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Abstract

In this paper we explicitly address the challenges
of building a dynamic optimization infrastructure.
Our goal is to provide an engineering manual for
researchers to motivate and facilitate engagement
in dynamic optimization technology. The dynamic
optimization framework we discuss has been imple-
mented for the TA-32 family of architectures in a
Windows environment. We describe implementa-
tion challenges specific to Windows and issues with
multiple threads and cache management. We also
give performance results for our implementation
and indicate the overheads involved. This frame-
work opens up opportunities for program introspec-
tion and performance enhancement as all program
information is available at runtime.

1 Introduction

Recent dynamic optimization systems have demon-
strated the feasibility and effectiveness of using a
software system to optimize a program while it is ex-
ecuting. This ability of adapting a running program
to its changing environment provides a promising
new approach to overcome many of the obstacles of
traditional static compilation.

A major challenge for effective static compiler
optimization is the inability to accurately predict
dynamic program behavior. Enhancing static op-
timization with profile information provides only a
partial solution since profiles do not indicate phase
changes in the program and thus do not provide
much help if the program behavior changes fre-
quently within the same region of code. Dynamic
compilation can easily handle such a situation by al-

lowing optimizations to be transient and adaptive.

Recent trends in software technology only add
to the challenges of static compilation.  The
widespread use of object-oriented programming lan-
guages and the trend toward shipping software bina-
ries as collections of Dynamically Linked Libraries
(DLLs) rather than monolithic binaries has resulted
in a greater degree of run-time binding. While
run-time binding offers numerous engineering ad-
vantages, it makes traditional static compiler opti-
mization more difficult, if not impossible. Also, it
is difficult to debug highly optimized code. For this
reason, many independent software vendors are re-
luctant to ship software binaries that are compiled
with high levels of optimization, in spite of their
improved performance potential.

Dynamic optimization has emerged as a response
to many of these obstacles. Although a few dynamic
optimization systems have been developed and de-
scribed in the literature [3, 4, 9], further and more
widespread progress of dynamic optimization tech-
nology has been slow. This is not too surprising
considering the significant engineering overhead of
merely building the basic code infrastructure to un-
dergo research in dynamic optimization. A major
challenge in engineering a dynamic optimizer is the
ability to efficiently maintain complete control over
the running application. This requires intercept-
ing all abnormal control flow, such as exceptions.
This level of control over the application is difficult
to achieve without severely penalizing performance.
In this paper we explicitly address the challenges
of building a dynamic optimization infrastructure.
Our goal is to provide an engineering manual for re-
searchers to motivate and facilitate engagement in
dynamic optimization technology.

The dynamic optimization framework we discuss



has been implemented as a second generation sys-
tem based on Dynamo [3] for the IA-32 family of ar-
chitectures in a Windows environment. (Our imple-
mentation targets Windows NT and its derivatives
(2000 and XP), not Windows 95, 98, or ME.) In this
paper we are not considering specific optimizations
that may be performed. Instead, we discuss the
general issues for building the basic infrastructure.

We first present an overview of our dynamic op-
timization framework in Section 2. A major source
of difficulty in engineering a dynamic optimization
system is the degree of interaction with operat-
ing system features. Section 3 is devoted to dis-
cussing relevant Windows-specific engineering chal-
lenges. This includes the construction of the in-
jector to gain control over the running application,
and the management of Windows callbacks, excep-
tions, and asynchronous procedure calls. The han-
dling of multi-threading is discussed in Section 4.
We move on to an experimental evaluation of de-
sign issues. Section 5 presents general performance
results and the performance impact of major design
decisions regarding the code cache, one of the core
components in any dynamic optimization system.
We discuss related work in Section 6 and conclude
the paper in Section 7.

2 System Overview

Our system interprets the input program’s instruc-
tions by copying them one basic block at a time
into a code cache and executing the copied blocks
natively. A unit of code in the code cache is called
a fragment. When a basic block is copied, its termi-
nating branch is modified to return control to our
system. We chose this copy-paste approach over
emulation because of the complexity of the IA-32
instruction set.

Our basic blocks are not the same as traditional
basic blocks. We do not end blocks at direct uncon-
ditional jumps, and we walk into calls, eliminating
the call instruction. We do end a basic block at any
other control transfer instruction.

The system identifies frequently executed traces
of straight-line code by first identifying trace heads.
A trace head is a basic block fragment that is ei-
ther a target of a backward branch or a target of
an exit from an existing trace. Each trace head
has a counter which is incremented each time the
trace head is executed. When the counter passes
a threshold, the system enters trace creation mode.
In this mode, the trace head and each subsequent
basic block that is executed are copied into a new
trace fragment in the code cache. Trace creation
mode terminates when a backward branch is taken
or when another trace is reached. The newly cre-
ated trace consists of straight-line code with poten-
tial exits at the join points of the basic blocks that
make up the trace. Indirect branches are inlined
into the trace along with a comparison that ensures
execution leaves the trace if the target of the in-
direct branch does not match the target that was
recorded when the trace was created.

Fragments in the code cache are linked to each

other. An exit from a fragment whose target is not
yet in the code cache targets an exit stub, a small
piece of code that records the desired target prior to
returning to our system via a context switch. When
a fragment exit is linked, the exit jump is modified
to jump directly to the destination fragment. Our
system performs all possible links when a fragment
is first created. We found this up-front linking to
have lower overhead than a lazy linking strategy:
exiting the code cache the first time any fragment
exit is taken in order to make a link.

An indirect branch exiting a fragment cannot be
executed directly. In the code cache it becomes
a jump to an indirect branch lookup routine that
translates the target address from an application
address to a fragment. If there is no such fragment,
a new basic block fragment is created.

A flow chart showing the operation of our system
is shown in Figure 1. The figure concentrates on the
flow of control in and out of the code cache, which is
the bottom portion of the figure. The copied appli-
cation code looks just like the original code with
the exception of its control transfer instructions.
The highest overhead comes from the transforma-
tion of indirect branches, which end up executing
far more instructions than the original single in-
struction. Thus, the two routines that handle them
are very time-critical. In our implementation, an
indirect branch lookup takes 15 instructions, while
the comparison of the target of an inlined indirect
branch takes 6 instructions.

Self-modifying code is not currently handled by
our system. However, we have yet to encounter it in
any of the large Windows applications we have been
running. Since the instruction cache on the IA-32
platform is kept consistent with memory in hard-
ware, the mechanism for detecting self-modifying
code used by Dynamo [3] cannot be used. One so-
lution is to write-protect every page from which we
copy a basic block. Then if the application ever
modifies a page whose contents are in our code cache
we trap the page fault and flush appropriate frag-
ments from the code cache. Note that new code
generated at runtime, such as by just-in-time com-
pilers [2, 17, 10, 14], is fully supported by our sys-
tem.

3 Windows-Specific Engineering Chal-
lenges

In this section, we discuss a number of implemen-
tation issues that are specific to Windows. First
we mention issues with thread-local state. Then we
describe how we inject our system into arbitrary
binaries in order to run legacy code. Finally, we
explain how our system handles the many types of
abnormal control flow in Windows.

3.1 Thread-Local State

Our system needs to save the complete machine con-
text when switching from the code cache to system
code, and must restore it when switching back. On
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perhaps surprisingly high overhead.

Windows the context that needs to be saved in-
cludes more than just the registers. The operat-
ing system supports native threads and keeps some
state for each thread. We cannot have our system
corrupting that state when it runs in between code
cache executions. In particular, we must save and
restore the application’s current error code. Nearly
all Windows APT calls set the error code. Our sys-
tem makes a few Windows API calls in its own rou-
tines, and so must save and restore the application’s
current error code to avoid corrupting it.

3.2 Injector

Our system exports a number of routines allowing
an application to start and stop its own execution
under our system. When source code is not avail-
able, we use our injector, which injects our system
into an arbitrary binary in order to run legacy code.

There are a number of strategies for injecting a
DLL into a process on Windows [22]. Our approach
is to create a process for a target executable such
that the process begins in a suspended state. We
then insert code onto the new process’ stack that
will load our system’s DLL and call its initialization
and startup routines. We change the suspended ini-
tial thread’s program counter to point to this code
on the stack, resume the process, and off we go. The
target executable is now running under the control
of our system.

3.3 Maintaining Control

Our system maintains control of all application
code. By maintaining control we mean that none
of the original application code is ever executed —

all application code is executed via a copy of itself
in our code cache. This requires intercepting all
transfers of control.

Although for optimization purposes only hot
code must be executed by a dynamic optimizer, we
envision uses of our runtime system for purposes
other than optimization where complete control of
an application would be required. For example, var-
ious introspective tasks, such as instrumentation or
code scanning to implement security protocols, re-
quire that all code be examined prior to execution.
Furthermore, the bulk of the code executed in a
typical Windows application is in callback routines,
which would be missed if only normal control trans-
fers were followed.

There are a number of abnormal transfers of
control in Windows that require special support to
intercept. The Windows operating system imple-
ments many features through message passing. The
system delivers events to threads by adding mes-
sages to the threads’ message queues. A thread pro-
cesses its messages asynchronously via callback rou-
tines. Our system must intercept these callbacks.

Another source of asynchronous control flow is
through the Asynchronous Procedure Call API that
is provided by Windows. This allows threads to
communicate with each other by posting messages
to their respective queues. The details of how these
messages are handled are very similar to event call-
backs. Our runtime system must follow these calls.

The final source of asynchronous control flow is
exceptions. The Windows operating system sup-
ports Structured Exception Handling. C++ excep-
tions in Windows are built on top of this exception
mechanism. Our system must intercept the control
flow of exceptions in order to maintain control of an



application.

Other sources of abnormal control flow include
setjmp/longjmp and the ability to set a suspended
thread’s program counter through the Windows
API function SetThreadContext.

Note that much of the information needed to
handle these issues is not officially documented.
The Windows source code has not been examined
by any of the authors. As such, other methods than
those we present here for handling these challenges
may exist. All of our information was obtained
from observation and from a few books and arti-
cles [22, 19, 21, 20].

Also note that we are targeting Windows NT
and its derivatives, not Windows 95, 98, or ME.
Different techniques may be required to maintain
control in these other versions of Windows.

3.3.1 Callbacks

In the Windows model of event delivery, each thread
has several message queues. Different types of mes-
sages are placed in each queue, but the mechanism
for processing all messages is essentially the same.
At certain points during program execution, the op-
erating system checks for pending messages. If there
are any, the thread’s state is saved. Then, for each
message, the thread is “commandeered” for use in
running the routine that is registered to handle the
message.

The left side of Figure 2 illustrates the control
flow of a callback for a sample thread. Each column
indicates a separate execution context. When the
thread enters the kernel via the TA-32 interrupt in-
struction int Ox2E, the kernel checks the thread’s
message queues. In this case there is a message
pending. The kernel then saves the thread’s user
context and sets the thread up to execute the call-
back registered for the message’s type. The thread
returns to user mode through a dispatch routine in
the system library ntd11.d11. When callback rou-
tines finish, they do not normally return. Instead,
they indicate that they are finished by either calling
the routine NtCallbackReturn or by executing int
0x2B. This causes the thread to re-enter the kernel.
If there are no more messages pending, the kernel
restores the saved user context and upon returning
to user mode the thread continues with its original
execution.

Callbacks can be nested, that is, another call-
back can be triggered if during execution of a call-
back the kernel is entered and there are pending
messages.

We need to intercept the callback mechanism
in order to run callback routines under our con-
trol.  Fortunately, after the kernel sets up a
thread to run a callback it re-enters user mode
through an exported routine in ntd11.d11 called
KiUserCallbackDispatcher. This is the perfect
spot to intercept a callback. We insert a jump in-
struction at the top of KiUserCallbackDispatcher
that targets our own routine. Our routine finishes
by jumping back to KiUserCallbackDispatcher.

We also need to intercept the return of a call-
back. This is because our execution context con-
tains a few extra pieces of information that we keep
in our own data structures. The operating system
saves and restores the user context of a thread when
it commandeers it to run a callback. However, it
only saves and restores the context that it knows
about. Our extra state is naturally not saved and
restored by the operating system. This extra state
includes the application’s error code mentioned in
Section 3.1 and possibly the real value of a stolen
register (see Section 4). Thus we need to be noti-
fied both when a callback is about to happen and
when a callback is finished so that we can manu-
ally save and restore our state. We can catch the
return of a callback by watching for both int 0x2B
instructions and calls to NtCallbackReturn.

Note that it is possible (but not officially docu-
mented) to access the operating system’s thread-
local data structure using the segment register
fs [20]. If we kept our important state in this
data structure (in the thread-local storage slots kept
there) the operating system would save and restore
our state for us. This would avoid the need to in-
tercept the end of a callback. However, we have not
tested the viability of this scheme.

There is another major effect of callbacks on our
system. If a thread is suspended inside the code
cache while the operating system commandeers it
to run callbacks, we must make sure not to delete
the fragment the thread is suspended inside. Un-
fortunately, there is no way to determine from user
mode exactly which instruction a thread was exe-
cuting when it was commandeered to run a callback.
However, this only happens when the thread makes
a system call and enters kernel mode through inter-
rupt 0x2E. This means we cannot delete any frag-
ments containing int 0x2E. To make cache man-
agement simpler, we redirect all such interrupt in-
structions through a single point (first storing a re-
turn address in our context structure). This allows
us to manage the cache without having a lot of un-
deletable fragments.

3.3.2 Asynchronous Procedure Calls

Asynchronous procedure calls look exactly like call-
backs to our system except for the fact that they en-
ter user mode in the routine KiUserApcDispatcher
in ntd11.d11. In all other respects we handle them
just like we handle callbacks.

3.3.3 Exceptions

There is a fair amount of information on the de-
tails of how Windows handles exceptions [21]. From
the point of view of our system, exceptions operate
similarly to callbacks. The right side of Figure 2
shows an example of an exception. A faulting in-
struction causes a trap to the kernel. The kernel
saves the user context and then commandeers the
thread to run exception-handling code. User mode
is re-entered through KiUserExceptionDispatcher
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Figure 2: Example control flow for a callback (left) and an exception (right). In each case, execution moves
downward, with each of the three columns indicating a separate execution context (all for the same thread).

in ntd11.d11. This user-mode code examines po-
tential exception handlers. When an appropriate
handler is found and cleanup code has been exe-
cuted, there are two choices on how to continue. Ei-
ther the faulting instruction is re-executed (in which
case the kernel restores the saved context, just like
it does with a callback) or execution continues with
the handler and the code after the handler. Both
cases go through the routine NtContinue. Our sys-
tem intercepts this routine and changes the target
program counter to point to one of our routines.
We save the real target and use it as our starting
point when the kernel resumes execution with our
routine.

As with callbacks, the saved user context that
may be returned to points into a fragment in the
code cache, making that fragment not deletable. As
opposed to callbacks, for an exception we can iden-
tify this undeletable fragment because the operating
system makes available the context of the faulting
instruction.

In addition to the control flow, state saving and
restoring, and cache management problems that
they share with callbacks, exceptions have another
problem. An exception handler has access to the
user context of the faulting instruction. The han-
dler can examine the program counter and machine
registers. The problem is that these values are
incorrect — the program counter points into the
code cache, and the registers may not be what the
handler expects due to optimizations. Our system
needs to transform the context passed to the excep-
tion handler to make it appear as though the ex-
ception happened in the original application code.
Note that this problem of translating a machine
context from the code cache to the original applica-
tion code is not unique to Windows exceptions. The

same problem occurs with Unix signal handlers.

Unfortunately, it is very difficult to perform a
context translation in the presence of optimizations
that reorder instructions. Although we do not yet
perform such optimizations, our system does not
currently attempt to fix up exception contexts. To
solve the context translation problem, we have to
keep a mapping from application addresses to code
cache addresses for basic blocks and traces, and we
must be able to reverse any optimizations we per-
form. We plan to address this issue in the future.
We expected to have problems both with exception
contexts and with self-modifying code, but neither
have occurred in any of the large Windows programs
we have been running.

3.3.4 Other Abnormal Control Flow

Fortunately, setjmp/longjmp on Windows do not
require any special actions on the part of our sys-
tem. The unwinding of the application stack and
the final setting of the program counter are all per-
formed in user mode. Our system simply sees a
normal indirect branch at the end of it all.

Conversely, the Windows API function
SetThreadContext must be intercepted by our sys-
tem. We simply change the program counter value
that is being set for the target thread to point to our
own routine (we save the original value). When the
target thread is resumed (SetThreadContext may
only be called on a suspended thread) the operating
system sets its program counter to our routine and
we take over from there.



3.3.5 Alternative Solutions

We came up with a few alternative methods for en-
suring that all application code runs under our con-
trol. We were hoping to find a solution that was not
too hardwired to the particular version of Windows
we were running on, but we were not successful.

One method is to mark all pages except our code
cache and our system’s own code as non-executable.
Then whenever control switches to any application
code, we trap the page fault and redirect control
to our system. Unfortunately, TA-32 makes no dis-
tinction between read privileges and execute privi-
leges. Thus we do not want to mark all pages non-
executable because that makes them non-readable,
which is not something we want to do to pages con-
taining data. And it is not possible in general to
know all possible pages that might contain code.
The inability to identify and separate all pages with
potential application code made us reject this solu-
tion.

Another solution is to watch for registration of
all callback routines and replace the registration
with a routine in our own system. However, this
requires detailed knowledge of all possible callback
routines within the entire Windows API, which is
very large. Also, this is again specific to the par-
ticular version of Windows being run. We rejected
this solution for these reasons.

4 Handling Multiple Threads

There were three major issues we confronted when
supporting multiple threads. The first was data
structure synchronization, which is relatively sim-
ple to deal with by making use of synchronization
primitives provided by the operating system. Below
we discuss the other two issues, thread-local scratch
space and cache management.

4.1 Thread-Local Scratch Space

Thread-local scratch space is needed to perform
tasks such as comparing the target of an indirect
branch to a constant to see if execution should con-
tinue along a trace. Allocating thread-local mem-
ory is not difficult — the Windows API supports
such memory. The challenge is to provide efficient
access to scratch space while in the middle of ar-
bitrary application code. The performance hit of
making an API call whenever space is needed is
unacceptable. Furthermore, the process of making
that call and handling its results requires its own
scratch space. We need more immediate access to
thread-local memory than an API call.

We came up with four different methods for pro-
viding efficient thread-local scratch space. The first
is to use the stack. We rejected this solution be-
cause it assumes that the stack pointer is always
valid. We want our system to be robust and handle
hand-coded applications that do not obey software
conventions.

The second method is to steal a register and have
that register always point to the thread-local stor-

age. This solution was employed in Dynamo [3]. It
incurs a performance penalty that on an architec-
ture with few registers like IA-32 might be steep.

The third method is to use the thread-local stor-
age slots that are kept in the operating system’s
thread information block (TIB), accessible directly
by the segment register fs [20]. The operating sys-
tem saves and restores the TIB along with the rest
of the machine context when executing callbacks
and other control transfers. This solution is only
available on Windows. It is not officially docu-
mented and could change in future versions of Win-
dows. We have not implemented it in our system.

The fourth and final method is to use thread-
private code caches. Since all code is run by only
one thread, an absolute address can be used for
scratch space (IA-32 allows addressing an absolute
address directly). This option is discussed further
in Section 4.2.2.

We first implemented the second solution, reg-
ister stealing. We decided to steal edi as it is not
used for any special purposes (many IA-32 regis-
ters have special meanings to certain instructions)
except by the string instructions. To measure the
performance penalty of register stealing, we also
implemented using an absolute address as scratch
space (which assumes a single thread). Figure 3
shows the results on the SPEC2000 benchmarks [24]
(which are all single-threaded). The average slow-
down is about 1% for unoptimized code and 7%
for optimized code. The discrepancy is easily ex-
plained: optimized code uses the registers more ef-
fectively than unoptimized code and thus “notices”
if you steal one of the registers. Note that our reg-
ister stealing was not extremely sophisticated and
that slightly better performance could have been
achieved.

After encountering cache management issues
that thread-private caches would solve, we decided
to use thread-private caches and eliminate our regis-
ter stealing. The next section discusses cache man-
agement in more detail.

4.2 Cache Management

There are two major choices when it comes to the
code cache and multiple threads: either have a sin-
gle thread-shared code cache, or give each thread
its own thread-private code cache. We discuss each
of these below. For each of these strategies on Win-
dows, care must be taken to not delete undeletable
fragments, which we discussed in Section 3.3.

4.2.1 Thread-Shared Code Cache

Multiple threads sharing the same cache complicate
the issue of cache management. We would like to
be able to delete fragments from the cache to make
room for new fragments. However, there is no effi-
cient way to determine if any threads are executing
inside a given fragment. The system must force all
threads out of the cache whenever it wants to per-
form cache management. First, all fragments must
be unlinked so that there are no loops in the cache.
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Figure 3: Performance impact of register stealing on the non-FORTRAN SPEC2000 benchmarks. H- MEAN
is the harmonic mean. /OO indicates that the benchmark was compiled unoptimized and /Ox indicates that

the benchmark was compiled with full optimizations.

Then the system sets a flag so that no thread can
enter the cache, and waits for all threads to exit
the cache. Due to this high overhead, many or all
fragments must be deleted to reduce the frequency
of cache management. Previous systems typically
flush the entire cache [3].

Dividing the cache into segments can help. A
data structure keeps track of how many threads are
in each segment. Threads must check for permis-
sion before entering a segment. This adds overhead
on all inter-segment links. When room is needed in
the cache, the system picks a thread-free segment
and prevents other threads from entering while it
deletes some or all of the fragments in that seg-
ment. However, there is no guarantee that a seg-
ment can be found that has no threads in it. When
no thread-free segment can be found, the system
must force threads out of a segment using the strat-
egy for single-segment cache management.

4.2.2 Thread-Private Code Cache

Thread-private caches have a number of attractive
advantages over a single thread-shared cache, such
as less synchronization, no register stealing needed
for thread-local scratch space (see Section 4.1), and
much simpler and more efficient cache management.
Their only disadvantage is the space duplication
and time to duplicate fragments that are used by
multiple threads.

How much code is shared among threads? It
depends on the application; in a web server, many
threads run the same code. However, in a desk-
top application, threads typically perform distinct
tasks. Studies have shown that nearly all instruc-
tions in desktop applications are executed by one
thread [16]. We did a study using our system in
thread-shared cache mode. We measured the num-
ber of fragments that are executed by more than
one thread. Note that it does not matter how fre-
quently executed these fragments are. The only
performance penalty is the time and space to du-

plicate the fragments. In fact, once they are dupli-
cated there are more opportunities for optimization
because the thread-private fragments can be spe-
cialized for their particular thread.

Figure 4 shows the percentage of both basic
block fragments and trace fragments that are used
by more than one thread. The figure gives results
for the four programs described in Section 5. The
first set of numbers are for the batch-style scenar-
ios. These scenarios have tiny percentages of shared
fragments. More threads are created and poten-
tially more code shared when these desktop appli-
cations are used in a more interactive fashion. Fig-
ure 4 gives a second set of numbers for our applica-
tions when used in more interactive scenarios. For
these scenarios the number of threads created by the
application increased for winword from 3 to 9 and
for powerpnt from 4 to 5 (the others remained as
listed in Table 2). The percentages certainly rose,
but only the traces in powerpnt rose to a signifi-
cant percentage. This matches previous results [16],
where only powerpnt has a significant fraction of
instructions executed in any thread other than the
primary thread.

We believe that these results validate a thread-
private cache strategy. The disadvantages of such a
strategy are minimal due to the very small amount
of code shared among threads. The numbers in the
next section are for our system using thread-private
caches.

5 Experimental Results

We used four desktop applications to build a bench-
mark suite, described in Table 1. These scenarios
model long-running batch computations, not highly
interactive use. However, it is exactly in these long-
running computations that the user notices delays,
and it is these scenarios that are most worthwhile
targeting with dynamic optimization. More interac-
tive scenarios are hard to measure, mask our slow-
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listed in Table 2.

Program | Benchmark description

acrord32 | Adobe Acrobat Reader 4.0: loads a 6.8MB (956 page) PDF document and searches for the
word “bogus” (which is not present).

excel Microsoft Excel 9.0: loads a 2.4MB spreadsheet full of interdependent formulae and modifies
one cell, triggering extensive re-calculations.

powerpnt | Microsoft PowerPoint 9.0: loads an 84-slide (455KB) presentation and adds text to the title
of every slide.

winword | Microsoft Word 9.0: loads a 1.6MB document, replaces ’a’ with ’o’, then “selects all” and
changes the font type and size.

Table 1: Descriptions of our desktop benchmarks.

downs, and give fewer opportunities for meaningful
performance gains.

Table 2 gives statistics for each of the programs,
including application size, number of threads, and
the number of basic block and trace fragments our
system creates when executing each program. Ta-
ble 3 lists statistics for the sizes of these basic blocks
and traces. Note that these sizes include the exit
stubs that are added to the end of each fragment
and so are larger than the sizes of basic blocks in
the original application code.

The final column of Table 2 gives the perfor-
mance of each benchmark with an unlimited thread-
private cache size. For comparison, Figure 5 shows
the performance of our system on the SPEC2000
benchmarks [24], also with unlimited cache space.

We used program counter sampling to analyze
the time spent in the various portions of our sys-
tem. For the SPEC2000 benchmarks, from 0% to
2% of execution time is spent in our system code
itself (the part of the system on the top half of
Figure 1). Essentially all time was spent in the
code cache. Of this time, up to 17% is spent in
the indirect branch lookup, and up to 7% in the
“trace branch taken” instructions. According to

these numbers, we should be getting at worst a 26%
slowdown, yet we have close to a 160% slowdown
for crafty. We are in the process of examining our
cache and branch prediction behavior to try and
solve this problem. We believe that we have run
into a difficult challenge of achieving performance
on modern processors: the hardware is aggressively
tuned toward a certain type of code. Our code cache
looks different from the code that the hardware is
optimized for. For one thing, we have eliminated
calls and turned returns into indirect jumps. Pen-
tium IT and later processors have a return stack for
predicting targets of returns. Our experiments show
that this return stack is critical in providing perfor-
mance for code with a lot of procedure calls, yet it
is useless inside our code cache. We are attempting
to address this problem by modifying our handling
of calls and returns to make use of the hardware
return stack.

The Windows benchmarks have similar results,
except that the overhead of our system code is
higher, up to 10%. Much of this extra time is spent
decoding and encoding TA-32 instructions. We plan
to do some significant performance tuning on that
part of our system.



Program | .EXE Size | DLLs | Total Size | Threads | Blocks | Traces | Slowdown
acrord32 2.3 22 12.3 2| 85366 | 6541 1.90
excel 7.2 9 16.4 3| 79741 3108 1.59
powerpnt 4.3 10 14.1 4 | 146579 | 12057 1.66
winword 8.8 13 21.3 3| 97072 | 6505 1.61

Table 2: Statistics for our benchmarks: the static size of the .EXE file (in MB), the number of DLLs loaded,
the sum of the sizes of the .EXE and all DLLs loaded by the program (in MB), the number of threads,
the number of unique basic blocks executed, the number of traces created, and the slowdown vs. native

execution using a thread-private cache of unlimited size.

Program Basic Block Sizes (Bytes) Trace Sizes (Bytes)

Min | Max | Mean | StdDev | Min | Max | Mean | StdDev
acrord32 27 | 4034 | 55.3 30.5 27 | 23500 | 179.2 342.1
excel 27 | 1589 | 53.1 22.3 30 | 2971 | 175.0 181.2
powerpnt 27 | 2315 53.4 23.4 27 | 5881 | 172.1 178.6
winword 27 | 2821 54.2 31.2 27 | 2873 | 160.8 163.0

Table 3: Statistics for the sizes (in bytes) of basic blocks and traces in our benchmarks. These sizes include
the exit stubs that are added to the end of each fragment. Each exit stub is 15 bytes (3 5-byte instructions).
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5.1 Cache Parameters

Figure 6 shows the performance of our benchmarks
when varying the sizes of the basic block and trace
portions of the code cache. These size parameters
are upper limits on the sum of the cache sizes for
all threads. For each benchmark we took the maxi-
mum trace and basic block cache sizes that the pro-
gram would want. We then set the sizes of each
cache to one-eighth, one-quarter, and one-half of
the maximum cache size, and the maximum size it-
self, and plotted the resulting performance versus
native execution. The results show that cutting the
cache size in half does not affect performance much.
Only when both caches are shrunk to fractions of
their maximum sizes does performance suffer signif-
icantly.

The graphs show that some benchmarks have
smaller working set sizes than others. Excel, for

example, is not affected much by shrinking both
of its caches to one-eighth their maximum sizes.
Acrord32, on the other hand, suffers over a seven
times slowdown when the same thing is done to its
caches.

The graphs also show that for a copy-paste inter-
preter such as ours, the basic block cache is nearly
as important as the trace cache. We have not yet
tuned our trace selection for this system; we expect
better and more important traces with further work
on the specifics of building them.

We are fairly satisfied with the performance re-
sults in this paper. There is a lot of performance
tuning to be done on the infrastructure that can
bring the overheads down. And we have not even
begun to perform optimizations on traces.



6 Related Work

There are a few software dynamic optimization sys-
tems in the literature. They include Dynamo [3],
which our system is derived from, and Wig-
gins/Redstone [9], which employs program counter
sampling to form traces that are specialized for the
particular Alpha machine they are running on. The
Mojo [4] system, like ours, targets Windows NT
running on TA-32. However, details of Mojo, includ-
ing thread-local state and interception of Windows
control flow, are not sufficiently described to allow
implementation by the reader. They were unclear
on whether the work could be duplicated without
access to the Windows source code. Our work shows
that it is possible to build a Windows optimization
system without Windows source code access.

Dynamic optimization of the processor’s instruc-
tion stream is performed in superscalar processors.
The Trace Cache [23] allows such optimizations to
be performed off of the critical path.

Dynamic translation systems [6, 5, 15, 12] em-
ploy techniques similar to ours. These are inter-
preters that cache the native translations of fre-
quently executed code. They have been built for
various domains including emulation of one archi-
tecture on another.

Dynamic compilation employs numerous tech-
niques relevant to software dynamic optimization.
Dynamic compilation is used both for interpreted
languages as just-in-time compilation [2, 17, 10, 14]
and for compiled languages [13, 8].

Other related fields include link-time optimiza-
tion [18, 7], which shares with dynamic optimiza-
tion the fact that it optimizes binary code, and low-
overhead profiling [1, 11], which is crucial in a dy-
namic optimization system for quickly identifying
important regions of code.

7 Conclusions

We have described a dynamic optimization frame-
work for the Windows operating system running on
the TA-32 architecture. In addition to identifying
the major engineering challenges in capturing all
program behavior on Windows and handling multi-
ple threads, we have made a case for thread-private
caches and shown some initial performance numbers
for various cache sizes.

This framework opens up opportunities for pro-
gram introspection and performance enhancement,
as all program information is available at runtime.
Our future work includes implementing an instru-
mentation system using our framework. We also
plan to study the applicability of known compiler
optimization methods, as well as discover novel
techniques for optimization within this framework.
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