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Abstract

Applications that are structured around some notion of a ”stream” are becoming increas-
ingly important and widespread. There is evidence that streaming media applications are
already consuming most of the cycles on consumer machines [20], and their use is continu-
ing to grow. StreamIt is a language and compiler specifically designed for modern stream
programming. Despite the prevalence of these applications, there is surprisingly little lan-
guage and compiler for practical, large-scale stream programming. StreamIt is a language
and compiler specifically designed for modern stream programming. The StreamIt langauge
holds two goals: first, to provide high-level stream abstractions that improve programmer
productivity and program robustness within the streaming domain; second, to serve as a
common machine language for grid-based processors. At the same time, StreamIt com-
piler aims to perform stream-specific optimizations to achieve the performance of an expert
programmer. This thesis develops several techniques for scheduling execution of Filters in
StreamIt . The work focuses on correctness as well as minimizing buffering requirements
and stored schedule size.
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Chapter 1

Introduction

Applications that are structured around some notion of a ”stream” are becoming increas-

ingly important and widespread. There is evidence that streaming media applications are

already consuming most of the cycles on consumer machines [20], and their use is continu-

ing to grow. In the embedded domain, applications for hand-held computers, cell phones,

and DSP’s are centered around stream of voice or video data. The stream abstraction is

also fundamental to high-performance applications such as intelligent software routers, cell

phone base stations and HDTV editing consoles.

Despite the prevalence of these applications, there is surprisingly little language and

compiler for practical, large-scale stream programming. The notion of a stream as a pro-

gramming abstraction has been around for decades [1], and a number of special-purpose

stream languages have been designed (see [22] for a review). Many of these languages and

representations are elegant and theoretically sound, but they often lack features and are too

inflexible to support straightforward development of modern stream applications, or their

implementations are too inefficient to use in practice. Consequently most programmers turn

to general-purpose languages such as C or C++ to implement stream programs.

There are two reasons that general-purpose languages are inappropriate for stream pro-

gramming. Firstly, they are a mismatch for the application domain. That is they do not

provide a natural or intuitive representation of streams thereby having a negative effect on

readability, robustness, and programmer productivity. Furthermore, general-purpose lan-

guages do not communicate well the inherent parallelism of stream computations. Secondly,

general-purpose languages are a mismatch for the emerging class of grid-based architectures

[17, 25, 21].

StreamIt is a language and compiler specifically designed for modern stream program-

ming. The StreamIt langauge holds two goals: first, to provide high-level stream abstrac-

tions that improve programmer productivity and program robustness within the streaming
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domain; second, to serve as a common machine language for grid-based processors. At the

same time, StreamIt compiler aims to perform stream-specific optimizations to achieve the

performance of an expert programmer.

In order to achieve these goals, StreamIt provides a number of features, designed to allow

the programmer to easily and naturally express the required computation, while keeping

the program easy to analyze by a compiler: all StreamIt streaming constructs are single-

input, single-output; all computation happens in Filters; data is passed around between

Filters using three streaming constructs: Pipeline, which allows stacking of Filters one after

another, SplitJoin, which allows splitting and joining of data amongst multiple streams,

and FeedbackLoop, which constructs cyclic streams. In StreamIt , every Filter must declare

the rate at which it processes data: how much data is consumed and produced on every

invocation of the Filter ’s work function. This model of data passing is called Synchronous

Data Flow (SDF).

In addition to SDF, StreamIt allows the programmer to pass data between Filters in

an asynchronous manner, similar to a combination of message passing and function calls.

Timing of such data delivery is expressed in terms of amount of information wavefronts

- the programmer can specify a delay between message delivery and destination Filter ’s

processing of data currently being produced or consumed by the source Filter . Such timing

mechanism introduces latency and buffering constraints on execution of StreamIt programs.

Using the features present in StreamIt , the programmer can express complex algorithms

and computation models. One of the difficulties faced by StreamIt is scheduling of the execu-

tion of the program. Since StreamIt uses SDF computation model with latency constraints,

it is possible to schedule the order of execution of Filters at compile time. Scheduling SDF

programs presents a difficult challenge to the compiler: as the complexity of the program

grows, the amount of memory required to execute the program increases. This increase

comes from two sources: the schedule size is creases, as well as amount of data needed for

buffering increases. These two sources are closely coupled. There exist tradeoffs between

the schedule size and the buffer size.

This problem is further complicated by message latency constraints placed on the pro-

gram by the programmer. While StreamIt programs are meant to provide relatively lax

latency requirements, it is possible to write programs with latency constraints so tight that

very few valid schedules exist. Finding these schedules is a challenging task.

This thesis develops several techniques for scheduling execution of StreamIt programs.

This thesis will present techniques which take advantage of structure of StreamIt to create

compact schedules. These schedules will be purely hierarchical in nature. The concept of a

phasing schedule will be introduced to reduce the requirement for buffering data between

Filters without overly increasing the size of the schedule. Finally, the problem of scheduling
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programs with message latency constraints will be solved using integer programming.

The contributions of this thesis are:

• hierarchical scheduling of streaming application, a concept enabled by StreamIt lan-

guage,

• first formal handling of SDF graphs with peeking,

• novel phasing scheduling technique,

• a minimal latency schedule using hierarchical phases,

• novel SDF program abstraction called the information buffering model that simplifies

information latency analysis,

• a solution to scheduling of StreamIt programs with latency constraints.

The remainder of this thesis is organized as follows: chapter 2 describes relevant StreamIt

constructs in detail; chapter 3 explains basic concepts in scheduling StreamIt graphs; chap-

ter 4 describes hierarchical phasing techniques; chapter 5 describes phasing scheduling tech-

niques, including phased scheduling, a more advanced approach to scheduling; chapter 6

introduces techniques for scheduling of StreamIt programs with latency constraints; chapter

7 analyzes performance of various algorithms described here.
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Chapter 2

StreamIt Language

This chapter introduces relevant constructs of the StreamIt language. Syntax is not explored

here, as it is not relevant to StreamIt scheduling.

Section 2.1 introduces the structured streaming concept, while Section 2.2 introduces

the low bandwidth messaging semantics of StreamIt .

2.1 Structure

Perhaps the most distinguishing feature of StreamIt language is that it introduces structure

to the concept of stream computation. StreamIt concept of structure is conceptually similar

to structured constructs in functional languages such as C.

In StreamIt programs are composed out of streaming components called streams. Each

stream is a single-input, single-output component, possibly made up of a hierarchical com-

position of other streams. Streams can only be arranged in a limited number of ways,

using Pipelines, SplitJoins, and FeedbackLoops. Data passed between Filters is read from

and written to channels. Figure 2-1 contains examples of various StreamIt streams. The

restrictions on arrangement of streams enforces the structure imposed by StreamIt .

2.1.1 Filters

The basic unit of computation in StreamIt is the Filter . The central aspect of a filter is the

work function, which describes the filter’s atomic execution step. Within the work function,

the filter can communicate with its neighbors using the input and output channels, which

are typed FIFO queues declared during initialization of a Filter . Figure 2-1(a) depicts a

Filter .

Filters also have the restriction of requiring a static amount of data to be consumed

and produced for each execution of a work function. The amount of data produced by a
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Figure 2-1: All StreamIt streams
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Filter F upon execution of its work function is called a push amount, denoted push. The

amount of data consumed from input channel by a Filter F upon execution of its work

function is called a pop amount, denoted pop. Filters may require that additional data

be available in the input channel for the Filter to examine. This data can be read by the

Filter ’s work function, but it will not be consumed, and will remain in the channel for the

next execution of the work function. The amount of data necessary on the input channel

to execute Filter ’s work function is called peek amount, denoted peek. Note, that for all

Filters peek >= pop. Extra peek amount is the amount of data required on by the Filter

that will be read but will not be consumed, namely peek − pop. The peek, pop and push

values in Figure 2-1(a) correspond to the peek, pop and push amounts of the Filter ’s work

function.

A Filter can be a source, if it does not consume any data, but it produced data. Namely,

a Filter is a source if it has peek = pop = 0. Likewise, a Filter can be a sink, if it consumes

data, but does not produce any, or push = 0.

2.1.2 Pipelines

Pipelines are used to connect StreamIt structures in a chain fashion: each child stream’s

output is the next child stream’s input. Pipelines have no work function, as they do not

perform any computation themselves. Pipelines are simply containers of other StreamIt

structures. Figure 2-1(b) depicts a Pipeline.

2.1.3 SplitJoins

SplitJoins are used to specify independent parallel structures that diverge from a common

splitter and merge into a common joiner . There are two types of splitters:

(a) Duplicate, which replicates each data item and sends a copy to each parallel stream,

and

(b) RoundRobin (w0, . . . , wn−1), which sends the first w0 items to the first stream, the next

w1 items to the second stream, and so on. If all wi are equal to 0, all child streams of

the SplitJoin must be sources.

RoundRobin is also the only type of a joiner supported in StreamIt ; its function is

analogous to a RoundRobin splitter .

Figure 2-1(c) depicts a SplitJoin.

2.1.4 FeedbackLoops

FeedbackLoops are used to create cycles in the stream graph. A FeedbackLoop contains a
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joiner , a body stream, a splitter , and a loop stream. Figure 2-1(d) depicts a FeedbackLoop.

A FeedbackLoop has an additional feature required to allow a FeedbackLoop to begin

computation: since there is no data on the feedback path at first, the stream instead inputs

data from a special function defined by the FeedbackLoop. The amount of data pushed onto

the feedback path is called delay amount, denoted delayfl, for a FeedbackLoop fl.

2.2 Messages

In addition to passing data between Filters using structured streams, StreamIt provides a

method for low-bandwidth data passing, similar to a combination of sending messages and

function calls. Messages are sent from within the body of a Filter ’s work function, perhaps

to change a parameter in another Filter . The sender can continue to execute while the

message is en route. When the message arrives at its destination, a special message receiver

method is called within the destination Filter . Since message delivery is asynchronous,

there can be no return value; only void methods can be message targets. This allows the

send to continue execution while the message is en route - the sender does not have to wait

for the receiver to receive the message and send a return value back. If the receiver wants

to send a return value to the sender, it can send a message back to the sender.

Although message delivery in StreamIt is asynchronous in principle, StreamIt does in-

clude semantics to restrict the latency of delivery of a message. Since StreamIt does not

provide any shared resources to Filters (including global memory, global clock, etc), the

timing mechanism uses a concept of flow of information.

One motivating example for messaging in StreamIt can be found in cell phone processing

application. Modern cellular phone protocols involve a technique called frequency hopping -

the cell phone base station selects a new frequency or channel for the phone to communicate

with the base station and informs the phone of this change. The phone must switch to the

new channel within a certain amount of time, or it risks losing connection with the base

station.

If the phone decoder application is written in StreamIt , the Filter controlling the antenna

and the Filter which will process control signals are likely far apart, and may not have a

simple way of communicating data directly with each other. In StreamIt , the Filter which

decodes control signals can simply send a message to the Filter controlling the antenna. The

message can be sent with a specific latency corresponding to the timing required by the base

station. When the antenna controller receives the message it can change the appropriate

settings in the hardware to switch to the appropriate new frequency, without having to wait

for the appropriate time. The timing of delivery is taken care of by StreamIt .

20



2.2.1 Information Wavefronts

When a data item enters a stream, it carries with it some new information. As execution

progresses, this information cascades through the stream, affecting the state of Filters and

the values of new data items which are produced. We refer to an information wavefront as

the set of Filter executions that first sees the effects of a given input item. Thus, although

each Filter ’s work function is invoked asynchronously without any notion of global time, two

invocations of a work function occur at the same information-relative time if they operate

on the same information wavefront.

2.2.2 Message Sending

Messages can be sent upstream or downstream between any two Filters. Sending messages

across branches of a SplitJoin is not legal. Timing of message delivery uses the concept of

information wavefront. The sender specifies that the message is supposed to be delivered

with a certain delay of information wavefront. The delays are specified as ranges, [l0, l1], l0 ≤
l1. l0 and l1 specify the information wavefront in executions of the work function of the

sender Filter .

If the message is being sent downstream, the sender specifies that the receiver will receive

the data just before it sees the information wavefront produced by the sender between l0

and l1 executions of its work function from when it sends the message. If the message is

being sent upstream, the sender specifies that the receiver must receive the message just

before it produces an information wavefront the sender will see between l0 and l1 executions

of its work function from when it sends the message.

Message sending is meant to be a low-bandwidth method of communication between

Filters. Message sending is not a fast operation and is intended not to interfere with

the high bandwidth StreamIt communication and processing. However, depending on how

tight the latency constraints are (both the magnitude of the latency as well as the range),

declaring that messages can be sent may slow program execution down considerably.

Figure 2-2 presents an example of a Pipeline in which the last Filter sends a message to

the first Filter . Filter 3 sends a message to Filter 0. The message is sent with latency [3, 8].

This means that after at least 3 and at most 8 executions of sender’s work function, it will

see data produced by the receiver just after receiving the message.
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Figure 2-2: Example of a Pipeline with a message being sent
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Chapter 3

General StreamIt Scheduling

Concepts

This chapter introduces the general concepts used for scheduling StreamIt programs. Con-

cepts presented here are are common with other languages [16] [3] [14].

Section 3.1 presents the StreamIt execution model. Section 3.2 introduces the concept of

a steady state and shows how to calculate it. Section 3.3 explains the need for initialization

of StreamIt program. Section 3.4 introduces simple notation for expressing schedules while

Section 3.5 presents the tradeoff between schedule and buffer storage requirements.

3.1 StreamIt execution model

A StreamIt program is represented by a directed graph, G = (N, E). A node in G is either

a Filter , a splitter or a joiner . Edges in G represent data channels. Each node in G

takes data from its input channel(s), processes this data, and puts the result on the output

channel(s). Each data channel is simply a FIFO queue.

Each Filter node nf has exactly one incoming edge and one outgoing edge. The incoming

edge is referred to as an input channel , while the outgoing edge is called an output channel .

A splitter node ns has exactly one incoming edge (input channel), but has multiple outgoing

edges (output channels). A joiner node has multiple incoming edges (input channels) but

only one outgoing edge (output channel).

Each node of graph G can be executed. An execution of a node causes some data to be

collected from the node’s input channel(s), the data to be processed and the result to be

put on the output channel(s). An execution of a node transfers the smallest amount of data

across the node - it is an atomic operation. StreamIt uses a static data flow model, meaning

that every execution of a node n will require the same amount of data to be present on
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node’s input channel(s) for consumption or inspection, same amount to be consumed from

the input channel(s) and same amount of data to be pushed onto its output channel(s).

Each Filter node nf is associated with a 3-tuple (ef , of , uf ). These three values represent

the rate of data flow for the Filter for each execution. The first value represents the amount

of data necessary to be present in its input channel in order to execute the Filter . This is

also called the peek amount of the Filter . The second value represents the amount of data

which will be consumed by the Filter from its input channel . This is called the pop amount

of the Filter . Note, that ef ≥ of . The final value represents the amount of data that will

be put on the output channel of the Filter . This is called the push amount of a Filter . The

amount of data present in the input channel of a Filter node nf is denoted inf , while data

present in the output channel is denoted outf .

Each splitter node ns is associated with a tuple (os, ws). The first value represents the

amount amount of data that will be consumed by ns from its input channel . Thus, in

order to execute ns, there must be at least os data in its input channel . ws is a vector of

integers, each representing the amount of data that will be pushed onto a corresponding

output channel of ns. The amount of data present in the input channel of a splitter node

ns is denoted ins, while data present in the ith output channel is denoted outs,j .

Each joiner node nj is associated with a tuple (wj , uj). The first value is a vector

of integers, each representing the amount of data that will be consumed by nj from its

corresponding input channels. In order to execute nj , each of its input channels must have

at least as much data in it as the corresponding value in wj indicates. uj represents the

amount of data that will be pushed by nj onto its output channel . The amount of data

present in the ith input channel of a joiner node nj is denoted inj,i, while data present in

the output channel is denoted ins.

A schedule for a StreamIt program is a list of executions of nodes of graph G. The list

describes the order in which these nodes are to be executed. In order for a schedule to be

legal, it must satisfy two conditions. The first one is that for every execution of a node, a

sufficient amount of data must be present on its input channel(s), as described above. The

second is that the execution of the schedule must require a finite amount of memory.

3.2 Steady State

A StreamIt schedule is an ordered list of firings of nodes in the StreamIt graph. Every

firing of a node consumes some data from input channel(s) and pushes data onto the output

channel(s).

One of the most important concepts in scheduling streaming applications is the steady

state schedule. A steady state schedule is a schedule that the program can repeatedly
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execute forever. It has a property that the amount of data buffered up between any two

nodes does not change from before to after the execution of the steady state schedule. This

property is important, because it allows the compiler to statically schedule the program

at compile time, and simply repeat the schedule forever at runtime. A schedule without

this property cannot be repeated continuously. This is because the delta in amount of data

buffered up on between nodes will continue accumulating, requiring an infinite amount of

buffering space.

A steady state of a program is a collection of number of times that every node in

the program needs to execute in a steady state schedule. It does not impose an order of

execution of the nodes in the program.

Not every StreamIt program has a steady state schedule. As will be explained in Section

3.2.2, it is possible for a program to have unbalanced production and consumption of data

in SplitJoins and FeedbackLoops. The amount of data buffered continually increases, and

cannot be reduced, thus making it impossible to create a steady state schedule for them.

It is also possible that a FeedbackLoop does not have enough data buffered up internally in

order to complete execution of a full steady state, and thus deadlocks. Programs without a

valid steady state schedule are not considered valid StreamIt programs. In other words, all

valid StreamIt programs have a steady state schedule.

3.2.1 Minimal Steady State

The size of a steady state is defined as the sum of all executions of all the nodes in the

program per iteration of the steady state.

Definition 1 A steady state of stream s is represented by vector m of non-negative integers.

Each of the elements in m represents the number of times a corresponding node in s must

be executed in the steady state.

Note that m does not impose an order of execution of nodes. Size of a steady state is

the total number of executions of all the nodes in the steady state, and is represented by
∑

i mi.

Next we will summerize the properties of schedules prsented in [15].

Theorem 1 (Minimal Steady State Uniqueness) A StreamIt program that has a valid

steady state, has a unique minimal steady state.

Proof 1 (Minimal Steady State Uniqueness) Assume that there are two different min-

imal steady states with same size. Let m and q denote vectors representing the two steady

states. Let
∑

i mi denote size of schedule m and
∑

i qi denote size of schedule q. Note
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that since both m and q are minimal steady states,
∑

i mi =
∑

i qi. Since the schedules are

different, there must be some j for which mj 6= qj. Assume without loss of generality that

mj < qj. Since a steady state does not change the amount of data buffered between nodes,

the node producing data for node i must also execute less times than corresponding node

in q. Similarly, the node consuming data produced by node j also must execute less times

than the corresponding node in schedule q. Since a StreamIt program describes a connected

graph, it follows that ∀i, mi < qi. Thus
∑

i mi 6=
∑

i qi, which is a contradiction. Thus there

cannot be two different minimal steady state.

Corollary 1 (Minimal Steady State Uniqueness) The additional property we have from

the above proof is that if m represents a minimal steady and q any other steady state, then

∀i, mi < qi.

Lemma 1 (Composition of Steady Schedules) If m and q are two steady states for a

StreamIt program, then m + q is also a steady state.

The above lemma is true because neither m nor q change the amount of data buffered

in the channels. Thus a composition of the steady states does not change the amount of

data buffered in the channels, which makes the composition also a steady schedule.

Corollary 2 (Composition of Steady Schedules) If m and q are two steady states,

and ∀i, mi > qi, then w = m − q is also a steady state.

If q is a steady state and m = w + q is a steady state, then w must not change the

amount of data buffered in channels. Thus w must be a steady state.

Theorem 2 (Multiplicity of Minimal Steady States) If a StreamIt program has a

valid steady state, then all its steady states are strict multiples of its minimal steady state.

Proof 2 (Multiplicity of Minimal Steady State) Assume that there exists a steady

state that is not a multiple of the minimal steady state. Let m denote the minimal steady

state. Let q denote the other steady state. Note that w = q − m is still a steady state,

as long as all elements of w remain non-negative (by Corollary 2). Repeat subtracting m

from q until no more subtractions can be performed without generating at least one negative

element in vector w. Since q is not a multiple of m, w 6= 0. But since we cannot subtract

m from w any further, ∃i, mi > wi. Since m is a minimal steady state and w is a steady

state, this is impossible due to Corollary 1. Thus there are no steady states that are not

multiples of the minimal steady schedule.
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3.2.2 Calculating Minimal Steady State

This section presents equations used for calculating minimal steady states. Minimal steady

states are calculated recursively in a hierarchical manner. That is, a minimal steady state

is calculated for all children streams of Pipeline, SplitJoin and FeedbackLoop, and then the

schedule is computed for the actual parent stream using these minimal states as atomic

executions. This yields a minimal steady state because all child streams must execute their

steady states (to avoid buffering changes), and all steady states are multiples of the minimal

steady states (per Theorem 2). Executing a full steady state of a stream is referred to as

”executing a stream”.

Notation of Steady States

In this section, the notation for peek, pop and push will be extended to mean entire streams

in their minimal steady state execution. That is, a Pipeline p will consume op data, produce

up data and peek ep data on every execution of its steady state. Again, in the hierarchi-

cal view of StreamIt programs, a child stream of a Pipeline will execute its steady state

atomically.

A steady state of a stream s is represented by a set Ss of elements, Ss = {m, N, c, v}.
The set includes a vector m, which describes how many times each StreamIt node of the

stream will be executed in the steady state, a corresponding ordered set N which stores all

the nodes of the stream, a vector c, which holds values [es, os, us] for stream s, and a vector

v which holds number of steady state executions of all direct children of s. m and v are

not the same vector, because m refers to nodes in the subgraph, while v refers only to the

direct children, which may be Filters, Pipelines, splitters and FeedbackLoops.

For a stream s, set S is denoted as Ss and the elements of Ss are denoted as Ss,m, Ss,N ,

Ss,candSs,v.

Note, that a steady state does not say anything about the ordering of the execution of

nodes, only how many times each node needs to be executed to preserve amount of data

buffered by the stream.

Filter

Since Filters do not have any internal buffering, their minimal steady state is to execute

the Filter ’s work function once. This is the smallest amount of execution a Filter can have.

Thus, for a Filter f ,
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1

(a) A sample Pipeline

splitter

joi

A
2,2

1

B
3,2

6

2,1

1,3

3

4

(b) A sample SplitJoin

splitter
3,3

joiner
2,3

B
2,2

1

L
6

5,5

3

5

(c) A sample FeedbackLoop. The
L Filter has been flipped
upside-down for clarity.

peekL = popL = 5, pushL = 6

Figure 3-1: Sample StreamIt streams

Sf =



















[1], {f},











ef

of

uf











, []



















Notice that Sf,v is empty, because a Filter does not have any children.

Pipeline

Let the Pipeline p have n children and let pi denote the ith child of the Pipeline (counting

from input to output , starting with 0, the children may be streams, not necessarily Filters).

We must find Sp.

We start with calculating all Spi
, i ∈ {0, . . . , n − 1}. This task is achieved recursively.

Next we find a fractional vector v′′ such that executing each pi v′′i times will not change

the amount of data buffered in the Pipeline and the first child is executed exactly once.

Since the children streams are executed fractional amount of times, we calculate the amount

of data they produce and consume during this execution by multiplying Spi,co and Spi,cu by

v′′i . Thus v′′ must have the following property

v′′0 = 1, ∀i ∈ {0, . . . , n − 1}, v′′i ∗ upi
= v′′i+1 ∗ opi−1
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We compute v′′ as follows. The first child executes once, thus v′′0 = 1. The second child

must execute v′′1 =
up0

op1

times to ensure that all data pushed on the the first channel is

consumed by the second child. The third child must execute v′′
2 = v′′1

up1

op2

=
up0

op1

up1

op2

times to

ensure that it consumes all the data produced by the second child. Thus,

v′′i =

∏i−1
j=0 upj

∏i
j=1 opj

Next we will find an integral vector v′ such that executing each pi v′i times will not

change the amount of data buffered in the Pipeline. v′ will be a valid steady state of the

Pipeline.

In order to calculate v′ we multiply v′′ by
∏n−1

j=1 opj
. Thus

v′i =

(
∏i−1

j=0 upj
∏i

j=1 opj

)





n−1
∏

j=1

opj



 =





i−1
∏

j=0

upj









n−1
∏

j=i+1

opj





Now we find an integral vector v, such that, for some positive integer g, v ′ = g ∗ v, and
∑

i vi is minimal. In other words, we find the greatest integer g, such that v ′ = g ∗ v, with

v consisting of integers. v represents the minimal steady state for pipeline p.

This is achieved by finding the gcd of all elements in v′, and dividing v′ by g. Thus

v =
v′

gcd(v′)

v represents the number of times each child of p will need to execute its steady state

in order to execute the minimal steady state of p, thus Sp,v = v. v holds a steady state

because amount of data buffered in p does not change, and it is a minimal steady state,

because
∑

i vi is minimal.

We construct set Sp as follows:1

Sp =































v0 ∗ Sp0,m ◦ . . . ◦ vn−1 ∗ Spn−1,m, Sp0,N ◦ . . . ◦ SPn−1,N ,










ep0
+ (v0 − 1) ∗ op0

v0 ∗ op0

vn−1 ∗ upn−1











, v































An example is presented in Figure 3-1 (a). For this Pipeline, we have the following

steady states for all children of the Pipeline:

1Here we use symbol ◦ to denote concatenation of vectors and sets. Thus [1 2 3] ◦ [4 5 6] = [1 2 3 4 5 6]
and {A B C} ◦ {D E F} = {A B C D E F}.
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SA =



















[1], {A},











1

1

3











, []



















, SB =



















[1], {B},











3

2

3











, []



















SC =



















[1], {D},











2

2

1











, []



















, SD =



















[1], {D},











5

3

1











, []



















Using the steady states above, we get the following vector v′:

v′ =















(2 ∗ 2 ∗ 3)

(3)(2 ∗ 3)

(3 ∗ 3)(3)

(3 ∗ 3 ∗ 1)















=















12

18

27

9















We now calculate g = gcd(v′) = gcd(12, 18, 27, 9) = 3. We thus have

v =
v′

3
=

1

3















12

18

27

9















=















4

6

9

3















Finally, we construct Sp:

Sp =







































4SA,m ◦ 6SB,m ◦ 9SC,m ◦ 3SD,m, SA,N ◦ SB,N ◦ SC,N ◦ SD,N











1 + (4 − 1) ∗ 1

4 ∗ 1

3 ∗ 1











,















4

6

9

3





















































SplitJoin

Let the SplitJoin have n children and let sji denote the ith child of the SplitJoin (counting

from left to right, starting with 0). Let sjs and sjj denote the splitter and the joiner of the

SplitJoin, respectively. Let ws,i denote the number of items sent by the splitter to ith child

on splitter ’s every execution. Let wj,i denote the number of items consumed by the joiner

from the ith child on joiner ’s every execution. We are computing Ssj .

We start by calculating all Ssji
, i ∈ {0, . . . , n − 1}.
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Next we compute a fraction vector v′′ and a fraction a′′j such that executing the splitter

exactly once, each child sji v′′i times and the joiner a′′j times does not change the amount

of data buffered in the SplitJoin. Again, since v′′ and a′′j are fractions, we multiply the

steady-state pop and push amounts by appropriate fractions to obtain the amount of data

pushed and popped. For convenience we define a′′
s to be the number of executions of the

splitter and set it to 1.

We thus have that each child sji must execute v′′i =
ws,i

osji

times. To compute the number

of executions of the joiner , a′′
j , we select an arbitrary kth child (0 ≤ k < n) and have that

the joiner executes a′′j =
ws,k

osk

usjk

wj,k
times.

Next we compute integer vector v′ and integers as and aj such that executing the splitter

as times, each child sji v′i times and the joiner aj times still does not change the amount of

data buffered in the SplitJoin. We do this by multiplying a′′
s , v′′ and a′′j by wj,k

(

∏n−1
r=0 osjr

)

.

Thus we get

a′s = wj,k

(

∏n−1
r=0 osjr

)

v′i = wj,k

(

∏n−1
r=0 osjr

)

∗ ws,i

osji

= ws,i ∗ wjk

(

∏i−1
r=0 osr

) (

∏n−1
r=i+1 osr

)

a′j = wj,k

(

∏n−1
r=0 osjr

)

∗ ws,k

osk

usjk

wj,k
= ws,k ∗ usjk

∗
(

∏k−1
r=0 osr

) (

∏n−1
r=k+1 osr

)

Now we use v′, a′s and a′j to compute minimal steady state of the SplitJoin. Since v′,

a′s and a′j represent a steady state, they represent a strict multiple of the minimal steady

state. Thus we find the multiplier by computing g, the gcd of all elements in v′ and integers

a′s and a′j , and dividing v′, a′s and a′j by g. We have that

g = gcd(v′, a′s, a
′
j)

v = v′

g

as = a′

s

g

aj =
a′

j

g

Finally, we use v, as and aj to construct Ssj :

Ssj =























































v0 ∗ Ssj0,m ◦ . . . ◦ vn−1 ∗ Ssjn−1,m ◦ [as aj ],

Ssj0,N ◦ . . . ◦ Ssjn−1,N ◦ {sjs, sjj},










ns ∗ os

ns ∗ os

nj ∗ uj











,

v ◦ [as] ◦ [aj ]























































Figure 3-1 (b) depicts a sample SplitJoin. The following are the steady states of the
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SplitJoin’s children:

SA =



















[1], {A},











2

2

1











, []



















, SB =



















[1], {B},











3

2

6











, []



















For this SplitJoin, we select k = 0 (we use the left-most child to compute a′
j). We get the

following v′, a′s and a′j

v′ =





2 ∗ 2(2)

1 ∗ 2(2)



 =





8

4





a′s = 1 ∗ 2(2 ∗ 2) = 8

a′j = 2 ∗ 1(2 ∗ 2) = 8

Thus gcd(u′, a′s, a
′
j) = gcd(8, 4, 8, 8) = 4. Now we obtain

v = v
4 = 1

4





8

4



 =





2

1





as = a′

s

4 = 8
4 = 2

a′j =
a′

j

4 = 8
4 = 2

Finally, we construct Ssj :

Ssj =



















































2 ∗ Ssj0,m ◦ 1 ∗ Ssj1,m ◦ [2 2],

Ssj0,N ◦ Ssj1,N ◦ {sjs, sjj},










2 ∗ 3

2 ∗ 3

2 ∗ 4











,















2

1

2

2

































































It is important to note, that it is not always possible to compute a unique v ′′ for all

possible SplitJoins. The reason is that unbalanced production/consumption ratios between

different children of a SplitJoin can cause data to buffer up infinitely.

Definition 2 (Valid SplitJoin) A SplitJoin is valid iff ∀k, 0 ≤ k < n − 1, a′′
j,k = a′′j,k+1,

using notation of a′′j,k to indicate that kth child of the SplitJoin was used to compute the

value of a′′j .

An example of an illegal SplitJoin is depicted in Figure 3-2. The rates of throughput

of data for the left child mean that for every execution of the splitter , the joiner needs to

32



splitter

joiner

filter0

1,1

1

filter1

1,1

2

1,1

1,1

Figure 3-2: An illegal SplitJoin

be executed exactly once to drain all data entering the SplitJoin. The rates of throughput

of data for the right child mean that for every execution of the splitter , the joiner needs

to be executed exactly twice to drain all data entering the SplitJoin. That means that

consumption of data by the joiner will be relatively slower on the right side, causing data

to buffer up. This means that the given SplitJoin does not have a steady state.

If a SplitJoin is such that it does not have a steady state, it is considered an illegal

SplitJoin. It cannot be executed repeatedly without infinite buffering, so a practical target

for StreamIt cannot execute it. The calculations presented here assume that the SplitJoin

is legal. In order to check if a given SplitJoin is legal, we test if selecting a different child

for calculation of a′′j yields a different a′′j . If it does, then the two paths tested have different

production/consumption rates, and the SplitJoin does not have a steady state.

FeedbackLoop

Let FeedbackLoop fl have children B (the body child) and L (the feedback loop child). Let

the joiner and the splitter of the FeedbackLoop be denoted flj and fls. Let wj,I and wj,L

denote the number of data items consumed by the joiner from the input channel to the

FeedbackLoop and from flL, respectively. Let ws,O and ws,F denote the number of data

items pushed by the splitter onto the FeedbackLoop’s input channel and to flL respectively.

We are computing Sfl.
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First we calculate SB and SL.

Now we compute a fractional vector v′′ = [a′′B a′′L a′′s a′′j ] such that executing the body

child a′′B times, the splitter a′′s times, the loop child a′′F times and the joiner a′′j times will

not change the amount of data buffered up in the FeedbackLoop. Thus

a′B ∗ uB = a′s ∗ os

a′L ∗ uB = a′j ∗ wj,L

a′s ∗ ws,F = a′L ∗ oB

a′j ∗ uj = a′B ∗ oB

We begin with setting a′′j = 1. B needs to be executed
a′′

B
=uj

oB
times, the splitter needs

to be executed a′′s =
uj

oB

uB

os
times and L needs to be executed a′′

L =
uj

oB

uB

os

ws,L

oL
times.

Furthermore, in order to assure that the FeedbackLoop has a valid steady state, we continue

going around the loop, the joiner must require
uj

oB

uB

os

ws,L

oL

uL

wj,L
= 1. If this condition is not

satisfied, the FeedbackLoop does not have a steady state. This is a necessary, but not a

sufficient condition for a FeedbackLoop to be valid.

Next we compute an integer vector v′ = [a′B a′L a′s a′j ] such that executing B a′B times,

splitter a′s times, L a′L times and joiner a′j times will not change the amount of data buffered

in the SplitJoin. We do this by multiplying v′′ by oB ∗ os ∗ oL.

a′B = uj ∗ os ∗ oL

a′L = uj ∗ uB ∗ ws,L

aj = oB ∗ os ∗ oL

as = uj ∗ uB ∗ oL

We now use v′ to compute v = [aB aL as aj ], a minimal steady state for the Feed-

backLoop. We do this by finding an integer g, the gcd of all elements in v′ and computing

v = v′

g
.

Finally, we construct Sfj as follows:

Sfj =











































aB ∗ SB,m ◦ aL ∗ SL,m ◦ [as aj ],

SB,N ◦ SL,N ◦ {fls, f lj},










aj ∗ wj,I

aj ∗ wj,I

as ∗ ws,O











, v











































Figure 3-1(c) depicts a sample FeedbackLoop. The following are the steady states of the
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SplitJoin’s children:

SB =



















[1], {B},











2

2

1











, []



















, SL =



















[1], {L},











5

5

6











, []



















We compute v′ for this FeedbackLoop:

v′ =















5 ∗ 3 ∗ 5

5 ∗ 1 ∗ 3

5 ∗ 1 ∗ 5

2 ∗ 3 ∗ 5















=















75

15

25

30















Thus g = gcd(75, 15, 25, 30) = 5 and

v =
1

5















15

3

5

6















Finally, we construct Sfl

Sfl =



















































15 ∗ SB,m ◦ 3 ∗ SL,m ◦ [5 6],

SB,N ◦ SL,N ◦ {fls, f lj},










6 ∗ 2

6 ∗ 2

5 ∗ 3











,















15

3

5

6

































































3.3 Initialization for Peeking

Consider a Filter f , with peek amount of 2 and a pop amount of 1. When a StreamIt

program is first run, there is no data present on any of the channels. This means that for

the first execution, filter f requires that two data items be pushed onto its input channel .

After the first execution of f , it will have consumed one data item, and left at least one

data item on its input channel . Thus in order to execute f for the second time, at most one

extra data item needs to be pushed onto f ’s input channel . The same situation persists for

all subsequent executions of f - at most one additional data item is required on f ’s input

channel in order to execute f .
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This example illustrates that first execution of a Filter may require special treatment.

Namely, the source for Filter ’s data may need to push more data onto Filter ’s input channel

for Filter ’s first execution. Due to this condition, a StreamIt program may need to be

initialized before it can enter steady state execution.

There are other constraints (latency constraints) which may require more complex ini-

tialization. These will be discussed in Chapter 6.

After an execution, a Filter f must leave at least ef − of data on its input channel .

Thus, if the only constraints on initialization are peek-related, it is a sufficient condition for

entering steady state schedule that ∀f ∈ Filters, inf ≥ ef − of .

Specific strategies for generating initialization schedules for peeking will be presented in

Chapter 4 and Chapter 5.

3.4 Schedules

Once a program has been initialized, it is ready to execute its steady state. In order to do

this, a steady state schedule needs to be computed. The steady states computed above do

not indicate the ordering of execution of the nodes, only how many times the nodes need

to be executed.

A schedule is an ordering of nodes in a StreamIt streams. In order to execute the

schedule, we iterate through all of its nodes in order of appearance and execute them one

by one. For example in order to execute schedule {ABBCCBBBCC} we would execute

node A once, then node B, node B again, C two times, B three times and C twice again, in

that order.

In order to shorten the above schedule we can run-length encode it. The schedule

becomes {A{2B}{2C}{3B}{3C}}.

3.5 Schedule Size vs. Buffer Size

When creating a schedule, two very important properties of it are schedule size and amount

of buffering required. Schedule size depends on encoding the schedule in an efficient way,

while amount of space required depends only on order of execution of nodes. The two are

related, however, because order of execution of Filters affects how efficiently the schedule

can be encoded.

For example, execution of Filters in Pipeline depicted in Figure 3-3 can be ordered in

two simple ways, one resulting in a large schedule but minimal amount of buffering, the

other resulting in a small schedule but a large amount of buffering.

The steady schedule of the Pipeline in Figure 3-3 executes Filter A 4 times, Filter B 6
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1
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Figure 3-3: Sample 4 Filter Pipeline. This Pipeline is the same as one in Figure 3-1 (a),
except that its children do not peek extra data

times, Filter C 9 times and Filter D 3 times. Writing out a schedule that requires minimal

buffering results in schedule {AB{2C}BCDAB{2C}ABCDB{2C}ABCD}. This schedule

requires a buffer for 4 data items between Filters A and B, 4 items between B and C and 3

items between C and D, resulting in total buffers size 11, assuming data items in all buffers

require the same amount of space. The schedule itself has 18 entries.

To compare, writing the schedule in the most compact method we get

{4A}{6B}{9C}{3D}

This schedule requires a buffer for 12 data items between Filters A and B, 18 items between

B and C, and 9 data items between C and D, resulting in total buffers size 39. The schedule

has 4 entries.

We can compare the storage efficiency of these two schedules by assuming that one

data item in a buffer requires x amount of memory and each entry in a schedule requires

y amount of memory. Thus the two schedules will require the same amount of storage to

store themselves and execute if 11x + 18y = 39x + 4y.

11x + 18y = 39x + 4y

14y = 28x

y = 2x

Thus the smaller schedule is more efficient if every data item requires less than twice

the amount of storage than every entry in the schedule.
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One of the difficulties in scheduling StreamIt programs lies in finding a good set of

trade-offs between schedule size and buffering requirements.
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Chapter 4

Hierarchical Scheduling

In this chapter we present Hierarchical Scheduling, a technique which is quite effective for

scheduling StreamIt programs, but which cannot schedule all programs, and which may

require the buffers to be very large.

Section 4.1 provides some motivation for hierarchical scheduling. Section 4.2 presents

the notation used for hierarchical notation. Section 4.3 provides an algorithm for computing

hierarchical schedules.

4.1 Motivation

As has been explained in Section 3.5, the ordering of execution of nodes in a StreamIt

program can have a significant effect on the amount of resources necessary to execute the

schedule. The two important factors to consider when creating the schedule is amount of

buffering necessary to execute the schedule, and the amount of space necessary to store

the schedule. The amount of buffering necessary is controlled by the ordering of execution

of nodes of the StreamIt graph. The amount of storage necessary to store the schedule is

controlled by the encoding of the schedule. As a general rule, ordering which minimizes the

buffering space requirements is fairly irregular and difficult to encode efficiently.

One technique used for encoding schedules is to form loop-nests of sub-schedules and

repeat them multiple times, until a steady-state schedule is reached. For example, the

stream in Figure 4-1 has a following steady state:

39



splitter

C
3,3

2

D
1,1

2

1,1

3,9

2

12
joiner

A
6,6

4

B
12,12

10

Figure 4-1: A sample stream used for hierarchical scheduling.

Ss =


































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









9
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4
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

























,



























A

C

D
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

























,










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









,











9

2

4





























































Thus one steady state schedule for this stream can be

{9{A{2split}{2D}}}{2{{3C}{2split}{2B}}}

Here, {A{2split}{2D}} and {{3C}{2split}{2B}} are the inner nests, executed 9 and 2

times respectively.

If, the overall schedule has every StreamIt node appear only once (as in the example

above), the technique is called Single Appearance Scheduling [7]. One of difficulties in

using Single Appearance Scheduling is finding a good way to form loop-nests for the sub-

schedules, because the buffering requirements can grow quite large. An example of this has

been presented in Section 3.5.

StreamIt provides the scheduler with a pre-existing hierarchical structure. While it
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is possible to use techniques developed for Single Appearance Scheduling to create valid

schedules for StreamIt programs, Single Appearance Scheduling does not satisfy all require-

ments of an effective StreamIt scheduler. This is because some FeedbackLoops cannot be

scheduled using Single Appearance Scheduling techniques. This difficulty arises because the

amount of data provided to the FeedbackLoop by the delayfl variable is not sufficient to

perform a complete steady-state execution of the loop, thus preventing the schedule for the

FeedbackLoop to be encoded with only a single appearance of every node in the schedule.

The solution to this problem is to have the same node appear multiple times in the

schedule. While this solves the problem of inability to schedule some FeedbackLoops, it

introduces another problem: which nodes should appear several times, and how many times

should they be executed on each appearance. The solution proposed here goes half-way to

solve the problem. A more effective solution will be proposed in Chapter 5.

In hierarchical scheduling we use the pre-existing structure (hierarchy) to determine

the nodes that belong in every loop-nest. Basically, every stream receives its own loop-

nest, and treats steady-state execution of its children as atomic (even if those children are

streams whose executions can be broken down into more fine-grained steps). In the exam-

ple above, the Pipeline has a SplitJoin child. The SplitJoin is responsible for scheduling

its children (nodes C, B, split and join). The Pipeline will use the SplitJoin’s sched-

ule to create its own steady state schedule. Here the SplitJoin’s schedule can be Tsj =

{{9split}{3C}{9D}{2join}}, thus making the Pipeline’s schedule 1

Tpipe = {{9A}{2Tsj}{4B}} = {{9A}{2{{9split}{3C}{9D}{2join}}}{4B}}

The problem of inability to schedule some FeedbackLoops is alleviated by allowing Feed-

backLoop to interleave the execution of its children (the body, the loop, and the splitter and

joiner). This results in FeedbackLoop containing multiple appearances of its children. All

other streams use their children’s schedules in their schedules only once. This technique

is called Pseudo Single Appearance Scheduling, since it results in schedules that are very

similar to proper single appearance schedules. While it does not allow scheduling of all

FeedbackLoops (a FeedbackLoop may have a child which requires more data for steady state

execution then made available by the delayfl variable) it has been found to be very effective,

and only one application has been found which cannot be scheduled using this technique.

1Notation for this schedule is explained in next section (Section 4.2).
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4.2 Notation

The notation in the above example, is very similar to that presented in Section 3.5. A

number in front of a node represents that the node is meant to be executed a certain

number of times. The one big difference is that {2Tsj} means that the schedule for the

Pipeline is meant to be executed twice. Since Tsj = {{9split}{3C}{9D}{2join}}, {2Tsj}
is same as {2{{9split}{3C}{9D}{2join}}}.

This means that to execute Tpipe, node A is executed 9 times, schedule Tsj is executed

twice and node B is executed twice, in that order. To execute Tsj , the splitter is executed

9 times, node C is executed 3 times, node D 9 times and the joiner twice.

Thus, writing the schedule of Tpipe into a flat schedule (one with no loop-nests) results

in schedule {9A}{9split}{3C}{9D}{2join}{9split}{3C}{9D}{2join}{4B}.
In other words, Tsj is a loop-nest, which can be executed multiple times. When storing

a schedule, Tsj is stored only once, and every use of Tsj becomes the reference to the actual

schedule.

A steady schedule for a stream s will be denoted by Ts, while an initialization schedule

for a stream s will be denoted Is. A splitter of a SplitJoin or a FeedbackLoop s will be

denoted as splits, while the joiner will be denoted as joins.

This section will continue using the notation for e, o and u extended to streams. That

is, for a stream s, es will represent the amount of data needed by s on its input channel

in order to execute its minimal steady state schedule; os represents the amount of data

consumed by from its input channel s during execution of its steady state schedule; and us

represents the amount of data pushed by s onto its output channel .

The notation for e, o and u will also be extended to initialization schedules. Namely,

ei
s represents the amount of data required by stream s on its input channel in order to

execute the initialization schedule for s; oi
s represents the amount of data consumed by s

from its input channel during its initialization schedule; and ui
s denotes the amount of data

pushed by s onto its output channel during execution of its initialization schedule. The

initialization schedules are set up in such a way, that after all streams have executed their

initialization schedules, the program is ready to enter its steady state execution.

Note, that it is possible that a stream s has ui
s 6= 0. An example of this will be presented

in Section 4.3.4.

A hierarchical schedule for a stream s is denoted as

Hs =



















Ts, Is, cs =











es

os

us











, ci
s =











ei
s

oi
s

ui
s




























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(c) A sample FeedbackLoop.
delayfl = 15

The L Filter has been flipped
upside-down for clarity.

eL = 9, oL = 5, uL = 6

Figure 4-2: Sample StreamIt streams used for Pseudo Single-Appearance Hierarchical
Scheduling

4.3 Pseudo Single-Appearance

Hierarchical Scheduling

This section will develop hierarchical scheduling techniques to create initialization and

steady state schedules. A simple implementation of the hierarchical scheduling creates a

single-appearance schedule. While single-appearance scheduling is quite effective in schedul-

ing StreamIt programs, it is also easy to construct programs that have FeedbackLoops that

are impossible to schedule. To alleviate the problem, the single-appearance scheduling

was slightly modified to allow FeedbackLoops to schedule programs using hierarchical push

scheduling. This does not solve the problem altogether (some FeedbackLoops are still impos-

sible to schedule using this technique), but this technique is able to schedule many programs

which cannot be scheduled with a simple single-appearance scheduler.

Sample streams for techniques described here are taken from Figure 4-2. The streams

in Figure 4-2 are identical to those in Figure 3-1 with exception of the FeedbackLoop.

4.3.1 Filters

An execution of a Filter is an atomic operation. Thus a steady state schedule for a Filter

f is simply Tf = (f).

A Filter has no internal buffering. Thus there is no need to initialize a Filter for its

steady state. Filters may, however, peek data. That means that in order to enter a steady
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state, sufficient amount of data must be pushed onto Filter ’s input channel . Thus, for a

Filter f , ei
f = ef − of .

Finally, a hierarchical schedule of a Filter is

Hf =



















{f}, {},











ef

of

uf











,











ef − of

0

0


























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4.3.2 Pipelines

Here, for examples, we will use the sample Pipeline in Figure 4-2(a). The steady state

schedule for this Pipeline is

Sp =




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Initialization

Calculation of the initialization schedule starts with computing hierarchical schedules for

all children of the Pipeline.

In order to create an initialization schedule of a Pipeline, all of Pipeline’s children’s

initialization schedules must be executed. Every child must execute its initialization sched-

ule before it can execute its steady-state schedule. Some children may require some data

in order to execute their initialization schedules. The upstream children provide this data

to them by first executing their own initialization schedule, and then their steady-state

schedule. Thus, in the final form, the execution of a Pipeline’s initialization schedule first

executes the initialization schedule of the top-most child, then executes the steady-state

schedule this child several times, then the initialization schedule of the second-from-the-top

child, followed by executing this child’s steady-state schedule several, etc, until the bottom-

most child is reached. Since the bottom-most child does not need to provide any data

Pipeline’s downstream children (there aren’t any), the bottom-most child only executes its

initialization schedule.

The initialization schedule is calculated as follows. At every stream of the Pipeline, the

amount of data necessary to initialize all the streams below is calculated. For kth stream,

that amount is denoted initk. If the Pipeline has n children, then for the bottom-most

child, pn−1, that amount is initn−1 = ei
pn−1

. The data to the kth child is provided by the

k − 1 child, during its initialization and subsequent execution of its steady state schedule.
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The initialization provides ui
pk−1

data items. Thus the k − 1 child must execute its steady

state schedule lk−1 =

⌈

initk−ui
pk−1

upk−1

⌉

times. The amount of data required for initialization of

the Pipeline by the k − 1 child is initk−1 = ei
pk−1

+ lk−1 ∗ opk−1
.

This calculation is performed for all children of the Pipeline, starting at the last (bottom-

most) child, and moving up. For the sample Pipeline in Figure 4-2(a), the values computed

are:

l3 = 0

l2 =

⌈

init3−ui
C

uC

⌉

=
⌈

2−0
1

⌉

= 2

l1 =

⌈

init2−ui
B

uB

⌉

=
⌈

4−0
3

⌉

= 1

l0 =

⌈

init1−ui
A

uA

⌉

=
⌈

4−0
3

⌉

= 2

init3 = ei
D + l3 ∗ oD = 2 + 0 ∗ 1 = 2

init2 = ei
C + l2 ∗ oC = 0 + 2 ∗ 2 = 4

init1 = ei
B + l1 ∗ oB = 1 + 1 ∗ 3 = 4

init0 = ei
A + l0 ∗ oA = 0 + 2 ∗ 1 = 2

Now, the initialization schedule is simply constructed by iterating over all children of the

Pipeline, from top to bottom, and concatenating all initialization and appropriate steady

state schedules. Thus Ip = {IA{2TA}IBTBIC{2TC}ID}.
Finally, we need to compute the amount of data peeked, popped and pushed by the

Pipeline during its initialization.

The amount of data popped is simply the amount of data popped by the top-most child

when executing the Pipeline’s initialization schedule, that is the amount of data popped

by the first child during its own initialization plus the amount of data popped during its

steady-state execution times number of steady state executions. That is oi
p = oi

p0
+ l0 ∗ op0

.

Similarly, the amount of data pushed by the Pipeline is simply the amount of data pushed

by the bottom-most child during its initialization. Remember that the bottom-most child

never executes its steady-state schedule. Thus ui
p = ui

pn−1
.

Computing the amount of data peeked by the Pipeline during initialization may be a

little more complicated, because unlike popping and pushing, peeking is not accumulative.

Luckily, we can rely on our knowledge of structure of the StreamIt graph to calculate the

amount of data peeked by a Pipeline. We know that a Pipeline is a single-input structure.

We also know that this single input will lead directly into a StreamIt node. There are only

three possibilities for what this node will be.

• If Pipeline’s first node is a Filter f (the first child of the Pipeline is a Filter or a

Pipeline with a Filter as its first node) then the extra amount of data peeked by the

Pipeline on initialization will be ei
f − oi

f . If the first child is a Filter , then p0 is f and

the extra amount peeked is also ei
p0

− oi
p0

. If the first child is a Pipeline with a Filter
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first node, we can show by induction that this Pipeline’s extra peek amount will also

be ei
p0

− oi
p0

.

• If Pipeline’s first node is a splitter (the first child of the Pipeline is a SplitJoin or a

Pipeline with a splitter as its first node) then the extra amount of data peeked by the

Pipeline on initialization will be 0, because splitters never peek. Furthermore, for the

same reason, the amount of extra data peeked by the first child on its initialization

will also be zero, or ei
p0

− oi
p0

= 0.

• If Pipeline’s first node is a joiner (the first child of the Pipeline is a FeedbackLoop

or a Pipeline with a joiner as its first node) then the amount of extra data peeked

by the Pipeline on initialization will be 0, for the same reasons as above. And again

ei
p0

− oi
p0

= 0.

Thus on initialization, the Pipeline will have an extra peek amount of ei
p0
− oi

p0
, and the

total amount of data peeked by the Pipeline for initialization is ei
p = (ei

p0
− oi

p0
) + l0 ∗ op0

.

Steady State Schedule

The steady state state schedule is calculated as a single-appearance schedule. Calculation

of a single-appearance schedule starts with computing Sp, the steady state for the Pipeline.

Using Sp, the steady state schedule for the Pipeline is constructed by concatenating

multiple steady state schedules for all children of the Pipeline, from top to bottom. For kth

child, its steady state schedule must be executed Sp,v,k times. The steady state guarantees

that every child receives sufficient amount of data to execute all its steady state schedules,

and since the data is being passed from top to bottom, all children will have received all

their data before executing.

The consumption and production of data for the steady state schedule is already calcu-

lated by the steady state, and is Sp,c.

Thus, for our example, Tp = {{4TA}{6TB}{9TC}{3TD}}. The final hierarchical schedule

is

Hp =



















{{4TA}{6TB}{9TC}{3TD}}, {IA{2TA}IB{1TA}IC{2TC}ID},











4

4

3











,











2

2

0





























4.3.3 SplitJoins

Creating a schedule for a SplitJoin is essentially identical to scheduling a Pipeline. The

initialization schedule only needs to compute how many times the splitter needs to be
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executed, and construct the actual schedule. The steady state schedule is constructed by

concatenating steady state schedule of SplitJoin’s children, the splitter and joiner .

For our example in Figure 4-2(b), the steady state is

Ssj =


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Initialization

In order to initialize a SplitJoin, all its children must execute their initialization schedules.

The only requirement for executing those schedules is that they have been provided with

sufficient data on their input channels. Since the splitter provides data for all the children of

a SplitJoin, it is the only element of a SplitJoin that must execute its steady state schedule.

For kth child of a SplitJoin, the splitter must provide ei
sjk

data items. One execution of

the splitter causes it to push ws,k data items toward the kth child. Thus the splitter must

execute at least lk =

⌈

ei
sjk

ws,k

⌉

times. In order to find out how many times the splitter needs

to execute to initialize all children, ls, we simply find the maximum lk. Thus ls = max
k

(lk).

In the sample SplitJoin from Figure 4-2(b), we get following lks:

l0 =

⌈

ei
A

ws,0

⌉

=
⌈

0
2

⌉

= 0

l1 =

⌈

ei
B

ws,1

⌉

=
⌈

1
1

⌉

= 1

The maximum lks is 1, thus ls = 1, the splitter must be executed once for initialization.

The initialization schedule is constructed by concatenating an appropriate number of ex-

ecutions of the splitter and initialization schedules of all the children. Thus in our example,

Isj = {split IA IB}.
The consumption of an initialization schedule of a SplitJoin is computed as follows:

ei
sj = ui

sj = ls ∗ osjs and ui
sj = 0. The peeking and popping amounts are simply the amount

of data popped by the splitter for every one of its executions times the number of times it

is executed. The joiner is never executed, thus the push amount is 0.

Thus for our example, ei
sj = ui

sj = 1 ∗ 3 = 3 and ui
s = 0.

Steady State

Similarly to the algorithm for Pipeline, the steady state is constructed by using Ssj,v to

concatenate the executions of the splitter , all children of the SplitJoin and the joiner to-
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splitter
1,1
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Figure 4-3: Sample FeedbackLoop. If this FeedbackLoop has a delayfl value set to 7,
it does not have a steady state schedule which will allow it to execute forever. If the
dealyfl value is increased by 1 to 8, the FeedbackLoop has a steady state schedule of
{join{2B}{5split}L join{2B}{5split}L join{2B}{5split}L{2 join}{4B}{10split}{2L} }.

gether.

For our example, the steady state schedule is simply

Tsj = {{2 split}{2TA}TB{2 join}}

The consumption vector, csj is the same as Ssj,c.

Thus the hierarchical schedule for the SplitJoin in Figure 4-2(b) is

Hsj =


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4.3.4 FeedbackLoops

Scheduling of FeedbackLoops is a task that can be made difficult, if the amount of data

provided for the FeedbackLoop by the delayfl value is low. Before a StreamIt program

begins executing, the FeedbackLoop needs to be provided with some data in one of the

internal channels. Without this data, the splitter and the joiner of the FeedbackLoop will

not be able to execute, because they will never have sufficient data on their input channels.

This is a consequence of the FeedbackLoop having a cyclical structure.

The difficulty in scheduling FeedbackLoops is that if the amount of data made available

to the FeedbackLoop by the delayfl value (as explained in Section 2.1.4) is small, there will
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be very limited number of ways to execute the FeedbackLoop. In fact, it is possible that

the amount of data available to the FeedbackLoop is so small, it cannot reach and complete

an execution of a steady state schedule. An example of such FeedbackLoop is presented in

Figure 4-3.

Here we will use FeedbackLoop from Figure 4-2(c). The steady state schedule for this

FeedbackLoop is
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




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
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Initialization Schedule

Initialization for the FeedbackLoop is calculated in a similar way to initialization of a

Pipeline. The number of steady state executions of the children of the FeedbackLoop is

denoted lB and lL for the body child and the loop child, respectively. The number of

executions of the splitter is denoted ls and the joiner is denoted lj .

Since the initial data is inserted into the buffer between the loop child and the joiner

(as explained in 2.1.4), it follows that the loop child should initialize last - it will be the

last one receive data to initialize. Since the computation of the initialization schedule is

similar to the way it was done for Pipeline, we will start with the child which is executed

last, namely the loop child. Similarly as with Pipeline, the which is initialized last does not

execute its steady state schedule for initialization, thus we set lL = 0. The splitter must

provide the loop child with just enough data to initialize, the body child must provide the

splitter with just enough data for the splitter to pass enough data to the loop child, etc.

Thus,

lL = 0

ls =

⌈

oi
flL

ws,1

⌉

lB =

⌈

os∗ls−ui
flB

uflB

⌉

lj =

⌈

oi
flB

+lB∗oflB

uj

⌉

This initialization schedule will only be valid if there is enough data provided between

the loop child and the joiner , or delayfl ≥ lj ∗ wj,1. If this condition does not hold, the

FeedbackLoop cannot be scheduled using pseudo single-appearance algorithm.

Referring to the example Figure 4-2(c), we obtain the following values for ns:
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ls =
⌈

4
3

⌉

= 2

lB =
⌈

2∗3−0
1

⌉

= 6

lj =
⌈

0+6∗2
5

⌉

= 3

Furthermore, since delayfl = 15, we have 15 ≥ 3 ∗ 3, thus a valid initialization schedule

can be constructed.

The initialization schedule is constructed by concatenating executions of the joiner ,

body child, splitter and the loop child. The body child will execute both its initialization

schedule as well as its steady state schedule, while the loop child will only execute its

initialization schedule.

Thus for our example we get Ifl = {{3 join}IB{6TB}{2 split}IL}.
We now compute the consumption of data for the initialization schedule of the Feed-

backLoop: ei
fl = oi

fl = nj ∗ wj,0 and ui
fl = ns ∗ ws,0. Similarly as in computation for the

SplitJoin, these values are simply the production and consumption of the splitter and joiner

from their appropriate input and output channels multiplied by the number of times the

splitter and joiner are executed during initialization schedule.

In our example, ei
fl = oi

fl = 3 ∗ 2 = 6 and ui
fl = 3 ∗ 3 = 9. Note that the FeedbackLoop

pushes data out during its initialization.

Finally, we compute the amount of data present in channels after initialization. These

amounts are important because they will be used to compute the steady state schedule

of the FeedbackLoop. These amounts were not necessary for computation of steady state

schedules of Pipeline and SplitJoin. These amounts are calculated by simply subtracting

the amount of data popped from a channel from amount of data pushed into a channel .

Here we adopted the notation for input and output channel from Section 3.1.

ini
B = lj ∗ uj − lB ∗ oflB

outiB = ui
flB

+ lB ∗ uflB − ls ∗ os

ini
L = ls ∗ ws,1 − lL ∗ oflL

outiL = delayfl + ui
flL

+ lL ∗ uflL − lj ∗ wj,1

Steady State Schedule

Computing the steady state schedule for a FeedbackLoop is more complicated than for the

other streams. The reason for this is (as explained above) that FeedbackLoops may require

a non single-appearance schedule, while other StreamIt construct can always be scheduled
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data items in buffer executions left
element
consid-
ered

executions

inB outB inL outL split B join L

1 6 6 0 5 9 4 3 split 2

1 0 12 0 3 9 4 3 L 1

1 0 7 6 3 9 4 2 join 2

11 0 7 0 3 9 2 2 B 5

1 5 7 0 3 4 2 2 split 1

1 2 10 0 2 4 2 2 L 1

1 2 5 6 2 4 2 1 join 2

11 2 5 0 2 4 2 1 B 4

3 6 5 0 2 0 2 1 split 2

3 0 11 0 0 0 0 1 L 1

3 0 6 6 0 0 0 0

Table 4.1: Trace of execution of steady-state algorithm on sample FeedbackLoop from Figure
4-2(c). The executions left amount is the number of executions left for a particular child
to complete a steady state execution of the FeedbackLoop. One this value reaches 0, the
element is not executed anymore, even if it has data to execute.

using single-appearance schedules.

The algorithm used for creating of a steady state schedule will work in several phases.

The amount of data present in channels between the children of the FeedbackLoop, the

joiner and the splitter is kept track of to determine which element is allowed to execute.

The algorithm for creating a steady state schedule of a FeedbackLoop iterates over the

elements of the FeedbackLoop in order of (joiner , body child, splitter , loop child). The

algorithm executes each element as many times as possible, considering the amount of data

required to execute the element and the amount of data available internally within the

FeedbackLoop’s channels to execute the element and not exceeding the steady state number

of executions for the element. Each execution of an element is appended to the steady state

schedule.

This iteration is repeated until either all elements have executed their steady state

number of times, or until a complete iteration has been performed with no element being

able to execute. The first case indicates a successful completion of the algorithm. The

second case indicates a failure - the algorithm is unable to schedule the FeedbackLoop.

Table 4.1 illustrates the execution of this algorithm for our sample FeedbackLoop. Notice

that in the table, the first row and the last row have the same amount of data buffered

in channels, thus indicating that a full steady state schedule has indeed been computed.

Furthermore, the last entry considering execution of B has sufficient data to execute B 5

times, but only executes it 4 times to ensure that a steady state schedule is constructed.
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The schedule resulting from the above computation is

Tfl = {{2 join}{6TB}{2 split}TL{2 join}{5TB} split TL{2 join}{4TB}{2 split}TL}

This schedule is obtained by going through Table 4.1 from top to bottom and concatenating

the appropriate number of executions of every child of the FeedbackLoop, as listed in the

”executions” column.

The steady state consumption cfl is again simply Sfl,c. Thus the hierarchical schedule

is:
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









































{{2 join}{6TB}{2 split}TL{2 join}{5TB},
split TL{2 join}{4TB}{2 split}TL},

{{3 join}IB{6TB}{2 split}IL},











12

12

15











,











6

6

9





















































52



Chapter 5

Phased Scheduling

We then propose Phased Scheduling, a technique which allows to schedule all non-messaging

StreamIt programs, and which allows for better control of trade-off between schedule size

and buffer size.

Section 5.1 provides an introduction to and explanation of Phased Scheduling. Section

5.2 presents a Minimal Latency Schedule implementation using Phased Scheduling.

5.1 Phased Scheduling

The pseudo single-appearance hierarchical scheduling technique presented in Chapter 4,

while quite effective in scheduling simple applications, cannot schedule a small number

of tight FeedbackLoops. Furthermore, the technique is quite inflexible when it comes to

attempting to create a different tradeoff between schedule size and buffer size. The schedules

created using single appearance hierarchical scheduling tend to be quite small at the expense

of larger buffering requirements. A quite simple situation when such tradeoff is not desired,

could be if the schedule is being stored in a large cheap ROM device, while the RAM used

for buffering data is more expensive. It is also quite possible that latency constraints cannot

be satisfied by a single appearance hierarchical schedule. Clearly, a more flexible technique

is required for scheduling.

A key observation in hierarchical scheduling is that each component only needs to worry

about the data that enters or leaves its children. The amount of buffering done internally in

a child is not noticeable or important to the parent component. This observation changes

slightly if latency constraints are placed on the computation. Namely, the important infor-

mation to keep track of is amount of data that leaves or enters children as well as amount

of data that crosses latency constraint boundaries.

This observation leads to a conclusion that scheduling execution of the StreamIt pro-

grams using hierarchical scheduling can be simpler than scheduling the entire program all
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at once (scheduling the program all at once requires tracking all buffers and latency con-

straints at once). Phased scheduling is a concept that expends on hierarchical scheduling,

but does not require that a stream has a single or pseudo single appearance schedule. Each

stream is allowed to have multiple sub-schedules, also called phases. Each phase consists

of phases of the children of the stream that will be executed to execute the phase. The

phases must be executed in correct order. When all of the initialization phases of a stream

have been executed, the stream has executed its initialization schedule and is ready to enter

steady state execution. When all of the steady state phases of a stream have been executed

in order, the entire steady state schedule for the stream has been executed.

The granularity of splitting the steady state schedule into phases is left up to the spe-

cific scheduler. Different streams can use different granularities of execution. In principle,

the parent should not need to know the scheduling granularity of its children. The only

exception to this rule are FeedbackLoops, which can have children which are not scheduled

tightly enough to allow the FeedbackLoop to execute. An example of that may be a pseudo

single-appearance hierarchical scheduling algorithm described in Section 4.3 implemented

using phase scheduling.

One important observation to make is that it makes little sense to have phases which do

not consume or produce any data, and which do not have data cross any latency boundaries.

This is because such phases can easily be merged with preceding or following phases without

any effect on ability to schedule a particular program. This observation allows to easily

bound the size of the resulting schedules to be the sum of executions of first child, last child

and children with latency boundaries. For example, the Pipeline in Figure 4-2 executes its

first child, Filter A, 4 times in steady state execution, and its last child, Filter D, 9 times.

Thus a phasing schedule of this pipeline should at most have 4 + 9 = 13 phases.

5.2 Minimal Latency Phased Scheduling

One of the problems with pseudo single-appearance scheduling is that it cannot schedule

all legal StreamIt programs. A program with a FeedbackLoop can have requirements for

tight execution that cannot be satisfied using a pseudo single-appearance schedule, leading

to deadlock. Phasing scheduling can alleviate this problem by allowing the program to

be scheduled in a more fine-grained manner. Minimal latency scheduling is an example

of a specific scheduling strategy that solves the problem of deadlock. Foregoing latency

constraints, minimal latency scheduling can schedule any legal StreamIt program.

Minimal latency schedule is a schedule that requires a minimal amount of input data

in order to output data. In other words, a minimal latency schedule only buffers as much

data as is absolutely necessary.
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A minimal latency schedule is not necessarily single appearance. In fact, very few

applications can have their minimal latency schedules expressed as a single appearance

schedule. One of the consequences of this is that minimal latency schedules require more

space for storage of the schedule. Use of phasing scheduling facilitates creation of acceptably

small minimal latency schedules. In spirit of hierarchical scheduling, every component is

scheduled separately, in hierarchical order.

One important consequence of phased scheduling, one that is highlighted when calcu-

lating a minimal latency schedule, is that every phase is allowed to consume a different

amount of data and produce a different amount of data.

Below is the description of algorithms used for each type of StreamIt component. The

remainder of this section, pushm
s will denote amount of data pushed by the mth phase of

stream s, popm
s will denote amount of data popped by the mth phase of stream s and peekm

s

will denote amount of data peeked by mth phase of stream s.

5.2.1 Peeking

Phased scheduling has interesting consequence for peeking calculations. The reason for this

is that not all phases must consume data, thus not all phases will peek. The amount of

peeking done by a stream is important for creating an initialization schedule. It is thus

important to remember that the amount of peeking done by a stream is not necessarily the

amount of peeking done by that stream in its first phase, because on first phase, the stream

may not consume or peek any data.

5.2.2 Notation

A phasing schedule of a stream s is a set Ps of elements, Ps = {Ts, Is, cs, c
i
s}. The first

element, Ts denotes the phases used for the steady state schedule of s. Is denotes the

phases used for the initialization schedule of s. cs and ci
s are defined identically to their

definitions in hierarchical schedules: cs is the consumption rate of the stream during its

steady state execution and ci
s is the consumption rate of the initialization schedule.

Ts and Is are defined by identical structures. Both are defined as sets of phases. The

only real difference between Ts and Is is that Ts will be executed indefinitely, while Is will

be executed only once. A phase A is defined as A = {E, c}. E is an ordered list of phases

and nodes that are to be executed in order to execute the phase. c is the consumption of

the phase, with respect to its stream.

As an example, here is a minimal latency schedule for the sample stream in Figure 4-1.

First, the schedule for the internal SplitJoin:
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And the following is a schedule for the Pipeline:
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5.2.3 General Concept

Technique used for calculating minimal latency phasing schedule for a Pipeline, SplitJoin

and FeedbackLoop is similar to the technique used to create a pseudo single-appearance

hierarchical schedule for a FeedbackLoop. Every phase is computed separately. Every phase

knows how much data has been left in internal buffers by the previous phase. The goal is

to create a phase that consumes the minimum amount of data from the input channel in

order to push at least one data item out to the output channel . Once the minimum amount

of data has been consumed by the stream, the maximum amount of data possible is pushed

out of the stream without consuming any more data. This is meant to prevent unnecessary
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buffering of data internally within streams, and reduce the number of phases necessary to

compute a complete schedule.

One important technique used for creating phased schedules is borrowing of data from

channels. When a child is being executed, it is allowed to borrow some data from the

channel , and expect that the upstream child will provide the right amount of data in the

channel for real execution. In the tables, this means that amount of data can fall below

0. This is obviously illegal during real execution for any channel . Some channels, however,

have even stricter restrictions. If the node reading from a channel peeks more than it pops,

the amount of data in the channel during real execution cannot fall below the peek − pop

amount. For this reason, we also need to keep track of amount of data needed from a

channel . This is illustrated in Tables 5.1, 5.2 and 5.3. At the end of a phase, all channels

must have all items borrowed from them returned by the upstream child.

The initialization schedule starts with no internally buffered data (with exception of

FeedbackLoops) and executes as many phases as is necessary to ensure that all children

have executed all of their initialization phases. Once that has been achieved, the steady

state schedule is created. The only difference between computation of an initialization and

steady state schedules is that the steady state schedule stops executing children early, if

they have already executed all the phases allocated to them for the steady state, while the

initialization schedule continues executing until all initialization phases of all children have

been executed.

The only significant difference between the algorithms used for minimal latency schedul-

ing of different stream types (Pipeline, SplitJoin and FeedbackLoop) is the order with which

children of the stream are considered for execution.

For an ith child of a stream s (stream sn), the number of phases that must be executed

for its steady state schedule to be complete is Ss,v,i ∗ |Psi,T |.

5.2.4 Filter

Since Filters have no internal buffering and only one work function, their schedules are

simple. They contain a single phase, which in turn contains a single execution of the filter’s

work function. Although in principle, a Filter does not need to be executed to be initialized,

it may require some data to be buffered for its execution. This means that if ef > of , we

insert an artificial initialization phase to phasing schedules of Filters:
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5.2.5 Pipeline

The order with which children are considered for execution is as follows. First all the children

are considered for execution moving from bottom to top. The last child executes just enough

phases to produce some data. The child directly above it executes just enough phases to

provide sufficient data for the child below to execute its child. This process is repeated until

the top-most child is reached. At this point the direction of traversal is reversed. This time,

the top-most child is skipped, and the second top-most child is considered. It only executes

as many phases as it can, while only using data already buffered between it and the child

above it. Then, the child below it is executed in the same way. This is repeated until the

bottom-most child is reached. The number of phases executed by each child is added up,

and the phases are inserted in order (all phases of every child together, in order, iterating

from top-most child down to bottom-most child). This constitutes one complete phase of

the Pipeline.

Using the sample Pipeline from Figure 4-2(a), the following are phasing schedules for

Filters A, B, C and D:
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Table 5.1 shows a trace of execution of the algorithm on the Pipeline from Figure 4-2(a).

The following is the resulting phasing schedule:
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data in channel
phase

executions left

child
consid-
ered

phases
executed

Pipeline
consumption

inB inC inD A B C D
0 (0) 0 (0) 0 (-2) 0 1 0 0 C {2AC,0} [0 0 0]
0 (0) -4 (-4) 2 (0) 0 1 0 0 B Ai

B,0, {2AB,0} [0 0 0]

-4 (-5) 2 (0) 2 (0) 0 0 0 0 A {2AA,0} [2 2 0]
2 (0) 2 (0) 2 (0) 0 0 0 0 B - [0 0 0]
2 (0) 2 (0) 2 (0) 0 0 0 0 C AC,0 [0 0 0]
2 (0) 0 (0) 3 (0) 0 0 0 0 D - [0 0 0]
2 (0) 0 (0) 3 (0) init phase 0 done, init done
2 (0) 0 (0) 3 (0) 4 6 9 3 D AD,0 [0 0 1]
2 (0) 0 (0) 0 (-2) 4 6 9 2 C {2AC,0} [0 0 0]
2 (0) -4 (-4) 2 (0) 4 6 7 2 B {2AB,0} [0 0 0]

-2 (-3) 2 (0) 2 (0) 4 4 7 2 A AA,0 [1 1 0]
1 (0) 2 (0) 2 (0) 3 4 7 2 B - [0 0 0]
1 (0) 2 (0) 2 (0) 3 4 7 2 C AC,0 [0 0 0]
1 (0) 0 (0) 3 (0) 3 4 6 2 D - [0 0 0]
1 (0) 0 (0) 3 (0) phase 0 done
1 (0) 0 (0) 3 (0) 3 4 6 2 D AD,0 [0 0 1]
1 (0) 0 (0) 0 (-2) 3 4 6 1 C {2AC,0} [0 0 0]
1 (0) -4 (-4) 2 (0) 3 4 4 1 B {2AB,0} [0 0 0]

-3 (-4) 2 (0) 2 (0) 3 2 4 1 A {2AA,0} [2 2 0]
3 (0) 2 (0) 2 (0) 1 2 4 1 B AB,0 [0 0 0]
1 (0) 5 (0) 2 (0) 1 1 4 1 C {2AC,0} [0 0 0]
1 (0) 1 (0) 4 (0) 1 1 2 1 D - [0 0 0]
1 (0) 1 (0) 4 (0) phase 1 done
1 (0) 1 (0) 4 (0) 1 1 2 1 D AD,0 [0 0 1]
1 (0) 1 (0) 1 (-1) 1 1 2 0 C AC,0 [0 0 0]
1 (0) -1 (-1) 2 (0) 1 1 1 0 B AB,0 [0 0 0]

-1 (-2) 2 (0) 2 (0) 1 1 1 0 A AA,0 [1 1 0]
2 (0) 2 (0) 2 (0) 0 0 1 0 B - [0 0 0]
2 (0) 2 (0) 2 (0) 0 0 1 0 C AC,0 [0 0 0]
2 (0) 0 (0) 3 (0) 0 0 0 0 D - [0 0 0]
2 (0) 0 (0) 3 (0) phase 2 done, steady state schedule done

Table 5.1: Trace of execution of Minimal Latency Scheduling Algorithm on Pipeline from
Figure 4-2(a). In the ”data in channel” columns the first value represents the actual number
of data in the channel , which can be negative if more data has been popped from the channel
than has been pushed into it. This is due to borrowing of data from channels. The second
value represents the minimal number of data items that the downstream Filter has inspected
beyond the 0th data. This value can be higher than the negative amount of data in the
channel because a Filter may peek at data without consuming it. In general, for a Filter f ,
the amount of data needed on its input channel is max(0,−(inf − (ef − of ))). The needed
amount is 0 until the downstream Filter is executed for the first time.
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5.2.6 SplitJoin

As explained above, the only difference between the algorithm for a Pipeline and a SplitJoin

is the order in which the children streams are considered for execution. In a Pipeline, the

children are considered from the bottom-most child to the top child, and then from second

top-most child down to the bottom most child again. A SplitJoin has only three levels of

direct children in it: the top is a splitter , the middle is formed by all the child streams of

the SplitJoin and the bottom is the joiner . To schedule a SplitJoin, the children are also

considered in the bottom to top and top to bottom order, but the child streams are also

considered from left to right (this choice is arbitrary - the order does not affect the number

of child phase executions per phase of the SplitJoin).

Using the sample SplitJoin from Figure 4-2(b), the following are phasing schedules for

Filters A and B:

PA =















































TA =















AA,0 =















{A},









2

2

1





































,

IA = {} , cA =









2

2

1









, ci
A =









0

0

0























































61



data in channel
phase

executions left

child
consid-
ered

phases
executed

Pipeline
consump-

tion
split A B join inA outA inB outB

0 (0) 0 (0) 0 (0) 0 (0) 0 0 1 0 join - [0 0 0]
0 (0) 0 (0) 0 (0) 0 (0) 0 0 1 0 A - [0 0 0]
0 (0) 0 (0) 0 (0) 0 (0) 0 0 1 0 B Ai

B,0 [0 0 0]

0 (0) 0 (0) 0 (-1) 0 (0) 0 0 0 0 split split [3 3 0]
2 (0) 0 (0) 1 (0) 0 (0) 0 0 0 0 A Ai

A,0 [0 0 0]

0 (0) 1 (0) 1 (0) 0 (0) 0 0 0 0 B - [0 0 0]
0 (0) 1 (0) 1 (0) 0 (0) 0 0 0 0 join - [0 0 0]
0 (0) 1 (0) 1 (0) 0 (0) init phase 0 done, init done
0 (0) 1 (0) 1 (0) 0 (0) 2 2 1 2 join join [0 0 4]
0 (0) 0 (0) 1 (0) -3 (-3) 2 2 1 2 A - [0 0 0]
0 (0) 0 (0) 1 (0) -3 (-3) 2 2 1 1 B AB,0 [0 0 0]
0 (0) 0 (0) -1 (-2) 3 (0) 2 2 0 2 split {2split} [6 6 0]
4 (0) 0 (0) 1 (0) 3 (0) 0 2 0 2 A {2AA,0} [0 0 0]
0 (0) 2 (0) 1 (0) 3 (0) 0 0 0 0 B - [0 0 0]
0 (0) 2 (0) 1 (0) 3 (0) 0 0 0 1 join join [0 0 4]
0 (0) 1 (0) 1 (0) 0 (0) phase 0 done, steady state schedule done

Table 5.2: Execution of Minimal Latency Scheduling Algorithm on SplitJoin from Figure
4-2(b).
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Table 5.2 shows execution of the algorithm on the SplitJoin from Figure 4-2(b).

The trace of the execution shows that even though it is strictly necessary to traverse

the children of the stream second time from bottom to top, doing so can pay off in reducing

the number of phases necessary to construct a phasing schedule. Namely, in its first steady

state execution, the splitter needs to push enough data to execute the joiner again, thus

eliminating a need for an additional phase.

Once all the phases are computed, the phasing schedule is constructed. For every phase,

the number of child phases executed is added up, and the actual schedule is constructed

by concatenating all the phases of all the children, starting with the splitter , all stream

children (as listed from left to right) and finally the joiner . The following is the resulting
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phasing schedule:
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5.2.7 FeedbackLoop

Scheduling of FeedbackLoops is again similar to the above algorithms. The children’s phases

are executed in order of (splitter , body child, joiner , body child, splitter , loop child). The

splitter tries to execute exactly one time on its first iteration. The body child and the joiner

execute just enough times to provide data for the splitter to perform its first execution. Then

the body child, splitter and the loop child are executed as many times as possible with the

data available to them on their input channels.

The one big difference between FeedbackLoop and the other streams (Pipeline and

SplitJoin) is that in scheduling a FeedbackLoop, the joiner is not allowed to borrow el-

ements from outL channel . That is in the trace table, the outL entry is never allowed to

become negative. The reason for this is that FeedbackLoops are cyclical structures, and

allowing the joiner to borrow elements from outL would cause a full cycle of borrowing,

leading to deadlock.

This one condition does not prevent from scheduling any legal FeedbackLoops. The

reason for this is that before the FeedbackLoop is initialized, there is data pushed onto the

outL channel . At the end of scheduling of any phase, all available data is pushed through the

FeedbackLoop into the outL channel . Thus any available free data is already always stored

in the outL channel , and there is no additional data to borrow from in a FeedbackLoop.

If the algorithm is unable to schedule an execution of the joiner in a phase without

borrowing data from outL channel , then the FeedbackLoop cannot be scheduled.

Lemma 2 (FeedbackLoop Scheduling) If all children of a FeedbackLoop are scheduled

using minimal latency scheduling algorithm, then if the FeedbackLoop cannot be scheduled

using the minimal latency scheduling algorithm then there is no valid schedule for this

FeedbackLoop.

We believe this lemma to be true because minimal latency scheduling always consumes

the minimal amount of data to produce some data, and produces the maximal amount of
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data possible given the amount of data it consumes. Thus no data is being buffered up in

channels and if the FeedbackLoop cannot be scheduled, then the delayfl value is too low

and does not provide enough data to complete a steady state execution. A formal proof is

left for future work.

We will again use the sample FeedbackLoop from Figure 4-2(c). The following are the

phasing schedules for Filters B and L:
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Table 5.3 shows execution of the algorithm on the FeedbackLoop from Figure 4-2(c).

Once the number of executions of children’s phases is known for every phase of the

FeedbackLoop’s schedule, the phasing schedule can be constructed. For every phase, the

children of the FeedbackLoop are iterated over in order of (joiner , body child, splitter , loop

child) and for every child the appropriate number of phases is inserted into the schedule.

Below is the schedule for FeedbackLoop in Figure 4-2(c):
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data in channel
phase executions

left
child con-
sidered

phases
executed

Pipeline

consump-
tion

inB outB inF outF join B split F
0 (0) 0 (0) 0 (0) 15 (0) 0 0 0 1 split split [0 0 3]
0 (0) -3 (3) 3 (0) 15 (0) 0 0 0 1 B {3AB,0} [0 0 0]
-6 (6) 0 (0) 3 (0) 15 (0) 0 0 0 1 join {2 join} [4 4 0]
4 (0) 0 (0) 3 (0) 9 (0) 0 0 0 1 B {2AB,0} [0 0 0]
0 (0) 2 (0) 3 (0) 9 (0) 0 0 0 1 split - [0 0 0]
0 (0) 2 (0) 3 (0) 9 (0) 0 0 0 1 F - [0 0 0]
0 (0) 2 (0) 3 (0) 9 (0) init phase 0 done
0 (0) 2 (0) 3 (0) 9 (0) 0 0 0 1 split split [0 0 3]
0 (0) -1 (1) 6 (0) 9 (0) 0 0 0 1 B {AB,0} [0 0 0]
-2 (2) 0 (0) 6 (0) 9 (0) 0 0 0 1 join join [2 2 0]
3 (0) 0 (0) 6 (0) 6 (0) 0 0 0 1 B {AB,0} [0 0 0]
1 (0) 1 (0) 6 (0) 6 (0) 0 0 0 1 split - [0 0 0]

1 (0) 1 (0) 6 (0) 6 (0) 0 0 0 1 F {Ai
F,0

} [0 0 0]

1 (0) 1 (0) 6 (0) 6 (0) init phase 1 done, init done
1 (0) 1 (0) 6 (0) 6 (0) 6 15 5 3 split split [0 0 3]
1 (0) -2 (2) 9 (0) 6 (0) 6 15 4 3 B {3AB,0} [0 0 0]
-5 (5) 1 (0) 9 (0) 6 (0) 6 12 4 3 join join [2 2 0]
0 (0) 1 (0) 9 (0) 3 (0) 5 12 4 3 B - [0 0 0]
0 (0) 1 (0) 9 (0) 3 (0) 5 12 4 3 split - [0 0 0]
0 (0) 1 (0) 4 (0) 9 (0) 5 12 4 3 F {AF,0} [0 0 0]
0 (0) 1 (0) 4 (0) 9 (0) phase 0 done
0 (0) 1 (0) 4 (0) 9 (0) 5 12 4 2 split split [0 0 3]
0 (0) -2 (2) 7 (0) 9 (0) 5 12 3 2 B {2AB,0} [0 0 0]
-4 (4) 0 (0) 7 (0) 9 (0) 5 10 3 2 join join [2 2 0]
1 (0) 0 (0) 7 (0) 6 (0) 4 10 3 2 B - [0 0 0]
1 (0) 0 (0) 7 (0) 6 (0) 4 10 3 2 split - [0 0 0]
1 (0) 0 (0) 7 (0) 6 (0) 4 10 3 2 F - [0 0 0]
1 (0) 0 (0) 7 (0) 6 (0) phase 1 done
1 (0) 0 (0) 7 (0) 6 (0) 4 10 3 2 split split [0 0 3]
1 (0) -3 (3) 10 (0) 6 (0) 4 10 2 2 B {3AB,0} [0 0 0]
-5 (5) 0 (0) 10 (0) 6 (0) 4 7 2 2 join join [2 2 0]
0 (0) 0 (0) 10 (0) 3 (0) 3 7 2 2 B - [0 0 0]
0 (0) 0 (0) 10 (0) 3 (0) 3 7 2 2 split - [0 0 0]
0 (0) 0 (0) 10 (0) 3 (0) 3 7 2 2 F {AF,0} [0 0 0]
0 (0) 0 (0) 5 (0) 9 (0) phase 2 done
0 (0) 0 (0) 5 (0) 9 (0) 3 7 2 1 split split [0 0 3]
0 (0) -3 (3) 8 (0) 9 (0) 3 7 1 1 B {3AB,0} [0 0 0]
-6 (6) 0 (0) 8 (0) 9 (0) 3 4 1 1 join {2 join} [4 4 0]
4 (0) 0 (0) 8 (0) 3 (0) 1 4 1 1 B {2AB,0} [0 0 0]
0 (0) 2 (0) 8 (0) 3 (0) 1 2 1 1 split - [0 0 0]
0 (0) 2 (0) 8 (0) 3 (0) 1 2 1 1 F - [0 0 0]
0 (0) 2 (0) 8 (0) 3 (0) phase 3 done
0 (0) 2 (0) 8 (0) 3 (0) 1 2 1 1 split split [0 0 3]
0 (0) -1 (1) 11 (0) 3 (0) 1 2 0 1 B {AB,0} [0 0 0]
-2 (2) 0 (0) 11 (0) 3 (0) 1 1 0 1 join join [2 2 0]
3 (0) 0 (0) 11 (0) 0 (0) 0 1 0 1 B {AB,0} [0 0 0]
1 (0) 1 (0) 11 (0) 0 (0) 0 0 0 1 split - [0 0 0]
1 (0) 1 (0) 11 (0) 0 (0) 0 0 0 1 F {AF,0} [0 0 0]
1 (0) 1 (0) 6 (0) 6 (0) phase 4 done, steady state schedule done

Table 5.3: Execution of Minimal Latency Scheduling Algorithm on FeedbackLoop from
Figure 4-2(c).
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Chapter 6

Latency Constrained Scheduling

In the previous chapters, an efficient framework for scheduling StreamIt programs was

developed. In this framework, there was no concern for possible latency constraints specified

by the programmer. This chapter will develop techniques which can be used to schedule

StreamIt programs that contain various latency constraints. These techniques will be based

on linear and integer programming. This chapter is mainly concerned with producing

schedules that are correct and respect all specifications of the program. Optimization of

such schedules is left for future work.

Section 6.1 provides a detailed introduction to the timing semantics of message send-

ing in StreamIt . Section 6.2 provides an example of a simple stream with messages being

sent. Section 6.3 introduces the info function which is used to keep track of information

buffered between Filters. Section 6.4 shows how the info function relates to messaging con-

straints. Section 6.5 presents an algorithm for computing schedules that respect messaging

constraints. Finally Section 6.6 solves the example from Section 6.2 using the algorithm

presented here.

6.1 Messages

In the StreamIt computation model, Filters do not share any variables or memory directly.

There is no concept of global program time. The purpose of this is to allow different Filters

to execute on different devices without need for complicated data sharing techniques and

synchronization. Furthermore, this model allows to schedule the execution of Filters in any

order that does not violate the execution semantics (Filters always have at least ef data in

their input channel before executing).

Due to the structured property of StreamIt constructs, flow of data between Filters is

very limited. This model works well for regular steady-state execution of streaming pro-

grams, because StreamIt programs match typical streaming algorithms well. There are,
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however, some situations where information needs to be communicated only very occa-

sionally and between Filters that cannot easily send data to one another within StreamIt

structure. In order to enable more flexible communication between Filters in such situa-

tions, StreamIt provides a concept of message sending.

Messages can be sent between any two Filters which are connected in the directed

StreamIt graph. In other words, any two Filters which are not located in different branches

of the same SplitJoin can send messages to one another.

A more formal definition of all messaging concepts can be found in [24].

6.1.1 Timing

The timing of delivery of messages is expressed in terms of latency and information wave-

fronts. On every execution, a Filter consumes and produces some data. The data it

consumes affects the data it outputs. Thus the data output on a given iteration carries the

same information wavefront as the data it consumed. Using this definition it is possible

to find out on which execution Filter B receives data that Filter A produced on a given

execution. In other words, it is possible to find on which execution Filter B observes the

same information wavefront that Filter A observed on a given iteration. Note that if a Filter

consumes data that carries multiple information wavefronts, the data produced carries the

latest information wavefront of all the data consumed.

In order to specify timing of delivery of a message sent by Filter A to Filter B, we

state that the message will be delivered with latency [l0, l1]. This means that Filter B

will receive the message no earlier then just before it observes the information wavefront

observed by Filter A on l0 execution of Filter A’s work function after sending the message,

and no later then just before it observes the information wavefront observed by Filter B on

l1 execution of Filter A’s work function after sending the message. In other words, l0 is the

lower bound on message delivery latency, while l1 is the upper bound on message delivery

latency. Obviously, l0 ≤ l1.

In StreamIt it is possible to send messages both upstream and downstream. Sending a

message downstream allows both latency bounds to be either positive or negative. Sending

a message with a positive latency bound is intuitive: the message will be delivered to

the receiver when after it observes the information wavefront processed when sending the

message. However, sending a message with negative latency bound means that the message

is to be delivered before the receiver sees the information wavefront processed by the sender

when sending the message. One way of thinking about this is that the message is being

sent back in time, in terms of information wavefronts. Note that it is possible for the lower

latency bound to be negative and for the upper latency bound to be positive.
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Figure 6-1: Example StreamIt program for latency constrained analysis

When a message is being sent upstream, both upper and lower bound on latency of

delivery of the message must be positive (l0 ≥ 1). This is because when the sender sends the

message, the receiver must have already observed sender’s current information wavefront.

It is important to note that not all latency bounds are valid. It is not always obvious

whether specified latency bounds are valid, as there may be many reasons for latency bounds

to be invalid. Those reasons include too tight buffering constraints and contradictory latency

bounds.

6.2 Example

Figure 6-1 depicts a sample Pipeline which contains message communication. In the exam-

ple, Filter B can send a message to Filter F with latency [−3,−1] and Filter G can send

a message to Filter A with latency [1, 9]. Note that Filter B sends a message that crosses

StreamIt structure boundary (F’s direct parent is not the same as B’s direct parent). Filter

G sends a message that travels upstream.
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The following is the steady state for the Pipeline:
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Below we list a schedule which allows to execute the sample Pipeline while respecting

the messaging constraints imposed. In the schedule, entry Am indicates that Filter A checks

if any messages have been sent to it, and if there are messages waiting to be delivered to

A, it receives them. Note that no message sending is allowed during initialization of the

Pipeline. This is the case for all programs, and will be explained later.

The initialization schedule for the sample Pipeline is {{2A}{3B}{2split}D}. The steady

state schedule for the sample Pipeline is

{FmFBAm{2A}FmF{2B}{2C}{2 split}DE{2 join}
{5G}FmFBAmAFmF{2B}{2C}{2 split}DE{2 join}{5G}}

An inspection of the schedule above reveals that because of fairly tight constraint on

sending messages from Filter B to Filter F, their execution is interleaved pretty tightly.

Latency constraint between Filter G and Filter A is not as tight, and the interleaving of

execution of those Filters is not as fine grained.

The schedules listed above are not unique, and haven’t been optimized for any particular

criteria.

Table 6.1 depicts the flow of information wavefronts produced by Filter B between Filter

B and Filter F when executing the schedule listed above. According to the schedule given

above, Filter F checks for messages before its every execution. The latency of messages

from B to F is given as [−3,−1] in Figure 6-1. Thus before F checks for messages, it is

must be the case that B has produced the information wavefront F will see on its next

execution. It also must be that B has not produced the information wavefront F will see

in four executions. It is easy to see that this condition is respected. We simply inspect all

executions of B, and make sure that on every one of its executions, the wavefront generated

by B on its previous execution has not passed F yet. As stated above, we skip initialization,
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as messages cannot be delivered during initialization.

On B’s first steady state execution it produces wavefront 3. Its previous execution

produced wavefront 2. F has only observed wavefront 1, so message sent by B can be

delivered. On B’s second steady state execution it produces wavefront 4. Its previous

execution produced wavefront 3. F has only observed observed wavefront 2, so message

sent by B can be delivered. This analysis continues until an entire steady state has been

completed.

Table 6.2 depicting the flow of information wavefronts produced by Filter A across the

sample Pipeline when executing the schedule listed above. We can use this table to verify

that messages sent from Filter G to Filter A will be delivered within the specified latency.

Messages sent from Filter G to Filter A have to be delivered with latency [1, 9]. This

means that a message sent by Filter G must be delivered to Filter A before it produces

information wavefront that G will see in 9 executions. The lower bound does not impose any

real constraint, because the message cannot be delivered before A has produced an infor-

mation wavefront that G sees when it sends the message. Since the information wavefronts

flow downstream, but the message must be delivered upstream, we must do the verification

in terms of the receiver’s wavefronts.

On G’s first execution it observes A’s wavefront 2. Nine executions later it sees wavefront

4. Filter A has only produced wavefront 3, so any message sent can be delivered on time.

On G’s second execution it again observes A’s wavefront 2. Nine executions later it observes

wavefront 5. Filter A has again only produced wavefront 3, so any message sent can also

be delivered on time. This analysis can be performed for all executions of G within a single

steady state to verify that all possible messages sent by G to A can be delivered on time.

6.3 Information Buffering Model

In order to satisfy possible latency constraints, a global model of accounting for data buffered

up needs to be constructed. The model must express the flow of information carried by

data.

6.3.1 Intuition

We begin with creating a concept of abstract information. Every data item carries a certain

amount of information. Every data item in a particular channel carries the same amount

of information. A Filter consumes some data items from its input channel and pushes

them to its output channel . We define execution of Filters to be an information-preserving

operation. This means that the amount of information consumed by a Filter during its

execution must be pushed out onto Filter ’s output channel . This means that the amount
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element B’s info wavefronts in buffer
executed ins inF

2 A - -
3 B - -

2 split 0,0,1,1,2,2 -
1 D - 1,2

init done - 1,2
1 F - 1,2
1 B - 2
2 A 3,3 2
1 F 3,3 2
2 B 3,3 -
2 C 3,3,4,4,5,5 -

2 split - 4,5
1 D - 4,5
1 E - 4,5

2 join - 4,5
5 G - 4,5
1 F - 4,5
1 B - 5
1 A 6,6 5
1 F 6,6 5
2 B 6,6 -
2 C 6,6,7,7,8,8 -

2 split 6,6,7,7,8,8 -
1 D - 7,8
1 E - 7,8

2 join - 7,8
5 G - 7,8

run 1 done - 7,8
1 F - 7,8
1 B - 8
2 A 9,9 8
1 F 9,9 8
2 B 9,9 -
2 C 9,9,10,10,11,11 -

2 split - 10,11
1 D - 10,11
1 E - 10,11

2 join - 10,11
5 G - 10,11
1 F - 10,11
1 B - 11
1 A 12,12 11
1 F 12,12 11
2 B 12,12 -
2 C 12,12,13,13,14,14 -

2 split 12,12,13,13,14,14 -
1 D - 13,14
1 E - 13,14

2 join - 13,14
5 G - 13,14

run 2 done - 13,14

Table 6.1: Flow of information wavefronts between Filters B and F during execution of
schedule provided in Section 6.2. Left column provides the node to be executed. The center
and right columns show information wavefronts carried by data in channels ins and inF .
Every number corresponds to a single data item in a buffer. Each number corresponds to
the information wavefront carried by the data item. Information wavefronts are counted in
terms of executions of Filter B’s work function, starting with 0. Each line shows information
wavefronts present in channels before the node is executed. Thus entry 0,0,1,1,2,2 means
that there are six data items present in the channel , first two carry information wavefront
of first execution of B’s work function, second two carry information wavefront of second
execution of B’s work function, etc.
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element A’s info wavefronts in buffer
executed inB ins inC inD inE inF outC outE outF inG

2 A - - - - - - - - - -
3 B 0,0,1,1 - - - - - - - - -

2 split 1 0,0,0,0,1,1 - - - - - - - -
1 D 1 - 0,1 0,1 - 0,1 - - - -

init done 1 - 0,1 - 1 0,1 - - - -
1 F 1 - 0,1 - 1 0,1 - - - -
1 B 1 - 0,1 - 1 1 - - 0,0 -
2 A - 1,1 0,1 - 1 1 - - 0,0 -
1 F 2,2,3,3 1,1 0,1 - 1 1 - - 0,0 -
2 B 2,2,3,3 1,1 0,1 - 1 - - - 0,0,1,1 -
2 C 3,3 1,1,2,2,2,2 0,1 - 1 - - - 0,0,1,1 -

2 split 3,3 1,1,2,2,2,2 - - 1 - 0,0,1,1 - 0,0,1,1 -
1 D 3,3 - 2,2 2,2 1 2,2 0,0,1,1 - 0,0,1,1 -
1 E 3,3 - 2,2 - 1,2 2,2 0,0,1,1 - 0,0,1,1 -

2 join 3,3 - 2,2 - 2 2,2 0,0,1,1 2,2 0,0,1,1 -

5 G 3,3 - 2,2 - 2 2,2 - - -
2,2,2,2,2,
2,2,2,2,2

1 F 3,3 - 2,2 - 2 2,2 - - - -
1 B 3,3 - 2,2 - 2 2 - - 2,2 -
1 A 3 3,3 2,2 - 2 2 - - 2,2 -
1 F 3,4,4 3,3 2,2 - 2 2 - - 2,2 -
2 B 3,4,4 3,3 2,2 - 2 - - - 2,2,2,2 -
2 C 4 3,3,3,3,4,4 2,2 - 2 - - - 2,2,2,2 -

2 split 4 3,3,3,3,4,4 - - 2 - 2,2,2,2 - 2,2,2,2 -
1 D 4 - 3,4 3,4 2 3,4 2,2,2,2 - 2,2,2,2 -
1 E 4 - 3,4 - 2,4 3,4 2,2,2,2 - 2,2,2,2 -

2 join 4 - 3,4 - 4 3,4 2,2,2,2 4,4 2,2,2,2 -

5 G 4 - 3,4 - 4 3,4 - - -
4,4,4,4,4,
4,4,4,4,4

1st
steady
state
done

4 - 3,4 - 4 3,4 - - - -

1 F 4 - 3,4 - 4 3,4 - - - -
1 B 4 - 3,4 - 4 4 - - 3,3 -
2 A - 4,4 3,4 - 4 4 - - 3,3 -
1 F 5,5,6,6 4,4 3,4 - 4 4 - - 3,3 -
2 B 5,5,6,6 4,4 3,4 - 4 - - - 3,3,4,4 -
2 C 6,6 4,4,5,5,5,5 3,4 - 4 - - - 3,3,4,4 -

2 split 6,6 4,4,5,5,5,5 - - 4 - 3,3,4,4 - 3,3,4,4 -
1 D 6,6 - 5,5 5,5 4 5,5 3,3,4,4 - 3,3,4,4 -
1 E 6,6 - 5,5 - 4,5 5,5 3,3,4,4 - 3,3,4,4 -

2 join 6,6 - 5,5 - 5 5,5 3,3,4,4 5,5 3,3,4,4 -

5 G 6,6 - 5,5 - 5 5,5 - - -
5,5,5,5,5,
5,5,5,5,5

1 F 6,6 - 5,5 - 5 5,5 - - - -
1 B 6,6 - 5,5 - 5 5 - - 5,5 -
1 A 6 6,6 5,5 - 5 5 - - 5,5 -
1 F 6,7,7 6,6 5,5 - 5 5 - - 5,5 -
2 B 6,7,7 6,6 5,5 - 5 - - - 5,5,5,5 -
2 C 7 6,6,6,6,7,7 5,5 - 5 - - - 5,5,5,5 -

2 split 7 6,6,6,6,7,7 - - 5 - 5,5,5,5 - 5,5,5,5 -
1 D 7 - 6,7 6,7 5 6,7 5,5,5,5 - 5,5,5,5 -
1 E 7 - 6,7 - 5,7 6,7 5,5,5,5 - 5,5,5,5 -

2 join 7 - 6,7 - 7 6,7 5,5,5,5 7,7 5,5,5,5 -

5 G 7 - 6,7 - 7 6,7 - - -
7,7,7,7,7,
7,7,7,7,7

2nd steady
state done

7 - 6,7 - 7 6,7 - - - -

Table 6.2: Flow of information wavefronts between Filters A and G. The representation
is same as in Table 6.1, except wavefronts are given in terms of Filter A’s work function
executions.
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of information carried by every data item in the input channel may differ from the amount

of information carried by every data item in the output channel .

A splitter is defined to consume some information from its input channel and provide

that amount of information to each of its output channels. That is, a splitter increases

the amount of information in the system by the number of output channels the splitter

has multiplied by amount of information it consumes on every execution. Notice that this

action has the effect of increasing the amount of information carried by each data item for

RoundRobin splitters, but does not change the amount of information carried by each data

item across Duplicate splitters. Also, a splitter with only a single output channel behaves

exactly the same as a Filter .

A joiner behaves in the exact opposite way to the splitter . joiners are defined to consume

the same amount of information from every one of their input channels, and produce the

same amount of information on their output channel . As a result, joiners decrease the

amount of information carried by every data item passing through them.

The behavior of splitters and joiners is a little counter-intuitive. Intuition dictates that

since splitters and joiners do not inspect or modify the data in any way, they should not

change the amount of information carried by data passing through them. This approach

leads to inconsistency with SplitJoins, however. Consider the SplitJoin from Figure 6-1.

Assume that every data item in channel ins carries 1 unit of information. By this alternative

method, every data item in channels inC , inD and inF also carries 1 unit of information.

Filter C consumes one data item, thus one unit of information, and produces 2 data items.

Thus in channel outC , every data item carries 1
2 units of information. Filter D consumes 2

data items, thus consumes 2 units of information and produces one data item, thus every

data item in channel inE carries 2 units of information. Filter E consumes 1 data item,

thus consumes 2 units of information, and produces 2 data items, thus data items in channel

outE carry 1 unit of information each.

We now have an inconsistency. The joiner consumes data from channel outC carrying
1
2 unit of information per data and data from channel outE carrying 1 unit of information

per data. Since all data on the output channel of the joiner must carry the same amount

of information per data item, the joiner must change the amount of information per data

item.

Our approach guarantees that every node produces and consumes the same amount of

information from every one of its input and output channels. This definition is consistent

across all Filters, splitters and joiners.
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6.3.2 Information Function

We define an information function, that describes amount of information carried by each

data item in a particular channel . For a channel c, the function is denoted as infoc. The

value of the info function must be consistent across the entire StreamIt graph, and every

channel needs an actual numerical value.

We begin computing a set of consistent values for info functions of different channels

by selecting a channel c to have an info function of 1. We now travel the program graph

upstream and downstream, across graph nodes, computing the info function for all other

channels connected to the node being crossed.

There are three types of nodes that can be crossed, and they can be crossed from either

input or output sides.

Filters

A Filter f has only one input and one output channel . If we know infoinf
, we can easily

compute infooutf , because we know that on every execution of f , we consume the same

amount of information we produce: infooutf = infoinf

of

uf
. Similarly, if we know infooutf ,

we compute infoinf
as follows: infoinf

= infooutf
uf

of
.

splitters

We have defined splitters to provide their every output channel with the same amount of

information as they consume from their input channel . Thus for a splitter s we know that

infoouts,i
= infoins

os

ws,i
. Similarly, infoins = infoouts,i

ws,i

os
. With these two equations we

can easily compute values for info of all of s’s channels, given the info function for any of

s’s channels.

joiners

We have defined joiners to consume the same amount of information from every one of their

input channels and push that same amount of information to their output channel . Thus

for a joiner j we know that infooutj = infooutj,i

wj,i

uj
. Similarly, infoinj,i

= infooutj
uj

wj,i
.

With these two equations we can easily compute values for info of all of j’s channels, given

the info function for any of j’s channels.

Example

Table 6.3 lists the values of info function for channels in Figure 6-1. The computation of

above info values began with assigning infoinB
= 1.
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buffer info function information per data item

inB infoinB
1

ins infoins 0.5

inC infoinC
1.5

inD infoinD
1.5

inE infoinE
3

inF infoinF
1.5

outC infooutC 0.75

outE infooutE 1.5

outF infooutF 0.75

inG infoinG
0.3

Table 6.3: Information per data item in buffers

6.4 Latency Constraints and Information

The next step is to decide how the latency constraints correspond to the amount of infor-

mation consumed, produced or buffered in the application.

6.4.1 Checking for Messages

One of the most important issues to solve is to find out how often an intended recipient of

a message needs to check for messages. This frequency can easily be calculated in terms

of number of executions of the work function. The assumption being made here is that

the message is delivered to the destination as soon as it is generated. Such a model can

be easily achieved on a single processor machine. Different models may require different

calculations.

Filter fs sends a message to Filter fr with latency [l0, l1]. On every execution of its work

function, Filter fs processes x = ofs
∗ infoinfs

information. Similarly, Filter fr processes

y = ofr
∗ infoinfr

information on every execution of its work function.

Latency [l0, l1] means that the receiver must check for messages from the sender every

time it processes as much information, as the sender will send over l1 − l0 executions. The

sender will send x∗(l1−l0) information over that many executions. The receiver will process

that much information over x∗(l1−l0)
y

executions of its work function.

This value may be fractional, but execution of Filters is an atomic operation in StreamIt .

Thus the receiver must actually check for new messages from the sender at least every
⌊

x∗(l1−l0)
y

⌋

executions of its work function.

Note that calculation assumes a fairly dumb message delivery method, where the latency

of the message is not taken into account. More sophisticated models of message delivery

can allow to reduce the frequency of checking for new messages significantly.
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6.4.2 Information Buffering

In computing a schedule that respects the latency constraints, it is necessary to compute

the amount of information stored between the sender and the receiver. The amount of

information stored between two Filters is the amount of information that entered the in-

terval between those two Filters minus the amount of information that is destroyed due to

peeking of Filters plus some data possibly put in the feedback path of a FeedbackLoop (due

to delayfl > 0).

When a Filter with ef > of executes for the first time, it observes infoinf
∗ ef informa-

tion, but pushes out only infooutf ∗ uf information. Since for every Filter infoinf
∗ of =

infooutf ∗ uf and ef > of , the amount of information observed is not the same as the

amount of information pushed out. Thus some information is lost during the first execution

of such a Filter . This amount is (ef − of ) ∗ infoinf
.

We account for this lost information by setting the initial amount of information in a

the input channel of every Filter to (ef − of ) ∗ infoinf
. If ef = of , the initial amount of

information in the input channel of f is set to 0. If ef > of , the inital amount of information

is set to a negative number.

When a StreamIt program is executing, we define the amount of information stored in

a channel to be equal to the initial amount of information in the channel plus the amount

of information pushed into the channel minus the amount of information popped from the

channel .

Now, in order to compute the amount of information between two Filters we simply

need to sum up the amount of information stored in all channels between these two Filters

along a directed non-cyclical path. The selection of this path is important, as not all paths

between two Filters will have equal amount of information stored. The path we select is the

path that stores the least amount of information before any Filters are executed. In other

words, we select the path that has the most negative information stored in it at initialization.

This is also equivalent to the amount of information entering the path through the upstream

Filter minus the amount of information leaving the path through the downstream Filter

plus the sum of information along the path at initialization (a non-positive value).

In our sample Pipeline, we have inE = −3 and all other channels initialized with 0

information. Thus the path selected between Filters A and G is A → B → s → D → E →
j → G, which contains −3 units of information at initialization.

6.4.3 Information Buffering and Latency

The last element of relating information flow and latency constraints is expressing the

latency constraints in terms of information buffered up between the sender and recipient of
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a message. The three types of latency constraints are analyzed below.

Downstream Positive

The downstream positive latency constraint is the easiest one to analyze. A downstream

positive delay specifies that a downstream recipient should receive the message before it

observes information wavefront that will be produced by the sender in the future. In other

words, there is no restriction on the amount of data buffered up between the sender and

receiver, because the information wavefront cannot have possibly entered the path between

the sender and recipient. Thus downstream positive latency constraint are effectively ig-

nored by the scheduler.

Upstream Positive

An upstream positive latency constraint specifies that the recipient should receive the mes-

sage just before it produces an information wavefront that will be observed by the sender

between l0 and l1 executions later. This specifies an upper limit on the amount of infor-

mation stored between the Filters. If fs is the recipient, the amount of information stored

between the sender and the recipient must be less than l1 ∗ infoinfs
∗ ofs

.

In our example, the latency for messages sent from Filter G to Filter A is [1, 9]. Thus

when Filter G is executed, the amount of information between A and G must be less than

9 ∗ 0.3 ∗ 2 = 5.4 An inspection of the sample schedule and amount of information stored

between A and G reveals that amount of information stored between A and G peeks at 5.

Downstream Negative

A downstream negative latency constraint specifies that the recipient should receive the

message just before it observes the information wavefront produced by the sender between

−l1 and −l0 executions of the work function before it sent the message. This specifies a

lower limit on the amount of information stored between the Filters. If fs is the sender,

the amount of information stored between the sender and the recipient must be at least

−l1 ∗ infooutfs
∗ ufs

.

In our example, the latency of the messages sent from Filter B to Filter F is [−3,−1].

Thus when Filter B is executed, the amount of information between B and F must be at

least −(−1) ∗ 0.5 ∗ 2 = 1. An inspection of the sample schedule and amount of information

stored between B and F reveals that amount of information stored between B and F bottoms

out at 1.
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6.5 Computing the Schedule

Now that we have the tools to restrict information flow in a way that will guarantee a

schedule that respects the rules imposed on the schedule by the program, we are ready to

compute the schedule.

6.5.1 Initialization Schedule

Construction of the initialization schedule with latency constraints is very different from

initialization schedule without latency constraints. The reason for this is that buffering

requirements imposed by peeking are much easier to satisfy than requirements imposed by

latency constraints. The requirements imposed by latency constraints require global analy-

sis of data (information) buffering. This is because different overlapping latency constraints

can contain conflicting requirements (minimum versus maximum amount of buffered infor-

mation).

The approach used here will create a solution using a simple set of linear equations.

If the constraints are not too tight, it is easy to convert the fractional solutions of linear

equations into a real schedule. If the constraints are tight, it may be necessary to use integer

programming to obtain integer solutions which will automatically map exactly to a valid

schedule.

It is important to note, that the goal of construction of an initialization schedule here is

to create a buffering that satisfies all constraints imposed by the program. During initial-

ization of the program, not all constraints will be satisfied. In fact, it is impossible to satisfy

all constraints before initialization completes, because when the program begins executing

it has no data buffered up, and there are latency constraints that require minimal buffering

of data.

With all that in mind, equations that govern number of StreamIt graph node executions

for the initialization schedule simply need to be written down. Here all filters will be

represented by fm with 0 ≤ m < nf with nf filters in the program. splitters will be

represented by sm and joiners with jm, 0 ≤ m < nsj , with nsj representing number of

SplitJoins and FeedbackLoops. channels will be represented by infm
, insm and injm,k with

k representing the kth branch of the joiner . channels are designated by StreamIt nodes

that use the channel as an input channel . Number of executions of node s (Filter , splitter

or joiner) will be represented by cs.

First equations required represent the amount of information present in channels need to

be written down. For every channel , that is simply the amount of information pushed in by

the source node minus the amount of information popped by the drain node minus amount of

information lost on first execution of the downstream node, namely insdst
= infoinsdst

(cssrc∗
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ussrc − csdst
∗ osdst

− (esdst
− osdst

)). The only exception to this rule are joiner buffers in

FeedbackLoops. Those buffers start with delayflm data items, thus infoinjm,1
∗ delayflm

information needs to be added the amount of information stored in injm,1.

Next the minimal amount of data required in buffers is required to at least match the

extra peeking amount of buffers (otherwise the steady schedule would not be able to repeat

indefinitely). This is simply restricted by bfm
≥ 0. This takes care of the the peeking

amount, because Filters that peek destroy some information, which is accounted for by

setting the amount of information to be negative. For buffers belonging to splitters and

joiners, the only requirement is that the amount of information in the buffers is at least

zero. This is easily expressed by bsm ≥ 0 and bjm,k ≥ 0. Thus for all buffers we simply

require that b ≥ 0.

The last set of equations needed puts restrictions based on latency constraints. As

described above, those equations simply sum up information stored in all buffers between

the source and destination Filters, and make sure that it is less or more than what the

latency constraint requires.

Solving equations above for cs yields number of executions of Filters, splitters and

joiners required in order to initialize a StreamIt program with latency constraints. The

numbers of execution obtained may be non-integer, if only a linear programming solution

is sought. Simple rounding of the solution may be able to result in valid schedule. If that

is not the case, integer programming solutions may be obtained, which would guarantee

satisfying all requirements. If there are multiple solutions, any of the solutions will satisfy

the requirements of a valid initialization schedule.

Example

Here we present equations which can be used to initialize the Pipeline in Figure 6-1.

First we compute the amount of information in each buffer after initialization.

bB = infoinB
∗ (cA ∗ oA − cB ∗ oB) bC = infoinC

∗ (cs ∗ ws,0 − cC ∗ oC)

bD = infoinD
∗ (cs ∗ ws,1 − cD ∗ oD) bF = infoinF

∗ (cs ∗ ws,2 − cF ∗ oF )

bG = infoinG
∗ (cj ∗ oj − cG ∗ oG) bj,0 = infoinj,0

∗ (cC ∗ oC − cj ∗ wj,0)

bj,1 = infoinj,1
∗ (cE ∗ oE − cj ∗ wj,1) bj,2 = infoinj,2

∗ (cF ∗ oF − cj ∗ wj,2)

bE = infoinE
∗ (cD ∗ oD − cE ∗ oE − (eE − oE))

Next we ensure that all channels store non-negative amounts of information after ini-

tialization:
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bB ≥ 0 bC ≥ 0 bD ≥ 0

bE ≥ 0 bF ≥ 0 bG ≥ 0

bj,0 ≥ 0 bj,1 ≥ 0 bj,2 ≥ 0

bs ≥ 0

Finally, following equations ensure that all buffers contain enough information for the

graph to be considered initialized for steady state execution.

bB + bs + bD + bE + bj,1 + bG < 5.4

bs0
+ bf5

≥ 1

One solution to the equations above, which can be found using an integer linear pro-

gramming solver) is:

cA = 2 cB = 3 cC = 0

cD = 1 cE = 0 cF = 0

cG = 0 cs = 2 cj = 0

This solution corresponds to the initialization schedule for the example provided in

Section 6.2.

6.5.2 Steady State Schedule

Calculating the steady state schedule should in most cases be a fairly simple task, but may,

in some cases be very difficult. The distinction between these two situations is not very

easy to define. Basically, if the imposed set of constraints is very tight (not much space to

maneuver buffered data), creating such a schedule may be difficult. On the other hand, if

there is some space to maneuver buffered data, applying a simple scheduling technique like

minimum latency scheduling should work. Simple techniques tailored to satisfying latency

constraints can be applied to programs that cannot be scheduled using minimum latency

scheduling. The common case for computing steady state schedules should be relatively

easy to compute, because message sending is meant to be a low bandwidth activity, and

the delivery constraints are meant to have large ranges. Absence of such conditions will

result in reduced performance of the compiled code, and the program should be redesigned

to pass appropriate information using regular data flow through channels.

The technique described here uses as an input the StreamIt program with all of its

latency constraints, as well as the amount of information stored in all channels after ini-

tialization. The output of this algorithm is a steady state schedule which starts with the
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initialized program and executes one iteration of minimal steady state while respecting all

constraints placed on the program. The algorithm uses integer programming to assure that

if a valid schedule exists, it will be found. The resulting schedule is expressed as a flat list

of Filter firings.

The first step is to compute the multiplicities of execution of all components. Let t

represent the sum of all execution multiplicities of all components, t =
∑

i Sm,i, where S is

the steady state for the program. Thus, there will be a total of t steps in the final schedule.

Let variable cr
s represent an execution of a component s during the rth step. The first

restriction on cs is that
∑t−1

r=0 cr
s = vs (here the v notation is taken from subsection 3.2.2).

Furthermore, we must have that
∑

∀s∈{all nodes} ck
s = 1. These two conditions assure that

the schedule executed will indeed be the steady state schedule.

Next, the amount of information in channel ins before step k is represented by

ink
s = ins + infoinsdst

(

k−1
∑

r=0

cr
csrc

−
k−1
∑

r=0

cr
s

)

We impose the buffering requirements placed upon ins for every ini
s, thus ensuring that

after every step of the program, all latency and peeking requirements are met.

Solving the resulting system of equations for all cs (including the cs required for ini-

tialization) will yield a correct schedule for the given program. The integer programming

requirement should be that ∀c, c ∈ {0, 1}. The schedule is extracted for step r by finding

the node s for which cr
s = 1, and firing this component.

6.6 Example

Here we provide equations and a solution for construction of a steady state schedule for

the Pipeline in Figure 6-1. The steady state for the sample Pipeline has been provided in

Section 6.2.

The equations for determining the steady schedule are presented below. For the large

part they are identical to equations governing the initialization schedule, except amount of

information buffered is calculated differently, and there are far more variables. There are a

total of 39 steady state execution steps. Variable r will be used here to denote a particular

step of the schedule.

82



∀r ∈ {0, 1, . . . , 38}
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br
B = bB + infoinB

∑r
q=0(c

q
A ∗ uA − c

q
B ∗ oB) br

B ≥ 0

br
s = bs + infoins

∑r
q=0(c

q
B ∗ uB − cq

s ∗ os) br
s ≥ 0

br
C = bC + infoinC

∑r
q=0(c

q
s ∗ ws,0 − c

q
C ∗ oC) br

C ≥ 0

br
D = bD + infoinD

∑r
q=0(c

q
s ∗ ws,1 − c

q
D ∗ oD) br

D ≥ 0

br
E = bE + infoinE

∑r
q=0(c

q
D ∗ uD − c

q
E ∗ oE) br

E ≥ 0

br
F = bF + infoinF

∑r
q=0(c

q
s ∗ ws,2 − c

q
F ∗ oF ) br

F ≥ 0

br
j,0 = bj,0 + infoinj,0

∑r
q=0(c

q
C ∗ uC − c

q
j ∗ wj,0) br

j,0 ≥ 0

br
j,1 = bj,1 + infoinj,1

∑r
q=0(c

q
E ∗ uE − c

q
j ∗ wj,1) br

j,1 ≥ 0

br
j,2 = bj,2 + infoinj,2

∑r
q=0(c

q
F ∗ uF − c

q
j ∗ wj,2) br

j,2 ≥ 0

br
G = bG + infoinG

∑r
q=0(c

q
j ∗ uj − c

q
G ∗ oG) br

G ≥ 0

br
B + br

s + br
D + br

E + br
j,1 + br

G < 5.4

br
s + br

F ≥ 1

The following equations are bookkeeping equations that ensure that each component is

executed the correct number of times, and that every step has exactly one execution.

∑38
r=0 cr

A = 3
∑38

r=0 cr
B = 6

∑38
r=0 cr

C = 4
∑38

r=0 cr
D = 2

∑38
r=0 cr

E = 2
∑38

r=0 cr
F = 4

∑38
r=0 cr

G = 10
∑38

r=0 cr
s = 4

∑38
r=0 cr

j = 4

∀r ∈ {0, 1, . . . , 38}∑s∈{A,B,C,D,E,F,G,s,j} cr
s = 1

Solving the equations above for non-negative integral cs variables, yields a schedule

which can be executed safely, without fear of violating any requirements imposed by the

programmer. If no solution exists, then there is no schedule for the program, because the

equations above do not overrestrict the execution of the program.

Table 6.4 provides a solution to the equations above. The solution corresponds to

schedule provided in Section 6.2. Once again that schedule is

{FmFBAm{2A}FmF{2B}{2C}{2 split}DE{2 join}{5G}
FmFBAmAFmF{2B}{2C}{2 split}DE{2 join}{5G}}

83



step \ node A B s C D E F j G

0 0 0 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 1 0 0

5 0 1 0 0 0 0 0 0 0

6 0 1 0 0 0 0 0 0 0

7 0 0 0 1 0 0 0 0 0

8 0 0 0 1 0 0 0 0 0

9 0 0 1 0 0 0 0 0 0

10 0 0 1 0 0 0 0 0 0

11 0 0 0 0 1 0 0 0 0

12 0 0 0 0 0 1 0 0 0

13 0 0 0 0 0 0 0 1 0

14 0 0 0 0 0 0 0 1 0

15 0 0 0 0 0 0 0 0 1

16 0 0 0 0 0 0 0 0 1

17 0 0 0 0 0 0 0 0 1

18 0 0 0 0 0 0 0 0 1

19 0 0 0 0 0 0 0 0 1

20 0 0 0 0 0 0 1 0 0

21 0 1 0 0 0 0 0 0 0

22 1 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 1 0 0

24 0 1 0 0 0 0 0 0 0

25 0 1 0 0 0 0 0 0 0

26 0 0 0 1 0 0 0 0 0

27 0 0 0 1 0 0 0 0 0

28 0 0 1 0 0 0 0 0 0

29 0 0 1 0 0 0 0 0 0

30 0 0 0 0 1 0 0 0 0

31 0 0 0 0 0 1 0 0 0

32 0 0 0 0 0 0 0 1 0

33 0 0 0 0 0 0 0 1 0

34 0 0 0 0 0 0 0 0 1

35 0 0 0 0 0 0 0 0 1

36 0 0 0 0 0 0 0 0 1

37 0 0 0 0 0 0 0 0 1

38 0 0 0 0 0 0 0 0 1

Table 6.4: A solution to equations for steady state of stream from Figure 6-1.This solution
corresponds to the schedule given in 6.2.
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Chapter 7

Results

In this chapter we present results of creating schedules using techniques described in Chap-

ters 4 and 5. No results are presented for latency constrained scheduling, as no applications

have been written to exploit the usefulness of messaging.

Section 7.1 presents the applications used for testing. Section 7.2 presents the method-

ology used for testing. Section 7.3 presents the results and analysis.

7.1 Applications

Our benchmark suite contains 13 applications. Out of those applications, 11 represent useful

practical computation taken from real-life applications, while two were chosen to highlight

effectiveness of phasing scheduling.

Nine test applications (bitonic sort, FFT, filter bank, FIR, radio, GSM, 3GPP, radar

and vocoder) used are code-complete and perform the computations intended. Some results

of compiling these applications can be found in [12].

Two test applications (QMF and CD-DAT) are applications used in another publication

on scheduling streaming applications ([18]). The code inside of the Filters has not been

implemented.

The QMF application is a qmf12 3d. It had to be modified slightly to account for

StreamIt splitters and joiners not allowing any computation. The high-pass and low-pass

filtering in the splitters has been moved to just after data been separated into two channels.

The re-combining of data in the joiners has been moved to a Filter just after the joiners.

The low and high pass filters have also been given a peek amount of 16 so they can perform

their function in the way intended in StreamIt .

CD-DAT is exactly the same application as that described in [18].

The last two applications (SJ PEEK 1024 and SJ PEEK 31) are a synthetic bench-

marks.
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Figures illustrating the layout of all of the applications are available in Appendix A.

7.2 Methodology

The following data has been collected: number of nodes, number of node executions per

steady state, schedule size and buffer size for pseudo single appearance and minimal latency

schedules.

7.2.1 Schedule Compression

The size of schedules for minimal latency technique contains two numbers. The first one

is an uncompressed schedule, while the second is a compressed schedule. During testing it

was found that in some applications some streams had many phases that were identical to

other phases of the stream. Instead of including these phases in the final schedule multiple,

they were listed only once, and references to the duplicate phases have been replaced with

references to their copies.

This optimization lead to improvements in schedule size for two reasons. First, streams

now had less phases, so their schedules took up less space. Second, applications using the

phasing schedules could now execute the same phase multiple times in a row, which was

optimized out using run length encoding.

This compression has no negative effects on speed of execution, and never increases

the size of a schedule. This compression has no effect on the pseudo single-appearance

schedules, thus is not included in the results as a separate value.

7.2.2 Sinks

Any application in StreamIt must receive its data from somewhere, and its data must be sent

somewhere. Filters that perform these functions are called sinks and sources. In particular,

sinks have the property of having uf = 0 while sources have ef = of = 0. In other words,

sinks do not push any data out and sources do not consume any data.

Sinks are problematic for minimal latency scheduling purposes, because they do not

produce any data. Remember that a minimal latency schedule will execute a bottom-most

Filter of a Pipeline in every phase as many times as is necessary to produce some data.

Since sinks do not produce any data, the sinks are executed their steady state number of ex-

ecutions. This leads to the minimal latency schedule of the outer-most Pipeline becoming a

single appearance schedule, thus destroying some of the benefit of using phasing scheduling.

This problem has been alleviated by detecting sinks at the end of a Pipeline and schedul-

ing them in a unique way. Namely, a simple attempt is made to minimize the amount of
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benchmark number
of nodes

number
of node
execu-
tions

pseudo single appearance minimal latency

schedule
size

buffer
size

schedule
size

compressed
schedule size

buffer
size

bitonic sort 370 468 439 2112 448 448 2112
CD-DAT 6 612 7 1021 170 72 72

FFT 26 488 31 3584 31 31 3584
filter bank 53 312 166 2063 160 145 1991

FIR 132 152 133 1560 133 133 1560
radio 30 43 58 1351 50 50 1351
GSM 47 3356 - - 724 78 3900
3GPP 94 356 147 986 149 137 970
QMF 65 184 143 1225 132 122 1225
radar 68 161 100 332 100 100 332

SJ PEEK 1024 6 3081 11 7168 40 16 4864
SJ PEEK 31 6 12063 11 19964 250 24 12063

vocoder 117 415 172 1285 293 206 1094

Table 7.1: Results of running pseudo single appearance and minimal latency scheduling
algorithms on various applications.

storage necessary to store the phases of the Pipeline.

Let the amount of storage necessary to store one data item in input channel to the sink

be x, the amount of storage necessary to store a phase be y, the sink consume a data per

steady state execution of its parent Pipeline and b be the number of phases of the parent

pipeline, then we have that amount of storage necessary to store the phases and the buffer

is
ax

b
+ by

We want to minimize this amount, with b being the variable. We take a derrivative of the

above expression, set it to zero and solve:

−ax
b2

+ y = 0

yb2 = ax

b =
√

ax
y

For simplicity, we set x = y = 1, thus obtaining that b =
√

a.

Now, for every phase of the parent Pipeline of the sink, the sink is executed
√

a times

on the first step of scheduling a phase of the Pipeline.

7.3 Results

Table 7.1 presents buffer and schedule sizes necessary to execute various applications using

the algorithms developed in this thesis.

The GSM application cannot be scheduled using pseudo single-appearance algorithm,

because it has a loop which is too tight for execution under the SAS.
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Figure 7-1: Buffer storage space savings of Phased Minimal Latency schedule vs. Hierar-
chical schedule. All data in all channels is assume to consume same amount of space.
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Several applications show a very large improvement in buffer size necessary for execution.

Namely, CD-DAT decreases from 1021 to 72, a 93% improvement. [18] reports a buffer size

of 226 after applying buffer merging techniques. Our improvement is due to reducing the

combinatorial growth of the buffers using phasing scheduling.

Our synthetic benchmarks decrease from 7168 to 4864 and from 19964 to 12063, a 32%

and 40% improvements. The first improvement is due to creating fine grained phases which

allow the initialization schedule to transfer smaller amount of data and allow the children

of the SplitJoin to drain their data before the splitter provides them with more. This

improvement is only created in presence of peeking. The second improvement is due to

reducing combinatorial growth and due to finer grained schedules to deal with peeking.

Other applications show no or little improvement in buffer requirements. As expected,

no application requires more buffer space.

It is interesting to note that the schedule sizes have decreased between the single appear-

ance and compressed minimal latency phasing schedules. This is due to slightly different

encoding technique of single appearance schedules.
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Chapter 8

Related Work

There has been a wealth of research of various stream languages and projects. This chapter

will introduce some of the other projects.

A large number of programming languages have included a concept of a stream; see

[22] for a survey. Synchronous languages such as LUSTRE [14], Esterel [3], and Signal [9]

also target the embedded domain, but they are more control-oriented than StreamIt and

are not aggressively optimized for performance. Sisal (Stream and Iteration in a Single As-

signment Language) is a high-performance, implicitly parallel functional language [8]. The

Distributed Optimizing Sisal Compiler [8] considers compiling Sisal to distributed mem-

ory machines, although it is implemented as a coarse-grained master/slave runtime system

instead of a fine-grained static schedule.

Ptolemy [16] is a simulation environment for heterogenous embedded systems, including

Synchronous Data Flow that is similar to static-rate stream graphs in StreamIt . SDF

programs, however, do not include the peeking and messaging constructs of StreamIt . In

SDF languages, actors are the active computational elements (Filters). SDF computation

model does not impose structure on the program. All actors are allowed to have multiple

input and output channels. [2] provides an overview of dataflow synchronous languages.

There are many results of scheduling SDF programs [6]. Many of these results concen-

trate on reducing buffering requirements. Many of the systems inline all actor code into a

single function, and try to minimize the code and buffer size at once [4]. This approach

leads to a strong preference for single appearance schedules. StreamIt scheduler stores a

the schedule and Filter code separately, thus allowing for more efficient schedule storage.

Other publications focus on synthesis of software for embedded systems. [5] recognizes

that non single-appearance schedules which inline actor invocations have problems with

code growth. A hybrid model is introduced, where actor invocations are inlined unless the

resulting code grow too large. If inlining is not performed, actors are invoked through a
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function call.

Other approaches include to reducing the buffering requirements use buffer merging [18],

a technique which will be explored for StreamIt in the future.

Many publications focus on synthesis for hardware systems. Such systems can execute

multiple actors at once [13]. Currently StreamIt compiler produces code for uniprocessor

architectures [24] and for the RAW processor [11]. RAW processor can execute multiple

Filters in parallel, but every parallel execution is given its own separate set of resources like

memory.

There are some streaming computation models which are less constrained than SDF.

Most popular is Cyclic Synchronous Data Flow CSDF computation model [19]. CSDF actors

have multiple work functions, with each one being allowed to consume/produce different

number of data items. The current StreamIt phasing scheduler is able to accommodate

this model of computation, but the StreamIt language does not support this feature yet.

[27] provides an elegant solution to scheduling CSDF programs using Systems of Affine

Recurrence Equations, which provides a closed-form solution scheduling for any valid CSDF

graph.

[26] proposes a model where the flow of data is not static, but may depend on data

being processed. The model is called Cyclo-Dynamic Data Flow (CDDF). This greatly

helps flexibility of programming, but prevents fully static scheduling of programs.

The U.S. Navy Processing Graph Method (PGM) uses a version of SDF with an equiva-

lent of peeking [10]. The paper is focused on real-time execution and provides analysis and

verification of latency of data flow through their system.
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Chapter 9

Conclusion and Future Work

This thesis presents a variety of techniques used for scheduling Synchronous Data Flow

Graphs as used by the StreamIt language. Unlike other langauge, StreamIt enforces a

structure on the stream graph, thus allowing a variety of new approaches to scheduling

execution. Algorithms presented here improve current current scheduling techniques in

multiple ways.

Hierarchical approach to scheduling execution of streaming applications allows for a

simplification of algorithms. Program graphs do not have to be considered globally, thus

less data needs to be kept track of. In hierarchical approaches presented here, we only need

to consider immediate children of a given stream.

Phasing approach to scheduling allows to schedule arbitrarily tight FeedbackLoops and

allows for more fine-grained control of buffering requirements. The fine-grained control of

buffering requirements can provide dramatic improvements in buffer requirements when

scheduling streaming applications, as has been presented here. Furthermore, phased sched-

ules lend themselves to some easy forms of compression, thus reducing the schedule size.

Future work will concentrate on expanding phasing scheduling to implement schedules that

conform to specific buffering constraints, take advantage of cache sizes, etc. Producing of a

single schedule for many instances of identical streams will also be explored.

The solution to latency constrained scheduling presented here is an important contribu-

tion to development of StreamIt . It will be extended to allow for morphing graphs ([23]).

It will also be adapted to use phasing scheduling to reduce buffer and schedule size.

93



94



Appendix A

Diagrams of Test Applications

This appendix presents the applications used for testing and collecting results in this thesis.

There are two formats of Figures in this appendix. CD-DAT, QMF and the two

SJ PEEK benchmarks have nodes denoted by ovals. The name of splitters and joiners

indicates their type (Duplicate or RoundRobin) and possible splitting or joining amounts

(if a RoundRobin splitter or joiner has no numbers, they’re all unity). The name of Filters

has format (pop, peek)name(push). Pipelines and SplitJoins are represented by rectangles,

and their names are given in their top left corner.

The format for the other figures is similar, but the peek, pop and push amounts for

Filters is given explicitly.
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Figure A-1: Diagram of Bitonic Sort Application
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Figure A-2: Diagram of CD-DAT Application
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Figure A-3: Diagram of FFT Application
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Figure A-4: Diagram of Filter Bank Application
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Figure A-5: Diagram of FIR Application
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Figure A-6: Diagram of Radio Application
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Figure A-7: Diagram of GSM Application
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Figure A-8: Diagram of 3GPP Application
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Figure A-9: Diagram of QMF Application
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Figure A-10: Diagram of Radar Application
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Figure A-11: Diagram of SJ PEEK 1024 Application
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Figure A-12: Diagram of SJ PEEK 31 Application
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Figure A-13: Diagram of Vocoder Application
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