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ABSTRACT

Integer division, modulo, and remainder operations are ex-
pressive and useful operations. They are logical candidates
to express compler data accesses such as the wrap-around be-
havior in queues using ring buffers. In addition, they appear
frequently in address computations as a result of compiler
optimizations that improve data locality, perform data dis-
tribution, or enable parallelization. Exzperienced application
programmers, however, avoid them because they are slow.
Furthermore, while advances in both hardware and software
have improved the performance of many parts of a program,
few are applicable to division and modulo operations. This
trend makes these operations increasingly detrimental to pro-
gram performance.

This paper describes a suite of optimizations for eliminat-
ing division, modulo, and remainder operations from pro-
grams. These techniques are analogous to strength reduction
techniques used for multiplications. In addition to some al-
gebraic simplifications, we present a set of optimization tech-
niques that eliminates division and modulo operations that
are functions of loop induction variables and loop constants.
The optimizations rely on algebra, integer programming, and
loop transformations.

1. INTRODUCTION

This paper describes a suite of optimizations for eliminat-
ing division, modulo, and remainder operations from pro-
grams. In addition to some algebraic simplifications, we
present a set of optimization techniques that eliminates di-
vision and modulo operations that are functions of loop in-
duction variables and loop constants. These techniques are
analogous to strength reduction techniques used for multi-
plications.

Integer division, modulo, and remainder are expressive
and useful operations. They are often the most intuitive
way to represent many algorithmic concepts. For example,
use of a modulo operation is the most concise way of imple-
menting queues with ring buffers. In addition, many modern
compiler optimizations heavily employ division and modulo
operations when they perform array transformations to im-
prove data locality or enable parallelization. The SUIF par-
allelizing compiler [2, 5], the Maps compiler-managed mem-
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ory system [6], the Hot Pages software caching system [15],
and the C-CHARM memory system [13] all introduce these
operations to express the array indexes after transforma-
tions.

However, the cost of using division and modulo opera-
tions is often prohibitive. Despite their suitability for repre-
senting various concepts, experienced application program-
mers avoid them when they care about performance. On the
MIPS R10000, for example, a divide operation takes 35 cy-
cles, compared to six cycles for a multiply and one cycle for
an add. Furthermore, unlike the multiply unit, the division
unit has dismal throughput because it is not pipelined. In
compiler optimizations that attempt to improve cache be-
havior or reduce memory traffic, the overhead from the use
of modulo and division operations can potentially negate
any performance gained.

Advances in both hardware and software make optimiza-
tions on modulo and remainder operations more important
today than ever. While modern processors have taken ad-
vantage of increasing silicon area by replacing iterative mul-
tipliers with faster, non-iterative structures such as Wallace
multipliers, similar non-iterative division/modulo functional
units have not materialized technologically [16]. Thus, while
the performance gap between an add and a multiply has nar-
rowed, the gap between a divide and the other arithmetic
operations has either widened or remained the same. In the
MIPS family, for example, the ratio of costs of div/mul/add
has gone from 35/12/1 on the R3000 to 35/6/1 on the
R10000. Similarly, hardware advances such as caching and
branch prediction help reduce the cost of memory accesses
and branches relative to divisions. From the software side,
better code generation, register allocation, and strength re-
duction of multiplies increase the relative execution time of
portions of code that uses division and modulo operations.
Thus, in accordance with Amdahl’s law, the benefit of opti-
mizing away these operations is ever increasing.

This paper presents optimizations that focus on eliminat-
ing division and modulo operations from loop nests where
the numerators and the denominators are linear functions of
loop induction variables and loop constants. The concept is
similar to strength reduction of multiplications. However, a
strength reducible multiplication in a loop creates a simple
linear data pattern, while modulo and division instructions
create values with complex saw-tooth and step patterns. We
use algebra, loop iteration space analysis, and integer pro-
gramming techniques to identify and simplify these patterns.
The elimination of division and modulo operations requires
complex loop transformations to break the patterns at their



for(t = 0; t < T; t++) for(t = 0; t < T; t++)
for(i = 0; i < NN; i++) for(i = 0; i < NN; i++)
ATi%N] = 0; A[i/N] = 0;

(a) Loop with an integer modulo operation

_invt = (NN-1)/N;
for(t = 0; t <= T-1; t++) {
for(_Mdi = 0; _Mdi <= _invt; _Mdi++) {
_peeli = 0;
for(i = N*_Mdi; i <= min(N*_Mdi+N-1,NN-1); i++) {
A[_peeli] = 0;
_peeli = _peeli + 1; }
} }

}
}

(b) Modulo loop after strength reduction optimization

_invt

for(t
for(_mDi = 0; _mDi <= _invt; _mDi++) {

for(i = N*_mDi; i <= min(N*_mDi+N-1,NN-1); i++) {

(¢) Loop with an integer division operation

(NN-1)/N;
0; t <= T-1; t++) {

A[_mDi] = 0;

(d) Division loop after strength reduction optimization

Figure 1: Two sample loops before and after strength reduction optimizations. The run-time inputs are T=>500, N=500,

and NN=N*N.

discrete points.

We believe that if the compiler is able to eliminate the
overhead of division and modulo operations, their use will
become prevalent. Both user code and compiler generated
code will benefit. Similar to how strength reduction of mul-
tiplications helped the acceptance of early Fortran compilers
into the scientific programming community, strength reduc-
tion of modulo and division can increase the attractiveness
and impact of automatic parallelization and locality opti-
mization.

The algorithms shown in this paper have been effective
in eliminating most of the division and modulo instructions
introduced by the SUIF parallelizing compiler, Maps, Hot
Pages, and C-CHARM. In some cases, they improve the
performance of applications by more than a factor of ten.

Related Work An early article by Cocke and Mark-
stein describes one of the optimizations presented in this
paper and shows how it complements locality improving ar-
ray transformations [7]. Other previous work on eliminating
division and modulo operations have focused on the case
when the denominator is a compile-time constant [1, 12,
14]. In [12], a division with constant denominator is turned
into a load-constant, a multiplication, one or two shifts, and
two add/subtracts; a modulo with constant denominator is
converted into those instructions plus a multiply and a sub-
tract. In contrast, our approach focuses on loop nests, but
it only requires that the denominator is loop invariant. In
cases where both approaches are applicable, our approach
usually leads to more efficient code, with mod cost as low as
one add, and div cost as low as an add amortized over the
iteration count.

The rest of the paper is organized as follows. Section 2 mo-
tivates our work. Section 3 describes the framework for our
optimizations. Section 4 presents the optimizations. Sec-
tion 5 presents results. Section 6 concludes.

2. MOTIVATION

We illustrate by way of example the potential benefits
from strength reducing integer division and modulo opera-
tions. Figure 1(a) shows a simple loop with an integer mod-
ulo operation. Figure 1(b) shows the result of applying our
strength reduction techniques to the loop. Similarly, Fig-
ure 1(c) and Figure 1(d) show a loop with an integer divide
operation before and after optimizations. Figure 2 shows

the performance of these loops on a wide range of proces-
sors. The results show that the performance gain is univer-
sally significant, generally ranging from 4.5x to 45x.' The
thousand-fold speedup for the division loop on the Alpha
21164 arises because, after the division has been strength
reduced, the compiler is able to recognize that the inner loop
is performing redundant stores. When the array is declared
to be volatile, the redundant stores are not optimized away,
and the speedup comes completely from the elimination of
divisions. This example illustrates that, like any other op-
timizations, the benefit of mod/div strength reduction can
be multiplicative when combined with other optimizations.

3. FRAMEW ORK

Definition 1. Let x € R, n,d € Z. We define integer op-
erations div, rem, and mod as follows:

TRUNC(z) = { m v E 0
ndivd = TRUNC(n/d)
nremd = n—d*xTRUNC(n/d)
nmodd = n—d=x|n/d]

For the rest of this paper, we use the traditional symbols
/ and % to represent integer divide and integer modulo op-
erations, respectively.

To facilitate presentation, we make the following simplifi-
cations. First, we assume that both the numerator and de-
nominator expressions are positive unless explicitly stated
otherwise. The full compiler system has to check for all the
cases and handle them correctly, but sometimes the compiler
can deduce the sign of an expression from its context or its
use, e.g., an array index expression. Second, we describe our
optimizations for modulo operations, which are equivalent
to remainder operations when both the numerators and the
divisors are positive.

Most of the algorithms introduced in this paper strength
reduce integer division and modulo operations by identifying
their value patterns. For that, we need to obtain the value

!The speedup on the Alpha is more than twice that of the
other architectures because its integer division is emulated
in software.
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Figure 2: Performance improvement obtained with the strength reduction of modulo and division operations on several machines. See

http://cag.lcs.mit.edu/~walt/mdopt/graph.pdf for full tabular results.

ranges of numerator and denominator expressions of the di-
vision and modulo operations. We concentrate our effort on
loop nests by obtaining the value ranges of the induction
variables, since many of the strength-reducible operations
are found within loops, and optimizing modulo and division
operations in loops has a much higher impact on perfor-
mance. Finding the value ranges of induction variables is
equivalent to finding the iteration space of the loop nests.

First, we need a representation for iteration spaces of the
loop nests and the numerator and denominator expressions
of the division and modulo operations. Representing arbi-
trary iteration spaces and expressions accurately and ana-
lyzing them is not practical in a compiler. Thus, we re-
strict our analysis to loop bounds and expressions that are
affine functions of induction variables and loop constants.
We choose to view the iteration spaces as multi-dimensional
convex regions in an integer space [2, 3, 4]. We use systems
of inequalities to represent these multi-dimensional convex
regions and program expressions. The analysis and strength
reduction optimizations are then performed by manipulat-
ing the systems of inequalities.

Definition 2. Assume a p-deep (not necessarily perfectly

nested) loop nest of the form:

FOR ‘il = max(ll,l..ll,ml) TO min(hl,l..hl,nl) STEP 81 DO
FOR ig = max(lz,l..lz,m2) TO min(hg,l..hg,nz) STEP 82 DO

FOR ip = max(l},,l..lpymp) TO min(hp,l..hp,np) STEP s, DO
/* the loop body */

where v1,...,vq are loop invariant, and ly y and hs,y are
affine functions of the variables vi,...,vq,%1,...,00—1. We
define the context of the k" loop body recursively:

Fr = Fr—1 A {Zk

/\j:l,...,mk ik 2 Ik A }

J=1,...,nk ix < hi,j

The loop bounds in this definition contain max and min
functions because many compiler-generated loops, including
those generated in Optimizations 9 and 10 in Section 4.3.2,
produce such bounds.

Note that the symbolic constants vi,...,v, need not be
defined within the context. If we are able to obtain in-
formation on their value ranges, we include them into the
context. Even without a value range, the way the variable
is used in an expression (e.g., its coefficient) can provide
valuable information on the value range of the expression.

We perform loop normalization and induction variable de-
tection analysis prior to strength reduction so that all the
FOR loops are in the above form. Whenever possible, any
variable defined within the loop nest is written as affine ex-
pressions of the induction variables.

Definition 3. Given context F with symbolic constants
V1, ..., Uq and loop index variables ii,...,1p, an affine inte-
ger division (or modulo) expression within it is represented
by a 3-tuple (N,D,F) where N and D are defined by the
affine functions: N =mo + 321 <<, MV + 2i<j<p Mitalis
D =do+3icjcydivi + Xicjcpr Mitaelj. The division
expression is represented by N/D. The modulo expression
1s represented by N%D.

We restrict the demominator to be invariant within the
contert (i.e., it cannot depend on i,). We rely on this in-
variance property to perform several loop level optimizations.

3.1 Expressionrelation

Definition 4. Given affine expressions A and B and a con-
text F describing the value ranges of the variables in the
expressions, we define the following relations:

e Relation(A < B, F) is true iff the system of inequali-
ties F A {A > B} is empty.

o Relation(A < B, F) is true iff the system of inequali-
ties F N {A > B} is empty.

e Relation(A > B, F) is true iff the system of inequali-
ties F A {A < B} is empty.

e Relation(A > B, F) is true iff the system of inequali-
ties F A {A < B} is empty.

Using the integer programming technique of Fourier-
Motzkin Elimination [8, 9, 10, 18, 20], we manipulate the
systems of inequalities for both analysis and loop transfor-
mation purposes. In many analyses, we use this technique
to identify if a system of inequalities is empty, i.e., no set
of values for the variables will satisfy all the inequalities.
Fourier-Motzkin elimination is also used to simplify a system
of inequalities by eliminating redundant inequalities. For
example, a system of inequalities {I > 5,1 > a,I > b,a >
10,b < 4} can be simplified to {I > 10,1 > a,a > 10,b < 4}.
In many optimizations discussed in this paper, we create a



new context to represent a transformed iteration space that
will result in elimination of modulo and division operations.
We use Fourier-Motzkin projection to convert this system of
inequalities into the corresponding loop nest. This process
guarantees that the loop nest created has no empty itera-
tions and loop bounds are the simplest and tightest [2, 3,
4].

3.2 lteration count

Definition 5. Given a loop FOR ¢ = L TO U DO with con-
text F, where L = max(l,...,ln), U = min(ui,...,um), the
number of iterations niter can be expressed as follows:

niter(L,U, F) = min{k|k = uy — lo + 1;z € [1,n];y € [1,m]}

The context is included in the expression to allow us to
apply the maz/min optimizations described in Section 4.4.

4. OPTIMIZA TION SUITE

This section describes our suite of optimizations to elimi-
nate integer modulo and division instructions.

4.1 Algebraic simplifications

First, we describe simple optimizations that do not re-
quire any knowledge about the value ranges of the source
expressions.

4.1.1 Algebraic axioms

Many algebraic axioms can be used to simplify division
and modulo operations [11]. Even if the simplification does
not immediately eliminate operations, it is important be-
cause it can lead to further optimizations.

Optimization 1. Simplify the modulo and division expres-
stons using the following algebraic simplification rules. fi
and fy are expressions, x is a variable or a constant, and c,
c1, c2 and d are constants.

(fiz+ f2)%r = fo%=x
(fiz+ fo)/z = fi+ fofz
(cifi +cafe)d = ((c1%d)fr + (c2%d) f2)%d
(cifi +cofe))d = ((c1%d) f1 + (c2%d) f2)/d
+(c1/d) fr + (c2/d) f2
(cfiz + f2)%(dx) = ((c%d)fiz + f2)%(dx)
(chio+ f)/(ds) = ((%ed)fuz + fo)/(d2) + (c/d)

4.1.2 Reductionto conditionals

A broad range of modulo and division expressions can
be strength reduced into a conditional statement. Since we
prefer not to segment basic blocks because it inhibits other
optimizations, we attempt this optimization as a last resort.

Optimization 2. Let (N, D, F) be a modulo or division ez-
pression in a loop of the following form:

FOR¢ =0TOU DO

z=N%D
y=N/D
ENDFOR

Let n be the coefficient of i in N, and let N~ = N — n * i.
Then if n < D, the loop can be transformed to the following:

_Mdx = N~ %D
-mDy= N~ /D
FOR ¢ =0 TO U DO
r = _Mdzx
y =-mDy
_Mdx = _Mdz +n
IF _Mdx > D THEN
_Mdz = _Mdx — D
-mDy = _mDy +1
ENDIF
ENDFOR

The code shown is for N > 0 and n > 0. Other cases can
be handled by changing signs appropriately.

4.2 Optimizations using value ranges

The following optimizations not only use algebraic axioms,
they also take advantage of compiler knowledge about the
value ranges of the variables associated with the modulo and
division operations.

4.2.1 Elimination via simple continuousrange

Suppose the context allows us to prove that the range of
the numerator expression does not cross a multiple of the
denominator expression. Then for a modulo expression, we
know that there is no wrap-around. For a division expres-
sion, the result has to be a constant. In either case, the
operation can be eliminated.

Optimization 3. Given a modulo or division expression
(N, D, F), if Relation(N > 0AD > 0,F) and Relation(kD
< N < (k+1)D,F) for some k € Z, then the expressions
reduce to k and N — kD respectively.

Optimization 4. Given a modulo or division expression
(N, D, F), if Relation(N < OAD > 0,F) and Relation((k+
1)D < N < kD, F) for some k € Z, then the expressions
reduce to k and N + kD, respectively.

4.2.2 Elimination via integral stride and continuousrange

This optimization is predicated on identifying two condi-
tions. First, the numerator must contain an index variable
whose coefficient is a multiple of the denominator. Second,
the numerator less this index variable term does not cross
a multiple of the denominator expression. These conditions
are common in the modulo and division expressions that are
part of the address computations of compiler-transformed
linearized multidimensional arrays.

Optimization 5. Given a modulo or division ezpression
(N,D,F), let i be an indez variable in F, n be the coef-
ficient of i in N, and N~ = N —n 1. If n%D = 0 and
there exists an integer k such that kD < N~ < (k+1)D,
then the modulo and division expressions can be simplified
to N~ — kD and (n/D)i + k, respectively for k > 0 and to
N~ —(k+1)D and (n/D)i+k+1 fork <0.

If alignment of the loop, &, is not constant, or cannot be
determined one can instead perform a slightly more general
transformation.

Optimization 6. Let (N, D, F) be a modulo or division ex-
pression in a loop of the following form:

FORi =0 TO U DO
z = N%D
ENDFOR



Let n be the coefficient of i in N and N~ = N —n 4. Then
if n%D = 0, the loop can be transformed to the following:

_Mdx = N~ %D
-mDy=N~/D
FOR ¢ =0 TO U DO
r=_Mdzx
y =_mDy
-mDy = .mDy + (n/D)
ENDFOR

4.2.3 Elimination thr ough absenceof discontinuity

Many modulo and division expressions do not create dis-
continuities within the iteration space. If this can be guar-
anteed, then the expressions can be simplified. Figure 3(a)
shows an example of such an expression with no discontinu-
ity in the iteration space.

Optimization 7. Let (N, D, F) be a modulo or division ez-
pression in a loop of the following form:

FORi =0 TO U DO

z=N%D
y=N/D
ENDFOR

Let n be the coefficient of i in N, N© = N — n %4, and
k = N~ %D. For n > 0 the loop can be transformed into
the following if Relation(n * niter(0,U,F) < D —k+n —
1, F) while for n < 0 the loop can be transformed into the
following if Relation(n+*niter(0,U, F) > n—k, the loop can
be transformed to the following:

FORi =0 TO U DO
r = _Mdx
y =_-mDy
_Mdx = _Mdzx +n
ENDFOR

4.3 Optimizations using Loop Transformations

The next set of optimizations perform loop transforma-
tions to create new iteration spaces that have no disconti-
nuity. For each loop, we first analyze all its expressions to
collect a list of necessary transformations. We then elimi-
nate any redundant transformations.

4.3.1 Loop partitioning to remove onediscontinuity

For some modulo and division expressions, the number
of iterations in the loop will be less than the distance be-
tween discontinuities. But a discontinuity may still occur
in the iteration space if it is not aligned to the iteration
boundaries. When this occurs, we can either split the loop
or peel the iterations. We prefer peeling iterations if the
discontinuity is close to the iteration boundaries. This op-
timization is also paramount when a loop contains multiple
modulo and division expressions, each with the same de-
nominator and whose numerators are in the same uniformly
generated set [22]. In this case, one of the expressions can
have an aligned discontinuity while others may not. Thus, it
is necessary to split the loop to optimize all the modulo and
division expressions. Figure 4(a) shows an example where
loop partitioning eliminates a single discontinuity.

Optimization 8. Let (N, D, F) be a modulo or division ez-
pression in a loop of the following form:

FOR i =0 TO U DO
z=N%D
y=N/D

ENDFOR

Let n be the coefficient of i in N and N~ = N —n=*{. Then if
D%n = 0 and Relation(niter(0,U, F) < D/n,F), the loop
can be transformed to the following:

k=N"%D
_Mdz =k
-mDy= N~ /D
_cut = min((D — _kz +n —1)/n+ L —1,U)
FOR i =0 TO _cut DO
r = _Mdzx
y =-mDy
_Mdzx = _Mdz +n
ENDFOR
IF _Mdz > D THEN
_Mdx = _Mdx — D
-mDy = _mDy+1
ENDIF
FORi = _cut +1 TO U DO
r = _Mdz
y =_-mDy
_Mdzx = _Mdz +n
ENDFOR

4.3.2 Loop tiling to eliminate discontinuities

In many cases, the value range identified contains disconti-
nuities in the division and modulo expressions. This section
explains how to perform loop transformations to move dis-
continuities to the boundaries of the iteration space. The
result is that modulo and division operations can be elim-
inated or propagated out of the inner loops. Figure 4(b)
shows an example requiring this optimization.

When the iteration space has a pattern with a large num-
ber of discontinuities repeating themselves, breaking a loop
into two loops such that the discontinuities occur at the
boundaries of the second loop will let us optimize the mod-
ulo and division operations. Optimization 9 adds an addi-
tional restriction to the lower bound so that no preamble is
needed. Optimization 10 eliminates that restriction.

Optimization 9. Let (N, D, F) be a modulo or division ex-
pression in a loop of the following form:

FORi =0 TO U DO

z = N%D
y=N/D
ENDFOR

Let n be the coefficient of i in N and N~ = N —n 4. Then
if D%n = 0 and N~ = 0, the loop can be transformed to
the following:

-mDy= N~ /D
FORii =0 TO U/(D/n) DO
_Mdz =0
FOR i = ii % (D/n) TO
min((ii + 1) * (D/n) — 1,U) DO
T = _Mdzx
y=_mDy
_Mdx = _Mdzx +n
ENDFOR
-mDy = _mDy+1
ENDFOR

Optimization 10. For the loop nest and the modulo and
division statements described in optimization 9, if D%mn = 0
then the above loop nest is transformed to the following:
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Figure 3: Original and optimized code segments for several modulo and division expressions. The x-axes are the iteration spaces. The
y-axes are numeric values. The solid diamonds are values of the modulo expression. The open squares are the values of the division
expression. The solid lines represent the original iteration space boundaries. The dash lines represent the boundaries of the transformed
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_Mdx = N~ %D
-mDy =N~ /D
FOR ¢ =0 TO _brklb — 1 DO
= _Mdz
y =_-mDy
_Mdx = _Mdz +n
ENDFOR
IF _brklb > 0 THEN
-mDy = _mDy+1
ENDIF
_Mdi= (n=* _brklb+ N~ )%D
FOR i =0 TO U/(D/n) DO
_Mdx = _Mdi
FOR i = it % (D/n) + _brklb
TO min((ii + 1) * D/n — 1 4 _brklb, U) DO
z = _Mdz
y=_mDy
_Mdx = _Mdz+n
ENDFOR
-mDy = _mDy+1
ENDFOR

The expression to determine _brklb depends on the sign
of both N and n. If N > 0 and n > 0, _brklb =
(N7/D 4+ 1)(D/n) — N /n. If N < 0 and n > 0,
brklb = (—N~%D)/n+1. If N >0 and n < 0, _brklb =
(=N"/D + 1) x (D/|n]) * (D/|n|) = (=N7)/In|. If N <0
and n <0, brklb = (N~%D)/|n| + 1.

4.3.3 Generalloop transformation: singleaccesslass

It is possible to transform a loop to eliminate discontinu-
ities with very little knowledge about the iteration space and
value ranges. The following transformation can be applied
to any loop containing a single arbitrary instance of affine
modulo/division expressions.

Optimization 11. Let (N, D,F) be a modulo or division
expression in a loop of the following form:

FORi =L TOU DO

z=N%D
y= N/D
ENDFOR

Let n be the coefficient of i in N and N~ = N —n <. Then
the loop can be transformed to the following:

SUB FindNiceL(L,D,n, N~)
IF n =0 THEN
RETURN L
ELSE
VLden= ((L*n+ N~ —1)/D)* D
VLbase =Lxn+ N~ — VLden
NiceL =L+ (D — VLbase+n—1)/n
RETURN NiceL
ENDIF
ENDSUB

k=n/D
r=n—kx*xD

IF r # 0 THEN
perIter = D/r
nicelL, = FindNiceL(L,D,r,N7)
niceNden = (U — niceL + 1)/D
niceU = niceL + niceNden x D

ELSE
perlter =U — L
niceL = L
niceU =U +1
ENDIF

modval = (nx L+ N~ )%D
divval = (n* L+ N~)/D
i=1L
FOR i2 = L TO niceL —1 DO
z = modval
y = divval
modval = modval + r
divval = divval + k
i=i+1
IF modval > D THEN
modval = modval — D
divval = divval + 1
ENDIF
ENDFOR

WHILE ¢ < niceU DO
FOR i2 = 1 TO perIter DO
z = modval
y = divval
modval = modval + r
divval = divval + k
ENDFOR
IF modval < D THEN
z = modval
y = divval
modval = modval + r
divval = divval + k
i=i+1
ENDIF
IF modval # 0 THEN
modval = modval — D
divval = divval + 1
ENDIF
ENDWHILE

FOR i2 = niceU TO U DO
z = modval
y = divval
modval = modval + r
divval = divval + k
i=i+1
IF modval > D THEN
modval = modval — D
divval = divval + 1
ENDIF
ENDFOR

The loop works as follows. First, note that within the
loop, N is a function of i only and D is a constant.

For simplicity, consider the case when n < D. We observe
that if N(7) %D € [0,n), then there is no discontinuity in
the functions N(z)/D, N(i)%D in the range [¢,7 + |D/n]).
Furthermore, the discontinuity must occur either after i +
|D/n] or i+ |D/n| +1.

Thus, the transformation uses a startup loop that exe-
cutes iterations of i until N(z) falls in the range [0,n). It
then enters a nested loop whose inner loop executes | D/n]
iterations continuously, then conditionally executes another
iteration if the execution has not reached the next disconti-
nuity. This main loop continues for as long as possible, and
a cleanup loop finishes up whatever iterations the main loop
is unable to execute.

The loop handles the case when n > D by using n%D as
the basis for calculating discontinuities.

Note that the FindNiceL subroutine can be shared across
optimized loops.

4.3.4 Generalloop transformation: arbitrary accesses

Finally, the following transformation can be used for loops
with arbitrarily many affine accesses.

Optimization 12. Given a loop with affine modulo or di-
VISLOM eTPTeSSLONnS:



FORi=L TO U DO
o1 = (a1 *i+b1) op1 dy
To = (az *i+b2) op2 d2
Tn = (an * i+ bn) 0Pn dn
ENDFOR
where op; is either mod or div, the loop can be transformed
into:
SUB FindBreak(L, U, den, n, k)
IF n =0 THEN
RETURN U + 1
ELSE
VLden = ((L * n+ k)/den) * den
VILbase = L*n+k — VELden
Break = L + (den — VLbase +n —1)/n

RETURN Break
ENDIF
ENDSUB

FORj =1 TO n DO
ki =aj/d;
ri =a; —k;j —dj
valj[mod] = (aj * L + b;)%d;
valj[div] = (aj * L+ b;)/d;
break; = FindBreak(L,U,d;,r;,b;)
ENDFOR
i=1L
WHILE i < U DO
Break = min(U + 1, {break;|j € [1,n]})
FOR i =i TO Break DO
z1 = vali[op;]
vali[mod] = vali[mod] + r1
vali[div] = vali[div] + k1
z2 = valz[op;]
valz[mod] = vala[mod] + r2
vala[div] = vala[div] + k2

ENDFOR

FORj =1 TO n DO
IF Break = break; THEN
valj[mod] = val;[mod] — d;
valj[div] = valj[div] + 1
break; = FindBreak(i + 1,U,d;,r;,b;)
ENDIF
ENDFOR
ENDWHILE

Note that the wval[] associative arrays are used only for
the purpose of simplifying the presentation. In the actual
implementation, all the op;’s are known at compile time, so
that for each expression only one of the array values needs
to be computed. Also, note that the FindBreak subroutine
can be shared across optimized loops.

The loop operates by keeping track of the next disconti-
nuity of each expression. Within an iteration of the WHILE
loop, the code finds the closest discontinuity and executes
all iterations until that point in the inner FOR loop. Note,
however, that because one needs to perform at least one
division within the outer loop to update the set of discon-
tinuities, the more complex control flow in the transformed
loop may lead to slowdown if the iteration count of the inner
loop is small (possibly due to a small D or a large n).

4.4 Min/Max Optimizations

Some loop transformations, such as those in Section 4.3,
produce minimum and maximum operations. This section
describes methods for eliminating them. For brevity, we only
present the Min optimizations when the Max optimizations
can be defined analagously (Optimizations 13, 14, and 17).

4.4.1 Min/Max elimination by evaluation

If we have sufficient information in the context to prove
that one of the operand expressions is always greater
(smaller) than the rest of the operands, we can use that fact
to get rid of the max (min) operation from the expression.

Optimization 13. Given a min eTpression
min(Ni, ..., Np) with a context F, if there exzists k
such that for all 0 < i < m, Relation(N, < N;,F), then
min(Ni, ..., Nm) can be reduced to Ny,.

4.4.2 Min/Max simplification by evaluation

Even if we are able to prove few relationships between
pairs of operands, it can result in a min/max operation with
fewer number of operands.

Optimization 14. Given a min eTpression
min(Ni, ..., Np) with a context F, if there exists i,k
such that 0 < i,k < m, i # k, Relation(N; < N, F)
is walid, then min(Ni,...,Nm) can be reduced to
min(Nl,...,Nk_l,Nk+1,...,Nm).

4.4.3 Division folding

The arithmetic properties of division allow us to fold a
division instruction into a min/max operation. This folding
can create simpler division expressions that can be further
optimized. If further optimizations do not eliminate these
division operations, however, the division folding should
be un-done to remove potential negative impact on perfor-
mance.

Optimization 15. Given an integer division ezpression
with a min/maz operation {(min(N,...,Np), D,F) or
{(max(N1,...,Nn), D,F), if Relation(D > 0,F) holds,
rewrite min and maz as min({N1, D, F), ..., (Nm,D,F))
and max({N1, D, F), ..., (Nm, D, F)) respectively.

For brevity, we omit the dual optimization when D < 0.

4.4.4 Min/Max elimination in modulo equivalence
Since a < b does not lead to a%c < b%c, there is no

general method for folding modulo operations. If we can
prove that the results of taking the modulo of each of the
min/max operands are the same, however, we can eliminate

the min/max operation.

Optimization 16. Given an integer modulo ezpression
with a min /maz operation (min(Nu,...,Np),D,F) or
(maz(Ny,..., Np), D,F) if (N1, D, F) = ... = (N, D, F),
then we can rewrite the modulo ezpression as (N1, D, F).

Note that all (N, D, F) (1 < k < m) are equivalent, thus
we can choose any one of them as the resulting expression.

4.4.5 Min/Max expansion

Normally min/max operations are converted into condi-
tionals late in the compiler during code generation. How-
ever, if any of the previous optimizations are unable to elim-
inate the mod/div instructions, lowering the min/max will
simplify the modulo and division expressions, possibly lead-
ing to further optimizations. To simplify the explanation,
we describe Optimizations 17 with only two operands in the
respective min and max expressions.

Optimization 17. A mod/div statement with a min oper-
ation, res = (min(N1, N2), D, F), gets lowered to



IF Ny < Ny THEN
res = (N1, D,F A {N1 < Na})

ELSE
res = (N2, D, F A {N1 > Na})
ENDIF
5. RESULTS

We have implemented the optimizations described in this
paper as a compiler pass in SUIF [21] called Mdopt. We
are also in the process of implementing the optimizations in
SUIF2 using the Omega integer programming solver pack-
age [17]. Mdopt has been used as part of several com-
piler systems: the SUIF parallelizing compiler [2], the Maps
compiler-managed memory system in the Raw paralleliz-
ing compiler (Rawcc) [6], the Hot Pages software caching
system [15], and the C-CHARM memory system [13]. All
those systems introduce modulo and division operations
when they manipulate array address computations during
array transformations. This section presents some of the
performance gain when applying Mdopt to code generated
by those systems.

5.1 SUIF Parallelizing Computer

The SUIF parallelizing compiler uses techniques based on
linear inequalities to parallelize dense matrix programs [2,
5]. This section uses a hand coded example to illustrate how
such a system benefits from Mdopt.

We begin with a five-point stencil code. The stencil code
involves iterating over the contents of a two dimensional
matrix with a 5-point stencil writing resulting values into
another matrix, swapping the matrixes, and repeating. In a
traditional parallelizing compiler, the matrix is divided into
as many stripes as there are processors, with each stripe
assigned to a single processor. Each processor portion of
the matrix is a contiguous block of memory, thus ensuring
good cache locality. In Figure 5, the stripe lines show the
performance of this parallelization technique for two matrix
sizes on an SGI Origin with MIPS R10000 processors, each
with a 4MB L2 cache.

This parallelization technique suffers the drawback that
it has a large edge-to-area ratio. Edges are undesirable be-
cause the processors need to communicate edge values to
their neighbors in each iteration. This interprocessor com-
munication can be reduced by dividing the original matrix
into roughly square sections rather than stripes. The square
lines in Figure 5 show the performance of these square par-
titions. In this approach, however, each processor’s data is
no longer a contiguous block of memory. This property in-
creases the likelihood of conflict misses. As a result, square
actually performs uniformly worse than stripe.

Square partitions can be made contiguous through ar-
ray transformations. This transformation restores cache
locality, but it introduces division and modulo operations
into address computations. The datatrans and mdopt lines
in Figure 5 show the performance of this approach with-
out and with Mdopt optimizations, respectively. Using a
4096x4096 matrix, little speedup is gained by performing the
data transformation and modulo/division optimizations on
small processor configurations. This is because each proces-
sor’s working set is sufficiently large that the computation is
memory bound. As the number of processors increase past
32, the working set of each processor begins to fit in the
L2 caches. The application becomes CPU bound, so that
the benefits of div/mod optimizations becomes visible. For
a smaller 2048x2048 matrix, the application is CPU bound

for correspondingly smaller configurations, and we see an
overall performance gain for up to 48 processors. For larger
configurations, however, synchronization costs at the end
of each iteration overshadows any performance gains from
Mdopt.

5.2 C-CHARM Memory Localization System

The C-CHARM memory localization compiler system [13]
attempts to do much of the work traditionally done by hard-
ware caches. The goal of the system is to generate code
for an exposed memory hierarchy. Data is moved explicitly
from global or off-chip memory to local memory before it is
needed and vice versa when the compiler determines it can
no longer hold the value locally.

Benchmarks | Speedup |

convolution 15.6
jacobi 17.0
median-filter 2.8
sor 8.0

Table 1: Speedup from applying Mdopt to C-CHARM gener-
ated code run on an Ultra 5 Workstation.

C-CHARM analyses the reuse behavior of programs to
determine how long a value should be held in local memory.
Once a value is evicted, its local memory location can be
reused. This local storage equivalence for global memory
values is implemented with a circular buffer. References are
mapped into the same circular buffer, and their address cal-
culations are rewritten with modulo operations. It is these
modulo operations that map two different global addresses
to the same local address. It is these operations that Mdopt
removes.

Table 1 shows the speedup from applying modulo/division
optimizations on C-CHARM generated code running on a
single processor machine.

5.3 Maps Compiler Managed Memory

Maps is the memory management front end of the Rawcc
parallelizing compiler [6], which targets the MIT Raw ar-
chitecture [19]. It distributes the data in a sequential input
program across the individual memories of the Raw tiles.
The system low-order-interleaves arrays whose accesses are
affine functions of enclosing loop induction variables. That
is, for an N-tile Raw machine, the k%" element of an “affine”
array A becomes the (k/N)** element of partial array A on
tile k% N. Mdopt is used to simplify the tile number into a
constant, as well as to eliminate the division operations in
the resultant address computations.

Table 2 shows the impact of the transformations. It con-
tains results for code targeting a varying number of tiles,
from 1 to 32. The effects of the transformations depend on
the number of affine-accessed arrays and the computation
to data ratio. Because Mdopt plays an essential correctness
role in the Rawcc compiler (Rawcc relies on Mdopt to reduce
the tile number expressions to constants), it is not possible
to directly compare performance on the Raw machine with
and without the optimization. Instead, we compile the C
sources before and after the optimization on an Ultrasparc
workstation, and we use that as the basis for comparison.

The left column of each configuration shows the perfor-
mance measured in slowdown after the initial low-order in-
terleaving data transformation. This transformation intro-
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Figure 5: Performance of stencil code using varying parallelization techniques.

Number of Tiles 1 2 4 8 16 32

Slow | Speed Slow | Speed Slow | Speed Slow | Speed Slow | Speed Slow | Speed
Benchmarks down up down up down up down up down up down up
life 1.02 1.00 3.23 2.20 2.86 2.17 3.85 6.03 2.86 19.42 3.57 17.64
jacobi 1.00 1.00 4.76 4.22 8.33 6.51 | 10.00 3.33 | 10.00 2.52 | 33.33 6.44
cholesky 1.00 1.00 3.57 3.62 4.35 4.12 5.00 3.41 5.55 2.54 11.11 1.85
vpenta 1.00 1.00 1.39 1.18 1.92 1.48 2.50 1.98 * * * *
btrix 1.00 1.00 2.94 3.19 3.45 2.26 1.35 1.00 1.25 1.00 1.28 0.96
tomcatv 0.88 1.00 3.13 2.81 4.17 3.19 5.89 7.49 7.14 6.86 * *
ocean 1.00 1.00 1.37 1.60 1.69 1.70 1.41 2.00 2.44 2.33 2.94 3.82
swim 1.00 1.00 1.00 1.00 1.06 1.00 1.00 1.00 1.00 1.00 1.00 0.95
adpcm 1.10 1.00 1.10 1.00 1.23 1.00 1.10 1.00 1.10 1.00 1.10 1.00
moldyn 1.00 1.03 0.99 1.00 0.99 1.03 1.00 1.00 1.06 1.00 1.14 0.97

Table 2: Performance of Maps code during transformation targeting a varying number of Raw tiles. For each configuration, the left
column shows the slowdown from low-order interleaving array transformation. The right column shows the performance recovered when
Mdopt optimization is applied. * indicates missing entries because gcc runs out of memory.

duces division and modulo operations and leads to dramati-
cally slower code, as much as 33 times slowdown for 32-way
interleaved jacobi. The right column of each configuration
shows the speedup attained when we apply Mdopt on the
low-order interleaved code. These speedups are as dramatic
as the previous slowdown, as much as an 18x speedup for
32-way interleaved life. In many cases the Mdopt is able to
recover most of the performance lost due to the interleaving
transformation. This recovery, in turn, helps make it possi-
ble for the compiler to attain overall speedup by parallelizing
the application [6].

6. CONCLUSION

This paper introduces a suite of techniques for eliminat-
ing division, modulo, and remainder operations. The tech-
niques are based on number theory, integer programming,
and strength-reduction loop transformation techniques. To
our knowledge this is the first extensive work that provides
modulo and division optimizations for expressions whose de-
nominators are non-constants.

We have implemented our suite of optimizations as a SUIF
compiler pass. The compiler pass has proven to be useful
across a wide variety compiler optimizations which does data
transformations and manipulate address computations. For
some benchmarks with high data to computation ratio, an
order of magnitude speedup can be achieved.

We believe that the availability of these techniques will
make divisions and modulo operations more useful to pro-
grammers. Programmers will no longer need to make the
painful tradeoff between expressiveness and performance
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when deciding whether to use these operators. The opti-
mizations will also increase the impact of compiler optimiza-
tions that improve data locality or enable parallelization at
the expense of introducing modulo and division operations.

Acknowledgments The idea of a general mod/div opti-
mizer was inspired from joint work with Monica Lam and
Jennifer Anderson on data transformations for caches. Chris
Wilson suggested the reduction of conditionals optimization.
Rajeev Barua integrated Mdopt into Rawcc; Andras Moritz
integrated the pass into Hot Pages. We thank Jennifer An-
derson, Matthew Frank, and Andras Moritz for providing
valuable comments on earlier versions of this paper.

7. REFERENCES

[1] R. Alverson. Integer Division Using Reciprocals. In
Proceedings of the Tenth Symposium on Computer
Arithmetic, Grenoble, France, June 1991.

S. Amarasinghe. Parallelizing Compiler Techniques Based
on Linear Inequalities. In Ph.D Thesis, Stanford
University. Also appears as Techical Report
CSL-TR-97-714, Jan 1997.

C. Ancourt and F. Irigoin. Scanning Polyhedra with Do
Loops. In Proceedings of the Third ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, pages 39-50, Williamsburg, VA, Apr. 1991.
M. Ancourt. Génération Automatique de Codes de
Transfert pour Multiprocesseurs a Mémoires Locales. PhD
thesis, Université Paris VI, Mar. 1991.

J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. Data
and Computation Transformations for Multiprocessors. In
Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages

2]



(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

166—178, Santa Barbara, CA, July 1995.

R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Maps:
A Compiler-Managed Memory System for Raw Machines.
In Proceedings of the 26th International Symposium on
Computer Architecture, Atlanta, GA, May 1999.

J. Cocke and P. Markstein. Strength Reduction for Division
and Modulo with Application to Accessing a Multilevel
Store. IBM Journal of Research and Development,
24(6):692-694, November 1980.

G. Dantzig. Linear Programming and Eztensions.
Princeton University Press, Princeton, NJ, 1963.

G. Dantzig and B. Eaves. Fourier-Motzkin Elimination and
its Dual. Journal of Combinatorial Theory (A),
14:288-297, 1973.

R. Duffin. On Fourier’s Analysis of Linear Inequality
Systems. In Mathematical Programming Study 1, pages
71-95. North-Holland, 1974.

R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete
Mathematics. Addison-Wesley, Reading, MA, 1989.

T. Granlund and P. Montgomery. Division by Invariant
Integers using Multiplication. In Proceedings of the
SIGPLAN ’94 Conference on Programming Language
Design and Implementation, Orlando, FL, June 1994.

B. Greenwald. A Technique for Compilation to Exposed
Memory Hierarchy. Master’s thesis, Massachusetts Institute
of Technology, Department of Electrical Engineering and
Computer Science, September 1999.

D. Magenheimer, L. Peters, K. Peters, and D. Zuras.
Integer Multiplication and Division On the HP Precision
Architecture. IEEE Transactions on Computers,
37:980-990, Aug. 1988.

C. A. Moritz, M. Frank, W. Lee, and S. Amarasinghe. Hot
Pages: Software Caching for Raw Microprocessors.
(LCS-TM-599), Sept 1999.

S. Oberman. Design Issues in High Performance Floating
Point Arithmetic Units. PhD thesis, Stanford University,
December 1996.

W. Pugh. The Omega test: A fast and practical integer
programming algorithm for dependence analysis. In
Proceedings of Supercomputing ’91, Albuquerque, NM,
Nov. 1991.

A. Schrijver. Theory of Linear and Integer Programming.
John Wiley and Sons, Chichester, Great Britain, 1986.

M. B. Taylor. Design Decisions in the Implementation of a
Raw Architecture Workstation. Master’s thesis,
Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, September
1999.

H. Williams. Fourier-Motzkin Elimination Extension to
Integer Programming Problems. Journal of Combinatorial
Theory, 21:118-123, 1976.

R. Wilson, R. French, C. Wilson, S. Amarasinghe,

J. Anderson, S. Tjiang, S.-W. Liao, C.-W. Tseng, M. Hall,
M. Lam, and J. Hennessy. SUIF: An Infrastructure for
Research on Parallelizing and Optimizing Compilers. ACM
SIGPLAN Notices, 29(12), Dec. 1996.

M. E. Wolf. Improving Locality and Parallelism in Nested
Loops. PhD thesis, Dept. of Computer Science, Stanford
University, Aug. 1992.

11



