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Parallelism/Storage Tradeoff

* Increasing storage can enable parallelism
- But storage can be expensive

RAM
Disk

* Phase ordering problem
- Optimizing for storage restricts parallelism
- Maximizing parallelism restricts storage options
- Too complex to consider all combinations

=>» Need efficient framework to integrate
schedule and storage optimization
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Abstract Problem

* Given DAG of dependent operations

e
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* Two parameters control execution:

1. A scheduling function q
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2. A fully associative store of size m
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Abstract Problem

* We can ask three questions:
1. Given g, what is the smallest m?
2. Given m, what is the “best” g7
3. What is the smallest m that is valid for all legal q~?

* Two parameters control execution:

1. A scheduling function q
 Maps each operation to execution time
 Parallelism is implicit

2. A fully associative store of size m
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Simplifying the Schedule

* Real programs aren’t DAG’s
- Dependence graph is parameterized by loops
- Too many nodes to schedule
 Size could even be unknown (symbolic constants)
» Use classical solution: affine schedules
- Each statement has a scheduling function g

- Each g is an affine function of the enclosing
loop counters and symbolic constants

- To simplify talk, ignore symbolic constants:

- —_ -

q(i) =B« i
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Occupancy Vectors (Strout et al.)

» For a given schedule, Vv is valid if semantics
are unchanged using transformed array

» Shorter vectors require less storage

T Transformed : +/2n

Kd Original : n°
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Answering Question #3

» What is the shortest v that is valid for all legal
affine schedules?

+ Range of legal g
>V =(2,1)

» Def: Vv is an affine occupancy vector (AOV)




Outline

* Abstract problem
« Simplifications

» Concrete problem
« Solution Method
» Conclusions



Schedule Constraints

* Dependence analysis yields:
- jteration 7 depends on iteration h(7)

- his an affine function

« Consumer must execute
after producer

Schedule Constraint

a(i) * q(h(i)) + 1
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Storage Constraints

dynamic single assignment
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Storage Constraints
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Producer:

]

(7)

Overwriting producer: h(i) + v

¥ Consumer must execute before producer is overwritten

Storage Constraint

a(i) £ q(h(i) + V)
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The Constraints

» A given (g, V) combination is valid if
- For all dependences h,
- For all iterations i in the program:

q(7) 3 q(h(?)) + 1 schedule constraint
a(i) £ q(h(7) + V) storage constraint

» Given g, want to find v satisfying constraints

- Might look simple, but it is not
- Too many i’s to enumeratel!
- Need to reduce the number of constraints



The Vertex Method (1-D)

 An affine function is non-negative within an
interval [x,, X,] iff it iS non-negative at x, and X,
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The Vertex Method (1-D)

* An affine function is non-negative over an
unbounded interval [x,, ¥) iff it is non-negative
at x, and is non-decreasing along the interval

T

o




The Vertex Method

* The same result holds in higher dimensions

- An affine function is nonnegative over a bounded
polyhedron D iff it is nonnegative at vertices of D




Applying the Method (Quinton87)

* Recall the storage constraints
- For all iterations i in the program:
q(7) £ a(h(7) + V)
- Re-arrange:
0 £ q(h(7) + V) - q(7)
* The right hand side is:
1. An affine function of 7

2. Nonnegative over the domain D of iterations
=» We can apply the vertex method



Applying the Method

 Replace 7 with the vertices W of its domain:

I Q(R(7) + V) - o(7)

3(@1) + \:/:) - C(ﬂﬁ >0
) +0)- (i) O
h(

W3) + V) - (W) 2 0
W) + V) -q(Wy) 2 0

AN N N N

iteration space



The Reduced Constraints

* Apply same method to schedule constraints

» Now a given (g, V) combination is valid if
- For all dependences h,
- For all vertices w of the iteration domain:

q(W) 3 g(R(W)) + 1 schedule constraint
\ q(w) £ q(h(w) + V) storage constraint

A

* These are linear constraints
- g and V are variables; h and W are constants
- Given @, constraints are linear in v (& vice-versa)



Answering the Questions

rq(W) 3 g(h(W)) + 1 schedule constraint
q(W) £ q(h(W) + V) storage constraint

1. Given g, we can “minimize” |V|
- Linear programming problem

2. Given v, we can find a “good” q
- Feautrier, 1992

3. To find an AOV... still too many constraints!
- For all g satisfying the schedule constraints:
vV must satisfy the storage constraints



Finding an AOV

rq(W) 3 g(h(W)) + 1 schedule constraint
q(W) £ q(h(W) + V) storage constraint

* Apply the vertex method again!

« Schedule constraints define domain of valid g

« Storage constraints can be written as a non-
negative affine function of components of Q:

- — -
|

- Expandq(i)=p i

- Simplify



Finding an AOV

» Our constraints are now as follows:
- For all dependences h,
- For all vertices W of the iteration domain,
- For all vertices 7 of the space of valid schedules:

TeW £7T e (h(W) + V) AQV constraint

» Can find "shortest” AOV with linear program
- Finite number of constraints
- h, W, and t are known constants



The Big Picture

Input program

dependence
analysis C

Affine Dependences

c Schedule &

Storage
Constraints

Constraints “I:sarram Given g, find v
without T | emei ol | Given ¥, find g

vertex method c

vertex method c

C - linear )
_ons raints orogram Fln_d an AOV,
without g === | Valid for all g




Detalls in Paper

* Symbolic constants
* Inter-statement dependences across loops
» Farkas’ Lemma for improved efficiency



Related Work

* Universal Occupancy Vector (Strout et al.)
- Valid for all schedules, not just affine ones
- Stencil of dependences in single loop nest

« Storage for ALPHA programs (Quillere,
Rajopadhye, Wilde)
- Polyhedral model, with occupancy vector analog
- Assume schedule is given

 PAF compiler (Cohen, Lefebvre, Feautrier)
- Minimal expansion ® scheduling ® contraction
- Storage mapping A[i mod x][j mod y]



Future Work

* Allow affine left hand side references

i‘\

- A[2*{][n-i] = ...
 Consider multi-dimensional time schedules
- >
- >
- >
=
r~

» Collapse multiple dimensions of storage

=)




Conclusions

 Unified framework for determining:
1. A good storage mapping for a given schedule
2. A good schedule for a given storage mapping
3. A good storage mapping for all valid schedules

 Take away:. representations and techniques
- Occupancy vectors
- Affine schedules
- Vertex method




