A Unified Framework for
Schedule and Storage Optimization

William Thies, Fredéric Vivien*,
Jeffrey Sheldon, and Saman Amarasinghe

MIT Laboratory for Computer Science

*|CPS/LSIIT, Université Louis Pasteur

http://compiler.lcs.mit.edu/aov

Motivating Example

fori=1ton AR
forj=1ton :
Alj] = f(All, Ali-2]) —

Motivating Example

fori=1ton LNy t=1
forj=1ton o
Ali] = f(A[j], ALi-2]) — | (i,))=(1

Motivating Example

fori=1ton (NN t=2
forj=1ton o
Ali] = f(A[j], ALi-2]) — | (i,))=(12)

Motivating Example

fori=1ton (I~ t=3
forj=1ton o
Ali] = f(A[j], ALi-2]) — | (i,j))=(13)

Motivating Example

fori=1ton F Ny t=4
forj=1ton o
Alj] = f(A[j1, Alj-2]) — (i,))=(14)

Motivating Example

fori=1ton 7NN t=5
forj=1ton o
Ali] = f(A[j], ALi-2]) — | (i,j)=(1,9)

Motivating Example

fori=1ton LNy t=6
forj=1ton o
Ali] = f(A[j], ALi-2]) — | (i,)=@21

Motivating Example

fori=1ton (I Ny t=7
forj=1ton o
Ali] = f(A[j], ALi-2]) — | (i,))=(22)

Motivating Example

fori=1ton (N t=8
forj=1ton o
Ali] = f(A[j], ALi-2]) — | (i,j))=(273)

Motivating Example

fori=1ton LN Xy t=9
forj=1ton o
Alj] = f(A[j1, Alj-2]) — (i,))=(24)

Motivating Example

fori=1ton L7~ x t=10
forj=1ton o
Ali] = f(A[j], ALi-2]) — | (i,j)=(279)

Motivating Example

fori=1ton L7~ x t=25
forj=1ton o
Ali] = f(A[j], ALi-2]) — | (i,j)=(529)

Motivating Example

fori=1ton L7~ x t=25
forj=1ton o
Ali] = f(A[j], ALi-2]) — | (i,j)=(529)

1 Array Expansion

init A[O][]]
fori=1ton i
forj=1ton T

Afill] = f(ALi-1]1{3],
Alil[j-2])

PSP NP ST
PP P Y
. %‘p%\p%p%*{)
L k|
M I I

Motivating Example

fori=1ton L7~ x t=25
forj=1ton o
Ali] = f(A[j], ALi-2]) — | (i,j)=(529)

1 Array Expansion

ifnit A[0][j] @XE} t=1
ori=1ton PSSR IPID oy
forj=1ton {XX?} L)=(@11)
A0 = i, |] e
ALi1[-21) 17

Motivating Example

fori=1ton

forj=1ton
Alj] = f(A[j], Alj-2])

1 Array Expansion

init A[O][]]
fori=1ton

forj=1ton
Alill3] = f(ALi-1][j],

Alil[j-2])

M I I

ww$$v
T

t=25
(1)) =(5,9)

t=2

(,)) =1(1, 2),
(2, 1)}

Motivating Example

fori=1ton L7~ x t=25
forj=1ton o
Ali] = f(A[j], ALi-2]) — | (i,j)=(529)

1 Array Expansion

t=3

(,)) =1(1, 3),
(2,2),

(3, 1}

init A[O][]]
fori=1ton i
forj=1ton T

Afill] = f(ALi-1]1{3],
Alil[j-2])

PSP P ST
V*V*g}"’ VLP\)
)k o
M I I

Motivating Example

fori=1ton
forj=1ton

Alj] = (Al

1, Alj-2])

1 Array Expansion

init A[O][]]
fori=1ton

forj=1ton
Alill3] = f(ALi-1][j],

Alil[j-2])

(O

5 2 2 2
NI I

ANIAAVIAY Y i
P
. %» %}» %* %*

t=25
(1)) =(5,9)

t=4

(,)) =1(1, 4),
(2,3),
(3,2),

(4, 1)}

Motivating Example

fori=1ton
forj=1ton

Alj] = (Al

1, Alj-2])

1 Array Expansion

init A[O][]]
fori=1ton

forj=1ton
Alill3] = f(ALi-1][j],

Alil[j-2])

(O

AN AANIANIAY

V*T}*j}* Jp\)
2 e, o

t=25
(1)) =(5,9)

t=5

(,)) =1(1,5),
(2,4),
(3, 3),
(4,2),

(5 D}

Motivating Example

fori=1ton
forj=1ton

Alj] = f(A[1], Al3-2])

1 Array Expansion

init A[O][]]
fori=1ton

forj=1ton
Alill3] = f(ALi-1][j],

Alil[j-2])

(O

SN NN
S
b
*[»
i NI AN

t=25
(1)) =(5,9)

t=6

(,)) =1(2,5),
(3, 4),
(4,3),

(5 2)}

Motivating Example

fori=1ton
forj=1ton

Alj] = f(A[1], Al3-2])

1 Array Expansion

init A[O][]]
fori=1ton

forj=1ton
Alill3] = f(ALi-1][j],

Alil[j-2])

ke e o
N I AN

t=25
(1)) =(5,9)

t=7

(,)) =13, 5),
(4,4),

(5 3)}

Motivating Example

fori=1ton
forj=1ton
Alj] = f(A[]

1, Alj-2])

1 Array Expansion

init A[O][]]
fori=1ton

forj=1ton
Alill3] = f(ALi-1][j],

Alil[j-2])

. L
M I I

t=25
(1)) =(5,9)

t=8

(,)) =1(4,5),
(5 4)}

Motivating Example

fori=1ton L7~ x t=25
forj=1ton o
Ali] = f(A[j], ALi-2]) — | (i,j)=(529)

1 Array Expansion

ifnit A[0][j] gzz:{} t=9
ori=1ton PRI SR IPID oy
forj=1ton T‘:ﬁgi} (1,])=(5,95)
ALL = F(AL-11[3], T 4Darap!
ALII[j-2]) il

Parallelism/Storage Tradeoff

* Increasing storage can enable parallelism
- But storage can be expensive

RAM
Disk

* Phase ordering problem
- Optimizing for storage restricts parallelism
- Maximizing parallelism restricts storage options
- Too complex to consider all combinations

=>» Need efficient framework to integrate
schedule and storage optimization

Outline

* Abstract problem
« Simplifications

» Concrete problem
* Solution Method
» Conclusions

Abstract Problem

* Given DAG of dependent operations

e

- Must execute producers before consumers
- Must store a value until all consumers execute

* Two parameters control execution:

1. A scheduling function q
 Maps each operation to execution time
 Parallelism is implicit

2. A fully associative store of size m

Abstract Problem

* We can ask three questions:

* Two parameters control execution:

1. A scheduling function q
 Maps each operation to execution time
 Parallelism is implicit

2. A fully associative store of size m

Abstract Problem

* We can ask three questions:
1. Given g, what is the smallest m?

* Two parameters control execution:

1. A scheduling function q
 Maps each operation to execution time
 Parallelism is implicit

2. A fully associative store of size m

Abstract Problem

* We can ask three questions:
1. Given g, what is the smallest m?
2. Given m, what is the “best” g7

* Two parameters control execution:

1. A scheduling function g
 Maps each operation to execution time
 Parallelism is implicit

2. A fully associative store of size m

Abstract Problem

* We can ask three questions:
1. Given g, what is the smallest m?
2. Given m, what is the “best” g7
3. What is the smallest m that is valid for all legal q~?

* Two parameters control execution:

1. A scheduling function q
 Maps each operation to execution time
 Parallelism is implicit

2. A fully associative store of size m

Outline

* Abstract problem
» Simplifications

» Concrete problem
* Solution Method
» Conclusions

Simplifying the Schedule

* Real programs aren’t DAG’s
- Dependence graph is parameterized by loops
- Too many nodes to schedule
 Size could even be unknown (symbolic constants)
» Use classical solution: affine schedules
- Each statement has a scheduling function g

- Each g is an affine function of the enclosing
loop counters and symbolic constants

- To simplify talk, ignore symbolic constants:

- —_ -

q(i) =B« i

Simplifying the Storage Mapping

* Programs use arrays, not associative maps

- If size decreases, need to specify which
elements are mapped to the same location

Simplifying the Storage Mapping

* Programs use arrays, not associative maps

- If size decreases, need to specify which
elements are mapped to the same location

Simplifying the Storage Mapping

* Programs use arrays, not associative maps

- If size decreases, need to specify which
elements are mapped to the same location

I
I
D

Occupancy Vectors (Strout et al.)

« Specifies unit of overwriting within an array

» Locations collapsed if separated by a
multiple of v

Occupancy Vectors (Strout et al.)

« Specifies unit of overwriting within an array

» Locations collapsed if separated by a
multiple of v

Occupancy Vectors (Strout et al.)

« Specifies unit of overwriting within an array

» Locations collapsed if separated by a
multiple of v

Occupancy Vectors (Strout et al.)

« Specifies unit of overwriting within an array

» Locations collapsed if separated by a
multiple of v

Occupancy Vectors (Strout et al.)

« Specifies unit of overwriting within an array

» Locations collapsed if separated by a
multiple of v

Occupancy Vectors (Strout et al.)

« Specifies unit of overwriting within an array

» Locations collapsed if separated by a
multiple of v

Occupancy Vectors (Strout et al.)

« Specifies unit of overwriting within an array

» Locations collapsed if separated by a
multiple of v

(1, 1)

Y

Occupancy Vectors (Strout et al.)

« Specifies unit of overwriting within an array

» Locations collapsed if separated by a
multiple of v

Occupancy Vectors (Strout et al.)

« Specifies unit of overwriting within an array

» Locations collapsed if separated by a
multiple of v

Occupancy Vectors (Strout et al.)

« Specifies unit of overwriting within an array

» Locations collapsed if separated by a
multiple of v

T Transformed : +/2n

Kd Original : n°

Occupancy Vectors (Strout et al.)

» For a given schedule, Vv is valid if semantics
are unchanged using transformed array

» Shorter vectors require less storage

T Transformed : +/2n

Kd Original : n°

Outline

* Abstract problem
« Simplifications

» Concrete problem
* Solution Method
» Conclusions

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

Answering Question #1

* Given ((i, J) =1+], what is the shortest valid
occupancy vector v?

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Solution: v =(1, 1)

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

—

» Solution: ¥ = (1, 1)

O
%
S
0

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Solution: v =(1, 1)

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Solution: v =(1, 1)

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Solution: v =(1, 1)

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Solution: v =(1, 1)

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Solution: v =(1, 1)

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Solution: v =(1, 1)

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Solution: v =(1, 1)

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Solution: v =(1, 1)

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Solution: v =(1, 1)

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Solution: v =(1, 1)

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Solution: v =(1, 1)

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Why not v = (0, 1)?

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Why not v = (0, 1)?

Answering Question #1

* Given ((i, J) =1+], what is the shortest valid
occupancy vector v?

+ Why not v = (0, 1)?

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Why not v = (0, 1)?

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Why not v = (0, 1)?

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Why not v = (0, 1)?

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Why not v = (0, 1)?

Answering Question #1

* Given ((i, J) =1 +], what is the shortest valid
occupancy vector v?

+ Why not v = (0, 1)?

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules q7?

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules q7?
» (1,) Is between:
q(i, j) =2 * i +j (inclusive)
qi, j) =1 (exclusive)

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules q7?
» (i,) iIs between:
q(i, j) =2 * i +j (inclusive)
qi, j) =1 (exclusive)

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules q7?
» (i,) iIs between:
q(i, j) =2 * i +j (inclusive)
qi, j) =1 (exclusive)

Answering Question #2

» Given v = (0, 1), what is the range of valid

schedules q7?

» (i,) iIs between:
q(i, j) =2 * i +j (inclusive)
q(i, j) =1 (exclusive)

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules q7?
» (i,) iIs between:
q(i, j) =2 * i +j (inclusive)
qi, j) =1 (exclusive)

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules q7?

» (i,) iIs between:

q(i, j) =2 * i +j (inclusive)
qi, j) =1 (exclusive) — =
-~ ‘\\\‘\T\\\
"\\-j‘\\\\\\\
>~ - ~\~~ \\
] = > __~
S \,;
IR

Answering Question #2

» Given v = (0, 1), what is the range of valid

schedules q7?
» (i,) iIs between:

q(i, J) =2 * i+ (inclusive)
qi, j) =1 (exclusive) —C z
\\\ ;‘\\
\\\ \\\ ~
\\\ \.\\\'\\\
\\ ‘\\‘ ‘\\
>~ S~ s
I\\ \.\\ "\\
~| o
T\ ‘\\ ‘\\
~ _ \\\
: ~

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #2

» Given v = (0, 1), what is the range of valid
schedules g?

»letstryq(i,j))=2*1+]

Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

+ Range of legal g

Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

+ Range of legal g

Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

+ Range of legal g

Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

+ Range of legal g

-«
~
~ ~ D
~ S~ ~
~ ~

Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

+ Range of legal g

Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

+ Range of legal g

Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

+ Range of legal g

Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

+ Range of legal g

S Rt
|||,||||I
ERRESRRENN)
IR

I i
IRiETR
||.||I

J

Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

+ Range of legal g

Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

+ Range of legal g
>V =(2,1)

Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

» Range of legal q
»>v=(2,1)

Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

+ Range of legal g
>V =(2,1)

Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

+ Range of legal g
>V =(2,1)

» Def: Vv is an affine occupancy vector (AOV)

Outline

* Abstract problem
« Simplifications

» Concrete problem
« Solution Method
» Conclusions

Schedule Constraints

* Dependence analysis yields:
- jteration 7 depends on iteration h(7)

- his an affine function

« Consumer must execute
after producer

Schedule Constraint

a(i) * q(h(i)) + 1

@)
I

Storage Constraints

Storage Constraints

N«

Storage Constraints

@) o o o
i2
A @) o o
4
./r.//‘? o
6| o | @ | @
h(i)

Storage Constraints

dynamic single assignment

mu

P
-1
—_—

SiaN

o Mo

>,

fori=1ton
forj=1ton

A[l[j] = ..

B[i][j] = ..

Storage Constraints

>4

P
-1
—_—

SiaN

o Mo

>,

Consumer:
Producer:

Storage Constraints

@) @) @)
. :‘.(7)*2
'?i', :
YR
h(i)

>,

Consumer:
Producer:
Overwriting producer:

i
h
h

(

-

()

|
g
|

)+

Storage Constraints

@) @) @)
o | B3
N\
4
“/° A
'YK
A(7) |
> i

Consumer: i
Producer: h(7)
Overwriting producer: h(7) + V

¥ Consumer must execute before producer is overwritten

Storage Constraints

@) @) @)
o | B3
N\
4
“/° A
'YK
A(7) |
> i

Consumer:

>4 =

Producer:

]

(7)

Overwriting producer: h(i) + v

¥ Consumer must execute before producer is overwritten

Storage Constraint

a(i) £ q(h(i) + V)

The Constraints

» A given (g, V) combination is valid if
- For all dependences h,
- For all iterations i in the program:

q(7) 3 q(h(?)) + 1 schedule constraint
a(i) £ q(h(7) + V) storage constraint

The Constraints

» A given (g, V) combination is valid if
- For all dependences h,
- For all iterations i in the program:

q(7) 3 q(h(?)) + 1 schedule constraint
a(i) £ q(h(7) + V) storage constraint

» Given g, want to find v satisfying constraints

- Might look simple, but it is not
- Too many i’s to enumeratel!
- Need to reduce the number of constraints

The Vertex Method (1-D)

 An affine function is non-negative within an
interval [x,, X,] iff it iS non-negative at x, and X,

_—

>< -— e - — —
=
l\)>< T

The Vertex Method (1-D)

* An affine function is non-negative over an
unbounded interval [x,, ¥) iff it is non-negative
at x, and is non-decreasing along the interval

T

o

The Vertex Method

* The same result holds in higher dimensions

- An affine function is nonnegative over a bounded
polyhedron D iff it is nonnegative at vertices of D

Applying the Method (Quinton87)

* Recall the storage constraints
- For all iterations i in the program:
q(7) £ a(h(7) + V)
- Re-arrange:
0 £ q(h(7) + V) - q(7)
* The right hand side is:
1. An affine function of 7

2. Nonnegative over the domain D of iterations
=» We can apply the vertex method

Applying the Method

 Replace 7 with the vertices W of its domain:

I Q(R(7) + V) - o(7)

3(@1) + \:/:) - C(ﬂﬁ >0
) +0)- (i) O
h(

W3) + V) - (W) 2 0
W) + V) -q(Wy) 2 0

AN N N N

iteration space

The Reduced Constraints

* Apply same method to schedule constraints

» Now a given (g, V) combination is valid if
- For all dependences h,
- For all vertices w of the iteration domain:

q(W) 3 g(R(W)) + 1 schedule constraint
\ q(w) £ q(h(w) + V) storage constraint

A

* These are linear constraints
- g and V are variables; h and W are constants
- Given @, constraints are linear in v (& vice-versa)

Answering the Questions

rq(W) 3 g(h(W)) + 1 schedule constraint
q(W) £ q(h(W) + V) storage constraint

1. Given g, we can “minimize” |V|
- Linear programming problem

2. Given v, we can find a “good” q
- Feautrier, 1992

3. To find an AOV... still too many constraints!
- For all g satisfying the schedule constraints:
vV must satisfy the storage constraints

Finding an AOV

rq(W) 3 g(h(W)) + 1 schedule constraint
q(W) £ q(h(W) + V) storage constraint

* Apply the vertex method again!

« Schedule constraints define domain of valid g

« Storage constraints can be written as a non-
negative affine function of components of Q:

- — -
|

- Expandq(i)=p i

- Simplify

Finding an AOV

» Our constraints are now as follows:
- For all dependences h,
- For all vertices W of the iteration domain,
- For all vertices 7 of the space of valid schedules:

TeW £7T e (h(W) + V) AQV constraint

» Can find "shortest” AOV with linear program
- Finite number of constraints
- h, W, and t are known constants

The Big Picture

Input program

dependence
analysis C

Affine Dependences

c Schedule &

Storage
Constraints

Constraints “I:sarram Given g, find v
without T | emei ol | Given ¥, find g

vertex method c

vertex method c

C - linear)
_ons raints orogram Fln_d an AOV,
without g === | Valid for all g

Detalls in Paper

* Symbolic constants
* Inter-statement dependences across loops
» Farkas’ Lemma for improved efficiency

Related Work

* Universal Occupancy Vector (Strout et al.)
- Valid for all schedules, not just affine ones
- Stencil of dependences in single loop nest

« Storage for ALPHA programs (Quillere,
Rajopadhye, Wilde)
- Polyhedral model, with occupancy vector analog
- Assume schedule is given

 PAF compiler (Cohen, Lefebvre, Feautrier)
- Minimal expansion ® scheduling ® contraction
- Storage mapping A[i mod x][j mod y]

Future Work

* Allow affine left hand side references

i‘\

- A[2*{][n-i] = ...
 Consider multi-dimensional time schedules
- >
- >
- >
=
r~

» Collapse multiple dimensions of storage

=)

Conclusions

 Unified framework for determining:
1. A good storage mapping for a given schedule
2. A good schedule for a given storage mapping
3. A good storage mapping for all valid schedules

 Take away:. representations and techniques
- Occupancy vectors
- Affine schedules
- Vertex method

