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Abstract

This paper describes our work in progress on FlexCache, a framework for flex-
ible, compiler generated data caching. FlexCache substitutes the tag-memory
and cache controller hardware with a compiler managed tag-like data structure,
address translation, and tag-check. This allows the division of the data-array
into separately controlled partitions, allows the selection of cache line sizes, the
support of highly associative mappings, and the selection of various replacement
policies on a per program basis.

FlexCache leverages compile-time static information to selectively virtualize
memory, to eliminate cache-tag accesses, and to guide the replacement of con-
flicting cache lines. For the applications studied the FlexCache compiler tech-
niques eliminate in average more than 90% of the cache-tag lookups, enabling
the support of highly associative caching schemes. Even without any hardware
support, FlexCache can outperform fixed hardware caches by improving caching
effectiveness, eliminating mapping conflicts, and eliminating the cache pollution
caused by register spills. The beauty of FlexCache is that its core techniques
could be augmented with additional software techniques and/or hardware sup-
port (i.e., special instructions) to look into optimizing data caching in areas such
as low-power, real-time systems, and high-performance microprocessors.

1 Introduction

Several recent project proposals focus on issues related to memory resources,
as memory resources still represent the most important bottleneck in comput-
ing devices, in respect to power-consumption, performance, and area occupied
[4]. Because of rapidly changing requirements for optimal designs, these projects
emphasize on memory systems that are reconfigurable or optimizable to some
extent. Good example is Smart Memories [6] that successfully maps architec-
tures with different memory requirements to a low-level computing fabric. The



Berkeley IRAM project [9] improves memory latency by designing a processor
in DRAM process and includes the DRAM memory on-chip. The MIT Raw
project [10] focuses instead on compiler technology to control low-level hard-
ware resources to optimize the performance of memory accesses. The FlexRAM
project [5] moves computation closer to the DRAM in an attempt to reduce mem-
ory latency for memory bound applications by combining processing and DRAM
on the same chip. The Active Pages system [7] shifts data-intensive computations
to the memory system by combining FPGAs with DRAM. A new hardware cache
is shown in [8] that divides the SRAM storage into several partitions and use it
as prefetch buffer, compiler controlled memory, or lookup buffer. This design is
shown to benefit media applications with up to 20% performance improvement.
Digital Signal Processors such as the Texas Instruments TMS320C62XX added
hardware support to use SRAM data storage as both cache and main memory.
To cope with the long DRAM latencies in future microprocessors a fully asso-
ciative secondary cache with software replacement/control is suggested in [3]. A
software replacement algorithm is shown to achieve miss-rate reductions from
8% to 85% compared to a 4-way LRU.

This paper describes FlexCache, a framework for flexible, compiler generated
data caching. FlexCache takes the flexibility of the above mentioned memory
systems one step further. Instead of building upon conventional caching archi-
tectures, FlexCache builds upon a flexible software platform with the possibility
of adding hardware resources as needed. Hardware support can be added in form
of new instructions to reduce the overhead of the software schemes, but without
altering the flexibility and programmability provided.

FlexCache substitutes the tag-memory and the cache controller with a com-
piler managed tag-like data structure, address translation, and tag-checks. It
allows the division of the data-array into separately controlled partitions, the
selection of cache line sizes, the support of highly associative mappings, and
the selection of various replacement policies. Because FlexCache leverages static
information available during compilation, it can improve caching efficiency com-
pared to conventional caches. Eliminating the hardware for managing cache-tags
and providing direct access to fast SRAM can also simplify the pipeline and re-
duce design overhead. FlexCache incorporates new compiler techniques called
Hot Pages, succesfully eliminating tag-checks, making possible the design of
highly associative caches. The FlexCache approach is different from many other
compiler systems that aimed compiler optimizations at reducing the impact of
memory latency in the context of conventional hardware caches.

FlexCache uses four main techniques in its base implementation to reduce
overheads during the hit case. First, it can avoid caching when not necessary
by mapping (at compile time) some memory accesses directly into fast SRAM
memory. Example of such accesses are register spills that otherwise pollute caches
and can cause significant performance degradation [2]. Second, it uses for the
first time compiler techniques enabled by global pointer analysis to identify and
speculatively reuse previously calculated cache mappings at runtime. In our soft-
ware implementation this optimization reduces the software overhead for the hit



0. Partition types
(i.e. system area,
non-mapped, register spills,
statically predictable area,
mapped areas)

- - Compiler Managed
Reconfigurability P ¢ t=-| o. Cache-line sizes
User Defined ’

. Partition sizes

<]

o

Runtime Defined

o

. Associativity

o

. Replacement techniques

. Address translation

o

0. Pointer analysis

Compiler managed 0. Hot Pages analysis
hit-case overhead reduction

0. Adaptive Strip Mining

0. Other: Data reuse & occupancy analysis

0. Replacement policies leveraging static
Compiler managed miss—case - information

o. Prefetching

o

Hybrid: combine with hardware cache control

o

Dedicated Hot Page registers

o

Special memory instructions:
<-|  speculative Hot Page check = speculative
load/store & check HP register, trap if misspredicted

Hardware support

o

Other special instructions:
access SRAM directly, tag—check on/off, ...

o

ILP exploited in superscalars

Fig. 1. Overview of the FlexCache framework. FlexCache can combine compiler anal-
ysis, user input, or runtime profiling for cache configuration selection. New compiler
techniques are proposed to reduce software overheads in software managed caching, to
manage the miss-case efficiently, and to eliminate tag-checks. Hardware support can
be added in form of new speculative memory instructions, direct access to the cache
data-array, and in form of dedicated Hot Page registers. Additionally, a FlexCache
proposes to incorporate hardware cache-control providing the ability to handle some
memory accesses in conventional manner.

case to four instructions per load (in a pure software implementation running
on a single-issue processor), independent of the sophistication of the underlying
caching strategy. The four instruction overhead can be reduced to two instruc-
tions on multiple issue processors, and can be completely eliminated with special
Instruction Set Architecture (ISA) extensions. Third, for dense array accesses
the system uses adaptive strip mining to reduce the number of tag checks from
once per memory access to once per cache line. Finally, the FlexCache system
allows the user to select cache-line size, associativity and replacement policy for
each program, reducing the miss rate.

Additional compiler techniques could be developed to automate the selection
of these parameters. This paper mainly focuses on identifying the critical compo-



nents of the FlexCache system and leaves out the compiler techniques required
to automate the configuration selection process.

An overview of the FlexCache framework is presented in Figure 1. A Flex-
Cache based cache can combine compiler analysis, user input, or runtime profil-
ing for optimal cache configuration selection. FlexCache incorporates new com-
piler techniques to reduce software overheads in software managed caching, to
manage the miss-case efficiently (i.e., by leveraging compiler knowledge we can
design application specific replacement policies), and to eliminate cache tag-
checks. Hardware support can be added in form of new speculative memory
instructions, direct access to the cache data-array, support for access to differ-
ent type of memory partitions, and in form of dedicated Hot Page registers.
Additionally, FlexCache proposes to incorporate hardware cache-control, in a
hybrid cache solution, providing the ability to handle some memory accesses in
conventional way (i.e., same manner as in a hardware cache).

Our preliminary results demonstrate that compile time analysis can eliminate
a large portion (90% in average for the applications studied) of the cache-tag
lookups. Even without any hardware support, FlexCache can outperform fixed
hardware caches by improving caching effectiveness, eliminating mapping con-
flicts, and eliminating the cache pollution caused by register spills. Because all
the main FlexCache features are software based, a FlexCache solution is appli-
cation specific and can be easily retargeted to focus on different design aspects
such as low power consumption, high performance, or high predictability of mem-
ory accesses. FlexCache can also be the right solution to add data caching for
FPGA based systems if it is incorporated in a silicon compilation system such
as described in [1].

The remainder of this paper is organized as follows. Section 2 and 3 describes
the components of the FlexCache system. Section 4 presents suggestions for
hardware support. Section 5 gives our preliminary experimental results. Section 6
concludes the paper.

2 FlexCache Runtime System

This paper assumes an architecture with a local SRAM memory and an external
large DRAM. Address translation is the mapping of program addresses into
SRAM addresses. This mapping can be implemented by using a table lookup
similar to the page table lookup used in virtual memory systems. The mapping
is done at a line granularity. A line is a contiguous address range in both SRAM
and program memory. Each translation table entry contains both a tag and a
translation to a physical SRAM address.

The translation overhead if done in software varies for different table orga-
nizations, but requires at minimum, (1) calculating the line number from the
program address, (2) calculating an address into the translation table, based on
the line number, (3) loading the tag, (4) comparing the line number with the
tag, (5) calculating the offset within the line, (6) loading the translation, (7) cal-
culating the actual physical SRAM address from the translation and offset, (8)



actually loading the data from SRAM. Associative caching schemes may require
multiple table lookups and tag compares (steps 2-4). Hardware cache manage-
ment schemes provide special hardware to perform all of the work for steps 1-7,
usually in a single cycle. Section 3 describes our compiler optimizations to re-
duce the software overhead. The Hot Pages optimization eliminates steps 2, 3
and 6. ISA extensions implementing the remaining operations could eliminate
all the remaining overhead, while keeping (i.e., not altering) the flexibility of the
compiler based solution.

When the FlexCache system detects a cache miss (the software tag-check
fails) it invokes a miss handler. Table entries that correspond to Hot Pages
(cache-lines identified as hot during compile-time) are non-replaceable and are
ignored during replacement. In the direct mapped cache there is only one line
that can be replaced. If we map hot pages through this table we have no other
option but to replace them in case of a conflict situation. However, we can rely
on pointer analysis to guarantee that non hot page accesses will not access lines
that currently map to hot pages and therefore we can move the mapping of hot
pages outside the main mapping table. This improves the hit-case as cache lines
predicted statically to be hot can only be replaced with other (static) hot lines.

Asthe gap between processing speeds and external DRAM latencies is rapidly
widening, with DRAM latencies reaching thousands of processing cycles, man-
aging cache misses in software becomes a feasible approach.

3 FlexCache Compiler

Traditionally, the compiler generates code assuming infinite memory. The com-
piler component of the FlexCache system removes this assumption by implement-
ing caching in software. Figure 2 shows the flow of the augmented FlexCache
compiler which includes the new phases required for caching.

This section shortly describes the compiler components of the FlexCache sys-
tem. First, it describes pointer analysis, an analysis technique used to determine
the location set list of each memory reference. Next, it describes the Hot Page
analysis phase which divides memory references into groups called hot page sets.
All references inside a hot page set will use the same register allocated transla-
tion, called a hot page, an important overhead reduction optimization. Figure 3
introduces an example which illustrates the steps the compiler performs for soft-
ware managed caching.

Pointer Analysis

Pointer analysis is a compiler analysis which finds a conservative estimation
for the set of data objects that a memory reference can refer to. The analysis is
conservative in that some objects in the set may not be referenced. One standard
application of pointer analysis is to determine dependence between memory ref-
erences. In our FlexCache system, the analysis is used to guide the placement of
data and for the hot page optimization. There are many variants of pointer anal-
ysis algorithms, that mainly differ in the precision at which memory references
are disambiguated. The FlexCache system is based on a most precise type of
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Fig. 2. Structure of the FlexCache Compiler

pointer analysis that is both flow-sensitive (i.e., takes control-flow into account)
and context-sensitive (i.e., location sets may differ based on calling context).

However, the FlexCache approach do not require this type of precision for
correctness of execution, less precise but faster pointer analysis techniques could
have been used, perhaps with somewhat less static prediction accuracy for cache
accesses. Details about the pointer analysis used can be found in [11,12].

Hot Page Analysis

The Hot Page analysis pass leverages the information provided by the pointer
analysis pass to determine the location set of all memory accesses. The objective
of the analysis is to identify if a program memory reference can reuse a previously
translated virtual page description.

Our technique leverages static information about the locality of accesses,
to implement a fast address translation. The compiler groups memory accesses
into groups called hot page sets. Hot page sets are determined based on their
location sets (information given by pointer analysis) in memory. Each hot page
set contains references that can likely reuse the address translation saved for a
specific memory line called a hot page.

The compiler algorithm has two phases. First, it finds data objects such as
arrays and structures and maps these objects to hot page sets. Then, it traverses
the control-flow graph of the program and maps memory accesses to existing hot
page sets based on their location sets. For example, if the compiler determines



int A[10000]; int A[10000]; int A[10000]; //hp2 int A[10000];

int B[10000]; int B[10000]; int B[10000]; //hp1 int B[10000];

void main(){ void main(){ void main(){ void main(){

int *pB; int *pB; int *pB; int *pB;

int j,temp; int j,temp; int j,temp; int j,temp;

pB=&B[0]; pB=&B[0]; / pB=&B[0]; pB=&B[0];

for(j=0; j<10000; j++){ for(j=0; j<10000/ j++){ for(j=0; j<10000; j++){ for(j=0; j<10000; j++){
temp=*pB++; temp=*pB++; temp=*pB++; //hpl temp=CheckLoad(pB++, hpl);
}A[j]:temp; }A[|]=temp; }A[i]:temp; Ilhp2 CheckStore(&A[j], hp2)=temp;

} } } }

original code ——=  pointer analysis —— hot page analysis —— virtualization

Fig. 3. An example of how FlexCache implements software caching in the compiler: A.)
Pointer analysis is used to determine the location sets of memory references, for example
pB has the same set as B, B.) the Hot Pages analysis annotates memory references into
hot page sets hp1, hp2, C.) the virtualization pass changes the memory references with
procedure calls. The address translation specialization pass in the compiler back-end
inlines specialized code for CheckLoad, CheckStore. This specialization is controlled by
the hot page set annotations (i.e., hp1, hp2).

from the location set information that a load is accessing a location from a mem-
ory area allocated to an array, then it can (likely) reuse the address translation
saved for the hot page set assigned to that array. Note that several location sets
can be hot at the same time.

Each Hot Page has two pieces of information assigned to it: a program line
number (the tag) and a physical frame, both saved into registers. A successful
translation done through a Hot Page register will add only 4 cycles of overhead
in a full software implementation: one cycle to extract the line number from the
address, one cycle to compare to the tag stored in the hp_vpn register, one cycle
to extract the line offset from the program address, and a final cycle to add the
offset to the translated SRAM address held in the hp_phys_frame register. The
next section will show additional techniques based on architectural extensions
that eliminates the 4 cycles.

If the Hot Page tag check fails, then a procedure call is made to the slower
software runtime tag check routine, which takes about 23 cycles in our system.
Alternatively, a hybrid system would rely on the hardware cache check in case
of misspredicted Hot Page access.

As mentioned earlier, the Hot Page check itself could be speed up by imple-
menting the hot page check in the instruction set of the processor.

The compiler determines which accesses should be cached in the virtualiza-
tion phase. If an access is virtualized then it is substituted with a procedure call.
The compiler can decide not to virtualize an access and map it directly to an
unmapped portion of SRAM. These accesses are local and only cost 1 cycle (i.e.,
as fast as having a hardware cache). The compiler maps scalar register spills to
this area. Larger stack mapped objects are handled through the software caching
system to avoid overloading the unmapped portion of SRAM.

The address translation for Hot Page references is customized at compile-time
for the specific Hot Page page description (translation). No extra table lookup



or hashing for accessing a Hot Page description is required at runtime, as the
code is generated with the right registers at compile-time. If the FlexCache ISA
support is in place then the compiler can generate these memory instructions
directly.

4 Hardware Support

In an environment where performance is critical there is a possibility of combin-
ing conventional cache control with a software FlexCache. The support that is
needed is the separation of memory accesses at compile time into hardware and
software managed. This support can be easily added based on the location set
information available at compile time.

Another option to improve performance is to add hardware support to reduce
the software overheads in software caching. Perhaps the most promising idea is
extension of the ISA with special instructions to reduce the latency of the Hot
Pages tag-checks. The Hot Pages compiler techniques reduces the overhead in
a software managed cache to four operations per memory access, by register
promoting (i.e., storing into registers) address translations of memory accesses
that are likely to result in cache hits. As we show in the next section, for several
benchmarks the compiler successfully predicts which accesses can benefit from
register promotion, achieving an average prediction accuracy above 90%. A Hot
Pages based load/store operation can be implemented as a speculative load /store
instruction. This approach reduces a Hot Pages based memory access to one
instruction (depending on correct prediction in the compiler).

With this support, a fully software managed cache partition has the higher
predictability provided by the software techniques (as the selected cache parame-
ters for the partition can be application specific), and maintains the low hit-case
latency of a hardware based cache. Figure 4 shows three different implemen-
tations. The exact sequence of MIPS assembly code is shown for illustrative
purposes only, to give an idea of the overhead in a software cache partition. If
the Hot Pages load is executed on a single-issue processor the additional overhead
compared to a regular load (see instructions before lw) is 4 instructions. Exe-
cuting the same code on a superscalar processor and exploiting ILP (Instruction
Level Parallelism) reduces this overhead to two instructions. If architecture sup-
port is provided, i.e., if implemented as a special memory instruction, hplw [?],
then a Hot Pages memory operation can run at the speed of a regular load.

Figure 5 shows the data-path for the hplw instruction. It illustrates that the
additional hardware required to implement this instruction is minimal, and that
misspeculation can be detected early in the Execution stage of the pipeline.

A hybrid FlexCache, that incorporates the architectural support briefly de-
scribed above, maintains the added flexibility and improved efficiency provided
by the software techniques, in addition to a hit-case latency similar to that of
conventional hardware based implementations. In a hybrid solution we can use
hardware cache partitions for memory accesses that are not predictable or an-
alyzable at compile-time (or memory accesses that are infrequent and hard to
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Fig. 4. Three different possible implementations of Hot Pages loads using a MIPS ISA.
First, we have a load with 4 additional instructions overhead on single-issue processors.
On a superscalar processor this overhead is reduced to two instruction per load because
of the ILP in the check code. With the ISA extension the overhead is completely
eliminated.

analyze). Example of such accesses are non-affine array accesses and references
to complex data structures using pointers. More predictable references are dealt
with using compiler managed memory areas or software caching, with added
architectural support.

5 Experiments

We implemented the FlexCache system on a single-issue 5 stage pipeline micro-
processor similar to MIPS R4000. A two level memory hierarchy based on a local
SRAM and an off-chip DRAM is simulated. A local on-chip SRAM memory is at-
tached to the processor. A large external RDRAM memory is necessary to solve
large problems that exceed the size of the on-chip memory. The experiments are
performed on a cycle-level simulator.

We have found that the FlexCache system has an average dynamic memory
access prediction rate of 90% for the applications studied (see Table 1), elimi-
nating the need of cache-tag lookups (or address translations) in most cases.

The FlexCache system is fully customizable that can benefit many applica-
tions. Applications have very different requirements that often cannot be ex-
ploited in a fixed hardware caching system. In Figure 7 we show two applica-
tions with very different cache-line requirements. Execution times vary as much
as 70%.

In Figure 6 we show that the software column associative scheme can elim-
inate many conflict misses that are produced in the direct mapped case. Com-
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Fig. 5. Data-path of the hplw instruction. Note that the speculative addressing of the
cache can be done with minimal hardware support. The HotPages registers containing
the HotPages translations are used to reduce register pressure. A missprediction is
handled as an exception and it is detected early in the Execution stage of the processor
pipeline.

pared with a fixed direct mapped hardware caching scheme, FlexCache can pro-
vide more associativity (i.e., because it is software managed) when needed. The
Convolution program is three times faster with the software FlexCache system
compared to a system using a fixed direct mapped hardware cache.

6 Conclusions and Future Work

This paper presented FlexCache, a framework for flexible, compiler managed
data caching.

For the applications studied the FlexCache techniques eliminate in average
more than 90% of the cache-tag lookups, enabling the support of highly asso-
ciative caching schemes while providing full flexibility. We have shown that even
without any hardware support, a FlexCache based system can outperform fixed
hardware caches by improving caching effectiveness.

We are currently working on adding hardware support in a hybrid FlexCache,
by extending the ISA with specialized memory instructions that speculatively
access local memory using address mappings from the Hot Page registers, on
building low-power hardware managed caches that expose just enough of the



|Application|Total Cache Access.[Mispredicted|% optimized]

Jacobi 19392 505 97.3
MxM 12928 73 99.4
Cholsky 25440 4502 82.3
Life 2516 54 97.8
Moldyn 243740 11487 95.2
Adpcm 51202 420 99.1
Sor 14131 1024 92.7
Vpenta 6868 2321 66.2
MedianF 410018 21416 94.7

Table 1. Percentage of tag-checks (translation table lookups) optimized with the Hot
Pages technique in a FlexCache system. The total percentage of tag checks eliminated is
actually higher because a large portion of memory accesses use the local stack directly.
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— m HW Cache

] | SW column-
— associative cache

O SW fully mapped
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M Infinite memory

Median-filter Convolution

Fig. 6. The effect of cache associativity for programs with many conflict misses. Bars
shown are normalized to the execution time of the software direct mapped case. For
each program, the bars, left to right correspond to (1) a software FlexCache with direct
mapping, optimized with Hot Pages, and 256 word cache-lines, (2) A hardware direct
mapped cache with 32 word (with 256 word size the performance is worse!) cache-lines,
(3) a software FlexCache with 2-way column-associative mapping, optimized with Hot
Pages, and 256 word cache-lines, (4) a software FlexCache with fully mapped table,
optimized with Hot Pages and 256 word cache lines, and (5) an ideal memory.
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Fig. 7. Different line sizes are better for different programs. Runtime for the Median-
filter and SOR programs with a software FlexCache using 2-way column associative
mapping and optimized with Hot Pages. Median-filter does better with smaller cache
lines while the SOR program does better with a larger line size.

cache interface to the compiler, such that the FlexCache techniques can be used
to reduce tag-array accesses.
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