Convergent Scheduling: A Flexible and Extensible
Scheduling Framework for Clustered VLIW
Architectures
by
Diego Puppin

B.S., Universita di Pisa, Italy (2000)
M.S., Scuola Normale Superiore di Pisa, Italy (2000)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
December 2002

(© Massachusetts Institute of Technology 2002. All rights reserved.

AUthor .o
Department of Electrical Engineering and Computer Science
December 15, 2002

Certified Dyo
Saman P. Amarasinghe

Associate Professor

Thesis Supervisor

Accepted by ...
Arthur C. Smith
Chairman, Department Committee on Graduate Students

Convergent Scheduling: A Flexible and Extensible
Scheduling Framework for Clustered VLIW Architectures
by

Diego Puppin

Submitted to the Department of Electrical Engineering and Computer Science
on December 15, 2002, in partial fulfillment of the
requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Convergent scheduling is a general instruction scheduling framework that simplifies
and facilitates the application of a multitude of arbitrary constraints and scheduling
heuristics required to schedule instructions for modern complex processors. A conver-
gent scheduler is composed of independent phases, each implementing a heuristic that
addresses a particular problem or constraint. The phases share a simple, common in-
terface that allows to inquire and modify spatial and temporal preference for each
instruction. With each heuristic independently applying its scheduling constraint in
succession, the final result is a well formed instruction schedule that is able to satisfy
most of the constraints.

We have implemented a set of different passes that addresses scheduling con-
straints such as partitioning, load balancing, communication bandwidth, and register
pressure. By applying and hand-tuning these heuristics we are able to obtain an
average increase in speedup on a 4-cluster clustered VLIW architecture of 28% when
compared to Desoli’s PCC algorithm [Des98|, 14% when compared to UAS [OBC98],
and a speedup of 21% over the existing space-time scheduler of the Raw proces-
sor [LBFT98].

Because phases can be applied multiple times and in any order, a convergent sched-
uler is presented with a vast number of legal phase orderings. We use machine-learning
techniques to automatically search for good phase orderings, for three different VLIW
architectures. The architecture-specific phase orderings yield speedups ranging from
12% to 95% over the baseline order. Furthermore, cross validation studies that we
perform in this work show that our automatically generated orderings perform well
beyond the benchmarks on which they were ‘trained’: benchmarks that were not in
the training set are within 6% of the performance they would obtain had they been
in the training set.

Thesis Supervisor: Saman P. Amarasinghe
Title: Associate Professor

Acknowledgments

This thesis expands and continues the work described in the paper Convergent Schedul-
ing, presented at MICRO-35, Istanbul, November 2002.

I would like to thank the people whose help was important in the completion
of this work. First, my advisor Saman Amarasinghe for his support and guidance
during these two years. Then, David Maze, Sam Larsen, Michael Gordon and Mark
Stephenson for the good group effort in developing the Chorus infrastructure. In
particular, I would like to thank Mark for developing the initial genetic programming
infrastructure, which was adapted for this work, and for his support to our paper on
genetic programming.

I want to acknowledge the contribution given by Shane Swenson, with the initial
work on soft scheduling, and Walter Lee, for his help with Raw compiler and for
finalizing the Istanbul paper.

I would like to sincerely thank all the friends that made these two years a wonderful
experience. This space is too small to remember all of them.

This work is dedicated to my family and to Silvia. Without their support and

love I could not have made it.

Contents

1 Introduction

2 Convergent scheduling

3 Implementation

3.1 Preferences
3.2 Configurable Driver
3.3 Collection of Heuristics00,
3.3.1 Time Heuristics oL
3.3.2 Placement and Critical Path
3.3.3 Communication and Load Balancing
3.3.4 Register allocation 0000
3.3.5 Miscellaneouso
3.4 Collection of Metrics o oL
341 Graphsizeo
3.42 Unplaced
343 CPL e
3.44 Imbalance o oL
345 NumberofCPs
3.5 Boolean tests

15

21

4 Adapting Convergent Scheduling by means of Genetic Programming 41

4.1 Harness s s,

43

4.2 Grammar e e 44

5 Compiler Infrastructure 47
5.1 Chorus Infrastructure o Lo 47
5.1.1 Partial Component Clustering (PCC) algorithm implementation 48

5.1.2 Unified Assign-and-Schedule 50

5.2 RAW architecture o oo ol
5.3 Preplacement Analysis 0oL 53

6 Results: Comparison with State-of-the-art Scheduling Techniques 55

6.1 Convergent schedulers 00000 55
6.2 Benchmarks 000 oo 56
6.3 Performance comparisonso Lo 56
6.4 Scheduling convergence oL 0oL o8
6.5 Compile-time scalability 60

7 Results: Adapting to Different Architectures 63
7.1 GP Parameters o oo 63
7.2 Tested Architectures Lo 64
7.2.1 Baseline (dcl) 64

7.2.2 Limited bus (4cl-comm)o 65

7.2.3 Limited bus (2cl-comm) L. 65

7.2.4 Limited Registers (4cl-regs) 65

73 Results. 65
7.3.1 Baseline (4dcl)o 66

7.3.2 Limited Bus (4cl-comm) oL 66

7.3.3 Limited bus (2cl-comm) 67

7.3.4 Limited Registers (4cl-regs) 68

7.4 Leave-one-out Cross Validation 68
7.5 Summary of Results 71

8 Related work 73

9 Future Work and Conclusion

77

10

List of Figures

1-1
1-2
1-3
1-4

2-1

4-1
4-2

0-2
9-3

6-1

6-2

6-3
6-4

7-1
7-2
7-3

Tradeoff between scheduling and register pressure
Tradeoff between parallelism and locality
Two examples of data dependence graphs

The convergent schedule infrastructure.
Example of convergence oL 0oL

Flow of genetic programming.

Sequence of passes coded as an s-expression

Chorus VLIW Scheduler
UAS algorithm

The Raw machine. L

Performance comparisons between Rawcc and Convergent scheduling
on a 16-tile Raw machine.o o 00000

Performance comparisons between PCC, UAS, and Convergent schedul-

Convergence of spatial assignments on Raw.
Convergence of spatial assignments on Chorus.

Comparison of compile-time vs input size for algorithms on Chorus.

Speedup on 4cl-comm. o
Fitness of the best individual, during evolution on 4cl-comm.

Speedup on 2cl-comm. L oL

42

o8

99
99
60
61

7-4 Speedup on 4cl-regs. Lo

9-1 A compiler with dynamic policy for choosing passes

12

List of Tables

3.1
3.2

4.1

6.1

6.2
6.3

7.1
7.2
7.3

Pseudo-code for the driver of convergent scheduling 28
The algorithm LevelDistribute. 35
Grammar for genome s-expressions. 44

Sequence of heuristics used by the convergent scheduler for the Raw

machine and clustered VLIW 0L 56
Characteristics of tested benchmarks 57
Speedupon Raw 57
Parameters of the evolutionary framework 64
Results of cross validation. 71
The sequence evolved in our cross-validation tests. 71

13

14

Chapter 1

Introduction

Instruction scheduling on microprocessors is becoming a more and more difficult prob-
lem. In almost all practical instances, it is NP complete, and it often faces multiple
contradictory constraints. For superscalars and VLIWSs, the two primary issues are
parallelism and register pressure. Code sequences that expose much instruction level
parallelism (ILP) also have longer live ranges and higher register pressure. To gen-
erate good schedules, the instruction scheduler must somehow exploit as much ILP
as possible without leading to a large number of register spills. Figure 1-1 shows an
example from [MPSR95] of such tradeoff.

On spatial architectures, instruction scheduling is even more complicated. Exam-
ples of spatial architectures include clustered VLIWs, Raw [WTS*97], Trips [NSBKO01],
and ILDPs [KS02]. Spatial architectures are architectures that distribute their com-
puting resources and the register file. Communication between distant resources can
incur one or more cycles of delays. On these architectures, the instruction sched-
uler has to partition instructions across the computing resources. Thus, instruction
scheduling becomes both a spatial problem and a temporal problem.

To make partitioning decisions, the scheduler has to understand the proper trade-
off between parallelism and locality. Figure 1-2 shows an example of this tradeoff.
Spatial scheduling by itself is already a more difficult problem than temporal schedul-
ing, because a small spatial mistake is generally more costly than a small temporal

mistake. If a critical instruction is scheduled one cycle later desired, only one cycle is

15

©) 1ADDR
2LOAD

5LOAD

@ 1ADDR
(2 [2Lo0ap \

@
®
®
® [sstoRe.
®
@
®

©O) ©) 4ADD
5LOAD ® (4) _3sToRE
® 5LOAD ® 5LOAD
® 4ADD 4ADD ©) ;! ®
® 6LOAD ® 6LOAD ® 6LOAD ©) 6LOAD
(a) e (b) = (c) e (d) o

Figure 1-1: An example of tradeoff between aggressive scheduling and register pres-
sure. Rectangles are instructions; edges between rectangles represent data depen-
dences, with circles on them representing delays due to instruction latency. The
circles on the left represent the time axis. Consider a single-issue machine with two
registers and two-cycle loads. Figure (a) shows an aggressive schedule that attempts
to overlap the load latencies. After cycle three, there are three live ranges, so one
value must be spilled. The spilling leads to the code sequence in (b), which takes
nine cycles. If instead the scheduler tries to minimize register pressure, we end up
with schedule (c), which still takes eight cycles. The optimal schedule, in (d), takes
only seven cycles, and it exhibits a careful tradeoff between aggressive scheduling and
register pressure minimization.

1MUL 3MUL 1MUL

3MUL

5MUL 4ADD 2ADD

2ADD

24ADD
GADD
&Z

7ADD (RO

00
:
F_,oﬁ
—O———0—C—0-——0

—
Y
~—

ADD (b) ADD (C)

Figure 1-2: An example of tradeoff between parallelism and locality on spatial ar-
chitectures. Each node color represents a different cluster. Consider an architecture
with three clusters, each with one functional unit and three registers, where commu-
nication takes one cycle of latency due to the receive instruction. In (a), conservative
partitioning that maximizes locality and minimizes communication leads to an eight-
cycle schedule. In (b), aggressive partitioning has high communication requirements
and leads to an eight-cycle schedule. The optimal schedule, in (c), takes only seven
cycles: it is a careful tradeoff between locality and parallelism.

16

() I (b)

Figure 1-3: Two examples of data dependence graphs. (a) is a typical example from
a non-numeric program, (b) is common in unrolled numerical loops

lost. But if a critical instruction is scheduled one unit of distance farther away than
desired, cycles can be lost from unnecessary communication delays, additional com-
munication resource contention, and increase in register pressure. In addition, some
instructions on spatial architectures may have specific spatial requirements. For ex-
ample, these requirements may arise from the need to access specific spatial resources,
such as a specific memory bank [BLAA99]. A good scheduler must be sensitive to

these constraints in order to generate a good schedule.

A scheduler also faces difficulties because different heuristics work well for different
types of graphs. Figure 1-3 depicts representative data dependence graphs from two
ends of a spectrum. In the graphs, nodes represent instructions and edges represent
data dependences between instructions. Graph (a) is typical of graphs seen in non-
numeric programs, while graph (b) is representative of graphs coming from applying

loop unrolling to numeric programs. Consider the problem of scheduling these graphs

17

onto a spatial architecture. Long, narrow graphs are dominated by a few critical
paths. For these graphs, critical-path based heuristics are likely to work well. Fat,
parallel graphs have coarse grained parallelism available and many critical paths. For
these graphs it is more important to minimize communication and exploit the coarse-
grain parallelism. To perform well for arbitrary graphs, a scheduler may require

multiple heuristics in its arsenal.

Traditional scheduling frameworks handle conflicting constraints and heuristics
in an ad hoc manner. One approach is to direct all efforts toward the most serious
problem. For example, modern RISC superscalars can issue up to four instructions
and have tens of registers. Furthermore, most integer programs tend to have little
ILP. Therefore, many RISC schedulers focus on finding ILP and ignore register pres-
sure altogether. Another approach is to address the constraints one at a time in a
sequence of phases. This approach, however, introduces phase ordering problems,
as decisions made by the early phases are based on partial information and can ad-
versely affect the quality of decisions made by subsequent phases. A third approach
is to attempt to address all the problems together. For example, there have been
reasonable attempts to perform instruction scheduling and register allocation at the
same time [MPSR95]. However, extending such frameworks to support additional
spatial constraints is difficult — no such extension exists today.

Also, commercial processors can share the same Instruction-Set Architecture, but
with very different internal organizations. The cost of targeting with effectiveness the
new architecture grows with the faster turn-over of processor generations. A system
to address this, in an automatic manner, is strongly needed.

This thesis presents convergent scheduling, a general scheduling framework that
makes it easy to specify arbitrary constraints and scheduling heuristics. Figure 1-4
illustrates this framework. A convergent scheduler is composed of independent phases.
Each phase implements a heuristic that addresses a particular problem such as ILP
or register pressure. Multiple heuristics may address the same problem.

All phases in the convergent scheduler share a common interface. The input and

output to each phase is a collection of spatial and temporal preferences of instruc-

18

COLLECTION OF HEURISTICS

‘ Preplaced Instrs ‘ ‘ Critical Path ‘

INPUT ‘ Neighbors ‘ ‘ Load balance ‘
| | | ouTPUT

Dependence

Graph \

Preplaced Convergent Time-space
Instruction [
v Scheduler Schedule

Machine Model /

and Other Constraintg \/

Figure 1-4: The convergent schedule infrastructure.

tions. A phase operates by modifying these data. As the scheduler applies the phases
in succession, the preference distribution will converge to a final schedule that incor-
porates the preferences of all the constraints and heuristics. Logically, preferences
are specified as a three-input function that maps an instruction, space, and time

three-tuple to a weight.

In our first work with convergent scheduling, we tediously hand-tuned the phase
order. While the sequence works well for the processors we initially explored, it does
not generally apply to new architectural configurations. As we add new phases to our
scheduler to address next generation architectural features, hand-tuning the sequence

of passes becomes even harder.

To complicate matters, architectures evolve quickly. Even though a processor
family may share the same programming interface (ISA), the internal organization
of the processors can differ dramatically (e.g., number of registers, functional units,
etc.). It is the compiler’s task to address the architectural features efficiently, by
determining a schedule that matches the constraints. Time-to-market pressures make

it extremely difficult to effectively target new architectures.

This thesis uses machine learning techniques to automatically find good phase
orderings for a convergent scheduler. We show how our system can automatically
discover architecture-specific phase orders. Because different parallel architectures
have unique scheduling needs, the speedups our system is able to obtain by creating

architecture-specific phase orderings is impressive. Equally impressive is the ease with

19

which it finds effective sequences.

Using a modestly sized cluster of workstations, our system is able to quickly find
good convergent scheduling sequences. In less than two days, it discovers sequences
that produce speedup ranging from 12% to 95% over previous work. Furthermore,
by varying architectural parameters and rerunning the experiment, we show that
different architectures indeed have special compilation requirements. The learning
algorithm catered a sequence of passes to each of the three architectures on which we
tested it.

The main contributions of this thesis are:

e a novel approach to address the combined problems of partitioning, scheduling,

and register pressure,

e the formulation of a set of powerful heuristics to address very general constraints

and some architecture-specific issues,

e a demonstration of the effectiveness of convergent scheduling, which is able to

surpass more complex combined solutions,

e the use of machine learning to adapt convergent scheduling to a new architec-

ture.

The rest of this thesis is organized as follows. Chapter 2 introduces convergent
scheduling and uses an example to illustrates how it works. Chapter 3 gives more
detail about infrastructure and implementation. Chapter 4 discusses how the system
can be adapted to different architectures by means of genetic programming. Chapter 5
illustrate our compiler infrastructure and the schedulers we used for our experimental
comparisons. Chapter 6 presents results for a clustered VLIW architecture and for
the Raw processor. Chapter 7 describes the framework and the results we reached
when we adapted our system to different VLIW architectures. Chapter 8 provides
related work. Chapter 9 highlights future work and concludes.

20

Chapter 2

Convergent scheduling

In this chapter, we introduce convergent scheduling by giving an example of its work
on a basic block from fpppp. With this, we show the peculiar features of the system
and how it avoids some of the problems typical of more traditional compilers.

In the convergent scheduling framework, passes communicate their choices as
changes in the relative preferences of different schedules. A pass works by manip-
ulating the weight for a specific instruction to be scheduled at a specific cycle, in a
specific cluster.! At the end of the algorithm, every instruction will be scheduled in
the space-time slot with the heighest weight, which we call the preferred slot.

Different heuristics work to improve the schedule in different ways. The critical
path (CP) strengthening heuristic, for example, expresses a preference to keep all
the instructions in the CP together in the same cluster, by determining the best
cluster for this, and by increasing the preference (weights) for those instructions to be
scheduled there. The communication minimization heuristic tries to keep dependent
instructions (neighbors) in the same cluster, by computing for every instruction where
most of its neighbors are, and then by increasing the preference for that cluster. The
preplacement heuristic considers the congruence information, as defined in [LA02], to
exploit the memory parallelism while preserving locality. If the memory is banked and

every bank is local to a cluster, this heuristic increases the preference to keep memory

'In the rest of this thesis, we will use interchageably the terms phases and passes, tile and cluster,
and cycle and time slot.

21

instructions in the cluster where most of the dynamic instances of the instruction are
local. The load balance heuristic reduces the preferences on the most loaded cluster,
and increases them on the least loaded one. Other passes will be introduced in
section 3.3.

Figure 2-1 shows how convergent scheduling operates on a small code sequence
from fpppp. In this simple example, we will focus only on the heuristics that address
space allocation. Figure 2-1(a) shows the data dependence graph of the code se-
quence. Each node is an instruction, and each edge represents a dependence between
instructions. Triangular nodes represent preplaced instructions. For simplicity, the
example only illustrates space scheduling, not the combined space and time schedul-
ing. Each of the figures 2-1(b-g) is a cluster preference map. A row represents an
instruction. The row numbers corresponds to the instruction numbers in (a). A col-
umn represents a cluster. The color of each entry represents the level of preference
an instruction has for that cluster. The lighter the color, the stronger the preference.

Initially, the weights are evenly distributed, as shown in (b). We apply the noise
introduction heuristic to break symmetry, resulting in (c¢). This heuristic helps in-
crease parallelism by distributing instructions to different clusters. Then, we run
critical path (CP) strengthening, which increases the weight of the instructions in
the CP (i.e. instructions 23, 25, 26, etc.) in the first cluster (d). Then we run the
communication minimization and the load balance heuristics, resulting in (e). These
heuristics lead to several changes: the first few instructions are pushed out of the
first cluster, and groups of instructions start to assemble in specific clusters (e.g.
instructions 19, 20, 21, and 22 in the third cluster).

Next, we run a preplace biasing pass that utilizes information about preplaced
nodes. The result is shown in (f). This pass causes a lot of disturbances: preplaced
instructions strongly attract their neighbors to the same cluster. Observe how the
group 19-22 is attracted to the last cluster. Finally we run communication minimiza-

tion another time. The final schedule is shown in (g).

The schedule is very effective because it reaches a good trade-off over conflict-

ing opportunities: parallelism is exploited, but keeping in consideration the memory

22

(d)h (o)t (£) (g):

Figure 2-1: Convergence scheduling operates on a code sequence in from fpppp. Rows
represent the different instructions ¢ in the block, columns are the (four) clusters ¢ in
the architecture. Every slot (7, ¢) represents the weight of i to be scheduled on cluster
c. The brighter the color, the higher the weight. The dependence graph relative to the
block is shown. Triangular nodes are preplaced, with different shades corresponding
to different clusters. Rows are numbered according to the node numbers in the graph.

layout and instruction preplacement; critical path is kept together so to minimize
delays due to communication; independent subcomponents of the graph are moved
to unused tiles.

Convergent scheduling has the following features:

1. Its scheduling decisions are made cooperatively rather than exclusively.

2. The interface allows a phase to express confidence about its decisions. A phase
needs not make a poor and unrecoverable decision just because it has to make
a decision. On the other side, any pass can strongly affect the final choice if

needed.

23

. Convergent scheduling can naturally recover from a temporary wrong decision
by one phase. In the example, when we apply a randomizer to (b), many nodes
are initially moved away from the first cluster. Subsequently, however, nodes
with strong ties to cluster one, such as nodes 1-6, are eventually move back,

while nodes without strong ties, such as node 0, remain away.

. Most compilers allow only very limited exchange of information among passes.
In contrast, the weight-based interface to convergent scheduling is very expres-

sive.

. The framework allows a heuristic to be applied multiple times, either inde-
pendently or as part of an iterative process. This feature is useful to provide

feedback between phases and to avoid phase ordering problems.

. The simple interface (preference maps) between passes makes it easy for the
compiler writer to handle new constraints or design new heuristics. Phases for
different heuristics are written independently, and the expressive, common in-
terface reduces design complexity. This offers an easy way to retarget a compiler
and to address peculiarities of the underlying architecture. If, for example, an
architecture is able to exploit auto-increment on memory-access with a specific
instruction, one pass could try to keep together memory-accesses and incre-
ments, so that the scheduler will find them together and will be able to exploit

the advanced instruction.

. The very clean design allows to easily re-order, add or remove passes from the
compiler. This gave us the opportunity to design a system that evolves the

sequence of passes in order to adapt to the underlying architecture.

24

Chapter 3

Implementation

This chapter describes in detail our implementation of convergent scheduling: the
way we implemented preferences; the driver infrastructure; our heuristics; the set
of metrics we used in our adaption experiments, and how we combined them into

boolean tests.

3.1 Preferences

Convergent scheduling operates on individual scheduling units, which may be basic
blocks, traces, superblocks, or hyperblocks. It stores preferences in a three dimen-
sional matrix W ; ., where 7 spans over all instructions in the scheduling unit, ¢ spans
over the clusters in the architecture, and ¢ spans over time. We allocate as many
cycles as the critical-path length (CPL), with the goal of finding an optimal schedule
that fits the CPL. Even when this is not possible, our framework allows us to return
rich information that will allow to build an optimal schedule in this case too. This is
due to the fact that we compute a preference map that is much richer than a simple
time schedule for the instructions. For example, our system can in fact verify the
presence of phases in the schedule, which can be highlighted and brought to the at-
tention of the list scheduler: the system can identify feasible and unfeasible time-slots
for each instruction in the final schedule, more than just giving a time schedule.

Initially, all the weights are distributed evenly. Each pass examines the depen-

25

dence graph and the weight matrix to determine the characteristics of the preferred
schedule so far. Then, it expresses its preferences by manipulating the preference
map. Passes are not required to perform changes that affect the preferred schedule.
If they are indifferent to one or more choices, they can avoid any changes, or change
weights only slightly. It can be the case that following passes will pick up the hint to
change the preferred schedule.

If 7 spans over instructions, ¢t over time-slots, ¢ over clusters, we have:
Vi,e,t: 0 < Wi <1

Vit Wige=1
c,t

We define:!
preferred time(i) def arg max {t : Z I/Vz',t,c}

preferred cluster(i) & argmax {c : Z VVi,t,c}
t

c: Zt Wit

.\ def
runnerup_ cluster(i) = arg max
¢ # preferred_ cluster(i)

. Zt Wz',t,preferredicluster(i)
Zt I/Vz',t,runnerupicluster(i)

confidence(i)

Preferred values are those that maximize the sum of the preferences over time and
clusters. The preferred schedule is the one obtained by assigning every instruction to
its preferred space-time slot. The runner-up cluster is the second best. The confidence
is given by the ratio of the preference for the preferred and the runner-up cluster.

Some basic operations are available on the weights:

! The function arg max returns the value of the variable that maximizes the expression for a given
set of values (while max return the value of the expression). For instance max{0 <z < 2:10 — z}
is 10, and argmax{0 <z <2:10 -2} is 0.

26

e the weight of a specific instruction to be scheduled in a given space-time slot
can be increased or decreased by a constant, and multiplied or reduced by a

factor;

e the system keeps track of the sums over rows and columns, and of their maxi-
mum, so it can quickly, in time O(1), determine the sum of weights over time

and clusters, and then the preferred space-time slot;

e the preferences can be normalized to guarantee our invariants; the normalization

simply performs:

i,t,c

for each 4,t,¢, W; 1. < W
et 2,t,c

3.2 Configurable Driver

Convergent, scheduling works on the SUIF representation of scheduling units (blocks,
in the following).? The chosen sequence of passes is described by a genome, which

allows conditional execution of certain passes.?

The convergent scheduler creates a preference matrix for the block, runs the chosen
passes, updates the preferences according to each pass, determines a preferred time-
space schedule (see table 3.1). This information is then passed to a list scheduler,
and then to the register allocator. As explained, convergent scheduling determines the
optimal schedule considering the needs of the list scheduler and the register allocator,

so the performance of these two parts is predictable.

In chapter 5, we will give more details about how we integrated convergent schedul-

ing with our compiler infrastructure.

2Basic blocks for the Chorus clustered VLIW system, and single-entry single-exit regions, flat-
tened with predication, for RAW.

3For the moment, let just think at the genome as a simple sequence of passes. For more detail,
see section 3.4.

27

function convergent_ scheduling:

input: CFG describing the scheduling unit,
genome describing the sequence of passes

output: instruction partition partition(),
instruction priorities priority()

build the empty preference matrix

for every pass p in the genome:
apply the pass on the preference matrix
update and normalize the matrix

for every instruction i:
partition(i) = preferred cluster(7)
priority(i) = preferred_ time(7)

Table 3.1: Pseudo-code for the driver of convergent scheduling

3.3 Collection of Heuristics

The previous sections introduced the driver and the common data structure used by
the heuristics of convergent scheduling. This section introduces the rich collection of
heuristics we have implemented so far. FEach heuristic attempts to address a single
constraint and only communicates with other heuristics via the weight matrix. There

are no restrictions on the order or the number of times each heuristic is applied.

3.3.1 Time Heuristics
Initital time assignment (INITTIME)

Instruction in the middle of the dependence graph cannot be scheduled before their
predecessors, nor after their successors. So, if C'PL is the length of the critical
path, [, is the length of the longest path from the top of the graph (latency of
predecessor chain), and I, is the longest path to any leaf (latency of successor chain),
the instruction can be scheduled only in the time slots between [, and CPL — [,. If

an instruction is part of the critical path, only one time-slot will be feasible. This

28

pass squashes to zero all the weights outside this range.

for each 4, (t < 1, Ut > CPL —1l,),c,W;; .+ 0

When we normalize, the weight for the suitable time-slots will increase suitably.
With some effort, this pass can anyway be expressed in a close form that keeps
the invariants. This is true also for the other passes listed here. We will give here
implementations exploiting normalization instead of close expressions when they are

simpler.

def

Si = Zc,lpgtgch—ls Wit

. Wied/Si ifl, <t <CPL—I
for each 4,¢,t, Wi +

0 otherwise

A pass similar to this one can address the fact that some instructions cannot be
scheduled in certain clusters in specific architectures, simply by squashing the weights

for the unfeasible clusters.

Dependence enforcement (DEP)

Sometimes, a pass can change weights so that the preferred time of an instruction ;
is earlier than that of another instruction j that creates a result need by i (j — 7). In
this case, to help the convergence, we reduce the weights for 7 to be scheduled before

the preferred time t; of j (plus its latency).

for each i, for each j € predecessors(),
ift; <t
for each ¢,0 <t < t; + latency(j),
Wite < 0.3W, 1

29

Functional units (FUNC)

This pass considers the utilization of the functional units for every time slot. If a
time-space slot is overburdened by a large number of instructions, their weights for
that slot are reduced. At the moment, this heuristic assumes that there is just one
general purpose functional unit available per slot, but this can be easily extended to

consider the number and type of functional units in the machine.

load(c, t) def YoiWite
0.9W; . if load(c,t) > 1

for each 4,t, W, ;. +
Wite otherwise

Emphasize critical path distance (EMPHCP)

This pass attempts to help the convergence of information about time by emphasizing
the level of each instruction. Given instruction i, we define level(7) to be its distance
from the furthest root. The level of an instruction is a good time approximation

because it is when the instruction can be scheduled if a machine has infinite resources.

for each (Za C)a VVi,level(i),c <~ 1-2I/Vi,level(i),c

3.3.2 Placement and Critical Path
Push to first cluster (FIRST)

In the clustered VLIW infrastructure we used, an invariant is that all the data are
available in the first cluster at the beginning of every block. For this architecture,
we want to give advantage to a schedule that utilizes the first cluster, where data are
already available, more than the other clusters, where copies can be needed. In our

framework this is easily expressed.

for each 4,¢, W11 < 1.2W; 41

30

Preplacement (PLACE)

This pass increases the weight for preplaced instructions in their home cluster.

In our experiments with clustered architectures, we verified the importance of loop
unrolling and of exploiting correctly the local memory. An access to a local memory
location is faster and more efficient than an access to remote memory (in another
cluster). That is why we want to place a static memory operation in the cluster to
which most of its dynamic instances refer. This is called the memory operation’s
home cluster. In both Raw and the Chorus clustered VLIW architecture, the home

cluster is determined using congruence analysis [LA02].

) . Wi if ¢ is the home cluster
for each 7,1, c,if ¢ preplaced W, . +
0 otherwise

Preplacement propagation (PLACEPROP)

This pass propagates preplacement information to all instructions. For each non-
preplaced instruction ¢, we divide its weight on each cluster c¢ by its distance to the

closest preplaced instruction in c. Let dist(i,c) be this distance. Then,

for each (i ¢ PREPLACED,t,c),
VVi,t,c — VVi’t,c/dl.St(Z., C)

Critical path strengthening (PATH)

This pass tries to keep all the instructions on a critical path (CP) in the same cluster.
If instructions in the paths have bias (preplacement) for a particular cluster, the path
is moved to that cluster. Otherwise the least loaded cluster is selected. If different
portions of the paths have strong bias toward different clusters (e.g. when there are
two or more preplaced instructions on the path), the critical path is broken in two
or more pieces and kept locally close to the relevant home clusters. Let cc(i) be the

chosen cluster for the CP.

31

for each (Z € CP,t, C), VVi,t,cc(i) +— 3VVi,t,cc(z’)

Path propagation (PATHPROP)

This pass selects high confidence instructions and propagates their convergent matri-
ces along a path. The confidence threshold ¢ is an input parameter. Let i; be the

selected confident instruction. The following propagates 7, along a downward path:

given i,
for each i € successor(iy) : confidence(i) < confidence(iy,),

for each (c,t), Wiyt < 0.5W; 4o+ 0.5W;, 4.

A similar function that visits predecessors propagates i, along an upward path.

Create clusters (CLUSTER)

PLACE was found to be a very strong and effective heuristics. Nonetheless, if the
program to be compiled does not feature natural preplacement, we try to build clusters
of nodes which should stay together, and we distribute them across tiles trying to
improve parallelism. This heuristic is rather complex, we will try to give here a

high-level overview.

1. identify the candidate clusters, using Desoli’s partial components algorithm
(see [Des98]), with threshold equal to the size of the graph divided by the

number of tiles,
2. for every instruction cluster:

(a) if some instructions are preplaced, skip to the next;

(b) otherwise, assign it to the next cluster (round-robin), by marking its center

as placed in that cluster;

32

3. run a modified PLACE which keeps into account marked instructions as if they

were preplaced.

Heuristically, we consider the center of the cluster as the instruction that was
added to the cluster as the N/2-th, if the size of the cluster is N. In the future, we
are planning to use the DSC algorithm to build cluster [GY94].

3.3.3 Communication and Load Balancing
Communication minimization (COMM)

This pass reduces communication load by increasing the weight for an instruction to
be in the same clusters where most of neighbors (successors and predecessors in the
dependence graph) are. This is done by summing the weights of all the neighbors in

a specific cluster, and using the sum to skew weights in the correct direction.

for each i,t,¢, W o < Wiy E Wt
t,neneighbors of ¢

We wrote a version of this pass that considers grand-parents and grand-children.

We usually run it together with COMM.

Parallelism for successors (SUCC)

This is an example of an architecture-specific pass. In some configurations of our clus-
tered VLIW infrastructure, data passed from one cluster to another can be snooped
by other clusters. This way, we can easily implement a broadcast operation. We ex-
ploit this fact by scattering the successors of any instructions to the various clusters
if some successor is already placed in a different cluster (a communication is already
needed). This is going to improve parallelism and reduce register pressure without

requiring more communication.

33

for each i,if f{successors(i)} > 2
and Jn, : (preferred_ cluster(n;) # preferred_ cluster(i))

for each i € {successors(i)},1,

r <— randomly chosen cluster

I/Vi,t,'r' — 2 Wi,t,r

Load balance(LOAD)

This pass looks for the most loaded cluster, and reduces the weight of instructions to

be scheduled there (so increasing the weight for the other slots).

max cluster & argmax{c: Y . > Wi}
0.9W;+. if ¢ = max cluster

for each 7,t, Wi ;. <
1.1W;+. otherwise

Level distribute (LEVEL)

This pass distributes instructions at the same level across clusters. Level distribution
has two goals. The primary goal is to distribute parallelism across clusters. The
second goal is to minimize potential communication. To this end, the pass tries to
distribute instructions that are far apart, while keeping together instructions that are
near each other.

To perform the dual goals of instruction distribution without excessive communi-
cation, instructions on a level are partitioned into bins. Initially, the bin B, for each
cluster ¢ contains instructions whose preferred cluster is ¢, and whose confidence is
greater than a threshold, here equal to 2. The algorithm is described in table 3.2.

The parameter g controls the minimum distance granularity at which we distribute
instructions across bins. The distance between an instruction ¢ and a bin B is the
minimum distance between ¢ and any instruction in B.

LEVEL can be applied multiple times to different levels. Currently we apply it

every four levels on Raw. The four levels correspond approximately to the minimum

34

LevelDistribute: input int 1, int g
I} = Instruction i : level(:) = I
for each ¢,
I,=1—-B,
I, = {i € I; : distance(i, find_closest bin(i)) > g}
while I; # ¢
B =round robin next bin()
iclosest = argmax{i € I, : distance(i, B)}
B = B Ui¢psest
Iy = I} —iciosest
Update I,
for each ¢,
for each i € B,
for each ¢, W; 4. < 10W; .

Table 3.2: The algorithm LevelDistribute.

granularity of parallelism that Raw can profitably exploit given its communication

cost.

3.3.4 Register allocation
Break edges (EDGES)

This pass tries to compute the number of live ranges at a specific time ¢ and cluster c.
We approximate this number with the number of edges the head of which is scheduled
before ¢ and the tail after ¢.This clearly does not take into account the fact that two
or more edges could be referring to the same variable, but it is a good approximation

before register allocation.

In the convergent scheduling framework, we have to consider the weight associated
to a specific time-space schedule. For every edge, e; . is defined as the product of the
sum of the weights for the head to be scheduled before ¢ and for the tail to be scheduled
after ¢. If the total weighted number of edges is large than N the number of registers
in the architecture, we reduce the weights on ¢, with the goal of breaking the edges,

i.e. scheduling the head after ¢ or the tail before .

35

. def
head (i, T,c) = ZLKT’C Wit

tail(i, T, ¢) € Y, o Wine
for each ¢, t,
if (Zedges(a,b) head(a, t, c) * tail(b, t, c)) >N

for each i, W; ., < 0.8W, .,
Reduce parallelism (SEQUENTIAL)

This pass tries to keep together (time- and space-wise) instructions that follow each
other in the original set of instructions and that are dependent from each other. We
do so by increasing the weight of the instruction following i to be in the same preferred

cluster ¢;, and in the next time slots of the preferred time ¢;, that is t; + 1.

This is going to minimize the number of temporary values with long life span.
This clearly has an effect of performance, because it reduces parallelism, and so it

requires careful balancing with other heuristics.

next () ' first dependent instruction following 7 in the block

for each i: Wnezt(i),ti,ci — 1-2Wnemt(i),ti+1,cl
3.3.5 Miscellaneous
Noise introduction (NOISE)

This pass introduces some noise in the weight distribution, so to break symmetry for
subsequent choices. This is important, for instance, in order to have a good allocation
of the critical path. After the PATH pass has identified the critical path, the presence
of noise will help to perform an unbiased choice of the target cluster. This can defend

the system from worst-case scenarios.

for each i,c,t, Wit < Wi+ rand()

36

Assignment strengthening (BEST)

This pass simply boosts the preference for the preferred slot for every instruction.
This is useful as a last pass, but also as a middle pass, in order to strengthen the

preferences till the point. If ¢; and ¢; are again the preferred time and cluster for i:

for each @, Wiy, e, < 2Witi e

3.4 Collection of Metrics

Along with the passes, we designed a series of metrics, used to measure and determine
the current status of the schedule, and the shape of the block being analyzed. Our
system is going to exploit this information in order to choose the best passes to run,
and the strength used by them: the driver for convergent scheduling can execute one

or more passes conditionally, according to the results returned by the metrics.

3.4.1 Graph size

This returns the number of instructions in the block, and can be used to build more

complex expressions.

3.4.2 Unplaced

Unplaced returns the number of instructions that are further than a distance of 4
from a preplaced instructions, or that are close (within distance 4) to two (or more)
instructions preplaced to different clusters. If unplaced is high, it means that com-
munication will be needed to move data across clusters, because instruction will not
naturally partition into clusters. In this case, COMM will be needed to minimize the

delays due to communication

3.4.3 CPL
This returns the critical path length of the block.

37

3.4.4 Imbalance

Imbalance is a measure of the load-balance in the current schedule: it returns the
maximum difference of load between any two clusters. If a block is particularly
imbalanced, the LOAD pass can effectively improve the overall scheduling. Also, a
block can be imbalanced because of the presence of the very long critical path that
dominates the schedule. In this case, discriminating on the number or the size of

critical paths can help take further decisions on the schedule.

load(c) = ¥, Wi
imbalance % max{3, j : load(i) — load(j)|}

3.4.5 Number of CPs

This function returns the number of independent paths the length of which equals the
critical path (CP) length. This is used to determine the parallelism present within
the analyzed scheduling unit. The presence of multiple critical path can be caused
by unrolling or by intrinsic parallelism in the program. Independent critical path can

effectively be assigned to different cluster with no performance penalty.

determine one critical path C'P
number of CPs =0
CPL <+ length(CP)
mark every ¢ € CP as used
for each r € roots,
find the longest length path P from r
if all 7 € P are not marked as used
number of CP +=1
mark every i € P as used

return number of CPS

38

3.5 Boolean tests

These metrics have been combined into simple boolean tests that can be used by the
driver to perform choices on the schedule. We are planning to extend our genome
syntax to include arithmetic expressions and comparison. In such an infrastructure,

this simple boolean tests will not be necessary anymore.

Is imbalanced is true if imbalance is larger than 1/numcluster.
Is fat is true if number of CPs is larger than the number of tiles.

Is within CPL is true if the number of instructions in the block is smaller than the

number of tiles times the CPL.

Is placement bad is true if the number of unplaced instructions is more than half

the number of instructions in the block.

39

40

Chapter 4

Adapting Convergent Scheduling

by means of Genetic Programming

From one generation to the next, architectures in the same processor family may have
extremely different internal organizations. The Intel Pentium®) family of processors
is a case in point. Even though the ISA has remained largely the same, the inter-
nal organization of the Pentium 4 is drastically different from that of the baseline
Pentium.

To help designers keep up with market pressures, it is necessary to automate as
much of the design process as possible. In our initial work with convergent scheduling,
we tediously hand-tuned the sequence of passes. While the sequence works well for
the processors we explored in our previous work, it does not generally apply to new
architectural configurations. Different parallel architectures necessarily emphasize
different grains of computation, and thus have unique compilation needs.

We therefore developed a tool to automatically customize our convergent sched-
uler to any given architecture. The tool generates a sequence of phases from those
described in section 3.3. This chapter describes genetic programming (GP), the
machine-learning technique that our tool uses.

Genetic programming (GP) is one of many machine-learning techniques. Like
other learning algorithms, GP is based on the idea of evolution: a population of

individuals are set to compete against each other in a specific task. The fittest

41

reate initial population
gens=0
Compile and run each expression

Probabilistically select expressions
rossover and mutatiol
gens=gens+ 1

Figure 4-1: Flow of genetic programming. Genetic programming (GP) initially creates
a population of expressions. Each expression is then assigned a fitness, which is a
measure of how well it satisfies the end goal. In our case, fitness is proportional to
the execution time of the compiled application(s). Until some user-defined cap on
the number of generations is reached, the algorithm probabilistically chooses the best
expressions for mating and continues. To guard against stagnation, some expressions
undergo mutation.

ones are able to reproduce and generate off-springs, which will carry on the fight for
survival. As in the Darwinian representation of evolutions, the least fit creatures will
not replicate their genome, which will disappear from the population. GP models
sexual reproduction, by having cross-over of the genomes of the fittest individuals,

and allows random mutations to introduce new genomes in the population.

GP has a set of features that makes it particularly fit to our task: it is suited
to explore high-dimensional spaces; it is highly scalable, highly parallel and can run
effectively on a distributed computer farm; it presents solution that are readable to
humans, compared with other algorithms (e.g. neural networks) where the solution

is embedded in a very complex state space.

In the general GP framework, individuals are represented as parse trees [Koz92].
They are interpreted as a conditional sequence of passes: a grammar for our expres-

sions is in table 4.1.

42

4.1 Harness

The harness used in our experimentation is adapted from the work of [SAMOO02], the

structure of which is described in figure 4-1.

The system controls the evolution of a set of expressions challenged with the com-
piling of a set of benchmarks. The initial, given seed expression is used to compile and
run all benchmarks. The performance (elapsed number of cycles needed to complete

the execution) is stored as a reference for each benchmark.

An initial set of individuals is created randomly to populate the world. Each
genome is tested against the benchmarks. The fitness is determined by computing
the average of the speed-up on single benchmarks, compared with the baseline running
time. Individuals with the best performance are considered the fittest. As a secondary
criterion, we favors individuals with shorter genomes, as in [Ko0z92, p. 109]. Shorter
sequences offer more insight in the problem under analysis, are easier to read and

understand, and lead to a shorter and faster compiling.

The fittest individuals are chosen to mate and reproduce. Sexual reproduction is
an important part of GP: sub-expressions from strong individuals are swapped at the
moment of reproduction (cross-over). This contributes to add variety to the popula-
tion, and to reward strong genomes. Our harness uses a strategy called tournament
selection, to choose the individuals that will reproduce. The tournament randomly
chooses a set of n individuals, and then choose the best of them for reproduction (see

[Koz92]).

In our framework, the reproduction by crossover chooses two subtrees from each
of the parents, which are swapped to create two off-springs. As in [KH99], our harness
uses depth-fair crossover, which gives fair opportunity to all the levels in the tree: a
naive approach would choose leaves more often (in a binary tree, 50% of nodes are

leaves).

After the off-springs are generated, a subset of them is subject to random muta-
tions, which increase further the diversity in the genetic pool. The process iterates

till the number of generations reaches a chosen number.

43

(sexpr) ::= (‘sequence’ (sexpr) (sexpr))
| (‘if’ (variable) (sexpr) (sexpr))

| ((pass))

(variable) ::= #1 - Is imbalanced
| #2-Is fat
| #3 - Is within CPL
| #4 - Is placement bad

‘PATH’ | ‘COMM’ | ‘NOISE’ | ‘INITTIME’

(pass) =
| ‘SUCC’ | ‘LOAD’ | ‘EDGES’ | ‘DEP’
|
|

‘BEST’ | ‘FUNC’ | ‘PLACE’ | ‘SEQUENTTAL’
‘FIRST’ | ‘CLUSTER’ | ‘EMPHCP’

Table 4.1: Grammar for genome s-expressions.
4.2 Grammar

In our genetic programming framework, the sequence of passes is coded as a LISP
s-expression. This allowed us to easily take advantage of the rich body of results
about genetic programming and evolution of s-expressions. We knew that a good
compiler could improve incrementally by adding or removing passes, or by switching
the order of two of them. All these operations are performed during the evolutionary
process by GP frameworks.

<variable> returns the value computed by our tests on the graph and the current
schedule (see section 3.4). For simplicity, in the following, we will refer to the sequence
(SEQ (PassA) (PassB)) simply as (PassA) (PassB): when no variables are used,
genomes reduces to a linear sequence of passes.

This system is able to retarget convergent scheduling to new architectures, ef-
fectively. Adaptation can be run overnight on a clusters of workstations, to find a
genome that produces good schedules for the target architecture. In chapter 7, we

describe the details of our experiments and results.

44

/\
C e L

L

Figure 4-2: Sequence of passes coded as an s-expression. The s-exp represents a se-
quence that runs (PATH) or (COMM), then (FUNC) and (LOAD), and then (BEST)
or (DEP), according to the results computed by the metrics.

45

46

Chapter 5

Compiler Infrastructure

In this chapter, we describe our compiler infrastructure and how we integrated con-
vergent scheduling into Raw and Chorus. We also describe the scheduling algorithms

we used for comparison in our experiments.

5.1 Chorus Infrastructure

The Chorus clustered VLIW system is a flexible compiler/simulator environment, that
can simulate a large variety of different configurations of clustered VLIW machines.

In chapter 6, we use it to simulate a clustered VLIW machine with four identi-
cal clusters. Each cluster has four functional units: one integer ALU, one integer
ALU/Memory, one floating-point unit, and one transfer unit. Instruction latencies
are based on the Mips R4000. The transfer unit moves values between register files
on different clusters. It takes one cycle to copy a register value from one cluster to
another. Memory addresses are interleaved across clusters for maximum parallelism.
Memory operations can request remote data, with a penalty of one cycle.

Nonetheless, most of these parameters can be changed in our infrastructure. We
tested the robustness of convergent scheduling to these changes in chapter 7.

As part of the Chorus infrastructure, we developed a flexible VLIW scheduler,
seamlessly integrated with the rest of the system [Maz01]. The scheduler was written

in C++, using the Machsuif infrastructure [Smi00].

47

The system (see figure 5-1):

reads in the program, and build the dependence DAG for every block;

e determines the best space-time scheduling for the instructions in the block;

different algorithms are used and compared;
e tags instructions with the chosen space/time schedule;
e sorts instructions so to be in the correct final sequence;

e creates new names for the temporary registers used in clusters different from

the first and corrects the instructions using the new names;

performs register allocation.

Register allocation is performed by MachSuif Register Allocator (based on George
and Appel’s work [GA96]), modified by our group to manage multiple clusters and
predication. The code is then finalized and simulated on our step-by-step simulator.

In this work, three algorithms are implemented and tested. Convergent scheduling

is the first. As a comparison, we implemented Desoli’s PCC algorithm for clustered

DSP architectures [Des98|, and the UAS algorithm [OBC98].

5.1.1 Partial Component Clustering (PCC) algorithm imple-

mentation

Our system implements Desoli’s Partial Component Clustering (PCC) algorithm, as
in [Des98]. We try to illustrate our implementation here in detail.

Our algorithm builds the sub-components, as described in the paper. Then, it
initially assigns them so to balance the load in different cluster. As in the origi-
nal implementation, we iterate the initial assignment changing the size of ¢y, (the
maximum size of a sub-component) to minimize the expected schedule. This is done
using a simplified list scheduler, more details about which are below. In the paper,

the way that the various values of ¢;, are chosen and the test to stop iterating are

48

source program

data dependence
graph

m

partition information+
instruction priorities

critical path, reg. pressure.... /

List scheduler

partition information

tagging instructions

]

register allocation

Figure 5-1: Chorus VLIW Scheduler

49

not described. We choose a small set of different sizes that, in our tests, offered the
best results: 1/80, 1/50, 1/20, 1/5 of the graph size, with a minimum of 5 nodes.
Enlarging the set of ¢, would heavily slow down the process of compiling, already
extremely slow with this algorithm (see section 6.5).

After the initial assignment, the partition is changed by moving one sub-component
from one cluster to another. The algorithm performs a simple iterative descent. The
first criterion of descent is the expected length of the schedule, the second criterion is
the number of inter-cluster copies. As for the original paper, we perform a descent,
and we stop when there is no further improvement. The described descent is a very
computing-intensive process: for every trace, the algorithm computes the expected
schedule length for every possible assignment to clusters.

After partitions are built, a simple list scheduler is run. Instructions are prioritized
with the information about their criticality in the block and register pressure. The
scheduler concurrently schedules and manages communication, by introducing the
required transfer instructions.

The simplified list scheduler used in the iterative part does not explicitly creates
the copy instructions, but models the delay of inter-cluster communication. The
algorithm properly accounts for preplacement information. It does so by modeling
the extra costs incurred by the clustered VLIW machine for a non-local memory

aCCess.

5.1.2 Unified Assign-and-Schedule

We implemented UAS as described in [OBC98]. UAS performs partitioning as part
of the main cycle of its list scheduler (see figure 5-2).

In the outer loop of the list scheduler, instructions are prioritized with critical
path information and register pressure. In the inner loop, different priority schemes
are known for ordering the available clusters.

To take advantage of the information about preplacement, we slightly modified
the CPSC heuristic described in [OBC98]. In addition to considering critical path and

location of the parents, we prioritize the cluster where the instructions are preplaced.

20

Next Cycle
1. While (Unscheduled OPs exist)

No * Yes
2. Form a list of Data-Ready OPs and
- While (Ready OPs exist)

* Yes

3. Pick Highest Priority OP, X' and
Create Priority List of Clusters on which X
can potentially be scheduled.

No *

— 4. While (All Clusters in the list not Checked and
X is unscheduled)

No ‘ Yes

ﬁi 5. Can X be scheduled on the current cluster in the
list?

Yes

6. If any copy operations are required, can they be
No scheduled on their clusters?

+ Yes

7. Schedule X all copy OPs. =

Next Cycle

Figure 5-2: UAS algorithm (from [OBC98|)

This reduces the average memory latency, because increases the number of memory

operations issued to the cluster local memories.

5.2 RAW architecture

Figure 5-3 shows a picture of the Raw machine. The Raw machine comprises tiles
organized in a two dimensional mesh. The actual Raw prototype has 16 tiles in a 4x4
mesh. Each tile has its own instruction memory, data memory, registers, processor
pipeline, and ALUs. Its instruction set is based on the Mips R4000. The tiles are
connected via point-to-point, mesh networks. In additional to a traditional, wormhole
hole dynamic network, Raw has a programmable, compiler-controlled static network
that can be used to route scalar values among the register file/ALUs on different tiles.
To reduce communication overhead, the static network ports are register-mapped.

Latency on the static network is three cycles for two neighboring tiles; each additional

o1

IMEM

DMEM

Registers

)
oy
)

o)

0=0:=0:

Figure 5-3: The Raw machine.

hop takes one extra cycle of latency.

Rawce, the Raw compiler [LBF198], takes a sequential C or Fortran program
and parallelizes it across Raw tiles. It is built on top of the Machsuif intermediate
representation [Smi00].

The compiling tool-chain has three main phases: the first phase is responsible
for high level analysis and transformations, such as memory disambiguation, loop
unrolling and array reshape; the second phase performs space-time scheduling; the
third phase generates code for the processors and the switches.

The first phase identifies one or more scheduling traces, which are single-entry
single-exit predicated blocks. For each trace, Rawcc constructs the data precedence
graph and performs space-time scheduling on each graph. This process is called
orchestration in the compiler, because every block is broken into a set of intercom-
municating basic blocks, which the compiler has the task to coordinate in order to
guarantee semantics, performance and absence of communication bottlenecks.

The space-time scheduling is split into an initial phase of spatial scheduling, fol-
lowed by time scheduling. The spatial scheduling is further broken into partitioning
and placement.

Partitioning consists in identifying parallel streams of computation within the

52

scheduling unit. The compiler tries to partition instructions in order to minimize
final run-time. It assumes non-zero communication cost but infinite processing re-
sources. The communication is modeled with uniform latency. Instruction clusters
that communicate intensively among each other are then merged together if the grain
of computation is too small to take advantage of the communication network. This
process is based on the Dominant Sequent Clustering algorithm [GY94].

Then, the compiler merges the clusters, trying to minimize expected communi-
cation and total running time, until the number of clusters is equal to the number
of tiles. After this, placement is done by mapping the instruction clusters to the
different tiles using a greedy algorithm that minimized total communication. Finally,
time scheduling is done by a greedy list scheduler, which orchestrates the necessary
communication among tiles.

While very effective, we noticed two main problems with this approach:

e preplaced instructions (see next section) are not dealt effectively;

e partitioning does not consider the effects of time scheduling: phase ordering is

a major problem in Rawcc.

The results shown in the next chapters were collected using btl, the cycle-accurate
simulator of Raw developed at MIT. It can simulate the execution of our benchmarks

on a Raw configuration that reproduces the .15 pym 16-tile prototype ASIC chip.

5.3 Preplacement Analysis

Both Rawcc and the Chorus compilers employ congruence transformation and anal-
ysis to increase the predictability of memory references [LA02]. This analysis creates
preplaced memory reference instructions that must be placed on specific tiles or clus-
ters. For dense matrix loops, the congruence pass usually unrolls the loops by the
number of clusters or tiles. This unrolling also increases the size of the scheduling

regions, so that no additional unrolling is necessary to expose parallelism.

93

In both compilers, when a value is live across multiple scheduling regions, its
definitions and uses must be mapped to a consistent cluster. On Rawcc, this cluster
is the cluster of the first definition/use encountered by the compiler; subsequent
definitions and uses become preplaced instructions.! On Chorus, all values that are

live across multiple scheduling regions are mapped to the first cluster.

'Rawce does use SSA renaming to eliminate false dependences, which in turn reduces these
preplacement constraints.

54

Chapter 6

Results: Comparison with
State-of-the-art Scheduling

Techniques

We have implemented convergent scheduling in two systems: the Raw architec-

ture [TKM102] and the MIT Chorus clustered VLIW infrastructure [Maz01].

6.1 Convergent schedulers

Table 6.1 lists the heuristics used by convergent scheduling for Raw and Chorus. The
heuristics are run in the order given.
The convergent scheduler interfaces with the existing schedulers as follows. The

output of the convergent scheduler is split into two parts:

1. A map describing the preferred partition, i.e. an assignment for every instruc-

tion to a specific cluster.
2. The temporal assignment of each instruction.

Both Chorus and Rawcc use the spatial assignments given by the convergent

scheduler to determine partitions. Chorus uses the temporal assignments as priorities

95

INITTIME INITTIME
PLACEPROP NOISE

LOAD FIRST
PLACE PATH

PATH COMM
PATHPROP PLACE
LEVEL PLACEPROP
PATHPROP COMM
COMM EMPHCP
PATHPROP

EMPHCP

(a) (b)

Table 6.1: Sequence of heuristics used by the convergent scheduler for (a) the Raw
machine and (b) clustered VLIW.

for the list scheduler. For Rawcc, however, the temporal assignments are computed

independently by its own instruction scheduler.

6.2 Benchmarks

Our sources of benchmarks include the Raw benchmark suite (jacobi, life) [BFL*97],
Nasa7 of Spec92 (cholesky, vpenta, and mxm), and Spec95 (tomcatv, fpppp-kernel).
Fpppp-kernel is the inner loop of fpppp from that consumes 50% of the run-time.
Sha is an implementation of Secure Hash Algorithm. Fir is a FIR filter. Rbsorf is
a Red Black SOR relaxation. Vvmul is a simple matrix multiplication. Yuv does
RGB to YUV color conversion. Some problem sizes have been changed to cut down
on simulation time, but they do not affect the results qualitatively. See table 6.2 for

more details.

6.3 Performance comparisons

We compared our results with the baseline Rawcc and Chorus compilers. Table 6.3
compares the performance of convergent scheduling to Rawcc for two to 16 tiles.
Figure 6-1 plots the same data for 16 tiles. Results show that convergent scheduling

consistently outperforms baseline Rawcc for all tile configurations for most of the

26

Benchmark name Suite Number of lines | Exec. time (cycles)
Cholesky Nasa7/Spec92 128 37 millions
FIR RAW suite 59 5 millions
mxm Nasa7/Spec92 67 170,000
rbsorf RAW suite 22 273 millions
tomcatv Spec9b 193 67 millions
vvmul RAW suite 19 29 millions
YUV RAW suite 26 1.5 millions
vpenta Nasa7/Spec92 195 6.5 millions
fpppp Spec9h 1029 150,000
SHA RAW suite 625 1 million

Table 6.2: Characteristics of tested benchmarks.
one-cluster configurations.

Execution time is computed on

Base Convergent
Benchmark/Tiles 2 4 8 16 2 4 8 16
cholesky 1.14 | 2.21 | 3.29 | 433 || 1.44 | 2.75 | 4.94 | 7.06
tomcatv 118 | 1.83 | 2.88 | 3.94 || 1.37 | 2.12 | 3.33 | 5.15
vpenta 1.86 | 2.85 | 4.58 | 8.03 || 1.96 | 3.23 | 5.82 | 9.71
mxm 1.77 | 240 | 3.78 | 7.09 || 1.89 | 2.54 | 4.04 | 7.77
fpppp 1.54 | 3.09 | 5.13 | 6.76 || 1.42 | 2.04 | 3.87 | 5.39
sha 1.11 | 2.05 | 1.96 | 2.29 || 1.05 | 1.33 | 1.51 | 1.45
swim 1.40 | 2.04 | 3.62 | 6.23 || 1.63 | 2.69 | 4.24 | 8.30
jacobi 1.33 | 243 | 4.13 | 6.39 || 1.40 | 2.74 | 4.92 | 9.30
life 1.65 | 3.02 | 5.56 | 8.48 || 1.76 | 3.35 | 6.34 | 11.97

Table 6.3: Speedup on Raw. Speedup is relative to performance on one tile.

benchmarks, with an average improvement of 21% for 16 tiles.

Many of our benchmarks are dense matrix code with preplaced memory instruc-
tions from congruence analysis. For these benchmarks, convergent scheduling always
outperforms baseline Rawcc. The reason is that convergent scheduling is able to ac-
tively take advantage of preplacement information to guide the placement of other
instructions. This information turns out to lead to very good natural assignments of
instructions.

For fpppp-kernel and sha, convergent scheduling performs worse than baseline
Rawcc because preplaced instructions do not suggest many good assignments. At-
taining good speedup on these benchmarks require finding and exploiting very fine-

grained parallelism. Our level distribution pass has been less efficient in this regard

57

14

@ Rawcc
12 +—\m Convergent
10
S s
e}
[}
S 64
a
4,
2,
0,
N R R R R G
O\Q)g 6‘& on & ‘g}o EY & L N
& R \
(9 QQ
N

Figure 6-1: Performance comparisons between Rawcc and Convergent scheduling on
a 16-tile Raw machine.

than the clustering counterpart in Rawcc — we expect that integrating a clustering
pass to convergent scheduling will address this problem.

Figure 6-2 compares the performance of convergent scheduling to two existing as-
signment /scheduling techniques for clustered VLIW: UAS [OBC98] and PCC [Des98].
We augmented each existing algorithm with preplacement information. For UAS, we
modified the CPSC heuristic described in the original paper to give the highest priority
to the home cluster of preplaced instructions. For PCC, the algorithm for estimat-
ing schedule lengths and communication costs properly accounts for preplacement
information, by modeling the extra costs incurred by the clustered VLIW machine
for a non-local memory access. Convergent scheduling outperforms UAS and PCC
by 14% and 28%, respectively, on a four-clustered VLIW machine. Like in Raw, the
convergent, scheduler is able to use preplacement information to find good natural

partitions for our dense matrix benchmarks.

6.4 Scheduling convergence

We were interested in determining the effectiveness and the importance of different
passes in modifying and affecting the final schedules. To do this, we measured how

many instructions were moved from one cluster to another by each pass. With this,

o8

@gpPCcC
35 BUAS M
M Convergent

Speedup
N

1.5 1

vvmul rbsorf yuv tomcatv mxm fir cholesky

Figure 6-2: Performance comparisons between PCC, UAS, and Convergent scheduling
on a four-clustered VLIW. Speedup is relative to a single-cluster machine.

Percentage of instructions whose preferred tiles have changed

cholesky
tomcatv
vpenta

swim

Q
<
[m)
@ ;“ o ki |
—kernel
A, g

o — .~ o R e — <

- b L d v ®
PLACEPROP LOAD PLACE PATH PATHPROP LEVEL PATHPROP COMM PATHPROP
Passes

Figure 6-3: Convergence of spatial assignments on Raw.

we mean the number of instructions for which the preferred cluster before and after
a specific pass was different.

Figure 6-3 shows the percentage of instructions whose preferred tiles are changed
by each convergent pass on Raw. The plot measures static instruction counts, and
excludes passes that only modify temporal preferences. For benchmarks with use-
ful preplacement information, the convergent scheduler is able to converge to good
solutions quickly, by propagating the preplacement information and using the load
balancing heuristic. In contrast, preplacement provides little useful information for
fpppp-kernel and sha. These benchmarks thus require other critical paths, parallelism,
and communication heuristics to converge to good assignments.

Figure 6-4 shows the percentage of static instructions whose preferred tiles are

29

1 € Percentage of instructions whose preferred clusters have changed

Passes

Figure 6-4: Convergence of spatial assignments on Chorus.

changed by each convergent pass on Chorus. Again, passes that only modify temporal
preferences are excluded. Here we note that PATH does not affect heavily tomcatv
and vvmul, which feature very high parallelism when unrolled. PLACE is important
for most benchmarks, except FIR, for which our preplacement analysis is not very

effective.

6.5 Compile-time scalability

We examined the scalability of convergent scheduling. Scalability is important be-
cause there is an increasing need for instruction assignment and scheduling algorithms
to handle larger and larger number of instructions. This need arises for two reasons:
first, due to improvements in compiler representation techniques such as hyperblocks
and treegions; and second, because a large scope is necessary to support the level of
ILP provided by modern and future microprocessors.

Figure 6-5 compares the compile-time of convergent scheduling with that of UAS
and PCC on Chorus. Both convergent scheduling and PCC use an independent list
scheduler after instruction assignment — our measurements include time spent in the
scheduler. The figure shows that convergent scheduling and UAS take about the same
amount of time. They both scale considerably better than PCC. We note that PCC is
highly sensitive to the number of components it initially divides the instructions into.
Compile-time can be dramatically reduced if the number of components is kept small.

However, we find that for our benchmarks, reducing the number of components also

60

1000000

10000 -+ P—

= PCC

Scheduling time (seconds)
o
o
=S -
i‘i. "
0. 'Y
*
%

UAS =
' + Convergent
0

500 1000 1500 200(
Number of Instructions Scheduled

Figure 6-5: Comparison of compile-time vs input size for algorithms on Chorus.

results in much poorer assignment quality.

61

62

Chapter 7

Results: Adapting to Different

Architectures

This chapter describes our compilation framework as well as the methodology we use
to collect results. We begin by describing the GP parameters we use to train the
convergent, scheduler. We then describe the architectures we tested, and the results
we obtained. We discuss the validity of our findings using cross-validation, and then

we give a summary of results.

7.1 GP Parameters

We wrapped the GP framework depicted in Figure 4-1 around our compiler and sim-
ulator. For each individual in the population, our harness compiles the benchmarks
in our training suite with the phase ordering described by its genome. The specific
parameters we use are summarized in Table 7.1. All experiments maintain a popu-
lation of 200 individuals. After every generation we discard the weakest 20% of the
population, and replace it with new individuals. Of these new genomes, half of them
are complelety random, and the remainder are created via the crossover operator. 5%
of the individuals created via crossover are subjected to mutation. Finally, we run
each experiment for 40 generations.

Fitness is measured as the average speed-up (over all the benchmarks in our

63

PARAMETER VALUE
Mutated individuals 5%
Crossover v. random individuals 50%
Mortality 20%
Pop. size 200
Generations 40 / 100

Table 7.1: Parameters of the evolutionary framework

training suite) when compared against the phase ordering that we used in chapter
6. We also reward parsimony by giving preference to the shorter of two otherwise

equivalently fit sequences.

7.2 Tested Architectures

We tested our system using a set of different architectures. As mentioned earlier, on
Chorus we can easily change a number of machine characteristics with ease, including
number of clusters, number and type of functional units, size of the register file, cost
of inter-cluster communication and memory access time. We tested the robustness
of convergent scheduler under these changes, in particular, we tested the following

architectures:

e four clusters with limited communication;
e two clusters with limited communication;

e four clusters with limited registers.

7.2.1 Baseline (4cl)

The baseline architecture is a 4-cluster VLIW with rich interconnectivity. In this
configuration, the clusters are fully connected with a 4x4 crossbar. Thus, the clusters
can exchange up to four words every cycle. The delay for the communication is 1
cycle. Register file, functional units and L1 cache are split into the clusters — even

if every address of the memory can be accessed by any cluster — with a penalty of

64

1 cycle for non-local addresses. The cache takes 6 cycles to access and the register
file takes 2 cycles. In addition, memory writes take 1 cycle. Each cluster has 64

general-purpose registers and 64 floating-point registers.

7.2.2 Limited bus (4cl-comm)

This architecture is similar to the baseline architecture, the only difference being
inter-cluster communication capabilities. This architecture only routes one word of
data per cycle on a shared bus, which can be snooped, creating so a basic broadcasting
capability. Because this model has limited bandwidth, the space-time scheduler must

be more conservative in splitting computation across clusters.

7.2.3 Limited bus (2cl-comm)

Another experiment uses an architecture that is substantially weaker than the base-

line. It is the same as machine 4cl-comm, except it only has 2 clusters.

7.2.4 Limited Registers (4cl-regs)

The final machine configuration on which we test our system is identical to the baseline
architecture, except that each cluster has half the number of registers (32 general-
purpose and 32 floating-point registers).

The next section discusses experimental results using the machine configurations

described above.

7.3 Results

As in the previous chapter, we compared the performance of convergent scheduling
with UAS and PCC. In all of our experiments, (inittime) is hardwired to be the
first pass, as part of the initialization, and (place) is always run at the end of the

sequence, to guarantee semantics.

65

7.3.1 Baseline (4cl)

The baseline sequence was hand-tuned in our initial work with convergent scheduling.
As seen in the previous chapter, this sequence outperforms UAS and PCC in the

baseline configuration.

(inittime) (noise) (first) (path) (comm) (place) (placeprop) (comm)

(emphcp)

7.3.2 Limited Bus (4cl-comm)

We use this configuration to perform many experiments. We evolved a sequence for
100 generations, with 200 individuals, over seven representative benchmarks.

Figure 7-2 plots the fitness of the best creature over time. The fitness is measured
as the average (across benchmarks) normalized completion time with respect to the
sequence for our baseline architecture. The sequence improves quickly in the first
36 generations. After that, only minor and slow improvements in fitness could be
observed. This is why, in our cross-validation tests (see section 7.4), we limit our
evolution to 40 generations.

The evolved sequence is more conservative in communication and stresses the
importance of the (comm) pass — it is run three times. Also, (dep) and (func)
are important: (dep), as a side effect, increases the probability that two dependent
instructions are scheduled next to each other in space and time; (func) reduces peaks

on overloaded clusters, which could lead to high amounts of localized communication.

(inittime) (func) (dep) (func) (load) (func) (dep) (func) (comm)

(dep) (func) (comm) (place)

The plot in figure 7-1 compares the evolved sequence with the original sequence
and our reference schedulers. The evolved sequence performs about 10% better than
UAS, and about 95% better than the sequence tuned for the baseline architecture.

In this test, PCC performed extremely poorly, probably due to limitations in the

66

45 —

4 -

35 4 —
Q 3
i
3 25
2
[

15

14

05

0 - 1 1 1 1

v fir

wvmul rbsorf yu tomcatv mxm cholesky AVG

Benchmark

Model O pcc UAS Conv. M Evolved

15

Sdd Al

0 - T T T T T T
wvmul rbsorf yuv tomcatv mxm fir cholesky AVG

Benchmark

Normalized speed-up
N
o
|

Model O pcc UAS Evolved

Figure 7-1: (a)Speedup on 4cl-comm compared with 1-cluster convergent scheduling
(original sequence). In the graph, conv. is the baseline sequence, evolved is the new
sequence for this architecture. (b) Performance normalized to the baseline sequence.

modeling of communication done by our implementation of the internal simplified

scheduler (see [Des98]).

7.3.3 Limited bus (2cl-comm)

(inittime) (dep) (noise) (func) (noise) (noise) (comm) (func)

(dep) (func) (place)

Similar to the previous tests, (comm), (dep) and (func) are important in creating
a smooth schedule. We notice the strong presence of (noise) in the middle of the

sequence. It appears as if the pass is intended to move away from local minima by

67

11 —Fitness of the best individual at each generation

1 -
0.9

0.8 —

0.7 T T T T T T T T T T T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Generation

— Best

Figure 7-2: Fitness of the best individual, during evolution on 4cl-comm.

shaking up the schedule.

The evolved sequence stands the comparison with UAS (about 4% better) and
PCC (about 5% better). Here PCC does not show the same problems present with
4cl-comm (see figure 7-3). We observe an improvement of 12% over the baseline

sequence.

7.3.4 Limited Registers (4cl-regs)

Figure 7-4 shows the performance of the evolved sequence when compared with our
baseline and our reference. We can measure an improvement of 68% over the baseline
sequence. Here again, (func) is a very important pass. UAS outruns convergent

scheduling in this architecture by 6%, and PCC by 2%.

(inittime) (func) (dep) (func) (func) (func) (func) (path) (func)

(place)

7.4 Leave-one-out Cross Validation

We tested the robustness of our system by using leave-one-out cross validation on 4cl-
comm. In essence, cross validation helps us quantify how applicable the sequences are
when applied to benchmarks that were not in the training set. The evolution was rerun

excluding one of the seven benchmarks, and the result tested again on the excluded

68

Speed-up

Normalized speed-up

25 4
5 —
15
1
05
0 - 1 1 1 1
wwmul rbsorf yuv tomcatv mxm fir cholesky AVG
Benchmark
Model [0 pcc UAS Conv B Evolved
25 4
2
15
1
05
0 - 1 1 1 1 1 1 1 1
wvmul rbsorf yuv tomcatv mxm fir cholesky AVG
Benchmark
Model [J Pcc UAS Evolved

Figure 7-3: Speedup on 2cl-comm.

69

Speed-up

Normalized speed-up

IS

[
o

w

N
o

N

=
o

'

o
o

o

1

vvmul rbsorf yuv tomcatv m cholsky AVG
Benchmark
Model O pcc UAS Conv. B Evolved
T T T T T T T T
wwmul rbsorf yuv tomcatv mxm fir cholsky AVG
Benchmark
Model [0 pcc UAS Evolved

Figure 7-4: Speedup on 4cl-regs.

70

Excluded benchmark
benchmark | cholesky fir yuv tomcatv mxm vvmul rbsorf | full
cholesky 2.18 218 218 2.18 2.18 2.17 2.18 | 2.18
fir 1.35 1.35 1.35 1.35 1.35 1.35 1.35 | 1.35
yuv 1.53 1.563 1.53 1.53 1.53 1.16 1.53 | 1.53
tomcatv 1.60 1.35 1.35 1.45 1.47 1.55 1.44 | 1.37
mxm 2.03 2.04 204 2.04 2.12 2.33 2.04]1.96
vvmul 2.18 2.18 2.18 2.18 218 2.25 2.18 | 2.18
rbsorf 2.41 241 241 2.44 2.36 2.44 2.41 | 2.41
average 1.90 1.86 1.86 1.88 1.89 1.89 1.88 | 1.86

Table 7.2: Results of cross validation. The highlighted numbers refer to the bench-
mark excluded in each test.

Excluded benchmark Sequence

cholesky (inittime) (comm) (load) (comm) (load) (func) (place)
fir (inittime) (func) (place)

yuv (inittime) (func) (place)

tomcatv (inittime) (func) (best) (place)

mxm (inittime) (best) (best) (best) (func) (place) (place)
vvmul (inittime) (func) (dep) (func) (place)

rbsorf (inittime) (best) (func) (place)

none excluded (40 gens.) | (inittime) (comm) (best) (func) (place)

Table 7.3: The sequence evolved in our cross-validation tests.

benchmark. In table 7.2, the results are shown. The seven cross-validation evolutions
reached results very similar to the full evolution, for the excluded benchmarks too
(within 6% of the performance). The seven evolved sequences (in table 7.3) are all

similar: (func) is the most important pass for this architecture.

7.5 Summary of Results

We verified that convergent scheduling is well suited to a set of different architectures.
Running on 20 dual Pentium 4 machines, evolution takes a couple of days.
Sequences that contain conditional expressions never appeared in the best indi-
viduals. It turns out that running a pass is more beneficial than running a test
to condition its execution. This is largely because convergent scheduling passes are

somewhat symbiotic by design.

71

In other words, the results show that passes do not disrupt good schedules. So,
running extra passes is usually not detrimental to the final result. We verified that
running a complex measurement can take as much time as running a simple pass.
Therefore, when measuring the complexity of resulting sequences, we assign equal
weight to passes and tests. Our bias for shorter genomes (parsimony pressure) pe-
nalizes sequences with extra tests as well as sequences with useless passes. In the
end, conditional tests were not used in the best sequences. Rather, all passes are
unconditionally run.

Nevertheless, we still believe in the potential of this approach, and leave further

exploration to future work.

72

Chapter 8

Related work

The problem of phase ordering, and in particular the interaction between register
allocation and scheduling, have been discussed by many authors. Lerner et al. propose
an interesting interface to different passes based on graph replacement [LGC02]. Their
approach enables passes to be designed independently, but to run together. The
authors claim to be able to reach a precision close to manually built super-passes.
In [MPSR95], the authors introduce a combined register allocation and instruction
scheduling heuristic that is shown to be easier to approximate and performs 16-
21% better than the two independent optimizations. The approach simply weights
the result of the two heuristics to obtain a single value, which is used to choose
instructions. Register allocation and scheduling are combined also in [JC98|, where
the authors introduce an algorithm that performs the two operations together, with
encouraging results.

Many heuristics approaches have been developed for space-time scheduling. UAS
(Unified Assign-and-Schedule) performs space-time scheduling on clustered VLIWs in
a single step, using a greedy, list-scheduling-like algorithm [OBC98]. Desoli describes
an algorithm targeted for graphs with a large degree of symmetry [Des98]. Leupers
describe an iterative combined approach to perform scheduling and partitioning on a
VLIW DSP [Leu00]. The approach is based on simulated annealing.

Integrated approaches to partitioning, scheduling and register allocation can also

be found in the area of modulo scheduling for clustered VLIW architectures [SG00,

73

ZLAVO1].

However, there have been far fewer space-time scheduling algorithms that take into
account preplaced instructions. One such algorithm is BUG (Bottom-Up-Greedy).
BUG is implemented on ELI, one of the earliest spatial architectures that relies on
the compiler for space-time scheduling [EII85]. BUG only performs space-scheduling;
time-scheduling is done via traditional list scheduling. BUG is a two-phase algorithm:
the algorithm first traverses a dependence graph bottom-up to propagate informa-
tion about preplaced memory instructions. Then, it traverses the graph top-down
and greedily map each instruction to the clusters that can execute it earliest. The
Multiflow compiler uses a variant of BUG [LFK*93], but it does not account for pre-
placed instructions. Lee also handles preplaced instructions [LBF*98]. He borrows
his general approach from multiprocessor task graph scheduling [LBF*98]. Like El-
lis, Lee uses a separate list scheduler to perform time-scheduling. Space-scheduling is
performed in three steps. Clustering groups together instructions that have little par-
allelism; merging reduces the number of clusters through merging; placement maps
clusters to tiles. Constraints from preplaced instructions are mainly handled during

placement.

Many researchers have used machine-learning techniques to solve hard compilation
problems. Therefore, only the most relevant works are discussed here. Cooper et al.
use a genetic-algorithm solution to evolve the order of passes in an experimental
compiler [CSS99]. Our research extends theirs in many significant ways. First, our
learning representation allows for conditional execution of passes, while theirs does
not. In addition, we differ in the end goal; because they were targeting embedded
microprocessors, they based fitness on code size. While this is a legitimate metric,
code size is not a big issue for parallel architectures, nor does it necessarily correlate
with wall clock performance. We also simultaneously train on multiple benchmarks
to create general-purpose solutions. They train on one benchmark at a time, and
thus create application-specific phase orderings. Finally, we believe the convergent
scheduling solution space is more interesting than that of an ordinary backend. The

symmetry and unselfishness of convergent scheduling phases implies an interesting

74

and immense solution space.

Calder et. al used supervised learning techniques to fine-tune static branch predic-
tion heuristics [CaMJL*97]. They employ two learning techniques — neural networks
and decision trees — to search for effective static branch prediction heuristics. While
our methodology is similar, our work differs in several important ways. Most impor-
tantly, we use unsupervised learning, while they use supervised learning. Unsuper-
vised learning is used to capture inherent organization in data, and thus, only input
data is required for training. Supervised learning learns to match training inputs
with known outcomes. This means that their learning techniques rely on knowing
the optimal outcome, while ours does not. Our problem demands an unsupervised
method since optimal compiler sequences are not known.

The COGEN(t) compiler creatively uses genetic algorithms to map code to irreg-
ular DSPs [GWO01]. This compiler, though interesting, evolves on a per-application
basis. Nonetheless, the compile-once nature of DSP applications may warrant the

long, iterative compilation process.

75

76

Chapter 9

Future Work and Conclusion

Time-to-market pressures make it difficult to effectively target next generation proces-
sors. Convergent scheduling’s simple interface alleviates such constraints by offering

a set of innovative features:

a simple interface that allows rapid prototyping of new passes,

e the opportunity for passes to express a preference for a schedule, rather than a

simple black-or-white decision,

e the opportunity for passes to easily override and reverse previous decisions, if

needed,
e an interface that allows an abundant exchange of information between passes,
e a framework that allows passes to be run in different orders without effort,
e the opportunity to let the compiler adapt to a different architecture with ease.

With this infrastructure, we were able to improve speed-up for two spatial archi-
tectures: Raw, 21% better, and the MIT Chorus clustered VLIW architecture, 14%
better than UAS and 28% better than PCC in our baseline model.

Because the scheduler’s framework allows passes to be run in any order, there are

countless legal phase orders to consider. This thesis showed how machine-learning

7

techniques could be used to automatically search the phase-order solution space. Our
genetic programming technique allowed us to easily re-target new architectures.

In our work, we also experimented with learning dynamic policies. Instead of
choosing a fixed static sequence of passes, our system is capable of dynamically choos-
ing the best passes for each scheduling unit, based on the status of the schedule.
Although the learning algorithm did not find sequences that conditionally executed
passes, we still have reason to believe that this is a promising approach. Future work
will explore this in greater detail.

Our technique was able to find architecture-specific phase orders which improved
execution time by 12% to 95%. Cross validation showed that performance improve-
ment is not limited to the benchmarks on which the sequence was trained.

As part of the future work, we would like to include register allocation in our
preference maps, and let convergent scheduling perform this task too.

Also, we are interested in an approach based on reinforcement learning. Based on
the current status of the prefence maps, the compiler should learn which pass to run
next. After learning, the compiler will consist of a policy, able to pick up different
passes as needed, till the schedule converges.

This way, instead of running a predefined sequences of passes (with or without
conditionals), the system will choose dynamically the best pass for the given block.
We believe this could be a major breakthrough. We also consider how to augment
the currently used compilers to collect information and to continuously learn about

the compiling process itself.

78

initial CFG

apply the pass
current schedule
(prob. maps)
policy next pass
previously chosen
pass end
final prob.
maps
update the status

Figure 9-1: A compiler with dynamic policy for choosing passes

79

80

Bibliography

[BFL197]

[BLAA99)

[CaMJL*+97]

[CSS99]

[Des98|

Jonathan Babb, Matthew Frank, Victor Lee, Elliot Waingold, Rajeev
Barua, Michael Taylor, Jang Kim, Srikrishna Devabhaktuni, and Anant
Agarwal. The raw benchmark suite: Computation structures for gen-

eral purpose computing. In IEEE Symposium on Field-Programmable

Custom Computing Machines, Napa Valley, CA, April 1997.

Rajeev Barua, Walter Lee, Saman Amarasinghe, and Anant Agarwal.
Maps: A Compiler-Managed Memory System for Raw Machines. In
Proceedings of the 26th International Symposium on Computer Archi-
tecture, Atlanta, GA, May 1999.

Brad Calder, Dirk Grunwald ad Michael Jones, Donald Lindsay, James
Martin, Michael Mozer, and Benjamin Zorn. Evidence-Based Static
Branch Prediction Using Machine Learning. In ACM Transactions on

Programming Languages and Systems (ToPLaS-19), volume 19, 1997.

Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimiz-
ing for reduced code space using genetic algorithms. In ACM Proceed-
ings of the SIGPLAN Workshop on Languages, Compilers and Tools for
Embedded Systems (LCTES), 1999.

Giuseppe Desoli. Instruction assignment for clustered vliw dsp compil-
ers: a new approach. Technical Report HPL-98-13, Hewlett Packard

Laboratories, January 1998.

81

[E1185]

[GA96]

[GWO1]

[GY94]

[JC98]

[KHO9]

[Koz92]

[KS02]

[LAO2]

John R. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD
thesis, Yale University, 1985.

Lal George and Andrew W. Appel. Iterated register coalescing. In ACM

Transactions on Programming Languages and Systems, volume 18, 1996.

Gary William Grewal and Charles Thomas Wilson. Mappping Refer-
ence Code to Irregular DSPs with the Retargetable, Optimizing Com-
piler COGEN(T). In International Symposium on Microarchitecture,
volume 34, pages 192-202, 2001.

A. Gerasoulis and Tao Yang. Dsc: Scheduling parallel tasks on an
unbounded number of processors. IEEE Transaction on Parallel and

Distributed Systems, 5:951-967, 1994.

J. Janssen and H. Corporaal. Registers on demand: an integrated region
scheduler and register allocator. In Conference on Compiler Construc-

tion, 1998.

Matthew Kessler and Thomas Haynes. Depth-Fair Crossover in Ge-
netic Programming. In Proceedings of the ACM Symposium on Applied
Computing, pages 319-323, February 1999.

John Koza. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. The MIT Press, 1992.

Ho-Seop Kim and James E. Smith. An Instruction Set and Microarchi-
tecture for Instruction Level Distributed Processing. In Proceedings of
the 29th International Symposium on Computer Architecture, Anchor-

age, AL, May 2002.

Sam Larsen and Saman Amarasinghe. Increasing and detecting mem-
ory address congruence. In Proceedings of 11th International Conference
on Parallel Architectures and Compilation Techniques (PACT), Char-
lottesville, VA, September 2002.

82

[LBF*98]

[Leu00]

[LFK*93]

[LGC02]

[Maz01]

[MPSRO5]

[NSBKO1]

[0BCYS]

Walter Lee, Rajeev Barua, Matthew Frank, Devabhatuni Srikrishna,
Jonathan Babb, Vivek Sarkar, and Saman Amarasinghe. Space-Time
Scheduling of Instruction-Level Parallelism on a Raw Machine. In Pro-
ceedings of the Eighth ACM Conference on Architectural Support for
Programming Languages and Operating Systems, pages 46-57, San Jose,

CA, October 1998.

Rainer Leupers. Instruction scheduling for clustered vliw dsps. In In-
ternational Conference on Parallel Architecture and Compilation Tech-

niques, Philadelphia, PA, Oct. 2000., 2000.

P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein, R. Nix,
J. O’Donnell, and J. Ruttenberg. The Multiflow Trace Scheduling Com-
piler. In Journal of Supercomputing, pages 51-142, January 1993.

Sorin Lerner, David Grove, and Craig Chambers. Composing dataflow
analyses and transformations. In The 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2002),
Portland, Oregon, 2002.

David Maze. Compilation infrastructure for vliw machines. Master’s

thesis, Massachusetts Institute of Technology, September 2001.

Rajeev Motwani, Krishna V. Palem, Vivek Sarkar, and Salem Reyen.
Combining register allocation and instruction scheduling. Technical Re-

port CS-TN-95-22, 1995.

R. Nagarajan, K. Sankaralingam, D. Burger, and S. Keckler. A design

space evaluation of grid processor architectures, 2001.

Emre Ozer, Sanjeev Banerjia, and Thomas M. Conte. Unified assign
and schedule: A new approach to scheduling for clustered register file
microarchitectures. In International Symposium on Microarchitecture,

pages 308-315, 1998.

83

[SAMO02]

[SGO0]

[Smi00]

[TKM*02]

[WTS*97]

[ZLAVOI1]

Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May
O’Reilly. Meta-optimization: Improving compiler heuristics with ma-

chine learning. Technical Report MIT-LCS-TM-634, 2002.

J. Sanchez and A. Gonzalez. Instruction scheduling for clustered vliw
architectures. In 13th International Symposium on System Sythesis

(ISSS), Madrid, Spain, September 2000.

Micheal D. Smith. Machine suif. In National Compiler Infrastructure
Tutorial at PLDI 2000, June 2000. http://www.eecs.harvard.edu/hube.

Michael Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Gho-
drat, Ben Greenwald, Henry Hoffman, Jae-Wook Lee, Paul Johnson,
Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman,
Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant Agar-
wal. The Raw Microprocessor: A Computational Fabric for Software
Circuits and General Purpose Programs. IEEE Micro, pages 25-35,
March/April 2002.

Elliot Waingold, Micheal Taylor, Devabhaktuni Srikrishna, Vivek
Sarkar, Walter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch,
Rajeev Barua, Jonathan Babb, Saman Amarasinghe, and Anant Agar-
wal. Baring it all to software: Raw machines. Computer, pages 86-93,

September 1997.

Javier Zalamea, Josep Llosa, Eduard Ayguade, and Mateo Valero. Mod-
ulo scheduling with integrated register spilling for clustered vliw archi-

tectures. In MICROS8/, 2001.

84

