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Abstract

Convergent scheduling is a general framework for
cluster assignment and instruction scheduling on spa-
tial architectures. A convergent scheduler is composed
of independent passes, each implementing a heuris-
tic that addresses a particular problem or constraint.
The passes share a simple, common interface that pro-
vides spatial and temporal preference for each instruc-
tion. Preferences are not absolute; instead, the in-
terface allows a pass to express the confidence of its
preferences, as well as preferences for multiple space
and time slots. A pass operates by modifying these
preferences. By applying a series of passes that ad-
dress all the relevant constraints, the convergent sched-
uler can produce a schedule that satisfies all the im-
portant constraints. Because all passes are indepen-
dent and need to understand only one interface to in-
teract with each other, convergent scheduling simplifies
the problem of handling multiple constraints and co-
developing different heuristics. We have applied con-
vergent scheduling to two spatial architectures: the Raw
processor and a clustered VLIW machine. It is able to
successfully handle traditional constraints such as par-
allelism, load balancing, and communication minimiza-
tion, as well as constraints due to preplaced instruc-
tions, which are instructions with predetermined cluster
assignment. Convergent scheduling is able to obtain an
average performance improvement of 21% over the ex-
isting space-time scheduler of the Raw processor, and
an improvement of 14% over state-of-the-art assign-
ment and scheduling techniques on a clustered VLIW
architecture.

1 Introduction

Instruction scheduling on microprocessors is becom-
ing a more and more difficult problem. In almost all
practical instances, it is NP complete, and it often faces
multiple contradictory constraints. For superscalars or

VLIWSs, the two primary issues are parallelism and reg-
ister pressure. Code sequences that expose more in-
struction level parallelism (ILP) also have longer live
ranges and higher register pressure. To generate good
schedules, the instruction scheduler must somehow ex-
ploit as much ILP as possible without leading to a large
number of register spills.

On spatial architectures, instruction scheduling is
even more complicated. Examples of spatial architec-
tures include clustered VLIWs, Raw [24], Grid pro-
cessors [22], and ILDPs [12]. Spatial architectures
are architectures that distribute their computing re-
sources. Communication between distant resources can
incur one or more cycles of delays. On these archi-
tectures, the instruction scheduler has to partition in-
structions across the computing resources. Thus, in-
struction scheduling becomes both a spatial problem
and a temporal problem.

To make partitioning decisions, the scheduler has
to understand the proper tradeoff between parallelism
and locality. Figure 1 shows an example of this trade-
off. Spatial scheduling by itself is already a more diffi-
cult problem than temporal scheduling, because a small
spatial mistake is generally more costly than a small
temporal mistake. If a critical instruction is sched-
uled one cycle later than desired, only one cycle is lost.
But if a critical instruction is scheduled one unit of dis-
tance farther away than desired, cycles can be lost from
unnecessary communication delays, additional commu-
nication resource contention, and increase in register
pressure.

In addition, some instructions on spatial architec-
tures have specific spatial requirements. These re-
quirements arise from two sources. First, some loads
and stores instructions must access memory banks on
specific clusters, either for correctness or for perfor-
mance reasons [2, 6, 13]. Second, when a value is
live across scheduling regions, its definitions and uses
must be mapped to a consistent cluster [14]. We call
instructions with these spatial requirements preplaced
instructions. A good scheduler must be sensitive to
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Figure 1. An example of tradeoff between
parallelism and locality on spatial architec-
tures. Each node color represents a differ-
ent cluster. Consider an architecture with
three clusters, each with one functional unit,
where communication takes one cycle of la-
tency due to the “receive” instruction. In (a),
conservative partitioning that maximizes lo-
cality and minimizes communication leads to
an eight-cycle schedule. In (b), aggressive
partitioning has high communication require-
ments and leads to an eight-cycle schedule.
The optimal schedule, in (c), takes only seven
cycles: itis a careful tradeoff between locality
and parallelism.

constraints imposed by preplaced instructions in order
to generate a good schedule.

A scheduler also faces difficulties because different
heuristics work well for different types of graphs. Fig-
ure 2 depicts representative data dependence graphs
from two ends of a spectrum. In the graphs, nodes
represent instructions and edges represent data depen-
dences between instructions. Graph (a) is typical of
graphs seen in non-numeric programs, while graph (b)
is representative of graphs coming from applying loop
unrolling to numeric programs. Consider the problem
of scheduling these graphs onto a spatial architecture.
Long, narrow graphs are dominated by a few critical
paths. For these graphs, critical-path based heuris-
tics are likely to work well. Fat, parallel graphs have
coarse grained parallelism available and many critical
paths. For these graphs it is more important to mini-
mize communication and exploit the coarse-grain par-
allelism. To perform well for arbitrary graphs, a sched-
uler may require multiple heuristics in its arsenal.

Traditional scheduling frameworks handle conflict-
ing constraints and heuristics in an ad hoc manner.
One approach is to direct all efforts toward the most
serious problem. For example, modern RISC super-
scalars can issue up to four instructions and have tens
of registers. Furthermore, most integer programs tend
to have little ILP. Therefore, many RISC schedulers

Figure 2. Different data dependence graphs
have different characteristics. Some are thin
and dominated by a few critical paths (a),
while others are fat and parallel (b).

focus on finding ILP and ignore register pressure alto-
gether. Another approach is to address the constraints
one at a time in a sequence of phases. This approach,
however, introduces phase ordering problems, as deci-
sions made by the early phases are based on partial
information and can adversely affect the quality of de-
cisions made by subsequent phases. A third approach
is to attempt to address all the problems together. For
example, there have been reasonable attempts to per-
form instruction scheduling and register allocation at
the same time [21]. However, extending such frame-
works to support preplaced instructions is difficult —
no such extension exists today.

This paper presents convergent scheduling, a radical
departure from traditional scheduling methods. Con-
vergent scheduling is a general scheduling framework
that makes it easy to specify arbitrary constraints and
scheduling heuristics. Figure 3 illustrates this frame-
work. A convergent scheduler is composed of indepen-
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Figure 3. Convergent schedule framework.

dent phases. Each phase implements a heuristic that
addresses a particular problem such as ILP or regis-
ter pressure. Multiple heuristics may address the same
problem.

All phases in the convergent scheduler share a com-
mon interface. The input or output to each phase is
a collection of spatial and temporal preferences of in-
structions. A phase operates by analyzing the current
preferences and modifying them. As the scheduler ap-
plies the phases in succession, the preference distribu-
tion converges to a final schedule that incorporates the
preferences of all the constraints and heuristics. Logi-
cally, preferences are specified as a three-input function
that maps an instruction, space, and time triple to a
weight.

The contributions of this paper are:

e a novel interface between scheduling passes based
on weighted preferences;

e 3 novel approach to address the combined prob-
lems of cluster assignment, scheduling, and regis-
ter pressure,

e the formulation of a set of powerful heuristics to
address both general constraints and architecture-
specific issues,

e a demonstration of the effectiveness of convergent
scheduling compared to traditional techniques.

The rest of this paper is organized as follows. Sec-
tion 2 introduces convergent scheduling and uses an ex-
ample to illustrates how it works. Section 3 describes
the convergent scheduling interface between passes.
Section 4 describes the collection of passes currently
implemented in our framework. Section 5 presents ex-
perimental results for two architectures: a clustered
VLIW and the Raw processor [24]. Section 6 provides
related work. Section 7 concludes.

2 Convergent scheduling

In the convergent scheduling framework, passes
communicate their choices as changes in the relative
preferences of instructions for clusters and time slots.
The spatial and temporal preferences of each instruc-
tion are represented as weights in a preference map;
a pass influences the scheduling of an instruction by
changing these weights. When convergent scheduling
completes, the slot in the map with the highest weight
is designated as the preferred slot, which includes both
a preferred cluster and a preferred time. The instruc-
tion is assigned to the preferred cluster; the preferred
time is used as the instruction priority for list schedul-
ing.

Different heuristics work to improve the schedule in
different ways. The critical path strengthening heuris-
tic (PATH), for example, expresses a preference to
keep all the instructions in critical paths together in
the same cluster. The communication minimization
heuristic (COMM) tries to keep dependent neighbor-
ing instructions in the same cluster. The preplacement
heuristic (PLACE) prefers that preplaced instructions
and their neighbors are placed on the clusters selected
by the preplaced instructions. The load balance heuris-
tic (LOAD) changes reduces the preferences on highly
loaded clusters cluster and increases them on the less
loaded ones. Other heuristics will be introduced in Sec-
tion 4.

Figure 4 shows how convergent scheduling operates
on a small code sequence from fpppp. Initially, the
weights are evenly distributed, as shown in (b). We ap-
ply the noise introduction heuristic (NOISE) to break
symmetry, resulting in (c). This heuristic helps in-
crease parallelism by distributing instructions to differ-
ent clusters. Then, we run critical path strengthening
(PATH), which increases the weight of the instructions
in the critical path (i.e., instructions 23, 25, 26, etc.) in
the first cluster (d). Then we run the communication
minimization (COMM) and the load balance (LOAD)
heuristics, resulting in (e). These heuristics lead to sev-
eral changes: the first few instructions are pushed out
of the first cluster, and groups of instructions start to
assemble in specific clusters (e.g., instructions 19, 20,
21, and 22 in cluster 3).

Next, we run PLACE and PLACEPROP, which bias
instructions using information from preplaced nodes.
The result is shown in (f). The pass causes a lot of
disturbances: preplaced instructions strongly attract
neighbors of preplaced instructions to their clusters.

n the paper, the following terms will be used interchange-
ably: phases and passes, tile and cluster, and cycle and time
slot.
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Figure 4. Convergent scheduling operates on a code sequence from fpppp. Figure (a)
shows the data dependence graph representation of the scheduled code. Nodes rep-
resent instructions; edges represent dependences between instructions. Triangular
nodes are preplaced, with different shades corresponding to different clusters. Figures
(b)-(g) show how the convergent schedule is modified by a series of passes. This exam-
ple only illustrates space scheduling, not time scheduling. Each figure in Figures 4b-g
is a cluster preference map. A row represents an instruction. The row numbers corre-
spond to the instruction numbers in (a). A column represents a cluster. The color of
each entry represents the level of preference an instruction has for that cluster. The
lighter the color, the stronger the preference.

Observe how the group 19-22 is attracted to cluster 4.

Finally we run communication minimization (COMM)

another time. The final schedule is shown in (g).
Convergent scheduling has the following features:

the example, when we apply noise to (b), most
nodes are initially moved away from the first clus-
ter. Subsequently, however, nodes with strong ties
to cluster one, such as nodes 1-6, are eventually
moved back, while nodes without strong ties, such
1. Its scheduling decisions are made cooperatively as node 0, remain away.

rather than ezxclusively.
4. Most compilers allow only very limited exchange

of information among passes. In contrast, the
weight-based interface to convergent scheduling is
very expressive.

2. The interface allows a phase to express confidence
about its decisions. A phase needs not make a
poor and unrecoverable decision just because it
has to make a decision. On the other side, any

pass can strongly affect the final choice if needed. 5. The framework allows a heuristic to be applied

multiple times, either independently or as part of
an iterative process. This feature is useful to pro-
vide feedback between phases and to avoid phase

3. Convergent scheduling can naturally recover from
a temporary wrong decision by one phase. In



ordering problems.

6. The simple interface (preference maps) between
passes makes it easy for the compiler writer to
handle new constraints or design new heuristics.
Phases for different heuristics are written indepen-
dently, and the expressive, common interface re-
duces design complexity. This offers an easy way
to retarget a compiler and to address peculiarities
of the underlying architecture. If, for example,
an architecture is able to exploit auto-increment
on memory-access with a specific instruction, one
pass could try to keep together memory-accesses
and increments, so that the scheduler will find
them together and will be able to exploit the ad-
vanced instructions.

3 Convergent interface

This section describes the convergent scheduling in-
terface between passes. The passes themselves will be
presented in Section 4.

Convergent scheduling operates on individual
scheduling units, which may be basic blocks, traces [7],
superblocks [10], or hyperblocks [19], or treegions [9]. It
stores preferences in a three dimensional matrix W . ¢,
where ¢ spans over all instructions in the scheduling
unit, ¢ spans over the clusters in the architecture, and
t spans over time. We allocate as many time slots as
the critical-path length (CPL).

Initially, all the weights are distributed evenly. A
pass examines the dependence graph and the weight
matrix to determine the characteristics of the preferred
schedule so far. Then, it expresses its preferences by
manipulating the preference map. Passes are not re-
quired to perform changes that affect the preferred
schedule. If they are indifferent to one or more choices,
they can keep the weights the same.

Let ¢ spans over instructions, ¢ over clusters, ¢ over
time-slots. The following invariants are maintained:

Viyte:0< Wige <1
Viiy Wine=1
t,c

Given an instruction i, we define the following:>

preferred_time(i) = argmax {t : Z Wi,t,c}
c

preferred_cluster(i) = argmax {c : Z Wi,t,c}
t

2The function arg max returns the value of the variable that
maximizes the expression for a given set of values (while max
return the value of the expression). For instance max{0 < z <
2:10 — z} is 10, and argmax{0 <z <2:10 —x} is 0.

. c: § Wi tc;
_cl = t ot
runnerup_cluster(i) arg max { ¢ # preferred.cluster(i) }

Wi t,preferred_cluster(i
confidence(i) Et oP = ©

Et Wi,t,runnerup_cluster(i)

Preferred values are those that maximize the sum of
the preferences over time and clusters.

The confidence of an instruction measures how confi-
dent the convergent scheduler is about its current spa-
tial assignment. It is computed as the ratio of the
weights of the top two clusters.

The following basic operations are available on the
weights:

e Any weight W;; . can be increased or decreased
by a constant, or multiplied by a factor.

e The matrices of two or more instructions can be
combined linearly to produce a matrix of another
instruction. Given input instructions i1, s, ..., iy,
an output instruction j, and weights for the input
instructions wy, ..., w, where Eke[l,n] wy = 1, the

linear combination is as follows:

for each (c,t), Wj e Z wi * Wi e
ke[l,n]
Our current implementaion uses a simpler form of
this operation, with n = 2 and i, = j:
for each (c,t), Wi, t,c < w1iWij t,c + (1 —w1)Wis tc

We never perform this full operation because it is
expensive. Instead, we only do it on part of the
matrices, e.g., only along the space dimension, or
only within a small range along the time dimen-
sion.

e The system incrementally keeps track of the sums
of the weights over both space and time, so that
they can be determined in O(1) time. It also mem-
oizes the preferred_time and preferred_cluster of
each instruction.

e The preferences can be normalized to guarantee
our invariants; the normalization simply performs:

Wi,t,c

Et,c Wi,t,c

for each (i,c¢,t), Wi t,c

4 Collection of Heuristics

This section presents a collection of heuristics we
have implemented for convergent scheduling. Each
heuristic attempts to address a single constraint and
only communicates with other heuristics via the weight
matrix. There are no restrictions on the order or
the number of times each heuristic is applied. Cur-
rently, the following parameters are selected by trial-
and-error: the set of heuristics we use, the weights used



in the heuristics, and the order in which the heuris-
tics are run. We expect to implement more systematic
heuristics selection in the future.

Whenever necessary, we run normalization at the
end of every pass to ensure the invariants described in
Setion 3. For brevity, this step is not included in the
description below.

Initital time assignment (INITTIME) Instruc-
tion in the middle of the dependence graph cannot be
scheduled before their predecessors, nor after their suc-
cessors. So, if CPL is the lenght of the critical path,
[, is the length of the longest path from the top of
the graph (latency of predecessor chain), and I, is the
longest path to any leaf (latency of successor chain),
the instruction can be scheduled only in the time slots
between [, and CPL — [,. If an instruction is part of
the critical path, only one time-slot will be feasible.
This pass squashes to zero all the weights outside this
range.

for each (i,t <l Ut < CPL —ls,¢), Wit 0

A pass similar to this one can address the fact that
some instructions cannot be scheduled in all clusters
in some architectures, simply by squashing the weights
for the unfeasible clusters.

Noise introduction (NOISE) This pass introduces
a small amount of noise in the weight distribution. The
noise helps break symmetry and spreads instructions
around to facilitate scheduling for parallelism.

for each (i,t,¢), Wi e < Wi, + rand()/RAND_MAX

Preplacement (PLACE) This pass increases the
weight for preplaced instructions to be placed in their
home cluster. Since this condition is required for cor-
rectness, the weight increase is large. Given preplaced
instruction i, let ¢p(7) be its preplaced cluster. Then,

for each (i € PREPLACED,t),
Wi,t,cp(i) — 1OOVVi,t,cp(i)

Push to first cluster (FIRST) In our clustered
VLIW infrastructure, an invariant is that all the data
are available in the first cluster at the beginning of
every scheduling unit. For this architecture, we want
to give advantage to a schedule utilizing more the first
cluster, where data are already available, versus the
other clusters, were copies can be needed. We express
this preference as follows:

for each (i,t), Wi 1 < 1.2W; 41

Critical path strengthening (PATH) This pass
tries to keep all the instructions on a critical path (CP)

in the same cluster. If instructions in the paths have
bias for a particular cluster, the path is moved to that
cluster. Otherwise the least loaded cluster is selected.
If different portions of the paths have strong bias to-
ward different clusters (e.g., when there are two or
more preplaced instructions on the path), the critical
path is broken in two or more pieces and kept locally
close to the relevant home clusters. Let cc(i) be the
chosen cluster for the CP.

for each (7, € CP,t, C), Wi,t,cc(i) — 3Wi,t,cc(i)

Communication minimization (COMM) This
pass reduces communication load by increasing the
weight for an instruction to be in the same clusters
where most of neighbors (successors and predecessors
in the dependence graph) are. This is done by summing
the weights of all the neighbors in a specific cluster, and
using that to skew weights in the correct direction.

for each (i,t,¢), Wit e Wite E What,c

neneighbors of ¢

We have also implemented a variant of this that con-
siders grand-parents and grand-children, and we usually
run it together with COMM.

for each (i), Wi ¢, c; < 2Wi,t;

Preplacement propagation (PLACEPROP)
This pass propagates preplacement information to all
instructions. For each non-preplaced instruction ¢, we
divide its weight for each cluster ¢ by its distance to
the closest preplaced instruction in c. Let dist(i,c) be
this distance. Then,

for each (i ¢ PREPLACED,t,c),
Wit,e & Wite/dist(i,c)

Load balance (LOAD) This pass performs load
balancing across clusters. Each weight on a cluster is
divided by the total load on that cluster:

for each (i,t,¢), Wi t,c + Wi,t,c/load(c)

Level distribute (LEVEL) This pass distributes
instructions at the same level across clusters. Given
instruction 7, we define level (i) to be its distance from
the furthest root. Level distribution has two goals. The
primary goal is to distribute parallelism across clus-
ters. The second goal is to minimize potential com-
munication. To this end, the pass tries to distribute
instructions that are far apart, while keeping together
instructions that are near each other.

To perform the dual goals of instruction distribu-
tion without excessive communication, instructions on
a level are partitioned into bins. Initially, the bin B,



for each cluster ¢ contains instructions whose preferred
cluster is ¢, and whose confidence is greater than a
threshold (2.0). Then, we perform the following;:

LevelDistribute: int 1, int g
I} = Instruction i | level(i) =1
foreach Cluster ¢
I=1 - B,
I, = {i | i € I;; distance(i, find_closest_bin(i)) > g}
while I; # ¢
B = round_robin_next_bin()
iclosest = arg max{i € I, : distance(i, B)}
B = B U'iciosest
I =1 —iclosest
Update I,

The parameter g controls the minimum distance gran-
ularity at which we distribute instructions across bins.
The distance between an instruction ¢ and a bin B is
the minimum distance between i and any instruction
in B.

LEVEL can be applied multiple times to different
levels. Currently we apply it every four levels on Raw.
The four levels correspond approximately to the mini-
mum granularity of parallelism that Raw can profitably
exploit given its communication cost.

Path propagation (PATHPROP) This pass se-
lects high confidence instructions and propagates their
convergent matrices along a path. The confidence
threshold ¢ is an input parameter. Let i; be the se-
lected confident instruction. The following propagates
i, along a downward path:

find ¢ | ¢ € successor(ip,); confidence(z) < confidence(iy)
while (i # nil)
for each (c,t), Wi, < 0.5W; e+ 0.5W;, ¢.c
find in | i € successor(i); confidence(in) < confidence(iy)
i in

A similar function that visits predecessors propa-
gates i, along an upward path.

Emphasize critical path distance (EMPHCP)
This pass attempts to help the convergence of the time
information by emphasizing the level of each instruc-
tion. The level of an instruction is a good time ap-
proximation because it is when the instruction can be
scheduled if a machine has infinite resources.

for each (Za C)a Wi,level(i),c — 1'2Wi,level(i),c
5 Results

We have implemented convergent scheduling in two
systems: the Raw architecture [24] and the Chorus
clustered VLIW infrastructure developed at MIT [20].
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Figure 5. The Raw machine.
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Experimental environment Figure 5 shows a pic-
ture of the Raw machine. The Raw machine comprises
tiles organized in a two dimensional mesh. The actual
Raw prototype has 16 tiles in a 4x4 mesh. Each tile
has its own instruction memory, data memory, regis-
ters, processor pipeline, and ALUs. Its instruction set
is based on the Mips R4000. The tiles are connected via
point-to-point, mesh networks. In additional to a tra-
ditional, wormhole hole dynamic network, Raw has a
programmable, compiler-controlled static network that
can be used to route scalar values between the regis-
ter file/ALUs on different tiles (for details, please refer
to [14]). To reduce communication overhead, the static
network ports are register-mapped. Latency on the
static network is three cycles for two neighboring tiles;
each additional hop takes one extra cycle of latency.

Rawcc, the Raw compiler, takes a sequential C or
Fortran program and parallelizes it across Raw tiles.
It is built on top of the Machsuif intermediate rep-
resentation [18]. Rawcc divides each input program
into one or more scheduling traces. For each trace,
Rawcc constructs the data precedence graph and per-
forms space-time scheduling on each graph. Then, it
applies a traditional register allocator to the code on
each tile.

The Chorus clustered VLIW system is a flexi-
ble compiler/simulator environment that can simulate
many different configurations of clustered VLIW ma-
chines. We use it to simulate a clustered VLIW ma-
chine with four identical clusters. Each cluster has
four function units: one integer ALU, one integer
ALU/Memory, one floating point unit, and one trans-
fer unit. Instruction latencies are based on the Mips
R4000. The transfer unit moves values between regis-
ter files on different clusters. It takes one cycle to copy
a register value from one cluster to another. Memory
addresses are interleaved across clusters for maximum
parallelism. Memory operations can request remote
data, with a penalty of one cycle.

The Chorus compiler shares with Rawcc the same



INITTIME INITTIME
PLACEPROP NOISE
LOAD FIRST
PLACE PATH
PATH COMM
PATHPROP PLACE
LEVEL PLACEPROP
PATHPROP COMM
COMM EMPHCP
PATHPROP

EMPHCP

(a) (b)

Table 1. Sequence of heuristics used by the
convergent scheduler for (a) the Raw machine
and (b) clustered VLIW.

high level structure. Like Rawcc, it is implemented on
top of Machsuif. It first performs space-time schedul-
ing, followed by traditional single-cluster register allo-
cation [8].

Both Rawcc and the Chorus compiler employ con-
gruence transformation and analysis to increase and
analyze the predictability of memory references [13].
This analysis creates preplaced memory reference in-
structions that must be placed on specific tiles or clus-
ters. For dense matrix loops, the congruence pass usu-
ally unrolls the loops by the number of clusters or tiles.
This unrolling also increases the size of the scheduling
regions, so that no additional unrolling is necessary to
expose parallelism.

In both compilers, when a value is live across multi-
ple scheduling regions, its definitions and uses must be
mapped to a consistent cluster. On Rawcc, this cluster
is the cluster of the first definition/use encountered by
the compiler; subsequent definitions and uses become
preplaced instructions.> On Chorus, all values that are
live across multiple scheduling regions are mapped to
the first cluster.

Convergent schedulers Table 1 lists the heuristics
used by the convergent scheduler for Raw and Chorus.
The heuristics are run in the order given.

The convergent scheduler interfaces with the exist-
ing schedulers as follows. The output of the convergent
scheduler is split into two parts:

1. A map describing the preferred partition, i.e., an
assignment for every instruction to a specific clus-
ter.

2. The temporal assignment of each instruction.

3Rawcc does use SSA renaming to eliminate false depen-
dences, which in turn reduces these preplacement constraints.

HRawcc
12 - m Convergent

Figure 6. Performance comparisons between
Rawcc and Convergent scheduling on a 16-
tile Raw machine.

Both Chorus and Rawcc use the spatial assignments
given by the convergent scheduler. Chorus uses the
temporal assignments as priorities for the list sched-
uler. For Rawcc, however, the temporal assignments
are computed independently by its own instruction
scheduler.

Benchmarks Our sources of benchmarks include the
Raw benchmark suite (jacobi, life) [1], Nasa7 of Spec92
(cholesky, vpenta, and mxm), and Spec95 (tomcatv,
fpppp-kernel). Fpppp-kernel is the inner loop of fpppp
from that consumes 50% of the run-time. Sha is an
implementation of Secure Hash Algorithm. Fir is a FIR,
filter. Rbsorf is a Red Black SOR relaxation. Vvmul
is a simple matrix multiplication. Yuv does RGB to
YUYV color conversion. Some problem sizes have been
changed to cut down on simulation time, but they do
not effect the results qualitatively.

Performance comparisons We compared our re-
sults with the baseline Rawcc and Chorus compil-
ers. Table 2 compares the performance of convergent
scheduling to Rawcc for two to 16 tiles. Figure 6
plots the same data for 16 tiles. Results show that
convergent scheduling consistently outperforms base-
line Rawcc for all tile configurations for most of the
benchmarks, with an average improvement of 21% for
16 tiles.

Many of our benchmarks are dense matrix code with
preplaced memory instructions from congruence anal-
ysis. For these benchmarks, convergent scheduling al-
ways outperforms baseline Rawcc. The reason is that
convergent scheduling is able to actively take advantage



Base Convergent
Benchmark/Tiles 2 4 8 16 2 4 8 16
cholesky 1.14 | 2.21 | 3.29 | 4.33 || 1.44 | 2.75 | 4.94 7.06
tomcatv 1.18 | 1.83 | 2.88 | 3.94 || 1.37 | 2.12 | 3.33 5.15
vpenta 1.86 | 2.85 | 4.58 | 8.03 || 1.96 | 3.23 | 5.82 9.71
mxm 1.77 | 2.40 | 3.78 | 7.09 || 1.89 | 2.54 | 4.04 7.77
fpppp 1.54 | 3.09 | 5.13 | 6.76 || 1.42 | 2.04 | 3.87 5.39
sha 1.11 | 2.05 | 1.96 | 2.29 || 1.05 | 1.33 | 1.51 1.45
swim 1.40 | 2.04 | 3.62 | 6.23 || 1.63 | 2.69 | 4.24 8.30
jacobi 1.33 | 2.43 | 4.13 | 6.39 || 1.40 | 2.74 | 4.92 9.30
life 1.65 | 3.02 | 5.56 | 8.48 || 1.76 | 3.35 | 6.34 | 11.97

Table 2. Rawcc speedup. Speedup is relative to performance on one tile.

Percentage of instructions whose preferred tiles have changed

cholesky
tomcatv
vpenta

swim

[m]
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Figure 7. Convergence of spatial assignments on Raw.

of preplacement information to guide the placement of
other instructions. This information turns out to lead zpCcC

to very good natural assignments of instructions. BUAS B
W Convergent

For fpppp-kernel and sha, convergent scheduling
performs worse than baseline Rawcc because preplaced
instructions do not suggest many good assignments.
Attaining good speedup on these benchmarks require
finding and exploiting very fine-grained parallelism.
Our level distribution pass has been less efficient in this
regard than the clustering counterpart in Rawcc — we
expect that integrating a clustering pass to convergent
scheduling will address this problem.

Figure 7 shows the percentage of instructions whose

preferred tiles are changed by each convergent pass on wmul - fbsort v tomeatmxm i cholesky
Raw. The plots measure static instruction counts, and

they exclude passes that only modify temporal prefer- Figure 8. Performance comparisons between
ences. For benchmarks with useful preplacement in- PCC, UAS, and Convergent scheduling on a
formation, the convergent scheduler is able to converge four-clustered VLIW. Speedup is relative to a
to good solutions quickly, by propagating the preplace- single-cluster machine.

ment information and using the load balancing heuris-
tic. In contrast, preplacement provides little useful in-
formation for fpppp-kernel and sha. These benchmarks
thus require other critical paths, parallelism, and com-
munication heuristics to converge to good assignments.

Figure 8 compares the performance of convergent

scheduling to two existing assignment /scheduling tech-
niques for clustered VLIW: UAS [23] and PCC [5]. We
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Figure 9. Convergence of spatial assignments on Chorus.
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Figure 10. Comparison of compile-time vs in-
put size for algorithms on Chorus.

augment each existing algorithm with preplacement in-
formation. For UAS, we modify the CPSC heuristic
described in the original paper to give the highest pri-
ority to the home cluster of preplaced instructions. For
PCC, the algorithm for estimating schedule lengths and
communication costs properly accounts for preplace-
ment information, by modeling the extra costs incurred
by the clustered VLIW machine for a non-local mem-
ory access. Convergent scheduling outperforms UAS
and PCC by 14% and 28%, respectively, on a four-
clustered VLIW machine. Like in Raw, the conver-
gent scheduler is able to use preplacement information
to find good natural partitions for our dense matrix
benchmarks. Figure 9 shows the percentage of static
instructions whose preferred tiles are changed by each
convergent pass on Chorus. Passes that only modify
temporal preferences are excluded.
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Compile-time scalability We examine the scalabil-
ity of convergent scheduling. Scalability is important
because there is an increasing need for instruction as-
signment and scheduling algorithms to handle larger
and larger number of instructions. This need arises
for two reasons: first, due to improvements in compiler
representation techniques such as hyperblocks and tree-
gions; and second, because a large scope is necessary
to support the level of ILP provided by modern and
future microprocessors.

Figure 10 compares the compile-time of convergent
scheduling with that of UAS and PCC on Chorus. Both
convergent scheduling and PCC use an independent list
scheduler after instruction assignment — our measure-
ments include time spent in the scheduler. The figure
shows that convergent scheduling and UAS take about
the same amount of time. They both scale consider-
ably better than PCC. We note that PCC is highly
sensitive to the number of components it initially di-
vides the instructions into. Compile-time can be dra-
matically reduced if the number of components is kept
small. However, we find that for our benchmarks, re-
ducing the number of components also results in much
poorer assignment quality.

6 Related work

Spatial architectures require cluster assignment,
scheduling, and register allocation. We have provided
a general framework that can perform all three tasks
together (by adding preference maps for registers as
well), but the focus of this paper is the application of
convergent scheduling to cluster assignment.

Many compilers for spatial architectures address
the three problems separately. Much research has fo-
cused on novel ways to do cluster assignment, cou-
pled with traditional list scheduling and register al-
location methods. The pioneer work in cluster as-



signment is BUG [6]. BUG is uses a two-phase al-
gorithm. First, the algorithm traverses a dependence
graph bottom-up to propagate information about pre-
placed instructions. Then, it traverses the graph top-
down and greedily map each instruction to the clus-
ter that can execute it earliest. The Multiflow com-
piler uses a variant of BUG [17], without the support
for preplaced instructions. PCC is an iterative assign-
ment approach based on partial components [5]. It
builds partial components by visiting the data depen-
dence graph bottom up, critical-path first. The max-
imum size of a component is capped by a parameter,
d¢n. It uses simple heuristics to select a value for ¢
that balances the tradeoff between performance and
compile-time, although the exact method is not ex-
plained. The components are initially assigned to clus-
ters based on simple load balancing and communica-
tion criteria. The assignments are subsequently im-
proved through iterative descent, by checking whether
moving a sub-component to another cluster improves
the schedule. Rawcc leverages techniques developed
for multiprocessor task graph scheduling [14]. Assign-
ment is performed in three steps: clustering groups to-
gether instructions that have little parallelism; merging
reduces the number of clusters through merging; place-
ment maps clusters to tiles. During placement, Rawcc
also handles constraints from preplaced instructions.

In [3], the approach differs from the above ap-
proaches in the ordering of phases. It performs schedul-
ing before assignment. The assignment phase uses a
min-cut algorithm adapted from circuit partitioning
that tries to minimize communication. This algorithm,
however, does not directly attempt to optimize the ex-
ecution length of input DAGs.

To avoid phase ordering problems, recent works have
proposed combined solutions. Leupers describes an it-
erative combined approach to perform scheduling and
partitioning on a VLIW DSP [16]. The approach is
based on simulated annealing. UAS performs assign-
ment and scheduling together by integrating assign-
ment into a cycle-driven list scheduler [23]. CARS per-
forms all three tasks — assignment, scheduling, and
register allocation — in one step, by integrating both
assignment and register allocation into a mostly cycle-
driven list scheduler [11]. In all these approaches, how-
ever, every decision is irrevocable and final. In con-
trast, convergent scheduling provides a general frame-
work that allows decisions to be postponed or reversed,
and we have used it to address the phase ordering prob-
lem we found in cluster assignment when we have pre-
placed instructions.

Few assignment approaches are designed to take into
account preplaced instructions. Of the above, only
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BUG and Rawcc directly support them.

Phase ordering issues on clustered architectures is
a relatively new area; a more classical phase order-
ing problem occurs in scalar optimizations. Some ap-
proaches in those areas share similar goals and features
with convergent scheduling. Cooper uses a genetic-
algorithm solution to evolve the order of passes to op-
timize code size [4]. The approach finds good general
solutions, and it performs even better when the evo-
lution is applied independently on each benchmark.
Lerner proposes an interesting interface to different
passes based on graph replacement [15]. His approach
enables independently designed dataflow passes to be
composed and run together. The composed pass is able
to achieve the precision of iterating independent passes,
but without the compile-time cost of iteration.

7 Conclusion

This paper introduces convergent scheduling, a flex-
ible framework for performing instruction assignment
and scheduling. Its interface between passes are sim-
ple and expressive. The simplicity makes it easy for
the compiler developer to handle new constraints or
integrate new heuristics. It also allows passes to be ex-
ecuted multiple times or even iteratively, which helps
alleviate phase ordering problems. The expressiveness
allows passes to specify confidence about their deci-
sions, thus avoiding poor irreversible decisions.

This paper presents evidence that convergent
scheduling is a promising framework. We have imple-
mented it on two spatial architectures, Raw and clus-
tered VLIW, and demonstrated performance improve-
ment of 21% and 14%, respectively. One reason for
these performance gains comes from the ability of the
convergent scheduler to support, in an integrated man-
ner, both traditional constraints (parallelism, locality,
and communication) and a new constraint (preplaced
instructions).
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