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Abstract

This paper introduces Bitwise, a compiler that minimizes
the bitwidth — the number of bits used to represent each
operand — for both integers and pointers in a program. By
propagating static information both forward and backward
in the program dataflow graph, Bitwise frees the program-
mer from declaring bitwidth invariants in cases where the
compiler can determine bitwidths automatically. Because
loop instructions comprise the bulk of dynamically executed
instructions, Bitwise incorporates sophisticated loop analy-
sis techniques for identifying bitwidths. We find a rich op-
portunity for bitwidth reduction in modern multimedia and
streaming application workloads. For new architectures that
support sub-word data-types, we expect that our bitwidth
reductions will save power and increase processor perfor-
mance.

This paper also applies our analysis to silicon compila-
tion, the translation of programs into custom hardware, to
realize the full benefits of bitwidth reduction. We describe
our integration of Bitwise with the DeepC Silicon Compiler.
By taking advantage of bitwidth information during archi-
tectural synthesis, we reduce silicon real estate by 15 — 86%,
improve clock speed by 3 — 249%, and reduce power by
46 — 73%. The next era of general purpose and reconfig-
urable architectures should strive to capture a portion of
these gains.

1 Introduction

The pioneers of the computing revolution described in
Steven Levy’s book Hackers competed to make the best use
of every precious architectural resource. They hand-tuned
each program statement and operand. In contrast, today’s
programmers pay little attention to small details such as
the bitwidth (e.g., 8, 16, 32) of data-types used in their pro-
grams. For instance, in the C programming language, it is
common to use a 32-bit integer data-type to represent a sin-
gle Boolean variable. We could dismiss this shift in empha-
sis as a consequence of abundant computing resources and
expensive programmer time. However, there is another his-
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torical reason: as processor architectures have evolved, the
use of smaller operands eventually has provided no perfor-
mance gains. Datapaths became wider, but the processor’s
entire data path was exercised regardless of operand size.
In fact, the additional overhead of packing and unpacking
words — now only to save space in memory — actually re-
duces performance.

1.1 A New Era: Software-Exposed Bits

Three new compilation targets for high-level languages are
re-invigorating the need to conserve bits. Each of these ar-
chitectures expose subword control. The first is the reju-
venation of SIMD architectures for multimedia workloads.
These architectures include Intel’s MultiMedia eXtension
(MMX) and Motorola’s Altivec [20, 25]. For example, in
Altivec, data paths are used to operate on 8, 16, 32, or 64
bit quantities.

The second class of compilation targets consists of em-
bedded systems which can effectively turn off bit slices [7].
The static information determined at compile time can be
used to specify which portions of a datapath are on or off
during program execution. Alternatively, for more tradi-
tional architectures this same information can be used to
predict power consumption by determining which datapath
bits will change over time.

The third class of compilation targets comprises fine-
grain substrates such as gate and function-level reconfig-
urable architectures — including Field Programmable Gate
Arrays (FPGAs) — and custom hardware, such as standard
cell ASIC designs. In both cases, architectural synthesis is
required to support high-level languages. There has been
a recent surge of both industrial and academic interest in
developing new reconfigurable architectures [18].

Unfortunately, there are no available commercial com-
pilers that can effectively target any of these new architec-
tures. Programmers have been forced to revert to writing
low-level code. MMX libraries are written in assembly in
order to expose the most sub-word parallelism. In the Ver-
ilog and VHDL hardware description languages, the burden
of bitwidth specification lies on the programmer. To com-
pete in the marketplace, designers must choose the mini-
mum operand bitwidth for smaller, faster, and more energy-
efficient circuits.

1.2 Benefits of Automating Bitwidth Specification

Automatic bitwidth analysis relieves the programmer of the
burden of identifying and specifying derivable bitwidth in-



formation. The programmer can work at a higher level of
abstraction. In contrast, explicitly choosing the smallest
data size for each operand is not only tedious, but also er-
ror prone. These programs are less malleable since a simple
change may require hand propagation of bitwidth informa-
tion across a large segment of the program. Furthermore,
some of the bitwidth information may be dependent on a
particular architecture or implementation technology, mak-
ing programs less portable.

Even if the programmer explicitly specifies operand sizes
in languages that allow it, bitwidth analysis can still be valu-
able. For example, bitwidth analysis can be used to verify
that specified operand sizes do not violate program invari-
ants — e.g., array bounds.

1.3 The Bitwise Compiler

Bitwise minimizes the bitwidth required for each static oper-
ation and each static assignment of the program. The scope
of Bitwise includes fixed-point arithmetic, bit manipulation,
and Boolean operations. It uses additional sources of infor-
mation such as type casts, array bounds, and loop iteration
counts to refine variable bitwidths. We have implemented
Bitwise within the SUIF compiler infrastructure [26].

In many cases, Bitwise is able to analyze the bitwidth
information as accurately as the bitwidth information gath-
ered from run-time profiles. On average we reduce the size
of program scalars by 12 — 80% and program arrays by up
to 93%.

1.4 Application to Silicon Compilation

In this paper we apply bitwidth analysis to the task of sil-
icon compilation. In particular, we have integrated Bitwise
with the DeepC Silicon Compiler. The compiler produces
gate-level netlists from input programs written in C and
FORTRAN. We compare end-to-end performance results for
this system both with and without our bitwidth optimiza-
tions. The results demonstrate that the analysis techniques
perform well in a real system. Our experiments show that
Bitwise favorably impacts area, speed, and power of the re-
sulting circuits.

1.5 Contributions
We summarize this paper’s contributions as follows:

o We formulate bitwidth analysis as a value range prop-
agation problem.

e We introduce a suite of bitwidth extraction techniques
that seamlessly perform bi-directional propagation.

e We formulate an algorithm to accurately find bitwidth
information in the presence of loops by calculating
closed-form solutions.

o We implement the compiler and demonstrate that the
compile-time analysis can approach the accuracy of
run-time profiling.

e We incorporate the analysis in a silicon compiler
and demonstrate that bitwidth analysis impacts area,
speed, and power consumption of a synthesized circuit.

1.6 Organization

The rest of the paper is organized as follows. Section 2
defines the bitwidth analysis problem. Bitwise’s implemen-
tation and our algorithms are described in Section 3. Sec-
tion 4 provides empirical evidence of the success of Bitwise.
Next, Section 5 describes the DeepC Silicon Compiler and
Section 6 discusses the impact that bitwidth analysis has
on silicon compilation. Finally, we present related work in
Section 7 and conclude in Section 8.

2 Bitwidth Analysis

The goal of bitwidth analysis is to analyze each static in-
struction in a program to determine the narrowest return
type that still retains program correctness. This informa-
tion can in turn be used to find the minimum number of
bits needed to represent each program operand.

Library calls, I/O routines, and loops make static
bitwidth analysis challenging. In the presence of these con-
structs, we may have to make conservative assumptions
about an operand’s bitwidth. Nevertheless, with careful
static analysis, it is possible to infer bitwidth information.

Structures such as arrays and conditional statements
provide us with valuable bitwidth information. For in-
stance, we can use the bounds of an array to set an index
variable’s maximum bitwidth. Other program constructs
such as AND-masks, divides, right shifts, type promotions,
and Boolean operations are also invaluable for reducing
bitwidths.

(1) index += indexTable[deltal;

(2) if ( index < 0 ) index = 0;

(3) if ( index > 88 ) index = 88;

(4) step = stepsizeTable[index];

(5)

(6) if ( bufferstep ) {

N outputbuffer = (delta << 4) & 0xf0;
(8) 1} else {

9) *xoutp++ = (delta & 0x0f) |

(10) (outputbuffer & 0x£f0);
11 }

(12) bufferstep = !bufferstep;

Figure 1: Sample C code used to illustrate the fundamentals
of the analysis. This code fragment was taken from the loop of
adpcm_coder in the adpcm multimedia benchmark.

The C code fragment in Figure 1 exhibits several such
constructs. This code, which is an excerpt of the adpcm
benchmark presented later in this paper, is typical of im-
portant multimedia applications. Each line of code in the
figure is annotated with a line number to facilitate the fol-
lowing discussion.

Assume that we do not know the precise value of delta,
referenced in lines (1), (7), and (9). Because it is used as an
index variable in line (1), we know that its value is confined
by the base and bounds of indexTable'. Though we still do
not know delta’s precise value, by restricting the range of
values that it can assume, we effectively reduce the number
of bits needed to represent it. In a similar fashion, the code

1 . . .

Our analysis assumes that the program being analyzed is error free. If the
program exhibits bound violations, arithmetic underflow, or arithmetic overflow,
changing operand bitwidths may alter its functionality.
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Figure 2: Three alternative data structures for bitwidth analysis. The lattice in (a) represents the number of bits needed to represent
a variable. The lattice in (b) represents a vector of bits that can be assigned to a variable, and the lattice in (c) represents the range of

values that can be assigned to a variable.

on lines (2) and (3) ensure that index’s value is restricted
to be between 0 and 88.

The AND-mask on line (7) ensures that outputbuffer’s
value is no greater than 0xf0. Similarly, we can infer that
the assignment to *outp on line (9) is no greater than Oxff
(0x0f | 0x£0).

Finally, we know that bufferstep’s value is either true
or false after the assignment on line (12) because it is the
result of the Boolean not (!) operation.

3 Bitwise Implementation

This section describes the infrastructure and algorithms of
Bitwise, a compiler that performs bitwidth analysis. Bitwise
uses SSA as its intermediate form. It performs a numeri-
cal data flow analysis. Because we are solving for absolute
numerical bitwidths, the more complex symbolic analysis is
not needed [23].

We continue by comparing the candidate data-flow lat-
tices that were considered in our implementation.

3.1 Candidate Lattices

We considered three candidate data-structures for propa-
gating the numerical information of our analysis. Figure 2
visually depicts the lattice that corresponds to each data-
structure.

Propagating the bitwidth of each variable: Figure 2(a) is
the most straightforward structure. While this representa-
tion permits an easy implementation, it does not yield ac-
curate results on arithmetic operations. When applying the
lattice’s transfer function, incrementing an 8-bit number al-
ways produces a 9-bit resultant, even though it may likely
need only 8-bits. In addition, only the most significant bits
of a variable are candidates for bit-elimination.

Maintaining a bit vector for each variable: Figure 2(b) is
a more complex representation, requiring the composition
of several smaller bit-lattices [8, 21]. Although this lattice
allows elimination of arbitrary bits from a variable’s rep-
resentation, it does not support precise arithmetic analy-
sis. As an example of eliminating arbitrary bits, consider a
particular variable that is assigned the values from the set
{0102,1002,1102}. After analysis, the variable’s bit-vector
will be [TTO], indicating that we can eliminate the least

significant bit. Like the first data structure, the arithmetic
is imprecise because the analysis must still conservatively
assume that every addition results in a carry.

Propagating data-ranges: Figure 2(c) is the final lattice we
considered. This lattice is also the implementation chosen
in the compiler. A data-range is a single connected subrange
of the integers from a lower bound to an upper bound (e.g.,
[1..100] or [-50..50]). Thus a data-range keeps track of a vari-
able’s lower and upper bounds. Because only a single range
is used to represent all possible values for a variable, this
representation does not permit the elimination of low-order
bits. However, it does allow us to operate on arithmetic
expressions precisely. Technically, this representation maps
bitwidth analysis to the more general value range propaga-
tion problem. Value range propagation is known to be useful
in value prediction, branch prediction, constant propaga-
tion, procedure cloning, and program verification [19, 23].

For the Bitwise compiler we chose to propagate data-
ranges, not only because of their generality, but also because
most important applications use arithmetic and will benefit
from their exact precision. Unlike a regular set union, we
define the data-range union operation (LI) to be the union
over the single connected subrange of the integers where
{ar,ap) U {b;,by) = {min(a;, b)), maz(ap,bp)). We also de-
fine the data-range intersection operation (M) to be the set
of all integers in both subranges where (a;,ar) M (b1, br) =
{max(ai,b;),min(an,bp)). The intersection of two non-
overlapping data-ranges yields the value | pr, which can be
used to identify likely programmer errors (e.g., array bound
violations). Additionally, note that the value T pr, a part of
the lattice, represents values that cannot be statically deter-
mined, or values that can potentially utilize the entire range
of the integer type.

3.2 Data-Range Propagation

As concluded in the last section, our Bitwise implementation
propagates data-ranges. These data-ranges can be propa-
gated both forward and backward over a program’s control
flow graph. Figure 4 shows a subset of the transfer func-
tions for propagation. The forward propagated values in
the figure are subscripted with a down arrow ({), and the
backward propagated values with an up arrow (1). In gen-
eral the transfer functions take one or two data-ranges as
input and return a single data-range.



® a0- a0 G2 8z G280
@ a0 = (INT i INT 0, 0
(2) al= ONT+ 1, INT ;0,0

a0 = input ()
al = a0+ 1

Y @a1=a10(GL-1 00 9= 1,90

a2 = a2 o (+1,-10= (31,1
@ a2 = (INT,; +1,-10

@ a4 = (D, INT .0

a2=al:(al<0) at = al(a120) | (6) c0 = (0, INT, o
a3 = a2+1 c0 = a4 @CO_CDQD

®a3: (INT i +2, 00 @ a4 = a0 a5= (0,90
oa3=a5[1a5= {0, 001

a5 = @3 ad) (7) 85 = UNT i+ 2, INT 1,0
b0 = array{a5] e a5 = (D, 90

Figure 3: Forward and backward data-range propagation. The
numbers denote the order of evaluation. Application of forward
propagation rules are shown in white, while backward propaga-
tion rules are shown in black. We use array’s bounds information
to tighten the ranges of some of the variables.

Initially, all of the variables in the SSA graph are ini-
tialized to the maximum range allowable for their type. In-
formally, forward propagation traverses the SSA graph in
breadth-first order, applying the transfer functions for for-
ward propagation. Because there is one unique assignment
for each variable in SSA form, we can restrict a variable’s
data-range if the result of its assignment is less than the
maximum data-range of its type.

To more accurately gather data-ranges, we extend stan-
dard SSA form to include the notion of range-refinement
functions. For each node that is control dependent, a func-
tion is created which refines the range of control variables
based on the outcome of the branch test. Consider the SSA
graph shown in Figure 3. Range-refinement functions have
been inserted in each of the nodes directly following the
branch test. By taking control-dependent information into
account, these functions facilitate a more accurate collection
of data-ranges. Thus, if the branch in the figure is taken, we
know that al’s value is less than zero. Similarly, al’s value
has to be greater than or equal to zero if the branch is not
taken.

Forward propagation allows us to identify a significant
number of unused bits, sometimes achieving near optimal
results. However, additional minimization can be achieved
by integrating backward propagation®. For example, when
we find a data-range that has stepped outside of known ar-
ray bounds, we can back-propagate this new reduced data-
range to instructions that have already used its deprecated
value to compute their results. Beginning at the node where
the boundary violation is found, we propagate the reduced
data-range in a reverse breadth-first order, using the transfer
functions for backward propagation. This halts when either
the graph’s entry node is reached, or when a fixed point is
reached. Forward propagation resumes from this point.

Forward and backward propagation steps have been an-
notated on the graph in Figure 3 to ease the following dis-
cussion. The numbers on the figure chronologically order
each step. The step numbers in black represent the back-
ward propagation of data-ranges. Without backward prop-

SSA form is not an efficient form for performing backward propagation[13].
Bitwise currently reverts to standard data-flow analysis techniques only when
analyzing in the reverse direction. If efficiency in the less common case of back-
ward propagation is a concern, our form of SSA could readily be converted to
SSI form, which was designed for bi-directional data-flow analyses[1].

agation we arrive at the following data-ranges:

a0 = (INTpin, INTmaz)

al = (INTpmin + 1, INTyaz)

a2 = (INTpin + 1, 1)
(
(
(

a3 = (INTmin +2,0)

a4 0,INTnaz)

INTmzn +2 INTma:v)
cO = (0,INTnaz)

Let us assume we know that the length of the array, array,
is 10 from its declaration. We can now substantially reduce
the data-ranges of the variables in the graph with backward
propagation. We use array’s bound information to clamp
a3’s data-range to (0,9). We then propagate this value
backward in reverse breadth-first order using the transfer
functions for backward propagation. In our example, prop-
agating a3’s new value backward yields the following new
data-ranges:

a0 = (—2,8)
al = (—1,9)
a2 = (—1,-1)
a3 = (0, 0)

a4 = (0,9)

a5 = (0,9)

c0 = (0,9)

Reverse propagation can halt after a0’s range is determined
(step 13). Because cO uses the results of a variable that
has changed, we have to traverse the graph in the forward
direction again. After we confine c0’s data-range to (0,9)
we will have reached a fixed point and the analysis will be
complete.

In this example we see that data-range propagation sub-
sumes constant propagation; we can replace all occurrences
of a3 with the constant value 0.

3.3 Loops

Optimization of loop instructions is crucial — they usually
comprise the bulk of dynamic instructions. Traditional data
flow analysis techniques iterate over back edges in the graph
until a fixed point is reached. However, this technique will
saturate even the simplest loop-carried arithmetic expres-
sion. That is, because the method does not take into account
any static knowledge of loop bounds, such an expression will
eventually saturate at the maximum range of its type.

Because many important applications use loop-carried
arithmetic expressions, a new approach is required. To this
end, our implementation of the Bitwise compiler identifies
loops and finds closed-form solutions. We ease loop identifi-
cation in SSA form by converting all ¢-functions that occur
in loop headers to p-functions [10]. These functions have
exactly two operands; the first operand is defined outside
the loop, and the second operand is loop carried. We take
advantage of these properties when finding closed-form so-
lutions.

3.3.1 Closed-Form Solutions

To find the closed-form solution to loop-carried expressions,
we use the techniques introduced by Gerlek et al. [10]. These
techniques allow us to identify and classify sequences in
loops. A sequence is a mutually dependent group of instruc-
tions. In other words, a sequence is a strongly connected
component (SCC) of the program’s dependence graph. We
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Figure 4: A selected subset of transfer functions for bi-directional data-range propagation. Intermediate results on the left are inputs
to the transfer functions on the right. The variables in the figure are subscripted with the direction in which they are computed. The
transfer function in (a) adds two data-ranges, and (b) subtracts two data-ranges. Both of these functions assume saturating semantics
which will confine the resulting range to be within the bounds of the type on which they operate. The AND-masking operation for
signed data-types in (c) returns a data-range corresponding to the smallest of its two inputs. It makes use of the bitwidth function which
returns the number of bits needed to represent the data-range. The type-casting operation shown in (d) confines the resulting range to
be within the range of the smaller data-type. Because variables are initialized to the largest range that can be represented by their types,
ranges are propagated seamlessly, even in the case of type conversion. The function in (e) is applied when we know that a value must be
within a specified range. For instance, this rule is applied to limit the data-range of a variable that is indexing into a static array. Note
that rules (d) and (e) are not directionally dependent. Rule (f) is applied at merge points, and rule (g) is applied at locations where
control-flow splits. In rule (g), we see that z® corresponds to an occurrence of z% such that z* < y. We can use this information to
refine the range of 2° based on the outcome of the branch test, z% < y.



LSS: InstList List X Int Cur X Range Trip
XSSAVar Sentinel — Range X Int
Range R + (0,0)
Int i < Cur
while i < |List| do
if List[i] has form (ar = p(ai, am) with tripcount ¢c) then
ap < aj
(R, i) «+ LSS(List,i+ 1,tc Xpr Trip,am)
else if List[i] has form (ar = a; linop C) then
ap < a; linop C Xpr Trip
else if List[i] has form (a; = ¢(a;,am)) then
ap < ar Uam
if o, = Sentinel then
return (ag, i)
i+ i4+1
return (R, i)

CLASSIFYSEQUENCE: InstList List — Void
Range Val
if |[List| =1 then
EVALUATEINST( List[0])
else
SeqType < SEQUENCETYPE(List)
if SeqType = Linear then
(Val,z) + LSS(List,0, (1,1) , NIL)
foreach Inst I € List do
ar < Val where a; is destination of I
else if ...

else if SeqType = Lsecquence
Fix(List, MazIters)

Figure 5: Pseudocode for the algorithm that classifies and solves
closed-form solutions of commonly occurring sequences. The
SEQUENCETYPE function identifies the type of sequence we are
considering. Based on the sequence type, we can invoke the ap-
propriate solver. We provide pseudocode for the linear sequence
solver (LSS). The FIX function attempts to find a fixed-point
solution for unidentifiable sequences.

can examine the instructions of the sequence to try and find
a closed-form solution to the sequence.

Thus, the algorithm begins by finding all the sequences
in the loop. We then order them according to dependences
between the sequences. At this point we can classify each
sequence in turn. The algorithm for classifying sequences is
shown in Figure 5.

A sequence’s type is identified by examining its compo-
sition of instructions. This functionality corresponds to the
SEQUENCETYPE procedure called in Figure 5. We provide a
sketch of our approach in Section 3.3.2.

Once we have determined the type of sequence the com-
ponent represents, the algorithm invokes a solver to com-
pute the sequence’s closed-form solution. For each type
of sequence, a different method is needed to compute the
closed-form solution. If no sequence is identified, the algo-
rithm resorts to fixed point iteration up to a user defined
maximum.

3.3.2 Sequence ldentification

We sketch our sequence identification algorithm as follows.
First, we create a partial order on the types of expressions
we wish to identify. We employ the Ezpression lattice (Fig-
ure 6) to order various expressions according to set contain-
ment. For example, linear sequences are the composition of
an induction variable and loop invariants, and polynomial
sequences are the composition of loop invariants and lin-
ear sequences. The top of the lattice (T sequence) represents

T

sequence

invariant

linear

polynomia

geometric

Dsequence

Figure 6: A lattice that orders sequences according to set con-
tainment.

an undetermined expression, and the bottom of the lattice
(Lsequence) represents all possible expressions.

Next, we create transfer functions for each instruction
type in the source language. A transfer function, which
operates on the lattice, is implemented as a table that is
indexed by the expression types of its source operands. The
destination operand is then tagged with the expression type
dictated by the transfer function.

We proceed by classifying the sequence based on the
types of its expressions and its composition of ¢- and
p—functions. For instance, a linear sequence can contain
any number of loads, stores, additions, or subtractions of
invariant values. In addition, linear sequences must have
at least one p-function®. Remember that u-functions define
loop headers, and thus denote the start of all non-trivial se-
quences. Trivial sequences contain exactly one instruction,
and thus, the sequence itself represents the closed-form so-
lution.

3.3.3 Sequence Example

Figure 7 is an example loop and Figure 8 is its corresponding
SSA graph. In this example all py-functions are annotated
with the loop’s tripcount ({0,64)). While we can restrict
the range of the loop’s induction variable without the an-
notations, knowing the tripcount allows us to analyze other
unrelated sequences.

The next step is to find all of the strongly connected
components in the loop’s body and create the sequence de-
pendence graph. The sequence dependence graph for the
loop in Figure 7 is shown in Figure 9.

We then analyze each of the sequences according to the
dependence graph. The algorithm classifies the sequence
based on the types of its constituent expressions. The com-
ponent below, from the example, is determined to be a linear
sequence because it contains a p-function and a linear-type
expression:

Sequence Sum
addrl = y(addr0, addr2) (0,0)
addr2 = addril +4 (4, 4) x (0,64) = (0, 256)

Based on the tripcount of the p-function ({0,64)) and
addr0’s range ({0,0)), the function LSS in Figure 5 finds
the maximum range that any of the variables in the linear
sequence can possibly assume. The function steps through
the sequence summing up all of the invariants. This sum is

3Gerlek et al. process inner-loops first and provide mechanisms to prop-
agate closed-form solutions to enclosing loop nests. We consider all loops
simultaneously.



addr =
even
line = 0;
for (word = 0; word < 64; word++) {
addr = addr + 4;
even = !even;
line addr & Oxic;
}

)

1]
O OO

Figure 7: Example loop.

addrO= 0
even0= 0
line0 = 0
word0 = 0

v

addrl = p(addrQ addr) <
evenl= p(evenQevenl <
linel = p(lineQ, line2) <
wordl = p(word0, word3) <
wordl< 64

\

word2 = word1 : (word1< 64)
addr2 = addrl+ 4

even2= !evenl

line2 = addr2 & Ox1c
word3 = word2+ 1

v

Figure 8: SSA graph corresponding to example loop.

tripcount=<0,64:

multiplied by the total number of times the loop in question
will be executed. For this example, the function determines
the maximum range to be (0,256). At this point we set all
of the destination variables in the sequence to this range,
and the sequence is solved.

Obtaining this conservative result is simpler than finding
the precise range for each variable in the sequence. Because
there is typically little variation between ranges of destina-
tion variables in the same sequence, this method works well
in practice.

Unlike linear sequences, not all sequences are readily
identifiable. In such cases we iterate over the sequence until
a fixed point is reached. For example, the sequence labeled
(2) in Figure 9, will reach a fixed point after only two it-
erations. Not surprisingly, sequences that contain Boolean
operations, AND-masks, left-shifts, or divides — all common
in multimedia kernels — can quickly reach a fixed-point. The
following section addresses the cases when a fixed-point is
not reached quickly.

3.3.4 Termination

For cases in which we cannot find a closed-form solution,
lattice height could lead to seemingly boundless iteration.
For example, by traversing back-edges in the control flow
graph, it could take nearly 23? iterations to reach a fixed
point for typical 32-bit integers.

In order to solve this problem, we consider what happens
to a data-range after applying a transfer function to a static
assignment. The data-range either:

e reaches a fixed point, or

e monotonically decreases.

0 tripcount=<0,64>
addrl = paddroaddry <

4
line2 = addr2 & Ox1c

addr2 = addrl+ 4 1 v
wordl = p(wordQ word3)
word2 = word1 :(word1< 64)

3
linel = p(lineo, line2)

2

everl = p(evenQevend word3 = word2+ 1

ever? = leverl

tripcount=<0,64>

Figure 9: A dependence graph of sequences corresponding to
the code in Figure 7. The sequences labeled (3) and (4) are
trivial sequences. In other words, the sequences are themselves
the closed-form solution. Using the tripcount of the loop, we can
calculate the final ranges for the linear sequences labeled (0) and
(1). Though we do not identify Boolean sequences such as the
one marked (2), they quickly reach a fixed point.

Thus it is possible to add a user-defined limit to the num-
ber of iterations. When iteration is limited, the resulting
data-range will be an improved but potentially sub-optimal
solution.

3.4 Arrays and Pointers

In traditional SSA form, arrays and pointers are not re-
named. Special extensions to SSA form have been pro-
posed that provide element-level data flow information for
arrays [15]. While such extensions to SSA form can po-
tentially provide more accurate data-range information, for
bitwidth analysis it is more convenient to conservatively
treat arrays as scalars. The following sections describe fur-
ther implementation details related to arrays and pointers.

3.4.1 Arrays

When treating an array as a scalar, if an array is modified
we must insert a new ¢-function to merge the array’s old
data-range with the new data-range. A side-effect of this
approach is that a uniform data-range must be used for every
element in the array. Another drawback of this method is
that a ¢-function is required for every array assignment,
increasing the size of the code. However, def-use chains are
still inherent in the intermediate representation, simplifying
the analysis. Furthermore, when compiling to silicon this
analysis determines the size of embedded RAMs.

3.4.2 Pointers

Pointers complicate the analysis of memory instructions, po-
tentially creating aliases and ambiguities that can obscure
data-range discovery. To handle pointers, we use the SPAN
pointer analysis package developed by Radu Rugina and
Martin Rinard [22]. SPAN can determine the sets of vari-
ables — commonly referred to as location sets — that a
pointer may or must reference. We distinguish between ref-
erence location sets and modify location sets. A reference
location set is a location set annotation that occurs on the
right hand side of an expression, whereas a modify location
set occurs on the left hand side of an expression.

As an example, consider the following C memory instruc-
tion, assuming that pO is a pointer that can point to variable
a0 or b0, and that g0 is a pointer that can only point to vari-
able b0:

*p0 = *q0 + 1
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Figure 10: Compiler flow: includes general SUIF, Bitwise, sili-
con, and CAD processing steps. The raised steps are new Bitwise
or DeepC passes, and the remaining steps are re-used from pre-
vious SUIF compiler passes.

The location set that the instruction may modify is
{a0, b0}, and the location set that the instruction must ref-
erence is {b0}. Since b0 is the only variable in the instruc-
tion’s reference location set, the instruction must reference
it. Also, because there are two variables in the modify loca-
tion set, either a0 or b0 may be modified.

Keeping the SSA guarantee that there is a unique as-
signment associated with each variable, we have to rename
a0 and b0 in the instruction’s modify location set. Fur-
thermore, since it is not certain that either variable will be
modified, a ¢-function has to be inserted for each variable
in the modify location set to merge the previous version of
the variable with the renamed version:

{a1,b1} = {p0} +1
a2 = ¢(a0,al)
b2 = ¢(b0, b1)

If the modify location set has only one element, the el-
ement must be modified, and a ¢-function does not need
to be inserted. This extension to SSA form allows us to
treat de-referenced pointers in exactly the same manner as
scalars.

4 Bitwise Results

This section presents results from a stand-alone Bit-
wise Compiler. The compiler is composed of the first four
steps shown in Figure 10. Further results, after processing
with the silicon compiler backend (the last four steps in the
flowchart), are presented in Section 6.

The frontend of the compiler takes as input a pro-
gram written in C or FORTRAN and produces a bitwidth-
annotated SUIF file. After parsing the input program into
SUIF, the compiler performs traditional optimizations and
then pointer analysis [22]. The next two passes, labeled
“Bitwidth Analysis”, are the realization of the algorithms
discussed in this paper. Here, the SUIF intermediate repre-
sentation is converted to SSA form, including the extensions

Benchmark | Type | Source | Lines | Description

softfloat Emulation Berkeley 1815 | Floating Point
adpcm Multimedia | UTdsp 195 | Audio Compress
bubblesort Scientific Raw 62 | Bubble Sort

life Automata Raw 150 | Game of Life
intmatmul Scientific Raw 78 | Int. Matrix Mult.
jacobi Scientific Raw 84 | Jacobi Relation
median Multimedia | UTdsp 86 | Median Filter
mpegcorr Multimedia | MIT 144 | From MPEG Kernel
sha Encryption | MIT 638 | Secure Hash
bilinterp Multimedia | MMX 110 | Bilinear Interp.
convolve Multimedia | MIT 74 | Convolution
histogram Multimedia | UTdsp 115 | Histogram

intfir Multimedia | UTdsp 64 | Integer FIR
newlife Automata MIT 119 | New Game of Life
parity Multimedia | MIT 54 | Parity Function
pmatch Multimedia | MIT 63 | Pattern Matching
sor Scientific MIT 60 | 5-point Stencil

Table 1: Benchmark characteristics

discussed in Section 3. Finally, the data-range propagation
pass is invoked to produce bitwidth-annotated SUIF along
with the appropriate bitwidth reports. In total, they com-
prise roughly 12,000 lines of C++ code. We first discuss the
bitwidth reports that are generated after these passes.

4.1 Experiments

The prototype compiler does not currently support recur-
sion. Although this restriction limits the complexity of the
benchmarks we can analyze, it provides adequate support of
programs written for high-level silicon synthesis.

Table 1 lists the benchmarks presented in this section.
The source code for the benchmarks can be found at [6].
We include several contemporary multimedia applications
as well as standard applications that contain predominantly
bit-level or byte-level operations, such as life and softfloat.

4.2 Register Bit Elimination

Figure 11 shows the percentage of the original register bits
remaining in the program after Bitwise has run. Register
bits are used to store scalar program variables. The lower
bound — which was obtained by profiling the code — is in-
cluded for reference. For the particular data sets supplied
to the benchmark, this lower bound represents the fewest
number of bits needed to retain program correctness. That
is, it forms a lower bound on the minimum bitwidth that
can be determined by static analysis, which must be correct
over all input data-sets. The graph assumes that each vari-
able is assigned to its own register. However, downstream
architectural synthesis passes include a register allocator.
If variables with differing bitwidths share the same physi-
cal register, the final hardware may not capture all of the
gains of our analysis. Our metric is a useful overall gauge
because register bitwidths affect functional unit size, data
path bitwidths, and circuit switching activity.

Our analysis dramatically reduces the total number of
register bits needed. In most cases, the analysis is near op-
timal, which is especially exciting for applications that per-
form abundant multi-granular computations. For instance,
Bitwise nearly matches the lower bound for life and mpeg-
corr, which are bit-level and byte-level applications respec-
tively.

The only applications in the figure with substantially
sub-optimal performance compared to the dynamic profile



are median and softfloat. In the case of median, the an-
alyzer was unable to determine the bitwidth of the input
data, thus variables that were dependent on the input data
assumed the maximum possible bitwidths. Although dy-
namic profiling of softfloat shows plenty of opportunities for
bitwidth reduction, these opportunities are specific to par-
ticular control flow paths and were not discovered during
our static analysis of the whole program.
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Figure 11: Percentage of total register bits remaining: post-
bitwidth analysis versus dynamic profile-based lower bound.

4.3 Memory Bit Elimination

Figure 12 shows the percentage of the original memory bits
remaining in the program. Here memory bits are defined as
data allocated for static arrays and dynamically allocated
variables. This is an especially useful metric when compil-
ing to non-conventional devices such as an FPGA, where
memories may be segmented into many small chunks. In
addition, because memory systems are one of the primary
consumers of power in modern processors, this is a useful
metric for estimating power consumption [14].

In almost all cases, the analyzer is able to determine
near-optimal bitwidths for the memories. There are a cou-
ple of contributing factors for Bitwise’s success in reducing
array bitwidths. First, many multimedia applications ini-
tialize static constant tables which represent a large portion
of the memory savings shown in the figure. Second, Bitwise
capitalizes on arrays of Boolean variables.

4.4 Bitwidth Distribution

It is interesting to categorize variable bitwidths according
to grain size. The stacked bar chart in Figure 13 shows
the distribution of variable bitwidths both before and after
bitwidth analysis. We call this distribution a Bitspectrum.
To make the graph more coherent, bitwidths are rounded
up to the nearest typical machine data-type size. In most
cases, the number of 32-bit variables is substantially reduced
to 16, 8, and 1-bit values.

For silicon compilation, this figure estimates the overall
register bits that can be saved. As we will see in the next
sections, reducing register bits results in smaller datapaths
and subsequently smaller, faster, and more efficient circuits.

Compilers for multimedia extensions can utilize bitwidth
information to extract higher degrees of parallelism [16]. In
this context, the spectrum shows which applications will
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Figure 12: Percentage of total memory remaining: post-bitwidth
analysis versus dynamic profile-based lower bound.

have the best prospect for packing values into sub-word in-
structions.
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Figure 13: Bitspectrum. This graph is a stacked bar chart that
shows the distribution of register bitwidths for each benchmark.
Without bitwidth analysis, almost all bitwidths are 32-bits. With
Bitwise, many widths are reduced to 16, 8, and 1 bit machine
types, as denoted by the narrower 16, 8, and 1 bit bars.

5 DeepC Silicon Compiler

Thus far we have shown that bitwidth analysis is a gener-
ally effective optimization and that our Bitwise Compiler is
capable of performing this task well. We now turn to a con-
crete application. We have applied bitwidth analysis to the
difficult problem of silicon compilation. For lack of space,
this section gives brief treatment to the design of a high-level
silicon compiler. The following section discusses the impact
of bitwidth analysis in this context.

5.1 Overview

We have integrated Bitwise with the DeepC Silicon Com-
piler [4]. DeepC is a research compiler under development
that is capable of translating sequential applications, written
in either C or FORTRAN, directly into a hardware netlist.
The compiler automatically generates a specialized parallel




architecture for every application. To make this transla-
tion feasible, the compilation system incorporates the lat-
est code optimization and parallelization techniques as well
as modern hardware synthesis technology. Figure 10 shows
the details of integrating Bitwise into DeepC’s overall com-
piler flow. After reading in the program and performing
traditional compiler optimizations and pointer analysis, the
bitwidth analysis steps are then invoked. These steps were
described in detail in Section 3. The additional steps of the
silicon compiler backend are as follows. First, loop-level par-
allelizations are applied, followed by an architectural-level
partition, place, and route. At this point the program has
been formed into an array of communicating threads. Then
an architectural synthesis step translates these threads into
custom hardware. Finally, the compiler applies traditional
computer-aided-design (CAD) optimizations to generate the
final hardware netlist.

5.2 Implementation Details

The DeepC Compiler is implemented as a set of over 50
SUIF passes followed by commercial RTL synthesis. The
current implementation uses the latest version of Synopsys
Design Compiler and FPGA compiler for synthesis. A large
set of the SUIF passes are taken directly from MIT’s Raw
compiler [17], whose backend is built on Harvard’s Mach-
SUIF compiler [24]. The backend Verilog generator is imple-
mented on top of Stanford’s VeriSUIF [9] data structures.
Despite the large number of SUIF passes, CAD synthesis
tools consume the majority of the compiler’s run-time.

5.3 Verilog Bitwidth Rule

Because our compiler generates RTL Verilog for commercial
tools, bitwidth information must be totally communicated
via register and wire widths. We expect conformation to
Verilog’s operation bitwidth rule: the bitwidth of each op-
eration is set to the maximum bitwidth of the containing
assignment expression’s input and output variables. For ex-
ample, the bitwidth of the expression A = B + C is the
maximum bitwidth of A, B, and C.

5.4 Usage

There has been a limited release of the compiler and it is
in use by researchers at MIT, Princeton, and the Univer-
sity of Massachusetts. We are studying both reconfigurable
computing and embedded system-on-a-chip design. When
used for reconfigurable computing, the compiler is coupled
with further silicon compilation tools, such as the Virtu-
aLogic [12] emulation system from IKOS, or software and
drivers for Annapolis System’s Wild-one PCI card [2]. For
use in embedded chip design, downstream CAD tools ac-
cepting a logic netlist then perform physical place and route,
mapping the design onto a specific silicon substrate.

6 Impact on Silicon Compilation

As described in the previous section, the DeepC Silicon
Compiler has the opportunity to specialize memory, register,
and datapath widths to match application characteristics.
We expect bitwidth analysis to have a large impact in this
domain. However, because backend CAD tools already im-
plicitly perform some bitwidth calculation during optimiza-
tions (such as dead logic elimination), accurate measure-
ments require end-to-end compilation. A fair comparison
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Figure 14: Register bits after bitwise optimization. In every

case Bitwise saves substantial register resources in the final silicon
implementation.

is to measure final silicon both with and without bitwidth
analysis.

We introduce our benchmarks in the next section, then
describe the dramatic area, latency, and power savings that
bitwidth analysis enables®.

6.1 Experiments

We present experimental results for an initial set of appli-
cations that we have compiled to hardware. For each ap-
plication, our compilation system produces an architecture
description in RTL Verilog. We further synthesize this archi-
tecture to logic gates with a commercial CAD tool (Synop-
sys). In this paper we report area and speed results for Xil-
inx 4000 series FPGAs, and power results for IBM’s SA27E
process — a 0.15 micron, 6-layer copper, standard-cell pro-
cess.

The benchmarks used for silicon compilation are included
in Table 1. These applications are generally short bench-
marks, but include many multimedia kernels. It is impor-
tant to note that the relatively small size of the benchmarks
is dictated by the current synthesis time of our compilation
approach and not Bitwise. Also note that there are slight
variations from the benchmarks presented in Section 4.

6.2 Registers Saved in Final Silicon

We first compiled each benchmark into a netlist capable of
being accepted by either Xilinx or IBM CAD tools to pro-
duce “final silicon.” The memory savings reported in Sec-
tion 4 translate directly into silicon memory savings when
we allow a separate small memory for each program variable.
This small memory partitioning process is further described
in earlier work [4].

Register savings, on the other hand, vary as additional
compiler and CAD optimizations transform the program’s
variables. Variable renaming and register allocation also
distort the final result by placing some scalars in more than
one register and others in a shared register. Figure 14 shows
the total FPGA bits saved by bitwidth optimization. For
Xilinx FPGA compilation, the fixed allocation of registers
to combinational logic will distort the exact translation of
this savings to chip area, as some registers may go unused.

4Note that we also found considerable synthesis compile time sav-
ings which are not reported here.
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Figure 15: Register bit reduction, after high-level analysis versus
final silicon. The fluctuation in bitwidth savings between final
silicon and high-level analysis is due to factors such as variable
renaming and register allocation.

Our findings are very positive — the earlier bitwidth
savings translate into dramatic savings in final silicon, de-
spite the possibilities for loss of this information or potential
overlap with other optimizations. However, because there is
not a one-to-one mapping from program scalars to hard-
ware registers, the exact savings do not match. Examining
Figure 15, we see that the percentage of bits saved by high-
level analysis are sometimes greater and sometimes less than
those bits saved in final silicon. We explain these differences
as follows. First, there are many compiler and CAD passes
between high-level analysis and final silicon generation. If
in any of these passes the bitwidth information is “lost”,
for example when a new variable is cloned, then the full
complement of saved bits will not be realized. On the other
hand, the backend passes, especially the CAD tools, are also
attempting to save bits through logic optimizations. Thus
these passes may find savings that the current high-level
pass is not finding. Finally, variable renaming and register
sharing also change the percentages.

6.3 Area

Register bits saved translate directly into area saved. Area
savings also result from the reduction of associated datap-
aths. Figure 16 shows the total area savings with Bitwise
optimizations versus without. We save from 15% to 86% in
overall silicon area, nearly an 8x savings in the best case.

Note that in the DeepC Compilation system pointers
do not require the full complement of 32-bits. Using the
MAPS [5] compiler developed for Raw, arrays have been as-
signed to a set of equivalence classes. By definition, a given
pointer can only point to one equivalence class, and thus
needs to be no wider than log Za Sa, where S, is the size of
each memory array specified in the equivalence class. This
technique is further described in [3].

6.4 Clock Speed

We also expect bitwidth optimization to reduce the latency
along the critical paths of the circuit and increase maximum
system clock speed. If circuit structures are linear, such as
a ripple carry adder, then we expect a linear increase. How-
ever, common structures such as carry-save adders, multi-
plexors, and barrel shifters are typically implemented with
logarithmic latency. Thus, bitwidth reduction translates

CLB Count

2000

O without Bitwise B with Bitwise
1800 -
O [
1400
1200 +
1000 -
800 +
600 -
400
200 -
0,
©533§8323§82338§8388
E T o - - T &8 & T T £ = =
= = = = =) = = = = éﬁ = S
S 3 5 £ E E S S 8 3 & & ©
s &£ z 2 c e P c o g
o
2 ¢ = £ g o S
2 ° = = =
Figure 16: FPGA area after Bitwise optimization. Register sav-

ings translate directly into area savings for FPGAs. In the figure,
post-synthesis CLB count measures the number of internal combi-
national logic blocks required to implement the benchmark when
compiled to FPGAs. Combinational logic blocks (CLBs) each in-
clude 2 four input lookup tables and 2 flip-flop registers. Wasted
CLBs due to routing difficulties during vendor place and route
are not included in this result, but should reduce proportionally.
The number in parenthesis by each benchmark is the resulting
bitwidth of the main datapath.

into a less-than-linear yet significant speedup. Figure 17
shows the results for a few of our benchmarks. The largest
speedup is for convolve, in which the reduction of constant
multiplications increased clock speeds by nearly 3x. On the
other hand, the MPEG correlation kernel did not speed up
because the original bitwidths were already close to optimal.

6.5 Power

As expected, the area saved by bitwidth reduction trans-
lates directly into power savings. Our first hypothesis was
that these savings might be lessened by the fact that in-
active registers and datapaths would not consume power.
Our experiments show otherwise. The muxes and control
logic leading to these registers still consume power. Fig-
ure 18 shows the reduction in power achieved for a subset
of our benchmarks. In order to make these power measure-
ments, we first ran a Verilog simulation of the design to
gather switching activity. This switching activity records
when each register toggles in the design. This information
is then used by logic synthesis, along with an internal zero
delay simulation, to determine how often each wire changes
state. The synthesizer then reports average dynamic power
consumption in milliWatts, which we report here. Note that
we do not include the power consumption of on-chip memo-
ries. Furthermore, we do not attempt to decrease the total
cycle count with bitwidth reduction, giving a total energy
reduction in proportion to total power savings.

We measured power for bubblesort, histogram, jacobi,
pmatch, and newlife. Newlife had the largest power savings,
reduced from 14 mW to 4 mW, while the other four bench-
marks had more modest power savings. We expect that
at least a portion of these savings can be translated to the
processor regime, in which power consumption is typically
hundreds of times higher.
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Figure 17: FPGA clock speed after Bitwise optimization. Bench-
marks are universally faster after bitwidth analysis when compiled
to Xilinx XC4000 FPGAs (-09 speed grade) with Synopsys. Clock
speed is determined by the worst case delay reported during syn-
thesis and does not account for skew, etc. The actual number of
CLBs on the critical paths, ranging from 15-38 before bitwidth
optimization and 7-16 afterwards, is the key factor in determining
clock speed.

6.6 Discussion

For reconfigurable computing applications, bitwidth sav-
ings can be a “make or break” difference when comparing
computational density — performance per area — to that of
conventional processors. Because FPGAs provide an addi-
tional layer of abstraction (emulated logic), it is important
to compile-through as many higher levels of abstraction as
possible. Statically taking advantage of bitwidth informa-
tion is a form of partial evaluation. It can help to make
FPGAs competitive with more traditional, but less adap-
tive, computing solutions. Thus, bitwidth analysis is a key
technology enabler for FPGA computing.

For ASIC implementations, bitwidth savings will directly
translate into reduced silicon costs. Of course, many of these
cost savings could be captured by manually specifying more
precise variable bitwidths. However, manual optimization
comes at the cost of manual labor. Additionally, reduc-
ing the probability of errors is invaluable in an ASIC envi-
ronment, where companies who miss with first silicon often
miss entire market windows. As we approach the billion-
transistor era, raising the level of abstraction for ASIC de-
signers will be a requirement, not a luxury.

7 Related Work

Brooks et al., dynamically recognize operands with narrow
bitwidths to exploit sub-word parallelism [7]. Their research
confirms our claim that a wide range of applications, par-
ticularly multimedia applications, exhibit narrow bitwidth
computations. Using their techniques, they are able to de-
tect and exploit bitwidth information that is not statically
known. However, because they are detecting bitwidths dy-
namically, their research cannot be applied to applications
that require a priori bitwidth information.

Scott Ananian also recognized the importance of static
bitwidth information [1]. He uses bitwidth analysis in the
context of a Java to silicon compiler. Because bitwidth anal-
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Figure 18: ASIC power after Bitwise optimization. Here we
assume a 200MHZ clock for the .15 micron IBM SA27E process.
The total cycle count (number of clocks ticks to complete each
benchmark) is not affected by bitwidth, and thus total energy
will scale proportionally. These numbers do not include power
consumed by RAM.

ysis is not the main thrust of his research, he uses a simple
data flow technique that propagates bitwidth information.
Our method of propagating data-ranges is a more precise
method for discovering bitwidths.

Rahul Razdan developed techniques to successfully ana-
lyze bitwidths [21]. His “function width” analysis is a combi-
nation of forward and backward analyses on a vector of bits.
In this sense, his analysis is similar to traditional CAD dead-
bit elimination algorithms. Furthermore, with the exception
of the loop induction variables, his analysis does not han-
dle loop-carried expressions well. Razdan’s function width
results for his PRISC architecture achieve modest speedups
when used in combination with other logic-level optimiza-
tions.

Budiu et al. [8] also perform bitwidth analysis. They use
methods similar to Razdan’s to improve performance in a
reconfigurable device.

The data-range propagation techniques presented by Ja-
son Patterson [19] and William Harrison [11] are similar to
those presented in this paper. While their work proved to be
effective, they did not consider backward propagation and
their techniques for discovering loop-carried sequences do
not include the general methods discussed in this paper.

8 Conclusion

Accurate bitwidth analysis of high-level programs requires
sophisticated compiler techniques. Prior to this work, only
simple or ad-hoc approaches to automatic bitwidth analysis
have been applied. In this work we have formalized bitwidth
analysis as a value range propagation problem. We have de-
scribed algorithms for bi-directional data-range propagation
and for finding closed-form solutions of loop-carried expres-
sions. We have presented an initial implementation which
works well: our compile-time analysis approaches the accu-
racy of run-time profile-based analyses. When incorporated
into a silicon compiler, bitwidth analysis dramatically re-
duced the logic area by 15 — 86%, improved the clock speed
by 3 — 249%, and reduced the power by 46 — 73% of the
resulting circuits. Anticipated future uses of this technique
include compilation for SIMD and low power architectures.
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