
SIFt: A Compiler for Streaming Applications

by

Elliot L. Waingold

Submitted to the Department of Electrical Engineering and Computer Science

in partial ful�llment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2000

c
 Elliot L. Waingold, MM. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly

paper and electronic copies of this thesis and to grant others the right to do so.

Author .

Department of Electrical Engineering and Computer Science

May 15, 2000

Certi�ed by. .

Saman Amarasinghe

Assistant Professor

Thesis Supervisor

Accepted by .

Arthur C. Smith

Chairman, Department Committee on Graduate Theses

SIFt: A Compiler for Streaming Applications

by

Elliot L. Waingold

Submitted to the Department of Electrical Engineering and Computer Science

on May 15, 2000, in partial ful�llment of the

requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Due to the increasing popularity of multimedia content and wireless computing, stream-

ing applications have become an important part of modern computing workloads. Several

hardware architectures that are geared towards such applications have been proposed, but

compiler support for streams has not kept pace. This thesis presents an intermediate format

and set of compilation techniques for a stream-aware compiler. The prototype implementa-

tion of this compiler targets the MIT Raw architecture. Performance results suggest that

certain applications perform better when compiled using these techniques than when com-

piled using ILP-extraction techniques alone. However, these same results show that further

optimizations are necessary to realize the maximum throughput of a streaming application.

Three such optimizations are outlined.

Thesis Supervisor: Saman Amarasinghe

Title: Assistant Professor

2

Acknowledgments

I am grateful to my advisors Saman Amarasinghe and Anant Agarwal for their technical

guidance as well as funding and moral support. I also thank the other members of the MIT

Raw project for developing the software infrastructure that made much of this research

possible. Finally, many thanks to Ernst Heinz, Kath Knobe, and Bill Thies for o�ering

external perspective on the problem of compiling streaming applications.

3

Contents

1 Problem Statement 9

2 Background 12

2.1 Stream Theory . 12

2.2 Related Work . 14

3 Intermediate Format 18

3.1 Structure . 18

3.2 Informal Semantics . 20

3.3 Formal Semantics . 23

3.4 Example Program . 29

4 Compilation 32

4.1 Overview . 32

4.2 Analysis . 33

4.3 Placement . 34

4.4 Communication Scheduling . 39

4.5 Code Generation . 45

5 Optimization 50

5.1 Propagating the Communication Context 50

5.2 Analyzing Communication Patterns . 53

6 Results 55

6.1 Evaluation Environment . 55

6.2 Experimental Results . 58

4

7 Conclusion 62

7.1 Summary . 62

7.2 Future Work . 64

A Using the SIFt Compiler 66

A.1 Installing the Compiler . 66

A.2 Compiling a Program . 67

B Extended Example: IDEA 69

5

List of Figures

1-1 Simpli�ed MPEG video decoding process. 10

2-1 Sieve of Erasthones implemented in Scheme using streams. 13

2-2 Stream transducer network using all four common transducer types. 13

2-3 The Raw microprocessor. 17

3-1 Syntactic domains used to specify the structure of SIFt. 19

3-2 An s-expression grammar of SIFt. 19

3-3 Semantic domains used in the operational semantics of SIFt. 24

3-4 Desugaring of degenerate and complex SIFt forms. 25

3-5 Desugaring of simple SIFt forms. 26

3-6 Rewrite rules for simpli�ed transition relation)s. 27

3-7 Formal de�nition of substitution. 27

3-8 Rewrite rules for general transition relation). 28

3-9 Structure of the FIR �lter program. 30

3-10 SIFt program that implements the FIR �lter [2; 3; 4; 5]. 31

4-1 The main phases of the SIFt compiler. 33

4-2 Communication graph for FIR �lter. 34

4-3 Random initial placement for FIR �lter. 39

4-4 Optimized �nal placement for FIR �lter. 39

4-5 Progression of temperature and energy during annealing. 40

4-6 First communication context of FIR �lter. 44

4-7 Second communication context of FIR �lter. 44

4-8 Routing of second communication context for FIR �lter. 46

4-9 Switch code for tile (0,0) of FIR �lter. 46

6

4-10 Forcing the network to proceed to a particular channel's context. 47

4-11 Code generated to force the network to proceed. 48

5-1 Optimized code for forcing the network to proceed. 51

5-2 Inference rules for propagating ccr. 52

6-1 Placement of eight-tile bu�er program. 56

6-2 Placement of eight-tile adder program. 56

6-3 Placement of sixteen-tile IDEA program. 57

6-4 Performance of bu�er benchmark. 59

6-5 Performance of adder benchmark. 59

6-6 Performance of FIR �lter benchmark. 60

6-7 Performance of IDEA benchmark. 61

B-1 SIFt code for IDEA benchmark, part 1. 70

B-2 SIFt code for IDEA benchmark, part 2. 71

B-3 SIFt code for IDEA benchmark, part 3. 72

B-4 SIFt code for IDEA benchmark, part 4. 73

B-5 Communication graph of IDEA benchmark. 74

B-6 Placement of IDEA benchmark on 4x4 Raw chip. 74

B-7 Communication context 0 of IDEA benchmark. 75

B-8 Communication context 1 of IDEA benchmark. 75

B-9 Communication context 2 of IDEA benchmark. 76

B-10 Communication context 3 of IDEA benchmark. 76

B-11 Communication context 4 of IDEA benchmark. 77

B-12 Communication context 5 of IDEA benchmark. 77

B-13 Communication context 6 of IDEA benchmark. 78

7

List of Tables

4.1 Relationship between physical and simulated annealing. 35

6.1 Throughput of SIFt programs (inputs processed per kilocycle). 58

6.2 Throughput of C programs (inputs processed per kilocycle). 58

8

Chapter 1

Problem Statement

The popularity of multimedia content and wireless computing has resulted in an abundance

of computing resources dedicated to streaming applications. In fact, media applications

alone have already become the dominant consumer of computing cycles [18], and the growth

rate has been phenomenal. Usage of streaming media players, the software that decodes

and renders audio and video data on a personal computer, has grown from just a few million

users in 1997 to 20 million home users and 9 million business users in 1999 [13]. Wireless

computing has grown in popularity as well, including such technologies as personal digital

assistants, cellular phones, and telemedicine. The algorithms that form the underpinnings

of wireless communication systems are also stream-based.

Such streaming applications are characterized by simple, independent, repetitive oper-

ations on elements of an ordered sequence of data values. Therefore, these applications

exhibit a large degree of �ne-grain parallelism. For instance, MPEG decoding can be

pipelined into several stream processing stages to allow multiple data values to be operated

upon concurrently [8]. Figure 1-1 shows a simpli�ed version of the MPEG decoding process

as a series of stream processing stages. As data is streamed through the pipeline, each stage

can operate concurrently on a di�erent portion of the input. This type of decoding process

occurs whenever you watch an MPEG-encoded news broadcast or listen to MP3-encoded

music over the web. The software radio receiver proposed by Bose et al. [3] has a simi-

lar decomposition. Software radio technology allows wireless communication devices to be

constructed and maintained more
exibly than traditional all-hardware solutions.

Several processor architectures have already been designed to exploit the available par-

9

Variable
Length

Decoding

Inverse
Scan

Inverse
Quantiz-

ation

Inverse
DCT

Motion
Compen-

sation

Figure 1-1: Simpli�ed MPEG video decoding process.

allelism in streaming applications. The Cheops video processing system makes heavy use of

specialized hardware for computationally intensive stream operations [4]. The Imagine ar-

chitecture for media processing is also organized around the concept of streams, but without

specialized functional units [18]. The Raw architecture, which is the target of our compiler,

supports streaming codes through a combination of simple replicated processing elements

and a fast compiler-controlled interconnection network [25]. This is not an exhaustive list

of stream-oriented architectures; several others exist.

Despite all of this hardware e�ort, few of these architectures have been matched by

languages and compilers that facilitate the programming of stream applications. Such

languages should allow stream computation to be expressed naturally and independent of

the target machine. The programmer must not bear the burden of orchestrating concurrent

execution, either through program structure or annotations. Instead, the compiler should

extract an appropriate degree of parallelism from the program based on its knowledge of

the target architecture. Most existing streaming systems use a software layer to handle

the streams. Although this approach partially achieves the goal of simplifying the software

engineering e�ort, it introduces unnecessary runtime overhead.

This vision presents four major technical challenges:

1. Which language should be chosen for programming streaming applications? There are

several dimensions to this question, including imperative vs. declarative and implicit

vs. explicit parallelism.

2. How should stream computations be represented by the compiler? The intermediate

format should be general enough to accommodate a variety of input languages, simple

enough to make code generation straightforward, and precise enough to be amenable

to optimization.

3. What techniques are required to compile this intermediate format to e�cient machine

code on a parallel architecture? In particular, we are interested in architectures that

10

support the �ne-grained parallelism exploitable in streaming applications.

4. What optimizations can gainfully be applied to the intermediate format and during

code generation? The most interesting of these will be non-traditional optimizations

that take advantage of the streaming structure.

This thesis focuses on the latter three questions.

To address Question 2, we �rst propose an intermediate format, called the Stream

Intermediate Format (SIFt, pronounced \sift"), that represents streaming applications as a

�xed con�guration of threads and communication channels. The overall structure of SIFt

is presented, along with an informal semantics. A formal semantics is also provided, which

serves to clear up any ambiguity in the informal description and can be used to verify the

correctness of optimization and code generation.

To address Question 3, we then show how this format can be compiled to the Raw

architecture. The SIFt compiler transforms a concrete syntax of the intermediate format

into Raw machine code through a series of steps. The �rst phase is placement, in which

threads are assigned to processors using techniques borrowed from VLSI layout. The second

phase is communication scheduling, which employs compiled communication to leverage

Raw's programmable interconnection network. The �nal phase is code generation for the

processor and communication switch of each Raw tile.

To address Question 4, we discuss opportunities for optimization in this back-end compi-

lation process. These include eliminating overhead in individual send and receive operations

and more intelligent communication scheduling that utilizes predicted communication vol-

ume on individual channels. The details of lowering a high-level stream language to SIFt

and performing high-level optimizations is left to future work.

The rest of this thesis is organized as follows. Chapter 2 presents some theoretical

background on streams and related work in languages and architectures. Chapter 3 describes

the structure and semantics of the intermediate format. Chapter 4 details the algorithms

used in compilation, while Chapter 5 proposes optimizations that could be incorporated

into the compiler. Chapter 6 describes some experimental performance results. Chapter 7

concludes and discusses potential future work.

11

Chapter 2

Background

For decades, streams have been used as a programming abstraction for modeling state [1].

In that context, they have been used to model time-varying data values without recourse to

assignment and mutable data, thereby simplifying the analysis and optimization of programs

that use them. Many algorithms can be implemented quite elegantly and e�ciently using the

stream paradigm. Even operations on in�nite streams can be easily expressed. The sieve of

Erasthones, an algorithm for enumerating the prime numbers, is implemented using streams

in Figure 2-1. In the �gure, cons-stream, stream-car, stream-cdr, and stream-filter

are delayed versions of the standard list operations. These delayed versions improve space

e�ciency by not generating the tail of a list until some consumer requires it.

2.1 Stream Theory

For our purposes, a stream is simply an ordered collection of data values. In general, these

values can be of any type, even themselves streams. Computation on streams take the form

of stream transducers, which take zero of more streams as input and generate zero or more

streams of output. Four basic types of stream transducers occur commonly in practice,

including enumerators, mappings, �lters, and accumulators [14]. These types di�er both

in the number of input and output streams that they take and their functionality. An

enumerator generates values into an output stream from \thin air", not reading from any

input streams. A mapping applies a function element-wise to one or more input streams.

A �lter selectively discards elements from input to output. An accumulator is the dual of

an enumerator, reading from an input stream but outputting nothing. These simple types

12

(define (sieve stream)

(cons-stream

(stream-car stream)

(sieve (stream-filter

(lambda (x)

(not (divisible? x (stream-car stream))))

(stream-cdr stream)))))

(define (integers-starting-from n)

(cons-stream n (integers-starting-from (+ n 1))))

(define primes (sieve (integers-starting-from 2)))

Figure 2-1: Sieve of Erasthones implemented in Scheme using streams.

IN OUT5x

Figure 2-2: Stream transducer network using all four common transducer types.

of transducers can be composed to form arbitrarily complex ones.

Figure 2-2 is an example transducer network that uses all four common transducer types

to decimate and scale an input stream. The circles represent transducers and the arrows

represent streams
owing between them. The input is an enumerator, while the output is

an accumulator. The �rst processing stage is a �lter that drops every other packet, while

the second is a mapping that scales each element by �ve.

Streaming applications exhibit a great deal of potential concurrency, which comes in

three major
avors. Pipeline parallelism is the ability to execute multiple nested transduc-

ers concurrently. After the pipeline is primed, multiple transducers can operate on di�erent

portions of the input stream at the same time. In the decimate-and-scale example, this

means that the �lter can drop elements at the same time that the multiplier operates on el-

ements that have already passed through. Control parallelism is the ability to concurrently

generate multiple input streams for a single transducer. If the transducers that are gener-

ating the inputs do not depend on one another, then they can operate in parallel. A simple

13

example of control parallelism arises in an expression tree; the inputs to an operator can be

evaluated concurrently. Finally, merge parallelism is available when the task of generating a

stream can be split among multiple independent transducers. This is applicable to streams

in which the order of elements is immaterial (i.e., sets).

2.2 Related Work

A handful of languages and architectures have been designed speci�cally for stream pro-

cessing. Following is an outline of a few of these systems, with comparison to the approach

taken for SIFt.

The SVP data model is a formal framework for collections, which are a generalization

of streams and sets [16]. Mappings on SVP collections are speci�ed as recursive functional

equations, and an important subset of mappings called SVP-transducers are identi�ed.

Each SVP-transducer can be written as a restructuring of the input, mapping of input

elements, and recombination of the results. SVP-transducers can be combined to form

transducer networks. While SVP is general enough to handle arbitrary collections, SIFt

focuses exclusively on streams.

Early work on networks of communicating processes by Gilles Kahn [10] has greatly

in
uenced SIFt. He presents and analyzes the semantics of a simple language for parallel

programming. This language, like SIFt, consists of a set of channel and process declarations.

Channels are used to communicate values of a single type between processes, and behave

like �rst-in-�rst-out (FIFO) queues. The main program composes these processes to de�ne

the structure of the network. Kahn concludes that the major bene�t of this style of language

is the vast simpli�cation in analyzing the state of the system. Further work by Kahn and

MacQueen draws parallels between such networks of parallel processes and coroutines.

Occam is a language of communicating processes that provides channel communication

primitives and both sequential and parallel composition of processes [9]. Further, it o�ers

guarded alternatives, which provide a mechanism for waiting for input from any one of a

set of channels. This capability is not present in the current SIFt design.

The �-calculus is to concurrent programming as the �-calculus is to sequential program-

ming. Once again, computation in the �-calculus contains processes, the active components

of the system, and channels, the communication mechanism [17]. In contrast to Kahn's

14

language described above, channels act as synchronous rendezvous points rather then FIFO

queues. This means that neither the sending or receiving process can progress until both

have reached the communication point. Pict is an example of a language based directly on

the �-calculus.

The ASPEN distributed stream processing environment allows programmers to specify

the desired degree of concurrency to be exploited during execution [14]. ASPEN extends the

rewrite-rule language Log(F) with annotations that specify when it would be cost-e�ective

to reduce a term in parallel with the rest of the program. A major bene�t of this approach

is that programs need not be restructured when re-targeted to a di�erent distributed con-

�guration. Rather, only simple annotations need to be adjusted. Although the current SIFt

infrastructure requires programs to be hand-structured for parallel execution, future work

will obviate the need by extracting the appropriate level of stream parallelism automatically.

Modern general-purpose microprocessors are not prepared to exploit the parallelism

available in streaming applications. The major reason for this is the manner in which these

systems handle data. The typical memory hierarchy, including the register �le, multiple

levels of cache, main memory, and disk storage, is optimized for access patterns exhibiting

both temporal and spatial locality. Since streaming applications usually access data values

in order, they do exhibit a large degree of spatial locality. However, temporal locality is

almost completely lacking. Once a data value has passed through a stream processing stage,

it will probably never be touched by that stage again. Therefore, one of the major bene�ts

of a memory hierarchy does not apply to stream computation. The processor architectures

described below solve this problem by including a communication network that tightly

integrates the functional units. A data value is passed rapidly through this network rather

than through the memory system, and is kept close to the computing elements only for as

long as it is needed.

The Cheops video processing system makes heavy use of specialized hardware for compu-

tationally intensive stream operations [4]. The programming model for Cheops is essentially

an interface to the runtime scheduler, and requires the user to be aware of what specialized

hardware is available in the target con�guration. Successively simpler interfaces have been

created, culminating in a language for describing the program's data-
ow graph.

The Imagine architecture for media processing is also organized around the concept of

streams, but does not make use of highly specialized functional units [18]. The programming

15

model for Imagine consists of a series of stream transducers written in a C-like syntax whose

operations are controlled by a top-level C++ program running on the host processor. The

transducers themselves are similar to the processes in SIFt, but SIFt allows transducers and

control to be expressed in the same framework.

PipeRench is a pipelined recon�gurable architecture for streaming multimedia acceler-

ation [7]. Programs are written in a data-
ow intermediate language called DIL, which is

mapped to the virtual pipeline of the hardware. PipeRench bene�ts from exploiting the

pipeline parallelism available in streaming applications and customizing the hardware for

frequently-occurring operations.

The initial target of the SIFt compiler is the Raw architecture [25]. Raw is a scalable

microprocessor architecture consisting of a set of simple compute tiles connected in a two-

dimensional mesh. See Figure 2-3 for an illustration. Each tile contains a local register �le,

a portion of on-chip memory, a uni�ed integer and
oating point ALU, and an indepen-

dent program counter. Communication over the interconnection network can be statically

orchestrated by the compiler by programming the static switches in each tile. This allows

low-latency transfers of single-word data values between tiles. Since data can
ow rapidly

from tile to tile, this architecture is a well-suited substrate for streaming applications. Al-

though the general-purpose RawCC compiler can parallelize sequential C and FORTRAN

programs, it does not realize all of the potential concurrency in streaming applications

[12]. Developing a compiler that will obtain the dramatic speedups possible for streaming

applications is one of the major challenges facing the Raw project [2].

16

IMEM
DMEM

REGS

ALU

CL
SMEM

SWITCH

PC

PC

RawTile

Raw P

DRAM

Figure 2-3: The Raw microprocessor.

17

Chapter 3

Intermediate Format

This chapter describes the structure and semantics of the Stream Intermediate Format

(SIFt). As mentioned earlier, SIFt is an intermediate format for the class of streaming

applications that can be described as a �xed set of processes and communication channels.

SIFt has also been designed to map easily onto parallel architectures that support statically-

compiled communication, such as the Raw processor.

The style of presentation is strongly in
uenced by the description of FL by Turbak, Gif-

ford, and Reistad [24]. Section 3.1 presents an s-expression grammar for SIFt and described

the overall structure of the format. Section 3.2 describes the semantics of SIFt programs.

Section 3.3 formalizes this description with an operational semantics. Finally, Section 3.4

presents an example SIFt program that implements a four-tap �nite impulse response (FIR)

�lter.

3.1 Structure

A well-formed SIFt program is a member of the syntactic domain Program de�ned by the

s-expression grammar shown in Figure 3-1 and Figure 3-2. Such a program consists of a

collection of global bindings, which speci�es a set of processes and communication channels

that exist at runtime. Each process contains an expression that speci�es its behavior, and

may communicate through the declared channels.

SIFt expressions are built from literals (booleans, integers, and
oating point values),

variable references, primitive operations, and conditionals. Local bindings, which associate

the value of an expression with an identi�er, are introduced with let expressions. Expres-

18

P 2 Program

D 2 De�nition

F 2 De�nable

E 2 Expression

I 2 Identi�er

S 2 SimpleType = fint, float, boolg

T 2 Type

L 2 Literal = IntLit + FloatLit + BoolLit + UnitLit

IntLit = f..., -2, -1, 0, 1, 2,...g

FloatLit = ;; Floating point literals

BoolLit = f#f, #tg

UnitLit = f#ug

O 2 PrimOp = ArithOp + RelOp + BitOp

ArithOp = f+, -, *, /, %g

RelOp = f=, !=, <, <=, >, >=g

BitOp = f&, ~, |, ^, <<, >>g

Figure 3-1: Syntactic domains used to specify the structure of SIFt.

P ::= (program D
�)

D ::= (define I F) [Global Binding]

F ::= (channel S) [Internal Channel]

j (input N S) [Input Channel]

j (output N S) [Output Channel]

j (process E) [Process]

E ::= L [Literal]

j I [Variable Reference]

j (primop O E
�) [Primitive Operation]

j (if E E E) [Conditional]

j (let ((I E)�) E) [Local Binding]

j (begin E
�) [Sequencing]

j (label I E) [Control Point]

j (goto I) [Backward Branch]

j (send! I E) [Channel Write]

j (receive! I) [Channel Read]

T ::= S [Simple]

j unit [Unit]

j (channel-of T) [Channel]

Figure 3-2: An s-expression grammar of SIFt.

19

sions with side-e�ects can be sequenced using the begin construct. The label and goto

forms provide backward branching to form loops.

The communication primitives send! and receive! are used to write to and read

from channels. The ! notation indicates that these expressions have side e�ects. Three

types of channels exist in SIFt { internal, input, and output. Internal channels are used to

communicate between processes in the same program, and are declared simply by specifying

an element type. Input and output channels are used to communicate with the outside

world, which could be external devices or other programs. Such device channels are declared

by specifying both an element type and a unique port number.

The simple type system of SIFt consists of the base types int, float, bool, and unit,

and type constructor channel-of. Note that only simple types can be communicated

through channels. This restriction exists to simplify the implementation. The lack of

functions in SIFt is another such simplifying restriction that should be conceptually painless

to add in the future.

3.2 Informal Semantics

Every SIFt expression denotes a value belonging to one of the types described above. The

primitive values supported by SIFt include the unit value, boolean truth values, integers,

and
oating point values. The unit value is the sole member of the singleton type unit.

In addition, SIFt supports channels. A channel allows communication of values between a

pair of processes. Channels and processes are not �rst-class values in SIFt. That is, they

can only be de�ned statically and cannot be passed through channels.

The description of the informal semantics of SIFt expressions will be motivated by

example. The notation E

SIFt
�! V indicates that the expression E evaluates to the value V .

Values will be written as follows:

unit Unit value

false, true Boolean values

42, -12, 0 Integer values

3.14159, 2.72, -1.0 Floating point values

error Errors

1-loop Non-termination

20

Literal expressions represent the corresponding constants:

#u
SIFt
�! unit

#f
SIFt
�! false

23
SIFt
�! 23

150.23
SIFt
�! 150.23

The behavior of the primitive operators are the same as in the C language. The ex-

pression (primop O E1 : : : En) evaluates to the result of applying O to the values of E1

through En. For example,

(primop - 10 7)
SIFt
�! 3

(primop = 7.5 3.2)
SIFt
�! false

(primop ^ 95)
SIFt
�! -96

Primitive operators are overloaded in a natural manner. For instance, each bitwise operator

can also be used as a logical operator on booleans, with the expected results.

Passing the wrong number or types of arguments to a primitive operator is an error.

Individual operators have additional error cases, such as division or modulo by zero. Some

sample error cases include,

(primop + 10 4 -9)
SIFt
�! error ;; Wrong number of arguments

(primop - #f 5)
SIFt
�! error ;; Wrong type of argument

(primop / 4 0)
SIFt
�! error ;; Division by zero

The conditional expression (if Etest Econ Ealt) evaluates to the value of Econ or Ealt

based on the value of Etest. Etest must evaluate to a boolean; true selects the consequent

Econ and false selects the alternative Ealt. Note that the unchosen expression is not

evaluated.

(if (primop > 5 10) 100 (primop + 1 2))
SIFt
�! 3

(if (primop / 1.0 22.0) 0 1)
SIFt
�! error ;; Test is not boolean

(if #f (primop / 1 0) 0)
SIFt
�! 0 ;; Non-strictness

The local binding expression (let ((I1 E1) : : : (In En)) Ebody) introduces local vari-

ables. The body Ebody is evaluated in an environment in which the values of E1 through En

are bound to identi�ers I1 through In, respectively. All of the bound expressions are evalu-

ated before the body, regardless of whether the corresponding identi�er is used. Identi�ers

21

introduced by let-expressions can shadow those from higher scope, but must not con
ict

within the same scope.

(let ((x 5) (y (primop + 1 2)))

(primop * x y))
SIFt
�! 15

(let ((bottom (primop / 1 0)))

5)
SIFt
�! error ;; Strictness

(let ((popular 10) (popular #t))

popular)
SIFt
�! error ;; Name collision

The sequencing expression (begin E1 : : : En) evaluates its operands in order, ultimately

taking on the value of En. In the following example, the sequencing semantics guarantees

that 1 will be sent before x.

(begin (send! c1 1) (send! c1 x) #t)
SIFt
�! true

Values are communicated over channels using send! and receive! expressions. The

expression (send! I E) writes the value of E onto the channel denoted by I and evaluates

to unit. The expression (receive! I) consumes the next value from the channel denoted

by I and evaluates to that value. Channel contents are bu�ered, meaning that a send is

allowed to proceed before a receive consumes the sent value.

Each channel is meant to communicate values between just two endpoints. Therefore,

the following additional restrictions are imposed on SIFt programs:

� Each input channel must have zero writers and a single reader,

� each output channel must have a single writer and zero readers, and

� each internal channel must have a single writer and a single reader,

where \writer" is a process that performs send! operations on a channel, and \reader" is

a process that performs receive! operations on a channel.

The meaning of a complete SIFt program is the observable behavior that evolves as the

body of each process is evaluated on its own virtual processor. In particular, the observable

behavior is the series of values produced on each of the output channels along with the

number of values consumed on each of the input channels.

22

3.3 Formal Semantics

This section presents a formal semantics for SIFt programs using the theory of structured

operational semantics (SOS). An SOS consists of �ve parts: the set of con�gurations C,

the transition relation), the set of �nal con�gurations F , an input function I, and an

output function O. A con�guration encapsulates the state of an abstract machine, and

the transition relation speci�es legal transitions between those states. A �nal con�guration

is one for which the program has terminated. The input function speci�es how an input

program is converted to an initial con�guration; the output function speci�es how a �nal

con�guration is converted into a �nal result.

Figure 3-3 shows the auxiliary semantic domains used in the SOS for SIFt. The semantic

domain Value coincides with the syntactic domain Literal, and a ValueList is a sequence

of such objects. The ChannelCon�g domain contains functions that map channel names

to the contents of that channel's FIFO queue. The ProcessCon�g domain contains sets of

expressions. In a con�guration, each expression in the set corresponds to the state of a

process.

Before continuing, an explanation of the notation used for sets, lists, and functions is in

order. Sets are represented in the traditional fashion. This can be a sequence of comma-

separated values enclosed in curly braces (e.g. f2; 4; 6g), set builder notation that generates

the elements according to some predicate (e.g. fn 2 Njn < 7 ^ 2kng), or the union of

two sets (e.g. f2; 4g [f6g). Lists are represented as comma-separated values enclosed

in square brackets or as the catenation of two lists. For instance, [1; 2; 3] is the three-

element list of the �rst three natural numbers. Two lists can be catenated using the in�x

@ operator, as in [1; 2]@[3]. Finally, functions are represented using both lambda notation

and graphs. Lambda notation shows how the result of a function can be computed based

on its arguments. In that way, the increment function can be expressed as �x:(x+1). The

graph of a function f is the set of input-output pairs, that is fhx; yij(fx) = yg.

With these helper domains and notational conventions in hand, we can now de�ne C,

F , I, and O. A con�guration is simply a channel con�guration paired with a process

con�guration.

C = ChannelCon�g � ProcessCon�g

The set of �nal con�gurations consists of all con�gurations which cannot transition to any

23

v 2 Value = Literal

vl 2 ValueList = Value�

cc 2 ChannelCon�g = Identi�er ! ValueList

pc 2 ProcessCon�g = P(Expression)

Figure 3-3: Semantic domains used in the operational semantics of SIFt.

other con�guration. It is therefore de�ned in terms of).

F = fc 2 Cj:9c0 2 C; c) c
0g

For each channel declared in the program, the input function places an empty entry in the

channel con�guration. For each process declared in the program, the input function places

the process's body in the process con�guration. The helper functions Ic and Ip handle

channels and processes, respectively. The channel con�guration passed to I and Ic specify

the initial contents of the input channels.

I : Program ! ChannelCon�g ! C = � (program D
�) cc: h(Ic D

�
cc); (Ip D

�)i

Ic : De�nable
� ! ChannelCon�g ! ChannelCon�g =

� l cc: if (empty? l)

then ;

else matching (head l)

. (define I (channel S)) k (Ic (tail l)) [fhI; []ig

. (define I (input N S)) k (Ic (tail l)) [fhI; (cc I)ig

. (define I (output N S)) k (Ic (tail l)) [fhI; []ig

. else k (Ic (tail l))

endmatching

Ip : De�nable
� ! ProcessCon�g =

� l: if (empty? l)

then ;

else matching (head l)

. (define I (process E)) k (Ip (tail l)) [fEg

. else k (Ip (tail l))

endmatching

Finally, the output function extracts the visible state from a �nal con�guration, which

includes the contents of all of the channels.

O : F ! ChannelCon�g = �hcc; pci:cc

The real heart of the semantics is the rewrite rules that de�ne), which in turn de�ne

how the computation evolves. Each rewrite rule has an antecedent and a consequent, written

as follows:

24

D[[(let () E0)]] = D[[E0]]

D[[(let ((I1 E1) ... (In En)) E0)]] =

(let ((I1 D[[E1]])) D[[(let ((I2 E2) ... (In En)) E0)]])

D[[(begin)]] = #u

D[[(begin E)]] = D[[E]]

D[[(begin E1 E2 ... En)]] =

(begin D[[E1]] D[[(begin E2 ... En)]]) 8n > 2

Figure 3-4: Desugaring of degenerate and complex SIFt forms.

It is snowing in April.

You aren't in San Diego.

This means \If it is snowing in April, then you aren't in San Diego". In other words,

if the antecedent is true, then the consequent follows. Rules without an antecedent are

unconditionally true.

In order to simplify the rewrite rules, we present them in three stages. The �rst stage

consists of a desugaring D that converts certain SIFt forms into semantically equivalent but

simpler forms. The second stage presents a simpli�ed transition relation)s for expressions

that do not involve communication. This obviates the need to show the entire con�guration

in each rule. The third stage de�nes the full-blown transition relation) in terms of D,)s,

and its own individual rewrite rules that may involve communication.

Figure 3-4 presents the special cases of the desugaring function. A let expressions with

no bindings is simply replaced by its body. A let expression with more than one binding

is recursively converted into a series of nested single-binding let expressions. An empty

begin expression is replaced by the unit value, and a begin expression containing just one

expression is replaced with that expression. Finally, a begin expression with more than two

subexpressions is recursively converted into a series of nested two-way begin expressions.

Figure 3-5 completes the desugaring function. It shows that all other forms are handled by

leaving the top-level form intact and desugaring the subexpressions.

Figure 3-6 enumerates the rewrite rules that de�ne)s. The desugar rule carries over

the desugaring function from above into the transition relation. The if-true and if-false

25

D[[L]] = L

D[[I]] = I

D[[(primop O E1 ... En)]] = (primop O D[[E1]] ... D[[En]])

D[[(if Etest Econ Ealt)]] = (if D[[Etest]] D[[Econ]] D[[Ealt]])

D[[(let ((I1 E1)) E0)]] = (let ((I1 D[[E1]])) D[[E0]])

D[[(begin E1 E2)]] = (begin D[[E1]] D[[E2]])

D[[(label I E)]] = (label I D[[E]])

D[[(goto I)]] = (goto I)

D[[(send! I E)]] = (send! I D[[E]])

D[[(receive! I)]] = (receive! I)

Figure 3-5: Desugaring of simple SIFt forms.

rules specify what happens after the predicate of a conditional has been evaluated. In

the primop rule, O stands for the operation denoted by O, which will not be speci�ed in

further detail. The let-done rule shows that a locally-bound variable is replaced with its

computed value in the body of the let expression. This rule uses the substitution operator

[x=y], which will be described in more detail below. The begin-done rule simply discards

the �rst expression after it has been evaluated down to a value, and proceeds to the next

one. The label rule shows the expression itself being substituted for every goto expression

that targets the particular label. Keep in mind that these rewrite rules specify semantics,

but not necessarily implementation.

The substitution operator requires additional explanation. The result of the substitution

[x=y]E is E with all free occurrences of y replaced by x. The free occurrences of y in E are

the occurrences not bound by a let expression or label expression that also appears in E.

Figure 3-7 formally de�nes substitution. The �gure shows only the base-case clauses and

clauses necessary to avoid free identi�er capture. For illustration,

[6=x](primop + x (let ((x 2)) x)) = (primop + 6 (let ((x 2)) x))

Note that the second reference to x has not been replaced, because it is not free.

26

E)s D[[E]] [desugar]

(primop O v1 ... vn))s O(v1, ..., vn) [primop-done]

(if #t Econ Ealt))s Econ [if-true]

(if #f Econ Ealt))s Ealt [if-false]

(let ((I1 v1)) E0))s [v1=I1]E0 [let-done]

(begin v E))s E [begin-done]

(label I E))s [(label I E)=(goto I)]E [label]

Figure 3-6: Rewrite rules for simpli�ed transition relation)s.

[E=I]I = E

[E=I](let ((I E1)) E0) = (let ((I [E=I]E1)) E0)

[E=I](let ((I1 E1)) E0) = (let ((I1 [E=I]E1)) [E=I]E0), if I 6= I1

[E=(goto I)](goto I) = E

[E=(goto I)](label I E0) = (label I E0)

[E=(goto I)](label I0 E0) = (label I0 [E=(goto I)]E0), if I 6= I0

Figure 3-7: Formal de�nition of substitution.

27

E)s E
0

hcc; fEg [pci) hcc; fE0g [pci
[simple]

hcc; fEkg [pci) hcc
0
; fE0

k
g [pci

hcc; f(primop O v1 ...vk�1 Ek ...En)g [pci)

hcc0; f(primop O v1 ...vk�1 E
0

k
...En)g [pci

8 n > 0; 0 < k � n

[primop-progress]

hcc; fEtestg [pci) hcc
0
; fE0

test
g [pci

hcc; f(if Etest Econ Ealt)g [pci)

hcc0; f(if E
0

test
Econ Ealt)g [pci

[if-progress]

hcc; fE1g [pci) hcc
0
; fE0

1g [pci

hcc; f(let ((I1 E1)) E0)g [pci)

hcc0; f(let ((I1 E
0

1)) E0)g [pci

[let-progress]

hcc; fE1g [pci) hcc
0
; fE0

1g [pci

hcc; f(begin E1 E2)g [pci) hcc
0
; f(begin E

0

1 E2)g [pci
[begin-progress]

hcc; fEg [pci) hcc0; fE0g [pci

hcc; f(send! I E)g [pci) hcc0; f(send! I E
0)g [pci

[send-progress]

hcc [fhI; vlig; f(send! I v)g [pci)

hcc [fhI; (vl@[v])ig; f#ug [pci [send-done]

hcc [fhI; ([v]@vl)ig; f(receive! I)g [pci)

hcc [fhI; vlig; fvg [pci [receive]

Figure 3-8: Rewrite rules for general transition relation).

Finally, Figure 3-8 shows the rewrite rules for). The simple rule ensures that)s is

incorporated into). Each of the transitions implied by this rule leave the channel context

unchanged, because none of them involve communication. The progress rules send-progress,

primop-progress, if-progress, let-progress, and begin-progress show how subexpressions are

allowed to proceed and engage in communication. The rules send-done and receive are the

only ones that directly manipulate the channel context. According to send-done, a send

expression can add its argument to the tail of the channel's FIFO queue after that argument

has been fully evaluated. According to receive, a receive expression can proceed as soon as

the channel's FIFO queue has at least one element, at which point it removes and evaluates

to the head element.

28

3.4 Example Program

This section presents an example SIFt program that implements a four-tap FIR �lter. An

FIR �lter processes a discrete-time input signal x[�] according to the following general form:

y[n] =
N�1X

m=0

h[m] � x[n�m]

The output y[�] is a weighted sum of a �nite number N of current and past inputs. The

coe�cients h[�], also called taps, can be chosen to implement a variety of di�erent �lters [20].

Software implementations of such �lters �nd application in software radios, which perform

most of their signal processing in software.

The SIFt program in Figure 3-10 implements the four-tap FIR �lter with coe�cients

h[�] = [2; 3; 4; 5]. The program begins with the de�nition of the input and output channels as

well as various internal communication channels. Figure 3-9 shows the overall structure of

the program, with the nodes representing processes and edges representing communication

channels. Processes p1, p2, p3, and p4 form a pipeline which the input values are routed

down. They are responsible for scaling the input by the appropriate coe�cients. Processes

p5, p6, and p7 form an addition tree. They are responsible for summing the scaled values

and outputting the �nal result.

29

p7

OUTPUT4

out

p4

p6

c7

c9

p2

p5

c5

p3

c2

c8

c3

c6

INPUT11

p1

in

c1

c4

Figure 3-9: Structure of the FIR �lter program.

30

(program

(define in (input 11 int))

(define c1 (channel int)) (define c2 (channel int)) (define c3 (channel int))

(define c4 (channel int)) (define c5 (channel int)) (define c6 (channel int))

(define c7 (channel int)) (define c8 (channel int)) (define c9 (channel int))

(define out (output 4 int))

(define p1 (process (label loop

(let ((v (receive! in)))

(begin (send! c1 v) (send! c4 (primop * 2 v))

(goto loop))))))

(define p2 (process (begin (send! c5 0)

(label loop

(let ((v (receive! c1)))

(begin (send! c2 v) (send! c5 (primop * 3 v))

(goto loop)))))))

(define p3 (process (begin (send! c6 0) (send! c6 0)

(label loop

(let ((v (receive! c2)))

(begin (send! c3 v) (send! c6 (primop * 4 v))

(goto loop)))))))

(define p4 (process (begin (send! c7 0) (send! c7 0) (send! c7 0)

(label loop

(let ((v (receive! c3)))

(begin (send! c7 (primop * 5 v))

(goto loop)))))))

(define p5 (process (label loop (let ((v1 (receive! c4))

(v2 (receive! c5)))

(begin (send! c8 (primop + v1 v2))

(goto loop))))))

(define p6 (process (label loop (let ((v1 (receive! c6))

(v2 (receive! c7)))

(begin (send! c9 (primop + v1 v2))

(goto loop))))))

(define p7 (process (label loop (let ((v1 (receive! c8))

(v2 (receive! c9)))

(begin (send! out (primop + v1 v2))

(goto loop)))))))

Figure 3-10: SIFt program that implements the FIR �lter [2; 3; 4; 5].

31

Chapter 4

Compilation

This chapter describes the process of compiling a SIFt program to our target architecture,

the Raw microprocessor. Section 4.1 o�ers an overview of compilation, brie
y describing

each phase and the interfaces between phases. Section 4.2 describes the early analysis

performed by the compiler. Section 4.3 details how the compiler chooses on which tile

to place each process. Section 4.4 shows how the compiler maps the virtual channels in

the source program onto the physical interconnect. Section 4.5 describes the Raw code

generation algorithm.

4.1 Overview

The entire compilation process is depicted in Figure 4-1. The compiler begins by reading in

and parsing the input SIFt program, generating an abstract syntax tree. This tree is passed

to the analysis phase, generating a communication graph that summarizes communication

between processes. This graph and a user-speci�ed machine con�guration are fed into

the placer, which generates an assignment of processes onto tiles. Given a placement, the

communication scheduling phase splits the virtual channels into subsets whose elements can

be active simultaneously. This information is �nally used to emit code for each processor

and each switch in the target con�guration.

The SIFt compiler is implemented in 6,800 lines of Java code. This includes all of the

passes up to and including code generation. The code generators output three-address

code in the Stanford University Intermediate Format (SUIF) [26]. This \low SUIF" output

is passed through the Raw MachSUIF back-end to generate a Raw binary. This is the

32

AnalyzerParser Placer Comm.
Sched.

Proc.
Codegen

Switch
Codegen

Mach−
SUIF

Input
Program

10011
10100
11001
11101

Raw
Binary

Machine
Config.

Figure 4-1: The main phases of the SIFt compiler.

same back-end used for RawCC, and performs several traditional compiler optimizations

in addition to translation. MachSUIF is an extension to SUIF for machine-dependent

optimizations [21].

4.2 Analysis

The analysis phase begins by performing a few static checks. The most notable of these is

enforcement of the channel usage restrictions, which guarantee that each channel is used

to communicate values in a single direction between just two endpoints. This restriction

is does not exist in the formal semantics presented in Chapter 3, but greatly simpli�es

compilation.

The analysis phase also builds a communication graph Gc = hNc; Eci. For each process

in the program, Nc contains a corresponding node. For each channel in the program, Ec

contains an edge from the node of the writer to the node of the reader. In order to handle

input and output channels properly, each input or output device is also given a corresponding

node in Nc. This graph summarizes which pairs of processes communicate with one another

and in which direction. It says nothing about the order or rates of communication, and

therefore should not be confused with a data-
ow graph.

The communication graph for the FIR �lter from Figure 3-10 is shown in Figure 4-2.

This image was automatically generated by the compiler at the end of the analysis phase.

Circles represent process nodes, triangles represent input nodes, and inverted triangles

represent output nodes. The numbers at the end of \INPUT11" and \OUTPUT4" are the

port numbers speci�ed in the declarations of the input and output channels. How they are

33

p7

OUTPUT4

out

p4

p6

c7

c9

p2

p5

c5

p3

c2

c8

c3

c6

INPUT11

p1

in

c1

c4

Figure 4-2: Communication graph for FIR �lter.

translated to physical ports on the Raw machine will be discussed in Section 4.3.

4.3 Placement

The input to the placement phase is a target machine con�guration and the communica-

tion graph that was generated by the analysis phase. The target con�guration for Raw is

speci�ed as the number of rows and columns in the two-dimensional mesh. This mesh is

modeled as a graph in which each tile is directly connected to its four nearest neighbors

(except for boundary tiles). Each node in the communication graph must be assigned to a

single processor in the target con�guration. Further, each tile in the target con�guration

can be assigned at most one process. The responsibility of the placer is to �nd such an

assignment that leads to the best performance. How to measure predicted performance is

discussed below.

Placement algorithms have been studied extensively in the context of VLSI layout [11].

These algorithms fall into two categories, both of which optimize the placement based on a

cost function. Constructive initial placement builds a solution from scratch, using the �rst

34

Physical Concept Simulated Concept

energy function cost function

particle states parameter values

low-energy con�guration near-optimal solution

temperature control parameter

Table 4.1: Relationship between physical and simulated annealing.

complete placement that it generates as the �nal result. An example is an algorithm that

partitions the graph based on some criterion and recursively places the subgraphs onto a

subset of the target topology. Iterative improvement begins with a complete placement, and

repeatedly modi�es it in order to minimize the cost function. For instance, RawCC uses a

swap-based greedy algorithm for instruction placement [12]. Beginning with an arbitrary

placement, the algorithm swaps pairs of mappings until it is no longer bene�cial to do

so. The SIFt compiler uses simulated annealing, which is a more sophisticated type of

iterative improvement. Simulated annealing was chosen because of the
exibility it permits

in choosing a cost function, and its widespread success in VLSI placement algorithms.

Simulated annealing is a stochastic computational technique for �nding near-optimal

solutions to large global optimization problems [5]. The physical annealing process attempts

to put a physical system into a very low energy state. It accomplishes this by elevating and

then gradually lowering the temperature of the system. By spending enough time at each

temperature to achieve thermal equilibrium, the probability of reaching a very low energy

state is increased. In simulating this process, each physical phenomenon has a simulated

analogue, as shown in Table 4.1.

The following prose-code describes the placement algorithm in detail.

SimAnnealPlace(Gc, m) performs placement of communication graph Gc onto machine

model m using simulated annealing. The communication graph was described above. The

machine model encapsulates the details of the target architecture, which is used in gener-

ating a random initial placement and evaluating the cost function.

1. (Initial con�guration.) Let Cinit be a random placement of Gc onm. Set Cold Cinit.

2. (Initial temperature.) Let T0 be the initial temperature, determined by algorithm

SimAnnealMaxTemp, described below. Set T T0.

35

3. (Final temperature.) Let Tf be a �nal temperature, determined by algorithm SimAn-

nealMinTemp, described below.

4. (Perturb con�guration.) Holding the temperature constant at T , the placement is

repeatedly perturbed. Perturbations which decrease energy are unconditionally ac-

cepted. Those which increase energy are accepted probabilistically based on the Boltz-

mann distribution. The energy functionE(C) is shorthand forPlacementCost(C;m).

The following steps are repeated 100 times.

(a) Let Cnew be Cold with the placements of a randomly-chosen pair of processes

swapped.

(b) If E(Cnew) is less than E(Cold), then the replacement probability is P = 1.

Otherwise, the replacement probability is P = e

E(Cold)�E(Cnew)

T .

(c) Randomly choose a number 0:0 � R � 1:0.

(d) If R < P , then accept the new con�guration Cold Cnew. Otherwise, keep the

old con�guration.

5. (Cool down.) Set T 9

10
� T . If T > Tf , then go back to step 4.

6. (Return.) Return Cold as the �nal placement.

The initial and �nal temperatures are generated by the following algorithms.

SimAnnealMaxTemp(Cinit, m) calculates an appropriate initial temperature for sim-

ulated annealing. It searches for a temperature high enough that the vast majority of

perturbed con�gurations are accepted.

1. (Initial temperature.) Set T 1:0.

2. (Probe temperatures.) Repeat the following steps until the fraction of new con�gura-

tions that are accepted in Step 2c is at least 90% or the steps have been repeated 100

times.

(a) Set T 2 � T .

(b) Set Cold Cinit.

36

(c) Perform Step 4 of SimAnnealPlace.

3. (Return.) Return T as the initial temperature.

SimAnnealMinTemp(Cinit, m) calculates an appropriate �nal temperature for simulated

annealing. It searches for a temperature low enough that the vast majority of perturbed

con�gurations are rejected.

1. (Initial temperature.) Set T 1:0.

2. (Probe temperatures.) Repeat the following steps until the fraction of new con�gura-

tions that are accepted in Step 2c is at most 1% or the steps have been repeated 100

times.

(a) Set T 1

2
� T .

(b) Set Cold Cinit.

(c) Perform Step 4 of SimAnnealPlace.

3. (Return.) Return T as the �nal temperature.

All placements are constrained so that input and output device nodes are placed at their

assigned locations. For each such node, this location is given by the port number speci�ed

in the declaration in the source program. For the Raw architecture, I/O devices are located

on the periphery of the mesh, and the ports are numbered clockwise starting from the slot

above the upper-left tile.

There are several constants embedded in the placer's simulated annealing algorithms.

Some examples are the number of perturbations per temperature (100), the temperature

decay rate (9

10
), and the acceptance thresholds for choosing initial and �nal temperatures

(90% and 1%, respectively). These values were chosen arbitrarily, and then adjusted based

on the qualitative results of placement. Future research could investigate the impact of

these constants on performance of the compiler and the generated code.

There are multifarious options for the cost function PlacementCost(C, m). Three of

these alternatives were considered. The �rst option evaluates the average distance in number

of hops between directly communicating processes. This is primarily a communication

latency optimization. Low latency is important so that the lag between input and output

does not become excessive. The second option calculates the number of channel pairs that

37

interfere when laid out dimension-ordered on the interconnection network. This is primarily

a communication throughput optimization. High throughput is important because many

streaming applications must handle input from high-bandwidth devices. The �nal option,

and the one that the placement algorithm uses, is a combination of the �rst two. It begins by

laying out the placement on the interconnection network using dimension-ordered routing.

It then calculates the sum over all tiles of the square of the number of channels passing

through it. This cost function increases with the distance between directly communicating

processes and the predicted contention at the communication switches. This is the best

of the three choices because it more precisely captures the level of interference between

channels.

The correctness of this algorithm is quite simple to argue. Every step in SimAn-

nealPlace leaves a valid placement in Cold. This is because we begin with a valid ini-

tial placement, and swapping the location of two processes cannot invalidate a placement.

Therefore, if the algorithm terminates, it does so with a valid placement. Since each of the

loops is guaranteed to eventually exit (each is controlled by an induction variable that will

reach its �nal value), the entire algorithm is guaranteed to terminate.

PlacementCost has worst-case running time of O(jEcj(rm + cm) + rmcm), where jEcj

is the number of edges in Gc, and rm and cm are the dimensions of the machine model.

Evaluation of the cost function dominates the loop body of Step 4 in SimAnnealPlace.

This loop iterates a constant number of times, making its worst-case running time also

O(jEcj(rm + cm) + rmcm). Examining Step 5 of SimAnnealPlace, the temperature decay

causes Step 4 to be repeated O(log T0
Tf
) times. The total worst-case running time of the

placement algorithm is O((jEcj(rm+ cm) + rmcm) log
T0
Tf
). In practice, the placement phase

is the most time-consuming portion of compilation. The worst-case space complexity is the

space required to hold a single placement, O(jNcj), where jNcj is the number of nodes in

Gc.

Figure 4-3 shows a random initial placement for the example FIR �lter. This happens

to be a fairly decent placement, with a cost of just 110, but it can be improved. Figure 4-4

shows the optimized �nal placement, which has a cost of 71. Among other things, this layout

has fewer long channels and places both of the processes that use device channels right next

to their respective devices. Figure 4-5 demonstrates the evolution of energy and temperature

in a typical simulated annealing. Towards the beginning, the high temperature allows the

38

(-1,-1) (-1,0)

INPUT11

(-1,1)

p5

(-1,2)

p3

(-1,3)

p2

(-1,4)

p7 OUTPUT4

(1,-1) p1 p4 p6 (1,3) (1,4)

(2,-1) (2,0) (2,1) (2,2) (2,3) (2,4)

Figure 4-3: Random initial placement for FIR �lter.

(-1,-1) (-1,0)

INPUT11

(-1,1)

p1

(-1,2)

p5

(-1,3)

(0,2)

(-1,4)

p7 OUTPUT4

(1,-1) p2 p3 p4 p6 (1,4)

(2,-1) (2,0) (2,1) (2,2) (2,3) (2,4)

Figure 4-4: Optimized �nal placement for FIR �lter.

con�guration to jump around the space. As the temperature decreases, the con�guration

drifts towards a low energy state, where it �nally freezes.

4.4 Communication Scheduling

The placement phase has placed the nodes of the communication graph onto the tiles of the

target architecture. The next phase of the compiler, communication scheduling, must map

the virtual channels to something that can be realized on the interconnection network. The

input to this phase is the communication graph and placement. The set of all channels in the

program must be partitioned such that there are no routing con
icts between channels in

the same partition. A routing con
ict exists among a set of channels if the routing algorithm

cannot route all of them simultaneously. A partition that is free of routing con
icts is called

a communication context. Therefore, the communication scheduling algorithm produces a

39

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50

E
ne

rg
y

/ T
em

pe
ra

tu
re

Step

Progression of Temperature and Energy during Annealing

Temperature
Energy

Figure 4-5: Progression of temperature and energy during annealing.

sequence of communication contexts. At runtime, the interconnection network can cycle

through these communication contexts in order to support communication over the virtual

channels.

The Raw architecture has two interconnection networks for communication between

tiles [22]. The dynamic network supports communication of small packets of data between

tiles whose identities are not necessarily known at compile time. It uses dimension-ordered

wormhole routing with hardware
ow-control. The static network supports communication

of single-word values between tiles whose identities are known at compile time. Commu-

nication over this network is controlled by switch processors that are programmed by the

compiler. Each switch has an instruction stream that tells it how to route values among its

four neighbors and processor. Since streaming programs typically have regular communica-

tion patterns that can be analyzed at compile time, the SIFt compiler uses just the static

network. On the static network, a set of channels exhibits a routing con
ict when one of

the switches is involved in routing more than one of the channels.

The Raw static network is a suitable target primarily because of the low communication

overhead for single-word data transfers. It can take just one cycle for a processor to inject

a word into or extract a word from the static network. The instruction set even allows an

40

ALU operation to be combined with a send or receive operation. In contrast, doing the same

operation using the Raw dynamic network would take several more cycles for administrivia,

including constructing a packet header and launching the contents of the network queue.

Another bene�t of the static network is the programmability of the switches, which admits

exibility in routing data between tiles. For instance, bandwidth-e�cient multicasting could

be implemented without additional hardware.

However, the static network also has its share of drawbacks. The most serious of these

is that bandwidth must be statically reserved. In order to fully leverage the static network,

a compiler must therefore have an intimate understanding of communication patterns.

Previous work has explored techniques for compiling to such statically orchestrated

communication networks. The ConSet model used in iWarp's communication compiler splits

an arbitrary set of connections between processors into phases [6]. Each phase contains a

set of connections that can simultaneously be active given the hardware resources. Their

algorithm uses sequential routing based on shortest path search, followed by repetitive

ripping up and rerouting of connections. The compiled communication technique has been

used in all-optical networks to minimize the overhead of dynamically establishing optical

paths. Three algorithms described by Yuan, Melhem, and Gupta [27] for this purpose were

considered for the SIFt compiler.

The greedy algorithm is the simplest of the three. It builds a communication context

by adding channels until no more can be added without con
ict. It then starts a new

context, and repeats until all of the channels have been assigned. The coloring algorithm

uses a graph-coloring heuristic to partition the channels. It builds an interference graph

in which nodes correspond to channels and edges are placed between channels that cannot

be routed simultaneously. After coloring the graph such that adjacent nodes have di�erent

colors, nodes of the same color are lumped into the same communication context. The

ordered all-to-all personalized communication (AAPC) algorithm is an improvement on

the greedy algorithm for dense communication patterns. Before performing the greedy

algorithm, it sorts the channels in a manner that puts an upper bound on the number of

necessary communication contexts. This guarantees that the number of contexts does not

exceed what is required for a complete communication graph (i.e., one in which all pairs

communicate).

The coloring algorithm is not suitable because it assumes that if all pairs of channels

41

in a set contain no con
icts, then the set itself contains no con
icts. This is true for

dimension-ordered routing, but not true for the adaptive routing used in the SIFt compiler.

The ordered AAPC algorithm is not suitable because streaming applications tend to have

sparse communication graphs. Therefore, the communication scheduler uses the greedy

algorithm, which is described by the following prose-code:

GreedyCommSched(Gc, p, m) partitions the set of edges Ec of communication graph

Gc into communication contexts. Each such context has no con
icts when its constituent

channels are routed on machine model m with placement p. The communication graph and

machine model are described above. The placement is a function from the set of commu-

nication nodes Nc to locations on the machine model. S is a sequence of communication

contexts representing the communication schedule. C is the set of channels yet to be as-

signed to a context.

1. (Initial schedule.) Set S [].

2. (Initial channels.) Set C Ec.

3. (Generate contexts.) A new communication context is created by adding channels

until no more can be added without creating a routing con
ict. X is the context

being constructed, which is a set of channels. r is the summary of the routing of

these channels, which is the set of switches that are occupied. The following steps are

repeated while C 6= ;.

(a) (Initial context.) Set X ;.

(b) (Initial routing.) Set r ;.

(c) (Build context.) Insert as many channels into X as possible. The following steps

are repeated for each c 2 C.

i. (Attempt routing.) Set r0 RouteChannel(r, c, m).

ii. (Add channel.) If RouteChannel succeeded, then perform the following

steps.

A. Set r r
0.

B. Set X X [fcg.

C. Set C C � fcg.

42

(d) (Extend schedule.) Set S S@[X].

4. (Return.) Return S as the communication schedule.

This algorithm treats the contexts as if only one will be active on the network at a

given time. However, there is no global synchronization barrier between the contexts at

runtime, so di�erent parts of multiple contexts actually will be active at the same time.

For instance, consider two channels, one going from the upper-left corner of the chip to

the lower-right corner of the chip, and the other going from the upper-right corner of the

chip to the lower-left corner of the chip. These channels will be placed in separate contexts

because they have an unavoidable con
ict. However, the parts of the two channels that do

not con
ict can be simultaneously active, and only the switch at which they con
ict will

sequentialize them.

The routine RouteChannel is used as an approximation to the compiler's routing

algorithm, which is presented as part of code generation in Section 4.5. Given the set of

already-occupied switches, the channel to route, and a machine model, it attempts to route

the given channel. If it succeeds, it also returns the new set of occupied switches. A switch

is occupied with respect to a communication context if it is involved in routing some channel

in that context.

The correctness argument must show that, assuming termination, each channel is as-

signed to exactly one communication context and there are no routing con
icts within a

context. Assume that the algorithm does terminate. Each channel is placed into at most

one context by virtue of being removed from C immediately after being added to X. Each

channel is placed into at least one context because Step 3 does not terminate until C is

empty. There can be no con
icts in any of the resulting contexts because of the routability

check at Step 3(c)ii.

The termination argument must show that each of the loops runs for a �nite number of

iterations. The inner loop at Step 3c satis�es this because C is a �nite set. The outer loop

at Step 3 also satis�es this because C is �nite and at least one element of C is removed for

each iteration. This is guaranteed by the fact that any channel is routable in isolation, so

that the routability test will succeed for at least r = ;.

The outer loop is run for at most jEcj iterations. For each iteration of the outer loop,

the inner loop is run for jCj iterations. In the worst case, C is diminished by only one

43

(-1,-1) (-1,0)

INPUT11

(-1,1)

p1

(-1,2)

p5

(-1,3)

(0,2)

(-1,4)

p7 OUTPUT4

(1,-1) p2 p3 p4 p6 (1,4)

(2,-1) (2,0) (2,1) (2,2) (2,3) (2,4)

Figure 4-6: First communication context of FIR �lter.

(-1,-1) (-1,0)

INPUT11

(-1,1)

p1

(-1,2)

p5

(-1,3)

(0,2)

(-1,4)

p7 OUTPUT4

(1,-1) p2 p3 p4 p6 (1,4)

(2,-1) (2,0) (2,1) (2,2) (2,3) (2,4)

Figure 4-7: Second communication context of FIR �lter.

element per iteration of the outer loop. In this case, the body of the inner loop is run

O(jEcj
2) times. The worst-case running time of RouteChannel is O(rm + cm). Since all

other operations can be implemented in constant time, the total worst-case running time of

GreedyCommSched is O(jEcj
2(rm + cm)). In practice, communication scheduling takes

much less time than placement. The worst-case space complexity is the space required to

hold the temporary set of occupied switches and the �nal schedule, which is O(rmcm+Ec).

Figures 4-6 and 4-7 show the results of communication scheduling for the example FIR

�lter. This example ends up having �ve contexts, but the �gures show just the �rst two.

For the complete picture, see Figure 4-4, in which channels of the same color belong to the

same context. Note that channels within the same context have no routing con
icts.

44

4.5 Code Generation

The �nal task of the SIFt compiler is to generate code for each of the switches and pro-

cessors. Standard techniques for converting expression trees into three-address code are

well-understood, and will not be described here in detail. Rather, this section focuses on

code generation for communication channels and communication primitives send! and

receive!. The algorithms for generating switch code and generating processor code share

the same input, but are otherwise independent. The common input is the communication

graph, placement, and communication schedule.

At runtime, the switches must cycle through the contexts of the communication schedule.

For each context, a switch involved in routing channel c must perform its part of the

route. The Raw switch processor has a very basic instruction set consisting of moves and

branches. In addition to this, each instruction has a routing component. This routing

component speci�es pairs of ports between which a single word should be transferred before

the instruction completes. For instance, the switch instruction \move $3, $cEi route

$cNi -> $cSo" stores the incoming value from the switch's eastern neighbor to a register

and transfers the value from its northern neighbor to its southern neighbor.

Each channel is routed using an adaptive shortest-path routing algorithm. Starting at

the source tile, the route is built one hop at a time, subject to three restrictions. First,

the route cannot use a switch that is already involved in routing a channel within the same

communication context. Second, each hop must bring the route closer to the destination

tile. Third, when given a choice between moving horizontally and vertically, the horizontal

hop is preferred. Only the �rst restriction is strictly necessary. The routing of the context

shown in Figure 4-6 is trivial, since each channel requires just one hop. The non-trivial

routing of Figure 4-7 is depicted in Figure 4-8.

The static network cycles through the communication contexts without regard to when

a channel will actually be used. Therefore, there must be some mechanism for the processor

to inform the network that a channel will not be used this time around. This is accomplished

by pre-sending a boolean value over the channel's route indicating whether an actual value

will be sent. The code in a switch �rst routes and examines this indicator, only routing the

actual value if it was non-zero. Figure 4-9 shows the �nal switch code for tile (0,0) of the

FIR �lter. This switch is involved in routing three di�erent channels.

45

(-1,-1) (-1,0)

(0,-1)

(-1,1)

(0,0)

(-1,2)

p5

(-1,3)

(0,2)

(-1,4)

(0,3) (0,4)

(1,-1) p2 p3 (1,2) p6 (1,4)

(2,-1) (2,0) (2,1) (2,2) (2,3) (2,4)

Figure 4-8: Routing of second communication context for FIR �lter.

label0:

move $3, $cWi route $cWi -> $csti

beqz $3, label1

nop

move $0, $0 route $cWi -> $csti

label1:

move $3, $csto route $csto -> $cSo

beqz $3, label2

nop

move $0, $0 route $csto -> $cSo

label2:

move $3, $csto route $csto -> $cEo

beqz $3, label3

nop

move $0, $0 route $csto -> $cEo

label3:

j label0

nop

$

Figure 4-9: Switch code for tile (0,0) of FIR �lter.

46

while (ccr != context(c)) {

if (isChannelSource(ccr)) {

// Pre-send a false indicator.

writeSwitch(0);

}

if (isChannelDest(ccr)) {

// Check the pre-sent indicator.

if (readSwitch()) {

// Read and buffer this value.

enqueue(ccr, readSwitch());

}

}

ccr += 1;

}

Figure 4-10: Forcing the network to proceed to a particular channel's context.

The code generated on a processor for each send! form must �rst ensure that the static

network has reached the appropriate communication context before writing a value to the

switch. The code generated for a receive! must do the same before reading a value from

the switch. The logic that does this is shown in Figure 4-10; this is placed inline into the

generated code.

Assume that c is the channel speci�ed in the communication primitive. Each processor

maintains a variable ccr that tracks the current communication context of the network.

isChannelSource and isChannelDest are predicates that tell whether a given context

contains a channel that has an endpoint at the current tile. If there is a channel with its

source at the current tile, the processor informs the network that nothing will be sent over

it. If there is a channel with its destination at the current tile, the processor checks whether

a value is being sent over it, and if so, bu�ers that value. Separate bu�ers are kept for each

context.

In reality, the while loop shown in the �gure will be fully unrolled in the generated code.

This allows the increment of ccr and the branch at the end of the loop to be eliminated.

It also facilitates elimination of the redundant checks implicit in isChannelSource and

isChannelDest. These checks are redundant because the value of ccr on entry to the

code completely determines the sequence of reads and writes to the switch that need to be

performed. The unrolled code simply checks ccr on entry and branches to the appropriate

47

sl0:

move $13, $0

beq $12, $13, sl2

nop

addiu $9, $0, 1

beq $12, $9, sl3

nop

addiu $10, $0, 2

beq $12, $10, sl4

nop

addiu $11, $0, 3

beq $12, $11, sl5

nop

sl3:

ori $csto, $0, 0

sl4:

ori $csto, $0, 0

sl5:

sl2:

addiu $12, $0, 1

or $14, $csti, $0

beq $14, $0, sl6

nop

or $14, $csti, $0

j __done17

nop

sl6:

Figure 4-11: Code generated to force the network to proceed.

point in this sequence. Figure 4-11 shows an example of this code sequence from tile (0,0)

of the example FIR �lter. This tile is the destination of a channel in context 0, and the

source of a channel in contexts 1 and 2. The code sequence attempts to proceed to context

0, assuming that register 12 is used as ccr. Another alternative is to use a jump table

rather than a series of branches.

The code generated for a send! consists of this preprocessing step followed by pre-

sending the value 1 and then sending the argument value. The code generated for a

receive! is more complicated. It �rst checks whether any values have been bu�ered

for the given channel. If so, it returns the oldest such value. Otherwise, it enters a loop

consisting of the preprocessing step followed by reading the pre-sent indicator. If the indi-

cator is non-zero, then it reads and returns the actual value. Otherwise, it repeats the loop,

48

waiting for the next time that the appropriate context is reached.

Note that this requires I/O devices to be aware of indicator values. In particular, input

devices must generate them and output devices must accept them. This onus could be

removed by using the dynamic network for device channels, relying on the hardware
ow-

control to determine when values are available.

49

Chapter 5

Optimization

The compilation scheme presented in Chapter 4 correctly transforms a SIFt program into

code for a given Raw architecture. However, the quality of that code could be vastly im-

proved. This chapter discusses three optimization opportunities aimed at improving both

the processor and switch communication code. Section 5.1 shows how the code for send!

and receive! on the processors can be improved by propagating information about the

communication context register. Section 5.2 argues that analyzing the communication pat-

terns of the entire program will allow the compiler to make better decisions about placement

and communication scheduling.

5.1 Propagating the Communication Context

Even with loop unrolling, the code sequence used to force the network to a particular context

(Figure 4-10) is fairly heavy-weight. This is unacceptable because streaming applications

engage in a lot of communication. The expense of communication primitives directly limits

how much pipeline parallelism can be gainfully exploited. However, this expense can be

reduced by making compile-time inferences about the dynamic state of the network. In par-

ticular, the value in the communication context register ccr can be propagated throughout

the body of a process. Wherever it is known that ccr can only carry a restricted set of

values, the forcing code can be pared down to check for just those values. For instance,

consider the code shown in Figure 4-11. If the compiler can infer that the value of ccr is

always 2 at this program point, then the code can be optimized as shown in Figure 5-1.

The value analysis of ccr is presented as a set of inference rules in Figure 5-2. As in

50

ori $csto, $0, 0

addiu $12, $0, 1

or $14, $csti, $0

beq $14, $0, sl6

nop

or $14, $csti, $0

j __done17

nop

sl6:

Figure 5-1: Optimized code for forcing the network to proceed.

Section 3.3, each inference rule consists of an antecedent and consequent separated by a

horizontal line. The rules summarize how expressions a�ect the set of possible values for

ccr. The notation A ` E : A0 means \given that the set of possible current values for ccr is

A, the set of possible values for ccr after evaluating E is A0". Lack of anything to the left of

` means that the prior approximation has no bearing on the new one. The helper function

context-of maps a channel identi�er to the context to which it belongs, and next-context

maps a context to the next one in the cycle. The number of communication contexts is

represented by nc.

According to the literal and variable rules, trivial expressions have no e�ect on ccr. The

primop, let, and begin rules show that these types of expressions indirectly a�ect ccr through

their subexpressions, and based on sequentially chaining the e�ects of those subexpressions.

The if rule is similar, except that the approximations from the two sides are joined via

the union operator. The label and goto rules are described below. The send! and receive!

rules are the only ones that add information to the approximation, since the communication

context is precisely known following every send! and receive! expression.

The analysis is conservative, meaning that the approximation at a given program point

may contain values of ccr that are not realizable at that program point. However, the

approximation will never fail to include a possible value. An example of this conservatism

is found in the label and goto rules. They do not allow feedback from a goto to the entry of

the corresponding label expression. Rather, nothing is assumed about ccr at the entry of

the body of the label expression. This sacri�ces precision in exchange for simplicity and

e�ciency of the analysis.

These inference rules serve as a roadmap for an analysis algorithm. The actual imple-

51

A ` L : A [literal]

A ` I : A [variable]

A ` E1 : A1;

A1 ` E2 : A2;

: : :;

An�1 ` En : An

A ` (primop O E1 E2 : : : En) : An

[primop]

A ` Etest : Atest;

Atest ` Econ : Acon;

Atest ` Ealt : Aalt

A ` (if Etest Econ Ealt) : (Acon [Aalt)

[if]

A ` E1 : A1;

A1 ` E0 : A0

A ` (let ((I1 E1)) E0) : A0

[let]

A ` E1 : A1;

A1 ` E2 : A2;

: : :;

An�1 ` En : An

A ` (begin E1 E2 : : : En) : An

[begin]

f0; 1; :::; ncg ` E : A0

` (label I E) : A0
[label]

` (goto I) : ; [goto]

A ` E : A0

A ` (send! I E) : f(next-context (context-of I))g
[send!]

` (receive! I) : f(next-context (context-of I))g [receive!]

Figure 5-2: Inference rules for propagating ccr.

52

mentation would annotate each send! and receive! expression with the set of possible

values of ccr at the program point immediately preceding the expression. The processor

code generator could emit code that only handles the values in this approximation. In the

best case, the approximation is a singleton set, and the code need not branch on ccr at all.

5.2 Analyzing Communication Patterns

As described, the SIFt compiler does very little to understand the communication patterns

of the input program. The analysis phase simply builds a communication graph, which

can only tell later phases which pairs of processes engage in communication. This level of

abstraction ignores both the order in which channels are used and the amount of commu-

nication over a given channel. This more detailed information could improve the heuristics

used during placement and communication scheduling.

For instance, consider the example four-tap FIR �lter listed in Figure 3-10. Process p1

repeatedly reads from input channel in, writes to channel c1, and writes to channel c4,

in that order. If the communication schedule produced by the compiler places in, c1, and

c4 in contexts that are scheduled in some other order, then network bandwidth will be

wasted as channel slots are regularly and repeatedly canceled at runtime. Assuming that

the channels are scheduled in the order in, c4, c1 (and input is always available on in),

then half of the slots reserved for these three channels will be canceled.

How can this ine�ciency be remedied? The �rst step is to extract ordering information

on the use of channels within the same process. This would include such assertions as \a

receive on channel c is always immediately preceded by a send on channel d". The second

step is to use this information to guide communication scheduling. Such an algorithm could

take one of two approaches. It could construct from scratch a schedule that closely matches

the ordering information. Alternatively, it could iteratively improve a schedule using a cost

function based on the ordering information.

Beyond the order in which channels are utilized, there is also the issue of the volume

of data communicated over a channel. The cost function for placement assumes that all

channels are created equal, requiring the same amount of network bandwidth. This can

be a very detrimental assumption for a program that heavily reduces or expands its input

streams. If the programmer had intimate knowledge of this de�ciency, then she could com-

53

pensate by splitting the heavily-used channel into multiple channels. The communication

along the original channel could then be spread out across several channels.

Requiring the programmer to engage in such trickery is reprehensible. Not only does

it unnecessarily complicate program construction, but it also relies on properties of the

compiler's internals that might change over time. Therefore, the compiler itself should infer

which channels are used most heavily and adjust its heuristics accordingly. Given relative

utilization information for the channels in a program, the compiler could apply it to two

simple optimizations.

The �rst optimization would use the information to place weights on the edges of the

communication graph. The weight of an edge would be proportional to its relative utilization

metric. In the placement cost function, this weight would be used as a multiplier on the

cost of routing the corresponding channel. The heavily used channels would thereby have

more importance in placement decisions.

The second optimization would allow a single channel to exist in multiple communica-

tion contexts. This is essentially an automatic version of the channel splitting manually

performed by the programmer in the above scenario. The number of contexts that a given

channel is placed in would be proportional to its relative utilization metric. At runtime,

each send! or receive! on that channel would use whichever of these contexts is �rst

encountered.

Of course, these optimizations assume that this relative utilization information is avail-

able. Actually extracting this information from the source program is the di�cult part. A

detailed solution to this analysis problem is not presented herein. However, a successful

algorithm will likely involve global analysis, since the relative rates of communication on

di�erent channels are highly interdependent.

This section has focused on static analysis of the input program. However, runtime

pro�ling can also provide the information needed for these optimizations. For ordering

information, the relevant data to collect is the pattern of channel slot cancellations. For

relative utilization information, the relevant data to collect is the actual volume of data

transferred over each channel.

54

Chapter 6

Results

This chapter evaluates the results of the compilation scheme presented in Chapter 4. In

particular, these results do not include the optimizations discussed in Chapter 5. Section 6.1

describes the benchmark programs and the target architecture used for the experiments.

Section 6.2 presents and discusses the actual results.

6.1 Evaluation Environment

Four types of benchmark programs were used to evaluate the correctness and performance

of the SIFt compiler. These applications were chosen for their streaming structure.

Bu�er simply passes elements of the input stream to the output stream unmodi�ed. It

does this by passing the elements down a long chain of processes. Since this type of

program performs no computation, it really stresses the communication code. Four

such programs were used, each one tailored to one, two, four, or eight tiles. Figure 6-1

shows the placement of the eight-tile version.

Adder implements an adder tree in which each process produces its output stream by

pairwise addition of two input streams. Again, four such programs were used, each

one tailored to one, two, four, or eight tiles. Each of the four programs takes a di�erent

number of input streams. Figure 6-2 shows the placement of the eight-tile version.

FIR �lter implements a �nite impulse response �lter as described in Section 3.4. There

are di�erent versions for four-, eight-, and sixteen-tile con�gurations. These programs

55

(-1,-1) (-1,0)

INPUT11

(-1,1)

p0

(-1,2)

p3

(-1,3)

p4

(-1,4)

p7 OUTPUT4

(1,-1) p1 p2 p5 p6 (1,4)

(2,-1) (2,0) (2,1) (2,2) (2,3) (2,4)

Figure 6-1: Placement of eight-tile bu�er program.

(-1,-1) INPUT0

INPUT11

INPUT1

p5 p3

(-1,2) (-1,3)

p6

(-1,4)

(0,3) OUTPUT4

INPUT10 p2 p1 p4 p0 (1,4)

(2,-1) INPUT9 INPUT8 INPUT7 INPUT6 (2,4)

Figure 6-2: Placement of eight-tile adder program.

56

(-1,-1) INPUT0

(0,-1)

INPUT1

(0,0)

mul0

INPUT2

add0

INPUT3

(0,2)

add1

(-1,4)

mul1 (0,4)

(1,-1) xor0 xor1

xor4

mul2

xor5

(1,4)

(2,-1)

xor3

add2 add3 (2,4)

(3,-1) xor2

OUTPUT9

mul3 (3,4)

(4,-1) OUTPUT11 OUTPUT10 OUTPUT8 (4,4)

Figure 6-3: Placement of sixteen-tile IDEA program.

implement two-, four-, and nine-tap �lters, respectively. One possible placement of

the eight-tile version was shown in Figure 4-4.

IDEA implements a single round of the International Data Encryption Algorithm [19],

whose full implementation consists of eight such rounds. The encryption key is a

compile-time constant. This sixteen-tile program consumes four input streams and

produces four output streams. It consists of a complicated network of exclusive-or,

add, and multiply operations. Figure 6-3 shows a placement of the IDEA program.

Each program was compiled with the SIFt compiler and run on bug, the extensible Raw

debugger. bug takes a Raw binary as input and simulates its execution on the appropriate

Raw con�guration. Further, it provides support for external devices with user-de�ned

behavior. This facility was used to implement input and output streams for device channels.

The end result of each execution is a set of �les containing the sequence of values on each

output channel, as well as the number of cycles executed.

For comparison purposes, an equivalent sequential C program was written for each of

the SIFt programs. The C programs were compiled using RawCC, the Raw parallelizing

compiler that exploits instruction-level parallelism (ILP). The resulting programs were run

on the Raw debugger, and their outputs were used to verify the correctness of the SIFt

programs.

57

Program Number of Tiles

1 2 4 8 16

bu�er 32.8 31.6 27.2 26.4 {

adder 39.5 57.7 65.4 92.1 {

FIR { { 16.2 16.7 10.5

IDEA { { { { 24.0

Table 6.1: Throughput of SIFt programs (inputs processed per kilocycle).

Program Number of Tiles

1 2 4 8 16

bu�er 162.1 163.9 165.3 165.6 {

adder 245.4 294.1 326.5 397.0 {

FIR { { 80.0 79.1 29.2

IDEA { { { { 19.7

Table 6.2: Throughput of C programs (inputs processed per kilocycle).

6.2 Experimental Results

Figure 6.1 shows the throughput of our benchmarks, in terms of number of input words

processed per 1000 cycles. Figure 6.2 shows the analogous results for the sequential C

programs compiled using RawCC.

The SIFt bu�er benchmark degrades in performance as the number of tiles increases

(Figure 6-4). In a perfect world, the number of tiles would a�ect the latency of this bench-

mark but not the throughput. The observed phenomenon is caused by the greedy commu-

nication scheduling algorithm. All four versions of the bu�er benchmark can be scheduled

using just two communication contexts. However, the algorithm comes up with suboptimal

schedules in the four- and eight-tile versions that each use three contexts.

The SIFt adder benchmark improves in performance as the number of tiles increases

(Figure 6-5). This is because the larger versions of the program add greater number of input

streams, thereby increasing the merge parallelism that can be exploited. The processes

representing adders at the leaves of the adder tree can all operate concurrently.

The SIFt FIR �lter benchmark has fairly
at performance on four and eight tiles, but

degrades sharply on sixteen tiles (Figure 6-6). One possible reason for this is that the

four and eight tile con�gurations are a better match for an FIR �lter's communication

58

Performance of Buffer Benchmark

0

20

40

60

80

100

120

140

160

180

buffer-1 buffer-2 buffer-4 buffer-8

Benchmark

T
h

ro
u

g
h

p
u

t
(i

n
p

u
ts

/k
ilo

cy
cl

e)

SIFt

RawCC

Figure 6-4: Performance of bu�er benchmark.

Performance of Adder Benchmark

0

50

100

150

200

250

300

350

400

450

adder-1 adder-2 adder-4 adder-8

Benchmark

T
h

ro
u

g
h

p
u

t
(i

n
p

u
ts

/k
ilo

cy
cl

e)

SIFt
RawCC

Figure 6-5: Performance of adder benchmark.

59

Performance of FIR Filter Benchmark

0

10

20

30

40

50

60

70

80

90

fir-4 fir-8 fir-16

Benchmark

T
h

ro
u

g
h

p
u

t
(i

n
p

u
ts

/k
ilo

cy
cl

e)

SIFt

RawCC

Figure 6-6: Performance of FIR �lter benchmark.

graph. The sixteen-tile benchmarks all use a four-by-four con�guration, whereas the more

elongated two-by-eight con�guration might yield better performance in this case.

Most of the throughput �gures for the auto-parallelized programs are appallingly better

than those for the SIFt programs. This is not at all surprising for the bu�er and adder

benchmarks, which are very communication-heavy. The negative result for the FIR �lter is

more enlightening, and suggests that the optimizations of Chapter 5 are absolutely necessary

to surpass what can already be achieved by exploiting ILP.

The comparative results for the IDEA benchmark are much more encouraging (Figure 6-

7). The throughput of the SIFt version exceeds that of the C version by 22%. This is because

the IDEA benchmark is not as much of a \toy" benchmark as the others, particularly

because it has nontrivial control
ow within each process. The SIFt compilation scheme

allows the processors and switches to have entirely decoupled control
ow. On the other

hand, RawCC's compilation scheme requires that all processors and switches be at roughly

the same control point at all times. This incurs the overhead of distributing the results of

each branch instruction across the entire chip. Another contributing factor is that RawCC

uses a less sophisticated instruction placement algorithm than the SIFt compiler (i.e., hill-

climbing rather than simulated annealing).

60

Performance of IDEA Benchmark

0

5

10

15

20

25

30

idea-16

Benchmark

T
h

ro
u

g
h

p
u

t
(i

n
p

u
ts

/k
ilo

cy
cl

e)

SIFt
RawCC

Figure 6-7: Performance of IDEA benchmark.

61

Chapter 7

Conclusion

7.1 Summary

With the proliferation of multimedia applications and wireless computing, streaming appli-

cations have become an important component of typical computing workloads. Programs

written using streams exhibit a large degree of parallelism that can be exploited by novel

hardware and software designs. Research in hardware geared towards streaming applica-

tions has progressed rapidly over the past several years. However, specialized compiler

techniques for such programs has not matched this progress. To that end, this paper has

presented an intermediate format and compilation technique for streaming applications, and

musings about possible low-level optimization techniques.

The computer science concept of a stream has been around for some time. A stream is

simply an ordered sequence of values, typically operated upon in order and just a few values

at a time. Several theoretical and practical languages have been designed for streaming ap-

plications. The most in
uential theoretical language is the �-calculus, which characterizes

a concurrent program as a set of processes communicating with one another through chan-

nels. The compiler intermediate format presented in this paper, SIFt, follows this high-level

paradigm.

A SIFt program consists of a �xed set of processes communicating through a �xed set

of channels. The body of a process is composed of expressions, which include many of the

constructs found in a modern programming language such as C. In addition, communication

primitives are provided for sending and receiving values through channels. The base types

in SIFt include integers, booleans, and
oating point values. Richer types such as arrays,

62

pointers, and structures are not present in this prototype. The semantics of computation

in SIFt is fairly standard and intuitive. The semantics of communication are more interest-

ing. Channels are unidirectional and static; each channel can communicate values between

exactly two processes in one direction only. Conceptually, each channel is a FIFO queue;

send operations add a value to the tail, while receive operations consume a value from the

head.

The prototype SIFt compiler consists of �ve major phases: parsing, analysis, placement,

communication scheduling, and code generation. The end result is code that can be fed into

the Raw MachSUIF backend to generate a Raw binary. The analysis phase performs some

static semantic checks and builds a communication graph of the program. The placement

phase uses an optimization technique called simulated annealing to �nd an e�cient assign-

ment of processes to tiles. The communication scheduling phase uses a greedy algorithm

to partition the set of channels into subsets (called \communication contexts") that can be

trivially scheduled on the interconnection network. The code generation phase generates

an instruction stream for each processor and switch in the target con�guration. Most no-

tably, it routes the channels and handles the details of cycling the interconnection network

through the communication contexts. The entire compiler is implemented in fewer than

7000 lines of Java code.

The code generated by this basic compilation scheme is far from optimal. By propa-

gating static information about the current communication context, the code for send and

receive operations on the processor can be vastly simpli�ed. The propagation algorithm was

summarized in a small set of inference rules that should be quite simple to implement. Fur-

ther gains could be achieved by analyzing and leveraging the static communication patterns

in a program. In particular, the order in which channels are typically used and the rela-

tive volume of communication on di�erent channels would come in handy. The placement

and communication scheduling phases could use this information to make better heuristic

decisions.

The correctness and performance of the compiler (without the optimizations) were eval-

uated using four types of hand-written benchmarks. Output and performance numbers were

obtained by simulating the compiled programs on the Raw debugger. These were compared

to the output and performance of equivalent C programs compiled with RawCC, the auto-

parallelizing compiler for Raw. All of the SIFt programs generated correct output. The

63

throughput of most of the SIFt programs were abysmal compared to their auto-parallelized

counterparts. This suggests that the aforementioned optimizations are necessary in order

to surpass what is already achievable by exploiting instruction-level parallelism in these toy

programs. The largest and most realistic program in the benchmark suite, IDEA encryption,

outperformed the auto-parallelized version by 22%. After applying the optimizations, such

programs should show much more dramatic improvement, perhaps increasing throughput

by integer factors.

7.2 Future Work

Judging from the performance results, the �rst piece of future work should be implementing

and evaluating the optimizations described in Chapter 5. Propagation of the communication

cycle register is the low-hanging fruit here, since the analysis algorithm has already been

laid out. With the results of that analysis available, eliminating unnecessary overhead in

the code generated for send! and receive! operations should be straightforward. The

optimizations based on compile-time analysis of communication patterns will require much

more
eshing out.

Almost as important is �lling out the feature space of the intermediate format. The

lack of functions, globally-accessible data, structures, and arrays, makes it di�cult to im-

plement large real-life applications. Such applications include the full IDEA encryption and

decryption algorithms, a software radio receiver, and a pipelined Internet Protocol router a

la the Click modular router [15]. Adding all of these language features to the current SIFt

infrastructure would be prohibitively labor-intensive. Rather, a well-known intermediate

format such as SUIF, extended to include communication primitives, could be used for the

body of SIFt processes. This would have the added bene�t of integrating nicely with the

RawCC infrastructure.

The construction of almost any software system comes with di�cult tradeo�s that must

be resolved. The design of the SIFt compiler was no exception. Throughout this paper,

several design decisions have been mentioned, both with and without justi�cation. Explor-

ing alternatives to these decisions will be an important component of future work on the

system. The parameters of the placement algorithm (i.e., temperature decay rate, num-

ber of iterations per temperature, etc.) could be adjusted to elucidate their e�ects on

64

performance. Going further, one could experiment with entirely di�erent placement algo-

rithms. The greedy algorithm used for communication scheduling should almost certainly

be replaced. Examining its output reveals some very poor scheduling choices for even the

simplest communication graphs.

The explanations for the observed performance have thus far been mostly speculation.

Studying in more detail the source of performance bottlenecks would help to guide e�orts to

eliminate them. For instance, it would be helpful to know the fraction of network bandwidth

used for indicator bits versus actual data. This could be accomplished by augmenting the

simulator or instrumenting the program to emit such information. This pro�le-gathering

framework could also be used as a source for pro�le-directed optimizations.

Some of the most exciting and challenging future work will be transforming a sequen-

tial program with an implied streaming structure into SIFt's explicitly-streaming format.

Preliminary research has shown that even some traditional scienti�c applications such as

LU decomposition have an underlying streaming structure [23]. High-level optimizations

on streams, of which retiming and repartitioning are just two examples, have also yet to be

explored.

65

Appendix A

Using the SIFt Compiler

The SIFt compiler runs in the operating environment of the Computer Architecture Group

at the MIT Laboratory for Computer Science. This appendix enumerates the steps for

installing the compiler and using it to compile your own SIFt programs.

A.1 Installing the Compiler

Since there is no global installation of the compiler, the user must checkout his own private

copy of the source tree from the CVS repository.

~> cvs -d /projects/raw/cvsroot checkout sift

This creates a local copy of the source tree in the \sift" directory. The next step is to

compile the compiler, which must be done using a Java 1.2-compliant compiler.

~> setenv JAVA_HOME /usr/uns/jdk1.2.1

~> setenv CLASSPATH ~/sift:$CLASSPATH

~> make -C sift

This creates the class�les for packages sift.format, sift.parser, sift.analysis,

sift.codegen, and sift.compiler. The entry-point for the Java portion of the compiler

is sift.compiler.Main, which is invoked by the top-level driver siftc.pl, located in

sift/util/.

The SIFt compiler uses the same backend as the RawCC compiler. Therefore, the

environment variables required for RawCC must be initialized. As of this writing, the

following should be su�cient:

~> setenv RAWCCDIR /projects/raw/current/rawcc

~> setenv SUIFDIR /projects/raw/current/suif

~> setenv PATH $RAWCCDIR/compiler/bin:$SUIFDIR/bin:$PATH

~> setenv LD_LIBRARY_PATH $RAWCCDIR/compiler/lib:$SUIFDIR/lib

66

If you have checked out the system into a directory other than $HOME/sift/, be sure to

set the SIFT HOME environment variable to that directory's pathname. Alternatively, you

can create a symbolic link from $HOME/sift/ to the installed directory.

A.2 Compiling a Program

The compiler requires two �les as input, the �rst being the SIFt program. The other �le

describes the location of I/O devices on the periphery of the chip. The compiler needs

this information in order to set up the simulation directory. The syntax of the SIFt pro-

gram �le follows the grammar shown in Figure 3-2; extra whitespace is ignored. This

program �le must be named <progname>.sift. Likewise, the device �le must be named

<progname>.dev. The device �le consists of zero or more device speci�cations. Each device

speci�cation occupies a single line and contains four whitespace-separated �elds.

The �rst �eld gives the kind of device, which can be \input" or \output". The second

�eld contains the port number, which speci�es the location of the device. Ports are num-

bered starting with zero immediately to the north of tile (0,0) and moving counter-clockwise

around the periphery of the mesh. The third �eld speci�es the type of data, which can be

\int", \
oat", or \bool". The �nal �eld is the pathname of the text �le that backs this

stream. For an input device, this �le contains a series of whitespace-separated data values

that will be emitted by the device. For an output device, this �le will contain the data

values output by the program on that port during execution. An example device �le for

the program in Figure 3-10 looks like the following:

input 11 int input.txt

output 4 int output.txt

The program �le, device �le, and input data �les should all be placed in a single directory.

The SIFt compiler can then be invoked from within that directory:

% siftc.pl <progname> <nrows> <ncols>

The siftc.pl script performs four major steps. It begins by running the SIFt compiler

sift.compiler.Main, which generates a raft of C++ code that is tailored to output the

low SUIF code for the compiled program. This convoluted intermediate step is required

because there is no easy way to emit the SUIF binary format from a Java program. The

script then compiles and runs the C++ program, which generates a single �le containing

the low SUIF. This �le is fed through a series of SUIF and MachSUIF passes similar to the

code generator for RawCC, resulting in a Raw binary. Finally, the script copies the binary,

the input stream data �les, and the bC startup code for initializing the attached devices

into a subdirectory called run.

The resulting program can be run using the Raw simulator, bug. This can be accom-

plished by entering the run directory and invoking the simulator as follows:

% bug -f code.raw

67

Note that the program will wait for input on its input ports even after the data that you

provided has been exhausted. After quitting the simulator, all output should be available

in the �les speci�ed in the device �le.

The future holds two major changes for the SIFt compiler. The �rst change will be the

ability to write programs in a superset of C that is augmented with processes and channels.

This will much easier construction of real-life large-scale streaming applications. It will also

allow closer integration with the RawCC infrastructure. The second change will make the

output of the compiler compatible with btl, the new Raw simulator.

68

Appendix B

Extended Example: IDEA

This appendix presents an extended compilation example using the IDEA benchmark de-

scribed in Section 6.1. For a description of IDEA, refer to Schneier [19]. This benchmark

takes four 16-bit input streams and applies one round of IDEA encryption to them to

generate four 16-bit output streams. The encryption key is a compile-time constant.

Figure B-1 shows the �rst part of the SIFt source code, which declares the four input

channels, a multitude of internal channels, and the four output channels. The port numbers

assigned to the device channels have the inputs coming into the top of the chip and the

outputs coming out the bottom.

Figure B-2 shows the SIFt code for the multiplier processes. Multiplication is done

modulo 216+1, with 0 representing 216. The z? variables are 16-bit chunks of the encryption

key.

Figure B-3 shows the SIFt code for the adder processes. Addition is done modulo 216,

with the modulo operation implemented as a bitwise AND.

Figure B-4 shows the �nal portion of SIFt code, which implements the exclusive-OR

processes. Note that many of the processes have the same structure, resulting in a lot of

code duplication. This could be alleviated quite simply by adding functions or macros to

the language.

Sifting through the code does little to elucidate the structure of the program. The

communication graph in Figure B-5 does a better job of that. This graph was automatically

generated by the analysis phase of the SIFt compiler.

Figure B-6 shows the results of the placing this communication graph onto a 4x4 Raw

con�guration. This graph was automatically generated by the placement phase of the SIFt

compiler.

Finally, Figures B-7, B-8, B-9, B-10, B-11, B-12, and B-13 show the results of com-

munication scheduling. These graphs were automatically generated by the communication

scheduling phase of the SIFt compiler. Note that the �nal three communication contexts

are very sparse, a result of the greedy communication scheduling algorithm. A more sophis-

ticated algorithm could probably �nd a schedule consisting of one or two fewer contexts.

The performance of the compiled program on the Raw simulator is shown in Section 6.2.

69

(program

(define x1 (input 0 int))

(define x2 (input 1 int))

(define x3 (input 2 int))

(define x4 (input 3 int))

(define mul0.in (channel int))

(define mul1.in (channel int))

(define mul2.in (channel int))

(define mul3.in (channel int))

(define add0.in0 (channel int)) (define add0.in1 (channel int))

(define add1.in0 (channel int)) (define add1.in1 (channel int))

(define add2.in0 (channel int)) (define add2.in1 (channel int))

(define add3.in0 (channel int)) (define add3.in1 (channel int))

(define xor0.in0 (channel int)) (define xor0.in1 (channel int))

(define xor1.in0 (channel int)) (define xor1.in1 (channel int))

(define xor2.in0 (channel int)) (define xor2.in1 (channel int))

(define xor3.in0 (channel int)) (define xor3.in1 (channel int))

(define xor4.in0 (channel int)) (define xor4.in1 (channel int))

(define xor5.in0 (channel int)) (define xor5.in1 (channel int))

(define y1 (output 11 int))

(define y2 (output 10 int))

(define y3 (output 9 int))

(define y4 (output 8 int))

Figure B-1: SIFt code for IDEA benchmark, part 1.

70

(define mul0 (process

(let ((z1 22896))

(label loop

(let ((v (receive! x1)))

(let ((m (primop * (if (primop = v 0) 65536 v) z1)))

(let ((r (primop & (primop % m 65537) 65535)))

(begin

(send! xor0.in0 r)

(send! xor2.in0 r)

(goto loop)))))))))

(define mul1 (process

(let ((z4 34761))

(label loop

(let ((v (receive! x4)))

(let ((m (primop * (if (primop = v 0) 65536 v) z4)))

(let ((r (primop & (primop % m 65537) 65535)))

(begin

(send! xor1.in1 r)

(send! xor5.in0 r)

(goto loop)))))))))

(define mul2 (process

(let ((z5 34014))

(label loop

(let ((v (receive! mul2.in)))

(let ((m (primop * (if (primop = v 0) 65536 v) z5)))

(let ((r (primop & (primop % m 65537) 65535)))

(begin

(send! add3.in0 r)

(send! add2.in0 r)

(goto loop)))))))))

(define mul3 (process

(let ((z6 39231))

(label loop

(let ((v (receive! mul3.in)))

(let ((m (primop * (if (primop = v 0) 65536 v) z6)))

(let ((r (primop & (primop % m 65537) 65535)))

(begin

(send! add3.in1 r)

(send! xor2.in1 r)

(send! xor3.in1 r)

(goto loop)))))))))

Figure B-2: SIFt code for IDEA benchmark, part 2.

71

(define add0 (process

(let ((z2 52540))

(label loop

(let ((v (receive! x2)))

(let ((a (primop + v z2)))

(let ((r (primop & a 65535)))

(begin

(send! xor1.in0 r)

(send! xor4.in0 r)

(goto loop)))))))))

(define add1 (process

(let ((z3 41445))

(label loop

(let ((v (receive! x3)))

(let ((a (primop + v z3)))

(let ((r (primop & a 65535)))

(begin

(send! xor0.in1 r)

(send! xor3.in0 r)

(goto loop)))))))))

(define add2 (process

(label loop

(let ((v0 (receive! add2.in0))

(v1 (receive! add2.in1)))

(let ((a (primop + v0 v1)))

(begin

(send! mul3.in (primop & a 65535))

(goto loop)))))))

(define add3 (process

(label loop

(let ((v0 (receive! add3.in0))

(v1 (receive! add3.in1)))

(let ((a (primop + v0 v1)))

(let ((r (primop & a 65535)))

(begin

(send! xor4.in1 r)

(send! xor5.in1 r)

(goto loop))))))))

Figure B-3: SIFt code for IDEA benchmark, part 3.

72

(define xor0 (process

(label loop

(let ((v0 (receive! xor0.in0))

(v1 (receive! xor0.in1)))

(begin

(send! mul2.in (primop ^ v0 v1))

(goto loop))))))

(define xor1 (process

(label loop

(let ((v0 (receive! xor1.in0))

(v1 (receive! xor1.in1)))

(begin

(send! add2.in1 (primop ^ v0 v1))

(goto loop))))))

(define xor2 (process

(label loop

(let ((v0 (receive! xor2.in0))

(v1 (receive! xor2.in1)))

(begin

(send! y1 (primop ^ v0 v1))

(goto loop))))))

(define xor3 (process

(label loop

(let ((v0 (receive! xor3.in0))

(v1 (receive! xor3.in1)))

(begin

(send! y2 (primop ^ v0 v1))

(goto loop))))))

(define xor4 (process

(label loop

(let ((v0 (receive! xor4.in0))

(v1 (receive! xor4.in1)))

(begin

(send! y3 (primop ^ v0 v1))

(goto loop))))))

(define xor5 (process

(label loop

(let ((v0 (receive! xor5.in0))

(v1 (receive! xor5.in1)))

(begin

(send! y4 (primop ^ v0 v1))

(goto loop))))))

)

Figure B-4: SIFt code for IDEA benchmark, part 4.

73

xor0

mul2

mul2.in

add3

add3.in0

add2

add2.in0

mul3

xor2

xor2.in1

xor3

xor3.in1 add3.in1

OUTPUT11

y1

OUTPUT10

y2

xor4

xor4.in1

xor5

xor5.in1

xor1

add2.in1

mul3.in

add0

xor1.in0

xor4.in0

OUTPUT9

y3

OUTPUT8

y4

mul1

xor1.in1

xor5.in0

add1

xor0.in1

xor3.in0

mul0

xor0.in0

xor2.in0

INPUT3

x4

INPUT2

x3

INPUT1

x2

INPUT0

x1

Figure B-5: Communication graph of IDEA benchmark.

(-1,-1) INPUT0

(0,-1)

INPUT1

xor0

mul0

INPUT2

add1 add0

INPUT3 (-1,4)

(0,3)

mul1

(0,4)

(1,-1) mul2add2

xor3

xor1

xor4

(1,4)

(2,-1) xor2

mul3 add3

(2,4)

(3,-1) (3,0)

OUTPUT11 OUTPUT10 OUTPUT9

xor5 (3,4)

(4,-1) OUTPUT8 (4,4)

Figure B-6: Placement of IDEA benchmark on 4x4 Raw chip.

74

(-1,-1) INPUT0

(0,-1)

INPUT1

xor0

mul0

INPUT2

add1 add0

INPUT3 (-1,4)

(0,3) (0,4)

(1,-1) add2 mul2 xor1 (1,4)

(2,-1) xor2 xor3 xor4 mul1 (2,4)

(3,-1) (3,0)

OUTPUT11

mul3

OUTPUT10

add3

OUTPUT9

xor5 (3,4)

(4,-1) OUTPUT8 (4,4)

Figure B-7: Communication context 0 of IDEA benchmark.

(-1,-1) INPUT0

(0,-1)

INPUT1

xor0

INPUT2

add1

INPUT3

add0

(-1,4)

(0,3) (0,4)

(1,-1) mul0 add2 mul2 xor1 (1,4)

(2,-1) xor2 xor3 xor4 mul1 (2,4)

(3,-1) (3,0) mul3 add3 xor5 (3,4)

(4,-1) OUTPUT11 OUTPUT10 OUTPUT9 OUTPUT8 (4,4)

Figure B-8: Communication context 1 of IDEA benchmark.

75

(-1,-1) INPUT0

(0,-1)

INPUT1

xor0

INPUT2

add1

INPUT3

add0

(-1,4)

(0,3)

mul1

(0,4)

(1,-1) mul0 add2 mul2 xor1 (1,4)

(2,-1) xor2 xor3

mul3

xor4 (2,4)

(3,-1) (3,0) add3 xor5 (3,4)

(4,-1) OUTPUT11 OUTPUT10 OUTPUT9 OUTPUT8 (4,4)

Figure B-9: Communication context 2 of IDEA benchmark.

(-1,-1) INPUT0

(0,-1)

INPUT1

xor0

INPUT2

add1

INPUT3

add0

(-1,4)

(0,3) (0,4)

(1,-1) mul0 add2

xor3

mul2 xor1 (1,4)

(2,-1) xor2 xor4 mul1 (2,4)

(3,-1) (3,0) mul3 add3 xor5 (3,4)

(4,-1) OUTPUT11 OUTPUT10 OUTPUT9 OUTPUT8 (4,4)

Figure B-10: Communication context 3 of IDEA benchmark.

76

(-1,-1) INPUT0

(0,-1)

INPUT1

xor0

INPUT2

add1

INPUT3

add0

(-1,4)

(0,3) (0,4)

(1,-1) mul0 add2 mul2 xor1 (1,4)

(2,-1) xor2 xor3 xor4

add3

mul1 (2,4)

(3,-1) (3,0) mul3 xor5 (3,4)

(4,-1) OUTPUT11 OUTPUT10 OUTPUT9 OUTPUT8 (4,4)

Figure B-11: Communication context 4 of IDEA benchmark.

(-1,-1) INPUT0

(0,-1)

INPUT1

xor0

INPUT2

add1

INPUT3

add0

(-1,4)

(0,3) (0,4)

(1,-1) mul0 add2 mul2

xor4

xor1 (1,4)

(2,-1) xor2 xor3 mul1 (2,4)

(3,-1) (3,0) mul3 add3 xor5 (3,4)

(4,-1) OUTPUT11 OUTPUT10 OUTPUT9 OUTPUT8 (4,4)

Figure B-12: Communication context 5 of IDEA benchmark.

77

(-1,-1) INPUT0

(0,-1)

INPUT1

xor0

INPUT2

add1

INPUT3

add0

(-1,4)

(0,3) (0,4)

(1,-1) mul0 mul2add2 xor1 (1,4)

(2,-1) xor2 xor3 xor4 mul1 (2,4)

(3,-1) (3,0) mul3 add3 xor5 (3,4)

(4,-1) OUTPUT11 OUTPUT10 OUTPUT9 OUTPUT8 (4,4)

Figure B-13: Communication context 6 of IDEA benchmark.

78

Bibliography

[1] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Computer

Programs. The MIT Press, Cambridge, MA, second edition edition, 1996.

[2] Anant Agarwal. Raw computation. Scienti�c American, 281(2):60{63, August 1999.

[3] Vanu Bose, Mike Ismert, Matt Welborn, and John Guttag. Virtual radios. IEEE

Journal on Selected Areas in Communication, Special Issue on Software Radios, 1999.

[4] V. Michael Bove, Jr. and John A. Watlington. Cheops: A recon�gurable data-
ow

system for video processing. IEEE Transactions on Circuits and Systems for Video

Technology, 5:140{149, April 1995.

[5] Lawrence Davis, editor. Genetic Algorithms and Simulated Annealing. Research Notes

in Arti�cial Intelligence. Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1987.

[6] Anja Feldmann, Thomas M. Stricker, and Thomas E. Warfel. Supporting sets of arbi-

trary connections on iWarp through communication context switches. In Proceedings

of the 5th Annual ACM Symposium on Parallel Algorithms and Architectures, pages

203{212, Velen, Germany, June 1993.

[7] Seth Copen Goldstein, Herman Schmit, Matthew Moe, Mihai Budiu, Srihari Cadambi,

R. Reed Taylor, and Ronald Laufer. Piperench: A coprocessor for streaming multi-

media acceleration. In Proceedings of the Twenty-Sixth International Symposium on

Computer Architecture, pages 28{39, Atlanta, GA, June 1999.

[8] International Organisation for Standardization, Seoul. Generic Coding of Moving Pic-

tures and Associated Audio, November 1993. Recommendation H.262, ISO/IEC 13818-

2.

[9] He Jifeng, Ian Page, and Jonathan Bowen. Towards a provably correct hardware

implementation of occam. In Proceedings of IFIP WG10.2 Advanced Research Working

Conference, CHARME '93, pages 214{225. Springer-Verlag, May 1993.

[10] Gilles Kahn. The semantics of a simple language for parallel programming. In Pro-

ceedings of IFIP Congress 74, pages 471{475. North-Holland Publishing Co., 1974.

[11] Andrea S. LaPaugh. Layout algorithms for VLSI design. ACM Computing Surveys,

28(1):59{61, March 1996.

[12] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan Babb,

Vivek Sarkar, and Saman Amarasinghe. Space-time scheduling of instruction-level

parallelism on a raw machine. In Proceedings of the Eighth International Conference

79

on Architectural Support for Programming Languages and Operating Systems, San Jose,

CA, October 1998.

[13] Stacie P. Leone and Max Kaleho�. Media Metrix to cover streaming media

content and address digital convergence. Media Metrix Press Release, Decem-

ber 1999. Available electronically at http://www.mediametrix.com/PressRoom/

Press Releases/12 07 99.html.

[14] Brian Kevin Livezey. The ASPEN distributed stream processing environment. Master's

thesis, UCLA Computer Science Dept., Los Angeles, CA 90024-1596, December 1988.

[15] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek. The click mod-

ular router. In Proceedings of the 17th ACM Symposium on Operating Systems Prin-

ciples, pages 217{231, Charleston, NC, December 1999.

[16] D. Stott Parker, Eric Simon, and Patrick Valduriez. SVP { a model capturing sets,

streams, and parallelism. In Proceedings of the 18th Conference on Very Large Data

Bases, pages 115{126, Vancouver, British Columbia, August 1992.

[17] Benjamin C. Pierce and David N. Turner. Pict: A programming language based

on the pi-calculus. CSCI Technical Report #476, Indiana University, 107 S. In-

diana Ave. Bloomington, IN 47405-7000, March 1997. Available electronically at

http://www.cs.indiana.edu/pub/techreports/TR476.html.

[18] Scott Rixner, William J. Dally, Ujval J. Kapani, Brucek Khailany, Abelardo Lopez-

Lagunas, Peter R. Mattson, and John D. Owens. A bandwidth-e�cient architecture

for media processing. In Proceedings of the 6th International Symposium on High-

Performance Computer Architecture, Dallas, TX, November 1998.

[19] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C.

John Wiley & Sons, Inc., New York, NY, second edition, 1996.

[20] William McC. Siebert. Circuits, Signals, and Systems. The MIT Electrical Engineering

and Computer Science Series. The MIT Press, Cambridge, MA, 1986.

[21] Michael D. Smith. Extending SUIF for machine-dependent optimizations. In Pro-

ceedings of the First SUIF Compiler Workshop, pages 14{25, Stanford, CA, January

1996.

[22] Michael Bedford Taylor. Design decisions in the implementation of a Raw architecture

workstation. Master's thesis, Massachusetts Institute of Technology, Cambridge, MA,

September 1999.

[23] William Thies. Personal communication, February 2000.

[24] Franklyn Turbak, David Gi�ord, and Brian Reistad. Applied semantics of programming

languages. Draft, September 1999.

[25] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter Lee,

Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, Jonathan Babb,

Saman Amarasinghe, and Anant Agarwal. Baring it all to software: Raw machines.

IEEE Computer, 30(9):86{93, September 1997.

80

[26] Robert P. Wilson, Robert S. French, Chris S. Wilson, Saman P. Amarasinghe, Jen-

nifer M. Anderson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W.

Hall, Monica S. Lam, and John L. Hennessy. SUIF: An infrastructure for research in

parallelizing and optimizing compilers. ACM SIGPLAN Notices, 29(12):31{37, Decem-

ber 1994.

[27] Xin Yuan, Rami Melhem, and Rajiv Gupta. Compiled communication for all-optical

TDM networks. In Supercomputing '96, Pittsburgh, PA, 1996.

81

