A Flexible Compilation Infrastructure for
VLIW and SIMD Architectures
by
David Z. Maze

B.S., Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (2000)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2001
(© David Z. Maze, MMI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document
in whole or in part.

AUthor . .
Department of Electrical Engineering and Computer Science
August 31, 2001

Certified Dy
Saman P. Amarasinghe

Associate Professor

Thesis Supervisor

Accepted Dy ...

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

A Flexible Compilation Infrastructure for VLIW and SIMD
Architectures
by
David 7. Magze

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2001, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Most compiler infrastructures target existing physical architectures. This creates dif-
ficulty when trying to perform architectural research: trying to simulate the effects
of adding registers to a processor might involve making changes deep inside the com-
piler infrastructure and writing a dedicated simulator. Making higher-level changes,
such as adding a functional unit or extending data paths to handle multiple words in
parallel, may be nearly impossible.

This thesis describes a compiler back-end and simulator code to compile and sim-
ulate code for a variety of architectures. In-order, single instruction/multiple data
(SIMD) superword architectures, both clustered and unclustered very long instruc-
tion word (VLIW) architectures, and SIMD/VLIW hybrid architectures can all be
targeted. A single control file specifies these high-level architectural details, along
with characteristics such as the number of registers and the number of functional
units, the operations they can execute, and the latency of these operations.

There are several characteristics of this system that make it more suitable for
architecture research than existing systems. Only having to change a single file to
change the target architecture makes it possible to compare several distinct archi-
tectures directly, as is demonstrated here. Since this work is based on an existing
infrastructure, it can take advantage of existing optimization passes and components
such as a register allocator. Finally, since the machine models used here are not
based on a physical processor, the user has some flexibility to add to or modify the
instruction set to simulate additional instructions.

Thesis Supervisor: Saman P. Amarasinghe
Title: Associate Professor

Acknowledgments

Several people deserve thanks for their help with this thesis. Sam Larsen wrote the
SUIF' 1 front-end pass for detecting superword-level parallelism. Michael Gordon
wrote large parts of the simulator code, and Diego Puppin was responsible for the
scheduler. Mark Stephenson also provided substantial support in coding and debug-
ging the system. Andromeda Yelton proofread late revisions of the thesis. Finally,
this thesis would not have been possible without the help and support of my advisor,

Saman Amarasinghe.

Contents

1 Introduction

1.1 Overview
1.2 Related Work .
1.3 Organization .

2 Machine Model
2.1 Basic Model . .
2.1.1 Memory

2.1.2 Calling Convention
2.1.3 Predication L
2.1.4 Scheduling o

2.2 VLIW Machines
2.3 SIMD Machines

3 Machine SUIF Interface
3.1 Thevliw Back-Endo
3.2 Exported Information oL
3.2.1 VLIW Scheduling
3.2.2 Machine Characteristics
3.3 The vliwinfo File
3.3.1 General Machine Characteristics
3.3.2 Functional Unit Descriptions
3.4 Changes to Machine SUIF

15
16
17
18

19
19
20
20
21
22
23
25

3.4.1
3.4.2
3.4.3
3.4.4

4 Simulator

Generic Front-End Instructions
Initialization Hooks
Register Allocator

Liveness Analysis

4.1 Implementation
4.1.1 Emitting Instructions
4.1.2 Functions
413 Native Calls oo
4.1.4 In-Simulator Functions

4.2 Pointers and Memoryo
4.2.1 Global Data
4.2.2 Linker

43 AnExample

5 Compilation and Execution

5.1 Compilation
5.1.1 Simple Compilation
5.1.2 Extended Front-End
5.1.3 Extended Back-End

5.2 Additional Components L
5.2.1 Peep-hole Optimizer
5.2.2 Simulation Code Printer
5.2.3 Simulation Code Linker
5.2.4 Native C Compiler

6 Results

6.1 Methodology

6.2 In-Order, SIMD, VLIW

6.3 Registers

39
40
40
41
42
43
44
44
45
46

49
49
49
49
52
23
23
o4
25
95

6.4 Optimization

6.5 Memory Latencyo

6.6 Pipelining oo

6.7 Other Possible Modifications
6.7.1 Mixed-latency Functional Units
6.7.2 Additional Instructionso

Conclusions

7.1 Future Worko

Instruction Set

A.1 Standard Instructionso
A2 VLIW Extensions
A.3 SIMD Extensions

Register and Calling Conventions
B.1 Registers
B.2 Calling Convention

Simulated Machine Models

C.1 Generalities
C.2 In-Order Machine
C.3 Basic SIMD Machine
C.4 Basic VLIW Machine 0.
C.5 SIMD/VLIW Hybrid
C.6 Ideal VLIW

71
72

73
74
78
79

81
81
81

10

List of Figures

3-1

4-1
4-2

5-1
5-2
5-3
5-4

Memory Layout 21
Sample Unscheduled Code 23
Sample Scheduled Code 24
VLIW Scheduled Code 25
SIMD Scheduled Code 26
Machine SUIF Back-End 27
Simulator Implementation of close() 44
Global Data Relocation 47
Basic Compilation Sequence 50
Extended Front-End 51
Extended Back-End oo 52
Examples of Peep-hole Optimization 54
Performance of In-Order, SIMD, and VLIW Architectures 60
Performance of Clustered VLIW Architectures 61
Performance with Varying Register File Sizes 63
Performance with Varying Optimization Passes 65
Performance with Varying Memory Latency 66
Performance with Different Pipeline Options 68
Stack Frame 82

11

12

List of Tables

2.1

3.1

6.1

B.1

Effects of Predication 22
vliwinfo Instruction Abbreviations 34
Simulated Machine Models 58
Reserved Registers 82

13

14

Chapter 1

Introduction

Traditional computer architectures have presented a machine model in which one
instruction completely executes before the next instruction begins. While advances
such as pipelining and superscalar architectures have allowed multiple instructions to
be execute in parallel, hardware has been added to maintain the illusion of a single
instruction executing to the programmer.

In hopes of reducing the complexity introduced by this hardware, other archi-
tectural options have been explored, including very long instruction word (VLIW)
processors[5] and the addition of single instruction, multiple data (SIMD) instructions
to conventional processors. Both of these options allow the compiler to explicitly spec-
ify when multiple instructions should be executed in parallel, removing this burden
from the processor itself. These options can also be combined with existing archi-
tectures; for example, extensions such as Intel’s MMX][13] and Motorola’s AltiVec[6]
add SIMD operations to the Pentium and PowerPC processors, respectively, and it
is possible to extend most standard processor designs into superword machines by
widening data paths and duplicating functional units.

Since SIMD and VLIW architectures require explicit scheduling of parallel in-
structions, good compiler support is required to target these sorts of architectures.
However, most research compiler back-ends only target machines whose assembly
code mimics an in-order machine. The Machine SUIF system[14] used here has this

limitation, for example. Other infrastructures target a specific parallel machine (in

15

the case of Trimaran[1], a virtual machine similar to Intel’s IA64 architecture), but

this specific targeting makes it difficult to compile for a different style of machine.

Other architectural constraints make it difficult to use the same compiler infras-
tructure to compile and simulate code for different architectures. While the basic
tool chain in every case is similar, extra passes are needed to extract superword-level
parallelism[10], or to schedule code for a particular clustered VLIW architecture[11].
Other modifications, such as changing the size of the register file or the number or
latency of functional units, are desirable for research but are often difficult to perform

without making fundamental changes to the compiler.

1.1 Overview

This thesis introduces extensions to the Machine SUIF back-end[14] to target a variety
of architectures, including in-order, VLIW, and SIMD architectures. Details of the
architecture, including the size of the register files, the general type of architecture,
and the number and latency of included functional units, are specified in a control

file that is easily changed.

It is also reasonably straightforward to change the instruction set by modifying the
source to the back-end and the simulator. The new opcode needs to be added to the
list of opcodes in the source and to a small number of other files, and simulator code
for this opcode needs to be added to the simulation printer and the associated library.
However, adding instructions does not necessitate changes to other components such

as the scheduler, register allocator, or linker.

The code produced by the back-end is of consistent quality in spite of the system’s
flexibility. The register allocator and calling convention easily accommodate changes
in the number of registers; the scheduler used gives reasonable schedules for in-order,
unclustered, and clustered VLIW machines, while leaving SIMD information intact.
A peep-hole optimizer can improve the generated code, sometimes substantially, on

any targeted architecture.

16

1.2 Related Work

Several other systems are available for architectural research; however, they tend to
be lacking in one way or another. There are a fair number of systems to generate
parts of the tool chain from an architectural description, but these are not complete

systems as they lack integration with a front-end or a simulator.

Trimaran([1] is a research compiler focused on EPIC architectures. Its primary
target is a simulated machine called HPL-PD[9], though there is a complicated means
for specifying other architectures. Trimaran’s main disadvantages are its close ties
to HPL-PD and the opacity of the infrastructure. While HPL-PD accommodates
VLIW and in-order machines readily, it is difficult to extend the system for SIMD.
The available Trimaran documentation also encourages exclusive use of a graphical

front-end, and neglects to mention any inner workings of the system.

SimpleScalar[4] is a popular simulation environment for architectural research; its
infrastructure has been modified extensively to perform power simulations and more
detailed simulations of what happens inside the chip. SimpleScalar’s main target is
an in-order MIPS-like machine, using a modified version of the GNU C compiler and
tool chain. It supports both in-order and out-of-order execution, the latter via an ar-
tificial “register update unit.” SimpleScalar has a detailed simulator which accounts
for caching, branch prediction, and other particulars of the architecture. While Sim-
pleScalar supports modifying the instruction set and machine characteristics, adding
VLIW or SIMD code to the system would be difficult at best; these changes would
involve making modifications to the GNU compiler and assembler, which one Sim-

pleScalar presentation describes as “very painful”[3].

The AvIV retargetable code generator[7] is built upon the Stanford SUIF
infrastructure[15], and targets a variety of embedded systems, primarily VLIW DSPs.
Av1iv uses an instruction set description language (ISDL) to describe the processor
target, and automatically generate a back-end and simulator. For this work, the ISDL
is too powerful and flexible: while it is readily possible to simulate any real VLIW

processor, it is difficult to work with multiple machine models in parallel. The Aviv

17

system creates separate tool chain and simulator for each target architecture, hiding
the details of what actually happens in the back-end. It is also unclear how Aviv

would be extended to support SIMD operations.

1.3 Organization

This thesis explores extensions to the Machine SUIF back-end to target both VLIW
and SIMD architectures. In Chapter 2, a general machine model capable of being an
in-order machine, a simple or clustered VLIW machine, or any of these machines with
SIMD extensions is described. Chapter 3 describes a back-end for Machine SUIF that
targets this machine model. Chapter 4 discusses the implementation of the simulator
and how assembly is converted into a simulated binary. The process for compiling and
running simulated code is described in Chapter 5. Finally, results from compiling a

suite of test programs comparing the different architectures are presented in Chapter

6.

18

Chapter 2

Machine Model

This chapter describes the machine model this system targets. The target machine is
not tied to any physical hardware; as such, information such as the number of registers
in the register file, the latency of the attached functional units, and extensions such
as SIMD operations may be specified at compile time. However, the instruction set is
heavily influenced by that of real RISC machines, most notably the MIPS processor.

The instruction set is, for the most part, fairly typical of RISC machines, though
some additions have been made to accommodate VLIW and SIMD architectures. The

instruction set is described in detail in Appendix A.

2.1 Basic Model

The basic model emulates a simple microprocessor. A maximum of one instruction
is issued per cycle, though the processor may stall if scheduling constraints are not
met. Instructions may begin executing before previous instructions have committed
their results to the register file, but only if they do not depend on the results of these
instructions.

The processor has three separate register files. The general-purpose or integer
register file holds integer values; the floating-point register file holds floating-point
values; and the predicate register file holds single-bit flags. Most instructions read

and write to either the general-purpose or floating-point register file, though every

19

instruction reads a single predicate register.

For simplicity, the processor has a limited number of addressing modes. Most
instructions use values in registers directly; only the LD and ST instructions, their
floating-point variants, and the LDA (load-address) instruction use memory addresses.
Memory addresses are always expressed as an offset relative to a register, such as 4(rl)
to refer to the fourth byte above register r1. Many ALU operations can also use a
16-bit signed constant, which must be the second source operand. A complete listing

of opcodes and allowed addressing for each is included in Appendix A.

2.1.1 Memory

All addresses in the machine model are 32 bits wide, and it is assumed that any
general-purpose register can hold any memory address. This restriction is necessary
to simplify the generated code. Program code is not represented as being stored
in memory, since the bit-pattern of instructions is not specified. The simulator is
responsible for setting up the exact memory environment. Hooks are provided to make
it possible for the simulator to simulate an instruction cache, though the simulator
currently lacks such a cache.

The current simulator implementation uses a 256 MB address space; this is a
compromise between using all of the available memory on the host machine and
accommodating the working set of benchmarks. The first kilobyte of memory is
reserved; reading from or writing to there is an error, intended to protect against
dereferencing null pointers. The next section of memory contains static data, with
initial values provided by the compiler. Dynamically allocated memory begins after
the static data area and grows upward in memory. The stack begins at the top of

memory and grows downwards. This memory layout is illustrated in Figure 2-1.

2.1.2 Calling Convention

All procedure calls use a standard calling convention. This requires cooperation on

the part of both the calling procedure and the procedure being called, and establishes

20

256M Stack

|

Dynamic Data
Static Data
Reserved

1024

Figure 2-1: Memory Layout

standards for the use of registers and stack space.

With the exception of a small number of reserved registers, all registers are avail-
able for general use. The caller is responsible for saving live registers with an odd
number, such as r11l or f7. The callee is responsible for saving any register it uses with
an even number, such as r10 or f8. This even/odd convention allows for a balance
between caller- and callee-saved registers, and works even when the actual number of
registers is unknown. The callee is made responsible for saving all of the predicate
registers, since there is no way to save individual predicates.

Appendix B contains a complete description of the calling convention.

2.1.3 Predication

Instructions on the simulated machine are predicated[12]. Every instruction causes
reads from memory or a register file, along with any stalls this may require. Each
instruction also reads a single predicate register; if the value of that predicate register
is a boolean false, then the result is not written back to the register file or to memory.
A complete description of the effects of predication on instructions is given in Table
2.1.

Predication is appearing in a number of real processors, including Intel’s 1A64
architecture[8]. An effective predicator in the compiler can remove branches in the

generated code, which require extra effort for branch predication and prefetching

21

Instruction Effects of false predicate

Loads and stores Cache effects still take place, but no value is actually read or
written
Jumps Jump not taken; destination register (if any) unchanged
Predicate-setting Destination registers set to false
Inter-cluster sends No effect; value is still sent
All others Result not written to destination register

Table 2.1: Effects of Predication

instructions. Adding predication to this architecture allows experimentation with
different predication algorithms. In the absence of explicit predication annotations,
the compiler infrastructure will add in predicates only as required for conditional

branches.

2.1.4 Scheduling

On each cycle, an instruction is read from a virtual memory store. The sources of
the instruction are read from the register file, and the result of the instruction is
calculated and stored in the target register. Two different numbers determine the
amount of simulated time this takes: no other operations may occur until the delay
of the instruction has passed, and an instruction depending on the result of the
calculation will stall until the latency of the instruction has passed.

These two numbers are sufficient to model the delays present in most functional
units. For example, the user might request a machine without a fully pipelined
multiply unit. The delay of multiply instructions would be two cycles; no instruction
could be issued in the cycle after a multiply. Additionally, multiplies would have a
latency of four cycles, compared with one cycle for simple integer ALU operations.
If the user wanted a fully pipelined multiplier instead, the delay for the multiply
instruction could easily be changed from two cycles to one by changing the listed
timing constraints for the MUL instruction.

To see the effects of scheduling constraints, consider the following code sequence,

which calculates (a b+ c¢) + (d xe):

22

MUL r10, a, b
ADD rl11, r10, ¢
MUL r12, d, e
ADD r13, r11, r12

Without scheduling, this code sequence would execute in 10 cycles; see Figure 2-2.
The first ADD instruction must wait until the first MUL is complete to use its result,
and the second ADD is similarly delayed. A scheduler would notice that the second
MUL could be moved before the first ADD, since there are no dependencies between
the two instructions. This reduces the time required to 7 cycles, as shown in Figure
2-3. In both of these figures, note that nothing can be issued on the second cycle of
a multiply, and that instructions depending on the results of a multiply cannot be
scheduled sooner than four cycles after the start of the multiply. The empty boxes
have no instruction scheduled for them at all; three fewer cycles are thus wasted in

the scheduled code sequence.

1 MUL r10, a, b

|

~1 ADD r11, r10, ¢
— MUL r12, d, e

l

5 ADD r13, r11, r12

Figure 2-2: Sample Unscheduled Code

2.2 VLIW Machines

This architecture lends itself well to compiling for very long instruction word (VLIW)
machines. A simple VLIW machine allows the compiler to explicitly schedule more

than one operation per long instruction; on a single cycle, the processor might si-

23

— MUL r10, a, b

MUL r12, d, e

|

ADD rl11, r10, ¢

ADD r13, r11, r12

Figure 2-3: Sample Scheduled Code

multaneously schedule a load from memory, an integer addition, and a floating-point
multiplication. This style of architecture is very closely related to the explicitly par-

allel instruction computing (EPIC) architecture used in TA64.

A VLIW machine may also be clustered. A clustered VLIW machine has some
number of identical clusters, each of which contains a register file and some number
of functional units. Clustered VLIW architectures are generally intended to increase
the number of available functional units without requiring excessive numbers of read

and write ports on the register files.

On a clustered VLIW machine, it is often necessary to transfer data between
clusters. A pair of instructions, SND and RCV, do this work. The cluster sending a
value executes a SND instruction, and the receiving cluster executes a RCV during
the same cycle. The transfer mechanism may be implemented as either a simple bus,
in which case only one value may be sent per cycle, or as a cross-bar, in which case

any number of values may be transferred.

The multiply-and-add code sequence in Section 2.1.4 could be scheduled in six
cycles on a sample clustered VLIW machine. This machine might have two clusters
with two functional units each. The first functional unit can perform loads, stores,
and inter-cluster transfers; the second can perform integer and floating-point arith-
metic operations. This scheduling requires that the correct values be in each cluster’s
register file beforehand. A schedule that accomplishes this is shown in Figure 2-4;

the result appears in r13 in the first cluster.

24

MUL r10, a, b MUL r12, ¢, d

RCV r12, ... ADD rl11, r10, ¢ SND r12
ADD r13, rl11, r12

Figure 2-4: VLIW Scheduled Code

2.3 SIMD Machines

This architecture can also easily accommodate single instruction, multiple data
(SIMD) machines, in which each instruction affects multiple data words in paral-
lel. A single “register” in this case contains a superword, which in turn contains some
number of parallel data subwords, typically four. An instruction such as an ADD
instruction would result in subword addition in each of four parallel lanes, with the
results being put in the appropriate slots in the destination registers. Similarly, mem-
ory operations are typically wide loads and stores, which load or store four words in
parallel to or from sequential memory addresses.

On a SIMD machine, predication is applied to each subword separately. A SLT
instruction, for example, does a pairwise comparison of each subword in the source
operands and sets each bit in the target predication register accordingly. This turns
predicates into masks which specify which subwords in a superword are affected by
an operation. A non-superword machine can be viewed as a special case of a SIMD
machine with only one lane.

As with the clustered VLIW architecture, SIMD machines require some way of
transferring data between separate computational units. There are two specialized
instructions used here: PACK moves values from the first subword of separate regis-
ters into subwords of a single register, and UNPACK moves values from the subwords
of a single register into separate registers. These instructions are necessary to accom-
modate both scalar and vector operations together.

The code sample being used here is somewhat lacking in superword-level paral-

25

lelism, but for completeness, Figure 2-5 shows the same multiply-and-add sequence
as it might be scheduled for a SIMD machine. The subscripts after the opcodes show
which clusters are in use, so an ADDy; instruction would add the values in the first
and second lanes of the source registers and store the results in the first and second
lanes of the target register. For PACK and UNPACK instructions, subscripts after
operands indicate which clusters of those operands are used; PACK(1 z, Xy, yp moves
the values from the first lane of x and y into the first and second lanes of z.

In the scheduled code, the first two instructions pack the sources of the first two
multiplies into registers r14 and r15; the single MUL instruction then executes these
two multiplies in parallel. After they complete, the value in the first lane of rl7 is
added to the value in the first lane of r16, and r0 to the value in the second lane. The
results are then unpacked using a UNPACK instruction, and added to get the desired
result in the first lane of r13. This code sequence requires nine cycles to execute;
longer code sequences would require fewer PACK and UNPACK instructions, reducing

the setup requirements.

PACKUJ I’].4, do, do
PACKOJ |’].57 bo, €0
MUL, ; r16, r14, r15

PACKOJ I’].?7 Co, FOO

ADDy; r18, r16, r17
UNPACKOJ r1107 r120, r18
ADD, r13, r11, r12

Figure 2-5: SIMD Scheduled Code

26

Chapter 3

Machine SUIF Interface

This chapter describes how the previously described architecture interfaces to the

Machine SUIF system[14]. Machine SUIF provides a target-independent infrastruc-

ture for reducing a general intermediate format to machine-specific instructions and

for performing optimizations on the resulting instruction stream. The passes shown

in Figure 3-1 are run as part of the Machine SUIF back-end; the indicated passes use

parts of this system, rather than provided Machine SUIF code.

file.suif
suifdriver
‘ s2m ‘
!
| gen —— Calls into vliw back-end
!
‘ raga ‘

}

fin

F— Calls into vliw back-end

|

| simuprint |~—— New code

file.sim.c

file.sim.dat

Figure 3-1: Machine SUIF Back-End

There are several reasons for choosing Machine SUIF for this infrastructure. Ma-

chine SUIF is already quite flexible; given code from the SUIF 2 front-end, code may

27

be generated for the Intel x86, Alpha, MIPS, and PowerPC architectures using ex-
isting back-ends. The Machine SUIF distribution already includes generalized passes
for common back-end operations such as register allocation and assembly code print-
ing. Several useful passes, including a pass to detect superword-level parallelism in
code[10], already exist in SUIF 1; there is a straightforward path to convert code from
SUIF 1 to SUIF 2, and from there to Machine SUIF.

A number of passes are involved in creating an assembly file from a file with the
SUIF 2 intermediate format. A pass called s2m converts from the SUIF 2 interme-
diate format to Machine SUIF, targeting a virtual platform called SUIFvm. The
gen pass then converts from SUIFvm to the target assembly, with the name of the
target machine taken as a command-line parameter. The named back-end library
actually provides a great deal of the code for this pass, describing which native in-
structions should be generated for a particular SUIFvm instruction. Variables and
virtual registers are assigned to physical registers by the register allocator, praga. A
code-finalization pass, fin, inserts function prologues and epilogues and assigns mem-
ory addresses to any local variable names remaining in the code. After this the code
may be scheduled, converted to assembly, or printed as source to a compiled simulator

by subsequent passes.

3.1 The vliw Back-End

The architecture described in the previous chapter is implemented as a back-end to
Machine SUIF. Machine SUIF’s implementation allows for a variety of architectures
to be implemented, provided that they implement functions in a structure called a
context that answers questions for the rest of the system. These answers include
information such as which registers use a caller-saved convention, or the string name
corresponding to a particular opcode number. There is not native support in Ma-
chine SUIF for supporting architectures that execute multiple explicitly scheduled
instructions in the same cycle, such as VLIW architectures.

The back-end for this architecture is named vliw; code can be generated from

28

SUIFvm for it by using the command do_gen -target_lib vliw. In addition to
the opcodes listed in Appendix A, the back-end defines required opcodes for null
instructions, labels in code, and line numbers.

When each file is compiled, the back-end code for the gen pass reads in a file called
native-names. This file contains a list of procedure names, one to a line. If calls to
any of these functions are encountered in processing the code, the back-end emits a
NATIVE instruction instead of the normal call sequence. These are treated specially
by the simulator; see Section 4.1.3 for details.

The back-end uses a simple convention for dealing with predicated instructions:
every instruction has a predicate register as its first source operand. The code
that converts particular SUIFvm instructions to native instructions inserts a predi-
cate value as needed. If the instruction being translated has an annotation named
predicate, that annotation is removed and its value is used as the predicate regis-
ter. This allows a front-end pass to insert necessary predication information. If the
scheduling annotations are not present, a default predicate of pl is used, so that in
unannotated instructions always execute.

Predication causes some problems when interfacing with the remainder of Machine
SUIF. For example, the Machine SUIF distribution includes a liveness analyzer, but
the semantics of predicated code are different from unpredicated code. Consider the

following code sample:

SEQ p2, p3, r10, r0
(p2) ADD r10, r0, 1
(p3) ADD r10, r0, 2

Register r10 gets the value 1 if it is equal to 0 on entry to the block, and 2 if
not. Assuming the register is live on exit from the block, traditional liveness analysis
would conclude that the third instruction would always overwrite the definition from
the second instruction, and that the second instruction’s definition of r10 reaches no
uses. In reality, the SEQ instruction sets p2 and p3 to be logical inverses of each
other, causing exactly one of the second and third instructions to execute. Therefore,

both definitions will reach the end of the block.

29

The predication convention also causes problems in other parts of Machine SUIF,
particularly the register allocator, which make assumptions about the format of in-
structions in the machine code. Changes made to accommodate the changed instruc-

tion format are described in Section 3.4.

3.2 Exported Information

While the Machine SUIF context system provides target-independent presentation of
a significant amount of material, there is more variable information that we would like
to provide to other passes in a standardized way. This section discusses additional
functions provided by the back-end to schedule individual instructions and examine

details of the target architecture.

3.2.1 VLIW Scheduling

A VLIW scheduler will schedule each Machine SUIF instruction for a particular cycle
within the function, on a particular cluster, and on a particular functional unit. The
functions in vliw/vliwsched.h provide standard ways to access this information, via
get_instr_cycle(), get_instr_cluster(), and set_instr_fu(), along with equivalent set_. .. ()

functions.

Internally, scheduling is done with Machine SUIF annotations. Each of these three
values is stored as an annotation containing a single long. The annotation keys are

instr_cycle, instr_cluster, and instr_fu.

Support is also provided for two additional annotations used by the sched-
uler. set_new_block() and is_new_block() set and query a new_block annotation used
at the start of a basic block; set_end of bundle() and is_end_of bundle() control an
end_of_bundle annotation added by the scheduler to the last instruction scheduled

for a particular cycle.

30

3.2.2 Machine Characteristics

Since this back-end compiles for a family of related architectures, it is useful for
other passes to know what particular architecture has been selected. Information on
the actual details of the target architecture is made available through functions in
vliw/vliwinfo.h.

Many passes need to know details of the processor’s register structure. gpr_count(),
fpr_count(), and pr_count() return the number of general-purpose, floating-point, and
predicate registers. gpr_type() and analogues return the default Machine SUIF types
for each register class. Machine SUIF requires a unique integer identifier for each regis-
ter; reg_num_r() returns the number for a general purpose-register (e.g. r0), is_reg_gpr()
determines whether an abstract register number corresponds to a general-purpose
register, and reg_reg_num() returns the assembly register number corresponding to an
abstract register number. Analogous functions exist for floating-point and predicate
registers.

There are also functions to describe the higher-level characteristics of the proces-
sor. cluster_count() returns the number of clusters on a clustered VLIW machine,
with 1 corresponding to the degenerate case of an unclustered machine. lane_count()
returns the number of SIMD lanes on the machine, again with 1 corresponding to
a non-SIMD machine. fu_count() returns the number of functional units per cluster.
instr_delay() and instr_latency() return the timing characteristics of a particular in-
struction on a particular functional unit, or return the best timing on any functional

unit if the functional unit number passed is -1.

3.3 The vliwinfo File

The back-end depends on an external file to finish the description of the target archi-
tecture. By default, it looks for a file named vliwinfo in the current directory, but
the user may specify a different file by setting the VLIWINFO environment variable to
point to the desired file.

The file contains multiple sections. The first section describes general characteris-

31

tics of the processor; the remainder describe the operations possible in each functional
unit and their scheduling constraints. Items in the file are currently very case- and
format-sensitive; for example, a single-cluster machine must specify 1 clusters, all
in lowercase, and with a plural “clusters”. Blank lines in the file are ignored, as are
any lines that have a pound sign (#) as their first character.

Several sample files are included in Appendix C, including models for in-order,

SIMD, and both clustered and unclustered VLIW architectures.

3.3.1 General Machine Characteristics

The first section of the vliwinfo file contains general characteristics of the target
machine. Options may appear in any order, though one option from each category
should be specified. If multiple options from the same category are specified, the last

one in the file is used. Valid options include:

4 clusters Indicates the number of clusters in a VLIW machine, or the number of

lanes in a SIMD machine.

32 32-bit GPRs Indicates the number and width of registers in the general-purpose
(integer) register file. Only bit widths of 32 and 64 bits are recognized; at least
10 registers are required. The current simulator implementation only supports

32-bit integers.

32 64-bit FPRs Indicates the number and width of registers in the floating-point
register file. Only bit widths of 32, 64, and 128 bits are recognized; at least
7 registers are required. The current simulator implementation only supports
64-bit floats, which are used for double-precision values. The simulator also

simulates single-precision floating-point, using 32-bit values.

16 predicate registers Indicates the number of predicate registers available. At

least 4 registers are required.

4 functional units Indicates the number of functional units in each cluster.

32

Unrestricted loads or Restricted loads Specifies whether load and store in-
structions can only be executed from the first cluster of a clustered VLIW

machine (restricted), or from any cluster (unrestricted).

Unrestricted transfers or Restricted transfers Specifies whether only one
inter-cluster transfer instruction (RCV) may be executed per cycle (restricted),

or if any number of transfers may be scheduled (unrestricted). !

VLIW mode or SIMD mode Specifies whether the target machine is a clustered VLIW
machine or a SIMD machine. The number of clusters is used as the number of
lanes in SIMD mode. An unclustered VLIW machine with SIMD operations can
be simulated by requesting SIMD mode here and specifying multiple functional

units.

3.3.2 Functional Unit Descriptions

There is one functional unit description section for each functional unit on the ma-
chine. These sections list the instructions that it is possible to execute on each
functional unit, along with scheduling information for that instruction. The delay
and latency parameters are explained in Section 2.1.4.

A sample section might look like:

FU 4:
FMOV
FADD
FSUB
FMUL
FDIV
FCMP

N NNDDND -
= 00 00NN =

This section is for the fourth functional unit. This is a floating-point unit; it

can execute FMOV and the six floating-point compare instructions in a single cycle,

1Since the scheduler currently inserts SND instructions in the cluster sending data and has most
variables live primarily in the first cluster, the effect of restricting transfers is only minimal.

33

and addition and subtraction in two cycles each. Multiplies and divides have an
eight-cycle latency, but an instruction can be issued every two cycles.

In general, the form of an instruction line is

opcode delay latency

delay and latency are the delay and latency parameters for the opcode or opcodes
described on this line. The opcode may be any of the opcodes from Appendix A. It
may also be one of the names in Table 3.1, which refer to a set of related instructions.
Specifying ALU 1 1 in the vliwinfo file indicates a single-cycle latency and single-

cycle delay for all simple integer ALU operations, for example.

Abbrev. Description Opcodes

ALU Simple integer ALU operations MOV LDA ADD SUB AND OR XOR
SHL SHR SSR SPR RPR
FALU Simple floating-point operations FMOV FADD FSUB

CVT Format conversions CIS CID CSI CDI CSD CDS

CVTI Integer-to-* conversions CIS CID

CVTF Floating-point-to-* conversions ~ CSI CDI CSD CDS

XFR Inter-cluster transfers SND FSND PSND RCV FRCV PRCV
PACK UNPACK

CMP Integer comparisons SLT SLE SEQ SGE SGT SNE

FCMP Floating-point comparisons FLT FLE FEQ FGE FGT FNE

UBR Unconditional branches JMP JMPR JSR JSRR NATIVE

Table 3.1: vliwinfo Instruction Abbreviations

3.4 Changes to Machine SUIF

For the most part, the architecture could be implemented without making other
changes to the Machine SUIF system. Machine SUIF’s context system dispatches
function calls to the back-end when needed, meaning that most of the details of the
target architecture can be described without changing the core system. However, dif-
ferences in the target architecture from Machine SUIF’s expected model necessitated

changes to parts of the system.

34

3.4.1 Generic Front-End Instructions

In addition to other objects generated from normal C code, the SUIF 2 front-end has a
GenExpression class for extensions to the infrastructure. The normal SUIF 2 compiler
does not use this class, and so the s2m pass to convert SUIF 2 code into Machine
SUIF code does not handle these objects effectively. However, both the predication
and SLP-detection passes used in the front-end cause GenExpressions to appear in the

SUIF 2 code.

Machine SUIF already has an equivalent hook for adding instructions to the
SUIFvm code: an ANY instruction in SUIFvm is annotated with the name of an
operation, and can have arbitrary sources and destinations. s2m is modified to turn
GenExpressions into ANY instructions, copying the operation-name annotation from
the front-end object to the SUIFvm instruction. The code-generation pass can then
examine the ANY instruction and produce appropriate native code depending on the

attached operation name.

3.4.2 Initialization Hooks

Loading the vliwinfo file presented a number of problems within the Machine SUIF
infrastructure. Ideally, the back-end could load the file once and somehow attach the
associated data to the file. This is doable with annotations on SUIF file blocks, but

retrieving the data is then difficult.

Machine SUIF does provide a number of initialization functions that get called,
and one of these is an initialization function for the back-end library. At that point,
the library checks for a VLIWINFO environment variable and loads the file named there.
If that environment variable is not set, it loads a file named vliwinfo in the current
directory instead. This approach leads to potential skew problems — for example, it is
possible to run code generation with one vliwinfo file, and register allocation with
another — but it is the best solution possible without making changes to the abstract

code-generation pass.

35

3.4.3 Register Allocator

The Machine SUIF register allocator, raga, does several things beyond simply assign-
ing physical registers to local variable names and virtual registers. If an instruction
uses a register that needs to be spilled to the stack, raga inserts the necessary load
and store instructions. raga also inserts load and store instructions for definitions and
uses of global variables.

These inserted instructions create a number of complications with the simulated
architecture. Most notably, the format of the inserted instructions is wrong: raga
assumes that load instructions have a single address source and a single register des-
tination, but the architecture requires an additional register source for the predicate
register. A modified version of raga, praga (predicated raga), works around these
problems. When an instruction is spilled, praga copies the predicate guard from this
instruction to the instruction loading or storing the spilled register. This results in
both correct predication and the correct instruction format.

praga also takes into account the annotations necessary for SIMD instructions.
When spill code is generated, annotations are copied from the original instruction
so that live values in the wide register are not overwritten. The simulator code also
uses the ability of raga to add annotations to spill code to recognize spill instructions

without an explicit SIMD annotation.

3.4.4 Liveness Analysis

Machine SUTF provides a liveness analyzer for virtual registers and variable operands.
This is primarily used by the register allocator, though it is available as a general-
purpose utility package.

As discussed previously, traditional liveness analyzers can incorrectly determine
that certain variables are dead in predicated code. It is possible to determine what
definitions reach which uses under various predication conditions. However, the Ma-
chine SUIF liveness analyzer is built on top of a bit-vector data-flow analysis library,

and performing proper liveness analysis on predicated code requires more than one

36

bit of data per variable.? Because of this tight coupling, it becomes very difficult to
implement a proper liveness analysis in a way that can be easily used by raga. raga
would need to be further modified to use the new liveness analyzer instead of the
provided one.

A minor modification to the liveness analyzer lets it produce correct, though
conservative, results with the existing bit-vector structure. Knowing that the first
source of every instruction is a predicate register, the liveness analyzer can compare
it to pl, the default predicate. The existing code path is used in this case. Otherwise,
the modified liveness analyzer treats the destination register as an additional source,
with the assumption that, if the predicate is false, the destination is assigned to itself.
This means that a value continues to be live, even before a predicated definition of
it. The resulting live ranges are longer than the actual live ranges of the variables,
but since this is a more conservative result it will not cause the register allocator to

assign conflicting variables to the same register.

2Specifically, it requires one bit of data per variable per predication variable.

37

38

Chapter 4

Simulator

Since the target architecture does not correspond to a real, physical processor, and
since the system’s flexibility allows for several different instantiations of the archi-
tecture, source code is ultimately compiled into a simulated binary which can be
run natively on the local machine. The simulator code collects statistics on the per-
formance the code would have on the simulated machine, including the number of
simulated cycles it takes to run. Running the simulated binary has the same user-
visible effects that running a natively-compiled binary of the same source code would
have.

The simulator requires both Machine SUIF support and some separately compiled
code. A Machine SUIF pass, simuprint, generates a C source file from the intermediate
representation, along with a separate file listing every function and global data item.
This pass is run for each input file. A linker then collects the global data files and
produces a C header file which is included by the simulator source files, along with
a memory image and a relocation table. The generated C files are then compiled
together and linked against the simulator library. This produces a binary which,
when run, loads the initial memory image and simulates the original program on the
target architecture.

This approach has both advantages and disadvantages. The implementation of
the simulator is fairly straightforward, and functions in the simulator library corre-

spond directly to machine instructions. Compiling the simulator code natively allows

39

somewhat better performance on long simulations as well, and affords the opportu-
nity to avoid implementing system libraries. However, this sort of simulator can be
harder to debug due to extra stages between the intermediate representation and
the end simulator, and effectively skipping library calls can change the performance

characteristics of many benchmarks.

4.1 Implementation

At the end of the compilation sequence, instead of using the Machine SUIF m2a
pass to print out assembly code, a pass called simuprint writes out two files: a file
containing C source code for the simulated binary, and a file containing global data.

The global data file is discussed below in Section 4.2.1.

4.1.1 Emitting Instructions

The C source file includes a header file, Simunow.h, included as part of the simulator
library. This header file defines a function for each opcode, along with several helper
functions. If the source code included ADD r4, rl, r0, for example, the C file would
contain a call similar to __add(4, 1, 0). Each function call actually contains a
number of additional parameters indicating what processor resources it has been
scheduled to use and what address it occupies in instruction memory. Similar function
calls are emitted for each instruction executing in parallel on the same cycle, followed
by a call to __launch(), which causes outstanding operations to be committed.

There are some variants on the function names. For the ADD opcode, __add()
would cover the basic case of a register-plus-register addition. However, __addu()
is also defined as an unsigned addition, __addi() is a signed register-plus-immediate
addition, and __addiu() is an unsigned register-plus-immediate addition. For floating-
point operations, an “s” or “d” is appended to the opcode to select single- or double-
precision. Similar conventions are used for other opcodes. The Machine SUIF types of

the source and destination operands are examined to determine the correct function

to call.

40

The only case where an assembly operand requires more than one C operand is in
the case of a register-indirect memory address. This is used only for specific arguments
of LD and ST instructions. In these cases, two C arguments are used to represent the

base register and immediate offset of the appropriate source or destination.

Most of the machine opcodes are resolved in this fashion. Some opcodes, such
as NULL or LINE, are only used internally by Machine SUIF, and are ignored by
simuprint. The LDA opcode, which loads an address into a register, is treated specially:
its parameter is either a global symbol or a register-indirect offset, both of which are

emitted as simple adds.

4.1.2 Functions

Each function in the original source file is also printed as a C function in the output
simulation file. This simplifies calls and returns, which can just be maintained as
calls and returns in the C program. However, it does introduce minor complications

in actually making the calls and in resolving namespace conflicts.

Because of this setup, the JMP, JSR, JMPR, and JSRR instructions have no di-
rect effect. Instead, they return a boolean flag which indicates whether or not the
instruction’s predicate allows the branch to be taken. After the call to _launch(),
appropriate action is taken based on the opcode: a JMP is generally translated to a
C goto, a JSR to a function call, a JMPR to a return, and a JSRR to a function call

through a function pointer.

C functions corresponding to simulated functions take no parameters and return
nothing. They expect their parameters to come through the correct registers in
the simulator, and return a value in r9 or f2 for integer and floating-point values,
respectively. Aside from the actual call instruction, the simulated code should exactly

obey the calling convention described in Appendix B.

41

4.1.3 Native Calls

Operating systems typically define a number of functions in external libraries, such as
the system C library. While it is possible to reimplement these functions within the
simulator, it is much easier to allow the simulator code to call out to system functions
directly. It may also be desirable to implement parts of an application in native code
for performance reasons. The simulator provides a native call mechanism to bypass

the normal call scheme for these situations.

The NATIVE opcode requests a native call. For normal calls, the back-end gen-
erates a pre-call sequence, the actual call, and a post-call sequence, as described in
Appendix B. For native calls, however, this calling convention is completely omitted
from the assembly source, and a NATIVE instruction is inserted instead. The simula-

tor code then translates this instruction into a direct call to the target procedure.

The NATIVE instruction has some number of register and immediate sources, and a
register destination. Printing the actual call is fairly straightforward: each parameter
is read from the appropriate register file and passed on in the C function call, and
the return value, if any, is stored to the target register. The type of each operand is
inspected to determine whether registers should be pulled from the general-purpose

or floating-point register file.

The major complication comes from C’s handling of function prototypes. Every
value in a register is either a C int or a C double, and so without casts, every parameter
to a native function is one of these two types. However, standard header file includes
cause definitions to be included for some functions, causing the native C compiler
to complain about pointer-integer mismatches. There are even worse problems when
calling varargs procedures such as printf(), since in the absence of a prototype, the C
compiler will implicitly create a prototype based on the parameters to the first call

to the procedure.

To work around this problem, the printer emits a prototype for each function
listed in both the external symbol table and the native-names annotation to the

SUIF file. It does this via a pre-pass over each file that looks at each function in the

42

external symbol table. SUIF 2 stores enough information in the symbol table to be
able to reconstruct a C function prototype from the symbol, and this information is
carried forward through Machine SUIF. The top of each simulator source file therefore
contains prototypes for each function that is called natively, and passed parameters

are cast to the correct types.

4.1.4 In-Simulator Functions

The nature of the compiled simulator also makes it possible to implement functions
in the simulator library which are available to simulated code. This approach is used
for several debugging functions used in simple test cases. It also lets a simple malloc()
be written that just allocates space in the dynamic data area, with a trivial free() and
corresponding calloc() and realloc() implementations. Implementations of the UNIX

open(), close(), read(), and write() procedures are also provided.

For each function provided by the simulator library, the library code provides a
function with the correct prefixed name, such as _sim_malloc(). The code printer
will call the function with the standard calling conventions, and the exported func-
tion is always called with no C parameters. The exported function needs to call
some internal simulator functions to retrieve its parameters; a malloc() would call
__getIntReg(0,5) to get the number of bytes to allocate from r5 in the first clus-
ter. Returning an integer value is done via register r9, so the code would call

_setIntReg(0, 9, value), followed by a call to __launch() to cause the writ-

ten value to be committed to the register file.

This approach allows fairly straightforward implementations of wrappers to stan-
dard C library functions. For example, Figure 4-1 shows an implementation of close()
that would be available to simulated code. This implementation just takes the file
descriptor parameter from the simulator state, calls the normal C library close() func-

tion, and pushes the return value into r9.

43

void __sim_close()

{
int simFd = __getIntReg(0, 5);
int result = close(simFd);
__setIntReg(0, 9, result);
__launch();

}

Figure 4-1: Simulator Implementation of close()

4.2 Pointers and Memory

The memory model shown in Figure 2-1 assumes that memory starts at address 0
and extends for 256 megabytes above that. The simulator does internally allocate
a 256-megabyte block of memory, but memory addresses in the simulated machine
are actually native-machine addresses. That is, the first item in the static data area
has a simulated address of 1024, but is actually referred to with an address 1024
greater than the address of the start of the allocated block representing the simulated
memory.

This creates some problems with global data. Since the memory space is cre-
ated with malloc(), the initial addresses of global memory items cannot be known,
only their offsets relative to the start of the data area. The simulator’s data loader
therefore needs to load in a relocation table with the simulator addresses of global
data items containing other memory addresses. Additionally, the linker emits a C
header file containing the addresses of every data item; these addresses are offset
by __static_base_addr, which contains the actual start address of the simulated

memory’s static data area.

4.2.1 Global Data

Each SUIF 2 file contains a global symbol table with symbols defined and used in
the file. Some of these symbols have associated definitions; the global data associated

with these symbols needs to be printed so that the simulator code can access it. The

44

Machine SUTF system does not provide any sort of abstraction around this global data,
so the simulator printing pass needs to access the SUIF 2 data structures directly.

Information about the global data is printed to a separate file from the C source;
this data file is read by the linker, described below. For each data item, a record is
printed that includes the name of the symbol and its length in bytes. If the symbol
table entry includes a definition, the definition is also printed. For function entries, a
short record is emitted declaring that a function with that name exists.

Not all of the stored data consists of simple constant expressions. It is possibile to
initialize a data structure with pointers to other data items or functions, for example;
SUIF 2 represents these with UnaryExpressions which must be processed. References
to other global data items are outputted as such to the global data file, leaving the

linker responsible for resolving these to actual memory addresses.

4.2.2 Linker

The simulation-printing code described so far has two shortcomings. As noted, the
initialized data is printed to a separate file from the actual simulated C code. It
also fails to take into account interactions between multiple source files, providing
no direct way to call a procedure defined in a separate file. A linker is run after the
simuprint pass to assign simulated memory addresses to global data items, provide a
memory image for statically initialized data, and create a C header file to provide
information about global symbols to the simulated source.

The linker is implemented as a Perl script; the actual implementation is not ter-
ribly difficult. Each function and data item is read in and stored in an associative
array. Addresses are assigned to each data item. Binary images are created for each
data item, and the resulting images are concatenated to form a memory image. The
memory image is written to __sim globals.dat, the header file to __sim _globals.h,
and a file listing simulator addresses of global data items containing other addresses
in __sim_globals.reloc.

The linker also performs several sanity checks. It is an error for a symbol to be

referenced that is not defined by any of the included files, for example. It is also an

45

error for a data item to include more bytes of definition than the declared length of
that item. This problem comes up frequently when processing floating-point numbers.
It is valid, however, for a data item to be shorter than its declared length; the extra
space is padded with zero bytes.

__sim_globals.dat contains a hex dump of the static data area of the simulator.
This file is somewhat dependent on the host architecture. Integers and addresses are
both stored using the host byte order, and floating-point numbers use the host format.
As such, there will be problems trying to use the same memory image on separate
machines. There may also be issues with compiling on non-32-bit architectures, such

as the Alpha.

4.3 An Example

Figure 4-2 contains an example of compiling a simple function call referencing a static
string. The pointer str is stored as a global variable, and is initialized to a pointer
to a static anonymous string. The global data file, __sim globals.dat, contains the
pointer str with the offset of the string relative to the start of the static data area
(0x00000004, stored as four little-endian bytes on an x86 machine). Since this is an
address in simulator memory, the relocation file, __sim globals.reloc, contains the
offset of that data item; when the global data file is loaded, the address of the base
of memory will be added to this word in simulator memory. This address is followed
by the text of the string.

The linker also writes __sim globals.h, which contains C preprocessor defines
for the addresses of every static variable. As previously mentioned, these values are
offset by __static_base_addr, which receives the physical address of the start of the
simulated static data area. The header file is then included by each of the simulator
C source files. In the original call to printString(), the parameter str is brought
into register r5 by an LD instruction, which becomes a __Iw() (load word) call in the
simulator C source. The reference to the symbolic name str here uses the macro

definition to get the actual address in physical memory.

46

0400000048656C6C

B6F2C20776F726C64
Global data
- 0x00000000
Relocations
#define str \
str: __static_base_addr+0
.dword tmp_string " J#define tmp_string \
char *str = "..."; tmp_string: __static_base_addr+4
ces o — —sim_globals.h
printString(str);
Original C source LD r5, str _1w(..., str, ...);
JSR printString __launch();
Generated assembly takecti = __call(...);
) _launchQ);
if (takecti)
__sim printString();

Simulator C source

Figure 4-2: Global Data Relocation

47

48

Chapter 5

Compilation and Execution

5.1 Compilation

Compilation for the simulated environment uses the SUIF 2 system[2], together with
Machine SUIF for the back-end. For SIMD architectures, effective compilation re-
quires optimization passes written in SUIF 1[15]; in this case, a SUIF 1 front-end is

used, with a SUIF 1-to-2 conversion pass inserted before the back-end passes.

5.1.1 Simple Compilation

A basic compilation sequence is shown in Figure 5-1. This uses a SUIF 2 front-end
(here c2suif), then converts to Machine SUIF with s2m and uses the normal Machine
SUIF back-end. The do_lower pass is provided with Machine SUIF; it performs a
number of transformations, such as dismantling loops into labels and branches, that

are necessary for s2m to properly digest the SUIF 2 code.

5.1.2 Extended Front-End

Instead of just using c2suif, it is possible to use a SUIF 1-based front-end and convert
the resulting intermediate code to SUIF 2. The primary advantage to this compilation
sequence, shown in Figure 5-2, is that optimization passes already developed for SUIF

1 can be used. In particular, the pass that detects superword-level parallelism and

49

| file.c
| c2suif |
| file.suif
‘ do_lower ‘
file.lwr

suifdriver

‘ s2m ‘

l

e |

i

‘ raga ‘

l

‘ fin ‘

|

‘ simuprint ‘

Y

file.sim.dat
file.sim.c ‘ simulink.pl
| _sim_globals.h

gcc ‘

isim

Figure 5-1: Basic Compilation Sequence

20

prepares the code for SIMD compilation is only available for SUIF 1.

file.c

slpcc
| scc |

i

SUIF 1 transforms

smash

file.simd file.vliw
| suiflto2 |
| file.suif
SUIF 2 backend

Figure 5-2: Extended Front-End

slpcc (Superword-Level Parallelism C Compiler) uses the SUIF 1 scc front-end to
produce a SUIF 1 intermediate file from either C or Fortran intermediate code. It
then applies a number of SUIF 1 passes to simplify the intermediate code, as well as
performing operations such as loop unrolling that possibly make more superword-level
parallelism available. If the target machine is a SIMD architecture, slpcc then runs a
pass to reduce parallel, isomorphic instructions into single SIMD instructions[10].

After slpcc is run, the resulting SUIF 1 intermediate file can be converted into
SUIF 2 using the suiflto?2 pass provided with SUIF 2. Either the file.simd or
file.vliw output files from slpcc can be passed into suiflto2. Since the front-end
passes have already dismantled high-level constructs such as while and for loops,
it is unnecessary to run do_lower; we instead move directly into the Machine SUIF
back-end.

Using this extended front-end introduces a couple of minor problems. SUIF 1
does not have a useful internal representation for the special varargs calls, so calls to
va_start() and its relatives do not get properly translated to SUIF 2. Additionally,
there is not a SUIF 1 pass to change functions returning a structure value to take
a pointer to the return value as a parameter, so these functions cannot be compiled

using this front-end.

o1

5.1.3 Extended Back-End

It is also possible to add extra passes to the back-end to accommodate compilation

for VLIW machines and add a peep-hole optimizer. This is shown in Figure 5-3.

file.suif

suifdriver

‘ s2m ‘

)

| e |

l

| vliwpeep |

}

‘ raga ‘

l

| fin |

|

| vliwsched |

}

’ sorter \

|

] simuprint ‘

file.sim.c file.sim.dat

Figure 5-3: Extended Back-End

The scheduler in the vliwsched pass can be run even on SIMD architectures. It
looks at each basic block and assigns a cycle number, cluster, and functional unit
to each instruction. Machines without multiple functional units are viewed as a
degenerate case of a VLIW architecture with only one cluster and one functional
unit. By taking into account long-latency instructions such as integer multiplies, the
scheduler can yield a performance improvement even on these architectures. A post-
pass, sorter, rearranges the instructions to be in order by cycle, cluster, and functional

unit to simplify the work of later passes.

92

5.2 Additional Components

A number of components besides the back-end are required to compile code for this

architecture. This section describes these additional components.

5.2.1 Peep-hole Optimizer

The code produced by the back-end is generally of fairly poor quality. Some of this
is due to its input; the s2m pass, which generates SUIFvm code from a SUIF 2 file,
seems fond of inserting cvt instructions to convert a value to an equivalent integer type,
for example. Additionally, the code generator must make conservative assumptions
about the use of values set by comparison instructions: specifically, it must assume
that the result of a comparison is a full integer which can be added to other integers
in addition to being used as a branch condition.

The peep-hole optimizer, vliwpeep, transforms three common code sequences into

simpler code. These are:

Move-use coalescing. If the result of a simple move instruction is used as a source
in the next instruction, the move can be eliminated and the source replaced

with the source of the move.

Def-move coalescing. If the result of an instruction is used as the source of a move
in the next instruction, the destination of the first instruction can be replaced

with the destination of the move and the move eliminated.

Integer predicate simplification. A comparison instruction always sets one pred-
icate register and clears another. If these two predicate registers are used to set
a general-purpose register to zero or one, and then that register is compared
for equality to zero, the integer register can be dropped and the predicates set

directly on the initial comparison.

In the absence of real liveness analysis, these optimizations only take place when

the intermediate value is a virtual register, and when that virtual register only has

93

a single use in the code. Additionally, optimization only happens when instructions

have the same predication. Examples of these optimizations are shown in Figure 5-4.

Original Code Optimized Code
Move-use coalescing MOV v0, r5 ADD r10, r5, 1
ADD r10, v0, 1
Def-move coalescing ADD v1, r12; r11 ADD r9, r12, r11
MOV r9, vl
Integer predicate SLT v2, v3,r6, 0 SLT v5, v6, r6, 0
simplification (v2) ADD v4, r0, 1

(v3) ADD v4, r0, 0
SNE v5, v6, v4, 0

Figure 5-4: Examples of Peep-hole Optimization

In spite of these limitations, the peep-hole optimizer gets very good results on
compiled code. While it had little effect on some code, the peephole optimizer led to
as much as a 50% speed improvement on some benchmarks. More details on these

optimization results are included in Section 6.4.

5.2.2 Simulation Code Printer

To run simulated code, the back-end prints out a C+-+ source file based on the
Machine SUTF assembly. The simuprint pass does this work. It takes as input finalized,
scheduled, register-allocated code, and outputs two files. The file.sim.cc output file
contains the actual C++4 code; file.sim.dat contains definitions of global variables
that may be used in other files.

For the most part, simuprint’s work is fairly straightforward. Each function in the
code is printed out as a C++ function in the simulator source. The names of objects
are changed somewhat; function names have __sim_ prepended to them, and static
objects have static and the name of the enclosing object prepended. A static variable
named bar in a function foo() would be named foo_static_bar, for example.

More details of the printer’s work are included in Chapter 4.

o4

5.2.3 Simulation Code Linker

The linker creates a memory image from the global data files written out by simuprint,
writes a C header file giving addresses to global data items, and performs some
consistency checks. It is run after every input source file has passed through simuprint.

Details of the linker are included in Section 4.2.2.

5.2.4 Native C Compiler

The actual simulated binary is produced by using the system’s native C compiler,
such as gcc, to compile the .sim.c files produced by simuprint. The compiler needs
to be given the path to the simulator library header files, and the binary needs to
be linked against libsim.a. Running the resulting binary simulates the original

compiled program; some statistics are written to a stats.out file.

95

o6

Chapter 6

Results

This infrastructure was used to compare a number of different in-order, SIMD, and
VLIW architectures on a set of sample benchmarks. These benchmarks included
tests from the SPECfp95 benchmark set, the MediaBench test suite, and a set of

multimedia kernels originally used to test the SLP compiler[10].

6.1 Methodology

Each of the benchmarks was compiled and run on a number of separate simulated
machines; which machines are described in each section below. More detailed infor-
mation, including the vliwinfo file for some of the machines, is included in Appendix
C; a summary of the machine models used is in Table 6.1.

Compilation used the sequence described in Chapter 5, including the extended
front- and back-ends described there. All of the passes shown in Figures 5-2 and
5-3 were executed, with the exception that the smash pass for detecting superword-
level parallelism was only run for SIMD machines. Code compiled for every machine
model was run through the VLIW scheduler for consistency and a modest performance
improvement.

Every C library call was dispatched using the native call mechanism, with the ex-
ception of malloc(), calloc(), realloc(), free(), open(), close(), read(), and write(), which

were implemented in the simulator library. FORTRAN programs were translated to

57

Description

Section

Figure 6-1: In-order, SIMD, and VLIW
Baseline model: in-order, 32 registers
Basic SIMD: in-order, 4 lanes
VLIW/SIMD composite: int/FP/mem FUs, 4 lanes
Clustered VLIW: 4 clusters, int/FP/mem FUs
Large unclustered VLIW: 1 cluster, 4*int/4*FP /1*mem FUs

C.2
C.3
C.5
C4
C.6

Figure 6-2: Clustered VLIW
Basic VLIW: 1 cluster, int/FP/mem FUs
Small clustered VLIW: 2 clusters, int/FP/mem FUs
Clustered VLIW: 4 clusters, int/FP/mem FUs
Large clustered VLIW: 8 clusters, int/FP/mem FUs

C4

Figure 6-3: Register File Sizes
Tiny-register model (baseline with 12 registers)
Small-register model (baseline with 16 registers)
Small-register model (baseline with 24 registers)
Baseline model (32 registers)
Large-register model (baseline with 64 registers)
Large-register model (baseline with 128 registers)

C.2

Figure 6-4: Optimization Options
Baseline model with peephole optimization and scheduling
Baseline model without peephole optimization
Baseline model without scheduling

Baseline model with neither peephole optimization nor scheduling

C.2
C.2
C.2
C.2

Figure 6-5: Memory Latency
Baseline model with 32 registers and 3-cycle loads
Baseline model with 32 registers and 10-cycle loads
Baseline model with 12 registers and 3-cycle loads
Baseline model with 12 registers and 10-cycle loads

C.2

Figure 6-6: Pipelining Options
Baseline model (fully pipelined)
Baseline model with 2-cycle delay for long instructions
Baseline model with delay = latency

C.2

Table 6.1: Simulated Machine Models

o8

C using the sf2c front-end to SUIF 1, and linked against a modified version of libF77
and 1ibI77 that provides a __sim_main() function rather than main().

The graphs shown below measure the relative number of simulated cycles required
to run benchmarks on a variety of architectures. Performance numbers are scaled to
some reference model, typically a single-cluster, single-lane machine with 32 registers.
The vertical axis shows the number of cycles taken, as a percentage of the number
of cycles taken by the baseline model. Shorter bars represent benchmarks requiring

fewer cycles to run, and therefore a performance increase over the reference model.

6.2 In-Order, SIMD, VLIW

Since the simulator statistics include the number of simulated cycles it took to run
the program, we can compare the raw speed of the various machines running the
benchmarks. It is particularly interesting to compare a SIMD machine against a
similarly configured clustered VLIW machine. For comparison, simulations were also
run on an “ideal” unclustered VLIW machine with the same number of non-memory
functional units as the clustered machine, but all in a single cluster. Performance
results from such a comparison are included in Figure 6-1.

As expected, the in-order machine had the worst performance of any of the ma-
chines, and the ideal VLIW machine tended to do the best. The two SIMD machines
did very well, however, and the in-order SIMD machine tended to beat the clustered
VLIW machine despite being able to execute fewer parallel operations on a given
cycle.

Clustered VLIW machines are easily scalable to be larger or smaller by changing
the number of clusters. Performance results for 1, 2, 4, and 8 clusters are shown in
Figure 6-2. These models were all simulated with identical vliwinfo files like that
in Section C.4, except that the number of clusters in the first line of the file was
changed.

These results show that performance does not improve with increasing the number

of clusters. There are two primary reasons for this. One is implementation difficulties

29

Normalized simulated cycles

1.25—

e
\]
T

o
T

0.25—
0 > J ¥ s
5 G G /z,g) @@ Qo Y, 0 0 o, T
©,. % o
%O%, % %J* % %&@O@ & %,

[] In-order B SIMD E SIMD/VLIW B Clustered VLIW M Large VLIW

Figure 6-1: Performance of In-Order, SIMD, and VLIW Architectures

60

Normalized simulated cycles

1.25—

e
\]
T

o
T

0.25—

L] 1 cluster B 2 clusters & 4 clusters Il 8 clusters

Figure 6-2: Performance of Clustered VLIW Architectures

61

within the scheduler, which does most of the actual computation within the first clus-
ter. The second is the overhead cost for transferring data between clusters. Since the
VLIW architectures require a full cycle to transfer a single value, the time requirement
to perform some computation on a different cluster is the latency for the computation
itself, plus a cycle for each input and output value. Additionally, since the scheduler
keeps each register’s “home” in the first cluster, no more than one transfer can be
performed per cycle in any case. This results in an artificial slowdown that a better

VLIW scheduler would be able to overcome.

6.3 Registers

One critical resource on most processors is the number of registers available in the
register file. The number of registers is conventionally a power of 2 on a RISC
machine, but the simulated machine models do not have this constraint. Figure 6-3
shows the performance results for simulations on the basic in-order machine described
in Section C.2, with register files from 12 to 128 general-purpose and floating-point
registers. Note that there are nine reserved registers, and that the register allocator
will allocate reserved registers to local variables if it determines that they will not

conflict with the registers’ intended uses.

Simulated machines with smaller register files have substantially worse perfor-
mance than machines with 32 integer and floating-point registers. The 12-register
machine has only two non-dedicated integer registers, and 4 to 6 registers for general-
purpose computation; on some benchmarks, register pressure causes the overall speed

to be only half that of a 32-register machine.

Increasing the size of the register file does not seem to have a noticeable effect
beyond 24 or 32 registers. There are exceptions to this, but 32 registers, the number
present on the MIPS architecture, appears to be a good balance between allowing

efficient code and minimizing the required processor resources.

62

2.25—

1.75— .

-
T

=
)
T

Normalized simulated cycles
—_
|

e
J
T

0.5

0.25-1 |t
0__
<? Q
by, i,
s %,
% %,

[12 regs O 16 regs & 24 regs M 32 regs M 64 regs B 128 regs

Figure 6-3: Performance with Varying Register File Sizes

63

6.4 Optimization

There are two major back-end passes which are run to improve the performance of the
simulated code: the peep-hole optimizer and the scheduler. Recall that, by ordering
instructions to minimize the time spent waiting for results of other instructions, the
scheduler should provide a performance improvement even on an in-order machine.
Figure 6-4 shows the performance of the simple simulated in-order machine with
peephole optimization and scheduling enabled or disabled. The baseline model runs
both passes; other options, unsurprisingly, have worse performance. The results vary
by benchmark, but both the simple peephole optimizations described in Section 5.2.1
and the VLIW scheduler can provide performance gains between 0 and 50 percent.
On the MediaBench ADPCM audio benchmark, the scheduled code ran almost twice
as fast as the unscheduled code. The YUV multimedia kernel also doubled its overall
performance with optimization after gains from both the scheduler and the peephole

optimizer.

6.5 Memory Latency

The current implementation of the simulator does not have a cache hierarchy. How-
ever, it is still possible to experiment by changing the latency of a load instruction.
Since the vliwinfo file allows the latency of each instruction to be specified, slower
memory can be simulated by increasing the latency of LD and FLD instructions. The
baseline model in Section C.2 has a load latency of 3 cycles; Figure 6-5 shows the
effects of increasing the latency to 10 cycles. For comparison, it also shows the per-
formance of the 16-register machine with 3- and 10-cycle loads, demonstrating the
effect that slower spills have on performance.

Most benchmarks do not have a significant slowdown; in most cases, the perfor-
mance hit is between 5 and 15 percent from tripling the memory latency. This is
consistent, since most operations are not, in fact, memory operations. Additionally,

the scheduler can often shuffie instructions such that other operations can execute

64

Normalized simulated cycles

2.25

1.75—

-
T

=
V)
T

—_
|

e
\]
T

0.5—

0.25—

R ; & L
@, %, ‘9/@ éefo %, % ?}%’ﬁ 05) &z O)@g .’?@.%@6} %, “n, ", %
U, U, %, % Gty
Y @ &
y,
<
%

[] Optimized B Scheduled & Peephole I No optimization

Figure 6-4: Performance with Varying Optimization Passes

65

Normalized simulated cycles

1.75—

1.5—
1.25—
1— i — e - |
0.75—
0.5
0.25—
e, 0, %, @
é\ Q\ O
O
U, U,
OQ(/ Oé(,
%

[] 32 regs, 3-cycle loads B 32 regs, 10-cycle loads B 16 regs, 3-cycle loads
B 16 regs, 10-cycle loads

Figure 6-5: Performance with Varying Memory Latency

66

while code is waiting for a value from memory.

6.6 Pipelining

The machine models used so far have all assumed that all functional units are fully
pipelined, that is, one instruction can be issued on each functional unit every cycle.
The latency/delay scheduling scheme discussed in Section 2.1.4 makes it possible to
simulate machines that are not fully pipelined.

Figure 6-6 shows three pipelining possibilities. The first is the basic, in-order, fully
pipelined machine. The second is a partially pipelined machine in which any non-load
instruction with a latency longer than one cycle stalls the processor for a second cycle.
The third machine model used here is not pipelined at all; every instruction causes

the processor to stall until that instruction completes.

6.7 Other Possible Modifications

A number of other modifications are possible to the system. While none of these were

attempted for this thesis, they do offer possibilities for future work.

6.7.1 Mixed-latency Functional Units

All of the simulated machine models tested here used constant latencies for operations.
If an integer multiply has a latency of 5 cycles on one functional unit, it has that
same latency on every functional unit. Nothing intrinsically prohibits having multiple
functional units that can run the same instruction, but with different latency and
delay characteristics.

More extensive modifications to the system could allow simulation of more com-
plicated architectures. It may be desirable to simulate a functional unit that could
execute two additions or a single multiply in a given cycle, for example. The current

system has no way to represent this type of functional unit.

67

Normalized simulated cycles

1.25—

e
\]
T

o
T

0.25—

(] Fully pipelined B Partially pipelined & Not pipelined

Figure 6-6: Performance with Different Pipeline Options

68

6.7.2 Additional Instructions

With some effort, instructions can be added to the simulated machine. This
first requires adding the opcode for the instruction to the back-end, by modifying
opcodes.h.nw and opcodes.cpp in the vliw back-end source. If the instruction satis-
fies any of the standard Machine SUIF instruction predicates, appropriate code needs
to be added to instr. cpp.

A pass then needs to be written to generate the instruction. One option is to
create a SUIF 2 GenExpression with a front-end pass, and then add code to gen.cpp
to translate the resultant SUIFvm ANY instruction to the new opcode. Another is
to write a pass that runs after code generation to replace existing instructions with
new ones; this approach would work well to add a compare-and-branch instruction,
for example.

Finally, the simulation infrastructure needs to be made aware of the instruction.
The simuprint pass generates C code for each instruction; code needs to be added
here to handle the added instruction. Additionally, code to handle the instruction at

simulation time needs to be added to the simulation library, libsim.

69

70

Chapter 7

Conclusions

This thesis introduced infrastructure to compile and simulate code on a variety of
architectures. By altering a single simple control file, the user can select an in-
order, SIMD, or VLIW machine, adjust the number of functional units, registers,
and SIMD lanes, and control the latency of individual instructions. Interfacing to
Machine SUIF allowed the system to take advantage of pre-existing front- and back-
end passes, including an SLP detection pass and a register allocator. Many of these
architectural and compiler-flow possibilities were demonstrated, using the statistics
generated by the simulator to show the number of cycles the compiled code takes to

run.

Where traditional compiler back-ends and simulators target a single, fixed archi-
tecture, this thesis has presented a flexible infrastructure capable of targeting a wide
variety of simulated machines. This infrastructure made a reasonable comparison be-
tween in-order, SIMD, and VLIW architectures possible; it could readily be adopted
to add additional instructions to the simulated machine, or to experiment with al-
locating instructions between functional units. As such, this infrastructure should

prove extremely useful for future architectural research.

71

7.1 Future Work

While many benchmarks could be built with this system, there are still many out-
standing issues. For example, the scheduler tends to be extremely slow and run out
of memory on large benchmarks, and many benchmarks fail in the conversion from
SUIF 1 to SUIF 2. Particularly with SIMD compilation, it is also difficult to verify
that the simulated code is correct. Ideally, the system should be able to compile
and simulate all of the benchmarks in SPEC95 and MediaBench correctly on every
machine model introduced here.

There are also work-arounds in the system that ideally could be avoided. There
are two currently supported methods for simulated code calling code outside of the
simulator: the native-call mechanism and adding simulator functions to the simulator
library. It should be readily possible to compile C and Fortran libraries for any given
machine model, and link compiled code against these libraries. Then the native-
call mechanism could be eliminated, and a small number of required system calls
implemented in the simulator library.

Many of the other possible improvements are algorithmic in nature. The scheduler
algorithm could be greatly improved to provide speed increases on clustered VLIW
machines. The back-end has predication support, but none of the tests actually used
it; a predication pass could be written for the front-end to allow larger basic blocks
and better scheduling.

The source code to the infrastructure described here will be made available
through the COMMIT (Compilers at MIT) group Web page at http://www.cag.

lcs.mit.edu/commit/.

72

Appendix A

Instruction Set

This appendix describes the instruction set used for the simulated machine. Each

instruction is described with a line like

OPCODE Ry« R,...T Description

The middle section describes the destination and sources of the instruction. These

are:
0
R
RI
RA
A
F
RF
FI
P

REFP
T

No destination

Integer register

Integer register or immediate

Address value (register+offset only)
Address value (symbol or register+offset)
Floating-point register

Integer or floating-point register

Integer or floating-point immediate
Predicate register

Integer, floating-point, or predicate register

Target label of a jump or call instruction

Each instruction has an unlisted predicate source; see Section 2.1.3 for details on

how this is used.

The assembly notation lists the destination registers in order, followed by the

sources and a target, if any. For example:

73

ADD Ry« R, RI, ADD rl2, rll, 12
FEQ P, Py« Fi F, FEQ p2, p3, {9, fO
JSR Ry T JSR 13, label

A.1 Standard Instructions

These instructions are useful on all simulated architectures, even on single-issue in-

order machines.

ADD R, +— Ry RI> Integer addition
The sources Ry and RI5 are added together and stored in Ry. Sign and overflow
are ignored.

AND R; < R, RI, Integer bitwise AND
The bitwise AND of R; and RI, is calculated and stored in R,.

CDI Ry — F; Convert double-precision floating-point to integer
The value in Fj is interpreted as a double-precision floating-point number and
rounded down to the nearest integer, with the result stored in R,.

CDS Fy;— F, Convert double-precision to single-precision
The value in F} is interpreted as a double-precision floating-point number and
stored in Fy as a single-precision float.

CID Fy— R, Convert integer to double-precision floating-point
The value in R, is converted to floating-point and stored in Fjy as a double-
precision float.

CIS Fy — R, Convert integer to single-precision floating-point
The value in R, is converted to floating-point and stored in Fj as a single-
precision float.

CSD Fy — F; Convert single-precision to double-precision
The value in F§ is interpreted as a single-precision floating-point number and
stored in F); as a double-precision float.

Csl Ry — F; Convert single-precision floating-point to integer

The value in F§ is interpreted as a single-precision floating-point number and

74

rounded down to the nearest integer, with the result stored in Ry.
DIV R, +— Ri R, Integer divide
Ry is divided by R,, and the quotient stored in Ry. Sign is ignored.
FADD Fy— F| Fy Floating-point addition
The sum of the values in F; and F; is stored in Fj.
FDIV Fy— Fy Fy Floating-point division
F is divided by Fy, and the result is stored in Fj.
FEQ P, Py — Fy I Set predicate on floating-point equal
Sets P, and clears Py if F} = Fj; otherwise, clears P, and sets Pj.
FGE P, Py — F\ I Set predicate on floating-point greater than or equal
Sets P, and clears Py if I} > Fy; otherwise, clears P, and sets P;.
FGT P, P — F\ F, Set predicate on floating-point greater than
Sets P, and clears Py if F} > Fj; otherwise, clears P, and sets Pj.
FLD Fy;— RA, Floating-point load
F,; receives the floating-point value in memory at RA;.
FLE P, Py — Fy I Set predicate on floating-point less than or equal
Sets P, and clears Py if I < Fy; otherwise, clears P, and sets Py.
FLT P, Py — Fy Iy Set predicate on floating-point less than
Sets P, and clears Py if F} < Fj; otherwise, clears P, and sets Pj.
FMOV Fy— F; Copy a value between registers
FMOV copies the value from F} into Fjy.
FMUL Fy— F| Fy Floating-point multiplication
The product of the values in F; and F5 is stored in F.
FNE P, Py — Fy I Set predicate on floating-point not equal
Sets P, and clears Py if F} # Fj; otherwise, clears P, and sets Py.
FST) — F; RA, Floating-point store
The value in Fj is stored to memory at RA,.
FSUB Fy;«— F| F, Floating-point subtraction
I35 is subtracted from F}, and the result is stored in Fj.

JMP)T Jump

5

Jumps to T'.

JMPR) — Ry Jump to register
Jumps to the address in R;.

JSR Ry T Jump to subroutine
Jumps to T, saving the next value of the program counter in Ry.

JSRR Ry — R, Jump to subroutine via register
Jumps to the address in Ry, saving the next value of the program counter in
Ry.

LD Ry — RA, Integer load
Ry receives the integer value in memory at RA,.

LDA Ry — A, Load address
LDA loads an address into a general-purpose register. If A, is a symbol, the
address of the symbol is loaded into Ry; if it is of the form R,(1,), the base Ry
and offset I, are added together.

MOD R, +— Ri Ry Integer remainder
Ry is divided by Rs, and the remainder stored in Ry. Sign is ignored.

MOV Ry — Ry Copy a value between registers
MOV copies the value from R, into Ry.

MUL Ry — R Ry Integer multiply
MUL multiplies the values in Ry and R,, and stores the low-order bits of the
product in R;. Sign and overflow are ignored.

NATIVE RE; — ... T Ezecute an in-simulator call
NATIVE causes the simulator to execute a “native” call; instead of simulating
machine instructions that make up the call, the simulator calls T" directly, with
the other sources as parameters. The target may be an integer or floating-point
register or absent; in the latter case, the result of the function call, if any, is
discarded.

NOP f—10 Does nothing
NOP does nothing. It can be used as a placeholder when doing scheduling.

OR R, +— Ry Rl Integer bitwise OR

76

The bitwise OR of Ry and RI5 is calculated and stored in Rj,.

RPR) «— Ry I Restore predicate registers
RPR restores predicate registers from a general-purpose register. As many
predicate registers as there are bits in a general-purpose register are loaded;
the order is unspecified (though the same as used by SPR). The source I
indicates which registers are to be restore, in multiples of the integer word
width. If there are 64 predicate registers and general-purpose registers are 32
bits wide, then RPR r10, 1 would load registers p32 through p63 from r10.

SEQ P, Py +— Ry RI, Set predicate if equal
Sets P, and clears Py if Ry = Rly; otherwise, clears Py and sets F;.

SGE P, Py — Ry RI, Set predicate if greater than or equal
Sets P, and clears Py if Ry > Rl,; otherwise, clears Py and sets F;.

SLT P, Py — Ry Rl Set predicate if greater
Sets P, and clears Py if Ry > RIy; otherwise, clears Py and sets P;.

SHL Rq— Ry RI, Integer shift left
The source Ry is shifted left by the number of bits specified in RI;, with the
result stored in Ry. Extra bits shifted in on the right are set to 0.

SHR Rq«<— Ry RI, Integer shift right
The source Ry is shifted right by the number of bits specified in Ry, with the
result stored in R;. Extra bits shifted in on the left are set to 0.

SLE P, P +— Ry RI, Set predicate if less than or equal
Sets P, and clears Py if Ry < RIy; otherwise, clears Py and sets P;.

SLT P, P; — Ry RI, Set predicate if less than
Sets P, and clears Py if Ry < Rly; otherwise, clears Py and sets F;.

SNE P, Py — Ry RI, Set predicate if not equal
Sets P, and clears Py if Ry # RIy; otherwise, clears Py and sets P;.

SPR Ry — I Save predicate registers
SPR saves predicate registers into a general-purpose register. As many pred-
icate registers as there are bits in a general-purpose register are stored; the

order is unspecified. The source I; indicates which registers are to be saved,

7

in multiples of the integer word width. If there are 64 predicate registers and
general-purpose registers are 32 bits wide, then SPR r10, 1 would save registers

p32 through p63 into r10.

SSR Ry «<— Ry RI, Integer shift right, with sign extension
The source Ry is shifted right by the number of bits specified in RI5, with the
result stored in R;. Extra bits shifted in on the left are set to the high bit of
R;.

ST) — Ry RA, Integer store
The value in R, is stored to memory at RA,.

SUB R; +— Ry Rl Integer subtraction

The source R is subtracted from Ry, and the result is stored in Ry. Sign and

overflow are ignored.

XOR Ry; — Ry RI, Integer bitwise exclusive OR

The bitwise exclusive OR of R; and RI, is calculated and stored in R,.

A.2 VLIW Extensions

On a VLIW machine, each instruction carries annotations for scheduling information.
These annotations indicate the scheduled cycle within the current function, the cluster
the instruction runs on, and which functional unit within that cluster is being used.

The following additional instructions are used on VLIW machines:
RCV RFP,«— RFP, I, I, Inter-cluster receive

RCV copies an instruction between clusters. The value in register RF Py in
cluster I; is copied to register RF P, in cluster I,. The registers can be of any
type, though both must be the same.

SND 0 «— REFP, Inter-cluster send

SND is used as a placeholder indicating that the value in RF Py is being sent

to another cluster. The register operand may be of any type.

78

A.3 SIMD Extensions

On a SIMD machine, each instruction carries an annotation indicating which lanes
are in use. Unannotated instructions are assumed to be in effect on all lanes.
PACK RF; «— RF; ... SIMD pack
PACK packs multiple scalar values into a single SIMD long word. There are as
many sources as active SIMD lanes; the instruction also carries an annotation
indicating which lanes are in use for the source operands. Each value is copied
from the specified register and lane to the specified lane in RFj. The sources
and destination can be of either integer or floating-point type, but all must be
of the same type.
UNPACK RF,... < RF, SIMD unpack
UNPACK unpacks a SIMD wide register into a multiple scalar values. There
are as many destinations as active SIMD lanes, and an annotation indicating

which lanes of the target registers should be used for the destination values.

79

30

Appendix B

Register and Calling Conventions

This appendix describes the uses of general-purpose, floating-point, and predicate
registers on the simulated architecture, along with a standard calling convention for

use by compiled procedures.

B.1 Registers

Some of the registers in the register file are reserved for various operations. These
are listed in Table B.1. These reserved registers are required to establish conventions
for register usage, and allow a limited number of integer or floating-point function
parameters to be passed directly in registers. This is a common technique for avoiding
expensive memory operations on function calls.

The stack pointer, rl, begins at the top of memory and points to the last word
used on the stack; each stack frame is written below the previous one. The frame
pointer, r4, points to the top of the current stack frame. The stack frame is illustrated

in Figure B-1.

B.2 Calling Convention

On a procedure call, the following steps are taken:

Pre-call sequence. The caller reserves space on the stack for caller-saved registers

81

Register Description

r0 Always zero when read

rl Stack pointer

r2 Global data pointer

r3 Return address

r4 Frame pointer

rb Integer parameter 1

r6 Integer parameter 2

r7 Integer parameter 3

r8 Integer parameter 4

r9 Return value

f0 Always 0.0 when read

f1 Always 1.0 when read

2 Return value

3 Floating-point parameter 1
f4 Floating-point parameter 2
f5 Floating-point parameter 3
f6 Floating-point parameter 4
p0 Always false when read

pl Always true when read

Table B.1: Reserved Registers

r4

rl

Extra parameters

Saved r4
Callee-saved registers

Local variables

Figure B-1: Stack Frame

82

and parameters by subtracting an appropriate value from rl. Caller-saved regis-
ters are saved on the stack. Parameters are loaded into registers as appropriate;
if there are more parameters than available parameter registers, excess param-
eters are pushed on to the stack, with the earliest parameter being closest to

the bottom of the stack.
Call. The caller executes JSR r3, target.

Prologue. The callee allocates a stack frame by subtracting from rl. The old value
of r4 is saved at the top of the stack frame, and this address is saved in r4 as
the frame pointer. Other callee-saved registers are saved in the frame. Space is

also allocated for local variables as needed.

Callee body. The procedure may allocate extra stack space if needed by subtract-
ing from rl. The alloca() procedure may do this to allocate temporary stack
space; handling of procedures with a variable number of arguments also uses

this technique.

Epilogue. Callee-saved registers are restored from the stack. The stack pointer is
returned to the current value of the frame pointer, and the frame pointer is

returned to its previous value.

Return. If the function returns a value, the value is placed in r9 or f2 as appropriate.

The callee then executes JR r3 to return.

Post-call sequence. The caller restores caller-saved registers from the stack, and
adds to rl the size of the saved-register and parameter area, returning the stack

pointer to its original value.

33

84

Appendix C

Simulated Machine Models

This appendix describes the machine models used in simulation tests. An effort was
made to make the simulated machines as similar as possible, though some differences

are of course inevitable.

C.1 Generalities

All of the machines share some characteristics. These include:

Register files. All of the machines contain 32 32-bit general-purpose registers, 32 64-
bit floating-point registers, and 32 predicate registers. For the clustered VLIW
machines, there are this many registers per cluster; for the SIMD machines,

each of these registers exist in each lane.

Functional units. No machine can execute a particular opcode more than once in
a cycle (per lane on a SIMD machine, per cluster on a VLIW machine). The
simulated VLIW machines have a memory/transfer unit, an integer unit, and
a floating-point unit, and one instruction can be executed on each of these in

parallel.

Scheduling. All of the machines have identical scheduling constraints. Integer ALU
instructions have a latency of one cycle, memory operations 3 cycles, multiplies

5, and divides 20. Floating-point arithmetic requires 4 cycles, and divides 12.

85

Conversions between integer and floating point also require four cycles. Every

operation is fully pipelined, with a delay of one cycle.

C.2 In-Order Machine

The basic machine model is a simple in-order machine. It is capable of executing one

instruction per cycle.

1 clusters

32 32-bit GPRs

32 64-bit FPRs

32 predicate registers
1 functional units
Unrestricted loads
Unrestricted transfers
VLIW mode

FU 1:
LD 1 3
ST 11
UBR
ALU
CMP
MUL
DIV
MOD
FLD
FST
FMOV
FADD
FSUB
FCMP
FMUL
FDIV
CIF 1 4
CFI 1 4
XFR 1 1

N e e e e

e e

86

C.3 Basic SIMD Machine

The first machine model can be extended by adding SIMD functionality. This also
allows one instruction per cycle, but now each instruction can execute on up to four

data words in parallel.

4 clusters

32 32-bit GPRs

32 64-bit FPRs

32 predicate registers
1 functional units
Unrestricted loads
Unrestricted transfers
SIMD mode

FU 1:
LD 1 3
ST 11
UBR
ALU
CMP
MUL
DIV
MOD
FLD
FST
FMOV
FADD
FSUB
FCMP
FMUL
FDIV
CIF 1 4
CFI 1 4
XFR 1 1

N e e
N
(@}

e e e

C.4 Basic VLIW Machine

We can also change the first machine model into a clustered VLIW machine. This

machine has four clusters, each of which has a memory unit, an integer unit, and a

87

floating-point unit. Loads and stores can be performed from any cluster; an unlimited

number of transfer instructions are theoretically possible.

4 clusters

32 32-bit GPRs

32 64-bit FPRs

32 predicate registers
3 functional units
Unrestricted loads
Unrestricted transfers
VLIW mode

FU 1:
LD 13
ST 11
UBR 1
FLD 1
FST 1
XFR 1

= o= W

FU 2:

CMP
MUL
DIV
MOD

e

FU 3:
FMOV
FADD
FSUB
FCMP
FMUL
FDIV
CIF 1 4
CFI 1 4

e Y e

C.5 SIMD/VLIW Hybrid

We can combine the two machines to produce a VLIW machine with SIMD extensions.

This is a machine with a single cluster, that can perform a wide load, four identical

38

integer operations, and four identical floating-point operations per cycle.

4 clusters

32 32-bit GPRs

32 64-bit FPRs

32 predicate registers
3 functional units
Unrestricted loads
Unrestricted transfers
SIMD mode

FU 1:
LD 13
ST 11
UBR 1
FLD 1
FST 1
XFR 1

e i

FU 2:

CMP
MUL
DIV
MOD

N

FU 3:
FMOV
FADD
FSUB
FCMP
FMUL
FDIV
CIF 1 4
CFI 1 4

e e e

C.6 Ideal VLIW

Both the SIMD machine and the clustered VLIW machine have restrictions that the
compiler must work around. Any program that could be scheduled for either of these

machines could be equivalently scheduled for a machine that has the same number of

89

functional units and registers, but all in a single cluster. This is an idealized machine;
the resources required to interface this large a register file to this many functional
units would be impractical to implement on a real processor. However, it does provide

a useful upper bound for the performance possible under these models.

1 clusters

128 32-bit GPRs

128 64-bit FPRs

32 predicate registers
9 functional units
Unrestricted loads
Unrestricted transfers
VLIW mode

FU 1:
LD 13
ST 11
UBR 1
FLD 1
FST 1
XFR 1

e

1
CMP 1
MUL 1
DIV 1
MOD 1

1
CMP 1
MUL 1
DIV 1
MOD 1

1
CMP 1
MUL 1
DIV 1
MOD 1

90

FU 5:

CMP
MUL
DIV
MOD

e
N O —» -
o

N
o

FU 6:
FMOV
FADD
FSUB
FCMP
FMUL
FDIV
CIF 1 4
CFI 1 4

e e e
NG NG SO SN

FU 7:
FMOV
FADD
FSUB
FCMP
FMUL
FDIV
CIF 1 4
CFI 1 4

T
e A

FU 8:
FMOV
FADD
FSUB
FCMP
FMUL
FDIV
CIF 1 4
CFI 1 4

e
NN O O NG

FU 9:
FMOV
FADD
FSUB
FCMP
FMUL
FDIV

L
O N N

91

CIF 1 4
CFI 1 4

92

Bibliography

1]

The Trimaran compiler research infrastructure for instruction level parallelism.

http://www.trimaran.org/.

Gerald Aigner, Amer Diwan, David L. Heine, Monica S. Lam, David L. Moore,
Brian R. Murphy, and Constantine Sapuntzakis. An overview of the suif2 com-

piler infrastructure. In The SUIF 2 Documentation Set. 2000.

Todd M. Austin. A hacker’s guide to the SimpleScalar architectural research
tool set, December 1996.

Doug Berger and Todd M. Austin. The simplescalar tool set, version 2.0. Tech-
nical Report 1342, University of Wisconsin-Madison Computer Sciences Depart-

ment, June 1997.

J. A. Fisher. Very long instruction word architectures and the ELI-512. In
Proceedings of the Tenth International Symposium on Cumputer Architecture,

pages 140-150. Computer Society Press, 1983.

Linley Gwennap. AltiVec vectorizes PowerPC. Microprocessor Report, 12(6):1,6—
9, May 1998.

Silvina Zimi Hanono. Awviv: A Retargetable Code Generator for Embedded Pro-

cessors. PhD thesis, Massachusetts Institute of Technology, June 1999.

J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, and R. Zahir. Introducing the
[A-64 architecture. IEEE Micro, 20(5):12-23, September/October 2000.

93

[9]

[10]

[11]

[14]

[15]

Vinod Kathail, Michael S. Schlansker, and B. Ramakrishna Rau. Hpl-pd archi-
tecture specification: Version 1.1. Technical Report HPL-93-80 (R.1), Hewlett-
Packard Laboratories, February 2000.

Sam Larsen. Exploiting superword level paralellism with multimedia instruction
sets. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA,
May 2000.

Rainer Leupers. Instruction scheduling for clustered VLIW DSPs. In Proceed-
ings of the International Conference on Parallel Architecture and Compilation

Techniques, Philadelphia, PA, October 2000.

S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W. m. Hwu. A
comparison of full and partial predicated execution support for ILP processors.

In Proceedings ISCA 22, pages 138-149, June 1995.

Alex Peleg and Uri Weiser. MMX technology extension to Intel architecture.
IEEE Micro, 16(4):42-50, August 1996.

Michael D. Smith and Glenn Holloway. The Machine-SUIF Documentation Set.
Technical report, Harvard University, 2000.

R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson,
S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, and J. L.
Hennessy. SUIF: An infrastructure for research on parallelizing and optimizing

compilers. ACM SIGPLAN Notices, 29(12):31-37, December 1994.

94

