
A Unified Framework for
Schedule and Storage Optimization

William Thies, Frédéric Vivien*,
Jeffrey Sheldon, and Saman Amarasinghe

MIT Laboratory for Computer Science

* ICPS/LSIIT, Université Louis Pasteur

http://compiler.lcs.mit.edu/aov

Motivating Example

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2]) j

Motivating Example

j

t = 1

(i, j) = (1, 1)

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

Motivating Example

j

t = 2

(i, j) = (1, 2)

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

Motivating Example

j

t = 3

(i, j) = (1, 3)

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

Motivating Example

j

t = 4

(i, j) = (1, 4)

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

Motivating Example

j

t = 5

(i, j) = (1, 5)

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

Motivating Example

j

t = 6

(i, j) = (2, 1)

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

Motivating Example

j

t = 7

(i, j) = (2, 2)

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

Motivating Example

j

t = 8

(i, j) = (2, 3)

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

Motivating Example

j

t = 9

(i, j) = (2, 4)

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

Motivating Example

j

t = 10

(i, j) = (2, 5)

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

Motivating Example

j

t = 25

(i, j) = (5, 5)

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

Motivating Example

j

init A[0][j]
for i = 1 to n
for j = 1 to n
A[i][j] = f(A[i-1][j],

A[i][j-2])

Array Expansion

i

j

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

t = 25

(i, j) = (5, 5)

Motivating Example

j

Array Expansion

t = 1

(i, j) = (1, 1)i

j

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

t = 25

(i, j) = (5, 5)

init A[0][j]
for i = 1 to n
for j = 1 to n
A[i][j] = f(A[i-1][j],

A[i][j-2])

Motivating Example

j

Array Expansion

t = 2

(i, j) = {(1, 2),
(2, 1)}

i

j

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

t = 25

(i, j) = (5, 5)

init A[0][j]
for i = 1 to n
for j = 1 to n
A[i][j] = f(A[i-1][j],

A[i][j-2])

Motivating Example

j

Array Expansion

i

j

t = 3

(i, j) = {(1, 3),
(2, 2),
(3, 1)}

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

t = 25

(i, j) = (5, 5)

init A[0][j]
for i = 1 to n
for j = 1 to n
A[i][j] = f(A[i-1][j],

A[i][j-2])

Motivating Example

j

Array Expansion

i

j

t = 4

(i, j) = {(1, 4),
(2, 3),
(3, 2),
(4, 1)}

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

t = 25

(i, j) = (5, 5)

init A[0][j]
for i = 1 to n
for j = 1 to n
A[i][j] = f(A[i-1][j],

A[i][j-2])

Motivating Example

j

Array Expansion

i

j

t = 5

(i, j) = {(1, 5),
(2, 4),
(3, 3),
(4, 2),
(5, 1)}

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

t = 25

(i, j) = (5, 5)

init A[0][j]
for i = 1 to n
for j = 1 to n
A[i][j] = f(A[i-1][j],

A[i][j-2])

Motivating Example

j

Array Expansion

i

j

t = 6

(i, j) = {(2, 5),
(3, 4),
(4, 3),
(5, 2)}

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

t = 25

(i, j) = (5, 5)

init A[0][j]
for i = 1 to n
for j = 1 to n
A[i][j] = f(A[i-1][j],

A[i][j-2])

Motivating Example

j

Array Expansion

i

j

t = 7

(i, j) = {(3, 5),
(4, 4),
(5, 3)}

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

t = 25

(i, j) = (5, 5)

init A[0][j]
for i = 1 to n
for j = 1 to n
A[i][j] = f(A[i-1][j],

A[i][j-2])

Motivating Example

j

Array Expansion

i

j

t = 8

(i, j) = {(4, 5),
(5, 4)}

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

t = 25

(i, j) = (5, 5)

init A[0][j]
for i = 1 to n
for j = 1 to n
A[i][j] = f(A[i-1][j],

A[i][j-2])

Motivating Example

j

Array Expansion

i

j

t = 9

(i, j) = (5, 5)

for i = 1 to n
for j = 1 to n
A[j] = f(A[j], A[j-2])

t = 25

(i, j) = (5, 5)

init A[0][j]
for i = 1 to n
for j = 1 to n
A[i][j] = f(A[i-1][j],

A[i][j-2])

• Increasing storage can enable parallelism
– But storage can be expensive

• Phase ordering problem
– Optimizing for storage restricts parallelism
– Maximizing parallelism restricts storage options
– Too complex to consider all combinations

è Need efficient framework to integrate
schedule and storage optimization

Parallelism/Storage Tradeoff

Cache
RAM
Disk

Outline

• Abstract problem
• Simplifications
• Concrete problem
• Solution Method
• Conclusions

• Given DAG of dependent operations

– Must execute producers before consumers
– Must store a value until all consumers execute

Abstract Problem

• Two parameters control execution:
1. A scheduling function θ

• Maps each operation to execution time
• Parallelism is implicit

2. A fully associative store of size m

• We can ask three questions:

Abstract Problem

• Two parameters control execution:
1. A scheduling function θ

• Maps each operation to execution time
• Parallelism is implicit

2. A fully associative store of size m

• We can ask three questions:
1. Given θ, what is the smallest m?

Abstract Problem

• Two parameters control execution:
1. A scheduling function θ

• Maps each operation to execution time
• Parallelism is implicit

2. A fully associative store of size m

• We can ask three questions:
1. Given θ, what is the smallest m?
2. Given m, what is the “best” θ?

Abstract Problem

• Two parameters control execution:
1. A scheduling function θ

• Maps each operation to execution time
• Parallelism is implicit

2. A fully associative store of size m

• We can ask three questions:
1. Given θ, what is the smallest m?
2. Given m, what is the “best” θ?
3. What is the smallest m that is valid for all legal θ?

Abstract Problem

• Two parameters control execution:
1. A scheduling function θ

• Maps each operation to execution time
• Parallelism is implicit

2. A fully associative store of size m

Outline

• Abstract problem
• Simplifications
• Concrete problem
• Solution Method
• Conclusions

Simplifying the Schedule

• Real programs aren’t DAG’s
– Dependence graph is parameterized by loops
– Too many nodes to schedule

• Size could even be unknown (symbolic constants)

• Use classical solution: affine schedules
– Each statement has a scheduling function θ
– Each θ is an affine function of the enclosing

loop counters and symbolic constants
– To simplify talk, ignore symbolic constants:

θ(i) = B • i

Simplifying the Storage Mapping

• Programs use arrays, not associative maps
– If size decreases, need to specify which

elements are mapped to the same location

Simplifying the Storage Mapping

• Programs use arrays, not associative maps
– If size decreases, need to specify which

elements are mapped to the same location

Simplifying the Storage Mapping

• Programs use arrays, not associative maps
– If size decreases, need to specify which

elements are mapped to the same location

Simplifying the Storage Mapping

• Specifies unit of overwriting within an array
• Locations collapsed if separated by a

multiple of v

j

i

v = (1, 1)

Occupancy Vectors (Strout et al.)

Simplifying the Storage Mapping

• Specifies unit of overwriting within an array
• Locations collapsed if separated by a

multiple of v

j

i

v = (1, 1)

Occupancy Vectors (Strout et al.)

Simplifying the Storage Mapping

• Specifies unit of overwriting within an array
• Locations collapsed if separated by a

multiple of v

j

i

v = (1, 1)

Occupancy Vectors (Strout et al.)

Simplifying the Store

• Specifies unit of overwriting within an array
• Locations collapsed if separated by a

multiple of v

j

i

v = (1, 1)

Occupancy Vectors (Strout et al.)

Simplifying the Store

• Specifies unit of overwriting within an array
• Locations collapsed if separated by a

multiple of v

j

i

v = (1, 1)

Occupancy Vectors (Strout et al.)

Simplifying the Store

• Specifies unit of overwriting within an array
• Locations collapsed if separated by a

multiple of v

j

i

v = (1, 1)

Occupancy Vectors (Strout et al.)

Simplifying the Store

• Specifies unit of overwriting within an array
• Locations collapsed if separated by a

multiple of v

j

i

v = (1, 1)

Occupancy Vectors (Strout et al.)

Simplifying the Store

• Specifies unit of overwriting within an array
• Locations collapsed if separated by a

multiple of v

j

i

v = (1, 1)

Occupancy Vectors (Strout et al.)

Simplifying the Store

• Specifies unit of overwriting within an array
• Locations collapsed if separated by a

multiple of v

j

i

v = (1, 1)

Occupancy Vectors (Strout et al.)

Simplifying the Store

• Specifies unit of overwriting within an array
• Locations collapsed if separated by a

multiple of v

j

i

v = (1, 1)

2 :Original

n2 :dTransforme

n

Occupancy Vectors (Strout et al.)

Simplifying the Store

• For a given schedule, v is valid if semantics
are unchanged using transformed array

• Shorter vectors require less storage

j

i

v = (1, 1)

2 :Original

n2 :dTransforme

n

Occupancy Vectors (Strout et al.)

Outline

• Abstract problem
• Simplifications
• Concrete problem
• Solution Method
• Conclusions

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
� Solution: v = (1, 1)

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
� Solution: v = (1, 1)

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
� Solution: v = (1, 1)

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
� Solution: v = (1, 1)

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
� Solution: v = (1, 1)

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
� Solution: v = (1, 1)

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
� Solution: v = (1, 1)

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
� Solution: v = (1, 1)

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
� Solution: v = (1, 1)

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
� Solution: v = (1, 1)

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
� Solution: v = (1, 1)

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
� Solution: v = (1, 1)

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
� Solution: v = (1, 1)

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
�Why not v = (0, 1)?

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
�Why not v = (0, 1)?

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
�Why not v = (0, 1)?

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
�Why not v = (0, 1)?

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
�Why not v = (0, 1)?

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
�Why not v = (0, 1)?

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
�Why not v = (0, 1)?

i

j

Answering Question #1

• Given θ(i, j) = i + j, what is the shortest valid
occupancy vector v?
�Why not v = (0, 1)?

i

j

???

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?

i

j

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�θ(i, j) is between:

θ(i, j) = 2 ∗ i + j (inclusive)
θ(i, j) = i (exclusive)

i

j

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�θ(i, j) is between:

θ(i, j) = 2 ∗ i + j (inclusive)
θ(i, j) = i (exclusive)

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�θ(i, j) is between:

θ(i, j) = 2 ∗ i + j (inclusive)
θ(i, j) = i (exclusive)

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�θ(i, j) is between:

θ(i, j) = 2 ∗ i + j (inclusive)
θ(i, j) = i (exclusive)

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�θ(i, j) is between:

θ(i, j) = 2 ∗ i + j (inclusive)
θ(i, j) = i (exclusive)

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�θ(i, j) is between:

θ(i, j) = 2 ∗ i + j (inclusive)
θ(i, j) = i (exclusive)

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�θ(i, j) is between:

θ(i, j) = 2 ∗ i + j (inclusive)
θ(i, j) = i (exclusive)

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

j

i

Answering Question #2

• Given v = (0, 1), what is the range of valid
schedules θ?
�Lets try θ(i, j) = 2 ∗ i + j

j

i

Answering Question #3

• What is the shortest v that is valid for all legal
affine schedules?

i

j

Answering Question #3

• What is the shortest v that is valid for all legal
affine schedules?
�Range of legal θ

i

j

Answering Question #3

• What is the shortest v that is valid for all legal
affine schedules?
�Range of legal θ

i

j

Answering Question #3

• What is the shortest v that is valid for all legal
affine schedules?
�Range of legal θ

i

j

Answering Question #3

• What is the shortest v that is valid for all legal
affine schedules?
�Range of legal θ

i

j

Answering Question #3

• What is the shortest v that is valid for all legal
affine schedules?
�Range of legal θ

i

j

Answering Question #3

• What is the shortest v that is valid for all legal
affine schedules?
�Range of legal θ

i

j

Answering Question #3

• What is the shortest v that is valid for all legal
affine schedules?
�Range of legal θ

i

j

Answering Question #3

• What is the shortest v that is valid for all legal
affine schedules?
�Range of legal θ

i

j

Answering Question #3

• What is the shortest v that is valid for all legal
affine schedules?
�Range of legal θ

i

j

Answering Question #3

• What is the shortest v that is valid for all legal
affine schedules?
�Range of legal θ
�v = (2, 1)

i

j

Answering Question #3

• What is the shortest v that is valid for all legal
affine schedules?
�Range of legal θ
�v = (2, 1)

i

j

Answering Question #3

• What is the shortest v that is valid for all legal
affine schedules?
�Range of legal θ
�v = (2, 1)

i

j

Answering Question #3

• What is the shortest v that is valid for all legal
affine schedules?
�Range of legal θ
�v = (2, 1)

• Def: v is an affine occupancy vector (AOV)

i

j

Outline

• Abstract problem
• Simplifications
• Concrete problem
• Solution Method
• Conclusions

i

Schedule Constraints

• Dependence analysis yields:
– iteration i depends on iteration h(i)
– h is an affine function

• Consumer must execute
after producer

i1
h(i)

Schedule Constraint

θ(i) ≥ θ(h(i)) + 1

i2

Storage Constraints

i

i1

i2

h(i)

Storage Constraints

i

i1

i2

h(i)

v

Storage Constraints

i

i1

i2

h(i)

v

Storage Constraints

i

i1

i2

h(i)

vv

dynamic single assignment

for i = 1 to n
for j = 1 to n

A[i][j] = …
B[i][j] = …

Storage Constraints

i

i1

i2

h(i)

v

Consumer: i

Producer: h(i)

Storage Constraints

i

i1

i2

h(i)

v

Consumer: i

Producer: h(i)
h(i).+.v Consumer: i

Producer: h(i)

Overwriting producer: h(i) + v

Storage Constraints

i

i1

i2

h(i)

v

Consumer: i

Producer: h(i)
h(i).+.v Consumer: i

Producer: h(i)

Overwriting producer: h(i) + v

� Consumer must execute before producer is overwritten

Storage Constraints

i

i1

i2

h(i)

v

Consumer: i

Producer: h(i)
h(i).+.v Consumer: i

Producer: h(i)

Overwriting producer: h(i) + v

� Consumer must execute before producer is overwritten

Storage Constraint

θ(i) ≤ θ(h(i) + v)

The Constraints

• A given (θ, v) combination is valid if
– For all dependences h,
– For all iterations i in the program:

θ(i) ≥ θ(h(i)) + 1 schedule constraint
θ(i) ≤ θ(h(i) + v) storage constraint

• Given θ, want to find v satisfying constraints
– Might look simple, but it is not
– Too many i’s and n’s to enumerate!
– Need to reduce the number of constraints

The Constraints

• A given (θ, v) combination is valid if
– For all dependences h,
– For all iterations i in the program:

θ(i) ≥ θ(h(i)) + 1 schedule constraint
θ(i) ≤ θ(h(i) + v) storage constraint

• Given θ, want to find v satisfying constraints
– Might look simple, but it is not
– Too many i’s to enumerate!
– Need to reduce the number of constraints

The Vertex Method (1-D)

• An affine function is non-negative within an
interval [x1, x2] iff it is non-negative at x1 and x2

x1 x2

The Vertex Method (1-D)

• An affine function is non-negative over an
unbounded interval [x1, ∞) iff it is non-negative
at x1 and is non-decreasing along the interval

x1

The Vertex Method

• The same result holds in higher dimensions
– An affine function is nonnegative over a bounded

polyhedron D iff it is nonnegative at vertices of D

Applying the Method (Quinton87)

• Recall the storage constraints
– For all iterations i in the program:

θ(i) ≤ θ(h(i) + v)
– Re-arrange:

0 ≤ θ(h(i) + v) - θ(i)

• The right hand side is:
1. An affine function of i
2. Nonnegative over the domain D of iterations
èWe can apply the vertex method

Applying the Method

• Replace i with the vertices w of its domain:

i1

i2
w1 w2

w3 w4

θ(h(i) + v) - θ(i)

iteration space

∀i∈D, θ(h(i) + v) - θ(i) ≥ 0

θ(h(w1) + v) - θ(w1) ≥ 0
θ(h(w2) + v) - θ(w2) ≥ 0
θ(h(w3) + v) - θ(w3) ≥ 0
θ(h(w4) + v) - θ(w4) ≥ 0

The Reduced Constraints

• Apply same method to schedule constraints
• Now a given (θ, v) combination is valid if

– For all dependences h,
– For all vertices w of the iteration domain:

θ(w) ≥ θ(h(w)) + 1 schedule constraint
θ(w) ≤ θ(h(w) + v) storage constraint

• These are linear constraints
– θ and v are variables; h and w are constants
– Given θ, constraints are linear in v (& vice-versa)

θ(w(z)) ≥ θ(h(w(z))) + 1 schedule constraint
θ(h(w(z)) + v) ≥ θ(w(z)) storage constraint

θ(w) ≥ θ(h(w)) + 1 schedule constraint
θ(w) ≤ θ(h(w) + v) storage constraint

Answering the Questions

1. Given θ, we can “minimize” |v|
- Linear programming problem

2. Given v, we can find a “good” θ
- Feautrier, 1992

3. To find an AOV... still too many constraints!
- For all θ satisfying the schedule constraints:

v must satisfy the storage constraints

θ(w(z)) ≥ θ(h(w(z))) + 1 schedule constraint
θ(h(w(z)) + v) ≥ θ(w(z)) storage constraint

θ(w) ≥ θ(h(w)) + 1 schedule constraint
θ(w) ≤ θ(h(w) + v) storage constraint

Finding an AOV

• Apply the vertex method again!
• Schedule constraints define domain of valid θ
• Storage constraints can be written as a non-

negative affine function of components of θ:
– Expand θ(i) = B • i

B • w ≤ B • (h(w) + v)
– Simplify

(h(w) + v – w) • B ≥ 0

Finding an AOV

• Our constraints are now as follows:
– For all dependences h,
– For all vertices w of the iteration domain,
– For all vertices t of the space of valid schedules:

t • w ≤ t • (h(w) + v) AOV constraint

• Can find “shortest” AOV with linear program
– Finite number of constraints
– h, w, and t are known constants

The Big Picture
Input program

Affine Dependences

dependence
analysis

Schedule &
Storage
Constraints

Constraints
without i

vertex method

Constraints
without θ

vertex method

Given θ, find v
Given v, find θ

Find an AOV,
valid for all θ

linear
program

linear
program

Details in Paper

• Symbolic constants
• Inter-statement dependences across loops
• Farkas’ Lemma for improved efficiency

Related Work

• Universal Occupancy Vector (Strout et al.)
– Valid for all schedules, not just affine ones
– Stencil of dependences in single loop nest

• Storage for ALPHA programs (Quilleré,
Rajopadhye, Wilde)
– Polyhedral model, with occupancy vector analog
– Assume schedule is given

• PAF compiler (Cohen, Lefebvre, Feautrier)
– Minimal expansion → scheduling → contraction
– Storage mapping A[i mod x][j mod y]

Future Work

• Allow affine left hand side references
– A[2∗j][n-i] = …

• Consider multi-dimensional time schedules

• Collapse multiple dimensions of storage

Conclusions

• Unified framework for determining:
1. A good storage mapping for a given schedule
2. A good schedule for a given storage mapping
3. A good storage mapping for all valid schedules

• Take away: representations and techniques
- Occupancy vectors
- Affine schedules
- Vertex method

