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Abstract

We present Softspec, a technique for parallelizing se-
quential applications using a hybrid compile-time and
run-time technique. Softspec parallelizes loops whose
memory references are stride-predictable. By detect-
ing and speculatively executing potential parallelism
at runtime Softspec eliminates the need for complex
program analysis required by parallelizing compilers.
By using runtime information Softspec succeeds in
parallelizing loops whose memory access patterns are
statically indeterminable. For example, Softspec can
parallelize while loops with un-analyzable exit condi-
tions, linked list traversals, and sparse matrix appli-
cations with predictable memory patterns. We show
performance results using our software prototype im-
plementation.

1 Introduction

Parallel processing can provide scalable performance
improvements, and multiprocessor hardware is be-
coming widely available. However, it is difficult to
develop, debug, and maintain parallel code. Compil-
ers can automatically parallelize some sequential ap-
plications but are limited in the type of code that they
can parallelize. In order to identify parallel regions of
code they must use complex interprocedural analy-
ses to prove that the code has no data dependences
for all possible inputs. Typical code targeted by these
compilers consists of nested loops with affine array ac-
cesses written in a language such as FORTRAN that
has limited aliasing. Large systems written in mod-
ern languages such as C, C++, or Java usually contain
multiple modules and memory aliasing, which makes
them not amenable to automatic parallelization. Fur-
thermore, code whose memory access patterns are in-
determinable at compile time due to dependence on
program inputs can be impossible for these compilers
to parallelize.

Our approach to parallelizing applications stems
from the observation that memory access patterns in
loops can often be predicted at runtime using simple
value predictors. Softspec performs data dependence
analysis at runtime using predicted access patterns.
It speculatively parallelizes loops and detects specu-
lation failures without inter-processor communication.

We describe the Softspec technique for parallelizing
sequential applications using simple software mecha-
nisms which can improve performance of modern pro-
grams on existing hardware. We present a prototype
implementation consisting of a compiler and accom-
panying runtime system and give experimental results
on a symmetric shared-memory multiprocessor.

Softspec requires only local program information
and does not rely on any global analysis. Its simplic-
ity means it could execute entirely at runtime and tar-
get program binaries. Runtime translation [1, 8, 14]
and runtime optimization [4] techniques are becoming
prevalent. Softspec can be readily incorporated into
such frameworks.

The paper is organized as follows. The next section
gives an overview of our technique. Section 3 describes
the core algorithm in detail. Section 5 gives experi-
mental results of our prototype implementation. Re-
lated work and conclusions finish the paper. Further
details, including extensions to the core algorithm, can
be found in [6].

2 The Softspec Approach

This section gives an overview of the Softspec paral-
lelization technique. Softspec parallelizes loops whose
memory references are stride-predictable. A memory
access is stride-predictable if the address it accesses
is incremented by a constant stride for each succes-
sive dynamic instance (e.g., in a loop). Array accesses
with affine index expressions within loops are always
stride-predictable. It has been shown that many other
memory accesses are also stride-predictable [26].
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Figure 1: Stride predictability of SPEC92 benchmarks

Figure 1 shows the results of using the ATOM [27]
profiling tool to measure stride-predictability in sev-
eral SPEC92 benchmarks. The figure shows the per-
centage of dynamic memory references that could be
predicted from the previous two dynamic instances of
the same memory reference. Stride-predictability in
the floating point benchmarks (the first five in the fig-
ure) are to be expected: such programs’ loops often
contain affine index expressions for loads and stores.
The results for the integer applications (the final four
in the figure) further attest to the prevalence of stride-
predictability.

Rather than proving at compile time that a loop
contains no inter-iteration dependences, we calculate
the dependences at runtime. First we dynamically
profile the addresses in the first three iterations of the
loop. If the addresses are stride-predictable in these
three iterations, we predict that the addresses have
the same strides for the rest of the loop. Once the
stride of each memory access has been identified, we
determine whether or not there are inter-iteration de-
pendences among the memory accesses. We do not
parallelize loops that contain inter-iteration depen-
dences since the synchronization costs can outweigh
the benefits of parallelization — we only target loops
whose iterations can all be executed in parallel (doall
loops).

An inter-iteration dependence exists if a write in
one iteration is to the same address as a read or a
write in another iteration. In order to determine if
any such dependences exist, we examine all memory
accesses in the loop pairwise. Each memory access in-
struction covers a region of addresses throughout the
iterations of the loop. For each pair we determine how
many iterations may be executed before their regions

overlap. If there are R memory reads and W memory
writes in the loop, W * (W + R) comparisons are per-
formed. The minimum of all the results is then the
number of parallelizable iterations in the loop.

If the number of parallelizable iterations in the
loop is large enough, the loop is speculatively ex-
ecuted in parallel, its parallelizable iterations split
evenly among the available processors. If there are
very few parallelizable iterations and each iteration
contains little work, speculation is not attempted and
the loop is executed sequentially.

While speculating, each processor checks that the
predicted addresses match the actual addresses. This
is a local operation and requires no communication
with other processors. In fact, the only global commu-
nication required is one bit of information at the end of
speculation stating whether all predictions were cor-
rect or not. If there is a misprediction, all subsequent
iterations must have their speculation undone and be
re-executed sequentially. An undo buffer is allocated
to store the original values at all addresses written
in the loop. Since the predicted addresses are guar-
anteed to have no inter-iteration dependences, spec-
ulative memory accesses use the predicted addresses
instead of the actual addresses (which may contain
dependences). This enables each processor to undo
the effects of speculation independently of the other
processors. After undoing in parallel, the remaining
iterations of the loop are executed sequentially. Alter-
natively, the speculative process can be restarted —
for example, speculation could attempt to parallelize
only a piece of a loop at a time and only give up if
there are many mispredictions. In this way loops with
a few gaps in their stride-predictability or with widely
varying iteration counts can be fully parallelized.

3 The Algorithm

Softspec parallelizes a loop by simply profiling its ini-
tial addresses and calculating the intersections of their
strides. No complex compile-time analysis is required
— all that needs to be done is instrument each mem-
ory access.

To illustrate how Softspec works, consider the code
in Figure 2. The loop in this procedure contains four
memory accesses: two writes (ali] and b[i+j]) and
two reads (b[i] and *p). These accesses are stride-
predictable with a stride of 0 for *p and strides equal
to sizeof (double) for the others. If a and b are
non-overlapping arrays with lengths at least 500 and
j >= 500, there will be no inter-iteration dependences
between the memory accesses and the entire loop will
be parallelizable.



/**x original code **x/
void foo(double *a, double *b, int j) {
double *p;
int i;
p = &aljl;
for (i=0; i<500; i++) {
alil = i;
bli+j] = b[i] - *p;

}

Figure 2: A sample procedure containing a paralleliz-
able loop.

In order for a parallelizing compiler to parallelize
this loop, it must prove statically that a and b are dis-
tinct arrays and that there will be no inter-iteration
dependences between the memory accesses. Deduc-
ing this information at compile time requires sophisti-
cated interprocedural analysis, or may be impossible
if the memory addresses are dependent on program
inputs. However, a compiler that makes use of run-
time predicated parallelism can parallelize this loop
by inserting a test that at runtime will deduce if there
are memory dependences and only execute the paral-
lel version of the loop if there are none. This example
serves only to illustrate the core of the Softspec al-
gorithm; the extensions of the algorithm described in
detail in [6] allow Softspec to target loops for which
practical parallelism-detecting predicates do not exist.

The Softspec algorithm replaces the original loop
with four loops: a profile loop, a detection loop, a
speculation loop, and a recovery loop. The execution
path through these loops is shown in Figure 3. The
following sections describe this path in more detail.

3.1 Profiling and Parallelism Detection

The profile loop for the sample code of Figure 2 is
shown in Figure 4. As can be seen, it runs the first
three iterations of the original loop with instructions
inserted to store the addresses of each memory ac-
cess into data structures used by the runtime system.
The outer index of the profile_address array cor-
responds to the iteration of the loop being profiled,
and the inner index is used to number the memory
accesses.

When the profile loop finishes the runtime system
calculates the stride of each memory access by simply
taking the difference of addresses in consecutive iter-
ations. If each memory access has a consistent stride
(i.e., the strides between the first and second and be-
tween the second and third profiled iterations are the
same), the runtime system then determines how many

/*** profile loop ***/
for (i=0; i<3; i++) {

profile_address[i] [0] = &a[i];
alil = i;

profile_address[i] [1] = &b[i+j];
profile_address[i] [2] = &b[i];
profile_address[i] [3] = p;

b[i+j] = b[i] - *p;

}

Figure 4: The profile loop created from the sequential
loop in Figure 2.

iterations can be parallelized before an inter-iteration
dependence is encountered. If the strides are not con-
sistent then no speculation is performed and the loop
is run sequentially. This catches many accesses that
are not stride-predictable early on before any specu-
lation needs to be undone.

A second thread performs the stride calculations
and parallelism detection while the original thread
continues sequential execution of the loop, as shown
in Figure 3. This enables forward progress on the loop
to be made while the detection calculations are per-
formed.

To identify whether parallelism exists, we exam-
ine the memory accesses pairwise to determine how
many iterations may be executed before their ad-
dresses in different iterations become equal. For a
pair of addresses with values in the first iteration ag
and a; and with strides so and s;, we need to find
the minimum values of integers 7 and j such that
ag + 1@ *sg = a1 + j * s1. Rewriting the equation as
%89 —J %81, = ay — ag, a solution exists if and only if
the greatest common divisor (gcd) of s¢ and sy divides
a1 — ag. The solution can be obtained as a singly pa-
rameterized set using Euclid’s ged algorithm [2], from
which the largest number of parallelizable iterations
can be calculated.

We found that nearly 90% of the parallelism de-
tection execution time was spent calculating ged’s.
To avoid this calculation our prototype Softspec im-
plementation uses an approximation algorithm that
calculates a conservative solution but is much more
efficient. In practice we have never found a case
where the conservative algorithm reports less paral-
lelism than the exact ged algorithm.

This approximation algorithm views each address
as a ray defined by the initial address value a; and
the stride s;: y = s; x ¢ + a;. For a given pair of ad-
dresses, the algorithm extrapolates each profiled ad-
dress into a ray with a starting point on the y-axis. It
then determines, out of all locations where a horizon-
tal line intersects both rays, the minimum =z value of
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Figure 3: The execution path of Softspec’s parallelization of the sample loop in Figure 2. The loop contains 500
iterations, i=0 through i=499. The 27 iterations performed during detection is a typical empirical number for
a small loop body. The top portion of the figure shows successful speculation. The bottom portion shows what

would happen if a misprediction occurred when i=287.
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Figure 5: Two memory accesses are compared to determine the number of iterations before they have an inter-
iteration dependence. The profiled addresses are shown as dots; their strides are extrapolated to obtain two rays.
Inter-iteration dependences may exist starting at the point where one ray enters the other’s address space. In
this case the first access is to a 1000-element array located in memory adjacent to the second access. Thus, the
two overlap at 1000 iterations. The parallelizable iterations are divided among four processors as illustrated on
the right.



the rightmost intersection points. This z value is the
first iteration at which an inter-iteration dependence
can occur. Figure 5 gives an example of this process.
The first inter-iteration dependence may actually oc-
cur later than the z value computed in this manner,
since treating discrete address values as a continuous
line considers addresses to overlap that may never ac-
tually line up due to equal strides but different offsets.
For this reason we add a heuristic case to the ap-
proximation algorithm: if the pair of addresses have
the same stride and either the same initial value (i.e.,
both reference the same address on the same itera-
tion, which is fine) or different initial values modulo
the stride then they will never overlap. For further
information on using gcd algorithms versus our ap-
proximation algorithm see [9].

The cost of the detection algorithm becomes negli-
gible as the amount of computation in the target loop
increases. An adaptive detection algorithm that runs
the approximation algorithm for small loops and the
full ged calculations for large loops could be used.

3.2 Speculation and Recovery from Mis-

prediction

If Softspec detects enough parallelism to warrant spec-
ulating, the speculative version of the loop is executed
by each processor. The iterations of the loop are as-
signed to processors in a block-cyclic manner.

The speculative version of the sample loop from
Figure 2 is shown in Figure 6. It uses the predicted
addresses instead of the actual addresses so that the
processors can undo their speculation in parallel in
case of a misprediction. The predicted addresses are
initialized before the loop by simply adding the stride
multiplied by the starting iteration number for the
thread to the initial address.

Code inserted into the loop stores values to be over-
written in the undo buffer and increments each pre-
dicted address by its stride. Each processor has its
own undo buffer that is allocated prior to specula-
tion. Additional code checks that the predicted ad-
dress matches the actual address and stores the result
in a flag. This flag can be checked at the end of each
iteration (or even after the entire loop, but then there
would be no information on which iteration failed)
since the use of predicted addresses guarantees that
no inter-iteration dependences actually occur. If the
flag indicates a misprediction, the speculation fails:
all writes in iterations during and after the mispredic-
tion are undone and those iterations are re-executed
sequentially by the recovery loop. The recovery loop is
identical to the original sequential loop except that it

/*** speculation loop **x*/

for (i=start[thread]; i<stop[thread]; i++)
ncancel flag &= (predict0 == &al[il);
*undo_buffer = *predictO;
undo_buffer++;
*predict0 = 1i;
ncancel flag &= (predictl == &b[i+j]);
ncancel flag &= (predict2 == &b[i]);
ncancel flag &= (predict3 == p);
*undo_buffer = *predictil;
undo_buffer++;
*predictl = *predict2 - *predict3;
if (!ncancel flag) { /* fail */ }
predictO += delta0;
predictl += deltal;
predict2 += delta2;
predict3 += delta3;

}

Figure 6: The speculation loop created from the se-
quential loop in Figure 2. All added variables are
thread-private; only for speculation failure is a shared
variable (not shown) needed.

begins execution on the iteration of the misprediction.
This process is illustrated at the bottom of Figure 3.
Note that all operations are local to each processor ex-
cept for the success or failure of that processor’s spec-
ulation; no other global communication is required.

Undoing writes involves restoring the values from
the undo buffer to the predicted addresses, from the
most recently executed iteration backward to the ear-
liest executed iteration. Since the predicted addresses
are stride-predictable, the undo buffer does not need
to store any memory addresses, only values. As ex-
plained earlier, the processors can undo in parallel
since there are no overlaps in the predicted addresses.

If many execution instances of a loop experience
early speculation failures, the runtime system disables
speculation of that loop and executes it sequentially
instead to avoid overhead costs.

3.3 Runtime Overhead

The Softspec algorithm transforms the original se-
quential loop into four loops. One of these, the recov-
ery loop, is essentially identical to the original loop.
The other three loops have extra instructions added
that lead to runtime overhead when compared to the
original loop.

The profile loop stores the address of each load
and store into a shared data structure. The detection
loop, which sequentially makes forward progress on
the loop while the runtime system detects the amount
of parallelism in the loop, is equivalent to the original
loop with a check every iteration to see if the paral-



| Loop | Per Read | Per Write | Per Iteration |
Profile 1-4 1-4 0
Detect 0 0 2-4
Speculate 6-11 10-13 2-5
Recovery 0 0 0

Table 1: Overhead in terms of machine instructions
for the four loops that Softspec creates when paral-
lelizing a target loop.

lelism detection has finished. Finally, the speculation
loop contains an increment of the predicted address
and a check that the predicted address equals the ac-
tual address for all memory reads and writes, a store
to the write buffer and increment of the write buffer
pointer for each write, and additionally a single specu-
lation failure branch. Table 1 summarizes these costs
in units of machine instructions for typical compila-
tions.

Note that since speculation uses predicted memory
addresses, nested array references (such as A[B[i]])
or multiple levels of pointer indirection (such as *x*p)
do not need to wait for the first memory reference to
resolve before accessing the second. Breaking this de-
pendence allows for more instruction-level parallelism
and reordering.

Additional overhead is required to synchronize the
threads. A barrier is required at the end of the paral-
lel execution to determine if any threads encountered
mispredictions. This barrier may cost hundreds or
even thousands of cycles on a shared-memory multi-
processor. Fortunately it is the only global synchro-
nization needed by Softspec.

Additional compiler analysis can be used to elimi-
nate runtime overhead. For many accesses in a loop,
the compiler may be able to prove that the accesses
have a given pattern. Such accesses do not require
any profiling or prediction checking and can allow the
loop’s dependence analysis to be partially evaluated
at compile time. Compile-time information can also
be used to reduce or even eliminate the overhead of
the undo buffer. If a memory reference is read before
it is written, the read value can be directly written to
the undo buffer, eliminating a load instruction. Fur-
thermore, if the compiler can deduce how to re-create
the original value of a modified memory access, no
undo information for that access needs to be stored.

Very simple extensions to the underlying hardware,
such as adding a speculative bit to caches that elimi-
nates the need for an undo buffer, could reduce Soft-
spec’s overhead significantly.

4 Extensions to the Algorithm

The Softspec algorithm as described in Section 3 only
handles loops with known numbers of iterations whose
bodies are straight-line code. We have developed ex-
tensions to the core algorithm to handle loop bod-
ies containing loop-carried dependences and nonlin-
ear control flow, while loops, and nested loops. We
have incorporated all of these into our prototype Soft-
spec implementation. These extensions are simple and
do not unduly increase runtime overhead. We de-
scribe below how to extend Softspec to predict loop-
carried dependencies. Details of the other extensions
are available in [6].

4.1 Loop-Carried Dependences

Memory addresses are not the only values in a
loop that are often stride-predictable. Scalar vari-
ables with loop-carried dependences exhibiting stride-
predictability range from simple induction variables,
which are usually analyzable at compile time, to
pointers that are difficult to analyze at compile time.
A pointer used to traverse a linked list, when the list
is laid out contiguously in memory, is a good example
of a stride-predictable loop-carried dependence.

Loop-carried dependences are treated in a similar
manner to memory addresses. Their values are pro-
filed in the first three iterations of the loop just like
memory addresses, and a stride is calculated that is
predicted to hold for the rest of the loop. If the stride
does hold, the loop is parallelizable; no inter-iteration
dependence analysis is needed since the value of the
variable can be computed independently for any iter-
ation. This is in contrast to memory addresses, for
which merely being stride-predictable is not sufficient
for parallelism to exist since the addresses and not the
values at those addresses are being predicted, and the
values may depend on each other.

During speculation the “actual” value of the loop-
carried dependence is the predicted value for the cur-
rent iteration. At the end of the iteration, after this
actual value is modified in the loop body, its resulting
value is compared to the predicted value for the next
iteration and if a misprediction occurs the specula-
tion aborts. This is different from a memory address
whose actual value is computed independently of the
predicted value.

The undo mechanism needs no extra information
to be able to restore loop-carried dependences to the
values they held prior to a misprediction. Each value
can be computed using the profiling data for the iter-
ation prior to the speculation failure.

If a loop-carried dependence is used as a pointer,



care must be taken to avoid a misprediction causing a
memory access outside of the program’s address space.
The predicted values of the pointer for the initial and
final iterations of the loop need to be checked to ensure
that they are within the application’s address space.
If they are, then so are all values at intermediate iter-
ations. Within the address space, any misprediction
will be detected and all erroneous writes will be re-
stored to their original values from the undo buffer.

5 Experimental Results

We have developed a prototype implementation of the
Softspec algorithm consisting of a compiler and ac-
companying runtime system. The prototype includes
all of the extensions of Section 4. The compiler trans-
forms target sequential code into speculatively paral-
lel code which is then linked with the runtime system.
The compiler was written in SUIF [3] and the runtime
system was written in C.

This section presents the results of using our pro-
totype to parallelize various types of applications.
The target applications were run on a Digital Al-
phaServer 8400, which is a bus-based shared-memory
multiprocessor containing eight Digital Alpha proces-
sors. Speedups reported are speedups over the original
sequential program.

5.1 Dense Matrix Applications

We first examine how Softspec performs on dense ma-
trix applications, which are typically highly paralleliz-
able by current compilers. Obviously we do not expect
Softspec to produce greater speedups than automat-
ically parallelizing compilers because of our runtime
overhead. This section gives an idea of how Softspec
compares to automatically parallelizing compilers.

Figure 7 shows the speedup obtained by Softspec
when parallelizing a dense matrix multiplication and
on the SPEC95FP benchmark swim. When executed
on one processor, speculation has a nearly two times
slowdown. The sequential program’s loop body is very
simple and more easily optimized by the compiler than
the parallel version of the code generated by Softspec.
The sparse matrix code in Section 5.3 is more difficult
to optimize and thus exhibits higher speedups and
much lower slowdown on one processor.

5.2 Linked List Traversal

Code that traverses a linked list can be difficult or im-
possible to parallelize. If the nodes of the list are all
laid out contiguously then the traversal is amenable
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Figure 7: Speedup obtained by Softspec for multipli-
cation of a dense 1000 by 1000 square matrix and on
the SPEC95FP benchmark swim.

to parallelization by Softspec. In a system with a
garbage collector, the memory layout of the list can
be controlled. The garbage collector can cooperate
with Softspec by keeping the list laid out contiguously
as much as possible. A Java virtual machine, for ex-
ample, could implement Softspec dynamically and use
its control of memory layout to parallelize many loops
otherwise not parallelizable.

Without control over the memory layout, a re-
peated speculation strategy can be used to obtain
speedup on the regions of the list that happen to be
contiguous. We investigated performance on lists with
varying memory layouts. In practice lists often have
clusters of noncontiguous nodes. To model this, we
allocate a 20,000 node list such that each sequence
of 50 consecutive nodes has a certain chance of ei-
ther being contiguous or having frequent gaps between
the nodes. We parallelized a program that traverses
this list and performs some computation at each node.
Performance results for this program are given in Fig-
ure 8.

5.3 Sparse Matrix Applications

Sparse matrix multiplication is for some matrices
stride-predictable and contains parallelism, but is not
parallelizable by current compilers. The multiple lev-
els of indirection of sparse matrix storage formats
make analysis of sparse matrix code too difficult for
current parallelizing compilers, but Softspec’s paral-
lelization scheme is applicable.
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Figure 8: Speedup for a linked list traversal on a list
with each sequence of 50 nodes having a given chance
of either being contiguous or having frequent gaps be-
tween the nodes.

The frequency and duration of parallelizable iter-
ation sequences are dependent on the input matrices.
Sparse matrix data sets such as the Non-Hermitian
Eigenvalue Problem Collection [19] often contain ma-
trices with non-zero values in a stripe down the diago-
nal or in blocks down the diagonal. Such patterns lead
to parallelizable iteration sequences of lengths equal to
the width of the stripes or blocks.

Figure 9 shows the speedup obtained by Softspec
when multiplying block-diagonal sparse matrices with
different block sizes. Six different sparse matrices with
non-zero elements in square blocks down the diagonal
were multiplied by themselves. The block widths for
the six matrices were 25, 50, 100, 200, 300, and 400,
respectively. The number of blocks does not affect the
speedup much, as it only changes the total run time
and not the length of the parallelizable sequences.

6 Related Work

Over the last two decades, compiler techniques for au-
tomatically parallelizing sequential applications have
advanced remarkably. Modern parallelizing compil-
ers are very successful when targeting certain types of
code, namely nested loops containing limited memory
aliasing. These compilers are large systems that use
complex interprocedural analyses: the Polaris com-
piler [5] contains over 170,000 lines of code, and the
SUIF compiler [3] contains over 150,000 lines of code.
However, they are unable to parallelize loops with
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Figure 9: Speedup for sparse matrix multiplication of
six block-diagonal matrices whose blocks have widths
of 25, 50, 100, 200, 300, and 400, respectively.

complicated or statically insufficiently defined mem-
ory access patterns. For these loops runtime paral-
lelization is needed.

Modern parallelizing compilers employ a simple
form of runtime parallelization by creating multiple-
version loops [7] and delaying some of their analysis
until runtime. This technique increases the range of
loops they can parallelize but is not sufficient to par-
allelize all loops.

We can divide other efforts at runtime paral-
lelization into two different approaches: the inspec-
tor/executor approach and the speculative approach.
Purely software-based schemes have mostly focused on
determining the inter-iteration dependence patterns
of a partially parallel loop in order to construct par-
allelization schedules [22]. These schemes focus on
an inspector/executor model [21, 25], in which an ex-
tracted inspector loop analyzes the memory accesses
at run time and constructs a schedule for the execu-
tor loop, which runs parts of the loop in parallel using
synchronization. This approach relies on the sepa-
ration of address calculations from the main work of
the loop and on a quickly inferable memory access
pattern. Also, partial loop parallelism often does not
scale well (the critical path length often increases with
data size so adding more processors may not yield
more speedup).

The LRPD test [23] determines at runtime whether
a loop is fully parallel (i.e., a doall loop). The test also
validates privatizations and reductions. It can be used
as an inspector in the inspector/executor paradigm or



it can be performed during speculation, in which case
an undo mechanism is required to recover if the test
fails. Although the Softspec technique targets only
stride-predictable doall loops, this allows it to keep its
overhead below that of the LRPD test, which requires
shadow versions of every memory location accessed in
the loop (except those that the compiler could ana-
lyze).

Fundamental research into program behavior has
shown that both data and address values can be
predicted by stride prediction and last-value predic-
tion [26]. Stride-predictability of memory accesses
in scientific applications has been successfully ex-
ploited to improve the cache behavior of these codes
through compiler-inserted prefetching in uniproces-
sor and multiprocessor machines [10]. The stride-
predictability of memory addresses has been used to
perform speculative prefetching in out-of-order super-
scalars [11].

Mechanisms for parallelizing certain types of while
loops have been developed. Loops traversing lists in
Lisp have been parallelized [13] by assuming that the
loop has no cross-iteration dependences and that its
nodes are allocated in contiguous regions. Loops in
FORTRAN have been parallelized [30] by pipelining in
doacross fashion, which involves large synchronization
costs, or by first executing a sequential inspector that
stores the values of the recurrences in the loop and
then parallelizing the rest of the loop. The LRPD
test can be applied to while loops whose termination
condition is well-behaved [24].

The inspector/executor approach has been applied
to parallelization of sparse matrix code [29]. The in-
spector overhead is high due to the multi-level indi-
rections in the code. Sparse array rolling is used to
allow a data-parallel compiler to treat multi-level in-
directions as single-level indirections.

Speculative runtime parallelization using extra
hardware has been proposed. Some proposals extend
existing multiprocessor hardware [12, 28] while oth-
ers present completely new hardware structures [18].
Candidate loops are speculatively executed in parallel
while a complex hardware system observes all mem-
ory accesses in order to detect inter-iteration data
dependences. When a dependence is detected, addi-
tional hardware mechanisms undo the speculative ex-
ecution and the loop is re-executed sequentially. The
candidate loops are typically identified via compiler,
although some schemes instrument the program bi-
nary [15]. Value prediction, including stride predic-
tion, has also been proposed for speculative paral-
lelization in hardware [16, 17]. In addition to loop par-
allelism, procedural parallelism using hardware has
been suggested [20]. Because speculative hardware

schemes do not rely an program characteristics they
require a lot of work and global communication. Soft-
spec takes advantage of memory access patterns to re-
duce the amount of work and communication needed
to detect dependences, making it viable in software.

7 Conclusions

We have presented a novel approach to paralleliza-
tion of sequential code that does not require complex
program analysis or additional hardware mechanisms.
We have demonstrated the benefits of this approach
on a variety of programs using a prototype implemen-
tation. Although we showed speedup on existing hard-
ware, a simple hardware extension such as adding a
speculative mode to the cache system can eliminate
undo overhead and improve Softspec’s performance.

The trend towards object-oriented programming
and shared library usage is making it increasingly dif-
ficult for an automatically parallelizing compiler to
perform the whole-program analysis it needs to iden-
tify parallelism. Softspec’s simple, local analysis us-
ing runtime information allows it to parallelize ap-
plications that previous approaches could not. Soft-
spec can be combined with existing automatically
parallelizing compilers to increase the range of loops
they can parallelize. A Softspec-enhanced paralleliz-
ing compiler would provide more robust performance.

Softspec is not limited to stride prediction. It can
incorporate prediction techniques for different pat-
terns such as tree walks, disjoint regions, and recur-
rences.

Softspec can be implemented entirely in software
and can target program binaries. In the future we
hope to integrate Softspec into a virtual machine en-
vironment with control of the garbage collector to en-
hance data structure stride-predictability. We would
also like to investigate incorporating Softspec into a
binary optimizer. This would enable parallelization of
legacy code or third-party software that is only avail-
able in binary form and cannot be recompiled.

We plan to investigate incorporating into Softspec
important parallelism-enabling optimizations such as
array privatization and reduction recognition.

Softspec introduces a framework for parallelization
based on prediction rather than proof of parallelism
that enables parallelization of a large class of impor-
tant applications that are currently unable to use au-
tomatic parallelization techniques. We believe that
the Softspec framework will lead to many other tech-
niques involving different optimization and prediction
schemes.
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