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Abstract

Applications that are structured around some notion of a ”stream” are becoming increas-
ingly important and widespread. There is evidence that streaming media applications are
already consuming most of the cycles on consumer machines [20], and their use is continu-
ing to grow. Streamlt is a language and compiler specifically designed for modern stream
programming. Despite the prevalence of these applications, there is surprisingly little lan-
guage and compiler for practical, large-scale stream programming. Streamlt is a language
and compiler specifically designed for modern stream programming. The StreamlIt langauge
holds two goals: first, to provide high-level stream abstractions that improve programmer
productivity and program robustness within the streaming domain; second, to serve as a
common machine language for grid-based processors. At the same time, Streamlt com-
piler aims to perform stream-specific optimizations to achieve the performance of an expert
programmer. This thesis develops several techniques for scheduling execution of Filters in
StreamlIt. The work focuses on correctness as well as minimizing buffering requirements
and stored schedule size.
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Chapter 1

Introduction

Applications that are structured around some notion of a ”stream” are becoming increas-
ingly important and widespread. There is evidence that streaming media applications are
already consuming most of the cycles on consumer machines [20], and their use is continu-
ing to grow. In the embedded domain, applications for hand-held computers, cell phones,
and DSP’s are centered around stream of voice or video data. The stream abstraction is
also fundamental to high-performance applications such as intelligent software routers, cell

phone base stations and HDTV editing consoles.

Despite the prevalence of these applications, there is surprisingly little language and
compiler for practical, large-scale stream programming. The notion of a stream as a pro-
gramming abstraction has been around for decades [1], and a number of special-purpose
stream languages have been designed (see [22] for a review). Many of these languages and
representations are elegant and theoretically sound, but they often lack features and are too
inflexible to support straightforward development of modern stream applications, or their
implementations are too inefficient to use in practice. Consequently most programmers turn

to general-purpose languages such as C or C++ to implement stream programs.

There are two reasons that general-purpose languages are inappropriate for stream pro-
gramming. Firstly, they are a mismatch for the application domain. That is they do not
provide a natural or intuitive representation of streams thereby having a negative effect on
readability, robustness, and programmer productivity. Furthermore, general-purpose lan-
guages do not communicate well the inherent parallelism of stream computations. Secondly,
general-purpose languages are a mismatch for the emerging class of grid-based architectures
[17, 25, 21].

StreamlIt is a language and compiler specifically designed for modern stream program-
ming. The Streamlt langauge holds two goals: first, to provide high-level stream abstrac-

tions that improve programmer productivity and program robustness within the streaming
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domain; second, to serve as a common machine language for grid-based processors. At the
same time, Streamlt compiler aims to perform stream-specific optimizations to achieve the
performance of an expert programmer.

In order to achieve these goals, Streamlt provides a number of features, designed to allow
the programmer to easily and naturally express the required computation, while keeping
the program easy to analyze by a compiler: all Streamlt streaming constructs are single-
input, single-output; all computation happens in Filters; data is passed around between
Filters using three streaming constructs: Pipeline, which allows stacking of Filters one after
another, SplitJoin, which allows splitting and joining of data amongst multiple streams,
and FeedbackLoop, which constructs cyclic streams. In Streamlt, every Filter must declare
the rate at which it processes data: how much data is consumed and produced on every
invocation of the Filter’s work function. This model of data passing is called Synchronous
Data Flow (SDF).

In addition to SDF, Streamlt allows the programmer to pass data between Filters in
an asynchronous manner, similar to a combination of message passing and function calls.
Timing of such data delivery is expressed in terms of amount of information wavefronts
- the programmer can specify a delay between message delivery and destination Filter’s
processing of data currently being produced or consumed by the source Filter. Such timing
mechanism introduces latency and buffering constraints on execution of Streamlit programs.

Using the features present in Streamlt, the programmer can express complex algorithms
and computation models. One of the difficulties faced by Streamlt is scheduling of the execu-
tion of the program. Since Streamlt uses SDF computation model with latency constraints,
it is possible to schedule the order of execution of Filters at compile time. Scheduling SDF
programs presents a difficult challenge to the compiler: as the complexity of the program
grows, the amount of memory required to execute the program increases. This increase
comes from two sources: the schedule size is creases, as well as amount of data needed for
buffering increases. These two sources are closely coupled. There exist tradeoffs between
the schedule size and the buffer size.

This problem is further complicated by message latency constraints placed on the pro-
gram by the programmer. While Streamlt programs are meant to provide relatively lax
latency requirements, it is possible to write programs with latency constraints so tight that
very few valid schedules exist. Finding these schedules is a challenging task.

This thesis develops several techniques for scheduling execution of Streamlt programs.
This thesis will present techniques which take advantage of structure of Streamlt to create
compact schedules. These schedules will be purely hierarchical in nature. The concept of a
phasing schedule will be introduced to reduce the requirement for buffering data between

Filters without overly increasing the size of the schedule. Finally, the problem of scheduling
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programs with message latency constraints will be solved using integer programming.

The contributions of this thesis are:

e hierarchical scheduling of streaming application, a concept enabled by Streamlt lan-

guage,
e first formal handling of SDF graphs with peeking,
e novel phasing scheduling technique,
e a minimal latency schedule using hierarchical phases,

e novel SDF program abstraction called the information buffering model that simplifies

information latency analysis,
e a solution to scheduling of Streamlt programs with latency constraints.

The remainder of this thesis is organized as follows: chapter 2 describes relevant Streamit
constructs in detail; chapter 3 explains basic concepts in scheduling Streamlt graphs; chap-
ter 4 describes hierarchical phasing techniques; chapter 5 describes phasing scheduling tech-
niques, including phased scheduling, a more advanced approach to scheduling; chapter 6
introduces techniques for scheduling of Streamlt programs with latency constraints; chapter

7 analyzes performance of various algorithms described here.

15



16



Chapter 2
StreamlIt Language

This chapter introduces relevant constructs of the Streamlt language. Syntax is not explored
here, as it is not relevant to Streamlit scheduling.
Section 2.1 introduces the structured streaming concept, while Section 2.2 introduces

the low bandwidth messaging semantics of Streamlt.

2.1 Structure

Perhaps the most distinguishing feature of StreamlIt language is that it introduces structure
to the concept of stream computation. Streamlt concept of structure is conceptually similar
to structured constructs in functional languages such as C.

In Streamlt programs are composed out of streaming components called streams. Each
stream is a single-input, single-output component, possibly made up of a hierarchical com-
position of other streams. Streams can only be arranged in a limited number of ways,
using Pipelines, SplitJoins, and FeedbackLoops. Data passed between Filters is read from
and written to channels. Figure 2-1 contains examples of various Streamlt streams. The

restrictions on arrangement of streams enforces the structure imposed by Streamlt.

2.1.1 Filters

The basic unit of computation in Streamlit is the Filter. The central aspect of a filter is the
work function, which describes the filter’s atomic execution step. Within the work function,
the filter can communicate with its neighbors using the input and output channels, which
are typed FIFO queues declared during initialization of a Filter. Figure 2-1(a) depicts a
Filter.

Filters also have the restriction of requiring a static amount of data to be consumed

and produced for each execution of a work function. The amount of data produced by a
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(a) A Filter
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(¢) A SplitJoin with n children

Figure 2-1: All Streamlt streams
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Filter F' upon execution of its work function is called a push amount, denoted push. The
amount of data consumed from input channel by a Filter F upon execution of its work
function is called a pop amount, denoted pop. Filters may require that additional data
be available in the input channel for the Filter to examine. This data can be read by the
Filter’s work function, but it will not be consumed, and will remain in the channel for the
next execution of the work function. The amount of data necessary on the input channel
to execute Filter’s work function is called peek amount, denoted peek. Note, that for all
Filters peek >= pop. Extra peek amount is the amount of data required on by the Filter
that will be read but will not be consumed, namely peek — pop. The peek, pop and push
values in Figure 2-1(a) correspond to the peek, pop and push amounts of the Filter’s work
function.

A Filter can be a source, if it does not consume any data, but it produced data. Namely,
a Filter is a source if it has peek = pop = 0. Likewise, a Filter can be a sink, if it consumes

data, but does not produce any, or push = 0.

2.1.2 Pipelines

Pipelines are used to connect Streamlt structures in a chain fashion: each child stream’s
output is the next child stream’s input. Pipelines have no work function, as they do not
perform any computation themselves. Pipelines are simply containers of other Streamlit

structures. Figure 2-1(b) depicts a Pipeline.

2.1.3 SplitJoins

SplitJoins are used to specify independent parallel structures that diverge from a common

splitter and merge into a common joiner. There are two types of splitters:

(a) Duplicate, which replicates each data item and sends a copy to each parallel stream,

and

(b) RoundRobin (wy,...,wy—1), which sends the first wq items to the first stream, the next
wy items to the second stream, and so on. If all w; are equal to 0, all child streams of

the SplitJoin must be sources.

RoundRobin is also the only type of a joiner supported in Streamlt; its function is
analogous to a RoundRobin splitter.

Figure 2-1(c) depicts a SplitJoin.
2.1.4 FeedbackLoops
FeedbackLoops are used to create cycles in the stream graph. A FeedbackLoop contains a

19



joiner, a body stream, a splitter, and a loop stream. Figure 2-1(d) depicts a FeedbackLoop.
A FeedbackLoop has an additional feature required to allow a FeedbackLoop to begin

computation: since there is no data on the feedback path at first, the stream instead inputs
data from a special function defined by the FeedbackLoop. The amount of data pushed onto
the feedback path is called delay amount, denoted delayy;, for a FeedbackLoop fl.

2.2 Messages

In addition to passing data between Filters using structured streams, Streamlt provides a
method for low-bandwidth data passing, similar to a combination of sending messages and
function calls. Messages are sent from within the body of a Filter’s work function, perhaps
to change a parameter in another Filter. The sender can continue to execute while the
message is en route. When the message arrives at its destination, a special message receiver
method is called within the destination Filter. Since message delivery is asynchronous,
there can be no return value; only void methods can be message targets. This allows the
send to continue execution while the message is en route - the sender does not have to wait
for the receiver to receive the message and send a return value back. If the receiver wants

to send a return value to the sender, it can send a message back to the sender.

Although message delivery in Streamlt is asynchronous in principle, StreamlIt does in-
clude semantics to restrict the latency of delivery of a message. Since Streamlt does not
provide any shared resources to Filters (including global memory, global clock, etc), the
timing mechanism uses a concept of flow of information.

One motivating example for messaging in Streamlt can be found in cell phone processing
application. Modern cellular phone protocols involve a technique called frequency hopping -
the cell phone base station selects a new frequency or channel for the phone to communicate
with the base station and informs the phone of this change. The phone must switch to the
new channel within a certain amount of time, or it risks losing connection with the base

station.

If the phone decoder application is written in Streamlit, the Filter controlling the antenna
and the Filter which will process control signals are likely far apart, and may not have a
simple way of communicating data directly with each other. In Streamlit, the Filter which
decodes control signals can simply send a message to the Filter controlling the antenna. The
message can be sent with a specific latency corresponding to the timing required by the base
station. When the antenna controller receives the message it can change the appropriate
settings in the hardware to switch to the appropriate new frequency, without having to wait

for the appropriate time. The timing of delivery is taken care of by Streamlt.
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2.2.1 Information Wavefronts

When a data item enters a stream, it carries with it some new information. As execution
progresses, this information cascades through the stream, affecting the state of Filters and
the values of new data items which are produced. We refer to an information wavefront as
the set of Filter executions that first sees the effects of a given input item. Thus, although
each Filter’s work function is invoked asynchronously without any notion of global time, two
invocations of a work function occur at the same information-relative time if they operate

on the same information wavefront.

2.2.2 Message Sending

Messages can be sent upstream or downstream between any two Filters. Sending messages
across branches of a SplitJoin is not legal. Timing of message delivery uses the concept of
information wavefront. The sender specifies that the message is supposed to be delivered
with a certain delay of information wavefront. The delays are specified as ranges, [lo, (1], 1o <
l1. lp and [; specify the information wavefront in executions of the work function of the
sender Filter.

If the message is being sent downstream, the sender specifies that the receiver will receive
the data just before it sees the information wavefront produced by the sender between [
and /1 executions of its work function from when it sends the message. If the message is
being sent upstream, the sender specifies that the receiver must receive the message just
before it produces an information wavefront the sender will see between [y and [; executions
of its work function from when it sends the message.

Message sending is meant to be a low-bandwidth method of communication between
Filters. Message sending is not a fast operation and is intended not to interfere with
the high bandwidth Streamlt communication and processing. However, depending on how
tight the latency constraints are (both the magnitude of the latency as well as the range),
declaring that messages can be sent may slow program execution down considerably.

Figure 2-2 presents an example of a Pipeline in which the last Filter sends a message to
the first Fulter. Filters sends a message to Filterg. The message is sent with latency [3, 8].
This means that after at least 3 and at most 8 executions of sender’s work function, it will

see data produced by the receiver just after receiving the message.
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[3,8]

Figure 2-2: Example of a Pipeline with a message being sent
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Chapter 3

General StreamlIt Scheduling

Concepts

This chapter introduces the general concepts used for scheduling Streamlit programs. Con-
cepts presented here are are common with other languages [16] [3] [14].

Section 3.1 presents the Streamlt execution model. Section 3.2 introduces the concept of
a steady state and shows how to calculate it. Section 3.3 explains the need for initialization
of Streamlit program. Section 3.4 introduces simple notation for expressing schedules while

Section 3.5 presents the tradeoff between schedule and buffer storage requirements.

3.1 Streamlt execution model

A Streamlt program is represented by a directed graph, G = (N, E). A node in G is either
a Filter, a splitter or a joiner. Edges in G represent data channels. Each node in G
takes data from its input channel(s), processes this data, and puts the result on the output
channel(s). Each data channel is simply a FIFO queue.

Each Filter node ny has exactly one incoming edge and one outgoing edge. The incoming
edge is referred to as an input channel, while the outgoing edge is called an output channel.
A splitter node ns has exactly one incoming edge (input channel), but has multiple outgoing
edges (output channels). A joiner node has multiple incoming edges (input channels) but
only one outgoing edge (output channel).

Each node of graph G can be executed. An execution of a node causes some data to be
collected from the node’s input channel(s), the data to be processed and the result to be
put on the output channel(s). An execution of a node transfers the smallest amount of data
across the node - it is an atomic operation. Streamlt uses a static data flow model, meaning

that every execution of a node n will require the same amount of data to be present on
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node’s input channel(s) for consumption or inspection, same amount to be consumed from
the input channel(s) and same amount of data to be pushed onto its output channel(s).

Each Filter node n is associated with a 3-tuple (ef, of, ). These three values represent
the rate of data flow for the Filter for each execution. The first value represents the amount
of data necessary to be present in its input channel in order to execute the Filter. This is
also called the peek amount of the Filter. The second value represents the amount of data
which will be consumed by the Filter from its input channel. This is called the pop amount
of the Filter. Note, that e; > oy. The final value represents the amount of data that will
be put on the output channel of the Filter. This is called the push amount of a Filter. The
amount of data present in the input channel of a Filter node n is denoted in s, while data
present in the output channel is denoted out ;.

Each splitter node ng is associated with a tuple (o5, ws). The first value represents the
amount amount of data that will be consumed by ng from its input channel. Thus, in
order to execute ng, there must be at least os data in its input channel. wg is a vector of
integers, each representing the amount of data that will be pushed onto a corresponding
output channel of ng. The amount of data present in the input channel of a splitter node
ns is denoted ing, while data present in the ith output channel is denoted outs ;.

Each joiner node n; is associated with a tuple (wj;,u;). The first value is a vector
of integers, each representing the amount of data that will be consumed by n; from its
corresponding input channels. In order to execute nj, each of its input channels must have
at least as much data in it as the corresponding value in w; indicates. u; represents the
amount of data that will be pushed by n; onto its output channel. The amount of data
present in the ith input channel of a joiner node n; is denoted in;;, while data present in
the output channel is denoted ing.

A schedule for a Streamlt program is a list of executions of nodes of graph G. The list
describes the order in which these nodes are to be executed. In order for a schedule to be
legal, it must satisfy two conditions. The first one is that for every execution of a node, a
sufficient amount of data must be present on its input channel(s), as described above. The

second is that the execution of the schedule must require a finite amount of memory.

3.2 Steady State

A Streamlt schedule is an ordered list of firings of nodes in the Streamlt graph. FEvery
firing of a node consumes some data from input channel(s) and pushes data onto the output
channel(s).

One of the most important concepts in scheduling streaming applications is the steady

state schedule. A steady state schedule is a schedule that the program can repeatedly
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execute forever. It has a property that the amount of data buffered up between any two
nodes does not change from before to after the execution of the steady state schedule. This
property is important, because it allows the compiler to statically schedule the program
at compile time, and simply repeat the schedule forever at runtime. A schedule without
this property cannot be repeated continuously. This is because the delta in amount of data
buffered up on between nodes will continue accumulating, requiring an infinite amount of
buffering space.

A steady state of a program is a collection of number of times that every node in
the program needs to execute in a steady state schedule. It does not impose an order of
execution of the nodes in the program.

Not every Streamlt program has a steady state schedule. As will be explained in Section
3.2.2, it is possible for a program to have unbalanced production and consumption of data
in SplitJoins and FeedbackLoops. The amount of data buffered continually increases, and
cannot be reduced, thus making it impossible to create a steady state schedule for them.
It is also possible that a FeedbackLoop does not have enough data buffered up internally in
order to complete execution of a full steady state, and thus deadlocks. Programs without a
valid steady state schedule are not considered valid Streamlit programs. In other words, all

valid Streamlt programs have a steady state schedule.

3.2.1 Minimal Steady State

The size of a steady state is defined as the sum of all executions of all the nodes in the

program per iteration of the steady state.

Definition 1 A steady state of stream s is represented by vector m of non-negative integers.
Each of the elements in m represents the number of times a corresponding node in s must

be executed in the steady state.

Note that m does not impose an order of execution of nodes. Size of a steady state is

the total number of executions of all the nodes in the steady state, and is represented by

Next we will summerize the properties of schedules prsented in [15].

Theorem 1 (Minimal Steady State Uniqueness) A Streamlt program that has a valid

steady state, has a unique minimal steady state.

Proof 1 (Minimal Steady State Uniqueness) Assume that there are two different min-
tmal steady states with same size. Let m and q denote vectors representing the two steady

states. Let Y, m; denote size of schedule m and ) ;q; denote size of schedule q. Note
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that since both m and q are minimal steady states, > ; m; = >_; q;. Since the schedules are
different, there must be some j for which m; # q;. Assume without loss of generality that
m; < q;j. Since a steady state does not change the amount of data buffered between nodes,
the node producing data for nmode i must also execute less times than corresponding node
in q. Similarly, the node consuming data produced by node j also must execute less times
than the corresponding node in schedule q. Since a Streamlt program describes a connected
graph, it follows that Vi,m; < q;. Thus > ; m; # >, qi, which is a contradiction. Thus there

cannot be two different minimal steady state.

Corollary 1 (Minimal Steady State Uniqueness) The additional property we have from
the above proof is that if m represents a minimal steady and q any other steady state, then

Vi, m; < qj.

Lemma 1 (Composition of Steady Schedules) If m and q are two steady states for a

Streamlt program, then m + q is also a steady state.

The above lemma is true because neither m nor ¢ change the amount of data buffered
in the channels. Thus a composition of the steady states does not change the amount of

data buffered in the channels, which makes the composition also a steady schedule.

Corollary 2 (Composition of Steady Schedules) If m and q are two steady states,

and Vi, m; > q;, then w =m — q is also a steady state.

If ¢ is a steady state and m = w + ¢ is a steady state, then w must not change the

amount of data buffered in channels. Thus w must be a steady state.

Theorem 2 (Multiplicity of Minimal Steady States) If a Streamlt program has a

valid steady state, then all its steady states are strict multiples of its minimal steady state.

Proof 2 (Multiplicity of Minimal Steady State) Assume that there exists a steady
state that is not a multiple of the minimal steady state. Let m denote the minimal steady
state. Let q denote the other steady state. Note that w = q — m is still a steady state,
as long as all elements of w remain non-negative (by Corollary 2). Repeat subtracting m
from q until no more subtractions can be performed without generating at least one negative
element in vector w. Since q is not a multiple of m, w # 0. But since we cannot subtract
m from w any further, i, m; > w;. Since m is a minimal steady state and w is a steady
state, this is impossible due to Corollary 1. Thus there are no steady states that are not

multiples of the minimal steady schedule.
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3.2.2 Calculating Minimal Steady State

This section presents equations used for calculating minimal steady states. Minimal steady
states are calculated recursively in a hierarchical manner. That is, a minimal steady state
is calculated for all children streams of Pipeline, SplitJoin and FeedbackLoop, and then the
schedule is computed for the actual parent stream using these minimal states as atomic
executions. This yields a minimal steady state because all child streams must execute their
steady states (to avoid buffering changes), and all steady states are multiples of the minimal
steady states (per Theorem 2). Executing a full steady state of a stream is referred to as

”executing a stream”.

Notation of Steady States

In this section, the notation for peek, pop and push will be extended to mean entire streams
in their minimal steady state execution. That is, a Pipeline p will consume o, data, produce
u, data and peek e, data on every execution of its steady state. Again, in the hierarchi-
cal view of Streamlt programs, a child stream of a Pipeline will execute its steady state

atomically.

A steady state of a stream s is represented by a set S of elements, S; = {m, N, c,v}.
The set includes a vector m, which describes how many times each Streamlt node of the
stream will be executed in the steady state, a corresponding ordered set N which stores all
the nodes of the stream, a vector ¢, which holds values [es, 05, us] for stream s, and a vector
v which holds number of steady state executions of all direct children of s. m and v are
not the same vector, because m refers to nodes in the subgraph, while v refers only to the

direct children, which may be Filters, Pipelines, splitters and FeedbackLoops.

For a stream s, set S is denoted as S5 and the elements of Sy are denoted as S, Ss. N,
Ss.candSs .

Note, that a steady state does not say anything about the ordering of the execution of
nodes, only how many times each node needs to be executed to preserve amount of data

buffered by the stream.

Filter

Since Filters do not have any internal buffering, their minimal steady state is to execute

the Filter’s work function once. This is the smallest amount of execution a Filter can have.

Thus, for a Filter f,
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Figure 3-1: Sample Streamlt streams

Sp= 0L} | of |5

Notice that Sy, is empty, because a Filter does not have any children.

Pipeline

Let the Pipeline p have n children and let p; denote the ith child of the Pipeline (counting
from input to output, starting with 0, the children may be streams, not necessarily Filters).
We must find S,.

We start with calculating all S),,7 € {0,...,n — 1}. This task is achieved recursively.

Next we find a fractional vector v” such that executing each p; v/ times will not change
the amount of data buffered in the Pipeline and the first child is executed exactly once.
Since the children streams are executed fractional amount of times, we calculate the amount
of data they produce and consume during this execution by multiplying S, ., and Sy, ., by

v/, Thus v must have the following property

1/ . " "
vog =1,Vi € {0,...,n —1},v; xup, = v;\ 1 *¥0p,_,
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We compute v” as follows. The first child executes once, thus vj = 1. The second child
must execute vf = Z? times to ensure that all data pushed on the the first channel is
1
11 Upy Upg Upy

consumed by the second child. The third child must execute vy = vy - = 20 2L times to
P2 p1 ¥p2

ensure that it consumes all the data produced by the second child. Thus,

i—1
" =0 “p
o ==

;=
H;':l Op;

Next we will find an integral vector v’ such that executing each p; v] times will not
change the amount of data buffered in the Pipeline. v’ will be a valid steady state of the
Pipeline.

In order to calculate v’ we multiply v” by ;1:_11 0p,;- Thus

i1, n—1 i—1 n—1

= (b - (I ) ( 11

U = T Op; | = Up, Op;
j=1%; /) \j=1 =0 j=it+1

Now we find an integral vector v, such that, for some positive integer g, v/ = g * v, and
>=; v; is minimal. In other words, we find the greatest integer g, such that v’ = g * v, with
v consisting of integers. v represents the minimal steady state for pipeline p.

This is achieved by finding the ged of all elements in v/, and dividing v’ by g. Thus

,U/

Y7 ged(v)

v represents the number of times each child of p will need to execute its steady state
in order to execute the minimal steady state of p, thus S, , = v. v holds a steady state
because amount of data buffered in p does not change, and it is a minimal steady state,
because ), v; is minimal.

We construct set S}, as follows:!

00 * Spo,m © + - 0 Un—1 % Sp,_1,ms Spg,N © -+ © 5P, 1N
epy + (V0 — 1) * 0p,
Vo * Opq , U

Un—1 * upn71

An example is presented in Figure 3-1 (a). For this Pipeline, we have the following

steady states for all children of the Pipeline:

Here we use symbol o to denote concatenation of vectors and sets. Thus [1 2 3]o[456] =123 45 6]
and {ABC}o{DEF}={ABCDEF}
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- . - - ; -
Sq= [Ha{A}v 1 vH > Sp = [1]7{B}7 2 a[]
._3_ _3_
_2_ _5_
SC: [1]7{D}7 2 7[] ) SD: [1}7{D}7 3 7[]
1

Using the steady states above, we get the following vector v':

(2%2x%3) 12

;| e | | s
Sl 3x3)3) | | 27
(3x3x1) 9

We now calculate g = ged(v') = ged(12,18,27,9) = 3. We thus have

12 4

o 1| 18 6
V= — = — =

33127 9

9 3

Finally, we construct Sy:

454,m 065B,m ©950,m ©3Sp,m.Sa,n oSN o ScnoSp N
1+(4—1)*1 !
+ — *
Sp =
4 %1 ,
9
3x1
3

SplitJoin

Let the SplitJoin have n children and let sj; denote the ith child of the SplitJoin (counting
from left to right, starting with 0). Let sjs and sj; denote the splitter and the joiner of the
SplitJoin, respectively. Let wg; denote the number of items sent by the splitter to ith child
on splitter’s every execution. Let w;; denote the number of items consumed by the joiner
from the ¢th child on joiner’s every execution. We are computing S;.

We start by calculating all Sgj,,7 € {0,...,n—1}.
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Next we compute a fraction vector v” and a fraction a;’ such that executing the splitter
exactly once, each child sj; v} times and the joiner a} times does not change the amount
of data buffered in the SplitJoin. Again, since v” and a are fractions, we multiply the
steady-state pop and push amounts by appropriate fractions to obtain the amount of data
pushed and popped. For convenience we define a” to be the number of executions of the
splitter and set it to 1.

We thus have that each child sj; must execute v = % times. To compute the number

of executions of the joiner, a”/, we select an arbitrary kth child (0 < k < n) and have that

] )
.. w. Ugj .
the joiner executes a”/ = —>% & times.
J Os, Wik

Next we compute integer vector v’ and integers as and a; such that executing the splitter
as times, each child sj; v} times and the joiner a; times still does not change the amount of
data buffered in the SplitJoin. We do this by multiplying ay, v" and af by w; x (HZ};& osjr>.
Thus we get

! n—1 .
s = Wjk (HTZO 05.77‘)
;o ‘ n—1 wsi _ , i—1 n—1
r_ n-1_ Wy Usj, A k—1 n—1
a] B w'j’k ( r=0 OS]T) * Osp, Wik - wS,k * uS]k * (HT‘:O OS'r') ( r=k+1 087")

Now we use v/, aj and a; to compute minimal steady state of the SplitJoin. Since v’,
al, and a;- represent a steady state, they represent a strict multiple of the minimal steady
state. Thus we find the multiplier by computing g, the ged of all elements in v” and integers

ay and a}, and dividing v', a; and a} by g. We have that

— / / /
g= ng(U y Qg (1])
o
= gl
ag = Ls
g
a;
CL]' = ?

Finally, we use v, as and a; to construct Ss;:

V0 * Ssjo,m © -+ 0 Up—1 % Ssj,_1.m © [as aj],
Ssjo,N©...08s5 1 no{sjs, St
Ng * Og
ng *0g |

nj*uj

volas] o[ay]
Figure 3-1 (b) depicts a sample SplitJoin. The following are the steady states of the
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SplitJoin’s children:

2 3
SA = [1]7 {A}v 2, H ) SB = [1]’ {B}’ 2, H
1 6

For this SplitJoin, we select k = 0 (we use the left-most child to compute a;-). We get the

;| 2s22) | |8
v [1*2(2)]_{4]
= 1%2(2x2) =8
= 2x1(2%2) =8

: / /! /
following v’, a§ and a;

R V-

Thus ged(v', ay, a}) = ged(8,4,8,8) = 4. Now we obtain

8 2
1
v = %:Z =
4 1
a’S_ %{5:%:2
_ %8 _
G- G=§=2

Finally, we construct S;:

2% Ssjom © 1* Sgjym 0 (2 2],

Ssjo,N o Ssjl,N o {Sjm 5jj}7

Ssj: 2%x3
2x3 |,
2
2x%x4
2

It is important to note, that it is not always possible to compute a unique v” for all
possible SplitJoins. The reason is that unbalanced production/consumption ratios between
different children of a SplitJoin can cause data to buffer up infinitely.

Definition 2 (Valid SplitJoin) A SplitJoin is valid iff Vk,0 <k <n —1,a7, =aj, .,

using notation of a;{k to indicate that kth child of the SplitJoin was used to compute the

value of aj.

An example of an illegal SplitJoin is depicted in Figure 3-2. The rates of throughput

of data for the left child mean that for every execution of the splitter, the joiner needs to
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Figure 3-2: An illegal SplitJoin

be executed exactly once to drain all data entering the SplitJoin. The rates of throughput
of data for the right child mean that for every execution of the splitter, the joiner needs
to be executed exactly twice to drain all data entering the SplitJoin. That means that
consumption of data by the joiner will be relatively slower on the right side, causing data
to buffer up. This means that the given SplitJoin does not have a steady state.

If a SplitJoin is such that it does not have a steady state, it is considered an illegal
SplitJoin. It cannot be executed repeatedly without infinite buffering, so a practical target
for Streamlt cannot execute it. The calculations presented here assume that the SplitJoin
is legal. In order to check if a given SplitJoin is legal, we test if selecting a different child
for calculation of af yields a different af. If it does, then the two paths tested have different

production/consumption rates, and the SplitJoin does not have a steady state.

FeedbackLoop

Let FeedbackLoop fl have children B (the body child) and L (the feedback loop child). Let
the joiner and the splitter of the FeedbackLoop be denoted fl; and fls. Let w;; and wj
denote the number of data items consumed by the joiner from the input channel to the
FeedbackLoop and from flr, respectively. Let w, o and ws r denote the number of data
items pushed by the splitter onto the FeedbackLoop’s input channel and to flj respectively.
We are computing Sp;.
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First we calculate S and ST,

Now we compute a fractional vector v” = [al a7, aj aj] such that executing the body
child a’p times, the splitter aj times, the loop child a7 times and the joiner o times will

not change the amount of data buffered up in the FeedbackLoop. Thus

agxup = al *os
ap xup = a;»*wLL

a,xwsp = ap xop
a}*Uj = dap*op

We begin with setting a;’ = 1. B needs to be executed aBozuj times, the splitter needs
to be executed a] = LB times and L needs to be executed a} = ZLUBZeL times
B Os op 0s oL

Furthermore, in order to assure that the FeedbackLoop has a valid steady state, we continue

. .. . U4 w . o . .
going around the loop, the joiner must require éZ—B OSLL J—LL = 1. If this condition is not
s 7

satisfied, the FeedbackLoop does not have a steady state. This is a necessary, but not a

sufficient condition for a FeedbackLoop to be valid.

Next we compute an integer vector v’ = [ag a7, aj a’] such that executing B a times,
splitter ag times, L a7 times and joiner a; times will not change the amount of data buffered

in the SplitJoin. We do this by multiplying v” by op * os * of,.

/

a'p = Uuj*0g%o0[
al = ujxup*ws
aj = OB *O0s* 0],
as = Uj*xUB * O
We now use v’ to compute v = [ap ar, as aj], a minimal steady state for the Feed-

backLoop. We do this by finding an integer g, the ged of all elements in v" and computing

v =

Q|

Finally, we construct S¢; as follows:

ap * Spm oar, * Sp.m © [as aj],
Sp,n oSty o{fls, fl;},
Spj = aj * wj g

aj *wjr | Y

(s * Ws 0

Figure 3-1(c) depicts a sample FeedbackLoop. The following are the steady states of the
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SplitJoin’s children:

2 )
SB = [1]7{3}7 2 v[] ) SL = [1]’{11}7 5 7[]
1 6

We compute v’ for this FeedbackLoop:

5%3%5 75
o H5x1x3 _ 15
5% 1%5 25
2%x3x%5 30

Thus g = ged(75,15,25,30) = 5 and

Finally, we construct Sy

15 SB,m o3 * SL,m o [5 6],

SN oSt o{fls fl;},

15
Sp = 6 * 2

62 |,
5*3

3.3 Initialization for Peeking

Consider a Filter f, with peek amount of 2 and a pop amount of 1. When a Streamlt
program is first run, there is no data present on any of the channels. This means that for
the first execution, filter f requires that two data items be pushed onto its input channel.
After the first execution of f, it will have consumed one data item, and left at least one
data item on its input channel. Thus in order to execute f for the second time, at most one
extra data item needs to be pushed onto f’s input channel. The same situation persists for
all subsequent executions of f - at most one additional data item is required on f’s input

channel in order to execute f.
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This example illustrates that first execution of a Filter may require special treatment.
Namely, the source for Filter’s data may need to push more data onto Filter’s input channel
for Filter’s first execution. Due to this condition, a Streamlt program may need to be
initialized before it can enter steady state execution.

There are other constraints (latency constraints) which may require more complex ini-
tialization. These will be discussed in Chapter 6.

After an execution, a Filter f must leave at least ey — oy data on its input channel.
Thus, if the only constraints on initialization are peek-related, it is a sufficient condition for
entering steady state schedule that Vf € Filters,iny > ey — oy.

Specific strategies for generating initialization schedules for peeking will be presented in
Chapter 4 and Chapter 5.

3.4 Schedules

Once a program has been initialized, it is ready to execute its steady state. In order to do
this, a steady state schedule needs to be computed. The steady states computed above do
not indicate the ordering of execution of the nodes, only how many times the nodes need
to be executed.

A schedule is an ordering of nodes in a Streamlt streams. In order to execute the
schedule, we iterate through all of its nodes in order of appearance and execute them one
by one. For example in order to execute schedule {ABBCCBBBCC} we would execute
node A once, then node B, node B again, C two times, B three times and C twice again, in
that order.

In order to shorten the above schedule we can run-length encode it. The schedule
becomes {A{2B}{2C}{3B}{3C}}.

3.5 Schedule Size vs. Buffer Size

When creating a schedule, two very important properties of it are schedule size and amount
of buffering required. Schedule size depends on encoding the schedule in an efficient way,
while amount of space required depends only on order of execution of nodes. The two are
related, however, because order of execution of Filters affects how efficiently the schedule
can be encoded.

For example, execution of Filters in Pipeline depicted in Figure 3-3 can be ordered in
two simple ways, one resulting in a large schedule but minimal amount of buffering, the
other resulting in a small schedule but a large amount of buffering.

The steady schedule of the Pipeline in Figure 3-3 executes Filter A 4 times, Filter B 6
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Figure 3-3: Sample 4 Filter Pipeline. This Pipeline is the same as one in Figure 3-1 (a),
except that its children do not peek extra data

times, Filter C' 9 times and Filter D 3 times. Writing out a schedule that requires minimal
buffering results in schedule { AB{2C}BCDAB{2C}ABCDB{2C}ABCD}. This schedule
requires a buffer for 4 data items between Filters A and B, 4 items between B and C and 3
items between C' and D, resulting in total buffers size 11, assuming data items in all buffers
require the same amount of space. The schedule itself has 18 entries.

To compare, writing the schedule in the most compact method we get
{4A}{6B}{9C}{3D}

This schedule requires a buffer for 12 data items between Filters A and B, 18 items between
B and C, and 9 data items between C' and D, resulting in total buffers size 39. The schedule
has 4 entries.

We can compare the storage efficiency of these two schedules by assuming that one
data item in a buffer requires z amount of memory and each entry in a schedule requires
y amount of memory. Thus the two schedules will require the same amount of storage to

store themselves and execute if 11x + 18y = 39x + 4y.

11z +18y = 39z + 4y
14y = 28z
y = 2z

Thus the smaller schedule is more efficient if every data item requires less than twice

the amount of storage than every entry in the schedule.
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One of the difficulties in scheduling Streamlt programs lies in finding a good set of

trade-offs between schedule size and buffering requirements.
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Chapter 4

Hierarchical Scheduling

In this chapter we present Hierarchical Scheduling, a technique which is quite effective for
scheduling Streamlt programs, but which cannot schedule all programs, and which may

require the buffers to be very large.

Section 4.1 provides some motivation for hierarchical scheduling. Section 4.2 presents
the notation used for hierarchical notation. Section 4.3 provides an algorithm for computing

hierarchical schedules.

4.1 Motivation

As has been explained in Section 3.5, the ordering of execution of nodes in a Streamlit
program can have a significant effect on the amount of resources necessary to execute the
schedule. The two important factors to consider when creating the schedule is amount of
buffering necessary to execute the schedule, and the amount of space necessary to store
the schedule. The amount of buffering necessary is controlled by the ordering of execution
of nodes of the Streamlt graph. The amount of storage necessary to store the schedule is
controlled by the encoding of the schedule. As a general rule, ordering which minimizes the

buffering space requirements is fairly irregular and difficult to encode efficiently.

One technique used for encoding schedules is to form loop-nests of sub-schedules and
repeat them multiple times, until a steady-state schedule is reached. For example, the

stream in Figure 4-1 has a following steady state:
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Thus one steady state schedule for this stream can be

{9{A2split {2D} } H2{{3C}{2split }{2B} }}

Here, {A{2split}{2D}} and {{3C}{2split}{2B}} are the inner nests, executed 9 and 2
times respectively.

If, the overall schedule has every StreamlIt node appear only once (as in the example
above), the technique is called Single Appearance Scheduling [7]. One of difficulties in
using Single Appearance Scheduling is finding a good way to form loop-nests for the sub-
schedules, because the buffering requirements can grow quite large. An example of this has
been presented in Section 3.5.

StreamlIt provides the scheduler with a pre-existing hierarchical structure. While it
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is possible to use techniques developed for Single Appearance Scheduling to create valid
schedules for StreamlIt programs, Single Appearance Scheduling does not satisfy all require-
ments of an effective Streamlt scheduler. This is because some FeedbackLoops cannot be
scheduled using Single Appearance Scheduling techniques. This difficulty arises because the
amount of data provided to the FeedbackLoop by the delayys; variable is not sufficient to
perform a complete steady-state execution of the loop, thus preventing the schedule for the

FeedbackLoop to be encoded with only a single appearance of every node in the schedule.

The solution to this problem is to have the same node appear multiple times in the
schedule. While this solves the problem of inability to schedule some FeedbackLoops, it
introduces another problem: which nodes should appear several times, and how many times
should they be executed on each appearance. The solution proposed here goes half-way to

solve the problem. A more effective solution will be proposed in Chapter 5.

In hierarchical scheduling we use the pre-existing structure (hierarchy) to determine
the nodes that belong in every loop-nest. Basically, every stream receives its own loop-
nest, and treats steady-state execution of its children as atomic (even if those children are
streams whose executions can be broken down into more fine-grained steps). In the exam-
ple above, the Pipeline has a SplitJoin child. The SplitJoin is responsible for scheduling
its children (nodes C, B, split and join). The Pipeline will use the SplitJoin’s sched-
ule to create its own steady state schedule. Here the SplitJoin’s schedule can be T; =
{{9split}{3C1{9D}{2j0in}}, thus making the Pipeline’s schedule !

Tyipe = {{9AH{2T5;}{4B}} = {{9AH{2{{9split {3CHID}{2join}}}{4B}}

The problem of inability to schedule some FeedbackLoops is alleviated by allowing Feed-
backLoop to interleave the execution of its children (the body, the loop, and the splitter and
joiner). This results in FeedbackLoop containing multiple appearances of its children. All
other streams use their children’s schedules in their schedules only once. This technique
is called Pseudo Single Appearance Scheduling, since it results in schedules that are very
similar to proper single appearance schedules. While it does not allow scheduling of all
FeedbackLoops (a FeedbackLoop may have a child which requires more data for steady state
execution then made available by the delayy; variable) it has been found to be very effective,

and only one application has been found which cannot be scheduled using this technique.

!Notation for this schedule is explained in next section (Section 4.2).
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4.2 Notation

The notation in the above example, is very similar to that presented in Section 3.5. A
number in front of a node represents that the node is meant to be executed a certain
number of times. The one big difference is that {27;} means that the schedule for the
Pipeline is meant to be executed twice. Since Ty; = {{9split}{3C}{9D}{2join}}, {2Ts;}
is same as {2{{9split}{3C}{9D}{2join}}}.

This means that to execute Tp;pe, node A is executed 9 times, schedule T; is executed
twice and node B is executed twice, in that order. To execute T;, the splitter is executed
9 times, node C' is executed 3 times, node D 9 times and the joiner twice.

Thus, writing the schedule of Tjpe into a flat schedule (one with no loop-nests) results
in schedule {9A}{9split }{3C}{9D}{2j0in}{9split}{3C}{9D}{2join}{4B}.

In other words, Ty; is a loop-nest, which can be executed multiple times. When storing
a schedule, T}; is stored only once, and every use of Ts; becomes the reference to the actual
schedule.

A steady schedule for a stream s will be denoted by T, while an initialization schedule
for a stream s will be denoted Is. A splitter of a SplitJoin or a FeedbackLoop s will be
denoted as splits, while the joiner will be denoted as joins.

This section will continue using the notation for e, o and u extended to streams. That
is, for a stream s, e; will represent the amount of data needed by s on its input channel
in order to execute its minimal steady state schedule; os represents the amount of data
consumed by from its input channel s during execution of its steady state schedule; and w
represents the amount of data pushed by s onto its output channel.

The notation for e, o and u will also be extended to initialization schedules. Namely,
e’ represents the amount of data required by stream s on its input channel in order to
execute the initialization schedule for s; o’ represents the amount of data consumed by s
from its input channel during its initialization schedule; and u? denotes the amount of data
pushed by s onto its output channel during execution of its initialization schedule. The
initialization schedules are set up in such a way, that after all streams have executed their
initialization schedules, the program is ready to enter its steady state execution.

Note, that it is possible that a stream s has u’ # 0. An example of this will be presented
in Section 4.3.4.

A hierarchical schedule for a stream s is denoted as

€s e’

— — i i
Hs = Ts;-[s;Cs - Og yCs = 013
Us ul
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Figure 4-2: Sample Streamlit streams used for Pseudo Single-Appearance Hierarchical
Scheduling

4.3 Pseudo Single-Appearance

Hierarchical Scheduling

This section will develop hierarchical scheduling techniques to create initialization and
steady state schedules. A simple implementation of the hierarchical scheduling creates a
single-appearance schedule. While single-appearance scheduling is quite effective in schedul-
ing Streamlt programs, it is also easy to construct programs that have FeedbackLoops that
are impossible to schedule. To alleviate the problem, the single-appearance scheduling
was slightly modified to allow FeedbackLoops to schedule programs using hierarchical push
scheduling. This does not solve the problem altogether (some FeedbackLoops are still impos-
sible to schedule using this technique), but this technique is able to schedule many programs
which cannot be scheduled with a simple single-appearance scheduler.

Sample streams for techniques described here are taken from Figure 4-2. The streams

in Figure 4-2 are identical to those in Figure 3-1 with exception of the FeedbackLoop.

4.3.1 Filters

An execution of a Filter is an atomic operation. Thus a steady state schedule for a Filter
fis simply T = (f).
A Filter has no internal buffering. Thus there is no need to initialize a Filter for its

steady state. Filters may, however, peek data. That means that in order to enter a steady

43



state, sufficient amount of data must be pushed onto Filter’s input channel. Thus, for a
Filter f, 63} =ep —o0f.

Finally, a hierarchical schedule of a Filter is

€f €f —of
Hf = {f}7 {}a Of ) 0
Uf 0

4.3.2 Pipelines

Here, for examples, we will use the sample Pipeline in Figure 4-2(a). The steady state

schedule for this Pipeline is

w © o
QW
w © o

Initialization

Calculation of the initialization schedule starts with computing hierarchical schedules for
all children of the Pipeline.

In order to create an initialization schedule of a Pipeline, all of Pipeline’s children’s
initialization schedules must be executed. Every child must execute its initialization sched-
ule before it can execute its steady-state schedule. Some children may require some data
in order to execute their initialization schedules. The upstream children provide this data
to them by first executing their own initialization schedule, and then their steady-state
schedule. Thus, in the final form, the execution of a Pipeline’s initialization schedule first
executes the initialization schedule of the top-most child, then executes the steady-state
schedule this child several times, then the initialization schedule of the second-from-the-top
child, followed by executing this child’s steady-state schedule several, etc, until the bottom-
most child is reached. Since the bottom-most child does not need to provide any data
Pipeline’s downstream children (there aren’t any), the bottom-most child only executes its
initialization schedule.

The initialization schedule is calculated as follows. At every stream of the Pipeline, the
amount of data necessary to initialize all the streams below is calculated. For kth stream,
that amount is denoted inity. If the Pipeline has n children, then for the bottom-most
child, p,_1, that amount is init,_; = €’ _,- The data to the kth child is provided by the

Pn
k — 1 child, during its initialization and subsequent execution of its steady state schedule.
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The initialization provides u;k_ , data items. Thus the k£ — 1 child must execute its steady

o
inity Up,

state schedule l,_1 = { klw times. The amount of data required for initialization of

Upg_1
the Pipeline by the k — 1 child is inity_1 = e;k_l + g1 % 0p, .

This calculation is performed for all children of the Pipeline, starting at the last (bottom-
most) child, and moving up. For the sample Pipeline in Figure 4-2(a), the values computed

are:

I3 =0 inity =eb +l3xop=2+0%1=2
b =™t = [0 =2 nity —eh+lavoc=0+2%2=4
I :_i"itl—“ix_:[él;OWZQ inity =€y +lpxoa=0+2x1=2
0 UA 3

Now, the initialization schedule is simply constructed by iterating over all children of the
Pipeline, from top to bottom, and concatenating all initialization and appropriate steady
state schedules. Thus I, = {Ia{2Ta} IgTpIc{2Tc}Ip}.

Finally, we need to compute the amount of data peeked, popped and pushed by the
Pipeline during its initialization.

The amount of data popped is simply the amount of data popped by the top-most child
when executing the Pipeline’s initialization schedule, that is the amount of data popped
by the first child during its own initialization plus the amount of data popped during its
steady-state execution times number of steady state executions. That is 0; = oif)o + 1o * 0pg.-

Similarly, the amount of data pushed by the Pipeline is simply the amount of data pushed
by the bottom-most child during its initialization. Remember that the bottom-most child
never executes its steady-state schedule. Thus u; = U;)n, L

Computing the amount of data peeked by the Pipeline during initialization may be a
little more complicated, because unlike popping and pushing, peeking is not accumulative.
Luckily, we can rely on our knowledge of structure of the Streamlit graph to calculate the
amount of data peeked by a Pipeline. We know that a Pipeline is a single-input structure.

We also know that this single input will lead directly into a Streamlt node. There are only

three possibilities for what this node will be.

e If Pipeline’s first node is a Filter f (the first child of the Pipeline is a Filter or a
Pipeline with a Filter as its first node) then the extra amount of data peeked by the
Pipeline on initialization will be e’]} — o’]}. If the first child is a Filter, then pg is f and

the extra amount peeked is also eéo — 0;0. If the first child is a Pipeline with a Filter
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first node, we can show by induction that this Pipeline’s extra peek amount will also

i i
be € — Opo-

e If Pipeline’s first node is a splitter (the first child of the Pipeline is a SplitJoin or a
Pipeline with a splitter as its first node) then the extra amount of data peeked by the
Pipeline on initialization will be 0, because splitters never peek. Furthermore, for the
same reason, the amount of extra data peeked by the first child on its initialization

%

. X _
will also be zero, or e, — o, = 0.

e If Pipeline’s first node is a joiner (the first child of the Pipeline is a FeedbackLoop
or a Pipeline with a joiner as its first node) then the amount of extra data peeked
by the Pipeline on initialization will be 0, for the same reasons as above. And again
i

[ A
Po Opo_o'

Thus on initialization, the Pipeline will have an extra peek amount of eéo — 0;30, and the

total amount of data peeked by the Pipeline for initialization is e; = (6;)0 — oéo) + lo * 0pg-

Steady State Schedule

The steady state state schedule is calculated as a single-appearance schedule. Calculation
of a single-appearance schedule starts with computing .S}, the steady state for the Pipeline.

Using S, the steady state schedule for the Pipeline is constructed by concatenating
multiple steady state schedules for all children of the Pipeline, from top to bottom. For kth
child, its steady state schedule must be executed S, ; times. The steady state guarantees
that every child receives sufficient amount of data to execute all its steady state schedules,
and since the data is being passed from top to bottom, all children will have received all
their data before executing.

The consumption and production of data for the steady state schedule is already calcu-
lated by the steady state, and is S, ..

Thus, for our example, T}, = {{4T4}{6Tp}{9Tc}{3Tp}}. The final hierarchical schedule

is

2
H, = S {{4TaH{6TH{ITc H3Tp}}, {Ia{2Ta  p{1Ta} [c{2Tc} D}, | 4 | .| 2
0

4.3.3 SplitJoins

Creating a schedule for a SplitJoin is essentially identical to scheduling a Pipeline. The

initialization schedule only needs to compute how many times the splitter needs to be
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executed, and construct the actual schedule. The steady state schedule is constructed by
concatenating steady state schedule of SplitJoin’s children, the splitter and joiner.

For our example in Figure 4-2(b), the steady state is

A
B
splitter

NN =N
DN =N

joiner
Initialization

In order to initialize a SplitJoin, all its children must execute their initialization schedules.
The only requirement for executing those schedules is that they have been provided with
sufficient data on their input channels. Since the splitter provides data for all the children of
a SplitJoin, it is the only element of a SplitJoin that must execute its steady state schedule.

For kth child of a SplitJoin, the splitter must provide eijk data items. One execution of

the splitter causes it to push w,j data items toward the kth child. Thus the splitter must

execute at least [, = zj“;c—‘ times. In order to find out how many times the splitter needs
to execute to initialize all children, I,, we simply find the maximum Ij. Thus I, = " (I},).

In the sample SplitJoin from Figure 4-2(b), we get following [xs:

The maximum Igs is 1, thus [, = 1, the splitter must be executed once for initialization.

The initialization schedule is constructed by concatenating an appropriate number of ex-
ecutions of the splitter and initialization schedules of all the children. Thus in our example,
Ij = {split 14 Ip}.

The consumption of an initialization schedule of a SplitJoin is computed as follows:
eéj = uéj = ls* 045, and ufsj = 0. The peeking and popping amounts are simply the amount
of data popped by the splitter for every one of its executions times the number of times it
is executed. The joiner is never executed, thus the push amount is 0.

Thus for our example, eij = uéj =1%3=3and ul =0.

Steady State

Similarly to the algorithm for Pipeline, the steady state is constructed by using Sg;, to

concatenate the executions of the splitter, all children of the SplitJoin and the joiner to-
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joiner
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splitter
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Figure 4-3: Sample FeedbackLoop. 1f this FeedbackLoop has a delays value set to 7,
it does not have a steady state schedule which will allow it to execute forever. If the
dealyys; value is increased by 1 to 8, the FeedbackLoop has a steady state schedule of
{join{2B}{5split} L join{2B}{5split} L join{2B}{5split} L{2 join}{4B}{10split}{2L} }.

gether.

For our example, the steady state schedule is simply

Ty = {{2 split{2Ta}Tp{2 join}}

The consumption vector, cg; is the same as S .

Thus the hierarchical schedule for the SplitJoin in Figure 4-2(b) is

6 3
Hgj = < {{2 split}{2T4}Tg{2 join}}, {split 1o I}, | 6 |, | 3
8 0

4.3.4 FeedbackLoops

Scheduling of FeedbackLoops is a task that can be made difficult, if the amount of data
provided for the FeedbackLoop by the delayy value is low. Before a Streamlt program
begins executing, the FeedbackLoop needs to be provided with some data in one of the
internal channels. Without this data, the splitter and the joiner of the FeedbackLoop will
not be able to execute, because they will never have sufficient data on their input channels.
This is a consequence of the FeedbackLoop having a cyclical structure.

The difficulty in scheduling FeedbackLoops is that if the amount of data made available
to the FeedbackLoop by the delayy value (as explained in Section 2.1.4) is small, there will
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be very limited number of ways to execute the FeedbackLoop. In fact, it is possible that
the amount of data available to the FeedbackLoop is so small, it cannot reach and complete
an execution of a steady state schedule. An example of such FeedbackLoop is presented in
Figure 4-3.

Here we will use FeedbackLoop from Figure 4-2(c). The steady state schedule for this
FeedbackLoop is

15 B 15
L 12 3
Sp = ; , v 12,
splitter 5
o 15
6 joiner 6

Initialization Schedule

Initialization for the FeedbackLoop is calculated in a similar way to initialization of a
Pipeline. The number of steady state executions of the children of the FeedbackLoop is
denoted Ip and [j for the body child and the loop child, respectively. The number of
executions of the splitter is denoted Iy and the joiner is denoted [;.

Since the initial data is inserted into the buffer between the loop child and the joiner
(as explained in 2.1.4), it follows that the loop child should initialize last - it will be the
last one receive data to initialize. Since the computation of the initialization schedule is
similar to the way it was done for Pipeline, we will start with the child which is executed
last, namely the loop child. Similarly as with Pipeline, the which is initialized last does not
execute its steady state schedule for initialization, thus we set [, = 0. The splitter must
provide the loop child with just enough data to initialize, the body child must provide the
splitter with just enough data for the splitter to pass enough data to the loop child, etc.
Thus,

lr, =0
ol
I, = |1z
s Ws,1
lB _ _os*ls—u}ZB
Uflp
L — -Oj‘lB—HB*Ole
J - U

This initialization schedule will only be valid if there is enough data provided between
the loop child and the joiner, or delayy > l; * wj. If this condition does not hold, the
FeedbackLoop cannot be scheduled using pseudo single-appearance algorithm.

Referring to the example Figure 4-2(c), we obtain the following values for ns:

49



Furthermore, since delays = 15, we have 15 > 3 * 3, thus a valid initialization schedule
can be constructed.

The initialization schedule is constructed by concatenating executions of the joiner,
body child, splitter and the loop child. The body child will execute both its initialization
schedule as well as its steady state schedule, while the loop child will only execute its
initialization schedule.

Thus for our example we get 15 = {{3 join}Ip{6TB}{2 split}Ir}.

We now compute the consumption of data for the initialization schedule of the Feed-
backLoop: eécl = Olﬂ = n; * wjo and uécl = ng * Wso. Similarly as in computation for the
SplitJoin, these values are simply the production and consumption of the splitter and joiner
from their appropriate input and output channels multiplied by the number of times the
splitter and joiner are executed during initialization schedule.

In our example, e’]}l = 03}1 =3%x2=06and u’]}l = 3% 3 =9. Note that the FeedbackLoop
pushes data out during its initialization.

Finally, we compute the amount of data present in channels after initialization. These
amounts are important because they will be used to compute the steady state schedule
of the FeedbackLoop. These amounts were not necessary for computation of steady state
schedules of Pipeline and SplitJoin. These amounts are calculated by simply subtracting
the amount of data popped from a channel from amount of data pushed into a channel.

Here we adopted the notation for input and output channel from Section 3.1.

it — . -

ing = lj*xu; —Ip*oyy,

out’y = ulj'le +lilp*up, —ls*os
iniL: ls xws1 — I *op,

out;, = delayg + ujclL +lpxup, — 1l xwjs

Steady State Schedule

Computing the steady state schedule for a FeedbackLoop is more complicated than for the
other streams. The reason for this is (as explained above) that FeedbackLoops may require

a non single-appearance schedule, while other Streamlt construct can always be scheduled
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element
data items in buffer executions left consid- | executions
ered
ing | outp | ing | outy, | split | B | join | L
1 6 6 0 5 9 4 3 split 2
1 0 12 0 3 9 4 3 L 1
1 0 7 6 3 9 4 2 join 2
11 0 7 0 3 9 2 2 B 5
1 5) 7 0 3 4 2 2 split 1
1 2 10 0 2 4 2 2 L 1
1 2 5 6 2 4 2 1 join 2
11 2 5 0 2 4 2 1 B 4
3 6 5 0 2 0 2 1 split 2
3 0 11 0 0 0 0 1 L 1
3 0 6 6 0 0 0 0

Table 4.1: Trace of execution of steady-state algorithm on sample FeedbackLoop from Figure
4-2(c). The executions left amount is the number of executions left for a particular child
to complete a steady state execution of the FeedbackLoop. One this value reaches 0, the
element is not executed anymore, even if it has data to execute.

using single-appearance schedules.

The algorithm used for creating of a steady state schedule will work in several phases.
The amount of data present in channels between the children of the FeedbackLoop, the

joiner and the splitter is kept track of to determine which element is allowed to execute.

The algorithm for creating a steady state schedule of a FeedbackLoop iterates over the
elements of the FeedbackLoop in order of (joiner, body child, splitter, loop child). The
algorithm executes each element as many times as possible, considering the amount of data
required to execute the element and the amount of data available internally within the
FeedbackLoop’s channels to execute the element and not exceeding the steady state number
of executions for the element. Each execution of an element is appended to the steady state

schedule.

This iteration is repeated until either all elements have executed their steady state
number of times, or until a complete iteration has been performed with no element being
able to execute. The first case indicates a successful completion of the algorithm. The

second case indicates a failure - the algorithm is unable to schedule the FeedbackLoop.

Table 4.1 illustrates the execution of this algorithm for our sample FeedbackLoop. Notice
that in the table, the first row and the last row have the same amount of data buffered
in channels, thus indicating that a full steady state schedule has indeed been computed.
Furthermore, the last entry considering execution of B has sufficient data to execute B 5

times, but only executes it 4 times to ensure that a steady state schedule is constructed.
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The schedule resulting from the above computation is
Ty = {{2 join}{6Tp}{2 split}Tr{2 join}{5Tr} split Tr{2 join}{4Tp}{2 split}Ty}

This schedule is obtained by going through Table 4.1 from top to bottom and concatenating
the appropriate number of executions of every child of the FeedbackLoop, as listed in the
”executions” column.

The steady state consumption cy; is again simply Sy .. Thus the hierarchical schedule

is:

{{2 join}{6TB}{2 split}Tr{2 join}{5TR},
split Tr{2 join}{4Tp}{2 split}Ty},

Hy = 12
{{8 join}Ip{6Tp}{2 split}I}, | 12 |, | 6
15 9
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Chapter 5

Phased Scheduling

We then propose Phased Scheduling, a technique which allows to schedule all non-messaging
StreamlIt programs, and which allows for better control of trade-off between schedule size
and buffer size.

Section 5.1 provides an introduction to and explanation of Phased Scheduling. Section

5.2 presents a Minimal Latency Schedule implementation using Phased Scheduling.

5.1 Phased Scheduling

The pseudo single-appearance hierarchical scheduling technique presented in Chapter 4,
while quite effective in scheduling simple applications, cannot schedule a small number
of tight FeedbackLoops. Furthermore, the technique is quite inflexible when it comes to
attempting to create a different tradeoff between schedule size and buffer size. The schedules
created using single appearance hierarchical scheduling tend to be quite small at the expense
of larger buffering requirements. A quite simple situation when such tradeoff is not desired,
could be if the schedule is being stored in a large cheap ROM device, while the RAM used
for buffering data is more expensive. It is also quite possible that latency constraints cannot
be satisfied by a single appearance hierarchical schedule. Clearly, a more flexible technique
is required for scheduling.

A key observation in hierarchical scheduling is that each component only needs to worry
about the data that enters or leaves its children. The amount of buffering done internally in
a child is not noticeable or important to the parent component. This observation changes
slightly if latency constraints are placed on the computation. Namely, the important infor-
mation to keep track of is amount of data that leaves or enters children as well as amount
of data that crosses latency constraint boundaries.

This observation leads to a conclusion that scheduling execution of the Streamlt pro-

grams using hierarchical scheduling can be simpler than scheduling the entire program all

53



at once (scheduling the program all at once requires tracking all buffers and latency con-
straints at once). Phased scheduling is a concept that expends on hierarchical scheduling,
but does not require that a stream has a single or pseudo single appearance schedule. Each
stream is allowed to have multiple sub-schedules, also called phases. Each phase consists
of phases of the children of the stream that will be executed to execute the phase. The
phases must be executed in correct order. When all of the initialization phases of a stream
have been executed, the stream has executed its initialization schedule and is ready to enter
steady state execution. When all of the steady state phases of a stream have been executed
in order, the entire steady state schedule for the stream has been executed.

The granularity of splitting the steady state schedule into phases is left up to the spe-
cific scheduler. Different streams can use different granularities of execution. In principle,
the parent should not need to know the scheduling granularity of its children. The only
exception to this rule are FeedbackLoops, which can have children which are not scheduled
tightly enough to allow the FeedbackLoop to execute. An example of that may be a pseudo
single-appearance hierarchical scheduling algorithm described in Section 4.3 implemented
using phase scheduling.

One important observation to make is that it makes little sense to have phases which do
not consume or produce any data, and which do not have data cross any latency boundaries.
This is because such phases can easily be merged with preceding or following phases without
any effect on ability to schedule a particular program. This observation allows to easily
bound the size of the resulting schedules to be the sum of executions of first child, last child
and children with latency boundaries. For example, the Pipeline in Figure 4-2 executes its
first child, Filter A, 4 times in steady state execution, and its last child, Filter D, 9 times.
Thus a phasing schedule of this pipeline should at most have 4 + 9 = 13 phases.

5.2 Minimal Latency Phased Scheduling

One of the problems with pseudo single-appearance scheduling is that it cannot schedule
all legal Streamlt programs. A program with a FeedbackLoop can have requirements for
tight execution that cannot be satisfied using a pseudo single-appearance schedule, leading
to deadlock. Phasing scheduling can alleviate this problem by allowing the program to
be scheduled in a more fine-grained manner. Minimal latency scheduling is an example
of a specific scheduling strategy that solves the problem of deadlock. Foregoing latency
constraints, minimal latency scheduling can schedule any legal Streamlt program.
Minimal latency schedule is a schedule that requires a minimal amount of input data
in order to output data. In other words, a minimal latency schedule only buffers as much

data as is absolutely necessary.
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A minimal latency schedule is not necessarily single appearance. In fact, very few
applications can have their minimal latency schedules expressed as a single appearance
schedule. One of the consequences of this is that minimal latency schedules require more
space for storage of the schedule. Use of phasing scheduling facilitates creation of acceptably
small minimal latency schedules. In spirit of hierarchical scheduling, every component is
scheduled separately, in hierarchical order.

One important consequence of phased scheduling, one that is highlighted when calcu-
lating a minimal latency schedule, is that every phase is allowed to consume a different
amount of data and produce a different amount of data.

Below is the description of algorithms used for each type of Streamlt component. The
remainder of this section, push?l® will denote amount of data pushed by the mth phase of
stream s, pop?* will denote amount of data popped by the mth phase of stream s and peek?*

will denote amount of data peeked by mth phase of stream s.

5.2.1 Peeking

Phased scheduling has interesting consequence for peeking calculations. The reason for this
is that not all phases must consume data, thus not all phases will peek. The amount of
peeking done by a stream is important for creating an initialization schedule. It is thus
important to remember that the amount of peeking done by a stream is not necessarily the
amount of peeking done by that stream in its first phase, because on first phase, the stream

may not consume or peek any data.

5.2.2 Notation

A phasing schedule of a stream s is a set Py of elements, Ps = {T5, I S,cs,ci}. The first
element, T denotes the phases used for the steady state schedule of s. I denotes the
phases used for the initialization schedule of s. cs and ¢! are defined identically to their
definitions in hierarchical schedules: c¢g is the consumption rate of the stream during its
steady state execution and ¢’ is the consumption rate of the initialization schedule.

Ts and I, are defined by identical structures. Both are defined as sets of phases. The
only real difference between T and I, is that T will be executed indefinitely, while I will
be executed only once. A phase A is defined as A = {F,c}. E is an ordered list of phases
and nodes that are to be executed in order to execute the phase. ¢ is the consumption of
the phase, with respect to its stream.

As an example, here is a minimal latency schedule for the sample stream in Figure 4-1.

First, the schedule for the internal SplitJoin:
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T, =
A1 = {{3 split}C{4D} join},
Py =
18
Csj = 18 7Cij
24

And the following is a schedule for the Pipeline:

5.2.3 General Concept

Technique used for calculating minimal latency phasing schedule for a Pipeline, SplitJoin
and FeedbackLoop is similar to the technique used to create a pseudo single-appearance
hierarchical schedule for a FeedbackLoop. Every phase is computed separately. Every phase
knows how much data has been left in internal buffers by the previous phase. The goal is
to create a phase that consumes the minimum amount of data from the input channel in
order to push at least one data item out to the output channel. Once the minimum amount
of data has been consumed by the stream, the maximum amount of data possible is pushed

out of the stream without consuming any more data. This is meant to prevent unnecessary
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Apa = {{24}A,;.1 B},
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10
12
12
10
18
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10
6
6
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Agzio = {{6 split}{20}{5D} join},
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12
6
6
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buffering of data internally within streams, and reduce the number of phases necessary to

compute a complete schedule.

One important technique used for creating phased schedules is borrowing of data from
channels. When a child is being executed, it is allowed to borrow some data from the
channel, and expect that the upstream child will provide the right amount of data in the
channel for real execution. In the tables, this means that amount of data can fall below
0. This is obviously illegal during real execution for any channel. Some channels, however,
have even stricter restrictions. If the node reading from a channel peeks more than it pops,
the amount of data in the channel during real execution cannot fall below the peek — pop
amount. For this reason, we also need to keep track of amount of data needed from a
channel. This is illustrated in Tables 5.1, 5.2 and 5.3. At the end of a phase, all channels

must have all items borrowed from them returned by the upstream child.

The initialization schedule starts with no internally buffered data (with exception of
FeedbackLoops) and executes as many phases as is necessary to ensure that all children
have executed all of their initialization phases. Once that has been achieved, the steady
state schedule is created. The only difference between computation of an initialization and
steady state schedules is that the steady state schedule stops executing children early, if
they have already executed all the phases allocated to them for the steady state, while the
initialization schedule continues executing until all initialization phases of all children have

been executed.

The only significant difference between the algorithms used for minimal latency schedul-
ing of different stream types (Pipeline, SplitJoin and FeedbackLoop) is the order with which

children of the stream are considered for execution.

For an ith child of a stream s (stream s,,), the number of phases that must be executed

for its steady state schedule to be complete is S, ; * | Ps, 7|.

5.2.4 Filter

Since Filters have no internal buffering and only one work function, their schedules are
simple. They contain a single phase, which in turn contains a single execution of the filter’s
work function. Although in principle, a Filter does not need to be executed to be initialized,
it may require some data to be buffered for its execution. This means that if e; > oy, we

insert an artificial initialization phase to phasing schedules of Filters:
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5.2.5 Pipeline

The order with which children are considered for execution is as follows. First all the children
are considered for execution moving from bottom to top. The last child executes just enough
phases to produce some data. The child directly above it executes just enough phases to
provide sufficient data for the child below to execute its child. This process is repeated until
the top-most child is reached. At this point the direction of traversal is reversed. This time,
the top-most child is skipped, and the second top-most child is considered. It only executes
as many phases as it can, while only using data already buffered between it and the child
above it. Then, the child below it is executed in the same way. This is repeated until the
bottom-most child is reached. The number of phases executed by each child is added up,
and the phases are inserted in order (all phases of every child together, in order, iterating
from top-most child down to bottom-most child). This constitutes one complete phase of

the Pipeline.

Using the sample Pipeline from Figure 4-2(a), the following are phasing schedules for
Filters A, B, C and D:

1
TA = AA,() = {A}7 1 )
3
Py =
1
IA:{};CA: 1 7CZB:
3
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1
0
0
3
cg=1|2|,cy=
3

2
Te =4 Aco=11{C}, | 2 ;
1
Pe =
IC:{}7CC: 2 706:
1
TD = AD,() = {D}7 3 )

Pp

Il
~
>}

Table 5.1 shows a trace of execution of the algorithm on the Pipeline from Figure 4-2(a).

The following is the resulting phasing schedule:
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child ,.
: phase . phases Pipeline
data in- channel executions left C(;I;::id_ executed consumption

ing nc np A|B|C| D

0 (0) 0() |0(-2)|]0|1]0]| O C {2A¢c,0} [000]
0(0) |44 |20 |0]1]0] O B Als 0, {2480} [00 0]
-4(-5)| 2(0) [2(0)|0|0|0]| O A {244} [220]
2(0) [ 2(0) |20 [0]0]0] 0 B - 000
2 (0) 2(0) |20 (0]|0]|0] O C Ac,o 000
2 (0) 0 |30 |0|j0|0] O D - [000]
2(0) | 0(0) | 3(0) init phase 0 done, init done

2 (0) 0() | 3(0)[4]6]9] 3 D Apo 001
20) [ 00 [o(2)[4]6]9] 2 C {2400} 000
20) |4(4) | 2(0) |[4[6]|7] 2 B {2450} [000]
23 200 [ 2(0) [4[4[7] 2 A Ao [110]
1(0) 2(0) | 20) [3]|4]|7] 2 B - [000]
10 [ 2(0) (2000 [3[4]7] 2 C Aco [000]
1 (0) 0() | 3(0)[3]|4]6]| 2 D - [00 0]
1(0) | 0(0) | 3(0) phase 0 done

1 (0) 0() | 3(0) |3|4]6]| 2 D Ap,o 00 1]
1@ [ 0@ [0(2)[3][4]6] 1 C {2Ac0} 000
1) [4(4 20 [3]4]4] 1 B {24B,o} 000
34|20 [20) [3]2]4] 1 A {2440} 220
30) | 2(0) |[2(0) |1 [2[4] 1 B Apo 000
1(0) [ 5(0) |20 |1 [1]4] 1 C (24c.0} 000
1(0) | 1(0) [4(0) [1]1]2] 1 D - 000
1 (0) 1(0) | 4(0) phase 1 done

1(0) | 1) [40) [1][1]2] 1 D Apo [001]
1 (0) 10 (1) |1 12| 0 C Ac,o 000
1(0) |-1() 20 [1]1][1] o0 B Ap o 000
T2 [ 200 |20 |1 [1[1] 0 A Ao 110
20) [ 2(0) [2(0) 0o [1] 0 B - 000
2 (0) 2(0) |20 (0|0 1] O C Ac,o [000]
2(0) | 00 |30 [0]0]0] 0 D - [000]
2(0) | 0(0) | 3(0) phase 2 done, steady state schedule done

Table 5.1: Trace of execution of Minimal Latency Scheduling Algorithm on Pipeline from
Figure 4-2(a). In the "data in channel” columns the first value represents the actual number
of data in the channel, which can be negative if more data has been popped from the channel
than has been pushed into it. This is due to borrowing of data from channels. The second
value represents the minimal number of data items that the downstream Filter has inspected
beyond the Oth data. This value can be higher than the negative amount of data in the
channel because a Filter may peek at data without consuming it. In general, for a Filter f,
the amount of data needed on its input channel is max(0, —(iny — (ef — of))). The needed

amount is 0 until the downstream Filter is executed for the first time.
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1
Ayo =< {A{2B}{3C}D}, | 1
1

2
Tp =9 Ap1 = {{24H3BH4CIDY, | 2 | o) 0,
1
1
B, = Apo=<¢{A B{2C}D}, | 1
1

I, = q Ao = ¢ {24345 o {2BH3CYAL, o}, | 2 :

5.2.6 SplitJoin

As explained above, the only difference between the algorithm for a Pipeline and a SplitJoin
is the order in which the children streams are considered for execution. In a Pipeline, the
children are considered from the bottom-most child to the top child, and then from second
top-most child down to the bottom most child again. A SplitJoin has only three levels of
direct children in it: the top is a splitter, the middle is formed by all the child streams of
the SplitJoin and the bottom is the joiner. To schedule a SplitJoin, the children are also
considered in the bottom to top and top to bottom order, but the child streams are also
considered from left to right (this choice is arbitrary - the order does not affect the number

of child phase executions per phase of the SplitJoin).

Using the sample SplitJoin from Figure 4-2(b), the following are phasing schedules for
Filters A and B:

TA = AA,() = {A}7 2 )

Py
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child Pipeline
data in channel ph.ase consid- phases consump-
executions left executed .

ered tion
split [ A [ B | join [ina [outy [ing | outy
0(0)]0©O] 0@ J0o©] O] 0 1] 0 join - 000
0(0)[0() 0@ |0 [0 0 | 1] 0 A - 000
0(0) [0 0@ | 0@ | 0] 0 [ 1] 0 B A 000]
0(0) [0 0@ 0@ | 0] 0 [ 0] 0 split split 330]
2(0) [0 1@ | 0@ | 0] 0 [ 0] 0 A A, 000]
00 1] 10 | 0@ | 0] 0 [ 0] 0 B - 00 0]
00) |10 |10 [0@© |0 0 [0 0 join 5 000]
0()]1()] 1(0) | 0(0) init phase 0 done, init done
00 [1(0) ] 1@ 0@ | 21 2 [ 1] 2 join join 004
000 [ 10) [ 3@ 2 2 | 1| 2 A - 000
00 [0 10 3@ 2 | 2 [ 1| 1 B Ao 000
0(0) |0(0)|-1(2)| 3(0) 2 2 0 2 split {2split} 660
A0) (00 10 [ 30 [0 2 [0 2 A (2440} | [000]
0(0) [2(0) [ 10 |30 [0 0 |0 0 B - 000]
0(0) [20) | 1(0) | 30 [ 0 0 [0 | 1 join jon 004
0()|1()] 1(0) | 0(0) phase 0 done, steady state schedule done

Table 5.2: Execution of Minimal Latency Scheduling Algorithm on SplitJoin from Figure
4-2(b).

Tg =1 Apo=<{B}, | 2 ,
6
1]_
Pp = Ip=SAgo=4q1{}] 0 )
0
P4
3 1
c=|2|,c5=1]0
6 0

Table 5.2 shows execution of the algorithm on the SplitJoin from Figure 4-2(b).

The trace of the execution shows that even though it is strictly necessary to traverse
the children of the stream second time from bottom to top, doing so can pay off in reducing
the number of phases necessary to construct a phasing schedule. Namely, in its first steady
state execution, the splitter needs to push enough data to execute the joiner again, thus
eliminating a need for an additional phase.

Once all the phases are computed, the phasing schedule is constructed. For every phase,
the number of child phases executed is added up, and the actual schedule is constructed
by concatenating all the phases of all the children, starting with the splitter, all stream
children (as listed from left to right) and finally the joiner. The following is the resulting
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phasing schedule:

; -
T =1 Asjo = { {{2split}{2A} B{2join}}, | 6 ;
8
]
3
PSj = I‘?] = Aij,o = {SPI'Lt Af‘l,o AiB,O}, 3 3
0
3
Csj = 6 7Cij = ’

5.2.7 FeedbackLoop

Scheduling of FeedbackLoops is again similar to the above algorithms. The children’s phases
are executed in order of (splitter, body child, joiner, body child, splitter, loop child). The
splitter tries to execute exactly one time on its first iteration. The body child and the joiner
execute just enough times to provide data for the splitter to perform its first execution. Then
the body child, splitter and the loop child are executed as many times as possible with the
data available to them on their input channels.

The one big difference between FeedbackLoop and the other streams (Pipeline and
SplitJoin) is that in scheduling a FeedbackLoop, the joiner is not allowed to borrow el-
ements from outy channel. That is in the trace table, the outy entry is never allowed to
become negative. The reason for this is that FeedbackLoops are cyclical structures, and
allowing the joiner to borrow elements from outy; would cause a full cycle of borrowing,
leading to deadlock.

This one condition does not prevent from scheduling any legal FeedbackLoops. The
reason for this is that before the FeedbackLoop is initialized, there is data pushed onto the
outr, channel. At the end of scheduling of any phase, all available data is pushed through the
FeedbackLoop into the outy channel. Thus any available free data is already always stored
in the outy, channel, and there is no additional data to borrow from in a FeedbackLoop.

If the algorithm is unable to schedule an execution of the joiner in a phase without

borrowing data from out; channel, then the FeedbackLoop cannot be scheduled.

Lemma 2 (FeedbackLoop Scheduling) If all children of a FeedbackLoop are scheduled
using minimal latency scheduling algorithm, then if the FeedbackLoop cannot be scheduled

using the minimal latency scheduling algorithm then there is no walid schedule for this

FeedbackLoop.

We believe this lemma to be true because minimal latency scheduling always consumes

the minimal amount of data to produce some data, and produces the maximal amount of
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data possible given the amount of data it consumes. Thus no data is being buffered up in
channels and if the FeedbackLoop cannot be scheduled, then the delayy; value is too low
and does not provide enough data to complete a steady state execution. A formal proof is

left for future work.

We will again use the sample FeedbackLoop from Figure 4-2(c). The following are the
phasing schedules for Filters B and L:

Tp=<{ Apo=<1{B}.| 2 )
1
Pp = I ={},
cg=12|,c5=
1
9
Tpr =4 Aro=4¢{L},| 5 )
P = In=qAL,=41}h

Table 5.3 shows execution of the algorithm on the FeedbackLoop from Figure 4-2(c).

Once the number of executions of children’s phases is known for every phase of the
FeedbackLoop’s schedule, the phasing schedule can be constructed. For every phase, the
children of the FeedbackLoop are iterated over in order of (joiner, body child, splitter, loop
child) and for every child the appropriate number of phases is inserted into the schedule.

Below is the schedule for FeedbackLoop in Figure 4-2(c):
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. . Pipeline
. phase executions child con- phases
data in channel left sidered executed cor;sigrrlnp—
ing outp ing outp join | B | split | F
0(0) |0 | 0@ [1O] 0 0o 0o [1 split split 003
000 [ 3@ [ 30 [@O ] 0 0| 0 [1 B BAg .o 000
6@ |00 | 30 [15@©O] 0 0] 0 |1 Join {2 join 140
1(0) [0() [ 30 [9(© | 0 o 0 |1 B {2450 000
0(0) [ 2(0) [ 3(0) [9(© | 0 [0 | 0o |1 split N 000
0(0) [ 200 [ 30 [9(© | 0 o | o |1 F - 000
0 (0) 2 (0) 3 (0) 9 (0) init phase 0 done
0(0) | 20) [ 30 |90 | 0 Jo] o [1 split split 003
0(0) |-1(1) | 60) [ 9© | 0 0o 0o [1 B A0} 000
-2(2) | 0(0) 6 (0) 9 (0) 0 0 0 1 join join 220
3(0) | 0(©) | 60 |60 | 0 0o 0o [1 B [y 000
10 |10 |60 |60 | 0 0] 0 |1 split N 000
1) [ 1(0) | 6(0) | 60 | 0 [0 0 |1 F Ay 000
1(0) | 1(0) 6 (0) 6 (0) init phase 1 done, init done
1(0) [ 1(0) | 6(0 | 60 | 6 [15] 5 |3 split split 003
10) 2@ | 90 | 60 | 6 [15] 4 |3 B BAg.o} 000
5(G) |10 | 90 |60 | 6 [12] 4 |3 Join Join 220
0(0) [ 1(0) [9(0 [ 30 | 5 |12| 4 |3 B - 000
0(0) | 1(0) | 9(0) | 30 | 5 |12 | 4 | 3 split - 000
00) | 1(0) | 4(0) | 9(0) 5 | 12 4 3 F {AFro} 000
0 (0) 1 (0) 4 (0) 9 (0) phase 0 done
0(0) | 1(0) | 4(0) | 90) | 5 [12] 4 |2 split split 003
00) [ -2@) | 70) | 9(0) 5 12 3 2 B {240} 000
4@ |0 | 70 | 90 | 5 [10] 3 |2 Join join 220
1) [0 | 7(0) | 6(0) | 4 [10] 3 |2 B - 000
1(0) [0 | 7(0) | 6(0) | 4 [10] 3 |2 split - 000
1(0) [0() | 7(0) | 6(0) | 4 [10] 3 |2 F - 000
1(0) | 0(0) 7 (0) 6 (0) phase 1 done
10 |00 | 70 |6 | 4 [10] 3 |2 split split 003
1(0) | 3@ 100 |60 | 4 [10] 2 |2 B {8450} 000
5(G) |00 |00 |60 | 4 [ 7] 2 |2 join join 220
00 |00 |10(0 ] 30 | 3 | 7] 2 |2 B - 000
0(0) |0 [100) [30 | 3 |7 2 |2 split - 000
0(0) |0 [100) [30 | 3 |7 2 |2 F {Aro} 000
0(0) | 0(0) 5 (0) 9 (0) phase 2 done
0(0) |00 |50 |90 | 3 [ 7] 2 [1 split split 003
0(0) | 33) [ 80 |90 | 3 |7 1 |1 B BAs.o) 000
6@©) |00 | 80 |90 | 3 [ 4] 1 |1 Join {2 join} 140
1(0) [0 [ 8 [3(0 | 1T |4 1 [1 B (2450} 000
0(0) | 2(0) | 8(0) | 30 | T |2 | 1T |1 split - 000
000 [ 20 [ 80 [30 | 1 |2 1 |1 F - 000
0 (0) 2 (0) 8 (0) 3 (0) phase 3 done
0(0) | 2(0) | 8(0) | 30 | 1 | 2 I |1 Split split 003
00) [-1() [ 11(0) | 3(0) 1 2 0 1 B {AB,o} 000
2(2) ] 00 |[11(0) | 3(0) | 1 [ 1| 0 |1 Join Join 220
3(0) |0 [11@© [0@® | 0 | 1| 0 [1 B [y 000
1) [ 1(0) |[11(0) ] 0@ | 0 [0 0 |1 split - 000
1) [ 1(0) |[11(0) ] 0@ | 0 [0 0 |1 F {Arot 000
1(0) | 1(0) 6 (0) 6 (0) phase 4 done, steady state schedule done

Table 5.3: Execution of Minimal Latency Scheduling Algorithm on FeedbackLoop from
Figure 4-2(c).
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Ao =

Apg =

Af o=

Afz =

Afpa=

A}z,o =

Alﬁ@ =

Cfl =

{join {3B} split F},

{join {3B} split F},

{{2 join}{5B} split},

{join {2B} split F'},

{{2 join}{5B} split},

A3

{join {2B} split},

{join {2B} split},

12
12
15
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Chapter 6
Latency Constrained Scheduling

In the previous chapters, an efficient framework for scheduling Streamlt programs was
developed. In this framework, there was no concern for possible latency constraints specified
by the programmer. This chapter will develop techniques which can be used to schedule
StreamlIt programs that contain various latency constraints. These techniques will be based
on linear and integer programming. This chapter is mainly concerned with producing
schedules that are correct and respect all specifications of the program. Optimization of
such schedules is left for future work.

Section 6.1 provides a detailed introduction to the timing semantics of message send-
ing in Streamlt. Section 6.2 provides an example of a simple stream with messages being
sent. Section 6.3 introduces the info function which is used to keep track of information
buffered between Filters. Section 6.4 shows how the in fo function relates to messaging con-
straints. Section 6.5 presents an algorithm for computing schedules that respect messaging
constraints. Finally Section 6.6 solves the example from Section 6.2 using the algorithm

presented here.

6.1 Messages

In the Streamlit computation model, Filters do not share any variables or memory directly.
There is no concept of global program time. The purpose of this is to allow different Filters
to execute on different devices without need for complicated data sharing techniques and
synchronization. Furthermore, this model allows to schedule the execution of Filters in any
order that does not violate the execution semantics (Filters always have at least ey data in
their input channel before executing).

Due to the structured property of Streamlt constructs, flow of data between Filters is
very limited. This model works well for regular steady-state execution of streaming pro-

grams, because Streamlt programs match typical streaming algorithms well. There are,
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however, some situations where information needs to be communicated only very occa-
sionally and between Filters that cannot easily send data to one another within Streamlit
structure. In order to enable more flexible communication between Filters in such situa-
tions, Streamlt provides a concept of message sending.

Messages can be sent between any two Filters which are connected in the directed
Streamlt graph. In other words, any two Filters which are not located in different branches
of the same SplitJoin can send messages to one another.

A more formal definition of all messaging concepts can be found in [24].

6.1.1 Timing

The timing of delivery of messages is expressed in terms of latency and information wave-
fronts. On every execution, a Filter consumes and produces some data. The data it
consumes affects the data it outputs. Thus the data output on a given iteration carries the
same information wavefront as the data it consumed. Using this definition it is possible
to find out on which execution Filter B receives data that Filter A produced on a given
execution. In other words, it is possible to find on which execution Filter B observes the
same information wavefront that Filter A observed on a given iteration. Note that if a Filter
consumes data that carries multiple information wavefronts, the data produced carries the
latest information wavefront of all the data consumed.

In order to specify timing of delivery of a message sent by Filter A to Filter B, we
state that the message will be delivered with latency [lg,l1]. This means that Filter B
will receive the message no earlier then just before it observes the information wavefront
observed by Filter A on [y execution of Filter A’s work function after sending the message,
and no later then just before it observes the information wavefront observed by Filter B on
l1 execution of Filter A’s work function after sending the message. In other words, [y is the
lower bound on message delivery latency, while [y is the upper bound on message delivery
latency. Obviously, lp < ;.

In Streamlt it is possible to send messages both upstream and downstream. Sending a
message downstream allows both latency bounds to be either positive or negative. Sending
a message with a positive latency bound is intuitive: the message will be delivered to
the receiver when after it observes the information wavefront processed when sending the
message. However, sending a message with negative latency bound means that the message
is to be delivered before the receiver sees the information wavefront processed by the sender
when sending the message. One way of thinking about this is that the message is being
sent back in time, in terms of information wavefronts. Note that it is possible for the lower

latency bound to be negative and for the upper latency bound to be positive.
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Figure 6-1: Example Streamlt program for latency constrained analysis

When a message is being sent upstream, both upper and lower bound on latency of
delivery of the message must be positive (Ip > 1). This is because when the sender sends the
message, the receiver must have already observed sender’s current information wavefront.

It is important to note that not all latency bounds are valid. It is not always obvious
whether specified latency bounds are valid, as there may be many reasons for latency bounds
to be invalid. Those reasons include too tight buffering constraints and contradictory latency

bounds.

6.2 Example

Figure 6-1 depicts a sample Pipeline which contains message communication. In the exam-
ple, Filter B can send a message to Filter F with latency [—3, —1] and Filter G can send
a message to Filter A with latency [1,9]. Note that Filter B sends a message that crosses
StreamlIt structure boundary (F’s direct parent is not the same as B’s direct parent). Filter

G sends a message that travels upstream.
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The following is the steady state for the Pipeline:

F
join

G

R I N
Q
o

—_
o

Below we list a schedule which allows to execute the sample Pipeline while respecting
the messaging constraints imposed. In the schedule, entry A™ indicates that Filter A checks
if any messages have been sent to it, and if there are messages waiting to be delivered to
A, it receives them. Note that no message sending is allowed during initialization of the

Pipeline. This is the case for all programs, and will be explained later.

The initialization schedule for the sample Pipeline is {{2A}{3B}{2split}D}. The steady

state schedule for the sample Pipeline is

{(FMFBA™{2A}F"F{2B}{2CH2 splity DE{2 join}
{5G}F"FBA™AF™F{2B}{2C}{2 split} DE{2 join}{5G}}

An inspection of the schedule above reveals that because of fairly tight constraint on
sending messages from Filter B to Filter F, their execution is interleaved pretty tightly.
Latency constraint between Filter G and Filter A is not as tight, and the interleaving of

execution of those Filters is not as fine grained.

The schedules listed above are not unique, and haven’t been optimized for any particular

criteria.

Table 6.1 depicts the flow of information wavefronts produced by Filter B between Filter
B and Filter F when executing the schedule listed above. According to the schedule given
above, Filter F checks for messages before its every execution. The latency of messages
from B to F is given as [—3, —1] in Figure 6-1. Thus before F checks for messages, it is
must be the case that B has produced the information wavefront F will see on its next
execution. It also must be that B has not produced the information wavefront F will see
in four executions. It is easy to see that this condition is respected. We simply inspect all
executions of B, and make sure that on every one of its executions, the wavefront generated

by B on its previous execution has not passed F yet. As stated above, we skip initialization,

70



as messages cannot be delivered during initialization.

On B’s first steady state execution it produces wavefront 3. Its previous execution
produced wavefront 2. F has only observed wavefront 1, so message sent by B can be
delivered. On B’s second steady state execution it produces wavefront 4. Its previous
execution produced wavefront 3. F has only observed observed wavefront 2, so message
sent by B can be delivered. This analysis continues until an entire steady state has been
completed.

Table 6.2 depicting the flow of information wavefronts produced by Filter A across the
sample Pipeline when executing the schedule listed above. We can use this table to verify
that messages sent from Filter G to Filter A will be delivered within the specified latency.

Messages sent from Filter G to Filter A have to be delivered with latency [1,9]. This
means that a message sent by Filter G must be delivered to Filter A before it produces
information wavefront that G will see in 9 executions. The lower bound does not impose any
real constraint, because the message cannot be delivered before A has produced an infor-
mation wavefront that G sees when it sends the message. Since the information wavefronts
flow downstream, but the message must be delivered upstream, we must do the verification
in terms of the receiver’s wavefronts.

On G’s first execution it observes A’s wavefront 2. Nine executions later it sees wavefront
4. Filter A has only produced wavefront 3, so any message sent can be delivered on time.
On G’s second execution it again observes A’s wavefront 2. Nine executions later it observes
wavefront 5. Filter A has again only produced wavefront 3, so any message sent can also
be delivered on time. This analysis can be performed for all executions of G within a single

steady state to verify that all possible messages sent by G to A can be delivered on time.

6.3 Information Buffering Model

In order to satisfy possible latency constraints, a global model of accounting for data buffered
up needs to be constructed. The model must express the flow of information carried by

data.

6.3.1 Intuition

We begin with creating a concept of abstract information. Every data item carries a certain
amount of information. Every data item in a particular channel carries the same amount
of information. A Filter consumes some data items from its input channel and pushes
them to its output channel. We define execution of Filters to be an information-preserving
operation. This means that the amount of information consumed by a Filter during its

execution must be pushed out onto Filter’s output channel. This means that the amount
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element B’s info wavefronts in buffer
executed ins ing
2 A - -
3B - -

2 split 0,0,1,1,2,2 -
1D - 1,2

init done - 1,2
1F - 1,2
1B - 2
2 A 3,3 2
1F 3,3 2
2B 3,3 -
2C 3,3,4,4,5,5 -

2 split - 45
1D - 45
1E - 45

2 join - 4,5
5G - 45
1F - 45
1B - 5
1A 6,6 5
1F 6,6 5
2B 6,6 -
2C 6,6,7,7,8,8 -

2 split 6,6,7,7,8,8 -
1D - 7,8
1E - 7,8

2 join - 7,8
5G - 7,8

run 1 done - 7,8
1F - 7,8
1B - 8
2 A 9,9 8
1F 9,9 8
2B 9,9 -
2C 9,9,10,10,11,11 -

2 split - 10,11
1D - 10,11
1E - 10,11

2 join - 10,11
5G - 10,11
1F - 10,11
1B - 11
1A 12,12 11
1F 12,12 11
2B 12,12 -
2C 12,12,13,13,14,14 -

2 split 12,12,13,13,14,14 -
1D - 13,14
1E - 13,14

2 join - 13,14
5G - 13,14

run 2 done - 13,14

Table 6.1: Flow of information wavefronts between Filters B and F during execution of
schedule provided in Section 6.2. Left column provides the node to be executed. The center
and right columns show information wavefronts carried by data in channels ings and ing.
Every number corresponds to a single data item in a buffer. Each number corresponds to
the information wavefront carried by the data item. Information wavefronts are counted in
terms of executions of Filter B’s work function, starting with 0. Each line shows information
wavefronts present in channels before the node is executed. Thus entry 0,0,1,1,2,2 means
that there are six data items present in the channel, first two carry information wavefront
of first execution of B’s work function, second two carry information wavefront of second
execution of B’s work function, etc.
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element A’s info wavefronts in buffer

executed mnpg Mg inc np ng ing outc outg outp ng
2 A - - - - - - - - - -
3B 0,0,1,1 - - - - - - - - -

2 split 1 0,0,0,0,1,1 - - - - - - - -
1D 1 - 0,1 0,1 - 0,1 - - - -

init done 1 - 0,1 - 1 0,1 - - - -
1F 1 - 0,1 - 1 0,1 - - - -
1B 1 - 0,1 - 1 1 - - 0,0 -
2 A - 1,1 0,1 - 1 1 - - 0,0 -
1F 2,2,3,3 1,1 0,1 - 1 1 - - 0,0 -
2B 2,2,3,3 1,1 0,1 - 1 - - - 0,0,1,1 -
2C 3,3 1,1,2,2.22 0,1 - 1 - - - 0,0,1,1 -

2 split 3,3 1,1,2,2.2.2 - - 1 - 0,0,1,1 - 0,0,1,1 -
1D 3,3 - 2,2 2,2 1 2,2 0,0,1,1 - 0,0,1,1 -
1E 3,3 - 2,2 - 1,2 2,2 0,0,1,1 - 0,0,1,1 -

2 join 3,3 - 2,2 - 2 2,2 0,0,1,1 2,2 0,0,1,1 -

2,2.22.2,
5G 3,3 - 2,2 - 2 2,2 - - - 2.2.2.2.2
1F 3,3 - 2,2 - 2 2,2 - - - -
1B 3,3 - 2,2 - 2 2 - - 2,2 -
1A 3 3,3 2,2 - 2 2 - - 2,2 -
1F 3,4,4 3,3 2,2 - 2 2 - - 2,2 -
2B 3,4,4 3,3 2,2 - 2 - - - 2,2,2,2 -
2C 4 3,3,3,3,4,4 2,2 - 2 - - - 2,222 -

2 split 4 3,3,3,3,4,4 - - 2 - 2,2,2,2 - 2,2,2,2 -
1D 4 - 3,4 3,4 2 3,4 2,2,2,2 - 2,222 -
1E 4 - 3,4 - 2.4 3,4 2,2,2,2 - 2,222 -

2 join 4 - 3,4 - 4 3,4 2,2,2,2 4,4 2,222 -

14447,
5G 4 - 3,4 - 4 3,4 - - - 44444
Ist
steady 4 - 34| - | 4 |34 - - - -
state
done
1F 4 - 3,4 - 4 3,4 - - - -
1B 4 - 3,4 - 4 4 - - 3,3 -
2 A - 4.4 3,4 - 4 4 - - 3,3 -
1F 5,5,6,6 4,4 3,4 - 4 4 - - 3,3 -
2B 5,5,6,6 4.4 3,4 - 4 - - - 3,3,4,4 -
2C 6,6 4,4,5,5,5,5 3,4 - 4 - - - 3,3,4,4 -

2 split 6,6 4,4,5,5,5,5 - - 4 - 3,3,4,4 - 3,3,4,4 -
1D 6,6 - 5,5 5,5 4 5,5 3,3,4,4 - 3,3,4,4 -
1E 6,6 - 5,5 - 4.5 5,5 3,3,4,4 - 3,3,4,4 -

2 join 6,6 - 5,5 - 5 5,5 3,3,4,4 5,5 3,3,4,4 -

5,5,5,5,5,
5G 6,6 - 5,5 - 5 5,5 - - - 5.5.5.5.5
1F 6,6 - 5,5 - 5 5,5 - - - -
1B 6,6 - 5,5 - 5 5 - - 5,5 -
1A 6 6,6 5,5 - 5 5 - - 5,5 -
1F 6,7,7 6,6 5,5 - 5 5 - - 5,5 -
2B 6,7,7 6,6 5,5 - 5 - - - 5,5,5,5 -
2C 7 6,6,6,6,7,7 5,5 - 5 - - - 5,5,5,5 -

2 split 7 6,6,6,6,7,7 - - 5 - 5,5,5,5 - 5,5,5,5 -
1D 7 - 6,7 6,7 5 6,7 5,5,5,5 - 5,5,5,5 -
1E 7 - 6,7 - 5,7 6,7 5,5,5,5 - 5,5,5,5 -

2 join 7 - 6,7 - 7 6,7 5,5,5,5 7,7 5,5,5,5 -

00T,
5G 7 - 6,7 - 7 6,7 - - - 7A00
2nd steady 7 ~ 6.7 ~ 7 6.7 ~ ~ ~ ~
state done

Table 6.2: Flow of information wavefronts between Filters A and G. The representation
is same as in Table 6.1, except wavefronts are given in terms of Filter A’s work function
executions.
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of information carried by every data item in the input channel may differ from the amount

of information carried by every data item in the output channel.

A splitter is defined to consume some information from its input channel and provide
that amount of information to each of its output channels. That is, a splitter increases
the amount of information in the system by the number of output channels the splitter
has multiplied by amount of information it consumes on every execution. Notice that this
action has the effect of increasing the amount of information carried by each data item for
RoundRobin splitters, but does not change the amount of information carried by each data
item across Duplicate splitters. Also, a splitter with only a single output channel behaves

exactly the same as a Filter.

A joiner behaves in the exact opposite way to the splitter. joiners are defined to consume
the same amount of information from every one of their input channels, and produce the
same amount of information on their output channel. As a result, joiners decrease the

amount of information carried by every data item passing through them.

The behavior of splitters and joiners is a little counter-intuitive. Intuition dictates that
since splitters and joiners do not inspect or modify the data in any way, they should not
change the amount of information carried by data passing through them. This approach
leads to inconsistency with SplitJoins, however. Consider the SplitJoin from Figure 6-1.
Assume that every data item in channel ing carries 1 unit of information. By this alternative
method, every data item in channels inc, inp and ing also carries 1 unit of information.
Filter C consumes one data item, thus one unit of information, and produces 2 data items.
Thus in channel outc, every data item carries % units of information. Filter D consumes 2
data items, thus consumes 2 units of information and produces one data item, thus every
data item in channel ing carries 2 units of information. Filter E consumes 1 data item,
thus consumes 2 units of information, and produces 2 data items, thus data items in channel

outp carry 1 unit of information each.

We now have an inconsistency. The joiner consumes data from channel outo carrying
% unit of information per data and data from channel outp carrying 1 unit of information
per data. Since all data on the output channel of the joiner must carry the same amount
of information per data item, the joiner must change the amount of information per data

item.

Our approach guarantees that every node produces and consumes the same amount of
information from every one of its input and output channels. This definition is consistent

across all Filters, splitters and joiners.
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6.3.2 Information Function

We define an information function, that describes amount of information carried by each
data item in a particular channel. For a channel ¢, the function is denoted as info.. The
value of the info function must be consistent across the entire Streamlt graph, and every
channel needs an actual numerical value.

We begin computing a set of consistent values for info functions of different channels
by selecting a channel ¢ to have an info function of 1. We now travel the program graph
upstream and downstream, across graph nodes, computing the info function for all other
channels connected to the node being crossed.

There are three types of nodes that can be crossed, and they can be crossed from either

mput or output sides.

Filters

A Filter f has only one input and one output channel. 1f we know infoi,,, we can easily
compute infoput,, because we know that on every execution of f, we consume the same
amount of information we produce: in fogyt ;=1n foin,2 s u . Similarly, if we know in fogu: Iy

we compute info;,, as follows: infoin, = infoout, #

splitters

We have defined splitters to provide their every output channel with the same amount of
information as they consume from their input channel. Thus for a splitter s we know that
infoout,; = infoin, . Similarly, infom,, = in fooutg i . With these two equations we
can easily compute values for info of all of s’s channels, given the info function for any of

s’s channels.

joiners

We have defined joiners to consume the same amount of information from every one of their
input channels and push that same amount of information to their output channel. Thus

for a joiner j we know that mfoout = infoout, , 2. Similarly, mfomﬂ = infoout, —L-

gy g le

With these two equations we can easily compute values for in fo of all of j’s channels, given
the info function for any of j’s channels.
Example

Table 6.3 lists the values of info function for channels in Figure 6-1. The computation of

above in fo values began with assigning info;,, = 1.
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buffer | info function | information per data item
ing nfoing 1
ing infoin, 0.5
ing N foing 1.5
inp nfoinp, 1.5
ing N foiny 3
ing N foiny 1.5
outo infoout 0.75
outp infoouty 1.5
outp infoouty 0.75
ng N foing 0.3

Table 6.3: Information per data item in buffers

6.4 Latency Constraints and Information

The next step is to decide how the latency constraints correspond to the amount of infor-

mation consumed, produced or buffered in the application.

6.4.1 Checking for Messages

One of the most important issues to solve is to find out how often an intended recipient of
a message needs to check for messages. This frequency can easily be calculated in terms
of number of executions of the work function. The assumption being made here is that
the message is delivered to the destination as soon as it is generated. Such a model can
be easily achieved on a single processor machine. Different models may require different
calculations.

Filter fq sends a message to Filter f, with latency [lp,[1]. On every execution of its work
function, Filter fs processes x = of, * infoi,, information. Similarly, Filter f, processes
y = of, * infoi,, information on every execution of its work function.

Latency [lo, l1] means that the receiver must check for messages from the sender every
time it processes as much information, as the sender will send over [; — [y executions. The
sender will send zx(l1 —Ip) information over that many executions. The receiver will process

w executions of its work function.

that much information over
This value may be fractional, but execution of Filters is an atomic operation in StreamlIt.
Thus the receiver must actually check for new messages from the sender at least every
{@J executions of its work function.
Note that calculation assumes a fairly dumb message delivery method, where the latency

of the message is not taken into account. More sophisticated models of message delivery

can allow to reduce the frequency of checking for new messages significantly.
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6.4.2 Information Buffering

In computing a schedule that respects the latency constraints, it is necessary to compute
the amount of information stored between the sender and the receiver. The amount of
information stored between two Filters is the amount of information that entered the in-
terval between those two Filters minus the amount of information that is destroyed due to
peeking of Filters plus some data possibly put in the feedback path of a FeedbackLoop (due
to delayys > 0).

When a Filter with ey > oy executes for the first time, it observes in foin, * ey informa-
tion, but pushes out only infosut, * uy information. Since for every Filter infoin, * oy =
infoout ;R uUf and ey > oy, the amount of information observed is not the same as the
amount of information pushed out. Thus some information is lost during the first execution
of such a Filter. This amount is (ey — o) * info,.

We account for this lost information by setting the initial amount of information in a
the input channel of every Filter to (e — of) * infoin,. If ef = oy, the initial amount of
information in the input channel of f is set to 0. If ey > oy, the inital amount of information
is set to a negative number.

When a Streamlt program is executing, we define the amount of information stored in
a channel to be equal to the initial amount of information in the channel plus the amount
of information pushed into the channel minus the amount of information popped from the
channel.

Now, in order to compute the amount of information between two Filters we simply
need to sum up the amount of information stored in all channels between these two Filters
along a directed non-cyclical path. The selection of this path is important, as not all paths
between two Filters will have equal amount of information stored. The path we select is the
path that stores the least amount of information before any Filters are executed. In other
words, we select the path that has the most negative information stored in it at initialization.
This is also equivalent to the amount of information entering the path through the upstream
Filter minus the amount of information leaving the path through the downstream Filter
plus the sum of information along the path at initialization (a non-positive value).

In our sample Pipeline, we have ing = —3 and all other channels initialized with 0
information. Thus the path selected between Filters A and GisA—B —»s—D — F —

j — G, which contains —3 units of information at initialization.

6.4.3 Information Buffering and Latency

The last element of relating information flow and latency constraints is expressing the

latency constraints in terms of information buffered up between the sender and recipient of
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a message. The three types of latency constraints are analyzed below.

Downstream Positive

The downstream positive latency constraint is the easiest one to analyze. A downstream
positive delay specifies that a downstream recipient should receive the message before it
observes information wavefront that will be produced by the sender in the future. In other
words, there is no restriction on the amount of data buffered up between the sender and
receiver, because the information wavefront cannot have possibly entered the path between
the sender and recipient. Thus downstream positive latency constraint are effectively ig-

nored by the scheduler.

Upstream Positive

An upstream positive latency constraint specifies that the recipient should receive the mes-
sage just before it produces an information wavefront that will be observed by the sender
between [y and [; executions later. This specifies an upper limit on the amount of infor-
mation stored between the Filters. If f, is the recipient, the amount of information stored
between the sender and the recipient must be less than Iy * info;, . X Of,.

In our example, the latency for messages sent from Filter G to Filter A is [1,9]. Thus
when Filter G is executed, the amount of information between A and G must be less than
9% 0.3 %2 = 5.4 An inspection of the sample schedule and amount of information stored

between A and G reveals that amount of information stored between A and G peeks at 5.

Downstream Negative

A downstream negative latency constraint specifies that the recipient should receive the
message just before it observes the information wavefront produced by the sender between
—Ily and —Iy executions of the work function before it sent the message. This specifies a
lower limit on the amount of information stored between the Filters. If fs is the sender,
the amount of information stored between the sender and the recipient must be at least
=l xinfoout,, * uf, .

In our example, the latency of the messages sent from Filter B to Filter F is [—3,—1].
Thus when Filter B is executed, the amount of information between B and F must be at
least —(—1) % 0.5%2 = 1. An inspection of the sample schedule and amount of information
stored between B and F reveals that amount of information stored between B and F bottoms

out at 1.
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6.5 Computing the Schedule

Now that we have the tools to restrict information flow in a way that will guarantee a
schedule that respects the rules imposed on the schedule by the program, we are ready to

compute the schedule.

6.5.1 Initialization Schedule

Construction of the initialization schedule with latency constraints is very different from
initialization schedule without latency constraints. The reason for this is that buffering
requirements imposed by peeking are much easier to satisfy than requirements imposed by
latency constraints. The requirements imposed by latency constraints require global analy-
sis of data (information) buffering. This is because different overlapping latency constraints
can contain conflicting requirements (minimum versus maximum amount of buffered infor-
mation).

The approach used here will create a solution using a simple set of linear equations.
If the constraints are not too tight, it is easy to convert the fractional solutions of linear
equations into a real schedule. If the constraints are tight, it may be necessary to use integer
programming to obtain integer solutions which will automatically map exactly to a valid
schedule.

It is important to note, that the goal of construction of an initialization schedule here is
to create a buffering that satisfies all constraints imposed by the program. During initial-
ization of the program, not all constraints will be satisfied. In fact, it is impossible to satisfy
all constraints before initialization completes, because when the program begins executing
it has no data buffered up, and there are latency constraints that require minimal buffering
of data.

With all that in mind, equations that govern number of StreamlIt graph node executions
for the initialization schedule simply need to be written down. Here all filters will be
represented by f, with 0 < m < njy with ny filters in the program. splitters will be
represented by s,, and joiners with j,, 0 < m < n,;, with n,; representing number of
SplitJoins and FeedbackLoops. channels will be represented by iny, , ins, and in;, p with
k representing the kth branch of the joiner. channels are designated by Streamlt nodes
that use the channel as an input channel. Number of executions of node s (Filter, splitter
or joiner) will be represented by cs.

First equations required represent the amount of information present in channels need to
be written down. For every channel, that is simply the amount of information pushed in by
the source node minus the amount of information popped by the drain node minus amount of

information lost on first execution of the downstream node, namely in,, , = inf Oin,,, (Csape
S
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Usyre — Csgay * Osges — (€540 — Osye,))- The only exception to this rule are joiner buffers in
FeedbackLoops. Those buffers start with delayy;,, data items, thus in foz-njm’1 * delay i,

information needs to be added the amount of information stored in in;,, 1.

Next the minimal amount of data required in buffers is required to at least match the
extra peeking amount of buffers (otherwise the steady schedule would not be able to repeat
indefinitely). This is simply restricted by byf,, > 0. This takes care of the the peeking
amount, because Filters that peek destroy some information, which is accounted for by
setting the amount of information to be negative. For buffers belonging to splitters and
joiners, the only requirement is that the amount of information in the buffers is at least
zero. This is easily expressed by bs,, > 0 and b, x > 0. Thus for all buffers we simply
require that b > 0.

The last set of equations needed puts restrictions based on latency constraints. As
described above, those equations simply sum up information stored in all buffers between
the source and destination Filters, and make sure that it is less or more than what the

latency constraint requires.

Solving equations above for cs yields number of executions of Filters, splitters and
joiners required in order to initialize a Streamlt program with latency constraints. The
numbers of execution obtained may be non-integer, if only a linear programming solution
is sought. Simple rounding of the solution may be able to result in valid schedule. If that
is not the case, integer programming solutions may be obtained, which would guarantee
satisfying all requirements. If there are multiple solutions, any of the solutions will satisfy

the requirements of a valid initialization schedule.

Example

Here we present equations which can be used to initialize the Pipeline in Figure 6-1.

First we compute the amount of information in each buffer after initialization.

bp = infomB Cs * Ws,0 — CC * OC)
bD = infOinD
bg = infoing * (¢j ¥ 0j — cq * 0c) bj0 = infoin,, * (cc * 0c — cj * wjo)
bj1 = infoin,, * (cE*0p —cj*wj1) bjo = infoin,, * (CF * 0F — cj * wj2)

(
bg = infoin, * (cp *op — cg *og — (eg — 0R))

* (cqa*04 —cp*op) bo = infoiny * (
¥ (cs ¥ ws1 —Ccp *x0p)  bp = infoin, * (cs* Ws2 — CF * OF)
*

Next we ensure that all channels store non-negative amounts of information after ini-

tialization:
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bp >0 bc>0 bp=>0
b >0 bp>0 bg=>0
bjo=0 bj1 =0 bj2=>0
bs >0

Finally, following equations ensure that all buffers contain enough information for the

graph to be considered initialized for steady state execution.

bp+bs+bp +bg+bj1+bg <54
bsoerfs >1

One solution to the equations above, which can be found using an integer linear pro-

gramming solver) is:

ca=2 cg=3 cc=0
CDzl CE:O CFZO

cg=0 cs=2 ¢;=0

This solution corresponds to the initialization schedule for the example provided in

Section 6.2.

6.5.2 Steady State Schedule

Calculating the steady state schedule should in most cases be a fairly simple task, but may,
in some cases be very difficult. The distinction between these two situations is not very
easy to define. Basically, if the imposed set of constraints is very tight (not much space to
maneuver buffered data), creating such a schedule may be difficult. On the other hand, if
there is some space to maneuver buffered data, applying a simple scheduling technique like
minimum latency scheduling should work. Simple techniques tailored to satisfying latency
constraints can be applied to programs that cannot be scheduled using minimum latency
scheduling. The common case for computing steady state schedules should be relatively
easy to compute, because message sending is meant to be a low bandwidth activity, and
the delivery constraints are meant to have large ranges. Absence of such conditions will
result in reduced performance of the compiled code, and the program should be redesigned
to pass appropriate information using regular data flow through channels.

The technique described here uses as an input the Streamlt program with all of its
latency constraints, as well as the amount of information stored in all channels after ini-

tialization. The output of this algorithm is a steady state schedule which starts with the
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initialized program and executes one iteration of minimal steady state while respecting all
constraints placed on the program. The algorithm uses integer programming to assure that
if a valid schedule exists, it will be found. The resulting schedule is expressed as a flat list

of Filter firings.

The first step is to compute the multiplicities of execution of all components. Let ¢
represent the sum of all execution multiplicities of all components, t = ), S,, ;, where S is
the steady state for the program. Thus, there will be a total of ¢ steps in the final schedule.
Let variable ¢} represent an execution of a component s during the rth step. The first
restriction on cs is that Ef;%) ¢t = v, (here the v notation is taken from subsection 3.2.2).
Furthermore, we must have that > vsc(an nodes} c® = 1. These two conditions assure that

the schedule executed will indeed be the steady state schedule.

Next, the amount of information in channel ins before step k is represented by

k—1 k—1
k. . ] r r
ng =ins + medest (Z Clare — Z cs>
r=0 r=0
We impose the buffering requirements placed upon ing for every in’, thus ensuring that

after every step of the program, all latency and peeking requirements are met.

Solving the resulting system of equations for all ¢s (including the cs required for ini-
tialization) will yield a correct schedule for the given program. The integer programming
requirement should be that Ve,c € {0,1}. The schedule is extracted for step r by finding

the node s for which ¢} = 1, and firing this component.

6.6 Example

Here we provide equations and a solution for construction of a steady state schedule for
the Pipeline in Figure 6-1. The steady state for the sample Pipeline has been provided in
Section 6.2.

The equations for determining the steady schedule are presented below. For the large
part they are identical to equations governing the initialization schedule, except amount of
information buffered is calculated differently, and there are far more variables. There are a
total of 39 steady state execution steps. Variable r will be used here to denote a particular

step of the schedule.
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by =bp+infoin, Zzzo(ch*uAfc%*oB) by >0

b. = bs+ infoin, ZZ:O(CQB xup — cl % 0g) be >0

b =bc +infoin, 22:0(03 * Ws 0 — CL* 0¢) b, >0

bp =bp +infoiny >golcd xws1 — chxop) b >0

by, =bg+infoin, ZZZO(CqD*uD—CqE*OE) b >0
(e

by =br +infou, 22:0 *wsgfc%*oF) b >0

S
Vre{0,1,...,38 ¢ by =bjo+infoin,, Sg_olch *uc — ¢l xwjo) by >0
b;,l =051+ z'nfomjyl ZZZO(CqE *UR — C?- * wj71) 971 >0
io =bjo+ infoin;, Z;ZO(C% x Up — C;I- * Wj2) b§’2 >0
b, =bg +infoin, Zgzo(c? *uj — o og) by >0

Dl + 07 + O + by + 74 + b, < 5.4
b+ b > 1

The following equations are bookkeeping equations that ensure that each component is

executed the correct number of times, and that every step has exactly one execution.

38 ro_ 38 r 38 ro__ 38 T
Zr:() Cy = 3 Zr:() Cp 6 Zr:o Co = 4 Zr:() Cp
38 ro__ 38 ro__ 38 ro__ 38 ro__
ZT:O p= 2 Er:o Cp = 4 ZT‘:O Cqg — 10 Zrzo c,= 4
38 ro__
r=0 Cj = 4

Vr €{0,1,...,38} Xec(a,B,C,D,E,F,Gs,j} Co = 1

Solving the equations above for non-negative integral c; variables, yields a schedule
which can be executed safely, without fear of violating any requirements imposed by the
programmer. If no solution exists, then there is no schedule for the program, because the
equations above do not overrestrict the execution of the program.

Table 6.4 provides a solution to the equations above. The solution corresponds to

schedule provided in Section 6.2. Once again that schedule is

{FmFBA™{2AYF"F{2B}{2C}{2 split} DE{2 join}{5G}
FMFBA™AF™F{2B}H2CH2 split} DE{2 join}{5G}}
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01010
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0
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0
0
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0
1
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0
0
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C|D|E|F

0

0

0
0
0

0
0
0
0
0

0
0

0
0

0
0

0
0
0
0
0

S

0

0

0
0
0

0
0

0

0
0

A|B

step \ node

10
11
12

13
14
15

16
17
18
19
20
21

22
23
24
25
26

27
28
29
30
31

32

33
34

35

36
37
38

Table 6.4: A solution to equations for steady state of stream from Figure 6-1.This solution

corresponds to the schedule given in 6.2.
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Chapter 7

Results

In this chapter we present results of creating schedules using techniques described in Chap-
ters 4 and 5. No results are presented for latency constrained scheduling, as no applications
have been written to exploit the usefulness of messaging.

Section 7.1 presents the applications used for testing. Section 7.2 presents the method-

ology used for testing. Section 7.3 presents the results and analysis.

7.1 Applications

Our benchmark suite contains 13 applications. Out of those applications, 11 represent useful
practical computation taken from real-life applications, while two were chosen to highlight
effectiveness of phasing scheduling.

Nine test applications (bitonic sort, FFT, filter bank, FIR, radio, GSM, 3GPP, radar
and vocoder) used are code-complete and perform the computations intended. Some results
of compiling these applications can be found in [12].

Two test applications (QMF and CD-DAT) are applications used in another publication
on scheduling streaming applications ([18]). The code inside of the Filters has not been
implemented.

The QMF application is a qmfl12_3d. It had to be modified slightly to account for
Streamlt splitters and joiners not allowing any computation. The high-pass and low-pass
filtering in the splitters has been moved to just after data been separated into two channels.
The re-combining of data in the joiners has been moved to a Filter just after the joiners.
The low and high pass filters have also been given a peek amount of 16 so they can perform
their function in the way intended in Streamlt.

CD-DAT is exactly the same application as that described in [18].

The last two applications (SJ_.PEEK_1024 and SJ PEEK_31) are a synthetic bench-

marks.
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Figures illustrating the layout of all of the applications are available in Appendix A.

7.2 Methodology

The following data has been collected: number of nodes, number of node executions per
steady state, schedule size and buffer size for pseudo single appearance and minimal latency

schedules.

7.2.1 Schedule Compression

The size of schedules for minimal latency technique contains two numbers. The first one
is an uncompressed schedule, while the second is a compressed schedule. During testing it
was found that in some applications some streams had many phases that were identical to
other phases of the stream. Instead of including these phases in the final schedule multiple,
they were listed only once, and references to the duplicate phases have been replaced with
references to their copies.

This optimization lead to improvements in schedule size for two reasons. First, streams
now had less phases, so their schedules took up less space. Second, applications using the
phasing schedules could now execute the same phase multiple times in a row, which was
optimized out using run length encoding.

This compression has no negative effects on speed of execution, and never increases
the size of a schedule. This compression has no effect on the pseudo single-appearance

schedules, thus is not included in the results as a separate value.

7.2.2 Sinks

Any application in Streamlt must receive its data from somewhere, and its data must be sent
somewhere. Filters that perform these functions are called sinks and sources. In particular,
sinks have the property of having u; = 0 while sources have ey = oy = 0. In other words,
sinks do not push any data out and sources do not consume any data.

Sinks are problematic for minimal latency scheduling purposes, because they do not
produce any data. Remember that a minimal latency schedule will execute a bottom-most
Filter of a Pipeline in every phase as many times as is necessary to produce some data.
Since sinks do not produce any data, the sinks are executed their steady state number of ex-
ecutions. This leads to the minimal latency schedule of the outer-most Pipeline becoming a
single appearance schedule, thus destroying some of the benefit of using phasing scheduling.

This problem has been alleviated by detecting sinks at the end of a Pipeline and schedul-

ing them in a unique way. Namely, a simple attempt is made to minimize the amount of
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number
benchmark nfumk()ier of node pseudo single appearance minimal latency
of nodes execu-
tions
schedule buffer schedule compressed buffer
size size size schedule sjze size
bitonic sort 370 468 439 2112 448 448 2112
CD-DAT 6 612 7 1021 170 72 72
FFT 26 488 31 3584 31 31 3584
filter bank 53 312 166 2063 160 145 1991
FIR 132 152 133 1560 133 133 1560
radio 30 43 58 1351 50 50 1351
GSM 47 3356 - - 724 78 3900
3GPP 94 356 147 986 149 137 970
QMF 65 184 143 1225 132 122 1225
radar 68 161 100 332 100 100 332
SJ_.PEEK_1024 6 3081 11 7168 40 16 4864
SJ_PEEK_31 6 12063 11 19964 250 24 12063
vocoder 117 415 172 1285 293 206 1094

Table 7.1: Results of running pseudo single appearance and minimal latency scheduling
algorithms on various applications.

storage necessary to store the phases of the Pipeline.

Let the amount of storage necessary to store one data item in input channel to the sink
be z, the amount of storage necessary to store a phase be y, the sink consume a data per
steady state execution of its parent Pipeline and b be the number of phases of the parent

pipeline, then we have that amount of storage necessary to store the phases and the buffer
is
ax

b

We want to minimize this amount, with b being the variable. We take a derrivative of the

+ by

above expression, set it to zero and solve:

—-Zty =0
yb?> = ax
b = @

For simplicity, we set © = y = 1, thus obtaining that b = \/a.
Now, for every phase of the parent Pipeline of the sink, the sink is executed /a times

on the first step of scheduling a phase of the Pipeline.

7.3 Results

Table 7.1 presents buffer and schedule sizes necessary to execute various applications using

the algorithms developed in this thesis.

The GSM application cannot be scheduled using pseudo single-appearance algorithm,

because it has a loop which is too tight for execution under the SAS.
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Figure 7-1: Buffer storage space savings of Phased Minimal Latency schedule vs. Hierar-
chical schedule. All data in all channels is assume to consume same amount of space.
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Figure 7-2: Storage usage for compressed Minimal Latency Phased schedule vs. Hierarchical
schedule. Left bars are for Hierarchical schedules. Numbers are normalized to total storage
required by Hierarchical schedule. Each entry in every schedule and data items in all
channels are assumed to consume same amount of space.
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Several applications show a very large improvement in buffer size necessary for execution.
Namely, CD-DAT decreases from 1021 to 72, a 93% improvement. [18] reports a buffer size
of 226 after applying buffer merging techniques. Our improvement is due to reducing the
combinatorial growth of the buffers using phasing scheduling.

Our synthetic benchmarks decrease from 7168 to 4864 and from 19964 to 12063, a 32%
and 40% improvements. The first improvement is due to creating fine grained phases which
allow the initialization schedule to transfer smaller amount of data and allow the children
of the SplitJoin to drain their data before the splitter provides them with more. This
improvement is only created in presence of peeking. The second improvement is due to
reducing combinatorial growth and due to finer grained schedules to deal with peeking.

Other applications show no or little improvement in buffer requirements. As expected,
no application requires more buffer space.

It is interesting to note that the schedule sizes have decreased between the single appear-
ance and compressed minimal latency phasing schedules. This is due to slightly different

encoding technique of single appearance schedules.

90



Chapter 8

Related Work

There has been a wealth of research of various stream languages and projects. This chapter

will introduce some of the other projects.

A large number of programming languages have included a concept of a stream; see
[22] for a survey. Synchronous languages such as LUSTRE [14], Esterel [3], and Signal [9]
also target the embedded domain, but they are more control-oriented than Streamlt and
are not aggressively optimized for performance. Sisal (Stream and Iteration in a Single As-
signment Language) is a high-performance, implicitly parallel functional language [8]. The
Distributed Optimizing Sisal Compiler [8] considers compiling Sisal to distributed mem-
ory machines, although it is implemented as a coarse-grained master/slave runtime system

instead of a fine-grained static schedule.

Ptolemy [16] is a simulation environment for heterogenous embedded systems, including
Synchronous Data Flow that is similar to static-rate stream graphs in Streamlt. SDF
programs, however, do not include the peeking and messaging constructs of Streamlt. In
SDF languages, actors are the active computational elements (Filters). SDF computation
model does not impose structure on the program. All actors are allowed to have multiple

input and output channels. [2] provides an overview of dataflow synchronous languages.

There are many results of scheduling SDF programs [6]. Many of these results concen-
trate on reducing buffering requirements. Many of the systems inline all actor code into a
single function, and try to minimize the code and buffer size at once [4]. This approach
leads to a strong preference for single appearance schedules. Streamlt scheduler stores a
the schedule and Filter code separately, thus allowing for more efficient schedule storage.

Other publications focus on synthesis of software for embedded systems. [5] recognizes
that non single-appearance schedules which inline actor invocations have problems with
code growth. A hybrid model is introduced, where actor invocations are inlined unless the

resulting code grow too large. If inlining is not performed, actors are invoked through a
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function call.

Other approaches include to reducing the buffering requirements use buffer merging [18],
a technique which will be explored for Streamlit in the future.

Many publications focus on synthesis for hardware systems. Such systems can execute
multiple actors at once [13]. Currently StreamlIt compiler produces code for uniprocessor
architectures [24] and for the RAW processor [11]. RAW processor can execute multiple
Filters in parallel, but every parallel execution is given its own separate set of resources like
memory.

There are some streaming computation models which are less constrained than SDF.
Most popular is Cyclic Synchronous Data Flow CSDF computation model [19]. CSDF actors
have multiple work functions, with each one being allowed to consume/produce different
number of data items. The current Streamlt phasing scheduler is able to accommodate
this model of computation, but the Streamlt language does not support this feature yet.
[27] provides an elegant solution to scheduling CSDF programs using Systems of Affine
Recurrence Equations, which provides a closed-form solution scheduling for any valid CSDF
graph.

[26] proposes a model where the flow of data is not static, but may depend on data
being processed. The model is called Cyclo-Dynamic Data Flow (CDDF). This greatly
helps flexibility of programming, but prevents fully static scheduling of programs.

The U.S. Navy Processing Graph Method (PGM) uses a version of SDF with an equiva-
lent of peeking [10]. The paper is focused on real-time execution and provides analysis and

verification of latency of data flow through their system.
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Chapter 9

Conclusion and Future Work

This thesis presents a variety of techniques used for scheduling Synchronous Data Flow
Graphs as used by the Streamlt language. Unlike other langauge, Streamlt enforces a
structure on the stream graph, thus allowing a variety of new approaches to scheduling
execution. Algorithms presented here improve current current scheduling techniques in
multiple ways.

Hierarchical approach to scheduling execution of streaming applications allows for a
simplification of algorithms. Program graphs do not have to be considered globally, thus
less data needs to be kept track of. In hierarchical approaches presented here, we only need
to consider immediate children of a given stream.

Phasing approach to scheduling allows to schedule arbitrarily tight FeedbackLoops and
allows for more fine-grained control of buffering requirements. The fine-grained control of
buffering requirements can provide dramatic improvements in buffer requirements when
scheduling streaming applications, as has been presented here. Furthermore, phased sched-
ules lend themselves to some easy forms of compression, thus reducing the schedule size.
Future work will concentrate on expanding phasing scheduling to implement schedules that
conform to specific buffering constraints, take advantage of cache sizes, etc. Producing of a
single schedule for many instances of identical streams will also be explored.

The solution to latency constrained scheduling presented here is an important contribu-
tion to development of StreamlIt. It will be extended to allow for morphing graphs ([23]).

It will also be adapted to use phasing scheduling to reduce buffer and schedule size.
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Appendix A

Diagrams of Test Applications

This appendix presents the applications used for testing and collecting results in this thesis.

There are two formats of Figures in this appendix. CD-DAT, QMF and the two
SJ_PEEK benchmarks have nodes denoted by ovals. The name of splitters and joiners
indicates their type (Duplicate or RoundRobin) and possible splitting or joining amounts
(if a RoundRobin splitter or joiner has no numbers, they’re all unity). The name of Filters
has format (pop, peek)name(push). Pipelines and SplitJoins are represented by rectangles,
and their names are given in their top left corner.

The format for the other figures is similar, but the peek, pop and push amounts for

Filters is given explicitly.
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Figure A-1: Diagram of Bitonic Sort Application
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Figure A-2: Diagram of CD-DAT Application
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Figure A-3: Diagram of FFT Application
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Figure A-4: Diagram of Filter Bank Application
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Figure A-5: Diagram of FIR Application
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Figure A-8: Diagram of 3GPP Application
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Figure A-9: Diagram of QMF Application
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Figure A-13: Diagram of Vocoder Application
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