋅

1 5×10
------------------------------ 4.3,+=

NFF

FMHz
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Chapter 10

Physical Implementation

10.1 Annapolis Microsystems Starfire Board

The Annapolis Microsystems Starfire Reconfigurable Computing Engine was

used to demonstrate the distributed arithmetic design on real hardware. The

Starfire board contains a single Virtex XCV1000 and two local SRAM memo-

ries, and is connected via PCI bus to a PC [Ann99].

10.2 Implementation

A host program was written for the PC which would load the Virtex

XCV1000 with its active configuration, load one local memory with a block of

input data used during simulation, load one of the distributed arithmetic fil-

ter’s coefficient banks with pre-computed partial products, set the XCV1000’s

clock rate, and start the filter running. The filter would then operate, pulling

input data from the input data local memory and outputting it to the other

local memory. Upon completion, the host program would retrieve the output

data from its local memory and compare it to a pre-computed correct set of fil-

tered data. Figure 10.1 shows a block diagram of the Starfire board with the

Virtex programmable logic element and the filter loaded into that element.

Due to time constraints, only an eight-tap DA filter (without CELL_MAKER)

was able to be implemented on the Starfire board. This filter successfully ran

on the Starfire up to 97 MHz, above the timing analyzer’s maximum reported

performance of 85 MHz. In addition, in this design, the performance bottle-
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neck was within the memory control logic, not within the filter or its control

logic, so in a real system with streaming input and output data, the filter

should be able to perform faster.

Figure 10.1: Starfire Board With Filter
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Chapter 11

Conclusions

A Virtex FPGA implementation using a layout-constrained linear-systolic dis-

tributed arithmetic design was built, simulated, and fielded in a reconfig-

urable-computing hardware board. This implementation was able to meet all

of the specifications of a custom VLSI chip designed to perform the front-end

digital signal processing for an adaptive radar system. This implementation

demonstrated that reconfigurable computing now has the performance to

meet the demanding requirements of high-bandwidth signal processing appli-

cations. Using reconfigurable computing for such an environment instead of

custom VLSI would gain many benefits, including lower costs, faster and eas-

ier development and production times, and the ability to create entirely new

types of systems and applications that can dynamically change their hard-

ware in-system.

The layout of a FPGA design drastically affects its performance. The

VHDL synthesis and place and route tools cannot be trusted to place a well-

designed systolic structure optimally into a FPGA to maximize its perfor-

mance. Placement constraints must be introduced into the placement process

to produce the most optimal design, which can be done with an automated tool

such as CELL_MAKER.

One drawback to a FPGA solution is that it consumes more power than a

custom VLSI solution. Therefore, in applications where power or extreme per-

formance is a necessity, reconfigurable computing may not apply. However, it
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is a computational medium that is rapidly opening to new classes of process-

ing applications, and should continue to do so as the technology continues to

improve.
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