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Abstract

Increasing focus on multimedia applications has prompted the addition of multimedia
extensions to most existing general-purpose microprocessors. This added function-
ality comes primarily with the addition of short SIMD instructions. Unfortunately,
access to these instructions is limited to in-line assembly and library calls. Gener-
ally, it has been assumed that vector compilers provide the most promising means
of exploiting multimedia instructions. Although vectorization technology is well un-
derstood, it is inherently complex and fragile. In addition, it is incapable of locating
SIMD-style parallelism within a basic block.

In this thesis we introduce the concept of Superword Level Parallelism (SLP), a
novel way of viewing parallelism in multimedia and scienti�c applications. We believe
SLP is fundamentally di�erent from the loop level parallelism exploited by traditional
vector processing, and therefore demands a new method of extracting it. We have
developed a simple and robust compiler for detecting SLP that targets basic blocks
rather than loop nests. As with techniques designed to extract ILP, ours is able to
exploit parallelism both across loop iterations and within basic blocks. The result is
an algorithm that provides excellent performance in several application domains. In
our experiments, dynamic instruction counts were reduced by 46%. Speedups ranged
from 1.24 to 6.70.

Thesis Supervisor: Saman Amarasinghe
Title: Assistant Professor
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Chapter 1

Introduction

The recent shift toward computation-intensive multimedia workloads has resulted in

a variety of new multimedia extensions to current microprocessors [8, 12, 18, 20, 22].

Many new designs are targeted speci�cally at the multimedia domain [3, 9, 13]. This

trend is likely to continue as it has been projected that multimedia processing will

soon become the main focus of microprocessor design [10].

While di�erent processors vary in the type and number of multimedia instructions

o�ered, at the core of each is a set of short SIMD (Single Instruction Multiple Data)

or superword operations. These instructions operate concurrently on data that are

packed in a single register or memory location. In the past, such systems could

accommodate only small data types of 8 or 16 bits, making them suitable for a limited

set of applications. With the emergence of 128-bit superwords, new architectures are

capable of performing four 32-bit operations with a single instruction. By adding


oating point support as well, these extensions can now be used to perform more

general-purpose computation.

It is not surprising that SIMD execution units have appeared in desktop micro-

processors. Their simple control, replicated functional units, and absence of heavily-

ported register �les make them inherently simple and extremely amenable to scaling.

As the number of available transistors increases with advances in semiconductor tech-

nology, datapaths are likely to grow even larger.

Today, use of multimedia extensions is di�cult since application writers are largely
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restricted to using in-line assembly routines or specialized library calls. The problem

is exacerbated by inconsistencies among di�erent instruction sets. One solution to this

inconvenience is to employ vectorization techniques that have been used to parallelize

scienti�c code for vector machines [7, 16, 17]. Since a number of multimedia applica-

tions are vectorizable, this approach promises good results. However, many important

multimedia applications are di�cult to vectorize. Complicated loop transformation

techniques such as loop �ssion and scalar expansion are required to parallelize loops

that are only partially vectorizable [2, 5, 19]. Consequently, no commercial compiler

currently implements this functionality. This thesis presents a method for extracting

SIMD parallelism beyond vectorizable loops.

We believe that short SIMD operations are well suited to exploit a fundamentally

di�erent type of parallelism than the vector parallelism associated with traditional

vector and SIMD supercomputers. We denote this parallelism Superword Level Paral-

lelism (SLP) since it comes in the form of superwords containing packed data. Vector

supercomputers require large amounts of parallelism in order to achieve speedups,

whereas SLP can be pro�table when parallelism is scarce. From this perspective, we

have developed a general algorithm for detecting SLP that targets basic blocks rather

than loop nests.

In some respects, superword level parallelism is a restricted form of ILP. ILP

techniques have been very successful in the general-purpose computing arena, partly

because of their ability to �nd parallelism within basic blocks. In the same way that

loop unrolling translates loop level parallelism into ILP, vector parallelism can be

transformed into SLP. This realization allows for the parallelization of vectorizable

loops using the same basic block analysis. As a result, our algorithm does not require

any of the complicated loop transformations typically associated with vectorization.

In fact, Chapter 5 will show that vector parallelism alone can be uncovered using a

simpli�ed version of the SLP compiler algorithm presented in Chapter 4.

9



Chapter 2

Superword Level Parallelism

This chapter begins by elaborating on the notion of SLP and the means by which it is

detected. Terminology is introduced that facilitates the discussion of our algorithms

in Chapters 4 and 5. We then contrast SLP to other forms of parallelism and discuss

their interactions. This helps motivate the need for a new compilation technique.

2.1 Description of Superword Level Parallelism

Superword level parallelism is de�ned as short SIMD parallelism in which the source

and result operands of a SIMD operation are packed in a storage location. Detection

is done through a short, simple analysis in which independent isomorphic statements

are identi�ed within a basic block. Isomorphic statements are those that contain the

same operations in the same order. Such statements can be executed in parallel by

a technique we call statement packing, an example of which is shown in Figure 2-

1. Here, source operands in corresponding positions have been packed into registers

and the addition and multiplication operators have been replaced by their SIMD

counterparts. Since the result of the computation is also packed, unpacking may be

required depending on how the data are used in later computations. The performance

bene�t of statement packing is determined by the speedup gained from parallelization

minus the cost of packing and unpacking.

Depending on what operations an architecture provides to facilitate general pack-
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a
d
r
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b
e
s
x

c
f
t
y

+SIMD * SIMD

z[i+0]
z[i+1]
z[i+2]
z[i+3]

a = b + c * z[i+0]
d = e + f * z[i+1]
r = s + t * z[i+2]
w = x + y * z[i+3]

=

Figure 2-1: Isomorphic statements that can be packed and executed in parallel.

ing and unpacking, this technique can actually result in a performance degradation

if packing and unpacking costs are high relative to ALU operations. One of the main

objectives of our SLP detection technique is to minimize packing and unpacking by

locating cases in which packed data produced as a result of one computation can be

used directly as a source in another computation.

Packed statements that contain adjacent memory references among corresponding

operands are particularly well suited for SLP execution. This is because operands are

e�ectively pre-packed in memory and require no reshu�ing within a register. In

addition, an address calculation followed by a load or store need only be executed

once instead of individually for each element. The combined e�ect can lead to a

signi�cant performance increase. This is not surprising since vector machines have

been successful at exploiting the same phenomenon. In our experiments, instructions

eliminated from operating on adjacent memory locations had the greatest impact on

speedup. For this reason, locating adjacent memory references forms the basis of our

algorithm, discussed in Chapter 4.

2.2 Vector Parallelism

To better explain the di�erences between superword level parallelism and vector par-

allelism, we present two short examples, shown in Figures 2-2 and 2-3. Although the

�rst example can be molded into a vectorizable form, we know of no vector compilers

11



for (i=0; i<16; i++) {

localdiff = ref[i] - curr[i];

diff += abs(localdiff);

}

(a) Original loop.

for (i=0; i<16; i++) {

T[i] = ref[i] - curr[i];

}

for (i=0; i<16; i++) {

diff += abs(T[i]);

}

(b) After scalar expansion and loop �ssion.

for (i=0; i<16; i+=4) {

localdiff = ref[i+0] - curr[i+0];

diff += abs(localdiff);

localdiff = ref[i+1] - curr[i+1];

diff += abs(localdiff);

localdiff = ref[i+2] - curr[i+2];

diff += abs(localdiff);

localdiff = ref[i+3] - curr[i+3];

diff += abs(localdiff);

}

(c) Superword level parallelism exposed after unrolling.

for (i=0; i<16; i+=4) {

localdiff0 = ref[i+0] - curr[i+0];

localdiff1 = ref[i+1] - curr[i+1];

localdiff2 = ref[i+2] - curr[i+2];

localdiff3 = ref[i+3] - curr[i+3];

diff += abs(localdiff0);

diff += abs(localdiff1);

diff += abs(localdiff2);

diff += abs(localdiff3);

}

(d) Packable statements grouped together after renaming.

Figure 2-2: Comparison of SLP and vector parallelization techniques.

12



that can be used to vectorize the second. Furthermore, the transformations required

in the �rst example are unnecessarily complex and may not work in more compli-

cated circumstances. In general, a vector compiler must employ a repertoire of tools

in order to parallelize loops on a case by case basis. By comparison, our method is

simple and robust, yet still capable of detecting the available parallelism.

Figure 2-2(a) presents the inner loop of the motion estimation algorithm used

for MPEG encoding. Vectorization is inhibited by the presence of a loop-carried

dependence and a function call within the loop body. To overcome this, a vector

compiler can perform a series of transformations to mold the loop into a vectorizable

form. The �rst is scalar expansion, which allocates a new element in a temporary array

for each iteration of the loop [5]. Loop �ssion is then used to divide the statements

into separate loops [15]. The result of these transformations is shown in Figure 2-2(b).

The �rst loop is vectorizable, but the second must be executed sequentially.

Figure 2-2(c) shows the loop from the perspective of SLP. After unrolling, the four

statements corresponding to the �rst statement in the original loop can be packed

together. The packing process e�ectively moves packable statements to contiguous

positions, as shown in part (d). The code motion is legal because it does not violate

any dependences (once scalar renaming is performed). The �rst four statements in

the resulting loop body can be packed and executed in parallel. Their results are then

unpacked so they can be used in the sequential computation of the �nal statements.

In the end, this method has the same e�ect as the transformations used for vector

compilation, while only requiring loop unrolling and scalar renaming.

Figure 2-3 shows a code segment that averages the elements of two 16x16 matrices.

As is the case with many multimedia kernels, our example has been hand-optimized

for a sequential machine. In order to vectorize this loop, a vector compiler would need

to reverse the programmer-applied optimizations. Were such methods available, they

would involve constructing a for loop, restoring the induction variable, and re-rolling

the loop. In contrast, locating SLP within the loop body is simple. Since the opti-

mized code is amenable to SLP analysis, hand-optimization has had no detrimental

e�ects on our ability to detect the available parallelism.

13



do {

dst[0] = (src1[0] + src2[0]) >> 1;

dst[1] = (src1[1] + src2[1]) >> 1;

dst[2] = (src1[2] + src2[2]) >> 1;

dst[3] = (src1[3] + src2[3]) >> 1;

dst += 4;

src1 += 4;

src2 += 4;

}

while (dst != end);

Figure 2-3: Example of an unvectorizable code sequence.

2.3 Loop Level Parallelism

Vector parallelism, exploited by vector computers, is a subset of loop level parallelism.

General loop level parallelism is typically exploited by a multiprocessor or MIMD

machine. In many cases, parallel loops may not yield performance gains because of

�ne-grain synchronization or loop-carried communication. It is therefore necessary

to �nd coarse-grain parallel loops when compiling for MIMD machines. Tradition-

ally, a MIMD machine is composed of multiple microprocessors. It is conceivable

that loop level parallelism could be exploited orthogonally to superword level paral-

lelism within each processor. Since coarse-grain parallelism is required to get good

MIMD performance, extracting SLP should not detract from existing MIMD parallel

performance.

2.4 SIMD Parallelism

SIMD parallelism came into prominence with the advent of massively parallel super-

computers such as the Illiac IV [11], and later with the Thinking Machines CM-1

and CM-2 [25, 26] and the Maspar MP-1 [4, 6]. The association of the term \SIMD"

with this type of computer is what led us to use \Superword Level Parallelism" when

discussing short SIMD operations.

SIMD supercomputers were implemented using thousands of small processors that

14



worked synchronously on a single instruction stream. While the cost of massive SIMD

parallel execution and near-neighbor communication was low, distribution of data to

these processors was expensive. For this reason, automatic SIMD parallelization

centered on solving the data distribution problem [1]. In the end, the class of appli-

cations for which SIMD compilers were successful was even more restrictive than that

of vector and MIMD machines.

2.5 Instruction Level Parallelism

Superword level parallelism is closely related to ILP. In fact, SLP can be viewed as a

subset of instruction level parallelism. Most processors that support SLP also support

ILP in the form of superscalar execution. Because of their similarities, methods for

locating SLP and ILP may extract the same information. Under circumstances where

these types of parallelism completely overlap, SLP execution is preferred because it

provides a less expensive and more energy e�cient solution.

In practice, the majority of ILP is found in the presence of loops. Therefore,

unrolling the loop multiple times may provide enough parallelism to satisfy both

ILP and SLP processor utilization. In this situation, ILP performance would not

noticeably degrade after SLP is extracted from a program.

15



Chapter 3

Optimal SLP Extraction

We initially formulated SLP extraction as a graph problem. From there, we derived

a set of 0-1 integer linear programming equations that could be used to �nd the best

set of packed statements for a given basic block. Although this technique proved in-

tractable for real benchmarks, we gained valuable insights that helped in the discovery

of the heuristic algorithm described in the next chapter.

3.1 The Graph Problem

For any statement in a basic block, there is the possibility for several di�erent packing

options. These options can be represented as nodes in a graph. Each node has an

associated value that indicates the savings achieved when compared to the sequential

alternative. Savings are computed from the type and number of operations within

each statement, the number of statements in the packed group, and any necessary

packing or unpacking costs. Packing costs will often produce nodes that are assigned

negative savings. Such nodes are only pro�table when considered in the context of

other packed groups. This notion is captured by graph edges. Edges are drawn

between two nodes whenever data produced in one node can be used in the other. A

value is associated with each edge as well, indicating the packing cost recovered when

communicated data are in a useful packed con�guration.

An example graph is shown in Figure 3-1. Savings have been omitted since they
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a = b + c
d = e + f

a = b + c
g = h + j

d = e + f
g = h + j

a = b + c
d = e + f
g = h + j

k = a * m
n = d * p

k = a * m
q = g * r

n = d * p
q = g * r

k = a * m
n = d * p
q = g * r

a = b + c
d = e + f
g = h + j

k = a * m
n = d * p
q = g * r

Figure 3-1: Example graph representing packing possibilities.

are architecture-dependent and not pertinent to this discussion. Also, only di�erent

statement combinations are shown. In reality, all permutations are possible. This

means that a basic block with n isomorphic statements will result in a graph with

n!=(n� k)! nodes, where k is the number of operands that can be accommodated on

a given superword datapath.

Choosing the set of nodes and edges with the greatest sum value determines the

best packing con�guration. If the sum is negative, the entire basic block should be left

unparallelized. Since many nodes contain duplicate statements, care must be taken

to ensure that savings are not counted more than once. We make the simplifying

assumption that it is never pro�table to execute any statement twice. Therefore, the

maximization process is restricted such that only one node can be chosen from any

overlapping group.

The example in Figure 3-1 attempts to relate the size and complexity of a graph

constructed from even a small basic block. The problem is intensi�ed when:

� Statements are 
attened into three-address form, creating an enormous number

of statements with common operations.

� Inner loops are unrolled to expose parallelism, increasing the size of basic blocks.

17



� Small data types allow a large number of statements in a packed group, and

therefore more possible statement permutations.

Under these circumstances, the resulting graphs become unmanageable.

3.2 0-1 Integer Linear Programming Solution

Given a graph G = hV;Ei, as described in the previous section, the best possible

savings can be calculated using 0-1 integer linear programming as follows:

For a set of nodes:

v1; :::; vn 2 V , with associated savings sv1 ; :::; svn 2 Int,

we assign a corresponding set of binary variables:

x1; :::; xn 2 f0; 1g

For a set of edges:

e1; :::; em 2 E, with associated savings se1; :::; sem 2 Int,

we assign a corresponding set of binary variables:

y1; :::; ym 2 f0; 1g

The objective function is then given by:

maximize

0
@

nX
i=1

svi � xi +
mX
j=1

sej � yj

1
A

subject to the following constraints:

8vi; vj 2 V where i 6= j and vi; vj share a common statement, (xi + xj � 1)

and

18



Terms in the Number of
Benchmark objective function Constraints

swim 17,949 752,574
tomcatv 308,450 820,102
mgrid 20 60
su2cor 375,348 347,234,016
apsi 18,095 754,996
hydro2d 83 1,136
turb3d 191,420 10,996,628
applu 11 52

Table 3.1: Linear programming problem size for the most time-instensive basic block
in each SPEC95fp benchmark. Input �les could not be generated for fpppp and
wave5.

8ek 2 E where ek connects vi and vj, (xi + xj � 2yk � 0)

This maximizes the savings obtained by summing the values associated with each

chosen node and edge. A node or edge is chosen when its corresponding binary

variable has a value of 1 in the optimal solution. The �rst set of constraints allows

only one node to be chosen from a group of overlapping nodes. The second set of

constraints are needed to force the selection of two nodes when the edge between

them is chosen.

3.3 Analysis

We evaluated the system described above on the SPEC95fp benchmark suite. Tests

were run using the CPLEX linear programming solver running on a 4-processor Alpha

4100 Cluster with 2Gb of memory. When basic blocks were 
attened into three-

address form, our system was unable to generate CPLEX input �les before exhausting

available memory. Without 
attening, input �les could be generated for eight of the

ten benchmarks. Table 3.1 shows input �le sizes for the most time-intensive basic

blocks.

Of these eight benchmarks, only mgrid, hydro2d and applu were solvable within

24 hours. In an attempt to produce results for the remaining benchmarks, we limited

packing choices to sets of eight statements. Each statement's set was determined by

its position in the original basic block. Adding this constraint forced the size of each

19



Benchmark % Eliminated

swim 64.23%
tomcatv 61.06%
mgrid 22.49%
su2cor 35.91%
wave5 15.34%
apsi 19.75%
hydro2d 18.00%
turb3d 14.82%
applu 19.67%

Table 3.2: Percentage of dynamic instructions eliminated with integer linear program-
ming methods on a hypothetical 256-bit superword datapath. It is assumed that four
64-bit 
oating point operations can be executed in parallel.

problem to be linearly proportional to the size of the basic block. With this restriction,

we were able to generate results for every benchmark except fpppp. Table 3.2 lists the

number of dynamic instructions eliminated from each benchmark assuming a 256-bit

datapath. Results were gathered by instrumenting source code with counters in order

to determine the number of times each basic block was executed. These numbers were

then multiplied by the number of static instructions in each basic block.

While the SLP extraction methods presented in this chapter proved infeasible,

our results allowed us to glean three high-level concepts. First, it was apparent that

superword level parallelism was abundant in our benchmark set, we simply needed

a viable method of extracting it. Second, statement packing appeared to be more

successful when performed on three-address form since packing could be done at

the level of subexpressions. Finally, we found that packed statements with adjacent

memory references had the biggest potential impact on performance. As a result, the

heuristic solution described in the next chapter begins by locating adjacent memory

references.
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Chapter 4

SLP Compiler Algorithm

This chapter describes the core algorithm developed for extracting superword level

parallelism from a basic block. The algorithm can be neatly divided into four phases:

adjacent memory identi�cation, PackSet extension, combination and scheduling. Ad-

jacent memory identi�cation uncovers an initial set of packed statements with ref-

erences to adjacent memory. PackSet extension then constructs new groups based

on this initial seed. Combination merges all groups into sizes consistent with the

superword datapath width. Finally, scheduling replaces groups of packed statements

with new SIMD operations.

In the discussion of our algorithm, we assume a target architecture without sup-

port for unaligned memory accesses. In general, this means that merging operations

must be emitted for every wide load and store. These operations combine data from

two consecutive aligned segments of memory in order to simulate an unaligned mem-

ory access. Alignment analysis attempts to subvert this added cost by statically

determining the address alignment of each load and store instruction. When success-

ful, we can tailor packing decisions so that memory accesses never span an alignment

boundary. Alignment analysis is described in Chapter 6. For now, we assume that

each load and store instruction has been annotated with alignment information when

possible.
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4.1 Identifying Adjacent Memory References

Because of their obvious impact, statements containing adjacent memory references

are the �rst candidates for packing. We therefore begin our analysis by scanning each

basic block to �nd independent pairs of such statements. Adjacency is determined

using both alignment information and array analysis.

In general, duplicate memory operations can introduce several di�erent packing

possibilities. Dependences will eliminate many of these possibilities and redundant

load elimination will usually remove the rest. In practice, nearly every memory ref-

erence is directly adjacent to at most two other references. These correspond to the

references that access memory on either side of the reference in question. When

located, the �rst occurrence of each pair is added to the PackSet.

De�nition 4.1.1 A Pack is an n-tuple, hs1; :::; sni, where s1; :::; sn are independent

isomorphic statements in a basic block.

De�nition 4.1.2 A PackSet is a set of Packs.

In this phase of the algorithm, only groups of two statements are constructed. We

refer to these as pairs with a left and right element.

De�nition 4.1.3 A Pair is a Pack of size two, where the �rst statement is considered

the left element, and the second statement is considered the right element.

As an intermediate step, statements are allowed to belong to two groups as long

as they occupy a left position in one of the groups and a right position in the other.

Enforcing this discipline here allows the combination phase to easily merge groups

into larger clusters. These details are discussed in Section 4.3.

Figure 4-1(a) presents an example sequence of statements. Figure 4-1(b) shows

the results of adjacent memory identi�cation in which two pairs have been added to

the PackSet. The pseudo code for this phase is shown in Figure 4-2 as �nd adj refs.
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(2)  c = 5

(5)  f = 6

(8)  j = 7

(6)  g = e + f

(9)  k = h + j

(3)  d = b + c

(6)  g = e + f

(4)  e = a[i+1]

(7)  h = a[i+2]

(1)  b = a[i+0]

(4)  e = a[i+1]

(8)  j = 7

(5)  f = 6

(2)  c = 5

(9)  k = h + j

(6)  g = e + f

(3)  d = b + c

(7)  h = a[i+2]

(4)  e = a[i+1]

(1)  b = a[i+0]

(e)

(9)  k = h + j

(8)  j = 7

(6)  g = e + f

(5)  f = 6

(3)  d = b + c

(2)  c = 5

(7)  h = a[i+2]

(4)  e = a[i+1]

(4)  e = a[i+1]

(1)  b = a[i+0]

(4)  e = a[i+1]

(1)  b = a[i+0]

(4)  e = a[i+1]

(7)  h = a[i+2]

(6)  g = e + f

(3)  d = b + c

(6)  g = e + f

(9)  k = h + j

(5)  f = 6

(2)  c = 5

(5)  f = 6

(8)  j = 7

P

(d)

(7)  h = a[i+2]

(8)  j = 7

(9)  k = h + j

(4)  e = a[i+1]

(5)  f = 6

(6)  g = e + f

(1)  b = a[i+0]

(2)  c = 5

(3)  d = b + c

P

(c)

P

(b)

(f)

b     a[i+0]
e  =  a[i+1]
h     a[i+2]

k     h     j

d     b     c
g  =  e  +  f

c     5

j     7
f  =  6

(a)

U U

U

Figure 4-1: Example of SLP analysis. U and P represent the current set of un-
packed and packed statements, respectively. (a) Initial sequence of instructions. (b)
Statements with adjacent memory references are paired and added to the PackSet.
(c) The PackSet is extended by following def-use chains of existing entries. (d) The
PackSet is further extended by following use-def chains. (e) Combination merges
groups containing the same expression. (f) Each group is scheduled as a new SIMD
operation.
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SLP extract: BasicBlockB ! BasicBlock
PackSet P  ;
P  �nd adj refs(B;P )
P  extend packlist(B; P )
P  combine packs(P )
return schedule(B; [ ]; P )

�nd adj refs: BasicBlockB � PackSet P ! PackSet
foreach Stmt s 2 B do

foreach Stmt s0 2 B where s 6= s0 do

if has mem ref(s) ^ has mem ref(s0) then
if adjacent(s; s0) then

Int align get alignment(s)
if stmts can pack(B; P; s; s0; align) then

P  P [ fhs; s0ig
return P

extend packlist: BasicBlockB � PackSet P ! PackSet
repeat

PackSet Pprev  P
foreach Pack p 2 P do

P  follow use defs(B; P; p)
P  follow def uses(B; P; p)

until P � Pprev
return P

combine packs: PackSet P ! PackSet
repeat

PackSet Pprev  P
foreach Pack p = hs1; :::; sni 2 P do

foreach Pack p0 = hs0

1
; :::; s0

mi 2 P do

if sn � s0

1
then

P  P � fp; p0g [ fhs1; :::; sn; s0

2
; :::; s0

mig
until P � Pprev
return P

schedule: BasicBlockB � BasicBlockB0 � PackSet P ! BasicBlock
for i 0 to jBj do

if 9p = h:::; si; :::i 2 P then

if 8s 2 p: deps scheduled(s; B0) then
foreach Stmt s 2 p do

B  B � s
B0  B0 � s

return schedule(B; B0; P )
else if deps scheduled(si ; B0) then

return schedule(B � si; B0 � si; P )
if jBj 6= 0 then

P  P � fpg where p = �rst(B; P )
return schedule(B; B0; P )

return B0

Figure 4-2: Pseudo code for the SLP extraction algorithm. Helper functions are listed
in Figure 4-3
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stmts can pack: BasicBlockB � PackSet P � Stmt s� Stmt s0 � Int align! Boolean
if isomorphic(s; s0) then

if independent(s; s0) then
if 8ht; t0i 2 P:t 6= s then

if 8ht; t0i 2 P:t0 6= s0 then

Int aligns  get alignment(s)
Int aligns0  get alignment(s0)
if aligns � >_ aligns � align then

if aligns0 � >_ aligns0 � align+data size(s0) then
return true

return false

follow use defs: BasicBlockB � PackSet P � Pack p! PackSet
where p = hs; s0i; s = [ x0 := f(x1; :::;xm) ]; s0 = [ x0

0 := f(x0

1; :::;x
0

m) ]
Int align get alignment(s)
for j  1 to m do

if 9t 2 B:t = [ xj := ::: ] ^ 9t0 2 B:t0 = [ x0

j := ::: ] then

if stmts can pack(B; P; t; t0; align)
if est savings (ht; t0i; P ) � 0 then

P  P [ fht; t0ig
set alignment(s; s0; align)

return P

follow def uses: BasicBlockB � PackSet P � Pack p! PackSet
where p = hs; s0i; s = [ x0 := f(x1; :::;xm) ]; s0 = [ x0

0 := f(x0

1; :::;x
0

m) ]
Int align get alignment(s)
Int savings �1
foreach Stmt t 2 B where t = [ ::: := g(:::; x0; :::) ] do

foreach Stmt t0 2 B where t 6= t0 = [ ::: := h(:::; x0

0; :::) ] do
if stmts can pack(B; P; t; t0; align) then

if est savings(ht; t0i; P ) > savings then

savings est savings(ht; t0i; P )
Stmt u t
Stmt u0  t0

if savings � 0 then

P  P [ fhu; u0ig
set alignment(u; u0)

return P

Figure 4-3: Pseudo code for the SLP extraction helper functions. Only key proce-
dures are shown. Omitted functions include: 1) has mem ref, which returns true if a
statement accesses memory, 2) adjacent, which checks adjacency between two memory
references, 3) get alignment, which retrieves alignment information, 4) set alignment,
which sets alignment information when it is not already set, 5) deps scheduled, which
returns true when, for a given statement, all statements upon which it is dependent
have been scheduled, 6) �rst, which returns the PackSet member containing the ear-
liest unscheduled statement, 7) est savings, which estimates the savings of a potential
group, 8) isomorphic, which checks for statement isomorphism, and 9) independent,
which returns true when two statements are independent.
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4.2 Extending the PackSet

Once the PackSet has been seeded with an initial set of packed statements, more

groups can be added by �nding new candidates that can either:

� Produce needed source operands in packed form, or

� Use existing packed data as source operands.

This is accomplished by following def-use and use-def chains of existing PackSet

entries. If these chains lead to fresh packable statements, a new group is created

and added to the PackSet. For two statements to be packable, they must meet the

following criteria:

� The statements are isomorphic.

� The statements are independent.

� The left statement is not already packed in a left position.

� The right statement is not already packed in a right position.

� Alignment information is consistent.

� Execution time of the new parallel operation is estimated to be less than the

sequential version.

The analysis computes an estimated speedup of each potential SIMD instruction

based on a cost model for each instruction added and removed. This includes any

packing or unpacking that must be performed in conjunction with the new instruction.

If the proper packed operand data already exist in the PackSet, then packing cost is

set to zero.

As new groups are added to the PackSet, alignment information is propagated

from existing groups via use-def or def-use chains. Once set, a statement's alignment

determines which position it will occupy in the datapath during its computation. For
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(1)  b = a[i+0]
(2)  c = a[i+1]

(3)  d = b - e
(4)  f = c - g

(5)  h = b - j
(6)  k = c - m

Figure 4-4: Multiple packing possibilites resulting from many uses of a single de�ni-
tion.

this reason, a statement can have only one alignment. New groups are created only

if their alignment requirements are consistent with those already in place.

When de�nitions have multiple uses, there is the potential for many di�erent pack-

ing possibilities. An example of this scenario is shown in Figure 4-4. Here, statements

(1) and (2) would be added to the PackSet after adjacent memory identi�cation. Fol-

lowing def-use chains from these two statements leads to several di�erent packing

possibilities: h(3); (4)i, h(5); (6)i, h(3); (6)i, and h(5); (4)i. When this situation arises,

the cost model is used to estimate the most pro�table possibilities based on what is

currently packed. These groups are added to the PackSet in order of their estimated

pro�tability as long as there are no con
icts with existing PackSet entries.

In the example of Figure 4-1, part (c) shows new groups that are added after

following def-use chains of the two existing PackSet entries. Part (d) introduces new

groups discovered by following use-def chains. The pseudo code for this phase is listed

as extend packset in Figure 4-2.

4.3 Combination

Once all pro�table pairs have been chosen, they can be combined into larger groups.

Two groups can be combined when the left statement of one is the same as the right

statement of the other. In fact, groups must be combined in this fashion in order

to prevent a statement from appearing in more than one group in the �nal PackSet.

This process, provided by the combine packs routine, checks all groups against one
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x = a[i+0] + k1
y = a[i+1] + k2
z = a[i+2] + s

q = b[i+0] + y
q = b[i+0] + y
s = b[i+2] + k4

x = a[i+0] + k1
y = a[i+1] + k2

q = b[i+0] + y
r = b[i+1] + k3
s = b[i+2] + k4

z = a[i+2] + s

Figure 4-5: Example of a dependence between groups of packed statements.

another and repeats until all possible combinations have been made. Figure 4-1(e)

shows the result of our example after combination.

Since adjacent memory identi�cation uses alignment information, it will never

create pairs of memory accesses that cross an alignment boundary. All packed state-

ments are aligned based on this initial seed. As a result, combination will never

produce a group that spans an alignment boundary. Combined groups are therefore

guaranteed to be less than or equal to the superword datapath size.

4.4 Scheduling

Dependence analysis before packing ensures that statements within a group can be

executed safely in parallel. However, it may be the case that executing two groups

produces a dependence violation. An example of this is shown in Figure 4-5. Here,

dependence edges are drawn between groups if a statement in one group is dependent

on a statement in the other. As long as there are no cycles in this dependence

graph, all groups can be scheduled such that no violations occur. However, a cycle

indicates that the set of chosen groups is invalid and at least one group will need to

be eliminated. Although experimental data has shown this case to be extremely rare,

care must be taken to ensure correctness.

The scheduling phase begins by scheduling statements based on their order in the

original basic block. Each statement is scheduled as soon as all statements on which

it is dependent have been scheduled. For groups of packed statements, this property
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must be satis�ed for each statement in the group. If scheduling is ever inhibited by

the presence of a cycle, the group containing the earliest unscheduled statement is

split apart. Scheduling continues until all statements have been scheduled.

Whenever a group of packed statements is scheduled, a new SIMD operation

is emitted instead. If this new operation requires operand packing or reshu�ing,

the necessary operations are scheduled �rst. Similarly, if any statements require

unpacking of their source data, the required steps are taken. Since our analysis

operates at the level of basic blocks, it is assumed that all data are unpacked upon

entry to the block. For this reason, all variables that are live on exit are unpacked at

the end of each basic block.

Scheduling is provided by the schedule routine in Figure 4-2. In the example of

Figure 4-1, the result of scheduling is shown in part (f). At the completion of this

phase, a new basic block has been constructed wherever parallelization was successful.

These blocks contain SIMD instructions in place of packed isomorphic statements.

As we will show in Chapter 7, the algorithm can be used to achieve speedups on a

microprocessor with multimedia extensions.
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Chapter 5

A Simple Vectorizing Compiler

The SLP concepts presented in Chapter 4 lead to an elegant implementation of a

vectorizing compiler. Vector parallelism is characterized by the execution of multiple

iterations of an instruction using a single vector operation. This same computation

can be uncovered with unrolling by limiting packing decisions to unrolled versions

of the same statement. With this technique, each statement has only one possible

grouping, which means that no searching is required. Instead, every statement can

be packed automatically with its siblings if they are found to be independent. The

pro�tability of each group can then be evaluated in the context of the entire set of

packed data. Any groups that are deemed unpro�table can be dropped in favor of

their sequential counterparts. The pseudo code for the vector extraction algorithm is

shown in Figure 5-1. The schedule routine is omitted since it is identical to the one

shown in Figure 4-2.

While not as aggressive as the SLP algorithm, this technique shares many of the

same desirable properties. First, the analysis itself is extremely simple and robust.

Second, partially vectorizable loops can be parallelized without complicated loop

transformations. Most importantly, this analysis is able to achieve good results on

scienti�c and multimedia benchmarks.

The drawback to this method is that it may not be applicable to long vector

architectures. Since the unroll factor must be consistent with the vector size, unrolling

may produce basic blocks that overwhelm the analysis and the code generator. As
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vector parallelize: BasicBlockB ! BasicBlock
PackSet P  ;
P  �nd all packs(B; P )
P  eliminate unpro�table packs(P )
return schedule(B; [ ]; P )

�nd all packs: BasicBlockB � PackSet P ! PackSet
foreach Stmt s 2 B do

if 8p 2 P:s =2 p then

Pack p [s]
foreach Stmt s0 2 B where s0 6= s do

if stmts are packable(s; s0) then
p p � s0

if jpj > 1 then

P  P [ fpg
return P

stmts are packable: Stmt s� Stmt s0 ! Boolean
if same orig stmt(s; s0) then

if independent(s; s0) then
return true

return false

eliminate unpro�table packs: PackSet P ! PackSet
repeat

PackSet P 0  P
foreach Pack p 2 P do

if est savings(p; P ) < 0 then

P  P � fpg
until P � P 0

return P

Figure 5-1: Pseudo code for the vector extraction algorithm. Procedures that are
identical to those in Figures 4-2 and 4-3 are omitted. same orig stmt returns true if
two statements are unrolled versions of the same original statement.
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such, this method is mainly applicable to architectures with short vectors.

In Chapter 7, we will provide data that compare this approach to the algorithm

described in Chapter 4. These results demonstrate that superword level parallelism is

a superset of vector parallelism. Experiments on the SPEC95fp benchmark suite show

that 20% of dynamic instruction savings are from non-vectorizable code sequences.

32



Chapter 6

SLP Compiler Implementation

Our compiler was built and tested within the SUIF compiler infrastructure [27]. Fig-

ure 6-1 shows the basic steps and their ordering. First, loop unrolling is used to

transform vector parallelism into SLP. Next, redundant load elimination is applied

in order to reduce the number of statements containing adjacent memory references.

After this, all multidimensional arrays are padded in the lowest dimension. Padding

improves the e�ectiveness of alignment analysis which attempts to determine the ad-

dress alignment of each load and store instruction. Alignment analysis is needed for

compiling to architectures that do not support unaligned memory accesses. As a

�nal step before SLP extraction, the intermediate representation is transformed into

a low level form and a series of standard data
ow optimizations is applied. Finally,

superword level parallelization is performed and a C representation is produced for

use on a macro-extended C compiler. The following sections describe each of these

steps.

6.1 Loop Unrolling

Loop unrolling is performed early since it is most easily done at a high level. As

discussed, it is used to transform vector parallelism into basic blocks with superword

level parallelism. In order to ensure full utilization of the superword datapath in

the presence of a vectorizable loop, the unroll factor must be customized to the data
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Loop unrolling

Array padding

Alignment analysis

Annotate loads/stores with address calculations

Superword level parallelization

Convert SUIF to AltiVec C

AltiVec-extended gcc

Convert to three-address form

Dataflow optimizations

SUIF parser

Redundant load/store elimination

Convert to unstructured control flow

Figure 6-1: Compiler 
ow.
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sizes used within the loop. For example, a vectorizable loop containing 16-bit values

should be unrolled 8 times for a 128-bit datapath. Our system currently unrolls loops

based on the smallest data type present. After unrolling, all high-level control 
ow is

dismantled since the remaining passes operate on a standard control 
ow graph.

6.2 Redundant load elimination

Redundant load elimination removes unnecessary memory fetches by assigning the

�rst in a series of redundant loads to a temporary variable. The temporary is then

used in place of each subsequent redundant load. For FORTRAN sources, we limit the

analysis to array references since they constitute the majority of memory references.

Removing redundant loads is therefore a matter of identifying identical array accesses.

This is accomplished using SUIF's built-in dependence library. For C sources, we use

a form of partial redundancy elimination [14] augmented with pointer analysis [23],

which allows for the elimination of partially redundant loads. In addition to being

a generally useful optimization, redundant load elimination is particularly helpful

in SLP analysis. As was discussed in Chapter 4, it reduces the number of packing

possibilities in adjacent memory identi�cation.

6.3 Array Padding

Array padding is used to improve the e�ectiveness of alignment analysis. Given an

index into the lower order dimension of a multidimensional array, the corresponding

access will be consistently aligned on the same boundary only if the lower order

dimension is a multiple of the superword size. For this reason, all multidimensional

arrays are padded in their lowest dimension.
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6.4 Alignment Analysis

Alignment analysis determines the alignment of memory accesses with respect to a

certain superword datapath width. For architectures that do not support unaligned

memory accesses, alignment analysis can greatly improve the performance of our

system. Without it, memory accesses are assumed to be unaligned and the proper

merging code must be emitted for every wide load and store.

One situation in which merging overhead can be amortized is when a contiguous

block of memory is accessed within a loop. In this situation, overhead can be reduced

to one additional merge operation per load or store by using data from previous

iterations.

Alignment analysis, however, can completely remove this overhead. For FOR-

TRAN sources, a simple interprocedural analysis can determine alignment informa-

tion in a single pass. This analysis is 
ow-insensitive, context-insensitive, and visits

the call graph in breadth-�rst order. For C sources, we use an enhanced pointer

analysis package developed by Rugina and Rinard [23]. Since this pass also provides

location set information, we can consider dependences more carefully when combining

packing candidates.

6.5 Flattening

SLP analysis is most useful when performed on a three-address representation. This

way, the algorithm has full 
exibility in choosing which operations to pack. If isomor-

phic statements are instead matched by the tree structure inherited from the source

code, long expressions must be identical in order to parallelize. On the other hand,

identifying adjacent memory references is much easier if address calculations maintain

their original form. We therefore annotate each load and store instruction with this

information before 
attening.
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6.6 Data
ow Optimizations

After 
attening, several standard optimizations are applied to an input program. This

ensures that parallelism is not extracted from computation that would otherwise be

eliminated. Optimizations include constant propagation, copy propagation, dead code

elimination, common sub-expression elimination, and loop-invariant code motion. As

a �nal step, scalar renaming is performed to remove output and anti-dependences

since they can inhibit parallelization.

6.7 Superword Level Parallelization

After optimization, the SLP algorithm is applied. When parallelization is success-

ful, packed statements are replaced by new SIMD instructions. Ideally, we would

then interface to an architecture-speci�c backend in order to generate machine code.

However, we have opted for the simpler method of emitting C code with multime-

dia macros inserted for use on a macro-extended C compiler. While this solution

provides less optimal results, leveraging existing compilation technology allows us to

concentrate on the SLP algorithm itself rather than on architectural speci�cs.
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Chapter 7

Results

This chapter presents potential performance gains for SLP compiler techniques and

substantiates them using a Motorola MPC7400 microprocessor with the AltiVec in-

struction set. All results were gathered using the compiler algorithms described in

Chapters 3, 4 and 5.

7.1 Benchmarks

We measure the success of our SLP algorithm on both scienti�c and multimedia appli-

cations. For scienti�c codes, we use the SPEC95fp benchmark suite. Our multimedia

benchmarks are provided by the kernels listed in Table 7.1. The source code for these

kernels is listed in Appendix A.

Name Description Datatype

FIR Finite impulse response �lter 32-bit 
oat
IIR In�nite impulse response �lter 32-bit 
oat
VMM Vector-matrix multiply 32-bit 
oat
MMM Matrix-matrix multiply 32-bit 
oat
YUV RGB to YUV conversion 16-bit integer

Table 7.1: Multimedia kernels used to evaluate the e�ectiveness of SLP analysis.
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Benchmark 128 bits 256 bits 512 bits 1024 bits

swim 61.59% 64.45% 73.44% 77.17%
tomcatv 40.91% 61.28% 69.50% 73.85%
mgrid 43.49% 55.13% 60.51% 61.52%
su2cor 33.99% 48.73% 56.06% 59.63%
wave5 26.69% 37.25% 41.97% 43.87%
apsi 24.19% 29.93% 31.32% 29.85%
hydro2d 18.53% 26.17% 28.88% 30.80%
turb3d 21.16% 24.76% 21.55% 15.13%
applu 15.54% 22.56% 10.29% 0.01%
fpppp 4.22% 8.14% 8.27% 8.27%

FIR 38.72% 45.37% 48.56% 49.84%
IIR 51.83% 60.59% 64.77% 66.45%
VMM 36.92% 43.37% 46.63% 51.90%
MMM 61.75% 73.63% 79.76% 82.86%
YUV 87.21% 93.59% 96.79% 98.36%

Table 7.2: Percentage of dynamic instructions eliminated using the SLP heuristic for
a variety of hypothetical datapath widths.

7.2 SLP Availability

To evaluate the availability of superword level parallelism in our benchmarks, we cal-

culated the percentage of dynamic instructions eliminated from a sequential program

after parallelization. All instructions were counted equally, including SIMD opera-

tions. When packing was required, we assumed that n-1 instructions were needed to

pack n values into a single SIMD register. These values were also used for unpacking

costs. Measurements were obtained by instrumenting source code with counters in

order to determine the number of times each basic block was executed. These quan-

tities were then multiplied by the number of static SUIF instructions in each basic

block. The following subsections present results for the three extraction techniques.

7.2.1 SLP Heuristic

Performance tests using the SLP extraction algorithm of Chapter 4 were made for

both sets of benchmarks. The results for a variety of hypothetical datapath widths are

shown in Table 7.2 and Figure 7-1. It is assumed that each datapath can accommodate

SIMD versions of any standard data type. For example, a datapath of 512 bits can

perform eight 64-bit 
oating point operations in parallel. To uncover the maximum

amount of superword level parallelism available, we compiled each benchmark without

39



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

sw
im

to
m

ca
tv

m
gr

id

su
2c

or

w
av

e5
ap

si

hy
dr

o2
d

tu
rb

3d

ap
pl

u

fp
pp

p
FIR II

R

V
M

M

M
M

M
Y

U
V

%
 o

f 
d

y
n

a
m

ic
 i

n
st

ru
ct

io
n

s 
el

im
in

a
te

d

128 bits 256 bits 512 bits 1024 bits

Figure 7-1: Percentage of dynamic instructions eliminated using the SLP heuristic
for a variety of hypothetical datapath widths.

alignment constraints. This allowed for a maximum degree of freedom when making

packing decisions.

For the multimedia benchmarks, YUV greatly outperforms the other kernels. This

is because it operates on 16-bit values and is entirely vectorizable. The remaining

kernels are partially vectorizable and still exhibit large performance gains.

For the SPEC95fp benchmark suite, some of the applications exhibit a perfor-

mance degradation as the datapath width is increased. This is due to the large unroll

factor required to �ll a wide datapath. If the dynamic iteration counts for these loops

are smaller than the unroll factor, the unrolled loop is never executed. For turb3d

and applu, the optimal unroll factor is four. A 256-bit datapath is therefore su�cient

since it can accommodate four 64-bit operations. In fpppp, the most time-intensive

loop is already unrolled by a factor of three. A 192-bit datapath can support the

available parallelism in this situation.

7.2.2 Heuristic vs. Linear Programming Methods

Table 7.3 compares the linear programming method of Chapter 3 to the SLP heuristic

algorithm presented in Chapter 4. Interestingly, the heuristic approach performs much

better than the integer linear programming methods. This is due to the shortcuts that
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Benchmark Heuristic Linear Programming

swim 64.45% 64.23%
tomcatv 61.28% 61.06%
mgrid 55.13% 22.49%
su2cor 48.73% 35.91%
wave5 37.25% 15.34%
apsi 29.93% 19.75%
hydro2d 26.17% 18.00%
turb3d 24.76% 14.82%
applu 22.56% 19.67%
fpppp 8.14% -

Table 7.3: Percentage of dynamic instructions eliminated using the SLP heuristic and
integer linear programming methods on a 256-bit datapath.

Benchmark SLP Vector

swim 64.45% 62.29%
tomcatv 61.28% 56.87%
mgrid 55.13% 34.29%
su2cor 48.73% 44.20%
wave5 37.25% 28.73%
apsi 29.93% 15.89%
hydro2d 26.17% 22.91%
turb3d 24.76% 20.35%
applu 22.56% 14.67%
fpppp 8.14% 0.00%

FIR 45.37% 73.63%
IIR 60.59% 43.63%
VMM 43.37% 60.59%
MMM 73.63% 45.37%
YUV 93.59% 93.59%

Table 7.4: Percentage of dynamic instructions eliminated using SLP and vector par-
allelization on a 256-bit datapath.

were required to produce a solvable linear programming problem. Speci�cally, none of

the benchmarks could be analyzed in three-address form. More importantly, most of

the benchmarks were tested with a limitation on the number of packing permutations

attempted. This did not allow for a complete search of all packing possibilities.

7.2.3 SLP vs. Vector Extraction

In Table 7.4 and Figure 7-2 we compare the SLP algorithm to the vectorization

technique described in Chapter 5. For the multimedia benchmarks, both methods

perform identically. However, there are many cases in the scienti�c applications for

which the SLP algorithm is able to �nd additional packing opportunities. In fact,
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Figure 7-2: Percentage of dynamic instructions eliminated using SLP and vector
parallelization on a 256-bit datapath.
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SLP savings for the SPEC95fp benchmark suite.
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Benchmark Speedup

swim 1.24
tomcatv 1.57
FIR 1.26
IIR 1.41
VMM 1.70
MMM 1.79
YUV 6.70

Table 7.5: Speedup on an MPC7400 processor using SLP compilation.

20% of the dynamic instruction savings are from non-vectorizable code sequences.

In Figure 7-3, we show the available vector parallelism as a subset of the available

superword level parallelism.

7.3 SLP Performance

To test the performance of our SLP algorithm in a real environment, we targeted our

compilation system to the AltiVec [21] instruction set. Of the popular multimedia

extensions available in commercial microprocessors, we believe AltiVec best matches

the compilation technique described in this thesis. AltiVec de�nes 128-bit 
oating

point and integer SIMD operations and provides a complementary set of 32 general-

purpose registers. It also de�nes load and store instructions capable of moving a full

128 bits of data.

Our compiler automatically generates C code with AltiVec macros inserted where

parallelization is successful. We then use an extended gcc compiler to generate ma-

chine code. This compiler was provided by Motorola and supports the AltiVec ABI

(application binary interface). Due to the experimental nature of the AltiVec com-

piler extensions, it was necessary to compile all benchmarks without optimization.

Base measurements were made by compiling the unparallelized version for execution

on the MPC7400 superscalar unit. In both cases, the same set of SUIF optimiza-

tions and the same gcc backend were used. Since AltiVec does not support unaligned

memory accesses, all benchmarks were compiled with alignment constraints in place.

Table 7.5 and Figure 7-4 present performance comparisons on a 450MHz G4 Pow-
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Chapter 8

Architectural Support for SLP

The compiler algorithm presented in Chapter 4 was inspired by the multimedia ex-

tensions in modern processors. However, several limitations make it di�cult to fully

realize the potential provided by SLP analysis. We list some of these limitations

below:

� Many multimedia instructions are designed for a speci�c high-level operation.

For example, HP's MAX-2 extensions o�er matrix transform instructions [18]

and SUN's VIS extensions include instructions to compute pixel distances [20].

The complex CISC-like semantics of these instructions make automatic code

generation di�cult.

� SLP hardware is typically viewed as a multimedia engine alone and is not de-

signed for general-purpose computation. Floating point capabilities, for exam-

ple, have only recently been added to some architectures. Furthermore, even

the most advanced multimedia extensions lack certain fundamental operations

such as 32-bit integer multiplication and division [21].

� In current architectures, data sets are usually considered to belong exclusively to

either multimedia or superscalar hardware. This design philosophy is portrayed

in the lack of inter register �le move operations in the AltiVec instruction set.

If SLP compilation techniques can show a need for a better coupling between

these two units, future architectures may provide the necessary support.
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� Most current multimedia instruction sets are designed with the assumption

that data are always stored in the proper packed con�guration. As a result,

data packing and unpacking instructions are generally not well supported. This

important operation is useful to our system. With better support, SLP perfor-

mance can be further increased.

� Although our system is capable of compiling for machines that do not support

unaligned memory accesses, the algorithm is potentially more e�ective with-

out this constraint. Architectures supplying e�cient unaligned load and store

instructions might improve the performance of SLP analysis.

The �rst three points discuss simple processor modi�cations that we hope will be

incorporated into future multimedia instruction sets as they mature. The last two

points address di�cult issues. Solving them in either hardware or software is not

trivial. More research is required to determine the best approach.
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Chapter 9

Conclusion

In this thesis we introduced superword level parallelism, the notion of viewing par-

allelism from the perspective of partitioned operations on packed superwords. We

showed that SLP can be exploited with a simple and robust compiler implementation

that exhibits speedups ranging from 1.24 to 6.70 on a set of scienti�c and multimedia

benchmarks.

We also showed that SLP concepts lead to an elegant implementation of a vector-

izing compiler. By comparing the performance of this compiler to the more general

SLP algorithm, we demonstrated that vector parallelism is a subset of superword level

parallelism.

Our current compiler implementation is still in its infancy. While successful, we

believe its e�ectiveness can be improved. By extending SLP analysis beyond basic

blocks, more packing opportunities could be found. Furthermore, SLP could o�er a

form of predication, in which un�lled slots of a wide operation could be �lled with

speculative computation. If data are invalidated due to control 
ow, they could simply

be discarded.

Recent research has shown that compiler analysis can signi�cantly reduce the size

of data types needed to store program variables [24]. Incorporating this analysis into

our own has the potential of drastically improving performance by increasing the

number of operands that can be packed and executed in parallel.

Today, most desktop processors are equipped with multimedia extensions. Nonuni-
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formities in the di�erent instruction sets, exacerbated by a lack of compiler support,

has left these extensions underutilized. We have shown that SLP compilation is not

only possible, but also applicable to a wider class of application domains. As such,

we believe SLP compilation techniques have the potential to become an integral part

of general-purpose computing in the near future.
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Appendix A

Multimedia Kernels

#define M_SIZE 256

float A[M_SIZE*M_SIZE];

float B[M_SIZE*M_SIZE];

float C[M_SIZE*M_SIZE];

void vectorMultiply(float A[M_SIZE*M_SIZE],

float B[M_SIZE],

float C[M_SIZE]) {

int i,j;

for (i=0; i<M_SIZE; i++) {

C[i] = 0.0;

for (j=0; j<M_SIZE; j++) {

C[i] = C[i] + B[j] * A[i*M_SIZE+j];

}

}

}

int main() {

int i, j;

for (j=0; j<9; j++) {

for (i=0; i<M_SIZE; i++) {

vectorMultiply(A, &B[i*M_SIZE], &C[i*M_SIZE]);

}

}

}

Figure A-1: VMM: Vector-matrix multiply.
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#define M_SIZE 256

float A[M_SIZE*M_SIZE];

float B[M_SIZE*M_SIZE];

float C[M_SIZE*M_SIZE];

/* Performs C = A(B^T) as a 2D matrix multiply */

/* This is done using the straight forward implementation which takes

* O(n^3) time. It is not Strausen's alg which runs in O(n^lg7) time. */

void matrixMultiply(float A[M_SIZE*M_SIZE],

float B[M_SIZE*M_SIZE],

float C[M_SIZE*M_SIZE]) {

float* v1;

float* v2;

float prod[M_SIZE];

float sum;

int i,j,k;

for (i=0; i<M_SIZE; i++) {

for (j=0; j<M_SIZE; j++) {

sum = 0.0;

for (k=0; k<M_SIZE; k++) {

prod[k] = A[i*M_SIZE+k] * B[j*M_SIZE+k];

}

for (k=0; k<M_SIZE; k++) {

sum = sum + prod[k];

}

C[i*M_SIZE+j] = sum;

}

}

}

/*

* Transposes A in place.

*/

void matrixTranspose(float A[M_SIZE*M_SIZE]) {

int i,j;

float t;

for (i=0; i<M_SIZE; i++) {

for (j=i; j<M_SIZE; j++) {

t = A[i*M_SIZE+j];

A[i*M_SIZE+j] = A[j*M_SIZE+i];

A[j*M_SIZE+i] = t;

}

}

}

int main() {

int i;

for (i=0; i<10; i++) {

matrixTranspose(B);

matrixMultiply(A,B,C);

}

}

Figure A-2: MMM: Matrix-matrix multiply.
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/*

* Code based on FIR/IIR documentation found at:

* http://www-svr.eng.cam.ac.uk/~ajr/SpeechAnalysis/node13.html

*/

#define FILTER_LENGTH 256

#define SIGNAL_LENGTH 1024

float input_data[SIGNAL_LENGTH];

float output_data[SIGNAL_LENGTH];

float filter1[FILTER_LENGTH];

/*

* Applys an FIR filter to input to produce output. filter is

* an array of coefficients to calculate a weighted sum of input

* to get output. Note that for efficiency of calculation

* the order of the terms in filter is the reverse of what

* one might expect.

*

*/

void applyFIR(float input[SIGNAL_LENGTH],

float filter[FILTER_LENGTH],

float output[SIGNAL_LENGTH]) {

int i,j;

for (i=0; i<FILTER_LENGTH; i++) {

output[i] = 0.0;

for (j=FILTER_LENGTH-i-1; j<=FILTER_LENGTH-1; j++) {

output[i] = output[i] + input[1+i-FILTER_LENGTH+j]*filter[j];

}

}

for (i=FILTER_LENGTH; i<SIGNAL_LENGTH; i++) {

output[i] = 0.0;

for (j=0; j<FILTER_LENGTH; j++) {

output[i] = output[i] + input[1+i-FILTER_LENGTH+j]*filter[j];

}

}

}

int main() {

int i;

for (i=0; i<300; i++) {

applyFIR(input_data, filter1, output_data);

}

}

Figure A-3: FIR: Finite impulse response �lter.
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/*

* Code based on FIR/IIR documentation found at:

* http://www-svr.eng.cam.ac.uk/~ajr/SpeechAnalysis/node13.html

*/

#define FILTER_LENGTH 256

#define SIGNAL_LENGTH 1024

float input_data[SIGNAL_LENGTH];

float output_data[SIGNAL_LENGTH];

float filter1[FILTER_LENGTH];

float filter2[FILTER_LENGTH];

/*

* Note that the filters are backwards.

*/

void applyIIR(float input[SIGNAL_LENGTH],

float inFilter[FILTER_LENGTH],

float outFilter[FILTER_LENGTH],

float output[FILTER_LENGTH]) {

int i,j;

for (i=0; i<FILTER_LENGTH; i++) {

output[i] = 0.0;

for (j=0; j<=i; j++) {

output[i] = output[i] +

input[j-FILTER_LENGTH+1+i]*inFilter[j] +

output[j-FILTER_LENGTH+1+i]*outFilter[j];

}

}

for (i=FILTER_LENGTH; i<SIGNAL_LENGTH; i++) {

output[i]=0.0;

for (j=0; j<FILTER_LENGTH; j++) {

output[i] = output[i] +

input[j-FILTER_LENGTH+1+i]*inFilter[j] +

output[j-FILTER_LENGTH+1+i]*outFilter[j];

}

}

}

int main() {

int i;

filter2[0] = 0.0; /* Must be zero */

for (i=0; i<300; i++) {

applyIIR(input_data, filter1, filter2, output_data);

}

}

Figure A-4: IIR: In�nite impulse response �lter.
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/*

* YUV equations taken from

* http://www.cse.msu.edu/~cbowen/docs/yuvtorgb.html

*/

#define VECTOR_SIZE 4096

short int R[VECTOR_SIZE];

short int G[VECTOR_SIZE];

short int B[VECTOR_SIZE];

short int Y[VECTOR_SIZE];

short int U[VECTOR_SIZE];

short int V[VECTOR_SIZE];

void convertRGBtoYUV() {

int i;

for (i=0; i<VECTOR_SIZE; i++) {

Y[i] = (R[i]*77 + G[i]*150 + B[i]*29);

U[i] = (R[i]*-43 + G[i]*-85 + B[i]*128 + 32767);

V[i] = (R[i]*128 + G[i]*-107 + B[i]*-21 + 32767);

Y[i] = Y[i] + 256;

U[i] = U[i] + 256;

V[i] = V[i] + 256;

Y[i] = Y[i] >> 8;

U[i] = U[i] >> 8;

V[i] = V[i] >> 8;

}

}

void convertYUVtoRGB() {

int i;

for (i=0; i<VECTOR_SIZE; i++) {

Y[i] = Y[i] << 8;

R[i] = (Y[i]+(360*(V[i]-128)));

G[i] = (Y[i]-(88*(U[i]-128) - (184*(V[i]-128))));

B[i] = (Y[i]+(455*(U[i]-128)));

R[i] = R[i] + 256;

G[i] = G[i] + 256;

B[i] = B[i] + 256;

R[i] = R[i] >> 8;

G[i] = G[i] >> 8;

B[i] = B[i] >> 8;

}

}

int main() {

int i;

for (i=0; i<1000; i++) {

convertRGBtoYUV();

convertYUVtoRGB();

}

}

Figure A-5: YUV: RGB to YUV conversion.
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