A Stream-Aware Compiler for
Communication-Exposed Architectures
by
Michael I. Gordon

B.S., Computer Science (2000)
Rutgers University

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
August 2002

(© Massachusetts Institute of Technology 2002. All rights reserved.

Author ..o
Department of Electrical Engineering and Computer Science
August 29, 2002

Certified by . ..o
Saman Amarasinghe

Associate Professor

Thesis Supervisor

Accepted by . ..o
Arthur C. Smith
Chairman, Department Committee on Graduate Students

A Stream-Aware Compiler for Communication-Exposed

Architectures
by
Michael I. Gordon

Submitted to the Department of Electrical Engineering and Computer Science
on August 29, 2002, in partial fulfillment of the
requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

With the increasing miniaturization of transistors, wire delays are becoming a domi-
nant factor in microprocessor performance. To address this issue, a number of emerg-
ing architectures contain replicated processing units with software-exposed communi-
cation between one unit and another (e.g., Raw, SmartMemories, TRIPS). However,
for their use to be widespread, it will be necessary to develop compiler technology
that enables a portable, high-level language to execute efficiently across a range of
wire-exposed architectures.

In this thesis, we describe our compiler for Streamlt: a high-level, architecture-
independent language for streaming applications. We focus on our backend for the
Raw processor. Though Streamlt exposes the parallelism and communication pat-
terns of stream programs, analysis is needed to adapt a stream program to a software-
exposed processor. We describe a partitioning algorithm that employs fission and fu-
sion transformations to adjust the granularity of a stream graph, a layout algorithm
that maps a stream graph to a given network topology, and a scheduling strategy
that generates a fine-grained static communication pattern for each computational
element.

We have implemented a fully functional compiler that parallelizes Streamlt appli-
cations for Raw, including several load-balancing transformations. Using the cycle-
accurate Raw simulator, we demonstrate that the Streamlt compiler can automati-
cally map a high-level stream abstraction to Raw without losing performance. We
consider this work to be a first step towards a portable programming model for
communication-exposed architectures.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor

Acknowledgments

I am grateful to my advisor Saman Amarasinghe, without his guidance this thesis
would not have been possible. I am permanently indebted to William Thies for his
work on the partitioning phase of the compiler and many other aspects of the project.
His knowledge, patience, attitude, and work are truly amazing. I would like to thank
the rest of the Streamlt group: Michal Karczmarek for his work on the scheduler;
Jasper Lin for his work on ynchronization removal; Chris Leger for work on the
Vocoder application and gathering results; Ali Meli for his work on 3GPP, Filterbank,
and other applications; Andrew Lamb for his help gathering results; Jeremy Wong
for his work on GSM; and David Maze for his help with the compiler, optimizing
the applications, and gathering results. I am thankful to the members of the Raw
group, primarily Michael Taylor, Dave Wentzlaf, and Walter Lee, for their helpfulness
and enthusiasm. I would like to thank Sam Larsen, Mark Stephenson, Mike Zhang,
and Diego Puppin for their comments. Most importantly, I thank my loving and

supportive family and friends.

Contents

1

2

Introduction
1.1 The StreamlIt Language,
1.1.1 Language Constructs
1.2 The Raw Architecture
1.3 Compiling StreamIt to Raw L.
1.3.1 Scheduling
Partitioning
21 Overview e e
2.2 Fusion Transformations
2.2.1 Unoptimized Fusion Algorithm
2.2.2 Optimizing Vertical Fusion
2.2.3 Optimizing Horizontal Fusion
2.3 Fission Transformations,
2.3.1 Vertical Fission 000
2.3.2 Horizontal Fission.
2.4 Reordering Transformations
2.5 Automatic Partitioningo o000
2.5.1 Greedy Algorithm Lo oo
2.6 Summary e
Layout
3.1 Layout for Raw oo

17
18
20
22
24
25

29
30
33
33
34
37
39
39
39
40
41
41
43

45

3.1.1 Cost Functiono oL
3.1.2 Modifications to Simulated Annealing

3.2 Summaryo e e

Communication Scheduler

4.1 Communication Scheduler for Raw
4.1.1 Joiner Deadlock Avoidance
4.2 Implementation Lo
4.2.1 Switch Instruction Format 0.
4.2.2 Preliminarieso o
4.2.3 Pseudo-Codeo
4.3 Deadlock Avoidance Lo
4.4 Summaryo e

Code Generation

5.1 Code Generation for Raw L 0.
51.1 Switch Codeo o
5.1.2 TileCode oo
513 T/O0. . oo

5.2 Summaryo e

Results

6.1 Communication and Synchronization
6.1.1 Limits Study on the Impact of Communication

6.2 ACloser Look
6.2.1 Radar Application
6.2.2 FFT

6.3 Summary

Related Work

Conclusion

55
o6
o7
29
99
60
62
70
71

73
73
73
74
79
80

81
83
84
86
86
89
90

91

95

FIR Application 97

A1 Description L 97
A2 Code e 97
Radar Application 103
B.1 Description L 103
B2 Code o 103
FM Radio Application 109
C.1 Description L 109
C.2 Code e 109
Bitonic Sort Application 115
D.1 Description L 115
D.2 Code e 115
FFT Application 121
E.1 Description L 121
E.2 Code e 121
Filterbank Application 127
F.1 Description 127
F.2 Code o 127
GSM Application 133
G.1 Descriptiono 133
G.2 Code e 133
Vocoder Application 149
H.1 Description e 149
H2 Code 149
3GPP Application 163
[.1 Description e 163

10

List of Figures

1-1
1-2
1-3
1-4
1-5

2-2
2-3
2-4
2-5
2-6
2-7
2-8

2-10

2-11

3-1
3-2

4-1
4-2

5-1

Parts of an FM Radio in Streamlt.
Block diagram of the FM Radio.
Stream structures supported by StreamlIt.
Block diagram of the Raw architecture.

Interaction of compiler phases

Execution traces for the Radar application
Stream graph of the original 12x4 Radar application.
Stream graph of the load-balanced 12x4 Radar application
Vertical fusion with buffer localization and modulo-division optimizations.
Horizontal fusion of a duplicate splitjoin
Fusion of a roundrobin splitjoin
Fission of a filter that doesnot peek
Fission of a filter that peeks
Synchronization removal oo L oo
Breaking a splitjoin into hierarchical units

Filter hoistingo

Layout Cost graph for FFT
Initial and final layout for the FFT application.

Example of deadlock in a splitjoin

Fixing the deadlock with a buffering joiner

The entry function for a filter.o o0

34

B-1
B-2
B-3
B-4

C-1

C-3
C-4

D-1
D-2
D-3

E-1
E-2
E-3
E-4

F-1

An example of the work function translation 78

Processor Utilization of Streamlt code 86
Streamlt throughput on a 16-tile Raw machine 87

Throughput of StreamIt code running on 16 tiles and C code running

onasingletile. oo o L oo 88
Percentage increase in MFLOPS for decoupled execution 90
FIR before partitioning. L. 99
FIR after partitioning. oL 100
FIR layout. o 101
FIR execution trace. 101
Radar before partitioning.o 107
Radar after partitioning. 107
Radar layout. Lo 108
Radar execution trace. Lo Lo 108
Radio before partitioning. 112
Radio after partitioning. L. 112
Radio layout. 113
Radio execution trace. oL 113
Bitonic Sort before partitioning.o 118
Bitonic Sort after partitioning.o 000 119
Bitonic Sort layout. L oo 119
Bitonic Sort execution trace. L. 120
FFT before partitioning., 123
FFT after partitioning. 124
FFT layout. 124
FFT execution trace. L oL 125
Filterbank before partitioning. 130

F-2
F-3
F-4

G-2
G-3
G-4

H-1
H-2

H-4

I-1
I-2
I-3
I-4

Filterbank after partitioning. 130

Filterbank layout.o oo 131
Filterbank execution trace. 131
GSM before partitioning.o 146
GSM after partitioning. L L 147
GSM layout.o 147
GSM execution trace. 148
Vocoder before partitioning. 159
Vocoder after partitioning. oo oL L 160
Vocoder layout. 160
Vocoder execution trace. 161
3GPP before partitioning. oL 168
3GPP after partitioning. oL Lo 169
3GPP layout. 170
3GPP execution trace. Lo 170

13

14

List of Tables

1.1

6.1
6.2
6.3
6.4
6.5

Phases of the StreamlIt compiler. 26
Application Description.0 82
Application Characteristics. 83
Raw Performance Results. 84
Performance Comparison.o 0oL 85
Decoupled Execution.o 89

15

16

Chapter 1

Introduction

As we approach the billion-transistor era, a number of emerging architectures are ad-
dressing the wire delay problem by replicating the basic processing unit and exposing
the communication between units to a software layer (e.g., Raw [43], SmartMemories
[30], TRIPS [36]). These machines are especially well-suited for streaming applica-
tions that have regular communication patterns and widespread parallelism.
However, today’s communication-exposed architectures are lacking a portable pro-
gramming model. If these machines are to be widely used, it is imperative that one
be able to write a program once, in a high-level language, and rely on a compiler to
produce an efficient executable on any of the candidate targets. For von-Neumann
machines, imperative programming languages such as C and FORTRAN served this
purpose; they abstracted away the idiosyncratic details between one machine and
another (such as the number and type of registers, the ISA, and the memory hierar-
chies), but encapsulated the common properties (such as a single program counter,
arithmetic operations, and a monolithic memory) that are necessary to obtain good
performance. However, for wire-exposed targets that contain multiple instruction
streams and distributed memory banks, a language such as C is obsolete. Though
C can still be used to write efficient programs on these machines, doing so either
requires architecture-specific directives or an impossibly smart compiler that can ex-
tract the parallelism and communication from the C semantics. Both of these options

disqualify C as a portable machine language, since it fails to hide the architectural

17

details from the programmer and it imposes abstractions which are a mismatch for
the domain.

In this paper, we describe a compiler for Streamlt [41], a high level stream lan-
guage that aims to be portable across communication-exposed machines. Streamlt
contains basic constructs that expose the parallelism and communication of streaming
applications without depending on the topology or granularity of the underlying ar-
chitecture. Our current backend is for Raw [43], a tiled architecture with fine-grained,
programmable communication between processors. However, the compiler employs
three general techniques that can be applied to compile Streamlt to machines other
than Raw: 1) partitioning, which adjusts the granularity of a stream graph to match
that of a given target, 2) layout, which maps a partitioned stream graph to a given
network topology, and 3) scheduling, which generates a fine-grained communication
pattern for each computational element. We consider this work to be a first step

towards a portable programming model for communication-exposed architectures.

1.1 The StreamlIt Language

Streamlt is a portable programming language for high-performance signal processing
applications. The current version of Streamlt is tailored for static-rate streams: it
requires that the input and output rates of each filter are known at compile time.
In this section, we provide a brief overview of the syntax and semantics of Streamlt,
version 1.1. A more detailed description of the design and rationale for Streamlt can
be found in [41], which describes version 1.0; the most up-to-date syntax specification
can always be found on our website [4].

Abstractly, the current semantics of the Streamlt language belong to the syn-
chronous dataflow domain [27]. Computation is described by composing processing
units into a network. The processing units, called filters, are connected to each other
by channels. Data values pass over the channels, in a single direction, to neighboring
filters. The term synchronous is used to denote the fact that a filter will not fire

unless all of its inputs are available. Also, as mentioned above, the input and output

18

float->float filter FIRFilter (float sampleRate, int N) {
float[N] weights;

init {
weights = calcImpulseResponse(sampleRate, N);

X

prework push N-1 pop O peek N {
for (int i=1; i<N; i++) {
push(doFIR(i));
}
}

work push 1 pop 1 peek N {
push(doFIR(N));
pop(Q);

}

float doFIR(int k) {
float val = 0;
for (int i=0; i<k; i++) {

val += weights[i] * peek(k-i-1);

}
return val;

}

}

float->float pipeline Equalizer (float samplingRate, int N) {
add splitjoin {
int bottom = 2500;
int top = 5000;
split duplicate;
for (int i=0; i<N; i++, bottom*=2, top*=2) {
add BandPassFilter(sampleRate, bottom, top);
}
join roundrobin;
}
add Adder(N);
¥

void->void pipeline FMRadio {
add DataSource();
add FIRFilter(sampleRate, N);
add FMDemodulator(sampleRate, maxAmplitude);
add Equalizer(sampleRate, 4);
add Speaker();

Figure 1-1: Parts of an FM Radio in Streamlt.

19

[DataSource] 1
E

[duplicate splitter}

BandPass 1 $ BandPass N

[roundrobin joiner]
Equallzer I

E
{ Spe;ker J { Adijer J

FIRF|Iter

¥
[FM Demodulator]

Figure 1-2: Block diagram of the FM Radio.

rates of each filter can be determined statically. In the balance of this thesis we will
say that filter A is downstream of filter B if there is a path from A to B in the stream
graph (following the direction of the channels). We also say that B is upstream of A.

1.1.1 Language Constructs

The basic unit of computation in Streamlt is the filter. A filter is a single-input,
single-output block with a user-defined procedure for translating input items to output
items. An example of a filter is the FIRFilter, a component of our software radio
(see Figure 1-1). Each filter contains an init function that is called at initialization
time; in this case, the FIRFilter calculates weights, which represents its impulse
response. The work function describes the most fine grained execution step of the
filter in the steady state. Within the work function, the filter can communicate
with its neighbors via FIFO queues, using the intuitive operations of push(value),
pop(), and peek(index), where peek returns the value at position index without
dequeuing the item. The number of items that are pushed, popped, and peeked! on
each invocation are declared with the work function.

In addition to work, a filter can contain a prework function that is executed

exactly once between initialization and the steady-state. Like work, prework can

'We define peek as the total number of items read, including the items popped. Thus, we always
have that peek > pop.

20

S T

stream splitter
o joiner
stream

I} body } [loop }
stream ‘
1 splitter
stream (i)f bkl
—l— C ece acCkKloop.
(a) pipeline. (b) splitjoin.

Figure 1-3: Stream structures supported by Streamlt.

access the input and output tapes of the filter; however, the I/O rates of work and
prework can differ. In an FIRFilter, a prework function is essential for correctly
filtering the beginning of the input stream. The user never calls the init, prework,

and work functions—they are all called automatically.

The basic construct for composing filters into a communicating network is a
pipeline, such as the FM Radio in Figure 1-1. A pipeline behaves as the sequen-
tial composition of all its child streams, which are specified with successive calls to
add from within the pipeline. For example, the output of DataSource is implicitly
connected to the input of FIRFilter, who’s output is connected to FMDemodulator,
and so on. The add statements can be mixed with regular imperative code to param-
eterize the construction of the stream graph.

There are two other stream constructs besides pipeline: splitjoin and feedbackloop
(see Figure 1-3). From now on, we use the word stream to refer to any instance of a
filter, pipeline, splitjoin, or feedbackloop.

A splitjoin is used to specify independent parallel streams that diverge from a
common splitter and merge into a common joiner. There are two kinds of splitters:
1) duplicate, which replicates each data item and sends a copy to each parallel stream,

and 2) roundrobin(wy, ..., wy,), which sends the first w; items to the first stream, the

21

next wsy items to the second stream, and so on. roundrobin is also the only type
of joiner that we support; its function is analogous to a roundrobin splitter. If a
roundrobin is written without any weights, we assume that all w; = 1. The splitter
and joiner type are specified with the keywords split and join, respectively (see
Figure 1-1); the parallel streams are specified by successive calls to add, with the i’th
call setting the 7’th stream in the splitjoin.

The feedbackloop construct provides a way to create cycles in the stream graph.
Each feedbackloop contains: 1) a body stream, which is the block around which a
backwards “feedback path” is being created, 2) a loop stream, which can perform some
computation along the feedback path, 3) a splitter, which distributes data between
the feedback path and the output channel at the bottom of the loop, and 4) a joiner,
which merges items between the feedback path and the input channel at the top of
the loop. The splitters and joiners can be any of those for splitjoin, except for null.

The feedbackloop has special semantics when the stream is first starting to run.
Since there are no items on the feedback path at first, the stream instead inputs items
from an initPath function defined by the feedbackloop construct. Given an index 1,
initPath provides the i'* initial input for the feedback joiner. A call to setDelay,
from within the init function specifies how many items should be calculated with

initPath before the joiner looks for data from the loop.

1.2 The Raw Architecture

In this thesis we show that the Streamlt language is well-suited for wire-exposed
architectures. Streamlt aims to be portable across these architectures and also deliver
high performance. This thesis describes general compiler phases and transformations
to enable portability and performance. We demonstrate this by developing a specific
backend for MIT’s Raw Microprocessor.

The Raw Microprocessor [12, 43] addresses the wire delay problem [18] by pro-
viding direct instruction set architecture (ISA) analogs to three underlying physical

resources of the processor: gates, wires and pins. Because ISA primitives exist for

22

L
n
n
m

B
n
n
B!

.

.

Figure 1-4: Block diagram of the Raw architecture.

these resources, a compiler such as the StreamlIt compiler has direct control over both
the computation and the communication of values between the functional units of the
microprocessor, as well as across the pins of the processor.

The architecture exposes the gate resources as a scalable 2-D array of identical,
programmable tiles, that are connected to their immediate neighbors by four on-chip
networks. Each network is 32-bit, full-duplex, flow-controlled and point-to-point. On
the edges of the array, these networks are connected via logical channels [16] to the
pins. Thus, values routed through the networks off of the side of the array appear on
the pins, and values placed on the pins by external devices (for example, wide-word
A /Ds, DRAMS, video streams and PCI-X buses) will appear on the networks.

Each of the tiles contains a single-issue compute processor, some memory and two
types of routers—one static, one dynamic—that control the flow of data over the net-
works as well as into the compute processor (see Figure 1-4). The compute processor
interfaces to the network through a bypassed, register-mapped interface [12] that al-
lows instructions to use the networks and the register files interchangeably. In other
words, a single instruction can read up to two values from the networks, compute on
them, and send the result out onto the networks, with no penalty. Reads and writes
in this fashion are blocking and flow-controlled, which allows for the computation
to remain unperturbed by unpredictable timing variations such as cache misses and
interrupts.

Each tile’s static router has a virtualized instruction memory to control the cross-
bars of the two static networks. Collectively, the static routers can reconfigure the

communication pattern across these networks every cycle. The instruction set of

23

the static router is encoded as a 64-bit VLIW word that includes basic instructions
(conditional branch with/without decrement, move, and nop) that operate on values
from the network or from the local 4-element register file. Each instruction also has
13 fields that specify the connections between each output of the two crossbars and
the network input FIFOs, which store values that have arrived from neighboring tiles
or the local compute processor. The input and output possibilities for each crossbar
are: North, East, South, West, Processor, to the other crossbar, and into the static
router. The FIFOs are typically four or eight elements large.

To route a word from one tile to another, the compiler inserts a route instruction on
every intermediate static router [29]. Because the routers are pipelined and compile-
time scheduled, they can deliver a value from the ALU of one tile to the ALU of a
neighboring tile in 3 cycles, or more generally, 2+N cycles for an inter-tile distance
of N hops.

All functional units except the floating point and integer dividers are fully pipelined.
The mispredict penalty of the static branch predictor is three cycles. Data memory
is single ported and only accessed by the procesor. The load latency is three cycles.
The compute processor’s pipelined single-precision FPU operations have a latency of

4 cycles, and the integer multiplier has a latency of 2 cycles.

1.3 Compiling StreamlIt to Raw

The phases of the StreamlIt compiler are described in Table 1.1, and the interaction
of the phases is shown in Figure 1-5. The front-end is built on top of KOPI, an
open-source compiler infrastructure for Java [15]; we use KOPI as our infrastructure
because Streamlt has evolved from a Java-based syntax. We translate the Streamlt
syntax into the KOPI syntax tree, and then construct the Streamlt IR (SIR) that
encapsulates the hierarchical stream graph. Since the structure of the graph might be
parameterized, we propagate constants and expand each stream construct to a static
structure of known extent. At this point, we can calculate an execution schedule for

the nodes of the stream graph.

24

i Streamlt Code Partitioning
Kopi Load-balanced |
Front-End Stream Graph vy
v Parse Tree Layout
SIR I
. Filters assigned
Conversion Scheduler to Raw ties y
o ded Code Processor
v {unexpanded) Generation ||Code
Graph bk
Expansion
(Sels anded) Communication| Switch
: Scheduler |Code

Figure 1-5: The interaction of the compiler phases. Notice that the scheduler is not a
separate phase, but is used by multiple phases.

1.3.1 Scheduling

The automatic scheduling of the stream graph is one of the primary benefits that
Streamlt offers, and the subtleties of scheduling and buffer management are evident
throughout all of the following phases of the compiler. The scheduling is complicated
by Streamlt’s support for the peek operation, which implies that some programs
require a separate schedule for initialization and for the steady-state. The steady-
state schedule must be periodic—that is, its execution must preserve the number of
live items on each channel in the graph (since otherwise a buffer would grow without
bound.) A separate initialization schedule is needed if there is a filter with peek > pop,
by the following reasoning. If the initialization schedule were also periodic, then after
each firing it would return the graph to its initial configuration, in which there were
zero live items on each channel. But a filter with peek > pop leaves peek — pop (a
positive number) of items on its input channel after every firing, and thus could not
be part of this periodic schedule. Therefore, the initialization schedule is separate,

and non-periodic.

In the Streamlt compiler, the initialization schedule is constructed via symbolic

25

| Phase | Function |

KOPI Front-end Parses syntax into a Java-like abstract syntax
tree.

SIR Conversion Converts the AST to the Streamlt IR (SIR).

Graph Expansion Expands all parameterized structures in the
stream graph.

Scheduling Calculates initialization and steady-state execu-
tion orderings for filter firings.

Partitioning Performs fission and fusion transformations for
load balancing.

Layout Determines minimum-cost placement of filters on
grid of Raw tiles.

Communication Scheduling | Orchestrates fine-grained communication between
tiles via simulation of the stream graph.

Code generation Generates code for the tile and switch processors.

Table 1.1: Phases of the StreamlIt compiler.

execution of the stream graph, until each filter has at least peek — pop items on its
input channel. For the steady-state schedule, there are many tradeoffs between code
size, buffer size, and latency, and we are developing techniques to optimize different
metrics [42]. In this thesis, we use a simple hierarchical scheduler that constructs
a Single Appearance Schedule (SAS) [8] for each filter. A SAS is a schedule where
each node appears exactly once in the loop nest denoting the execution order. We
construct one such loop nest for each hierarchical stream construct, such that each
component is executed a set number of times for every execution of its parent. In
later chapters, we refer to the “multiplicity” of a filter as the number of times that it
executes in a complete execution of a schedule.
Following the scheduler, the compiler has stages that are specific for communication-

exposed architectures: partitioning, layout, and communication scheduling. The next
three chapters of the thesis are devoted to these phases.

This thesis makes the following contributions:

e Filter fusion optimizations that combine both sequential and parallel stream

segments, even if there are buffers between nodes.

e A filter fission transformation.

26

Graph reordering transformations.

Synchronization elimination transformations.

An algorithm for laying out a filter graph onto a tiled architecture.

e A communication scheduling algorithm that manages limited communication

and buffer resources.

An end-to-end implementation of a parallelizing compiler for streaming appli-

cations.

The remainder of this thesis is organized as follows. Chapter 2 describes the
partitioning phase of the compiler, including the principle enabling transformations.
Chapter 3 describes the layout phase and the specific implementation for Raw. Chap-
ter 4 describes the communication scheduler and gives the algorithm for the commu-
nication scheduling phase of the Raw backend. Chapter 5 describes code generation
for the Raw backend. Chapter 6 gives results for the current implementation of the
Streamlt compiler over our benchmark suite. Chapter 7 describes related work. Fi-
nally, the appendices give the source code, the layout, the execution trace, and various

other items for each application in our benchmark suite.

27

28

Chapter 2
Partitioning

Streamlt provides the filter construct as the basic abstract unit of autonomous stream
computation. The programmer should decide the boundaries of each filter according
to what is most natural for the algorithm under consideration. While one could
envision each filter running on a separate machine in a parallel system, Streamlt
hides the granularity of the target machine from the programmer. Thus, it is the
responsibility of the compiler to adapt the granularity of the stream graph for efficient
execution on a particular architecture.

We use the word partitioning to refer to the process of dividing a stream program
into a set of balanced computation units. Given that a maximum of N computation
units can be supported in the hardware, the partitioning stage transforms a stream
graph into a set of no more than N filters, each of which performs approximately the
same amount of work during the execution of the program. Following this stage, each
filter can be run on a separate processor to obtain a load-balanced executable.

Load-balancing is particularly important in the streaming domain, since the through-
put of a stream graph is equal to the minimum throughput of each of its stages. This
is in contrast to scientific programs, which often contain a number of stages which
process a given data set; the running time is the sum of the running times of the
phases, such that a high-performance, parallel phase can partially compensate for
an inefficient phase. In mathematical terms, Amdahl’s Law captures the maximum

realizable speedup for scientific applications. However, for streaming programs, the

29

maximum improvement in throughput is given by the following expression:

Yoy Wi ¢

Mazimum speedup(w, c) =

where w; . .. w,, denote the amount of work in each of the N partitions of a program,
and ¢; denotes the multiplicity of work segment 7 in the steady-state schedule. Thus,
if we double the load of the heaviest node (i.e., the node with the maximum w; - ¢;),
then the performance could suffer by as much as a factor of two. The impact of
load balancing on performance places particular value on the partitioning phase of a

stream compiler.

2.1 Overview

Our partitioner employs a set of fusion, fission, and reordering transformations to
incrementally adjust the stream graph to the desired granularity. To achieve load
balancing, the compiler estimates the number of instructions that are executed by
each filter in one steady-state cycle of the entire program; then, computationally
intensive filters can be split, and less demanding filters can be fused. Currently,
a simple greedy algorithm is used to automatically select the targets of fusion and

fission, based on the estimate of the work in each node.

For example, in the case of the Radar application, the original stream graph (Fig-
ure 2-2) contains 52 filters. These filters have unbalanced amounts of computation,
as evidenced by the execution trace in Figure 2-1(a). The partitioner fuses all of
the pipelines in the graph, and then fuses the bottom 4-way splitjoin into a 2-way
splitjoin, yielding the stream graph in Figure 2-3. As illustrated by the execution
trace in Figure 2-1(b), the partitioned graph has much better load balancing. In
the following sections, we describe in more detail the transformations utilized by the

partitioner.

30

KEY
[1 usefulwork [l Blocked on send or receive BX] Unused Tile

o - -
L I
i
T

101
[IJJJ‘ \ [T1] H

T —— T - ‘ H| ‘ l ‘
———— | | | ” H ‘ ||

n
T

—i i

|\|\ ‘H‘\ T Il m IHI‘I ‘ "HHH'\' \ll Hl\l \| l \‘IH |IIW|| I ||H|

- T— Tn— ‘ ‘ ‘ | | ‘

Cm T

: p— L1

(a) Original (runs on 64 tiles). (b) Partitioned (runs on 16 tiles).

Figure 2-1: Execution traces for the (a) original and (b) partitioned versions of the Radar
application. The z axis denotes time, and the y axis denotes the processor. Dark bands
indicate periods where processors are blocked waiting to receive an input or send an output;
light regions indicate periods of useful work. The thin stripes in the light regions represent
pipeline stalls. Our partitioning algorithm decreases the granularity of the graph from
53 unbalanced tiles (original) to 15 balanced tiles (partitioned). The throughput of the
partitioned graph is 11 times higher than the original.

31

InputGenerate1 InputGenerate12

FRFilter j(64) FIRFilter 7(64)

FIRilier (16) FiRFitter 3(16)

{ VectorMultiply { VectorMultlplyz} [VectorMultiply

A { VeclorMqupIy

|

{ FIRFlIter4 64)

|

Magnltude

1

{ FIRFilter 1(64) { FIRF|Iter2 64) [FIRFlIter3 64)

))
)))
]))

{ Detection { Detection,

Figure 2-2: Stream graph of the original 12x4 Radar application. The 12x4 Radar appli-

cation has 12 channels and 4 beams; it is the largest version that fits onto 64 tiles without
filter fusion.

[Detection g { Detection

InputGenerate1 InputGenerate.lz

FIRFiIter1a (64) FIRFiIter1a2(64)

FIRFiIter?(lG) FIRFlIter (16)

roundrobin

duplicate

o

VectorMultiply VectorMultiply
FIRFiIter?(64) FIRFiIter§(64)
Magnitude1 Magnitude 3
Detection Detection 3
VectorMultiply VectorMultiply
FIRFilter5 (64) FIRFilterf (64)
Magnitude , Magnitude ,

Detection, Detection 4

null

Figure 2-3: Stream graph of the load-balanced 12x4 Radar application. Vertical fusion
is applied to collapse each pipeline into a single filter, and horizontal fusion is used to

transform the 4-way splitjoin into a 2-way splitjoin. Figure 2-1 shows the benefit of these
transformations.

32

2.2 Fusion Transformations

Filter fusion is a transformation whereby several adjacent filters are combined into
one. Fusion can be applied to decrease the granularity of a stream graph so that an
application will fit on a given target, or to improve load balancing by merging small
filters so that there is space for larger filters to be split. Analogous to loop fusion
in the scientific domain, filter fusion can enable other optimizations by merging the
control flow graphs of adjacent nodes, thereby shortening the live ranges of variables

and allowing independent instructions to be reordered.

2.2.1 Unoptimized Fusion Algorithm

In the domain of structured stream programs, there are two types of fusion that we
are interested in: wvertical fusion for collapsing pipelined filters into a single unit, and
horizontal fusion for combining the parallel components of a splitjoin. Given that
each Streamlt filter has a constant I/O rate, it is possible to implement both vertical
and horizontal fusion as a plain compile-time simulation of the execution of the stream

graph. A high-level algorithm for doing so is as follows:

1. Calculate a legal initialization and steady-state schedule for the nodes of inter-

est.

2. For each pair of neighboring nodes, introduce a circular buffer that is large
enough to hold all the items produced during the initial schedule and one it-
eration of the steady-state schedule. For each buffer, maintain indices to keep

track of the head and tail of the FIFO queue.

3. Simulate the execution of the graph according to the calculated schedules, re-
placing all push, pop, and peek operations in the fused region with appropriate

accesses to the circular buffers.

That is, a naive approach to filter fusion is to simply implement the channel ab-

straction and to leverage Streamlt’s static rates to simulate the execution of the

33

|

UpSamplingMovingAverage (K, N)
l int PEEK SIZE = K*CEIL(N/K) ;

int peek buffer [PEEK_SIZE];

prework
UpSampler (K) e e
) for (i=0; i<CEIL(N/K); i++) {
int val = pop(), val = pop();
. P A for (j=0; j<K; j++)
for (int i=0; i<K; i++) peek_buffer [i*K+j] = val;
push (val); :
work
\ 4 int i, j, sum, val;
int buffer [PEEK_SIZE+LCM(N,K)];
MovingAverage (N) for (1203 L<ECHN,K)/K; 144) (
val = pop();
int sum = 0; for (3=0; 3<K; j++)
. . ' . buffer [PEEK_SIZE+i*K+j] = val;
for (int i=0; 1i<N; i++)) -
sum += peek(i);)))
for (i=0; 1<PEEK_SIZE? i++)
push (sum/N) ; buffer(i] = peek_buffer[il;
] for (1=0; i<LCM(N,K)/N; i++) {
pop () ’ sum = 0;
) for (3=0; J<N; j++)
sum += buffer[i*N+7j];
push (sum/N) ;
for (i=0; i<PEEK_SIZE; i++)
peek_buffer[i] = buffer[i+LCM(N,K)];
(a) Original l
(b) Fused

Figure 2-4: Vertical fusion with buffer localization and modulo-division optimizations.

graph. However, the performance of fusion depends critically on the implementation
of channels, and there are several high-level optimizations that the compiler employs
to improve upon the performance of a general-purpose buffer implementation. We

describe a few of these optimizations in detail in the following sections.

2.2.2 Optimizing Vertical Fusion

Figure 2-4 illustrates two of our optimizations for vertical fusion: the localization of
buffers and the elimination of modulo operations. In this example, the UpSampler
pushes K items on every step, while the MovingAverage filter peeks at NV items but
only pops 1. The effect of the optimizations are two-fold. First, buffer localization
splits the channel between the filters into a local buffer (holding items that are
transfered within work) and a persistent peek buffer (holding items that are stored

between iterations of work). Second, modulo elimination arranges copies between

34

l

AddSubtract
l push (peek (0) + peek(1));
push (peek (0) - peek(1));
H for (int i=0; 1i<2; i++)
duplicate on
Add Subtract l -
push (pop () + pop () ; push (pop () - pop()) ; ReorderRoundRobin (N)
int i, 3;
\ / for (i=0; i<2; i++)
N for (3=0; J<N; Jj++)
[roundrobin (N, N)] push (peek (1+2%3)) ;

l for (i=0; i<2; i++)
for (3=0; j<N; j++)
pop () ;

|

(b) Fused

(a) Original

Figure 2-5: Horizontal fusion of a duplicate splitjoin construct with buffer sharing opti-
mization. To fuse a SplitJoin with a Duplicate plitter, the code of the component filters is
inlined into a single filter with repetition according to the steady-state schedule. However,
there are some modifications: all pop statements are converted to peek statements, and the
pop’s are performed at the end of the fused work function. This allows all the filters to see
the data items before they are consumed. Finally, the RoundRobin joiner is simulated by
a ReorderRoundRobin filter that re-arranges the output of the fused filter according to the
weights of the Joiner.

these two buffers so that all index expressions are known at compile time, preventing

the need for a modulo operation to wrap around a circular buffer.

The execution of the fused filter proceeds as follows. In the prework function,
which is called only on the first invocation, the peek_buffer is filled with initial values
from the UpSampler. The steady work function implements a steady-state schedule in
which LCM(N, K) items are transferred between the two original filters-these items
are communicated through a local, temporary buffer. Before and after the execution
of the MovingAverage code, the contents of the peek buffer are transferred in and
out of the buffer. If the peek_buffer is small, this copying can be eliminated with
loop unrolling and copy propagation. Note that the peek buffer is for storing items
that are persistent from one firing to the next, while the local buffer is just for

communicating values during a single firing.

35

|

ReorderRoundRobin ,(3)
int i, j, ki
for (i=0; i<2; i++)
for (j=0; j<2; j++)
for (k=0; k<3; k++)
push (peek (3*i+6*j+k)) ;

for (i=0; i<2; i++)
for (j=0; j<2; j++)
for (k=0; k<3; k++)

pop () ;
RoundRobin(3, 3) l
L AddSubtract
Add Subtract EZE l(l:o i<3; i+h)
push (pop () + pop()); push (pop () - pop()); push(p(’)p() " pop ()
for (i=0; i<3; i++)
T push (pop () - pop () ;
[RoundRobin (N, N) l
! ReorderRoundRobin ,(N)

int i, j, ks
for (i=0; 1i<3; i++)
for (3=0; 3<2; j++)
for (k=0; k<N; k++)
push (peek (3*N*J+N*i+k)) ;
for (i=0; 1i<3; i++)
for (j=0; j<2; j++)
for (k=0; k<N; k++)
pop () ;

l

Figure 2-6: Fusion of a roundrobin splitjoin construct. The fusion transformation for
splitjoins containing roundrobin splitters is similar to those containing duplicate splitters.
One filter simulates the execution of a steady-state cycle in the splitjoin by inlining the
code from each filter. This filter is surrounded by ReorderRoundRobin filters that recreate
the reordering of the roundrobin nodes. In the above example, differences in the splitter’s
weights, the filter’s I/O rates, and the joiner’s weights adds complexity to the reordering.

36

2.2.3 Optimizing Horizontal Fusion

The naive fusion algorithm maintains a separate input buffer for each parallel stream
in a splitjoin. However, in the case of horizontal fusion, the input buffer can be
shared between the streams. Our horizontal fusion algorithm inputs a splitjoin where
each component is a single filter, and outputs a pipeline of three filters: one to
emulate the splitter, one to simulate the execution of the parallel filters, and one
to emulate the joiner. The splitters and joiners need to be emulated in case they
are roundrobin’s that perform some reordering of the data items with respect to the
component streams. Generally speaking, the fusion of the parallel components is
similar to that of vertical fusion—a sequential steady-state schedule is calculated, and
the component work functions are inlined and executed within loops.

The details of our horizontal fusion transformation depend on the type of the

splitter in the construct of interest. There are two cases:

1. For duplicate splitters, the pop expressions from component filters need to be
converted to peek expressions so that items are not consumed before subsequent
filters can read them (see Figure 2-5). Then, at the end of the fused work
function, the items consumed by an iteration of the splitjoin are popped from
the input channel. Also, the splitter itself performs no reordering of the data, so
it translates into an Identity filter that can be removed from the stream graph.
This fusion transformation is valid even if the component filters peek at items

which they do not consume.

2. For roundrobin splitters, the pop expressions in component filters are left
unchanged, and the roundrobin splitter is emulated in order to reorder the data
items according to the weights of the splitter and the consumption rates of the
component streams (see Figure 2-6). However, this is is invalid if any of the
component filters peek at items which it does not consume, since the interleaving
of items on the input stream of the fused filter prevents each component from
having a continuous view of the items that are intended for it. Thus, we only

apply this transformation when all component filters have peek = pop.

37

l RoundRobin(N, N, ..., N)

VectorMultiply (N) — NN
output.push (input.pop () *
WEIGHT[i]); W

1

Figure 2-7: Fission of a filter that does not peek. For filters such as a VectorMultiply
that consumes every item they look at, horizontal fission consists of embedding copies of
the filter in a K-way roundrobin splitjoin. The weights of the splitter and joiner are set to
match the pop and push rates of the filter, respectively.

T~

MovingAverage 4(N) . . .
-
l
MovingAverage (N)

l

MovingAverage (N)

int sum= 0;

for (int i=0; i<N i++) prework
sum += peek(i); for (int i=0; i<J-1; i++)
' pop () ;
push(sun N);
o .
pop(); work
int i, sum = 0;
for (i=0 ; i<N; i++)
sum += peek(i);
push (sum/N) ;
(a) Original pop 07
for (i=0; i<K-1; i++)
pop () ;

(b) Fused

Figure 2-8: Fission of a filter that peeks. Since the MovingAverage filter reads items that
it does not consume, the duplicated versions of the filter need to access overlapping portions
of the input stream. For this reason, horizontal fission creates a duplicate splitjoin in which
each component filter has additional code to filter out items that are irrelevant to a given
path. This decimation occurs in two places: once in the prework function, to disregard
items considered by previous filters on the first iteration of the splitjoin, and once at the
end of the steady work function, to account for items consumed by other components.

38

2.3 Fission Transformations

Filter fission is the analog of parallelization in the streaming domain. It can be applied
to increase the granularity of a stream graph to utilize unused processor resources, or

to break up a computationally intensive node for improved load balancing.

2.3.1 Vertical Fission

Some filters can be split into a pipeline, with each stage performing part of the work
function. In addition to the original input data, these pipelined stages might need
to communicate intermediate results from within work, as well as fields within the
filter. This scheme could apply to filters with state if all modifications to the state
appear at the top of the pipeline (they could be sent over the data channels), or if
changes are infrequent (they could be sent via Streamlt’s messaging system.) Also,
some state can be identified as induction variables, in which case their values can
be reconstructed from the work function instead of stored as fields. We have yet to

automate vertical filter fission in the StreamlIt compiler.

2.3.2 Horizontal Fission

We refer to “horizontal fission” as the process of distributing a single filter across
the parallel components of a splitjoin. We have implemented this transformation
for “stateless” filters—that is, filters that contain no fields that are written on one
invocation of work and read on later invocations. Let us consider such a filter F'
with steady-state /O rates of peek, pop, and push, that is being parallelized into an

K-way splitjoin. There are two cases to consider:

1. If peek = pop, then F' can simply be duplicated K ways in the splitjoin (see
Figure 2-7). The splitter is a roundrobin that routes pop elements to each
copy of F', and the joiner is a roundrobin that reads push elements from each
component. Since F' does not peek at any items which it does not consume,

its code does not need to be modified in the component streams—we are just

39

hob Aadé

[roundrobin(W,, W)]
——

W, Wyt Ws)j i

W, + W2,W3)}

[roundrobin

—~ o~

[roundrobin

[roundrobin(W, W,)

5 B B oo

Figure 2-9: Synchronization removal. If there are neighboring splitters and joiners with
matching rates, then the nodes can be removed and the component streams can be con-
nected. The example above is drawn from a subgraph of the 3GPP application; the compiler
automatically performs this transformation to expose parallelism and improve the partition-

-/

ing.
distributing the invocations of F'.

2. If peek > pop, then a different transformation is applied (see Figure 2-8). In
this case, the splitter is a duplicate, since the component filters need to examine
overlapping parts of the input stream. The 7’th component has a steady-state
work function that begins with the work function of F', but appends a series of
(K — 1) * pop pop statements in order to account for the data that is consumed
by the other components. Also, the ¢’th filter has a prework function that pops
(¢ — 1) % pop items from the input stream, to account for the consumption of
previous filters on the first iteration of the splitjoin. As before, the joiner is a

roundrobin that has a weight of push for each stream.

2.4 Reordering Transformations

There are a multitude of ways to reorder the elements of a stream graph so as to
facilitate fission and fusion transformations. For instance, in synchronization removal,
neighboring splitters and joiners with matching weights can be eliminated (Figure 2-

9). Synchronization removal is especially valuable in the context of libraries-many

40

1
T m=>d0 db
[roundrobin(w1,w2w3,w4)| [roundrobin(w1,w2) | [roundrobin(w3,w4) |

—

[roundrobin(w1 +W2,W3+W4)j
1

Figure 2-10: Breaking a splitjoin into hierarchical units. Though our horizontal fusion
algorithms work on the granularity of an entire splitjoin, it is straightforward to transform a
large splitjoin into a number of smaller pieces, as shown here. Following this transformation,
the fusion algorithms can be applied to obtain an intermediate level of granularity. This
technique was employed to help load-balance the Radar application (see Chapter 6).

distinct components can employ splitjoins for processing interleaved data streams,
and the modules can be composed without having to synchronize all the streams at
each boundary. A splitjoin construct can be divided into a hierarchical set of splitjoins
to enable a finer granularity of fusion (Figure 2-10); and identical stateless filters can
be pushed through a splitter or joiner node if the weights are adjusted accordingly.
(Figure 2-11). A detailed anaylsis of our reordering transformations is beyond the

scope of this thesis.

2.5 Automatic Partitioning

In order to drive the partitioning process, we have implemented a simple greedy
algorithm that performs well on most applications. The algorithm analyzes the work
function of each filter and estimates the number of cycles required to execute it. The
current work estimation implementation is rather naive and we believe that a more

accurate work estimator will increase performance.

2.5.1 Greedy Algorithm

In the case where there are fewer filters than tiles, the partitioner considers the filters

in decreasing order of their computational requirements and attempts to split them

41

| |
() ()
_ =
1 | e

filter X roundrobin(P w1,P w2)
- no internal state [j
e - pops P items

- pushes U items i

[roundrobin(U w1,U W2)j

Figure 2-11: Filter hoisting. This transformation allows a stateless filter to be moved
across a joiner node if its push value evenly divides the weights of the joiner.

using the filter fission algorithm described above. Fission proceeds until there are
enough filters to occupy the available machine resources, or until the heaviest node in
the graph is not amenable to a fission transformation. Generally, it is not beneficial to
split nodes other than the heaviest one, as this would introduce more synchronization

without alleviating the bottleneck in the graph.

If the stream graph contains more nodes than the target architecture, then the
partitioner works in the opposite direction and repeatedly fuses the least demanding
stream construct until the graph will fit on the target. The work estimates of the
filters are tabulated hierarchically and each construct (i.e., pipeline, splitjoin, and
feedbackloop) is ranked according to the sum of its children’s computational require-
ments. At each step of the algorithm, an entire stream construct is collapsed into a
single filter. The only exception is the final fusion operation, which only collapses to
the extent necessary to fit on the target; for instance, a 4-element pipeline could be

fused into two 2-element pipelines if no more collapsing was necessary.

Despite its simplicity, this greedy strategy works well in practice because most
applications have many more filters than can fit on the target architecture; since
there is a long sequence of fusion operations, it is easy to compensate from a short-
sighted greedy decision. However, we can construct cases in which a greedy strategy
will fail. For instance, graphs with wildly unbalanced filters will require fission of some
components and fusion of others; also, some graphs have complex symmetries where
fusion or fission will not be beneficial unless applied uniformly to each component

of the graph. We are working on improved partitioning algorithms that take these

42

measures into account.

2.6 Summary

In this chapter we discussed the partitioning phase of the Streamlt compiler. The
goal of partitioning is to transform the stream graph into a set of load-balanced
computational units. If there are N computation nodes in the target architecture,
the partitioning stage will adjust the stream graph such that there are no more than
N filters that are approximately load-balanced. To facilitate partitioning, we employ
both fusion and fission transformations. The fusion transformation merges streams
into a single filter and the fission transformation splits a stream into multiple, parallel
filters. Finally, we described the current version of the algorithm that drives the
partitioning decisions. In the next phase of the StreamlIt compiler, layout, the filters

of the load-balanced, partitioned stream graph are assigned to Raw tiles.

43

44

Chapter 3

Layout

The goal of the layout phase is to assign nodes in the stream graph to computation
nodes in the target architecture while minimizing the communication and synchro-
nization present in the final layout. The layout phase assigns exactly one node in the
stream graph to one computation node in the target. This phase assumes that the
given stream graph will fit onto the computation fabric of the target and that the
filters are load balanced. These requirements are satisfied by the partitioning phase
described above.

Classically, layout (or placement) algorithms have fallen into two categories: con-
structive initial placement and iterative improvement [25]. Both try to minimize a
predetermined cost function. In constructive initial placement, the algorithm calcu-
lates a solution from scratch, using the first complete placement encountered. Iter-
ative improvement starts with an initial random layout and repeatedly perturbs the
placement in order to minimize the cost function.

The layout phase of the StreamIt compiler is implemented using a modified ver-
sion of the simulated annealing algorithm[23], a type of iterative improvement. We
will explain the modifications below. Simulated annealing is a form of stochastic
hill-climbing. Unlike most other methods for cost function minimization, simulated
annealing is suitable for problems where there are many local minima. Simulated an-
nealing achieves its success by allowing the system to go uphill with some probability

as it searches for the global minimum. As the simulation proceeds, the probability of

45

climbing uphill decreases.

We selected simulated annealing for its combination of performance and flexibil-
ity. To adapt the layout phase for a given architecture, we supply the simulated
annealing algorithm with three architecture-specific parameters: a cost function, a
perturbation function, and the set of legal layouts. To change the compiler to target
one tiled architecture instead of another, these parameters should require only minor

modifications.

The cost function should accurately measure the added communication and syn-
chronization generated by mapping the stream graph to the communication model of
the target. Due to the static qualities of StreamlIt, the compiler can provide the layout
phase with exact knowledge of the communication properties of the stream graph.
The terms of the cost function can include the counts of how many items travel over
each channel during an execution of the steady-state. Furthermore, with knowledge
of the routing algorithm, the cost function can infer the intermediate hops for each
channel. For architectures with non-uniform communication, the cost of certain hops
might be weighted more than others. In general, the cost function can be tailored to
suit a given architecture.

Note that it is impractical to perform an exhaustive search of all the possible
layouts for a 16 tile Raw configuration. For 16 tiles, we would have to examine
approximately 2 x 10'® possible layouts. We would have to perform some kind of cost
analysis of each layout. Even if the cost analysis consumed only one cycle, on a 1 GHz
machine the search would require 5 1/2 hours. For the simulated annealing algorithm

we describe below, on average 5000 layouts are examined, a more reasonably number.

We also could have formulated the layout problem as 0/1 integer programming
problem. 0/1 integer programming would give us an optimal solution to the layout
problem, but has exponential worst-case complexity. As we will show, our modified
simulated annealing implementation performs quite well for our benchmark suite and
we feel that there is no reason to consider an optimal solution framework. Further-
more, a 0/1 integer programming implementation would lack the retargetability of

simulated annealing.

46

3.1 Layout for Raw

For Raw, the layout phase maps nodes in the stream graph to the tile processors.
Each filter is assigned to exactly one tile, and no tile holds more than one filter.
However, the ends of a splitjoin construct are treated differently; each splitter node
is folded into its upstream neighbor, and neighboring joiner nodes are collapsed into
a single tile (see Section 4.1). Thus, joiners occupy their own tile, but splitters are
integrated into the tile of their upstream filter or joiner.

Due to the properties of the static network and the communication scheduler (see
Section 4.1), the layout phase does not have to worry about deadlock. All assignments
of nodes to tiles are legal. This gives simulated annealing the flexibility to search
many possibilities and simplifies the layout phase. The perturbation function used
in simulated annealing simply swaps the assignment of two randomly chosen tile

Processors.

3.1.1 Cost Function

After some experimentation, we arrived at the following cost function to guide the lay-
out on Raw. We let channels denote the pairs of nodes {(srcy,dsty) ... (sren, dsty)}
that are connected by a channel in the stream graph; layout(n) denote the placement
of node n on the Raw grid; and route(src, dst) denote the path of tiles through which
a data item is routed in traveling from tile src to tile dst. In our implementation, the
route function is a simple dimension-ordered router that traces the path from src to
dst by first routing in the X dimension and then routing in the Y dimension. Given
fixed values of channels and route, our cost function evaluates a given layout of the

stream graph:

cost(layout) =

Z items(src, dst) - (hops(path) + 10 - sync(path))

(src,dst) € channels

where path = route(layout(src), layout(dst))

47

In this equation, items(src, dst) gives the number of data words that are trans-
fered from src to dst during each steady state execution, hops(p) gives the number
of intermediate tiles traversed on the path p, and sync(p) estimates the cost of the
synchronization imposed by the path p. We calculate sync(p) as the number of tiles
along the route that are assigned a stream node plus the number of tiles along the
route that are involved in routing other channels.

With the above cost function, we heavily weigh the added synchronization imposed
by the layout. For Raw, this metric is far more important than the length of the route
because neighbor communication over the static network is cheap. If a tile that is
assigned a filter must route data items through it, then it must synchronize the routing
of these items with the execution of its work function. Also, a tile that is involved
in the routing of many channels must serialize the routes running through it. Both
limit the amount of parallelism in the layout and need to be avoided.

Initially we used a slightly different cost function than the function given above.
Our first cost function cubed sync(p), and in the calculation of sync(p) weighted more
heavily the cost of tiles assigned to filters along the route (versus non-assigned tiles).
Our intuition was that the synchronization added from routing through assigned tiles
is by far the most important factor. After some analysis, we came to the conclusion
that this initial cost function was not smooth enough. More precisely, small changes
in the layout could lead to an enormous change in the cost function. This prevented
the algorithm from backing out of local minima due to the large cost difference.

In contrast, the current cost function does not have such a large delta between a
local minimum and its peak. This allows the simulated annealing algorithm to climb
out and explore other layout options. The current cost function still weights sync(p)

heavily, but has been scaled down to an appropriate level.

3.1.2 Modifications to Simulated Annealing

The simulated annealing implementation used in the Streamlt compiler was adopted
from [44] and includes some important modifications. First, the initial layout is not

entirely random. We found that a random initial layout could lead the algorithm to

48

wallow in local minima. This was especially the case for long pipelines that have a
zero-cost layout on Raw. Instead, for the initial layout we place a depth-first traversal
of the stream graph along the raw tiles, starting at the top-left tile and snaking across
rows (see Algorithm 2 and Figure 3-2(a)). In this way, pipelines are placed perfectly
by the initial layout.

Additionally, we found that in rare cases simulated annealing did not always finish
with the best layout. It sometimes found the layout with the minimum cost early in
the search and backed out of it to settle on a different, higher-cost, local minimum.
To prevent this, we cache the layout with the minimum cost that was encountered
during the simulated annealing search and use it as the final layout. The algorithm

ends if a layout with zero cost is found.

Most importantly, we found that the layout problem was sometimes too con-
strained for the simulated annealing algorithm. It was difficult for the algorithm to
back out of a local minimum late in the simulation. Conceptually, local minima are
spaced too far apart for the simulated annealing algorithm to back out of late in the
algorithm. Simply changing the temperature multiplier did not help the situation.
The problem was that it took too long for the annealing algorithm to decide which
minimum it would descend. The first half of the algorithm was spend oscillating
between minima, with no significant drop in cost. By the time it settled on a path to

descend, it was too late to reverse the decision.

We found that running multiple, separate iterations of the simulated annealing
algorithm solved the problem. In this case, the final layout of the previous iteration
becomes the initial layout for the new iteration. We cache the minimum layout over
all the iterations and use it as the final layout. Now, each iteration has the chance to
settle on a different (possibly local) minimum because when restarting the annealing
we use the high temperature to search for a minimum. After experimentation, we
found that running two annealing iterations for a 16 tile Raw configuration produced
excellent layouts for all our benchmarks and test programs. Although this doubled
the running time of the layout phase, the layout time for a 16 tile Raw configuration

is under 10 seconds.

49

7000000

6000000 -

Ll

5000000 - i o ‘ | l

4000000 ~

Cost

3000000

2000000 ~

1000000 ~

O T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
Configuration

Figure 3-1: Estimated cost for successive accepted configu-
rations of the load-balanced FFT layout as evaluated by the
simulated annealing algorithm.

The complete, modified algorithm is given in Algorithms 1-4. All constants in the
code were initially set to the value given in [44] and adjusted based on the results of
the algorithm. Most constants did not change. For the decay rate (.9), the number
of perturbations per temperature (100), and the temperature limits (90% and 1%),
we found that the constants given in [44] gave the best results.

Figure 3-1 illustrates how the cost metric varies over time during a run of the
simulated annealing algorithm for the FFT application. The figure illustrates that
the cost converges to 0, causing layout to stop. In the figure one can clearly see two
iterations of the simulated annealing algorithm. At the start of the second iteration,
the cost increases rapidly as the algorithm accepts perturbations of higher cost. This
breaks out of the local minima reached by the first iteration, allowing the algorithm
to reach the zero-cost layout. Notice also that each iteration spends a significant
amount of time searching for a minimum to descend.

Figure 3-2 shows the initial layout of the FFT application on the left and the final,
zero-cost layout on the right. Figure E-2 gives the stream graph after partitioning.
For the FF'T application, the layout determined by our algorithm has a throughput
that exceeds that of the initial layout by a factor of 10. The remaining applications

in our benchmark suite obtain similar performance improvements from the layout

20

Algorithm 1 Layout Algorithm on Raw
Simulated AnealingAssign(G, M) assigns the filters and coalesced joiners of the
stream graph G to Raw tiles. Each is assigned to exactly one tile. M describes

the Raw configuration. FE(C) denotes the cost function applied to the layout
C.

Let Cinir < InitialPlacement(G, M) (see Algorithm 2).
Let Cold — szt
if E(szt) = (0 then
return Cj,;.
end if
Let T < InitialTemp(Cjp;:). (see Algorithm 3)
Let T < FinalTemp(Ciit). (see Algorithm 4)
Let E,;n < 0.
Let Cmm — szt
fori=1to2do
repeat
** for 7 = to 100 do
Let Chew be Cyq with the assignment of a pair of tiles swapped.
if E(Cpew) =0 then
return C,.,.
end if
if E(Cpew) < Emin then
Emin — E(Cnew)
Cmm — Cnew-

end if
if E(Crew) < E(Cyyq) then
pP=1.
else E(Co1q)—E(Cnew)
P=e— "1
end if
Randomly choose a number 0.0 < R < 1.0.
if R < P then
C’old «— Cnew-
end if
end for
Set T «— = *T.
until 7' < T
end for

Return C,,;n.

o1

Algorithm 2 Initial Placement
InitialPlacement (G, M). Given the stream graph G and the Raw configuration M,
return the initial placement of G on M.

e Let D be a sequence of filters and coalesced joiners in G ordered by a depth-first
traversal of G.

e Let R be the number of rows in M.
e Let C be the number of columns in M.

forr=0to R—1do
if r is even then
forc=0toC —1do
assign the next node of D to tile r, ¢
end for
else
for c=C — 1 downto 0 do
assign the next node of D to tile r, ¢
end for
end if
end for

Algorithm 3 Calculation of Initial Temperature

InitialTemp(Cj,;;) determines the initial temperature of the algorithm, adapted from
[44].

1. Set T+ 1.0.

2. Repeat the following until the at least 90% of new configurations are accepted
in step 2c or the steps have been repeated 200 times.

(a) Set T« 2xT.
(b) Set Cold — szt

(c) Perform the for loop of Simulated AnealingAssign noted with a .

3. Return T.

52

Algorithm 4 Calculation of Final Temperature

FinalTemp(Cj,;) determines the termination temperature for the algorithm,
adapted from [44].

1. Set T+ 1.0.

2. Repeat the following until the at most 1% of new configurations are accepted
in step 2c or the steps have been repeated 200 times.

(a) Set T« L xT.
(b) Set Cyg + Cinit-
(c) Perform the for loop of Simulated AnealingAssign noted with a sx.

3. Return T'.

FFTTestSource Fused CombineDFT CombineDFT CombineDFT CombineDFT CombineDFT WEIGHTED

|
CombineDFT CombineDFT Fused CombineDFT CombineDFT
WEIGHTED Fused CombineDFT CombineDFT CombineDFT FFTTestSource CombineDFT CombineDFT
| et et | o]
CombineDFT CombineDFT CombineDFT CombineDFT CombineDFT Fused CombineDFT CombineDFT
. b) Final
(a) Initial Layout. Final Layout.

Figure 3-2: (a) The initial layout. Notice the source is located at the top-left and connected
filters of a single pipeline are placed on neighboring tiles. (b) The final layout, with zero
cost.

93

algorithm.

3.2 Summary

In this chapter we presented the layout phase of the Streamlt compiler. It’s goal is to
assign nodes of the stream graph to computation units of the target architecture. We
use simulated annealing to drive the layout phase. We were attracted to simulated
annealing by both its retargetablility and its performance. We described the cost
function used by simulated annealing for the Raw backend. Finally, this chapter
describes the modifications we were forced to make to the core simulated annealing

algorithm and gave pseudo-code of the modified algorithm.

54

Chapter 4

Communication Scheduler

With the nodes of the stream graph assigned to computation nodes of the target, the
next phase of the compiler must map the communication explicit in the stream graph
to the interconnect of the target. This is the task of the communication scheduler. The
communication scheduler maps the infinite FIFO abstraction of the stream channels
to the limited resources of the target. Its goal is to avoid deadlock and starvation
while utilizing the parallelism explicit in the stream graph.

The exact implementation of the communication scheduler is tied to the com-
munication model of the target. The simplest mapping would occur for hardware
with support for an end-to-end, infinite FIFO abstraction. The scheduler need only
determine the sender and receiver of each data item. This information is easily cal-
culated from the weights of the splitters and joiners. As the communication model
becomes more constrained, the communication scheduler becomes more complex, re-
quiring analysis of the stream graph. For targets implementing a finite, blocking
nearest-neighbor communication model, the exact ordering of tile execution must be
specified.

Due to the static nature of Streamlt, the compiler can statically orchestrate the
communication resources. As described in Section 1.3, we create an initialization
schedule and a steady-state schedule that fully describe the execution of the stream
graph. The schedules can give us an order for execution of the graph if necessary. One

can generate orderings to minimize buffer length, maximize parallelism, or minimize

95

latency.

Deadlock must be carefully avoided in the communication scheduler. Each ar-
chitecture requires a different deadlock avoidance mechanism. A detailed discussion
of deadlock is beyond the scope of this thesis. In general, deadlock occurs when
there is a circular dependence on resources. A circular dependence can surface in the
stream graph or in the routing pattern of the layout. If the architecture does not
provide sufficient buffering, the scheduler must serialize all potentially deadlocking

dependencies.

4.1 Communication Scheduler for Raw

The communication scheduling phase of the StreamIt compiler maps StreamIt’s chan-
nel abstraction to Raw’s static network. As mentioned in Section 1.2, Raw’s static
network provides optimized, nearest neighbor communication. Tiles communicate
using buffered, blocking sends and receives. It is the compiler’s responsibility to stat-
ically orchestrate the explicit communication of the stream graph while preventing
deadlock.

To statically orchestrate the communication of the stream graph, the commu-
nication scheduler simulates the firing of nodes in the stream graph, recording the
communication as it simulates. The simulation does not model the code inside each
filter; instead it assumes that each filter fires instantaneously. This relaxation is
possible because of the flow control of the static network—since sends block when a
channel is full and receives block when a channel is empty, the compiler needs only to
determine the ordering of the sends and receives rather than arranging for a precise
rendezvous between sender and receiver.

In the current implementation we simulate the execution of the stream graph
using a push schedule. We define a push schedule [22] as a schedule that always fires
the node that is the furthest downstream in the stream graph at any given time. A
node can only fire if it has enough items in its incoming buffer. Initially, we planned

to simulate a single-appearance schedule. However, when using a SAS we calculated

26

that for some of our applications, the incoming buffer size would be too large to fit
in the data cache of a Raw tile. So, we chose to simulate a push schedule because
the incoming buffer of each node is much smaller than that of a single appearance
schedule. In fact, with a push schedule we obtain the minimal size for the incoming
buffer of each filter [22]. The incoming buffer size of each filter is approximately equal

to the number of items peeked by the filter (see Section 5.1.2 for the exact equation).

4.1.1 Joiner Deadlock Avoidance

Special care is required in the communication scheduler to avoid deadlock in splitjoin
constructs. Figure 4-1 illustrates a case where the naive implementation of a splitjoin
would cause deadlock in Raw’s static network. The fundamental problem is that
some splitjoins require a buffer of values at the joiner node—that is, the joiner outputs
values in a different order than it receives them. This can cause deadlock on Raw
because the buffers between channels can hold only four elements; once a channel
is full, the sender will block when it tries to write to the channel. If this blocking
propagates the whole way from the joiner to the splitter, then the entire splitjoin is

blocked and can make no progress.

To avoid this problem, the communication scheduler implements internal buffers
in the joiner node instead of exposing the buffers on the Raw network (see Figure 4-
2). As the execution of the stream graph is simulated, the scheduler records the
order in which items arrive at the joiner, and the joiner is programmed to fill its
internal buffers accordingly. At the same time, the joiner outputs items according
to the ordering given by the weights of the roundrobin. That is, the sending code
is interleaved with the receiving code in the joiner; no additional items are input if
a buffered item can be written to the output stream. To facilitate code generation
(Chapter 5), the maximum buffer size of each internal buffer is recorded during the

simulation.

o7

roundrobin(1,)

I@@@...

®
&
®G

Identity
push (pop ())

Identity }

push (pop ())

Figure 4-1: Example of deadlock in a splitjoin. As the joiner is reading items from the
stream on the left, items accumulate in the channels on the right. On Raw, senders will
block once a channel has four items in it. Thus, once 10 items have passed through the
joiner, the system is deadlocked, as the joiner is trying to read from the left, but the stream
on the right is blocked.

buffering_roundrobin (11, 11)
int i;

for (i=0; i<11l; i++) |
push (inputl.pop());
buf[i] = input2.pop();
}

ORE -

roundrobin(1, 1)

N\

for (i=0; i<11; i++) {

N

CeEEEREEEEN

push (buf[i]) ;
}
Identity Identity
push (pop ()) push (pop ())
)% -
(buffering_roundrobin (11, 1 1)/

®
@
®

Figure 4-2: Fixing the deadlock with a buffering joiner. The buffering roundrobin is an
internal StreamIt construct (it is not part of the language) which reads items from its input
channels in the order in which they arrive, rather than in the order specified by its weights.
The order of arrival is determined by a simulation of the stream graph’s execution; thus,
the system is guaranteed to be deadlock-free, as the order given by the simulation is feasible
for execution on Raw. To preserve the semantics of the joiner, the items are written to the
output channel from the internal buffers in the order specified by the joiner’s weights. The
ordered items are sent to the output as soon as they become available.

4.2 Implementation

In this section we will give a rigorous and near-complete implementation for the
communication scheduling phase of the Raw backend. This description lacks some
features of the actual implementation used in the StreamlIt compiler. For clarity, we
will not describe joiner coalescing and the Identity filter removal optimization. Each
is tightly ingrained in the implementation of the communication scheduler and would
complicate the discussion. We further restrict that only scalars are being passed
over the channels. Finally, we neglect to represent all the state that is recorded for
later phases of the compiler. For example, we do not describe the recording of the

maximum size of a joiner’s internal buffer.

4.2.1 Switch Instruction Format

Raw’s switch instructions consist of a processor component and a list of routes for the
static networks. In the implementation, we are only using the first static network.
At this time, we neglect the processor component of the switch instruction. We are
using the switch to route data only. In the implementation of switch code compression
(Section 5.1.2), we use the processor component of the instruction, but for now it is
a nop.

The combination of processor and route components of a single instruction are

subject to the following constraints [39]:

e The source of the processor component can be a register or a switch port, but

the destination must be a register.

e The source of a route can be a register or a switch port but the destination

must always be a switch port.
e Two values cannot be routed to the same location.

e If there are multiple reads from the register file, they must use the same register.

This is because there is only one read port.

99

$csto is the FIFO buffer from the compute processor to the switch, and $csti
is the FIFO buffer from the switch to the compute processor. $cNi, $cEi, $cSi, and
$cWi are the FIFO buffers from the switch’s north, east, south, and west neighbors,
respectively. $cNo, $cEo, $cSo, and $cWo are the FIFO buffers to the switch’s north,

east, south, and west neighbors, respectively.

4.2.2 Preliminaries

e (represents the stream graph of the application.

e root denotes the root of G, because of the structure of Streamlt programs, all

non-null programs have a unique root.

e [is a set containing the nodes of G mapped to raw tiles by the layout algorithm.

In this case, everything but splitter nodes.
e T is a set representing the tiles of the Raw configuration.
e tile(a) where a € L, returns ¢t € T where a is mapped to ¢ by the layout phase.

e Assume that the prework function always appears in the initialization schedule

even if it is empty for a given filter.

e For each filter n, we define the fields, n.prePeek, n.prePop, n.prePush, n.peek,
n.pop, and n.push.

e For each splitter s we define the field s.type to denote the type of the splitter,

either duplicate or roundrobin.

e (;[n] holds the multiplicity (see Section 1.3.1) for the initialization schedule for
node n in the stream graph as computed by the scheduler for a push schedule

22].

e ([n] holds the multiplicity for the initialization schedule and the steady state

for node n in the stream graph as computed by the scheduler for a push schedule.

60

Let downstream(n) and upstream(n) denote the set containing all downstream

neighbors of n in G and all upstream neighbors of n in G, respectively.

For nodes a and b where a,b € G and a,b € L, let getRoute(a,b) return the
route from a to b in the layout. It returns a sequence of intermediate hops of
the form (s,t), where s sending to ¢ is an intermediate hop of the route and

s,teT.

For neighboring tiles a and b where a, b € T, let getDirection(a, b) return a string

representing the direction from a to b, either N, E, S, or W.
Let the operator + denote string concatenation.
The global state of the simulation is stored in the following structures:

— Buffer|f] stores number of items currently in the buffer for each filter of the

stream graph. Buffer{f] will return the number of items in the incoming

buffer for filter f.

— SwitchCode[t] holds the switch code schedule for tile t € 7" We add entries

to the end of the schedule during the simulation with the @ operator.

— Associated with each joiner is a set of internal buffers, one for each incom-
ing channel of the buffer. When referring to a buffer we will describe it by
the endpoints of the channel it represents. JoinBuf]j][b] denotes an integer

representing the number of items in buffer b of joiner j.

— For each joiner j we create an internal buffer schedule, JBufSch[j]. This
schedule is used by the code generation phase to produce the code for
joiners. For each joiner the schedule is represented as a sequence. Initially
empty, we add entries to the end of the schedule during the simulation

with the @ operator. The entries can take the following form:

* fire(b), the joiner sends downstream one item from buffer b.

« receive(b), the joiner receives one data item into the buffer b.

61

* initPath(b, 1), the joiner calls initPath(i) and places the result in
buffer b.

— Given the static, incoming channel weights of each joiner, we build a static
sending schedule for each joiner. This schedule is represented as a sequence
of nodes in GG. The schedule gives the order in which to send items from the
joiner’s internal buffers. We call this sending schedule StaticJoinSch[j] for
joiner 7. The schedule is computed prior to the algorithm described below
and its calculation is trivial. Each schedule is represented as a circular list,
with the last node pointing to the first. We will use head(StaticJoinSch{j])
to retrieve joiner j’s current buffer that it should send from (the current
node in the schedule), and step(StaticJoinSch[j]) to step the schedule to

the next node.

— Given the static, outgoing channel weights of each roundrobin splitter, we
build a static sending schedule for each roundrobin splitter. This schedule,
represented as a list of nodes in G, gives the order in which to send items
from the splitter to its downstream neighbors. The schedule is computed
prior to the algorithm described below and its calculation is trivial. Since
splitters are not mapped to the tiles of Raw, we only use the schedule when
we are calculating the destination of a data item as it passes through the
splitter on its way to a filter or joiner. Call this schedule StaticSplitSch]s]

for splitter s. It has the same properties and accessors as StaticJoinSch.

— FireCount[n] stores the number of times node n has fired.

4.2.3 Pseudo-Code

The entry point of the communication scheduler is the start () function, most of the
state of the simulation global, so start () does not take any arguments. We begin by
placing the results of the initPath() calls of any feedbackloops in the appropriate
internal buffer of the feedback joiner. This is accomplished by setupInitPath(). We

then simulate the initialization schedule followed by the steady-state schedule. Each

62

simulation starts with a call to the simulate(C', prev) function. This function de-
termines which node should fire next in the simulation by calling whoShouldFire(n,
C). After finding a node to fire, simulate(C, prev) updates the state of the simu-
lation by calling the fire(f, C) function for each item produced. After the state is
updated, simulate(C, prev) creates the switch instructions for the item produced,
accomplished by generateSwitchCode(f, D). Finally, simulate(C', prev) recur-
sively calls itself to determine if any node downstream of the previously fired node
can fire.

The function canFire?(n, C) is called by whoShouldFire(n, C) to determine if
node n can fire. The function getDestination(p, c) is called by simulate(C, prev)
to determine the destinations of the of the current item. It is a recursive function
that traverses G' to find the destinations.

Note that C' is an argument to some of the above methods. This argument holds
the multiplicity for each node in G for the schedule we are simulating. For the
initialization phase C' < C;. For the steady-state phase C' < C,, where Cy[n]| is
equal to the multiplicity of n for both the initialization and the steady-state schedule.

start(). The entry point of the simulation. We first place the return values of
initPath() in the appropriate joiner buffer. The initialization schedule is simulated
next, followed by the simulation of the steady-state. The simulation returns the joiner
buffer schedules and the switch code schedules for both the initialization and steady-
state schedule. After the initialization schedule simulation we save the computed
switch code and the joiner internal-buffer schedules.

Initialize all element of Buffer, JoinBuf, and FireCount to 0.
Initialize all sequences in SwitchCode and JBufSch to {).
setupInitPath(S5).

simulate(C;, root).

Let JBufSch; ;1 < S.JBufSch.

Let SwitchCode;y, ;4 < S.SwitchCode.

Set all sequences in SwitchCode and JBufSch to ().
simulate(C,, root).

return (JBufSch;, ., SwitchCode;,,;;, JBufSch, SwitchCode).

63

setupInitPath(). For feedbackloops, add the results of the initPath() function to
the appropriate internal buffer of the joiner of the feedbackloop. Let J be the set of
all joiners directly contained in a feedbackloop in G. For joiner node j, let j.delay
denote the delay of the feedbackloop (see Section 1.1.1).

for all j € J do
for i = 0 to j.delay — 1 do
Let b denote the internal joiner buffer representing the channel from the loop
of the feedbackloop to the joiner.
JBufSch[j| < JBufSch|j|QinitPath(b,).
JoinBuflj|[b] < JoinBuflj][b] + 1.
end for
end for

simulate(C, prev). Given the multiplicities C and the previous node we fired prev,
simulate the firing of each data item. We first find a filter to fire, one that is down-
stream of prev. Next, we update the simulation and generate the switch code. After
each item produced, we see if any downstream filter can fire by recursively calling
simulate ().

while true do
f < whoShouldFire (prev, C).
if f = NIL then
return.
end if
Let I + fire(f, O).
for i < 0to I do
generateSwitchCode (f, getDestination(downstream(f))).
simulate(C', f).
end for
end while

64

whoShouldFire(n, C'). Given the multiplicities C' and the previous node we fired n,
this function determines which node in the stream graph should fire next. It follows a
breadth-first traversal from the node n and calls canFire? () for each node, returning
the latest node for which canFire?() returns true.

Let @ be a FIFO queue, initially empty
Let V' be a set, initially empty.
Let m < NIL.
enqueue(Q, n).
while Q # 0 do
Let h + dequeue(Q).
V + VU{h}.
if canFire?(h, C) then
m < h.
end if
for all ¢ € downstream(h) do
if c ¢V then
enqueue(Q,c).
end if
end for
end while
return m.

65

canFire?(n, (). Given the multiplicities C' and node n, this function determines if
node n can fire at this time in the simulation. For filters, it determines if the incoming
buffer has enough items and if the filter has fired fewer times than the multiplicity
given in C'. For joiners, it determines if the internal joiner buffer at the head of the

joiner send schedule has at least one item.

if n is a filter then
Let 2 «+ 0.
if FireCount[n] = 0 then
1 < n.prePeck.
else
1 < n.peek.
end if
if FireCount[n] < C[n] and Buffer|n] > i then
return lrue.
end if
else if n is a joiner then
if JoinBuf[n][head(StaticJoinSch[n])] > 0 then
return frue.
end if
end if
return false.

66

fire(f, C). Given the multiplicities C' and the node we are firing f, this function
updates the state of the simulation for the firing of f, returning the number of items
f produces. If f is a joiner, we add an entry to the joiner buffer schedule to fire the
joiner, retrieving the data from the buffer at the head of the joiner send schedule.
Then we step the joiner send schedule.

Let produced = 0.
if f is a filter then
Let consumed = 0.
if FireCount[f] = 0 then
consumed < f.prePop.
produced < f.prePush.
else
consumed < f.Pop.
produced < f.Push.
end if
Buffer{f] < Buffer|f] — consumed.
FireCount[f] + FireCount[f] + 1.
else if f is a joiner then
produced < 1.
FireCount[f] < FireCount[f] + 1.
JBufSch|f] < JBufSch| f|Qfire(head(StaticJoinSch[f])).
JoinBuf| f|[head(StaticJoinSch|f])] < JoinBuf| f|[head(StaticJoinSch|f])] — 1.
step(StaticJoinSch|[f]).
end if
return produced.

67

getDestination(p, c). Given the previous node we visited p and the current node
we are visiting ¢, this function returns a set of the destinations. If ¢ is a joiner, we
receive the item into the internal buffer representing the channel connecting p to c. If
c is a duplicate splitter, we must build a set of the destination nodes, as there is more
than one destination for the item. If ¢ is a roundrobin splitter then the item passes
through the splitter to the downstream node given by the splitter’s static sending
schedule.

if c is a filter then
Buffer|c] < Buffer|c] + 1.
return {c}.
else if c is a joiner then
Let b denote the internal buffer of ¢ representing the channel connecting p to c.
JoinBuf[c][b] < JoinBuflc|[b] + 1.
JBufSch|c] < JBufSch|c|Qreceive(b).
return {c}.
else if c is a splitter then
if c.type = duplicate then
Let Z =10
for all n € downstream(c) do
Z = ZU getDestination(c, n).
end for
return Z.
else if c.type = roundrobin then
Let n = head(StaticSplitSch|c]).
step(StaticSplitSchic]).
return getDestination(c, n).
end if
end if

68

generateSwitchCode(f, D). Given the node that is firing f and the set of desti-
nations, D, this function generates switch code for the firing of one item. We place
the switch instructions in SwitchCode. Remember, multiple reads from the same port
within a single switch instruction reads the same value. It is not until the completion if
the instruction that the item is dequeued from the port. We should also mention that
the routes of a single item form a tree. This is a consequence of dimension-ordered
routing.

Let nextHop[t] + 0,Vt € T.
Let prevHop[t] + NIL ,Vt € T.
for alld € D do
for all (a,b) € getRoute(f,d) do
nextHop|a] < nextHop|a] U {b}.
prevHop[b] + a.
end for
end for
for all a € L do
Let t < tile(a).
Let ins = “route
if a € D then
ins = ins + “$” + getDirection(t, prevHop[t]) + “i->$csti 7.
SwitchCode[t] = SwitchCode[t|Qins.
end if
if nextHop[t] = () then
continue.
end if
for all b € nextHop[t] do
if o = f then
ins = ins + “$csto->$c” + getDirection(t,b) + “o 7.
else
ins = ins + “$” + getDirection(t, prevHop[t]) + “1i->$c” + getDirection(t, b)
+ “o 7.
end if
end for
SwitchCode[t] = SwitchCode[t|Qins
end for

»

69

4.3 Deadlock Avoidance

We will now give a brief, intuitive deadlock avoidance proof for the implementation
described above. At this time we are in the process of formulating a rigorous proof.
Assume that we are given a wvalid schedule. By wvalid, we mean a schedule that does
not deadlock given infinite resources. With the above algorithm, we are mapping
a valid schedule to the finite resources of a Raw machine, so we must show that
this mapping does cannot lead to deadlock. The above algorithm operates at the
granularity of a single data item. So for each data item, we route the item from the
source to the destination, where it is consumed. Since the switch processor executes
an ordered sequence of route instructions, we guarantee that if routes cross at a tile,
the interleaving of the routes will be ordered by the switch [29]. Intuitively, for each
data item we bring up a communication channel from the source to the destination

and then rip it down when the item reaches the destination.

In the simulation, no data item is left on a communication channel so it cannot
possibly deadlock. But on Raw this may not be the case, a switch may not be ready
to receive an item when another switch is trying to send to it. The flow-control of
the static network will block the sending tile until the receiving switch is ready to
accept the item. In this case, we will not run into a circular dependency because such
a dependency would lead to a contradiction. The existence of the dependency would
mean a switch has passed over an routing instruction without actually performing
the route. In the simulation we essentially order all the item produced during the
simulation. This order is maintained by the sequence of instructions on each switch.

A switch cannot route item n;, without routing all previous items ny < n4.

70

For example, look at the figure above. Let A, B, and C represent Raw tiles. We
are in a deadlocking situation where A is trying to send to B, B is trying to send to
C, and C is trying to send to A. Lets say A is trying to send item number n to B.
For B to not have received item n, it must be busy sending an item of order less than
n, say n — 1. In the same way, for C' to not receive n — 1 from B it must be sending
an item of order less than n — 1, say n — 2. But we have a contradiction. For A to
be sending n it must have already sent n — 2, so C' could not possibly be waiting to
send this item. In this way a more rigorous proof can be constructed to show that all

deadlocking situations are avoided.

4.4 Summary

In this chapter we started by describing the general function of the communication
scheduling phase of the StreamIt compiler. Next, we gave the specific implementation
for the Raw backend of the StreamlIt compiler and attempted to explain any non-
obvious parts of the implementation. Finally, we gave a short correctness proof for

the implementation.

71

72

Chapter 5

Code Generation

The final phase in the flow of the Streamlt compiler is code generation. The code
generation phase must use the results of each of the previous phases to generate the
complete program text. The results of the partitioning and layout phases are used to
generate the computation code that executes on a computation node of the target.
The communication code of the program is generated from the schedules produced

by the communication scheduler.

5.1 Code Generation for Raw

The code generation phase of the Raw backend generates code for both the tile pro-
cessor and the switch processor. For the switch processor, we generate assembly code
directly. For the tile processor, we generate C code that is compiled using Raw’s GCC

port.

5.1.1 Switch Code

To generate the instructions for the switch processor, we directly translate the switch
schedules computed by the communication scheduler (see Section 4.1). The initializa-
tion switch schedule is followed by the steady state switch schedule, with the steady

state schedule looping infinitely.

73

For larger applications, we sometimes overflowed the switch’s instruction mem-
ory. In the simulator the switch instruction memory can store 8K instructions. To
overcome this problem we compress the switch schedule generated by the commu-
nication scheduler. Repeating non-overlapping sequences of switch instruction are
identified and placed in a loop. At this time, we only compress the three largest non-
overlapping instructions sequences found in the switch schedule. This is because the
switch processor has only four registers and no local memory. Thus, any constants
must be explicitly loaded from the compute processor. We use three of the registers to
store the repetition count for the sequences. We use the fourth register as a working

register. It is used as the counter variable of the loop.

5.1.2 Tile Code
Filter Code

In the translation, each filter collects the data necessary to fire in an internal buffer.
Before each filter is allowed to fire, it must have peek items in its internal buffer. The
buffer is managed circularly with items received at the end of the buffer. The size of
the buffer is calculated by the following expression. Assume that filter A is connected

to Filter B and we are calculating the buffer size for B:

BufferSize(B) =(inits * mazpush,)—
((initg — 1) * minpopy + minPeekp)+

mazpeeky

where:
e inity is the number of executions of filter X in the initialization schedule.

e mazpush, is the maximum of the push rate of prework() and the push rate of

work () for filter A.

74

e minpopy is the minimum of the pop rate of prework() and the pop rate of

work () for filter B.

e minpeeky is the minimum of the peek rate of prework() and the peek rate of

work () for filter B.

e mazpeeky is the maximum of the peek rate of prework() and the peek rate of

work () for filter X.

If A is a joiner or a splitter, mazpush, equals 1. The equation becomes a bit more
complicated if A is a roundrobin splitter. We cannot use (init4 * mazpush,) to
calculate the number of items A sends B in the initialization schedule. We must
multiply this term by the ratio of the weight on the edge from A to B by the total
of the outgoing splitter weights of A. For example. if z is a roundrobin splitter and
it sends to m and n with weights 1 and 2, respectively. To calculate the items sent
from z to m in the initialization schedule we multiply init4 by 1/3.

Intuitively, in the above equation we are setting the buffer size to be equal to the
peek rate of the filter. But we need to add any data that is produced by the upstream
neighbor during the initialization schedule that is not consumed by the filter during
the initialization schedule. The buffer size is actually set to the next greater power
of 2 so we can replace expensive modulo operations by a bit mask operation.

In the code, peek(index) and pop() are translated into accesses of the buffer,
with pop() adjusting the start of the buffer, and peek(index) accessing the indez"
element from the start of the buffer. push(value) is translated directly into a send
from the tile processor to the switch processor. The switch processors are then re-
sponsible for routing the data item.

Filter execution starts with the begin() function. The code for the begin()
function is given in Figure 5-1. It starts with a call to the function raw_init () which
first loads the repetition counts for the switch code compression into switch registers
(if necessary). Next in raw_init(), if the switch neighbors a file device (see Section
5.1.3), we send a dummy item to the device to start it up. Finally, it sets the switch

PC to the start of the initialization schedule. The next two statements of begin()

75

void begin(void) {
raw_init();
__FLOAT_HEADER_WORD__ =
construct_dyn_hdr(3, 1, 0, 0, 0, 3, 0);
__INT_HEADER_WORD__ =
construct_dyn_hdr(3, 1, 1, 0, 0, 3, 0);
init(/* Args to init */);
preWork() ;
work();
T

Figure 5-1: The entry function for a filter.

initialize the dynamic message headers for print messages (see Section 5.1.3). begin()
then calls the init(...) function, the prework function, and the work function. It
never returns from the call to the work function.

In the prework function we first receive prePeek items, where prePeek is the peek
rate of the prework function. We then translate the body of prework(). The trans-
lation of work is a bit more complicated because of the prework function and the

initialization schedule. First, lets define the following:

o We assume that the prework () call always appears in the initialization schedule,

even if it is not defined by the filter.

o Let prePecky, prePopy, and prePushy be the peek, pop, and push rate of the

prework function of filter X, respectively.

e Let peeky, popx, and pushy be the peek, pop, and push rate of the work function
of filter X, respectively.

e Let initxy be the number of executions of filter X in the initialization schedule.

o Let bottomPeekx equal the numbers of items that must be received after prework ()
has been called in order to execute the first call of work() in the initialization

schedule. If filter X fires at least once in the initialization schedule, let:

bottomPeekyx <+ max(peeky — (prePeeky — prePopy),0)

Otherwise, if X filter does not fire in the initialization schedule, let

bottomPeekx <+ 0

76

o Let remainingg equal the number of items that filter B must receive into its
buffer after its executes the work () calls in the initialization schedule. These are
items that were produced by the upstream neighbor of B and must be received
into B’s buffer before the steady-state schedule is run. These items cannot just

be left on in the network. If A is connected to filter B, Let:

remainingg < (prePush, + ((inita — 1) x push,))—
(prePeeky + bottomPeekp+

(max((initg — 2),0) * popg))

Algorithm 5 Algorithm to translate the work function for filter A.
if (inita —1) > 0 then
if bottomPeeks > 0 then
Generate code to receive bottomPeek, items into the buffer.
end if
Generate code to run work() (init4 —1) number of times. Before each invocation
of work() exzcept the first, we receive pop, items into the buffer.
end if
if remaining, > 0 then
Generate code to receive remaining, items into the buffer.
end if
Generate code to infinitely execute work(). Before each invocation, receive pop,
items into the buffer.

The translation of the work function is given in Algorithm 5. After the execution
of the initialization schedule, we are guaranteed that at least peek - pop items appear
in the buffer [22]. So, for each steady-state execution of the work function, the filter
has to receive pop items before it can fire. All calls to work() in Algorithm 5 are
inlined. See Figure 5-2 for an example of the work function translation.

The filter code does not interleave send instructions with receive instructions.
The filter must receive all of the data necessary to fire before it can execute its work
function. This is an overly conservative approach that prevents deadlock for certain
situations, but limits parallelism. For example, this technique prevents feedbackloops

from deadlocking by serializing the loop and the body. The loop and the body cannot

7

void work() {
/* bottompeek = 1 */

for (__EXEINDEX__ = 0; __EXEINDEX__ < 1; __EXEINDEX__++)
//static_receive into buffer
for (__EXEINDEX__ = 0; __EXEINDEX__ < 32; __EXEINDEX__++) {

/* do not receive on the first invocation, taken care of
by bottompeek */

if (__EXEINDEX__ != 0) {
/* receive pop items before each work function execution */
for (__EXEINDEX__1__ = 0; __EXEINDEX__1__ < 1; __EXEINDEX__1__++)
//static_receive into buffer
}
//work function
}
/*no remaining items to receivex/
while (1) {
/* receive pop items before each work function execution */
for (__EXEINDEX__ = 0; __EXEINDEX__ < 1; __EXEINDEX__++)

//static_receive into buffer

//work function
}
T

Figure 5-2: An example of the work function translation taken from the Filterbank appli-
cation. In this example, the filter executes 33 times in the initialization schedule. prePeek
= prePop = 31, peek = pop = push = 1. The upstream neighbor of this filter produces
63 items during the initialization schedule. So bottompeek = 1 — (31 — 31) = 0, and
remaining = 63 — (31 + 1+ (31 % 1)) = 0.

execute in parallel. We are investigating methods for relaxing the serialization.

Joiner Code

As described in Section 4.1, the communication scheduler computes an internal buffer
schedule for each collapsed joiner node. This schedule exactly describes the order
in which to send and receive data items from within the joiner. The schedule is
annotated with the destination buffer of the receive instruction and the source buffer
of the send instruction. Also, the communication scheduler calculates the maximum
size of each buffer. With this information the code generation phase can produce the
code necessary to realize the internal buffer schedule on the tile processor.

Each internal buffer of the collapsed joiner is managed circularly. Send instruc-
tions send from the start of a buffer and receive instructions receive to the end of a
buffer. The size of each buffer set to the next power of two greater than the buffer
size calculated by the communication scheduler to allow for bit masking instead of

expensive modulo operations.

78

A receive instruction is translated into the assembly instruction: sw $csti, 0(8$r).
Store the contents of $csti into the address $r, where $csti is the FIFO from the
switch to the compute processor and $r is the address of the current index of the
buffer we are receiving into. A send instruction is translated into: 1w $csto, 0($r).
Load the word at address $r into the register $csto, where $r is the address of the
current index of the buffer we are sending from and $csto is the FIFO from compute
procssor to the switch. We can directly translate send and receive into one instruction
memory operations because we know that they operate on a buffer that is stored in
memory.

In Section 4.1 we state that the initPath function of a feedbackloop is placed
in the joiner of the feedbackloop (see Figure 1-3). We place the return value of the
initPath() call in the appropriate buffer, so the joiner can send it on to the body of
the feedbackloop. The schedule node for an initPath() call includes the argument
value and buffer to place the return value. So we simply assign the return value of
the initPath() call to the end of the corresponding buffer.

As in the case of the switch code, we also found that for larger applications the
joiner code overflowed the instruction memory of the compute processor. We therefore
compress the schedule for each joiner node. Non-overlapping sequences of instructions

are placed in a loop.

5.1.3 1/0

We currently support simple print statements and simple file manipulation filters.
Print statements are translated into a dynamic network instruction that sends the
value to be printed (and a header) to a print server sitting on the outside of the chip.
This print server waits on the dynamic network and prints to the screen the data
items it receives.

Streamlt includes two file access filters, the FileReader and the FileWriter.
Semantically, they act just like normal filters where a FileReader pushes 1 item per
execution and a FileWriter pops 1 item per execution. Each takes as an argument

a string designating the file name and the type of data to be read or written.

79

To implement FileReaders and FileWriters, we use the static network. We map
a file device to the I/O ports on the right side of the chip for each FileReader or
FileWriter. Thus these filters do not get mapped to tiles. We support as many open
files as there are rows in the raw configuration. The file device requires one data word
to be received before it starts executing. It is the responsibility of the neighboring
switch to send the device a dummy item. The communication scheduler knows of the

FileReaders and FileWriters, and it correctly generates the routes for these filters.

5.2 Summary

In this chapter we covered the code generation phase of the Raw backend. We dis-
cussed the translation of the switch code and the tile code. We covered in detail the
generation of tile code for joiner nodes and filter nodes. Finally, we discussed I/O

primitives in Streamlt and their translation.

80

Chapter 6

Results

Our current implementation of StreamIt supports fully automatic compilation through
the Raw backend. We have also implemented the optimizations that we have de-
scribed: synchronization removal (Section 2.4), modulo expression elimination (ver-
tical fusion, Section 2.2.2), buffer localization (vertical fusion), and buffer sharing
(horizontal fusion, Section 2.2.3).

The results of this thesis were generated using btl, a cycle-accurate simulator
that models arrays of Raw tiles identical to those in the .15 micron 16-tile Raw
prototype ASIC chip. With a target clock rate of 250 MHz, the tile employs as
compute processor an 8-stage, single issue, in-order MIPS-style pipeline that has a 32
KB data cache, 32 KB of instruction memory, and 64 KB of static router memory.

We evaluate the StreamlIt compiler for the set of applications shown in Table 6.1.
Table 6.2 gives some static measures of the benchmarks. For each benchmark, we
show the number of lines of Streamlt code, the occurrence of each stream construct,
and the number of nodes required to execute the expanded graph on Raw. Table 6.3
gives the performance results for the applications running on the 16 tile, 250 Mhz
Raw simulator. For each benchmark, we show MFLOPS (which is not available for
integer applications), processor utilization (the percentage of time that an occupied
tile is not blocked on a send or receive, see Figure 6-1), and throughput. In Table 6.4
we compare the results of our implementation. For each application, we compare the

throughput of Streamlt with a hand-written C program, running the latter on either

81

Benchmark | Description ||

FIR 64 tap FIR

Radar Radar array front-end[26]

Radio FM Radio with an equalizer
Sort 32 element Bitonic Sort

FFT 64 element FFT

Filterbank 8 channel Filterbank

GSM GSM Decoder

Vocoder 28 channel Vocoder [37]

3GPP 3GPP Radio Access Protocol [6]

Table 6.1: Application Description.

a single tile of Raw or on a Pentium IV. For Radio, GSM, and Vocoder, the C source
code was obtained from a third party; in other cases, we wrote a C implementation
following a reference algorithm. We show the performance of the C code, which is not
available for C programs that did not fit onto a single Raw tile (Radar, GSM, and
Vocoder). Figures 6-2 and 6-3 illustrate the speedups obtained by StreamIt compared
to the C implementations®.

The results are encouraging. In many cases, the Streamlt compiler obtains good
processor utilization—over 60% for four benchmarks and over 40% for two additional
ones. For GSM, parallelism is limited by a feedbackloop that sequentializes much of
the application. Vocoder is hindered by our work estimation phase, which has yet
to accurately model the cost of library calls such as sin and tan; this impacts the
partitioning algorithm and thus the load balancing. 3GPP also has difficulties with
load balancing, in part because our current implementation fuses all the children of
a stream construct at once.

Streamlt performs respectably compared to the C implementations, although
there is room for improvement. The aim of Streamlt is to provide a higher level
of abstraction than C without sacrificing performance. Our current implementation
has taken a large step towards this goal. For instance, the synchronization removal
optimization improves the throughput of 3GPP by a factor of 1.8 on 16 tiles (and by
a factor of 2.5 on 64 tiles.) Also, our partitioner can be very effective-as illustrated

in Figure 2-1, partitioning the Radar application improves performance by a factor

'FFT and Filterbank perform better on a Raw tile than on the Pentium 4. This could be because
Raw’s single-issue processor has a larger data cache and a shorter processor pipeline.

82

lines of # of constructs in the program # of filters in the
Benchmark code filters | pipelines | splitjoins | feedbackloops expanded graph
FIR 125 5 1 0 0 132
Radar 549 8 3 6 0 52
Radio 525 14 6 4 0 26
Sort 419 4 5 6 0 242
FFT 200 3 3 2 0 24
Filterbank 650 9 3 1 1 51
GSM 2261 26 11 7 2 46
Vocoder 1964 55 8 12 1 101
3GPP 1087 16 10 18 0 48

Table 6.2: Application Characteristics.

of 11 even though it executes on less than one third of the tiles.

As mentioned in Section 1.2, the clock rate of the Raw simulator is 250MHz.
With 16 tiles, the chip supports 16 floating point operation per cycle and 4.0 giga-
floating point operations per second (GFLOPS). None of our benchmarks come close
to approaching this number. In the following sections we will explain what needs to

be done to achieve better performance on the Raw chip.

6.1 Communication and Synchronization

Looking at the execution traces given in the appendices, we notice that some of
applications spend a significant number of cycles blocking. The compute processor
of the tile becomes blocked when it tries to send to data to the switch but the FIFO
from processor to the switch is full. Alternatively, the compute processor becomes
blocked when it tries to receive data from the switch but the FIFO from the switch
to the processor is empty. In this section we will explain some of the high-level causes
of blocking.

The most prominent cause for blocking occurs when a tile assigned to a filter is
an intermediate hop for a channel. By this we mean that the tile must route items
through itself, the items being from a channel where it is not an endpoint. The tile
must synchronize the routing of data items with the execution of its work function.
For example, Figure I-3 gives the layout for the 3GPP application. It is far from a

perfect layout. Many of the channels in this layout must route through tiles assigned

83

StreamlIt on a 16 tile, 250 M Hz Raw processor
Benchmark || Utilization # of tiles MFLOPS Throughput
used (per 10° cycles)

FIR 84% 14 815 1188.1
Radar 79% 16 1,231 0.52
Radio 73% 16 421 53.9
Sort 64% 16 N/A 2,664.4
FFT 42% 16 182 2,141.9
Filterbank 41% 16 644 256.4
GSM 23% 16 N/A 80.9
Vocoder 17% 15 118 8.74
3GPP 18% 16 44 119.6

Table 6.3: Raw Performance Results.

to filters. In fact, there does not exist a layout without intersecting routes for this
partitioning. The resulting execution trace (Figure I-4) graphically shows the blocking
caused by the crossed routes.

To lessen the effect of added synchronization, we could implement a more complex
partitioning algorithm. As stated in Section 2.5 we use a simple greedy algorithm
for partitioning and load balancing the stream graph. This greedy algorithm does
not take into account the topology of the target architecture. For example, on Raw
the partitioning algorithm should avoid numerous or large-way splitjoins in the final
stream graph because Raw implements near-neighbor communication and each tile
can only communicate directly with its neighbors.

Another solution to this problem is to interleave the routing task with the execu-
tion of the filter’'s work function. As mentioned in Section 4.1, we currently do not
aggressively interleave routing instructions on the switch processor with computation
of the filter’s work function.

Unbalanced computation load between communicating filters is another source of
blocking. The implementation of the work estimation algorithm is far from perfect

and sometimes grossly mis-estimates the computation of a filter.

6.1.1 Limits Study on the Impact of Communication

To quantify the effect of the added synchronization imposed by the layout, we modified

the filters of each application to execute in a decoupled manner. More specifically,

84

250 MHz Raw processor C on a 2.2 GHz

Benchmark || Streamlt on 16 tiles C on a single tile Intel Pentium IV
Throughput Throughput Throughput
(per 10° cycles) (per 105 cycles) (per 10° cycles)

FIR 1188.1 293.5 445.6
Radar 0.52 app. too large 0.041
Radio 53.9 8.85 14.1
Sort 2,664.4 225.6 239.4
FFT 2,141.9 468.9 448.5
Filterbank 256.4 8.9 7.0
GSM 80.9 app- too large 7.76
Vocoder 8.74 app. too large 3.35
3GPP 119.6 17.3 65.7

Table 6.4: Performance Comparison.

in the experiment each filter runs totally separate from its neighbors. The switch
feeds the compute processor with dummy values when the compute process is receiv-
ing. Also, the switch disregards any data item sent to it by the compute processor.
Obviously, this does not maintain correctness, but is a limit study on the cost of com-
munication and synchronization imposed by mapping Streamlt’s channel abstraction
to Raw. But this simulates more than just instantaneous communication. Since the
filters execute in a completely decoupled manner, filters with little work are not throt-
tled by filters with a heavy work load. So load-balancing is not an issue. Finally, the
joiner’s task of data-reorganization is neglected. In the end, this experiment will give
us an indication of how well the generated tile code is performing.

The results of decoupled execution are given in Table 6.5 and Figure 6-4. FFT
and Radar show the largest and smallest performance gain, respectively. A detailed
examination of each application is given in the next sections. Across the benchmarks
we see only a 22% increase in MFLOPS. We interpret this as meaning that perfor-
mance is not being limited by the communication implementation. The generated tile
code is preventing us from achieving higher utilization of Raw’s floating point units.

Reasons for the low MFLOPS rate of the tile code include:

e Raw’s port of gcc is not producing good code. We run gec with optimiza-

tion level 3 but looking at the assembly code generated we see much room for

improvement.

e As mentioned in Section 5.1.2, the implementation of a filter uses a circular

85

Utilization
S
o
X

30%

20%

0% T T T T T T T T

& & ©
A & S S
< & o © IS o QOQc> o

Figure 6-1: Processor utilization of Streamlt code running on 16 tiles.

buffer. The access and management time of this buffer could be killing us on

certain apps.

e Currently, we have not fully optimized the partitioning implementation. It will

be interesting to see if we can reduce the overhead of fusion and fission.

e The in-order, 8-stage Raw pipeline is not a good match for the code we are
generating. The single-ported data cache is limiting the performance of our

memory-intensive generated code.

6.2 A Closer Look

6.2.1 Radar Application

The application with the highest FLOPS rate is the Radar application. In this sec-
tion, we will explain why we do not obtain better FPU utilization for the Radar
application. For the Radar application we assign filters to 14 of the Raw tiles (see
B-3). Tile 5 is unassigned and there is joiner tile that does not contain floating point
operations. Thus, at most we can achieve 3500 MFLOPS. Looking at the execution
trace for the Radar application (Figure B-4), we can see that the communication

overhead is minimal. There is very little blocking noticeable for the tiles assigned to

86

32

28 A

24 A

20 A

16

12

Speedup of Strean It on 16 tiles
over Sequential C on 1 tile

FIR Radio Sort FFT Filterbank 3GPP

Figure 6-2: Streamlt throughput on a 16-tile Raw machine, normalized to throughput of
hand-written C running on a single Raw tile.

filters. Looking at Table 6.5, we can see that decoupled execution of the filters only
increased the MFLOPS count by 10. As we suspected, communication and added
synchronization does not hurt us in the Radar application. This is due to the fact
that the fused filters in the top splitjoin (see Figure B-2) push only two items and the
filters of the bottom splitjoin neighbor the joiner. Other applications, such as 3GPP,
do have a high synchronization overhead.

Our next inclination was that the joiner could be hurting us by throttling its
upstream filters and not feeding the downstream filters fast enough. But the decouple
execution experiment neglects the cost of the joiner and there is only a 10 MFLOPS
increase from the experiment. The joiner is not hurting the performance significantly;
it has plenty of time to perform the data-reorganization while the filter tiles are
computing.

Looking at the C code generated by the Streamlt compiler for the Radar appli-
cation, we see that the code implementing the fusion transformations occupy about
40% of the source text for each tile. It is impossible to remove this fusion code and
maintain correctness, so we cannot calculate an exact overhead for the partitioning
code. But it is safe to say that a large percentage of the cycles time for the Radar

application is spend reordering and copying data inside the fusion code. This is nec-

87

37

B Sequential C program on 1 tile
14 4 O Streamlt program on 16 tiles

Throughput / cycle
narn alized to a Fentiun IV
[ee]

a1 e

T
FIR Radar Radio Sort FFT Filterbank GSM Vocoder 3GPP

Figure 6-3: Throughput of Streamlt code running on 16 tiles and C code running on
a single tile, normalized to throughput of C code on a Pentium IV.

essary for correctness, but is not reflected in the MFLOPS number. The current
partitioning code is our first attempt at a correct implementation. We need to spend
considerable time optimizing the generated fusion and fission code for Raw’s memory

hierarchy to reduce the overhead.

Examining the computational cores for the fused filters, we noticed that all of the
floating point operations required at least one of the operands to be fetched from the
data cache. On Raw, data cache access is pipelined but it has a one cycle occupancy.
This occupancy is costly on a single issue machine. These operands correspond to a
large array of weights required for a beamforming operation and an FIR operation.
If the size of these weight arrays could be reduced to fit within the register file, we
would see a large increase in MFLOPS. In the future, we hope that the vertical fission
transformation (see Section 2.3.1) will be able to help this problem. With vertical
fission, we could split a filter into a pipeline of smaller filters, where the state of each
resulting filter could fit in the register file.

As discussed in Section 5.1, before a filter can fire, we receive pop items into a
circular buffer. This circular buffer is stored in the data cache, so for each item we
must read it from the network into the cache. Also, each pop instruction is translated

into a read from this buffer, causing another cache access. So, for any floating point

38

MFLOPS for MFLOPS for
Benchmark || Normal Communication | Decoupled Execution | % increase
FIR 815 1025 26%
Radar 1,231 1241 1%
Radio 421 519 23%
FFT 182 359 97%
Filterbank 644 787 22%
Vocoder 118 214 81%
3GPP 44 61.5 40%

Table 6.5: Decoupled Execution.

operation in the original code with a pop expression as one of its operands, we must
read that operand from the data cache. So each pop expression that appeared as
operand to a floating point operation in the original Streamlt code is translated
into three instructions. One instruction for the floating point operation and two
instructions for the data cache access associated with the circular buffer.

We should also note that we perform aggressive loop unrolling to amortize the
cost of the loop overhead. Tight loops are common this application and across our
benchmark suite. Without this simple optimization our results would have been far

worse.

6.2.2 FFT

In Figure E-4 we have the execution trace for the FFT application. We can see that
there is a significant amount of blocking in the trace even though the application is
partitioned down to a single pipeline (Figure E-2) with a perfect raw layout (Figure
E-3). If we refer to Table 6.5 we can see that decoupled execution increase MFLOPS
by 97%.

The main problem is that there is a significant amount of blocking due to the
mismatching computation rates of neighboring filters. Some filters are blocked trying
to send or receive while their neighbor is executing code.

Another problem is the joiner node mapped to tile 3. Since the filters of FFT
perform a relatively small amount of work, the joiner tile throttles the upstream
filters and does not feed the downstream filters fast enough. Interestingly, the joiner

node is not needed for this application. It sends data in the same order it receives

89

100%

90% -

80% -]

70% +

60% -

50% 4

40% -

30% 4

% increase from decoupled execution

20% 4

10% +

0% . =\

FIR Radar Radio FFT Filterbank Vocoder 3GPP

Figure 6-4: Percentage increase in MFLOPS for decoupled execution over normal
execution.

it. No data-reorganization is needed. Removing this joiner increases the performance
of FFT by 33%. We should note that this joiner optimization was rather specific
and did not appear in any other application (and thus was not automated). We are

investigating ways to further optimize joiners.

6.3 Summary

In this chapter we presented the performance results for the Raw backend of the
StreamlIt compiler. The Streamlt optimization framework is far from complete, and
the results presented here represent a first step rather than an upper bound on our
performance. We are actively implementing aggressive inter-node optimizations and
more sophisticated partitioning strategies that will allow us to better utilize the abun-

dant resources of Raw.

90

Chapter 7

Related Work

In this chapter we will present related work. The related work includes other stream
languages and how they compare to Streamlt. We will describe some other com-
munication-exposed architectures. Also, we will describe other stream architectures
and discuss the primary programming language used for each architecture.

The Transputer architecture [5] is an array of processors, where neighboring pro-
cessors are connected with unbuffered point-to-point channels. The Transputer does
not include a separate communication switch, and the processor must get involved to
route messages. The programming language used for the Transputer is Occam [20]:
a streaming language similar to CSP [19]. However, unlike Streamlt filters, Occam
concurrent processes are not statically load-balanced, scheduled and bound to a pro-
cessor. Occam processes are run off a very efficient runtime scheduler implemented
in microcode [31].

DSPL is a language with simple filters interconnected in a flat acyclic graph using
unbuffered channels [32]. Unlike the Occam compiler for the Transputer, the DSPL
compiler automatically maps the graph into the available resources of the Transputer.
The DSPL language does not expose a cyclic schedule, thus the compiler models the
possible executions of each filter to determine the possible cost of execution and the
volume of communication. It uses a search technique to map multiple filters onto a
single processor for load balancing and communication reduction.

The Imagine architecture is specifically designed for the streaming application

91

domain [35]. It operates on streams by applying a computation kernel to multiple
data items off the stream register file. The compute kernels are written in Kernel-C
while the applications stitching the kernels are written in Stream-C. Unlike Streamlt,
with Imagine the user has to manually extract the computation kernels that fit the
machine resources in order to get good steady state performance for the execution of
the kernel [21]. On the other hand, Streamlt uses fission and fusion transformations
to create load-balanced computation units and filters are replicated to create more
data parallelism when needed. Furthermore, the Streamlt compiler is able to use
global knowledge of the program for layout and transformations at compile-time while
Stream-C interprets each basic block at runtime and performs local optimizations such
as stream register allocation in order to map the current set of stream computations

onto Imagine.

At this time we would like to point out the difference between space-division and
time-division stream multiplexing. In space-division multiplexing the different filters
of the stream program execute on separate computational units, each unit executing
one filter. The Raw backend of the StreamIt compiler uses space-division multiplexing
as each filter is assigned to a different Raw tile with each running concurrently. The
fusion transformations allow us to fit a stream graph of arbitrary size on tiles of Raw.
The Imagine architecture uses time-division multiplexing, where over time different
filters of the stream program run on a single computational unit. Imagine swaps
computation kernels of the stream program in and out of the processor as the program
executes. A detailed comparison of time and space division stream multiplexing is
beyond the scope of this paper. We are currently researching ways to combine both

time and space division multiplexing in the StreamlIt compiler.

The iWarp system [10] is a scalable multiprocessor with configurable communica-
tion between nodes. In iWarp, one can set up a few FIFO channels for communicating
between non-neighboring nodes. However, reconfiguring the communication channels
is more coarse-grained and has a higher cost than on Raw, where the network routing
patterns can be reconfigured on a cycle-by-cycle basis [40]. ASSIGN [33] is a tool
for building large-scale applications on multiprocessors, especially iWarp. ASSIGN

92

starts with a coarse-grained flow graph that is written as fragments of C code. Like
Streamlt, it performs partitioning, placement, and routing of the nodes in the graph.
However, ASSIGN is implemented as a runtime system instead of a full language
and compiler such as Streamlt. Consequently, it has fewer opportunities for global
transformations such as fission and reordering.

SCORE (Stream Computations Organized for Reconfigurable Execution) is a
stream-oriented computational model for virtualizing the resources of a reconfigurable
architecture [11]. Like StreamIt, SCORE aims to improve portability across reconfig-
urable machines, but it takes a dynamic approach of time-multiplexing computations
(divided into “compute pages”) from within the operating system, rather than stati-
cally scheduling a program within the compiler.

Ptolemy [28] is a simulation environment for heterogeneous embedded systems,
including the domain of Synchronous Dataflow (SDF) that is similar to the static-
rate stream graphs of StreamlIt. While there are many well-established scheduling
techniques for SDF [8], the round-robin nodes in our stream graph require the more
general model of Cyclo-Static Dataflow (CSDF) [9] for which there are fewer results.
Even CSDF does not have a notion of an initialization phase, filters that peek, or a
dynamic messaging system as supported in Streamlt. In all, the Streamlt compiler
differs from Ptolemy in its focus on optimized code generation for the nodes in the

graph, rather than high-level modeling and design.

Proebsting and Watterson [34] present a filter fusion algorithm that interleaves the
control flow graphs of adjacent nodes. However, they assume that nodes communicate
via synchronous get and put operations; Streamlt’s asynchronous peek operations
and implicit buffer management fall outside the scope of their model.

A large number of programming languages have included a concept of a stream;
see [38] for a survey. Synchronous languages such as LUSTRE [17], Esterel [7], and
Signal [14] also target the embedded domain, but they are more control-oriented
than StreamlIt and are not aggressively optimized for performance. Sisal (Stream and
Iteration in a Single Assignment Language) is a high-performance, implicitly parallel

functional language [13]. The Distributed Optimizing Sisal Compiler [13] considers

93

compiling Sisal to distributed memory machines, although it is implemented as a

coarse-grained master/slave runtime system instead of a fine-grained static schedule.

94

Chapter 8

Conclusion

In this thesis, we describe the StreamIt compiler and a backend for the Raw architec-
ture. Unlike other streaming languages, StreamlIt enforces a structure on the stream
graph that allows a systematic approach to optimization and parallelization. The
structure enables us to define multiple transformations and to compose them in a
hierarchical manner.

We introduce a collection of optimizations—vertical and horizontal filter fusion,
vertical and horizontal filter fission, and filter reordering-that can be used to restruc-
ture stream graphs. We show that by applying these transformations, the compiler
can automatically convert a high-level stream program, written to reflect the compo-
sition of the application, into a load-balanced executable for Raw.

The stream graph of a Streamlt program exposes the data communication pattern
to the compiler, and the lack of global synchronization frees the compiler to reorga-
nize the program for efficient execution on the underlying architecture. The Streamlt
compiler demonstrates the power of this flexibility by partitioning large programs for
execution on Raw. However, many of the techniques we describe are not limited to
Raw; in fact, we believe that the explicit parallelism and communication in Streamlt
is essential for obtaining high performance on other communication-exposed architec-
tures. In this sense, we consider the techniques described in this thesis to be a first
step towards establishing a portable programming model for communication-exposed

machines.

95

96

Appendix A

FIR Application

A.1 Description

This benchmark models a Finite Impulse Response system on an input of 128 points.

A.2 Code

import streamit.*;
import streamit.io.;

public class FIRfine extends StreamIt
{
public static void main (String [1 args)
{
new FIRfine ().run (args);

¥
public void init ()

add (new FloatSource (10000));
add (new FIR (128));

add (new FileWriter("output.dat", Float.TYPE));

//add (new FloatPrinter (10000));

¥
¥
class FIR extends Pipeline
{

FIR (int N)

{

¥

public void init (final int N)

int i;
add(new Filter() {
public void init() {
this.input =
new Channel(Float.TYPE,
this.output =
new Channel(Float.TYPE,
}
public void work() {
this.output.pushFloat(0);
this.output.pushFloat

(this.input.popFloat());

}
b
for(i=0; i<N; i++)
add (new SingleMultiply(i));
add(new Filter() {
public void init() {
this.input =
new Channel(Float.TYPE,
this.output =
new Channel(Float.TYPE,

}

¥
public void work() {
this.output.pushFloat
(this.input.popFloat());
this.input.popFloat();

s

class SingleMultiply extends Filter

{

}

SingleMultiply(int i)

{
}
float W;
float last;
public void init(final int i) {
last = 0;
W = 2xixi/((float)i+1);
this.input = new Channel(Float.TYPE, 12);
this.output = new Channel(Float.TYPE, 12);
¥

public void work() {
for (int i=0; i<6;i++) {
float s;
s = this.input.popFloat();
this.output.pushFloat (s+last*W);
this.output.pushFloat(last);
last = this.input.popFloat();

class FloatSource extends Filter

{

97

FloatSource (float maxNum)

{
¥

float num;
float maxNum;

public void init (float maxNum2)

{
output = new Channel (Float.TYPE, 1);
this.maxNum = maxNum2;

this.num = 0;

¥ i
public void work () int x;
{ public void init (int x2)
output.pushFloat (num); {
numt+; input = new Channel (Float.TYPE, 1);
if (num maxNum) num = 0; this.x = x2;
}
} }
public void work ()
class FloatPrinter extends Filter {
{ System.out.println(input.popFloat ());
FloatPrinter (int x) ¥
{ }

98

Figure A-1: FIR before partitioning.

99

T

1)

T T390 Smgichuliply_15_38_SingleMuliply_15_46_SingleMultiply_15_54_SingleMuliply_15_62_SingleMalply_15_70_SingleMuliply_15_78. SmgieV Ty To=®
2

TRV 15110 SingleMuliply 15

inglebuliply_15_150_Sing

18 SinglMuliply_15_126_SingleMliply_15_134_SingleMuliply_15_14 Muliply_15_158_SimgienTeTipTy T Lsam
2

[
pecke

12
12

I

SRRy 15 190 SingleMulily_15

inglebuliply_15_230_SingleMuliply_15_735

95_SingleMuliply_15. S

06_SingleMuliply_15_214.Singleuliply_15_22
2

pushel
pop-12
perko1z

I

TRy 152705

eMalply_15.

ST o

275_Singleuliply_15_286_SingleMuliply_15_201.Singleuldply_15_302_SingleMaliply_15_310_SingleMuliply_15_ 315
Dushe12
pop-12
perkelz

I

STl 15_350_SngleMuliply_15

358 Singleuliply_15_356_SingleMaliply_15_374_Singleuldply_15_382_Singlebuliply_15_390_SingleMulily_15_538_SmgleN ey T
ush-17

pop-12

ecko12

I

Ty 1

50 SimgleMulily 154

igleMaliply_15_470_SingleMuliply_15175 3

ST T

438 Singleuliply_15_446_SingleMalliply_15_454.Singleuliply_15_16:
ush-12
|

‘bop-12
perk-12

I

TRy _15_510_SingleMultiply_15.¢

574

518_Singleulply_15_526_SingleMultply_15_534_SingleMultply_15_542_SingleMultply_15_350_SingleMultply_ 15538 STy TS=
pushe12
pop-

TRRTERTEITpIy 15590 SingloMuldply_15

595_Singlehuliply_15_606_Si

JeMltiply_15_514_SingleMuliply_15_622_SingleMaltiply_15_630_SingleNuluply 15638 eV Ty T
[

push-12
pop-12
perkelz

I

TV T5_670_SimgleNuliply_15.

ingleMaliply_15_710_SingleNuliply_T5_715 SV pTToT2m=smme 1

578_Singleuliply_15_686_SingleMaltiply_15_691_Singleuliply_15_10
ush-17

pop-12
peck-12

I

TNy _15. 750 SingleMalily_i5

758_Singleuliply_15_766_SingleMuliply_15_771.Singleuliply_15_752_SingleMuliply_15_790_SingleMuliply_15_755_SmeleV TS
pushe12
op-12

perke1z

I

TRy _15_530_SingleMuliply_15_¢

835_Singleuliply_15_816_SingleMuliply_15_851_SingleAuliply_15_862_SingleMaliply_15_570_SingleMuliply_15_575 S Ts=s

Dushe12
pop-12
perkelz

TRy 15910, SingleMuliply 15

915_Singleuliply_15.926_SingleMaliply_15_934.SingleAlulply_15_542_SingleMaliply_15_950_SingleMuliply 15538 SmgleN ey T
ush-17

pop-12

perkclz

I

Fused

TR STRRTENTE ity 15990 SimgleMullly_15998_Singleuliply_15_1006_SingleNuliply_15_1014_SingleMultiply_15_1022_SingleMultiply_15_1030_SingleMaliply 15078 ST
push=6.

P
perk-12

Figure

A-2: FIR after partitioning.

100

i
tileO Fused Fused tile3
—
Fused Fused Fused Fused
(i
Fused Fused Fused Fused
— —

FloatSource Fused Fused Fused

Figure A-3: FIR layout.

MW]II - | [MHW]” -

KEY
[7 usefulwork [l Blocked on send or receive Y Unused Tile

Figure A-4: FIR execution trace.

101

102

Appendix B

Radar Application

B.1 Description

The application consists of four stages: pulse compression, Doppler filtering, beam-
forming, and detection. The first two stages perform preliminary processing on the
data similar to the low-pass filtering stage of the multi-stage application. The beam-
forming stage transforms the filtered data to allow detection of signals coming from
a particular set of directions of interest, just as in the multi-stage application. The
detection stage determines whether targets are actually present in the beamformed
data and performs simple grouping and parameter estimation operations on those

targets. The previous description was taken from [26].

B.2 Code

import streamit.*;

public class BeamFormer extends StreamIt
{
static public void main(String[]l t)
{
BeamFormer test = new BeamFormer();
test.run(t);
¥

public void init()

// how many streams per hierarchical
// splitjoin in the detect phase
final int GENERATE_BLOCKING =1;
// how many streams per hierarchical
// splitjoin in the detect phase

final int DETECT_BLOCKING =2;

final int numChannels = 12;//48;
final int numSamples = 64;//4096;
final int numBeams = 4;//16;
final int numCoarseFilterTaps = 64;//
final int numFineFilterTaps = 64;//
final int coarseDecimationRatio = 1;

final int fineDecimationRatio = 2;

final int numSegments =1;

final int numPostDecl
= numSamplas/coarseDacimationRatio;
final int numPostDec2
= numPostDecl/fineDecimationRatio;
final int mfSize
= numSegments*numPostDec2;
final int pulseSize numPostDec2/2;
final int predecPulseSize pulseSize*
coarseDecimationRatio*fineDecimationRatio;
final int targetBeam = numBeams/4;

final int targetSample = numSamples/4;

// targetSamplePostDec used to

// have a 1 added to it, but that

// seemed to do the wrong thing --bft

final int targetSamplePostDec =
targetSample/coarseDecimationRatio /
fineDecimationRatio;

final float dOverLambda = 0.5f;

final float cfarThreshold = 0.95f *
dOverLambda*numChannels *
(0.5f*pulseSize) ;

add(new SplitJoin() {
public void init() {
int i;
setSplitter (NULL());
for(i=0; i<numChannels;
i+=GENERATE_BLOCKING) {
add(new SplitJoin(i) {
SplitJoin(int i)
{super(i); }
public void init(int i) {
setSplitter (NULL());
for (int k=0; k<GENERATE_BLOCKING;
k++) {
add(new Pipeline(it+k) {
Pipeline(int i) {super(i);}
public void init(int i) {
add (new InputGenerate
(i, numSamples,
targetBeam,targetSample,
cfarThreshold)) ;
add(new BeamFirFilter
(numCoarseFilterTaps,
numSamples,
coarseDecimationRatio));
add(new BeamFirFilter

103

(numFineFilterTaps,
numPostDecl,
fineDecimationRatio));

3
b
¥
setJoiner (ROUND_ROBIN(2));
¥
b
¥
set Joiner (ROUND_ROBIN (2*GENERATE_BLOCKING)) ;
}
B;

add(new SplitJoin() {
public void init() {
int i;
setSplitter (DUPLICATE());
for(i=0; i<numBeams; i+=DETECT_BLOCKING) {
add(new SplitJoin(i) {
public SplitJoin(int i) { super(i); }
public void init(int i) {
setSplitter (DUPLICATE());
for (int k=0; k<DETECT_BLOCKING; k++){
add (new Pipeline(it+k) {
public Pipeline(int i)
{ super(i); }
public void init(int i) {
add (new Beamform
(i, numChannels));
// Need to replace this fir with
//£ft -> elWiseMult -> ifft
add(new BeamFirFilter
(mfSize,
numPostDec2,
1));
add(new Magnitude());
// with a more sophisticated detector, we need
// someplace to store the data until we can find
// the targets...
add(new Detector

(i,
numPostDec2,
targetBeam,
targetSamplePostDec,
cfarThreshold));
¥
b
}
setJoiner (NULL());
3
h;
setJoiner (NULL());
¥
}

B;
3
}

class InputGenerate extends Filter
{ // class InputGenerate

int curSample;

int number(QfSamples;
boolean holdsTarget;
int targetSample;
int myChannel;

float thresh;

/! int i2;

public InputGenerate(int i, int n, int t1,
int t2, float c) {
super(i, n, t1, t2, c);

public void init(int i,
int nSamples,
int tarBeam,
int tarSample,
float cfarThresh)
{ // InputGenerate::init()

curSample = 0;
number(fSamples = nSamples;
holdsTarget = (tarBeam == i);
targetSample = tarSample;
myChannel = ij;

thresh = cfarThresh;
// i2 = 0;
output = new Channel(Float.TYPE, 2);

public void work()
{ // InputGenerate::work()
if(holdsTarget && (curSample
{

// real
output .pushFloat ((float)Math.sqrt(thresh));
// imag
output . pushFloat (0);

targetSample))

else

// real

output . pushFloat (0);

// imag

output .pushFloat (0) ;
¥

// System.out.println(i2++);
curSample++;

if(curSample >= numberOfSamples)
{
curSample = 0;
¥
¥
}

/*%
* This filter just outputs a stream of zeros.
*/

class ZeroSource extends Filter {

public ZeroSource() {
super();

}

public void init() {
output = new Channel(Float.TYPE, 1);
i

public void work() {
output . pushFloat (0) ;

}

class DummySink extends Filter {
public DummySink() {
super();

}

public void init() {
input = new Channel(Float.TYPE, 1);
i

public void work() {
input.popFloat () ;

}

class BeamFirFilter extends Filter
{ // class FirFilter...

float[] real_weight;

float[] imag _weight;

int numTaps;

int inputLength;

int decimationRatio;

float[] realBuffer;

float[] imagBuffer;

// number of items we’ve seen in
// relation to inputLength

int count;

// our current writing position into the buffers
int pos;

public BeamFirFilter(int nt, int inLength,
int decRatio) {
super(nt, inLength, decRatio);
¥

public void init(int nt, int inLength, int decRatio)
{ // BeamFirFilter::init ()

int i;

numTaps = nt;

inputLength = inLength;

decimationRatio = decRatio;

input = new Channel (Float .TYPE, 2xdecRatio);
output = new Channel(Float.TYPE, 2);
real_weight = new float[numTaps];

104

imag_weight = new float[numTaps];

realBuffer = new float[numTaps]; // For now, use identity weights.
imagBuffer = new float[numTaps]; for(i = 0; i < numChannels; i++)
pos = 0; {
real weight[i]l = 0;
real_weight[0] = 1.0f; imag_weight[il = 0;
imag_weight[0] = 0.0f; if(i == myBeamId)
for(i = 1; i < numTaps; i ++) { {
real_weight[i] = 0; real_weight[i] = 1;
imag_weight[il = 0; imag_weight[il = 0;
realBuffer[i] = 0;
imagBuffer[i] = 0; 3
} }
3
public void work()
public void work() { // BeamCalc::work()
{ // BeamFirFilter: :work() float real_curr = 0;
float real_curr = 0; float imag_curr = 0;
float imag curr = 0; int i;
int i; for(i=0; i<numChannels; i++) {
int modPos; float real_pop = input.popFloat();
float imag_pop = input.popFloat();
// pop a new item into the buffer // Need to check this boundary cond
realBuffer[pos] = input.popFloat(); real_curr +=
real_weight[i] * real_pop -
imagBuffer[pos] = input.popFloat(); imag_weight[i]l * imag_pop;
imag_curr +=
// calculate sum real_weight[i] * imag_pop +
modPos = pos; imag _weight[i]l * real_pop;
for (i = 0; i < numTaps; i++) {
real_curr += output .pushFloat (real_curr);
realBuffer [modPos]*real_weight[i] + output . pushFloat (imag_curr) ;
imagBuffer [modPos] * imag weight[il; ¥
imag_curr += 3
imagBuffer[modPos] * real_weight[i] +
realBuffer[modPos] * imag weight[il; class Magnitude extends Filter
// increment position in this round of summing { // class Magnitude...
modPos++;
if (modPos==numTaps) { modPos = 0; } public void init()
} {
input = new Channel(Float.TYPE, 2);
// increment sum output = new Channel(Float.TYPE, 1);
pos = (pos+1)%numTaps; i
// push output public void work()
output . pushFloat (real_curr); {
output . pushFloat (imag_curr); float f1 = input.popFloat();
float £2 = input.popFloat();
// decimate output .pushFloat (mag(f1, £2));
for (i = 2; i < 2%decimationRatio; i++) { 3}
input.popFloat () ;
¥ /%%
* Return magnitude of (<real>, <imag>)
// increment count */
count+=decimationRatio; private float mag(float real, float imag) {
return (float)Math.sqrt(real*real + imag*imag);
// vhen we reach inLength, reset i
if (count==inputLength) { }
count = 0;
pos = 0; class Detector extends Filter
for (i=0; i<numTaps; i++) { { // class Detector...
realBuffer[i] = 0;
imagBuffer[i] = 0; int curSample;
} int myBeam;
} else if (count>inputLength) { int numSamples;
float thresh;
¥ int targetSample;
} boolean holdsTarget;
¥
public Detector(int i,
class Beamform extends Filter int nSamples,
{ // class Beamform... int targetBeam,
int tarSample,
float[] real weight; float cfarThreshold) {
float[] imag_weight; super(i, nSamples, targetBeam, tarSample,
int numChannels; cfarThreshold) ;
int myBeamlId; }
public Beamform(int myBeam, int nc) { public void init(int i,
super (myBeam, nc); int nSamples,
int targetBeam,
int tarSample,
public void init(int myBeam, int nc) float cfarThreshold)
{ // BeamCalc::init () {
int i; curSample = 0;
numChannels = nc; myBeam = ij;
myBeamId = myBeam; numSamples = nSamples;
holdsTarget = (myBeam == targetBeam);
input = new Channel(Float.TYPE, 2%nc); targetSample = tarSample;
output = new Channel(Float.TYPE, 2);
real_weight = new float[numChannels]; thresh = 0.1f;
imag_weight = new float[numChannels]; input = new Channel(Float.TYPE, 1);

105

}

public void work()
{
float val = input.popFloat();

if (holdsTarget && targetSample == curSample)
{
if(!(val >= thresh)) {
System.out.println(0);
} else {
System.out.println(1);
}
¥

106

else
{
if(val >= thresh) {
System.out.print1n(0);
b
i

curSample++;

if(curSample >= numSamples)
curSample = 0;

Tt

Kz

L nasoaoai}

kg kg o o o g ™

o) s

) i) i)

10

a3 a3 3 3 3 T

CR0R0
Hoao®
CR0R0

OO

D) [i souvo. rori>

OB

HoO©
000

K w
DY (D
3 o T T
fanien Ranien D
it it
el el
et pett
_— p p
b Pt
w2 2
st -
- g
e et
w2 2
et 2
e n
b il
o o
el o

Figure B-1: Radar before partitioning.

BeamFormer

(S

ULL_S](00.000.000.000,0)

Figure B-2: Radar after partitioning.

107

|-
Fused - - tile5. - - 'WEIGHTED Fused

Figure B-3: Radar layout.

| \H HHI | \H 1A ||||‘ il II‘ I|H

—
%i

I}]III|| I |||||||h] i ||||||||||| |H

””\ E I‘ |||| |H |H|H —— \|| \I\l - IWIH H|H | ||||||||| | I‘ Il| || ‘H

KEY
[1 usefulwork Il Blocked on send or receive R&] Unused Tile

Figure B-4: Radar execution trace.

108

Appendix C
FM Radio Application

C.1 Description

This benchmark is a software implementation of an FM Radio.

C.2 Code

import streamit.; {
import streamit.io.*; super (count) ;
import java.lang.Math;
public void init (final int count)

/% {
* Software equalizer. This version uses N = count;
* n+l low-pass filters directly, input = new Channel (Float.TYPE, count, count);
* as opposed to n band-pass filters, output = new Chamnel (Float.TYPE, 1);
* each with two low-pass filters. }
* The important observation is that
* we have bands 1-2, 2-4, 4-8, ... public void work() {
* This means that we should run an LPF float sum = 0.0f;
* for each intermediate frequency, int i;
* rather than two per band. Calculating for (i = 0; i < N; i++)
* this in StreamIt isn’t that bad. sum += input.popFloat();
* For a four-band equalizer: output .pushFloat (sum) ;
* ¥
* | }
* DUP
* Fo—mm e + class FloatDiff extends Filter
* | | | {
* | DUP | public void init()
* | +o———t————+ | {
* | | | | | input = new Channel(Float.TYPE, 2, 2);
* 16 8 4 2 1 output = new Channel(Float.TYPE, 1);
* | | | | | }
* | (dup) (dup) (dup) | public void work()
* | | | {
* | tommmtmmmmt | output .pushFloat (input.peekFloat (0) -
* | RR(2) | input .peekFloat (1)) ;
* | | | input .popFloat () ;
* ommmmmmem pommmmmmee + input .popFloat () ;
* WRR(1,2(n-1),1) ¥
* | }
* (a-b)
* | class FloatDup extends Filter
* SUM(n) {
* | public void init()
* {
* It’s straightforward to change input = new Channel(Float.TYPE, 1, 1);
* the values of 1, 16, and n. Coming out output = new Channel(Float.TYPE, 2);
* of the EqualizerSplitJoin is 16 8 8 4 4 2 2 1;
* we can subtract and scale public void work()
* these as appropriate to equalize. {
*/ float val = input.popFloat();
output .pushFloat (val) ;

class FloatNAdder extends Filter output.pushFloat (val);

int N; }

public FloatNAdder(int count) class EqualizerInnerPipeline extends Pipeline

109

public EqualizerInnerPipeline(float rate,
float freq)
{

super (rate, freq);

public void init(final float rate, final float freq)

{
add(new LowPassFilter(rate, freq, 64, 0));
add(new FloatDup());

}

class EqualizerInnerSplitJoin extends SplitJoin
{
public EqualizerInnerSplitJoin(float rate,
float low,
float high,
int bands)

super (rate, low, high, bands);
public void init(final float rate,

final float low, final float high,
final int bands)

{
int ij
setSplitter (DUPLICATE());
for (i = 0; i < bands - 1; i++)
add(new EqualizerInnerPipeline
(rate,
(float) java.lang.Math.exp
((i+1) =
(java.lang.Math.log(high) -
java.lang.Math.log(low)) /
bands + java.lang.Math.log(low))));
setJoiner (ROUND_ROBIN(2));
¥

¥
class EqualizerSplitJoin extends SplitJoin {

public EqualizerSplitJoin(float rate,
float low, float high,
int bands)
{
super(rate, low, high, bands);
¥

public void init(final float rate,
final float low, final float high,
final int bands)

// To think about: gains.

setSplitter (DUPLICATE());
add(new LowPassFilter(rate, high, 64, 0));
add(new EqualizerInnerSplitJoin(rate, low,
high, bands));
add(new LowPassFilter(rate, low, 64, 0));
setJoiner (VEIGHTED_ROUND_ROBIN(1, (bands-1)%2,
1));

}

/%%

* Class Equalizer

*

* Implements an Equalizer for an FM Radio

*/
class Equalizer extends Pipeline {

public Equalizer(float rate)
{

super (rate) ;

public void init(final float rate)
{
final int bands = 10;
final float low = 55;
final float high = 1760;
add (new EqualizerSplitJoin(rate, low,
high, bands));
add(new FloatDiff());
add(new FloatNAdder(bands));

class FloatOneSource extends Filter

{
public void imit ()
{
output = new Channel(Float.TYPE, 1);
i
public void work()
{
output.pushFloat(1);
}
}

class FloatPrinter extends Filter

{
public void init ()
{
input = new Channel(Float.TYPE, 1);
¥
public void work ()
{
System.out.println(input.popFloat ());
¥
}

class FMRadio extends Pipeline

{
public FMRadio()
{
super () ;
public void init()
{
final float samplingRate = 200000;
final float cutoffFrequency = 108000000;
final int number(QfTaps = 64;
final float maxAmplitude = 27000;
final float bandwidth = 10000;
//decimate 4 samples after outputting 1
add(new LowPassFilter(samplingRate,
cutoffFrequency,
number0fTaps, 4));
add(new FMDemodulator(samplingRate,
maxAmplitude, bandwidth));
add(new Equalizer(samplingRate));
¥
}
[*%
* Class FMDemodulator
*
* Implements an FM Demodulator
*
*/

class FMDemodulator extends Filter {

float mGain;

float sampleRate;

float maxAmplitude;

float modulationBandwidth;

public FMDemodulator (float sampRate,
float max, float bandwidth)
{
super (sampRate, max, bandwidth);

¥

public void init(float sampRate, float max,
float bandwidth)

{
input = new Channel (Float.TYPE, 1, 2);
output = new Channel (Float.TYPE, 1);
sampleRate = sampRate;
maxAmplitude = max;
modulationBandwidth = bandwidth;
mGain =
maxAmplitude* (sampleRate
/ (modulationBandwidth *
(float)Math.PI));
}

public void work() {
float temp = 0;
//may have to switch to complex?
temp = (float) ((input.peekFloat(0)) *

110

(input .peekFloat(1)));
//if using complex, use atan2
temp = (float)(mGain * Math.atan(temp));

input.popFloat () ;
output .pushFloat (temp) ;

/xx

* Class LowPassFilter

*

* Implements a Low Pass FIR Filter

*/
class LowPassFilter extends Filter {

int numberQfTaps;

float COEFF[];

float cutoffFreq, samplingRate, tapTotal;
int mDecimation;

public LowPassFilter(float sampleRate,
float cutFreq,

int numTaps, int decimation)

{

super (sampleRate, cutFreq, numTaps, decimation);

}

public void init(final float sampleRate,
final float cutFreq,
final int numTaps,
final int decimation)

float pi, m, w;

//float temptaps[];

int ij

samplingRate = sampleRate;
cutoffFreq = cutFreq;
numberQfTaps = numTaps;

pi = (float)java.lang.Math.PI;

//build the taps, and call super.init(taps[])

//temptaps = new float[number0fTaps];

m = number(QfTaps -1;
//from Oppenheim and Schafer,
//m is the order of filter

mDecimation = decimation;
input = new Channel (Float.TYPE,

1+decimation, numTaps);

output = new Channel (Float.TYPE, 1);

//all frequencies are in hz
COEFF = new float[numTaps];

if (cutoffFreq == 0.0)
{

//Using a Hamming window for filter taps

tapTotal = 0;

for(i=0;i<number0fTaps;i++)

COEFF[il =
(float) (0.54 -
0.46%
java.lang.Math.cos
((2#pi)*(i/m)));

tapTotal = tapTotal + COEFF[il;

¥

¥

//normalize all the taps to a sum of 1
for (i=0; i<number0fTaps;i++)
{
COEFF[i] = COEFF[i]/tapTotal;
¥
¥
else{
//ideal lowpass filter ==> Hamming window
//has IR h[n] = sin(omega*n)/(n*pi)
//reference: Oppenheim and Schafer

w = (2%pi) * cutoffFreq/samplingRate;
for(i=0;i<number0fTaps;i++)
//check for div by zero

if(i-m/2 == 0)
COEFF[i] = w/pi;

else
COEFF[i] =
(float)
(java.lang.Math.sin(w*
(i-m/2))
/ pi
/ (i-m/2) *

(0.54 - 0.4 *
java.lang.Math.cos
((2%pi)*(i/m))));
¥

¥

//COEFF = temptaps;

// Is this actually useful? StreamIt

//doesn’t like .length,

// and at any rate, COEFF.length

//will always be numTaps, which

// will always have the same value as

//number0fTaps. --dzm

// number0fTaps = COEFF.length;

public void work() {

float sum = O;
int i;
for (i=0; i<numberOfTaps; i++) {
sum += input.peekFloat (i)*COEFF[i];
b

input .popFloat () ;

for(i=0;i<mDecimation;i++)
input.popFloat () ;

output .pushFloat (sum) ;

public class LinkedFMTest extends StreamIt

111

static public void main(Stringl[]l t)

{
¥

new LinkedFMTest().run(t);

public void init()

{

add(new FloatOneSource());
add(new FMRadio());
add(new FileWriter("fm-out", Float.TYPE));

Figure C-1: Radio before partitioning.

%

S SossesCoasavaras)

Figure C-2: Radio after partitioning.

112

Figure C-3: Radio layout.

|| ||| ||| | "ﬂH]MH ‘ ||||

[] usefulwork [l Blocked on send or receive K Unused Tile

Figure C-4: Radio execution trace.

113

114

Appendix D

Bitonic Sort Application

D.1 Description

This benchmark performs a sort on a set of 32 input elements, using the Bitonic Sort
algorithm[1]. See [24] Section 5.3.4 - ” Networks for Sorting” (particularly the diagram
titled “A nonstandard sorting network based on bitonic sorting” in the First Set of

Exercises - Fig 56 in second edition).

D.2 Code

import streamit.x;

/*x
Compares the two input keys and
exchanges their order if they are not sorted.
sortdir determines if the sort is nondecreasing
(UP) or nonincreasing (DOWN).
‘true’ indicates UP sort and ’false’ indicates
DOWN sort.
*/
class CompareExchange extends Filter
{
boolean sortdir;
public CompareExchange(boolean sortdir)
{

super (sortdir);

public void init(final boolean sortdir)

{
input = new Channel(Integer.TYPE, 2);
output = new Channel(Integer.TYPE, 2);
this.sortdir = sortdir;

¥

public void work()

{
/* the input keys and min,max keys */
int ki, k2, mink, maxk;

k1 = input.popInt();
k2 = input.popInt();
if (k1 <= k2)

{
mink = ki;
maxk = k2;
¥
else /* ki > k2 */
{
mink = k2;
maxk = ki;
¥
if (sortdir == true)

/* UP sort x/
output.pushInt (mink);

output .pushInt(maxk) ;

3
else /* sortdir == false */
/* DOWN sort */
output .pushInt (maxk) ;
output.pushInt (mink) ;
¥
T
}
[*x

Partition the input bitonic sequence of
length L into two bitonic sequences
of length L/2, with all numbers in the
first sequence <= all numbers in the
second sequence if sortdir is UP
(similar case for DOWN sortdir)
Graphically, it is a bunch of CompareExchanges
with same sortdir, clustered
together in the sort network
at a particular step (of some merge stage).
*/
class PartitionBitonicSequence extends SplitJoin
{
public PartitionBitonicSequence(int L,
boolean sortdir)
{

super(L, sortdir);

public void init(final int L,
final boolean sortdir)
{
/* Each CompareExchange examines
keys that are L/2 elements apart */
this.setSplitter (ROUND_ROBIN());
for (int i=0; i<(L/2); i++)
this.add(new CompareExchange (sortdir));
this.setJoiner (ROUND_ROBIN());

}
[**

One step of a particular merge stage
(used by all merge stages except the last)

115

dircnt determines which step we are in the
current merge stage
(which in turn is determined by <L, numsegp>)

*/

class StepOfMerge extends SplitJoin

{
public StepOfMerge(int L, int numseqp, int dircnt)
{

super (L, numseqp, dircnt);

public void init(final int L, final int numseqp,
final int dircnt)
{
boolean curdir;
this.setSplitter (ROUND_ROBIN(L));
for (int j=0; j<numseqp; j++)
{

/* finding out the curdir is a
bit tricky - the direction depends
only on the subsequence num during
the FIRST step. So to
determine the FIRST step subsequence
to which this sequence belongs,
divide this sequence’s number j by
dircnt (bcoz ’dircnt’ tells how many
subsequences of the current step make
up one subseq of the FIRST step).
Then, test if that result is even
or odd to determine if curdir is UP
or DOWN respec.

*/

curdir = ((j/dirent)%2 == 0);

/* The last step needs special care to
avoid splitjoins with just one
branch. */

if (L > 2)
this.add

(new PartitionBitonicSequence
(L, curdir));
else /* PartitionBitonicSequence of t
he last step (L=2) is simply a
CompareExchange */
this.add
(new CompareExchange (curdir));
¥
this.setJoiner (ROUND_ROBIN(L)) ;

/%%
One step of the last merge stage
Main difference form StepOfMerge
is the direction of sort.
It is always in the same direction - sortdir.
*/
class StepOflLastMerge extends SplitJoin
{
public StepOfLastMerge(int L, int numseqp,
boolean sortdir)
{

super (L, numseqp, sortdir);

public void init(final int L, final int numseqp,
final boolean sortdir)
{
this.setSplitter (ROUND_ROBIN(L));
for (int j=0; j<numseqp; j++)

/* The last step needs special care to
avoid splitjoins with just one
branch. */
L >2)
this.add
(new PartitionBitonicSequence
(L, sortdir));
else /* PartitionBitonicSequence of the
last step (L=2) is simply a
CompareExchange */
this.add
(new CompareExchange (sortdir));

H

i

¥
this.setJoiner (ROUND_ROBIN(L));

}

/* Divide the input sequence of length N into
subsequences of length P and sort each of them
(either UP or DOWN depending on what subsequence
number [0 to N/P-1] they get - All even
subsequences are sorted UP and all odd
subsequences are sorted DOWN)

In short, a MergeStage is N/P Bitonic Sorters

of order P each.
But, this MergeStage is implemented
iteratively as logP STEPS.

*/
class MergeStage extends Pipeline
{
public MergeStage(int P, int N)
{
super (P, N);
public void init(final int P, final int N)
{
int L, numseqgp, dircnt;
/* for each of the lopP steps (except the
last step) of this merge stage */
for (int i=1; i<P; i=ix2)
{
/* length of each sequence for the
current step - goes like
P,P/2,...,2 %/
L = P/i;
/* numseqp is the number of
PartitionBitonicSequence-rs
in this step */
numseqgp = (N/P)*ij;
dircnt H
this.add(new StepOfMerge(L, numseqp,
dircnt));
¥
¥
}
/%%

The LastMergeStage is basically one

Bitonic Sorter of order N i.e., it takes the
bitonic sequence produced by the h

previous merge stages and applies a

bitonic merge on it to produce the final
sorted sequence.

This is implemented iteratively as logN steps
*/

class LastMergeStage extends Pipeline

{
public LastMergeStage(int N, boolean sortdir)
{
super (N, sortdir);
public void init(final int N,
final boolean sortdir)
{
int L, numseqp;
/* for each of the logN steps (except the
last step) of this merge stage */
for (int i=1; i<N; i=i*2)
{
/* length of each sequence for
the current step - goes like
N,N/2,...,2 */
L = N/i;
/* numseqp is the number of
PartitionBitonicSequence-rs
in this step */
numseqp = ij;
this.add(new StepOfLastMerge(L, numseqp,
sortdir));
¥
¥
}
VAL

The top-level kernel of bitonic-sort
(iterative version) -
It has logN merge stages and all merge
stages except the last
progressively builds a bitonic
sequence out of the input sequence.
The last merge stage acts on the
resultant bitonic sequence
to produce the final sorted sequence
(sortdir determines if it is
UP or DOWN).
*/
class BitonicSortKernel extends Pipeline
{
public BitonicSortKernel(int N, boolean sortdir)
{

super (N, sortdir);

public void init(final int N,
final boolean sortdir)

116

¥
/

c

{

¥
/

.

{

for (int i=2; i<=(N/2); i=2%i)
this.add(new MergeStage(i, N));
this.add(new LastMergeStage(N, sortdir));

£
* Creates N keys and sends it out

x/

lass KeySource extends Filter

int N;
int A[l;

public KeySource(int N)

{
super (N) ;
public void init(final int N)
{
output = new Channel(Integer.TYPE, N);
this.N = N;
/* Initialize the input. In future, might
* want to read from file or generate a random
* permutation.
*/
A = new int[N];
for (int i=0; i<N; i++)
A[i] = (N-i);
¥
public void work()
{
for (int i=0; i<N; i++)
output.pushInt (A[il);
}
*k

* Prints out the sorted keys and verifies if they
* are sorted.

*/

lass KeyPrinter extends Filter
int N;
public KeyPrinter(int N)
{
super (N) ;

public void init(final int N)
{

input = new Channel(Integer.TYPE, N);

this.N = N;
¥
public void work()
{
for (int i=0; i<(N-1); i++)
{
System.out.println(input.popInt());
¥
System.out.println(input.popInt ());
}
class DoneTimer extends Filter
{
int N;
DoneTimer(int N) {
super (N) ;
¥
public void init(final int N) {
this.N = N;
input = new Channel(Integer.TYPE, N);
i
public void work() {
for(int i=0; i < N; i++)
input.pop();
System.out .print("Done");
¥
}
VAL
* The driver class
*/
class BitonicSort extends StreamIt
{
public static void main(String args[])
{
(new BitonicSort()).run(args);
i
public void init()
{
/* Make sure N is a power_of_2 */
final int N = 32; //16;
/* true for UP sort and false for DOWN sort */
final boolean sortdir = true;
this.add(new KeySource(N));
this.add(new BitonicSortKernmel(N, sortdir));
this.add(new DoneTimer(N));
T
}

117

Figure D-1: Bitonic Sort before partitioning.

118

Figure D-2: Bitonic Sort after partitioning.

— —

KeySource Fused Fused Fused
fl— e

Fused Fused Fused Fused
— —

Fused Fused Fused Fused
fl— e

KeyPrinter Fused Fused Fused

Figure D-3: Bitonic Sort layout.

119

|| HIH H IIH | | | HII\ I\H | [
| m ||

N | -III\I \I -|I\|H -\| | -IH[-IH \[-II\IHHI
W T T T TN
[DI NN NN BEE DN NN
I|III|I-|I" \I I-III m__Iim__[hm [

BN | BN BN NN | BN N
W e i EN

KEY

[1 usefulwork Il Blocked on send or receive [&] Unused Tile

Figure D-4: Bitonic Sort execution trace.

120

Appendix E

FFT Application

E.1 Description

This benchmark is an FFT on a set of 64 points. A full description of the algorithm
can be found at [2]. Details of the Decimation In Time FFT implemented here can

be found at [3].

E.2 Code

import streamit.x;
class CombineDFT extends Filter

CombineDFT (int i)
{

super(i);

float wn_r, wn_ij;

int nWay;

float results[];

public void init(int n)

{
nWay = n;
input = new Channel(Float.TYPE, 2 * n);
output = new Channel(Float.TYPE, 2 * n);
wn_r = (float) Math.cos(2 * 3.141592654 /
((double) n));
wn_i = (float) Math.sin(2 * 3.141592654 /
((double) n));
results = new float[2 * n];
}

public void work()
{
int i;
float w_r = 1;
float w_i = 0;
for (i = 0; i < nWay; i += 2)

float yO_r = input.peekFloat(i);
float yO_i = input.peekFloat (i+1);

float yil_r = input.peekFloat(nWay + i);

float yil_i =
input.peekFloat (nWay + i + 1);

float ylw_r = yl r * w.r - yl_i * w_i;
=ylr*wi+ylix*wr;

float yilw_i

results[i] = yO_r + ylw_r;
results[i + 1] = yO_i + ylw_i;

results[nWay + il = yO_r - yilw_r;

results[nWay + i + 1] = yO_i - ylw_i;

float w_r_next =
W_r * wn_r - w_i * wn_i;

float w_i_next =

w_r * wn_i + w_i ¥ wn_r;
W_r = w_r_next;
w_i = w_i_next;

for (i = 0; i < 2 * nWay; it++)
{
input.popFloat ();
output .pushFloat (results[il);

}
class FFTReorderSimple extends Filter
{

FFTReorderSimple (int i) { super (i); }

int nWay;
int totalData;

public void init (int n)

{
nWay = n;
totalData = nWay * 2;
input = new Channel (Float.TYPE, n * 2);
output = new Channel (Float.TYPE, n * 2);
}

public void work ()
{

int ij

for (i = 0; i < totalData; i+=4)

{
output.pushFloat (input.peekFloat (i));
output.pushFloat
(input.peekFloat (i+1));
¥
for (i = 2; i < totalData; i+=4)
{
output.pushFloat (input.peekFloat (i));
output.pushFloat
(input.peekFloat (i+1));
¥

121

for (i=0;i<nWay;i++)
{
input.popFloat ();
input.popFloat ();
}
class FFTReorder extends Pipeline

FFTReorder (int i) { super (i); }

public void init (int nWay)

{
int ij
for (i=1; i<(nWay/2); i*=2) {
add (new FFTReorderSimple (nWay/i));
}
¥

}

class FFTKernell extends Pipeline

{
public FFTKernell (int i) { super (i); }
public void init (final int nWay)

if (aWay > 2) {
add (new SplitJoin () {
public void init () {
setSplitter (ROUND_ROBIN (2));
add (new FFTKernell (nWay / 2));
add (new FFTKernell (mWay / 2));
setJoiner (ROUND_ROBIN (nWay));
¥
s
}
add (new CombineDFT (nWay));

}

class FFTKernel2 extends SplitJoin

{
public FFTKernel2(int i)
{
super(i);
public void init(final int nWay)
{
setSplitter (ROUND_ROBIN(nWay*2));
for (int i=0; i<2; i++) {
add (new Pipeline() {
public void init() {
add (new FFTReorder (nWay));
for (int j=2; j<=nWay; j*=2) {
add(new CombineDFT (j));
i
}
;s
3
setJoiner (ROUND_ROBIN(nWay*2)) ;
i
}

public class FFT2 extends StreamIt

public static void main(String[] args)
{
new FFT2().run(args);

¥

public void init()

{
add(new FFTTestSource(64));
add(new FFTKernel2(64));
add(new FloatPrinter());

¥

122

T TestSource
ssh-128

T ReorderSimple
push=128

pop—128
peck=128

peck=128

P ReorderSimple
push=G4
‘pop—
peck=64

T ReorderSimple
push=64
‘pop—64

peck=64

T ReorderSimple
push—32

'pop-
peck-32

T ReorderSimple
push=16

‘pop—16
peck=16

T ReorderSimple
push=8

R —
push=16
pop—16

'pop-
peck=32

‘pop—
peck-

T bINCDET

peck=64

IneDET 3
push-128
pop—128

ombINEDFT 5

push.
pop—128

peck=128

Figure E-1: FFT before partitioning.

123

TFTReeT

T

Fus T T FTReorderSimple_12_141_FFTReorderSimple_
pos

128

pecke128

Tl

by

nple_12_15_FFTReorderSimple_12_55_FFTReorderSimple_12_62_FFTRearaerSTn
25

pushoi28 o

Figure E-2: FFT after partitioning.
— —
CombineDFT CombineDFT CombineDFT WEIGHTED
—
CombineDFT Fused CombineDFT CombineDFT
CombineDFT FFTTestSource CombineDFT CombineDFT
CombineDFT Fused CombineDFT CombineDFT

Figure E-3: FFT layout.

124

[usefulwork [l Blocked on send or receive

KEY

BJ unusedTile

Figure E-4: FFT execution trace.

125

126

Appendix F

Filterbank Application

F.1 Description

This benchmark implements an 8-channel bank of filters. The input data is split into
64 different DF'T filters, the output of which is then downsampled, upsampled, and
recombined to form a processed signal.

F.2 Code

import streamit.x;
import streamit.io.x;

/*x

* Class FirFilter

*

* Implements an FIR Filter
*/

class Bank extends Pipeline {

public Bank (int N,float[] H,float[] F)

super (N,H,F);
}

public void init(int N,float[] H,float[] F) {
add (new Delay N(H.length-1));
add (new FirFilter(H));
add (new DownSamp(N));
add (new UpSamp(N));
add (new Delay_N(F.length-1));
add (new FirFilter(F));

¥
// This is the complete Filter Bank Split Join Structure

/%%

* Class Branches

*

* Implements Branches Structure

*/
class Branches extends SplitJoin {
public Branches (int N_samp,int N_rows,
int N_col,float[1[] H,float[1[]1 F)
{
super (N_samp,N_rows,N_col,H,F);

¥

public void init(int N_samp,int N_ch,
int N_col,float[1[]1 H,

float[I[1 F) {
setSplitter (DUPLICATE());
for (int i=0; i<N_ch ; i++)

float[] H_ch=new float[N_coll;
float[] F_ch=new float[N_coll;
for (int j=0; j<N_col;j++)

H_ch[j1=H[i1[j]1;
F_ch[j1=F[il1[j]1;

add (new Bank(N_samp,H_ch,F_ch));
¥
setJoiner (ROUND_ROBIN());

}
class Combine extends Filter {
public Combine(int N) {
super (N) ;
¥
int N;
public void init(int N) {
input = new Channel(Float.TYPE, N);
output = new Channel(Float.TYPE, 1);

this.N=N;
¥

public void work() {
float sum=0;
for (int i=0;i<N;i++)
sum+=input .popFloat () ;
output.pushFloat (sum) ;
}
class delay extends FeedbackLoop {
public delay(int N) {
super (N) ;

}

public void init(int N) {

127

setSplitter (ROUND_ROBIN());
setDelay(N) ;
setBody(new Filter() {
public void init() {
this.input =
new Channel(Float.TYPE, 2);
this.output =
new Channel(Float.TYPE, 2);
}
public void work() {
this.output.pushFloat
(this.input.peekFloat(1));
this.output.pushFloat
(this.input.peekFloat(0));
this.input.popFloat();
this.input.popFloat();
}
b
setLoop(new Identity(Float.TYPE));
setJoiner (ROUND_ROBIN());
}

public float initPathFloat(int index) {
return 0.0f;
¥
}

/** Character Unit delay **/
class Delay_N extends Filter {
float[] state;
int N;
int place_holder;

public Delay_N(int N) {
super(N) H
}

public void init(int N) {
// initial state of delay is 0
state=new float[N];
this.N=N;
for (int i=0; i<N; i++)
state[i]=0;
input = new Channel(Float.TYPE,1);
output = new Channel(Float.TYPE,1);
place_holder=0;
}
public void work() {
// push out the state and then update it with the input
// from the channel
output .pushFloat(state [place_holder]);
state[place_holder] = input.popFloat();
place_holder++;
if (place_holder==N)
place_holder=0;

¥
class DownSamp extends Filter {

public DownSamp(int N) {
super (N) ;

}

int N;

public void init(int N) {
input = new Channel(Float.TYPE, N);
output = new Channel(Float.TYPE, 1);
this.N=N;

¥

public void work() {
output .pushFloat(this.input.popFloat());
for (int i=0;i<N-1;i++)
input.popFloat () ;

}

¥

class source extends Filter {
int N, pos;
float[] r;

public source(float[] r) {super(r);}
public void init(float[] r){
output = new Channel(Float.TYPE,1);
this.r=r;
N=r.length;
this.pos = 0;
}
public void work(){
output .pushFloat (r[pos++]) ;
if (pos >= N) pos = 0;

}

class sink extends Filter{

int N;

public sink(int N) {super(N);}

public void init(int N){
input = new Channel(Float.TYPE, 1);
this.N=N;

}

public void work() {
System.out.println(input.popFloat());

i

}
class FBtest extends StreamIt {

static public void main(String[]l t)
{
FBtest test=new FBtest();
test.run(t);
i

public void init() {
int N_sim=1024%2;
int N_samp=/x 32 */ 8;
int N_ch=N_samp;
int N_col=32;

float[] r=new float[N_sim];
float[J[] H=new float[N_ch][N_col];
float[1[1 F=new float[N_ch][N_coll;

for (int i=0;i<N_sim;i++)
rlil=i+l;

for (int i=0;i<N_col;i++) {
//sum+=1;
//sum=sum/7;

for (int j=0;j<N_ch;j++){
//sum+=1;
H[j][i]=i*N_col+j*N_ch+j+i+j+1;
//sum++;

FLj1[il=ixj+j*j+j+i;

¥
}
add (new source(r));
add (new FilterBank(N_samp,N_ch,N_col,H,F));
add (new sink(r.length));

¥
// This is the complete Filter Bank Split Join Structure

VALY

* Class Branches

*

* Implements Branches Structure
*/

class FilterBank extends Pipeline {

public FilterBank (int N_samp,int N_ch,
int N_col ,float[1[] H,
float[1[1 F)
{
super (N_samp,N_ch,N_col,H,F);
i

public void init(int N_samp,int N_ch,
int N_col,float[1[] H,
float[1[F) {

add (new Branches(N_samp,N_ch,N_col,H,F));
add (new Combine(N_samp));

}
// Together with a delay this creats an FIR

/**
* Class FirFilter
*
* Implements an FIR Filter
*/

128

class FirFilter extends Filter {

int N;
float COEFF[];

public FirFilter (float[] COEFF)
{

super (COEFF);
}

public void init(float[] COEFF) {
this.N=COEFF.length;
this.COEFF=new float [COEFF.lengthl;

for (int i=0; i<this.N;i++)
this.COEFF[i]=COEFF[i];

input =
new Channel(Float.TYPE, 1, COEFF. length) H
output = new Channel(Float.TYPE, 1);
}

public void work(){
float sum=0;
for (int i=0; i<N ; i++)
sum+=input .peekFloat (i) *COEFF[N-1-i];
input.pop();
output . pushFloat (sum) ;

¥
// This is the complete FIR pipeline
/%%

* Class FirFilter
*

129

* Implements an FIR Filter
*/

class FIR extends Pipeline {

public FIR (float[] COEFF)
{

super (COEFF);
¥

public void init(float[] COEFF) {
add (new Delay_ N(COEFF.length-1));
add (new FirFilter(COEFF));

+
class UpSamp extends Filter {

public UpSamp(int N) {
super (N) ;

¥

int N;

public void init(int N) {
input = new Channel(Float.TYPE, 1);
output = new Channel(Float.TYPE, N);
this.N=N;

T

public void work() {
output.pushFloat (this.input.popFloat());
for (int i=0;i<N-1;i++)
output .pushFloat (0) ;

FBiest

FilicrBank

Branches

DUPLICATE(L,11,1.1.111]

TirFilter_20
pusi
pop-1
peck=32

Bownsamp_23

UpSamp_30

pop-1

Delay_N_37

pu
pop-1
pee

FirFilter_44

FieFilter_44

FirFilter_20

n
pop-1
pec

BownSamp_23 Bownsamy
pust u

pop-8
pect

UpSamp_30
pust
pop-1

Delay_N_37

p2
1

BownSamp_25

UpSamp_30

TirFilter_20
push=1

pop-1
peck=32

DownSamp_23
push=1

p
L

FieFilter_41
push=1
pop-1
peck

pop-1
peck=32

Townsamp_23

TrFilter_44

Tk Tk Tank Tk o T or
Delay_N_13 Delay_N_13 Delay_N_13 Delay_N_13 Delay_N_13 Delay N_13
pu push=1 pus push=1
pop-1 pop-1 pop-1 pop-1 pop-1
pe peck=1 pec pe peck=1
FirFilter_20 FirFilter_20

FirFilter_20
push=1
pop-1
peck=32

BownSamp_25

push=1
pop-8
peck=8

UpSamp_30
h-8

WEIGHTED_ROUND_ROBIN(1.1,1.1,1. 11T}

Figure F-1: Filterbank before partitioning.

Figure F-2: Filterbank after partitioning.

130

F—a
Fused - Fused B Fused DownSamp
e)
Fused Fused source Fused
let—
Combine 'WEIGHTED Fused Fused

sink - FirFilter Delay UpSamp

Figure F-3: Filterbank layout.

KEY
[] usefulwork [l Blocked on send or receive K Unused Tile

Figure F-4: Filterbank execution trace.

131

132

Appendix G
GSM Application

G.1 Description

The decoder portion of the StreamIt GSM Vocoder takes GSM encoded parameters
as inputs, and uses these to synthesize audible speech. This is accomplished by pro-
cessing the parameters through four main filters. The RPE decoder filter produces
some ”pink noise” that very loosely estimates the speech waveform, using quantized
bit sequences and a maximum value parameter from the encoded input. This ”pink
noise” is fed to the Long Term Prediction portion, which applies long-term charac-
teristics to the sequence through a delay filter within a feedback loop. The resulting
signal is then sent to the Short Term Synthesis filter, which decodes high frequency
voice characteristics from the encoded parameters and applies these to the signal.
Finally, the Post-processing filter identifies peaks in the signal to make it audible.
The c reference code for GSM was provided by the Communications and Operating
Systems Research Group at the Technische Universitt Berlin.

G.2 Code

import streamit.*; short gsm_add(short a, short b)
import streamit.io.;
{
class RPEDecodeFilter extends Filter long ltmp = (long) a + (long) b;
{ if (ltmp >= 32767)
short[] mXmc; {
short[] FAC; return 32767;
short[] xmp; ¥
short[] ep; else
{
short shortify(int a) if (ltmp <= -32768)
{ {
if (a >= 32767) return -32768;
{ i
return 32767; else
T {
else return (short) ltmp;
{ 3
if (a <= -32768) ¥
{ }
return -32768;
X short gsm_sub(short a, short b)
else {
{ long ltmp = (long) a - (long) b;
return (short) a; if (ltmp >= 32767)
¥ {
} return 32767;
¥ i

else

133

if (ltmp <= -32768)

{
return -32768;
¥
else
{
return (short) ltmp;
¥
¥
¥
short gsm_mult(short a, short b)
{
long temp = (long) a * (long) b >> 15;
if (temp >= 32767)
{
return 32767;
¥
else
{
if (temp <= -32768)
{
return -32768;
¥
else
return (short) temp;
¥
¥
}
short gsm_mult_r(short a, short b)
{
long temp = ((long) a * (lomng) b) + 16384;
short answer = (short) (temp >> 15);
return answer;
}
short gsm_abs(short a)
{
short answer;
int temp;
if (a < 0)
{
if (a == -32768)
{
answer = 32767;
¥
else
{
temp = a * -1;
if (temp >= 32767)
{
answer = 32767;
¥
else
if (temp <= -32768)
{
answer = -32768;
3
else
{
answer =
(short) temp;
3
¥
¥
¥
else
{
answer = aj;
return answer;
}

public void init()

{
input = new Channel(Short.TYPE, 15);
output = new Channel(Short.TYPE, 40);
mXmc = new short[13];

xmp = new short[13];
ep = new short[40];

FAC = new short[8];
FAC[O] = 29218;
FAC[1] = 26215;
FAC[2] = 23832;
FAC[3] = 21846;
FAC[4] = 20165;

FAC[5] = 18725;
FAC[6] = 17476;
FAC[7] = 16384;

}
public void work()
{
short i, k, xmaxc, mc, exp, mant,
temp, templ, temp2, temp3;
for (i = 0; i < 13; i++)
{
mXmc[i] = input.popShort();
¥
xmaxc = input.popShort();
mc = input.popShort();
exp = 0;
if (xmaxc > 15)
{
exp = gsm_sub(shortify(xmaxc >> 3),
(short) 1);
3
mant = gsm_sub(xmaxc, shortify(exp << 3));
if (mant == 0)
exp = -4;
mant = 7;
¥
else
{
while (mant <= 7)
{
mant = shortify(mant << 1 | 1);
exp--=;
}
mant = gsm_sub(mant, (short) 8);
3
templ = FAC[mant];
temp2 = gsm_sub((short) 6, exp);
temp3 = shortify(l << gsm_sub(temp2, (short) 1));
for (i = 0; i < 13; i++)
{
temp = gsm_sub(shortify (mXmc[i] << 1),
(short) 7);
temp <<= 12;
temp = gsm_mult_r(templ, temp);
temp = gsm_add(temp, temp3);
xmp[i] = shortify(temp >> temp2);
¥
for(k = 0; k < 40; k++)
{
eplk] = 0;
¥
for(i = 0; i < 12; i++)
{
eplmc + (3 * i)] = xmp[il;
¥
for (i = 0; i < 40 ; i++)
{
output .pushShort (ep[il) ;
i

}

class LTPFilter extends Filter
short[] QLB;
short[] drp;

short nrp;

short shortify(int a)

{
if (a >= 32767)
{
return 32767;
¥
else
{

if (a <= -32768)
return -32768;

else

134

return (short) a;

¥

short gsm_add(short a, short b)

{
long ltmp = (long) a + (long) b;
if (ltmp >= 32767)
{
return 32767;
T
else
{
if (ltmp <= -32768)
{
return -32768;
¥
else
{
return (short) ltmp;
3
¥
¥
short gsm_sub(short a, short b)
{
long ltmp = (long) a - (long) b;
if (ltmp >= 32767)
{
return 32767;
¥
else
{
if (ltmp <= -32768)
{
return -32768;
3
else
{
return (short) ltmp;
3
¥
}

short gsm_mult(short a, short b)

{
long temp = (long) a * (long) b >> 15;
if (temp >= 32767)

{
return 32767;
¥
else
{
if (temp <= -32768)
{
return -32768;
3
else
{
return (short) temp;
¥
¥

}

short gsm_mult_r(short a, short b)

long temp = ((long) a * (long) b) + 16384;

short answer = (short) (temp >> 15);
return answer;

}
short gsm_abs(short a)
{
short answer;
int temp;
if (a < 0)
{
if (a == -32768)
{
answer = 32767;
¥
else
1

temp = a * -1;
if (temp >= 32767)
{
answer = 32767;
¥
else

{

if (temp <= -32768)
{

answer = -32768;

else

answer =

¥
else
{
answer = aj;
¥
return answer;

¥

public void init()
{

(short) temp;

input = new Channel(Short.TYPE, 162);

output = new Channel(Short.TYPE,
drp = new short[160];
nrp = 40;

QLB = new short[4];
QLB[0] = 3277;
QLB[1] = 11469;
QLB[2] = 21299;
QLB[3] = 32767;

}

public void work()

{
short i, nr, brp, drpp;
short mBcr = input.popShort();
short mNcr = input.popShort();

for (i = 0; i < 160; i++)
{
drp[i] = input.popShort();

nr = mNcr;
if ((mNer < 40) || (mNer > 120))
{

nr = nrp;
nrp = nrj
brp = QLB[mBer];

drpp = 1;
for (i = 121; i < 161; i++)

1);

drpp = gsm_mult_r(brp, drpli - nrl);

output . pushShort (drpp) ;

}
class AdditionUpdateFilter extends Filter

short[] ep;
short[] drp;

short shortify(int a)

{
if (a >= 32767)
{
return 32767;
¥
else
{
if (a <= -32768)
{
return -32768;
¥
else
{
return (short) a;
i
¥
i

short gsm_add(short a, short b)

135

}

long ltmp = (long) a + (long) b;
if (ltmp >= 32767)

{
return 32767;
i
else
{
if (ltmp <= -32768)
{
return -32768;
¥
else
{
return (short) ltmp;
¥
¥

short gsm_sub(short a, short b)

{

¥

long ltmp = (long) a - (long) b;
if (ltmp >= 32767)

{
return 32767;
¥
else
{
if (ltmp <= -32768)
return -32768;
¥
else
{
return (short) ltmp;
¥
}

short gsm mult(short a, short b)

{

}

long temp = (long) a * (long) b >> 15;
if (temp >= 32767)

{
return 32767;
¥
else
{
if (temp <= -32768)
{
return -32768;
3
else
{
return (short) temp;
¥
i

short gsm_mult_r(short a, short b)

{

}

long temp = ((long) a * (long) b) + 16384;
short answer = (short) (temp >> 15);
return answer;

short gsm_abs(short a)

short answer;

int temp;
if (a < 0)
{
if (a == -32768)
{
answer = 32767;
¥
else
{

temp = a * -1;
if (temp >= 32767)

{
answer = 32767;
¥
else
{
if (temp <= -32768)
{
answer = -32768;
}
else
{

answer =

}

(short) temp;

¥
else
{
answer = aj;
¥
return answer;

}

public void init()
{
short i;
input = new Channel(Short.TYPE, 41);
output = new Channel(Short.TYPE, 160);
ep = new short[40];
drp = new short[160 1;
for (i = 0; i < 160 ; i++)
{
drpl[il = 0;
3
}

public void work()
short i, j, k, drpp;

for (i = 0; i < 40; i++)
{
ep[i] = input.popShort();

drpp = input.popShort();

for (j = 121; j < 160; j++)
{
drpl[j] = gsm_add(ep[j - 1211, drpp);

for (k = 0; k < 120; k++)
{
drp[k] = drplk + 40];

for (i = 0; i < 160 ; i++)
{
output .pushShort (drp[il);
¥

class ReflectionCoeffLARppInternal extends Filter

{

136

short shortify(int a)

{
if (a >= 32767)
{
return 32767;
¥
else
{
if (a <= -32768)
{
return -32768;
}
else
return (short) a;
¥
¥
¥

short gsm_add(short a, short b)

{
long ltmp = (long) a + (long) b;
if (ltmp >= 32767)

{
return 32767;
¥
else
{
if (ltmp <= -32768)
{
return -32768;
i
else
{
return (short) ltmp;
i
3

}

short gsm_sub(short a, short b)

{
long ltmp = (long) a - (long) b;
if (ltmp >= 32767)
{
return 32767;
¥
else
if (ltmp <= -32768)
{
return -32768;
¥
else
{
return (short) ltmp;
¥
i
}
short gsm_mult(short a, short b)
{
long temp = (long) a * (long) b >> 15;
if (temp >= 32767)
{
return 32767;
T
else
{
if (temp <= -32768)
return -32768;
¥
else
{
return (short) temp;
3
¥
¥
short gsm_mult_r(short a, short b)
{
long temp = ((long) a * (long) b) + 16384;
short answer = (short) (temp >> 15);
return answer;
¥
short gsm_abs(short a)
{
short answer;
int temp;
if (a < 0)
{
if (a == -32768)
{
answer = 32767;
3
else
{
temp = a * -1;
if (temp >= 32767)
{
answer = 32767;
3
else
if (temp <= -32768)
{
answer = -32768;
}
else
answer =
(short) temp;
}
¥
¥
¥
else
{
answer = aj;
return answer;
}

short INVA, MIC, B;

public ReflectionCoeffLARppInternal(short INVA,
short MIC,
short B)

{
super (INVA, MIC, B);
}

public void init(final short INVA, final short MIC,
final short B)

{
input = new Channel(Short.TYPE, 1);
output = new Channel(Short.TYPE, 1);
this.INVA = INVA;
this.MIC = MIC;
this.B = B;

T

public void work()

{
short LARc, LARpp, templ, temp2;
LARc = input.popShort();
templ = shortify((gsm_add(LARc, MIC)) << 10);
temp2 = shortify(B << 10);
templ = gsm_sub(templ, temp2);
templ = gsm_mult_r(INVA, templ);
LARpp = gsm_add(templ, templ);
output . pushShort (LARpp) ;

}

}

class ReflectionCoeffLARpp extends SplitJoin
{
public void init()
{
setSplitter (ROUND_ROBIN());

add(new ReflectionCoeffLARppInternal
((short)13107, (short)-32, (short)0));
add(new ReflectionCoeffLARppInternal
((short)13107, (short)-32, (short)0));
add(new ReflectionCoeffLARppInternal
((short)13107, (short)-16, (short)2048));
add(new ReflectionCoeffLARppInternal
((short)13107, (short)-16, (short)-2560));
add(new ReflectionCoeffLARppInternal
((short)19223, (short)-8, (short)94));
add(new ReflectionCoeffLARppInternal
((short)17476, (short)-8, (short)-1792));
add(new ReflectionCoeffLARppInternal
((short)31454, (short)-4, (short)-341));
add(new ReflectionCoeffLARppInternal
((short)29708, (short)-4, (short)-1144));
setJoiner (ROUND_ROBIN());

}
class ReflectionCoeffLARpInternal extends Filter
{

short shortify(int a)

if (a >= 32767)

{
return 32767;
¥
else
{
if (a <= -32768)
{
return -32768;
¥
else
{
return (short) a;
¥
¥

¥
short gsm_add(short a, short b)
{

long ltmp = (long) a + (long) b;
if (ltmp >= 32767)

{
return 32767;
¥
else
{
if (ltmp <= -32768)
{
return -32768;
¥
else
{

return (short) ltmp;

137

i
}
short gsm_sub(short a, short b)
{
long ltmp = (long) a - (long) b;
if (ltmp >= 32767)
{
return 32767;
¥
else
{
if (ltmp <= -32768)
{
return -32768;
¥
else
{
return (short) ltmp;
¥
i
¥
short gsm_mult(short a, short b)
{
long temp = (long) a * (long) b >> 15;
if (temp >= 32767)
{
return 32767;
¥
else
{
if (temp <= -32768)
{
return -32768;
b
else
{
return (short) temp;
3
¥
¥
short gsm_mult_r(short a, short b)
{
long temp = ((long) a * (long) b) + 16384;
short answer = (short) (temp >> 15);
return answer;
}
short gsm_abs(short a)
{
short answer;
int temp;
if (a < 0)
{
if (a == -32768)
{
answer = 32767;
3
else
{
temp = a * -1;
if (temp >= 32767)
{
answer = 32767;
¥
else
{
if (temp <= -32768)
answer = -32768;
b
else
{
answer =
(short) temp;
¥
¥
¥
T
else
answer = a;
¥
return answer;
}

short mprevLARpp;

public void init()

input = new Channel(Short.TYPE, 1);
output = new Channel(Short.TYPE, 1);
mprevLARpp = 0;

¥

public void work()
{
int i, j, k;
short mLARp, mLARpp;

mLARpp = input.popShort () ;
mLARp = 0;

for (k = 0; k < 13; k++)
{
mLARp=gsm_add(shortify(mprevLARpp >> 2),
shortify (mLARpp >> 2));
mLARp=gsm_add(mLARp,
shortify(mprevLARpp >> 1));
3

for (k = 13; k < 27; kt+)
mLARp = gsm_add(shortify(mprevLARpp >> 1),
shortify(mLARpp >> 1));

for (k = 27; k < 39; k++)
{
mLARp=gsm_add (shortify(mprevLARpp >> 2),
shortify(mLARpp >> 2));
mLARp = gsm_add(mLARp,
shortify (mLARpp >> 1));
3
mprevLARpp = mLARpp;
output .pushShort (mLARp) ;

class ReflectionCoeffLARp extends SplitJoin

{

public void init()

{
setSplitter (ROUND_ROBIN());
for (int i = 0; i < 8; i++)
add(new ReflectionCoeffLARpInternal());
setJoiner (ROUND_ROBIN());
¥

class ReflectionCoeffmrrp extends Filter

{

138

short shortify(int a)

{
if (a >= 32767)
{
return 32767;
3
else
{
if (a <= -32768)
{
return -32768;
¥
else
{
return (short) a;
¥
3
i

short gsm_add(short a, short b)

{
long ltmp = (long) a + (long) b;
if (ltmp >= 32767)
{
return 32767;
¥
else
{
if (ltmp <= -32768)
{
return -32768;
¥
else
{
return (short) ltmp;
3
i

short gsm_sub(short a, short b)

{

}

long ltmp = (long) a - (long) b;
if (ltmp >= 32767)

{
return 32767;
¥
else
{
if (ltmp <= -32768)
{
return -32768;
¥
else
{
return (short) ltmp;
3
¥

short gsm_mult(short a, short b)

{

}

long temp = (long) a * (long) b >> 15;
if (temp >= 32767)

{
return 32767;
¥
else
{
if (temp <= -32768)
{
return -32768;
3
else
{
return (short) temp;
3
i

short gsm mult_r(short a, short b)

{

}

long temp = ((long) a * (long) b) + 16384;
short answer = (short) (temp >> 15);
return answer;

short gsm_abs(short a)

{

}

short answer;

(short) temp;

int temp;
if (a < 0)
{
if (a == -32768)
answer = 32767;
¥
else
{
temp = a * -1;
if (temp >= 32767)
{
answer = 32767;
¥
else
{
if (temp <= -32768)
{
answer = -32768;
}
else
{
answer =
}
¥
¥
¥
else
{
answer = aj;
¥

return answer;

public void init()

{

input = new Channel(Short.TYPE, 1);
output = new Channel(Short.TYPE, 1);

}

public void work()

{

short mLARp, temp, mrrp;
mLARp = input.popShort();
temp = gsm_abs (mLARp);
if (temp < 11059)

temp = shortify(temp << 1);
else if (temp < 20070)

temp = gsm_add(temp, (short) 11059);
else

temp = gsm_add((short) (temp >> 2),

(short) 26112);

mrrp = temp;
if (mLARp < 0)

mrrp = gsm_sub((short)0, mrrp);
output . pushShort (mrrp) ;

class ReflectionCoeffCalc extends Pipeline

{

}

public void init()

{

add(new ReflectionCoeffLARpp());
add(new ReflectionCoeffLARp());
add(new ReflectionCoeffmrrp());

class ReflectionCoeff extends SplitJoin

{

}

public void init()

{

setSplitter (WEIGHTED_ROUND_ROBIN(160, 8));

add(new Filter() {
public void init()

{
this.input = new Channel(Short.TYPE,
160);
this.output = new Channel(Short.TYPE,
40) ;
¥
public void work()
{
int i;
for (i = 0; i < 120; i++)
this.input.popShort();
for (i = 0; i < 40; i++)
this.output.pushShort
(this.input.popShort());
¥

B;

add(new ReflectionCoeffCalc());
setJoiner (WEIGHTED _ROUND_ROBIN(40, 8));

class ShortTermReorder extends Filter

{

139

short mdrp[];
short mrrp[l;

public void init()

{

¥

input = new Channel(Short.TYPE, 8 + 40);

output = new Channel(Short.TYPE, (8 + 1) * 40);

mdrp = new short[40];
mrrp = new short[8];

public void work()

short val;
int i, j;

for (j = 0; j < 40; j++)
mdrp[j] = input.popShort();
for (j = 0; j < 8; j++)
mrrp[j] = input.popShort();

for (i = 0; i < 40; i++)
{
for (j = 0; j < 8; j++)
output . pushShort (mrrp[j1);
output .pushShort (mdrp[il) ;

class ShortTermSynthCalc extends Filter
{
short[] mrrp;

short[] v;

short shortify(int a)

{
if (a >= 32767)
return 32767;
¥
else
{
if (a <= -32768)
{
return -32768;
3
else
{
return (short) a;
¥
¥
}

short gsm_add(short a, short b)

{
long ltmp = (long) a + (long) b;
if (ltmp >= 32767)
{
return 32767;
}
else
{
if (ltmp <= -32768)
{
return -32768;
3
else
{
return (short) ltmp;
¥
¥
}
short gsm_sub(short a, short b)
{
long ltmp = (long) a - (long) b;
if (ltmp >= 32767)
{
return 32767;
i
else
{
if (ltmp <= -32768)
{
return -32768;
¥
else
{
return (short) ltmp;
¥
¥
}

short gsm_mult(short a, short b)

{
long temp = (long) a * (long) b >> 15;
if (temp >= 32767)

{
return 32767;
}
else
{
if (temp <= -32768)
return -32768;
¥
else
{
return (short) temp;
3
}

¥

short gsm_mult_r(short a, short b)
{

}

long temp = ((long) a * (long) b) + 16384;
short answer = (short) (temp >> 15);
return answer;

i
short gsm_abs(short a)
{
short answer;
int temp;
if (a < 0)
{
if (a == -32768)
{
answer = 32767;
¥
else
{
temp = a * -1;
if (temp >= 32767)
{
answer = 32767;
}
else
{
if (temp <= -32768)
{
answer = -32768;
¥
else
{
answer =
(short) temp;
¥
}
¥
3
else
{
answer = aj
¥
return answer;
¥
public void init()
{
input = new Channel(Short.TYPE, 8 + 1);
output = new Channel(Short.TYPE, 1);
mrrp = new short[8];
v = new short[9 1;
for (int i = 0; i < 9 ; i++)
v[il = 0;
i
public void work()
{
int i;
short srij
for (i = 0; i < 8 ; i++)
mrrp[i] = input.popShort();
sri = input.popShort();
for (i = 1; i < 8; i++)
{
sri=gsm_sub(sri,
gsm_mult (mrrp[8-il, v[8-il));
v[9-il=gsm_add(v[8-i],
gsm_mult_r(mrrp[8-il,sri));
¥
v[0] = sri;
output.pushShort(sri);
i

class ShortTermSynth extends Pipeline

{

}

public void init()

add(new ShortTermReorder());
add(new ShortTermSynthCalc());

class LARInputFilter extends Filter

140

short[] mdata;

short[] single_frame;

boolean donepushing;

public short[] mLarParameters;
public short[] mLtpOffset;
public short[] mLtpGain;

public short[] mRpeGridPosition;

public short[] mRpeMagnitude;
public short[] mSequence;

public void initInputArrays() {
mLarParameters = new short[8];
mLtpOffset = new short[4];
mLtpGain = new short[4];
mRpeGridPosition = new short[4];
mRpeMagnitude = new short [4];
mSequence = new short [4%13];

}

public void getParameters(short[] input)
{

int i, j, k, 1, m;

int input_index = 0;

int num_bits = 0;

initInputArrays();
for(i = 0; i < 8; i++)

{

switch(i)

{

case 0:

case 1: num_bits = 6;
break;

case 2:

case 3: num_bits = 5;
break;

case 4:

case 5: num_bits = 4;
break;

case 6:

case T: num_bits = 3;
break;

}

mLarParameters[i] = 0;
for (j = 0; j < num_bits; j++,
input_index++)

{
mLarParameters[i] |=
input [input_index] <<
(num_bits - 1 - i);
¥

for (k = 0; k < 4; kt+)

{
mLtpOffset[k] = 0;
for (1 =0; 1 T; 1++)
{
mLtpOffset[k] |=
input [input_index] <<
6 - 1);
input_index++;
¥

mLtpGain[k] = 0;
for (1 = 0; 1 < 2; 1++)

{
mLtpGain[k] |=
input [input_index] << (1 - 1);
input_index++;
¥

mRpeGridPosition[k] = 0;
for (1 = 0; 1 < 2; 1+4)
{
mRpeGridPosition[k] |=
input [input_index] << (1 - 1);
input_index++;

mRpeMagnitude[k] = 0;
for (1 = 0; 1 < 6; 1++)

mRpeMagnitude[k] |=
input [input_index] << (6 - 1);

input_index++;

¥

for(l = 0; 1 < 13; 1++)

{
mSequence [k+4*1] = 0;
for (m = 0; m < 3; m++)

{
mSequence [k+4%1] |=
input [input_index] <<
2 -m;
input_index++;
i

i
3
¥
public void init()
{
mdata = new short[260 1;
single_frame = new short[260 1;
input = new Channel(Short.TYPE, 260);
output = new Channel(Short.TYPE, 8);
donepushing = false;
¥
public void work()
{
int i, j, k;
for (i = 0; i < 260 ; i++)
{
mdata[i] = input.popShort();
3
if (donepushing)
{
3
for (k = 0; k < 260 ; k++)
{
single_frame[k] = mdatal[k];
¥
getParameters(single_frame) ;
for (i = 0; i < 8; i++)
{
output .pushShort (mLarParameters[i]);
3
donepushing = true;
i

¥
class PostProcessingFilter extends Filter
{

short msr;

short shortify(int a)

{

if (a >= 32767)
{

return 32767;

¥
else
{
if (a <= -32768)
{
return -32768;
i
else
{
return (short) a;
3

¥

short gsm_add(short a, short b)

{
long ltmp = (long) a + (long) b;
if (ltmp >= 32767)
{
return 32767;
¥
else
{
if (ltmp <= -32768)
{
return -32768;
i
else
return (short) ltmp;
¥
¥
¥

short gsm_sub(short a, short b)

long ltmp = (long) a - (long) b;
if (ltmp >= 32767)
{
return 32767;
¥
else
{
if (ltmp <= -32768)

141

}

return -32768;

return (short) ltmp;

short gsm_mult(short a, short b)

{

}

long temp = (long) a * (long) b >> 15;
if (temp >= 32767)

{
return 32767;
¥
else
{
if (temp <= -32768)
return -32768;
3
else
{
return (short) temp;
¥

short gsm_mult_r(short a, short b)

{

¥

long temp = ((long) a * (long) b) + 16384;
short answer = (short) (temp >> 15);
return answer;

short gsm_abs(short a)

{

}

short answer;

int temp;
if (a < 0)
{
if (a == -32768)
{
answer = 32767;
¥
else
{
temp = a * -1;
if (temp >= 32767)
{
answer = 32767;
¥
else
{
if (temp <= -32768)
{
answer = -32768;
3
else
{
answer =
(short) temp;
¥
}
¥
¥
else
{

answer = a;
¥

return answer;

public void init()

{

}

input = new Channel(Short.TYPE, 1);
output = new Channel(Short.TYPE, 1);
msr = 0;

public void work()

{

int a;
short i, k, temp;

temp = input.popShort();
temp = gsm_add(temp, gsm_mult_r(msr,

(short) 28180));
msr = temp;

}

temp = gsm_add(temp, temp);

temp = shortify(temp / 8);
temp = gsm_mult(temp, (short)8);

output.pushShort (temp) ;

class LTPInputFilter extends Filter

{

142

short[] mdata;

short[] single_frame;

boolean donepushing;

public short[] mLarParameters;
public short[] mLtpOffset;
public short[] mLtpGain;

public short[] mRpeGridPosition;
public short[] mRpeMagnitude;
public short[] mSequence;

public void initInputArrays() {
mLarParameters = new short[8];
mLtpOffset = new short[4];
mLtpGain = new short[4];
mRpeGridPosition = new short[4];
mRpeMagnitude = new short[4];
mSequence = new short[4*13];

}

public void getParameters(short[] input)
{

int i, j, k, 1, m;

int input_index = 0;

int num_bits = 0;

initInputArrays();
for(i = 0; i < 8; i++)

{
switch(i)
{
case 0:
case 1: num_bits = 6;
break;
case 2:
case 3: num_bits = 5;
break;
case 4:
case b: num_bits = 4;
break;
case 6:
case T: num_bits = 3;
break;
¥
mLarParameters[i] = 0;
for (j = 0; j < num_bits; j++,
input_index++)
{
mLarParameters[i] |=
input [input_index] <<
(num_bits - 1 - i);
¥
¥

for (k = 0; k < 4; k++)

mLtpOffset[k] = 0;
for (1 =0; 1 < 7; 1++)

mLtpOffset[k] |=
input [input_index] << (6
input_index++;
¥
mLtpGain[k] = 0;
for (1 = 0; 1 < 2; 1++)

mLtpGain[k] |=
input [input_index] << (1
input_index++;
¥
mRpeGridPosition[k] = 0;
for (1 = 0; 1 < 2; 1++4)
{
mRpeGridPosition[k] |=

- 1);

- 1);

input [input_index] << (1 - 1);
input_index++;
¥
mRpeMagnitude[k] = 0;
for (1 = 0; 1 < 6; 1++)

{
mRpeMagnitude[k] |=
input [input_index] << (5 - 1);
input_index++;
¥
for(l = 0; 1 < 13; 1++)
{
mSequence [k+4%1] = 0;
for (m = 0; m < 3; m++)
{
mSequence [k+4*1] |=
input [input_index] <<
(2 - m);
input_index++;
i
3

}
public void init()

mdata = new short[260];

single_frame = new short[260 1;
input = new Channel(Short.TYPE, 260);
output = new Channel(Short.TYPE, 8);
donepushing = false;

¥
public void work()
{
int i, j, k;
for (i = 0; i < 260 ; i++)
{
mdatal[i] = input.popShort();
if (donepushing)
{
for (k = 0; k < 260 ; k++)
{
single_frame[k] = mdata[k];
getParameters(single_frame);
for (i = 0; i < 4; i++)
{
output.pushShort (mLtpGain[il);
output . pushShort (mLtpOffset[i]) ;
}
donepushing = true;
}
}
class LTPPipeline extends Pipeline
{
public void init()
{
this.add(new FileReader
("BinarySmallEndianDecoderInputi",
Short.TYPE)) ;
this.add(new LTPInputFilter());
¥
¥
class LARPipeline extends Pipeline
{
public void init()
{
this.add(new FileReader
("BinarySmallEndianDecoderInputl”,
Short.TYPE)) ;
this.add(new LARInputFilter());
¥
¥
class LTPInputSplitJoin extends SplitJoin
{
public void init()
{
this.setSplitter (WEIGHTED_ROUND_ROBIN (0, 1));
this.add(new LTPPipeline());
this.add(new Identity(Short.TYPE));
this.setJoiner (WEIGHTED_ROUND_ROBIN(2, 160));
}
}

class LTPLoopStream extends Pipeline

¢ public void init()
‘ this.add(new LTPInputSplitJoin());
this.add(new LTPFilter());
¥
}

class DecoderFeedback extends FeedbackLoop
{

public void init()

{
this.setDelay(1);
this.setJoiner (WEIGHTED_ROUND_ROBIN (40, 1));
this.setBody(new StupidStream());
this.setSplitter (DUPLICATE ());
this.setLoop(new LTPLoopStream());
i
public short initPathShort(int index)
{
return 0;
¥

class StupidStream extends Pipeline

{
public void init()
{
this.add(new AdditionUpdateFilter());
}
}

class LARInputSplitJoin extends SplitJoin
{

public void init()

{
this.setSplitter (WEIGHTED_ROUND_ROBIN (1, 0));
this.add(new Identity(Short.TYPE));
this.add(new LARPipeline());
this.setJoiner (HEIGHTED_ROUND_ROBIN(160, 8));
}

class RPEInputFilter extends Filter
1{

short[] mdata;

short[] single_frame;

boolean donepushing;

public short[] mLarParameters;
public short[] mLtpOffset;
public short[] mLtpGain;

public short[] mRpeGridPosition;
public short[] mRpeMagnitude;
public short[] mSequence;

public void initInputArrays() {
mLarParameters = new short[8];
mLtpOffset = new short[4];
mLtpGain = new short[4];
mRpeGridPosition = new short[4];
mRpeMagnitude = new short[4];
mSequence = new short[4%13];

¥

public void getParameters(short[] input)
{

int i, j, k, 1, m;

int input_index = 0;

int num_bits = 0;

initInputArrays();
for(i = 0; i < 8; i++)

{

switch(i)
{
case O:
case 1: num_bits = 6;
break;

143

case 2:

case 3: num_bits = 5;
break;

case 4:

case 5: num_bits = 4;
break;

case 6:

case T7: num_bits = 3;
break;

}

mLarParameters[i] = 0;
for (j = 0; j < num_bits; j++,
input_index++)

{
mLarParameters[i] |=
input [input_index] <<
(num_bits - 1 - i);
3

for (k = 0; k < 4; k++)

{
mLtpOffset[k] = 0;
for (1 =0; 1 T; l++)
{
mLtpOffset[k] |=
input [input_index] << (6 - 1);
input_index++;
¥
mLtpGain[k] = 0;
for (1 = 0; 1 < 2; 1+4)
{
mLtpGain[k] |=
input [input_index] << (1 - 1);
input_index++;
3
mRpeGridPosition[k] = 0;
for (1 = 0; 1 < 2; 1++)
mRpeGridPosition[k] |=
input [input_index] << (1 - 1);
input_index++;
¥
mRpeMagnitude[k] = 0;
for (1 = 0; 1 < 6; 1++)
{
mRpeMagnitude [k] |=
input [input_index] << (5 - 1);
input_index++;
¥
for(l = 0; 1 < 13; 1++)
{
mSequence [k+4*1] = 0;
for (m = 0; m < 3; m++)
mSequence [k+4%1] |=
input [input_index] <<
(2 - m;
input_index++;
¥
¥
T

¥

public void init()

{
mdata = new short[260 1;
single_frame = new short[260 1;
input = new Channel(Short.TYPE, 260);
output = new Channel(Short.TYPE, 60);
donepushing = false;

}

public void work()
{

int i, j, k, a;

for (i = 0; i < 260 ; i++)
{
mdata[i] = input.popShort();
i

if (donepushing)
{

for (k = 0; k < 260 ; k++)
{
single_frame[k] = mdata[k];
¥
getParameters(single_frame) ;
for (i = 0; i < 4; i++)

{
for (a = 0; a < 13; a++)
{
output . pushShort
(mSequence[i+4*a]) ;
¥
output .pushShort (mRpeMagnitude [i]) ;
output .pushShort (mRpeGridPosition[il);
¥

donepushing = true;

¥
}
class HoldFilter extends Filter
{
short[] mDrp;
public void init()
{
input = new Channel(Short.TYPE, 160);
output = new Channel(Short.TYPE, 40);
mDrp = new short[160 1;
i
public void work()
{
int i, j;
for (i = 0; i < 160 ; i++)
{
mDrp[i] = input.popShort();
for (j = 0; j < 40; j++)
{
output .pushShort (mDrp[j + 120]);
3
i
¥
class ShortPrinter extends Filter
{
char c;
ShortPrinter (char c2)
{
super (c2);
public void init(char c2)
{
input = new Channel(Short.TYPE, 1);
output = new Channel(Short.TYPE, 1);
this.c = ¢2;
¥
public void work()
{
short a = input.popShort();
output.pushShort(a);
System.out.println(c);
System.out.printlin(a);
i
}

public class Gsm extends StreamIt

{

public static void main(String args[])
{

new Gsm().run(args);

¥

public void init() {
this.add(new FileReader

("BinarySmallEndianDecoderInputl",
Short .TYPE)) ;

144

this.

this.
.add (new

this

this.
this.
this.

add (new
add (new
add (new

add (new
add (new

RPEInputFilter());

RPEDecodeFilter());
DecoderFeedback()) ;

HoldFilter());
LARInputSplitJoin());
ReflectionCoeff());

145

this.add(new ShortTermSynth());
this.add(new PostProcessingFilter());

this.add(new FileWriter
("BinarySmallEndianDecoderQutputi”,
Short .TYPE)) ;

Figure G-1: GSM before partitioning.

146

L CD

Tor AR D

TISITED ROUND. ROTTNOTID

Figure G-2: GSM after partitioning.

_—

ReflectionCoeffmrrp

LTPFilter

Fused

4

LTPInputFilter

L
e
Filter_202_1_567 WEIGHTED Fused LARInputFilter
e e
HoldFilter AdditionUpdateFilter WEIGHTED RPEInputFilter
— r<] =
WEIGHTED ShortTermReorder ShortTermSynthCalc PostProcessingFilter

Figure G-3: GSM layout.

147

KEY
[usefulwork [l Blocked on send or receive R Unused Tile

Figure G-4: GSM execution trace.

148

Appendix H

Vocoder Application

H.1 Description

This benchmark implements a 28-channel Phase Vocoder [37]. A vocoder is a pro-
gram that implements S. Seneff’s Speech Transformation System (Spectrum and/or
Excitation) Without Pitch Extraction. The system implemented here is a method for
independently modifying any or all of the pitch, formant frequencies, or speed of a
wave file. Both the input and output files are wave files. The function of the system
may be selected by modifying the constant parameters in the Constants Interface.

H.2 Code

import streamit.*; T
import streamit.io.¥;
FIRSmoothingFilter (int DFTLen) {

class FIRSmoothingFilter extends Filter { super (DFTLen) ;
int cosWinLength; }
int DFTLen; }
public void init(int DFTLen) { class HanningWindow extends Filter {
this.DFTLen = DFTLen; int length;
cosWinLength = 15;
input = new Channel(Float.TYPE, DFTLen); public HanningWindow(int DFTLen) {
output = new Channel(Float.TYPE, DFTLen); super (DFTLen)
¥ i
public void init(int DFTLen) {
public void work() { this.length = DFTLen;
final int offset = (int) (cosWinLength / 2); input = new Channel(Float.TYPE, 2 * DFTLen);
final float cosWin[] = new float[cosWinLengthl; output = new Channel(Float.TYPE, 2 * DFTLen)
cosWin[0] = 0.1951f; cosWin[1] = 0.3827f; cosWin[2] = 3}
0.5556f;
cosWin[3] = 0.7071f; cosWin[4] = 0.8315f; cosWin[5] = public void work() {
0.9239f; float real = 0;
cosWin[6] = 0.9808f; cosWin[7] = 1.0000f; cosWin[8] = float imag = 0;
0.9808f; //convolution with the series {-1/4, 1/2, -1/4}
cosWin[9] = 0.9239f; cosWin[10] = 0.8315f; cosWin[11] = //first and last have to be dealt with specially
0.7071f; /%% Note that every index is doubled (real and imag) *% [/
cosWin[12] = 0.5556f; cosWin[13] = 0.3827f; cosWin[14] = output.pushFloat ((input.peekFloat (0) -
0.1951F; input.peekFloat(2))/2);
output.pushFloat ((input.peekFloat (1) -
for(int n=0; n < DFTLen; n++) { input.peekFloat(3))/2);

float y = 0;
for(int k = 0; k < cosWinLength; k++) {

//so that when i = 0, k will be at the center for(int i=1; i < length - 1; i++) {
int i = k - offset; int n = i << 1;
if (((n - i) >= 0) & ((n - i) < DFTLen)) real = input.peekFloat(n)/2f;
y += input.peekFloat(n-i) * cosWin[k]; real -= (input.peekFloat(n-2)+input.peekFloat (n+2))/
T 4f;
output . pushFloat (y) ; output .pushFloat (real) ;
} imag = input.peekFloat(n+1)/2f;
imag -= (input.peekFloat(n-1)+input.peekFloat (n+3))/
for(int i=0; i < DFTLen; i++) 4af;
input .popFloat () ; output .pushFloat (imag) ;

149

int n = (length - 1) * 2;

output.pushFloat ((input.peekFloat(n) -
input.peekFloat(n-2))/2);

output .pushFloat ((input.peekFloat(n+1) -

input .peekFloat(n-1))/2);

for(int i=0; i < length; i++) {
input .popFloat(); input.popFloat();

class Deconvolve extends Filter {

}

public void init() {
input = new Channel(Float.TYPE, 2);
output = new Channel (Float.TYPE, 2);
¥

public void work() {
float den = input.popFloat();
float num = input.popFloat();
output .pushFloat (den);
if (den == 0)
output .pushFloat (0f) ;
else
output.pushFloat (num / den);

}

class FilterBank extends SplitJoin {

public void init(final int channels) {
setSplitter (DUPLICATE());

for(int k=0; k <= channels/2; k++) {
//this filter is for the kth range
final float range = (float)
(2 * 3.1415926535898f * k)/channels;
add(new DFTFilter(channels,range));
3

//send real and imaginary parts together
setJoiner (ROUND_ROBIN(2));
¥

FilterBank(int channels) {
super (channels) ;

}

class DFTChannel extends Filter

{

/** DFTFilter expects that the first DFTLen numbers will all be O.

{

*

* OX R X X % X

Thus it can skip the initial calculation, and immediately
steady-state. A more general DFTFilter that

can handle non-0 data values within the first DFTLen numbers
is below, known as DFTChannel. The vocoder system assures
this requirement by adding a delay of DFTLen 0Os to the front
of any data. The system then does an inverse delay to get
rid of the (DFTLen/2 - 1) Os th at precede the actual data.

enter the

*okf
class DFTFilter extends Filter

//the rate by which to deteriorate, assuring stability

float deter;

//since the previous complex value is multiplied by

//the deter each

//time, by the time the last time sample is windowed out it’s
//effect will have been multiplied by deter DFTLen times,
//hence it needs to be multiplied by deter DFTLen before
//being subtracted

float detern;

// float o[l;

int DFTLen;

float range;

private
private
private
private

boolean first = true;
float prevR, prevl;
float nextR, nextI;

float wR, wl; //represents w~”(-k)

public void work() {
float nextVal =
float current =

(float) input.peekFloat (DFTLen);
(float) input.popFloat();

prevR = prevR * deter + (mextVal - (detern * current));
prevl = prevl * deter;

nextR = prevR * wR - prevI * wI;

nextl = prevR * wl + prevI * wR;

prevR = nextR; prevI = nextI;

output .pushFloat (prevR);
output . pushFloat (prevI) ;
¥

public void init(int DFTLength, float _range) {
this.DFTLen = DFTLength;
this.range = _range;
this.deter = 0.999999f;
this.detern = 1;
wR = (float)Math.cos(_range);
wl = (float)-Math.sin(_range);
prevR = 0; prevl = 0;

//need to peek DFTLen ahead of current one
input = new Channel(Float.TYPE, 1, DFTLength+1);
output = new Channel(Float.TYPE, 2);

}

public DFTFilter(int DFTLen, float range) {
super (DFTLen, range);

150

//the rate by which to deteriorate, assuring stability
float deter;

//since the previous complex value is multiplied by

// the deter each time, by the time the last time sample
// is windowed out it’s effect will have been multiplied
// by deter DFTLen times, hence it needs to be multiplied
// by deter"DFTLen before being subtracted

float detern;

int DFTLen;

float range;

private boolean first = true;

private float prevR, prevI;

private float nextR, nextI;

private float wR, wI; //represents w"(-k)

public void work() {
if (first) {

first = false;
//note: this w =
float wkR, wkI;
wkR = (float)Math.cos(range);
wkI = (float)Math.sin(range);
float wkiR, wkil; //this represents w~ (ki)
float nwkiR, nwkil;
wkiR = 1f; wkiI = Of;

w'k, not w™(-k)

for (int i=0; i < DFTLen; i++) {

float nextVal = (float) input.peekFloat(i);
prevR = (prevR + wkiR * nextVal) * deter;
prevl = (prevI + wkil * nextVal) * deter;
nwkiR = wkiR * wkR - wkiI * wkI;
nwkil = wkiR * wkI + wkil * wkR;
wkiR = nwkiR;
wkil = nwkil;
detern *= deter;
¥
¥
float nextVal = (float) input.peekFloat(DFTLen);
float current = (float) input.popFloat();
prevR = prevR * deter + (mextVal - (detern * current));
prevl = prevI * deter;// + (nextVal - (detern * current));
nextR = prevR * wR - prevI * wI;
nextI = prevR * wI + prevI * wR;
prevR = nextR; prevl = nextI;

output .pushFloat (prevR) ;

output .pushFloat (prevI) ;

System.out.println('"range: " + range + " real: " +
prevR + " imag: " + prevI);

}

public void init(int DFTLength, float _range) {
this.DFTLen = DFTLength;

this.range = _range;
this.deter = 0.999999f;
this.detern = 1;

wR = (float)Math.cos(_range);
wI = (float)-Math.sin(_range);
prevR = 0; prevl = 0;

//need to peek DFTLen ahead of current one

input = new Channel(Float.TYPE, 1, DFTLength+1) H
output = new Channel(Float.TYPE, 2);
}

public DFTChannel(int DFTLen, float range) {
super (DFTLen, range);
¥
}
class TransformBank extends SplitJoin {
public void init(final int channels, final int window) {
setSplitter (DUPLICATE());

for(int k=0; k < channels; k++) {
//this filter is for the kth range
final float range =
(float) (2 * 3.1415926535898f * k)/channels;
add (new DFTChannel(window ,range));
}

//send real and imaginary parts together
setJoiner (ROUND_ROBIN(2));
¥

TransformBank(int channels, int window) {
super (channels,window) ;

}
¥

class SumReals extends SplitJoin {

public SumReals(int DFT_LENGTH) {
super (DFT_LENGTH) ;

}

public void init(final int DFT_LENGTH) {
setSplitter (ROUND_ROBIN());
add(new SumRealsRealHandler (DFT_LENGTH));
add(new FloatVoid());
setJoiner (VEIGHTED_ROUND_ROBIN(1,0));

}

class SumRealsRealHandler extends Pipeline {
public SumRealsRealHandler (int DFT_LENGTH) {
super (DFT_LENGTH) ;
}
public void init(final int DFT_LENGTH) {
add(new SplitJoin() {
public void init() {
setSplitter
(WEIGHTED_ROUND_ROBIN
(1,DFT_LENGTH - 2, 1));
add(new Identity(Float.TYPE));
add(new Doubler());
// add(new ConstMultiplier(2.0f));
add(new Identity(Float.TYPE));
setJoiner
(WEIGHTED_ROUND_ROBIN
(1, DFT_LENGTH - 2, 1));
3
b
if (DFT_LENGTH % 2 '= 0) {
add(new Padder(DFT_LENGTH,0,1));

}
add(new SplitJoin() {
public void init() {
setSplitter (ROUND_ROBIN());
add(new Adder((DFT_LENGTH + 1)/2));
add(new Adder((DFT_LENGTH + 1)/2));
setJoiner (ROUND_ROBIN());
3
b
add(new Subtractor());
add(new ConstMultiplier
((float) (1£ / ((DFT_LENGTH - 1) * 2))));

¥
¥
1%x/
class SumReals2 extends Filter {
int length;
public SumReals2(int length) {
super (length) ;

public void init(int len) {
this.length = len;
input = new Channel(Float.TYPE, 2 * lemn);
output = new Channel(Float.TYPE, 1);

public void work() {

float sum = 0;
int i=0;
float first = input.popFloat(); input.popFloat();

for(i=1; i < length - 1; i++) {
if (1 % 2==0)
sum += input.popFloat();
else
sum -= input.popFloat();
input.popFloat () ;

sum += sum; //double the internal omes
sum += first;
if (1 h2==0)
sum += input.popFloat();
else
sum -= input.popFloat();
input.popFloat () ;
sum /= ((length - 1) * 2);
output .pushFloat (sum) ;

¥

class MagnitudeStuff extends Pipeline implements Constants {
public void init(final int DFTLen,
final int newLen, final float speed) {
if (DFTLen != newLen) {
add(new SplitJoin() {
public void init() {
setSplitter (DUPLICATE());
add(new FIRSmoothingFilter(DFTLen));
add(new Identity(Float.TYPE));
setJoiner (ROUND_ROBIN());
}
B;
add(new Deconvolve());
add(new SplitJoin() {
public void init() {
setSplitter (ROUND_ROBIN());
add(new Duplicator
(DFT_LENGTH_REDUCED,
NEW_LENGTH_REDUCED)) ;
add(new Remapper
(DFT_LENGTH_REDUCED,
NEW_LENGTH_REDUCED)) ;
setJoiner (ROUND_ROBIN()) ;
¥
b
add(new Multiplier());
}
if (speed != 1.0) {
add(new SplitJoin() {
public void init() {
setSplitter (ROUND_ROBIN());
for(int i=0; i < DFTLen; i++) {
add(new Remapper
(n_LENGTH, m_LENGTH));
i
setJoiner (ROUND_ROBIN());
i
b
} else {
add(new Identity(Float.TYPE));
}
i

MagnitudeStuff(final int DFTLen, final int newLen,
final float speed) {
super (DFTLen, newLen, speed);

}

class Multiplier extends Filter {
public void init() {
input = new Channel(Float.TYPE, 2);
output = new Channel(Float.TYPE, 1);
¥

public void work() {
output .pushFloat (input.popFloat () * input.popFloat());
T
}

class ConstMultiplier extends Filter {
float c;
boolean first = true;

public void init(float mult) {
this.c = mult;
input = new Channel(Float.TYPE, 1);
output = new Channel(Float.TYPE, 1);

151

3} public void init() {
input = new Channel(Float.TYPE, 1);

public void work() { output = new Channel(Float.TYPE, 1);
output .pushFloat (input.popFloat() * c); previous = Of;
} estimate = Of;
i
ConstMultiplier(float <) {
super (c) ; public void work() {
¥ float unwrapped = input.popFloat();
} unwrapped += estimate;
float delta = unwrapped - previous;
class Accumulator extends Filter { while (delta > 2 * Math.PI * (11f / 16£)) {
float val = 0; unwrapped -= 2 * Math.PI;
public Accumulator() {} delta -= 2 * Math.PI;
public void init() { estimate -= 2 * Math.PI;
input = new Channel(Float.TYPE, 1); 3}
output = new Channel(Float.TYPE, 1); while (delta < -2 * Math.PI * (11f / 16f)) {
¥ unwrapped += 2 * Math.PI;
delta += 2 * Math.PI;
public void work() { estimate += 2 * Math.PI;
val += input.popFloat(); b
output .pushFloat(val); previous = unwrapped;
¥ output .pushFloat (unwrapped) ;
} }
class Doubler extends Filter { PhaseUnwrapper () {
public Doubler() {} super () ;
public void init() { ¥
input = new Channel(Float.TYPE, 1); 3
output = new Channel(Float.TYPE, 1);
} [xx/
class FirstDifference extends Filter {
public void work() { private float prev;
//you are within the work function of doubler
output . pushFloat (input .peekFloat (0) + input.peekFloat(0)); public FirstDifference() {
input.popFloat () ; super () ;
} }
i
public veid init() {
class Summation extends Pipeline { input = new Channel(Float.TYPE, 1, 1);
public Summation(int length) {super(length);} output = new Channel(Float.TYPE, 1);
public void init(final int length) { prev = Of;
if (length == 1) { }
add(new Identity(Float.TYPE));
} else { public void work() {
add(new SplitJoin() { output .pushFloat (input.peekFloat (0) - prev);
public void init() { prev = input.popFloat();
setSplitter (ROUND_ROBIN()); }
add(new Summation((length+1)/2)); }
add(new Summation(length/2));
setJoiner (ROUND_ROBIN()); class InnerPhaseStuff extends Pipeline implements Constants {
3
b; public void init(float c, float speed) {
add(new Adder(2)); add(new PhaseUnwrapper());
} add(new FirstDifference());
} if (c !'=1.0) {
add(new ConstMultiplier(c));
}
if (speed != 1.0) {
class Adder extends Filter { add(new Remapper(n_LENGTH, m_LENGTH));
int N; }
public Adder(int length) { add(new Accumulator());
super (length) ;
} public InnerPhaseStuff(float c, float speed) {
public void init(final int length) { super(c, speed);
N = length; X
input = new Channel(Float.TYPE, length); i
output = new Channel(Float.TYPE, 1);
} class PhaseStuff extends Pipeline implements Constants {
public void work() {
float val = 0; public void init(final int DFTLen,
for(int i=0; i < N; i++) final int newlen, final float c,
val += input.popFloat(); final float speed) {
output . pushFloat(val) ;
} if (speed != 1.0 || c != 1.0) {
¥ add(new SplitJoin() {
public void init() {
class Subtractor extends Filter { setSplitter (ROUND_ROBIN());
public void init() { for(int i=0; i < DFTLen; i++) {
input = new Channel(Float.TYPE, 2); add(new InnerPhaseStuff(c, speed));
output = new Channel(Float.TYPE, 1); }
¥ setJoiner (ROUND_ROBIN());
¥
public void work() { s
output .pushFloat (input .peekFloat (0) - input.peekFloat(1)); if (newLen != DFTLen) {
input.popFloat () ; input .popFloat () ; add(new Duplicator
i (DFT_LENGTH_REDUCED, NEW_LENGTH_REDUCED));
} ¥
} else {
class PhaseUnwrapper extends Filter { add(new Identity(Float.TYPE));
float estimate, previous; 3
i

152

super(oldLen, newlLen);

PhaseStuff (int DFTLen, int newLen, float c, float speed) { T
super (DFTLen, newlLen, c, speed);
¥ public void init(int oldLength, int newLength) {
} this.oldLen = oldLength;
this.newlLen = newLength;
/%% Linear Interpolater just takes two output = new Channel(Float.TYPE, newLength);
neighbouring points and creates input = new Channel(Float.TYPE, oldLength);
* <interp - 1> points linearly between the two *x/ ¥
class LinearInterpolator extends Filter {
int interp; public void work() {
if (newLen <= oldLen) {
public void init(int interpFactor) { int i;
this.interp = interpFactor; for(i=0; i < newLen; i++)
input = new Channel(Float.TYPE, 1,2); output .pushFloat (input.popFloat());
output = new Channel(Float.TYPE, interpFactor); for(i = newlen; i < oldLen; i++) {
3 input .popFloat () ;
public void work() { } else {
float base = input.popFloat(); float origl[] = new float[oldLen];
float diff = input.peekFloat(0) - base; for(int i=0; i < oldLen; i++)
final int goal = interp; origlil = input.popFloat();
for(int i=0; i < newLen; i++)
output . pushFloat (base) ; output .pushFloat (orig[i%oldLen]);
//already pushed 1, so just push another (interp - 1) 3
//floats ¥
for(int i = 1; i < goal; i++) 3
output.pushFloat(base + ((float) i / interp) * diff);
} class RandSource extends Filter
{
LinearInterpolator(int interp) { final int length = 6;
super (interp) ; int i = 0;
} int x = 0;
}
public void work() {
/%% Linear Decimator just passes on one point and pops the next output.pushInt (x);
* decimFactor - 1 *x/ if (i < length)
class Decimator extends Filter { x=2%x+1;
int decim; else
x=(x-1) /2
public void init(int decimFactor) {
this.decim = decimFactor; i++;
input = new Channel(Float.TYPE, decimFactor); if (i == (length * 2)) {
output = new Channel(Float.TYPE, 1); x=1; i = 0;
} 3
¥
public void work() { public void init() {
output .pushFloat (input .popFloat()); output = new Channel(Integer.TYPE, 1);
//already popped 1, so just pop another (interp - 1) ¥
//floats public RandSource() {
for(int goal = decim - 1; goal > 0; goal--) super();
input.popFloat () ; X
} }
Decimator(int decim) { class PlateauSource extends Filter
super (decim) ; {
¥ int length = 6;
¥ int i = 0;
int x = 0;
/%% Remapper is a combination interpolator/decimator. int up = 1;
* It’s goal is to
* map one stream from size n (oldLen) to size m (newLen). public void work() {
* To do this, it calculates [c = gcd(m,n)], interpolates output.pushInt (x);
* linearly by m/c, and then decimates by n/c. if (i == length) {
*x/ i=0;
class Remapper extends Pipeline { if (up == 1) {
P
public void init(int oldLen, int newLen) { } else {
if (newLen == oldLen) {
add(new Identity(Float.TYPE));
} else {
if (newlLen != 1)
add(new LinearInterpolator(newLen));
if (oldLen != 1)
add(new Decimator(oldLen));
} } else {
} i++;
¥
int ged(int a, int b) {
return (b == 0) ? a : gcd(b, a % b); ¥
} public void init(int length) {
this.length = length;
Remapper (int oldLen, int newLen) { output = new Channel(Integer.TYPE, 1);
super (oldLen, newLen); }
} public PlateauSource(int length) {
T super (length) ;
}
class Duplicator extends Filter { }

int oldLen, newLen;
class StepSource extends Filter
Duplicator(int oldLen, int newLen) { {

153

int x, length;
int up;

public void work() {

output .pushInt (x);
if (x length) { up = 0;} else if (x == 0) { up = 1; }
if (up 1) {
x 4= 1;
} else {
x -= 1;
}

}
public void init(int len) {
this.length = len;

this.up = 1;
this.x = 0;
output = new Channel(Integer.TYPE, 1);
¥
public StepSource(int length) {
super (length) ;
}
i
class AddSource extends Filter
{
float x, length;
public void work() {
output .pushFloat(x);
x += length;
}
public void init(float len) {
this.length = len;
output = new Channel(Float.TYPE, 1);
}
public AddSource(float len) {
super (len);
¥
¥

class ModularFilter extends Filter {
float mod;
public void work() {
output .pushFloat (input .popFloat () % med);
}
public void init(float mod) {
this.mod = mod;
output = new Channel(Float.TYPE, 1);
input = new Channel(Float.TYPE, 1);

}

public ModularFilter(float mod) {
super (mod) ;

}

¥

class FunkySource extends Pipeline {
public void init(final float c) {
add(new SplitJoin() {
public void init() {
add(new SineSource(c * 4f));
add(new AddSource(c));
setJoiner (ROUND_ROBIN()) ;
}
b
add(new Filter() {
public void init() {
output = new Channel(Float.TYPE, 1);
input = new Channel(Float.TYPE, 2);
}
public void work() {
output .pushFloat (input.popFloat () +
input.popFloat ());

}
b
¥
public FunkySource(float c) {
super(c);
}

}

class SineSource extends Filter
{
float theta, prev;

public void work() {
prev = prev + theta;
output .pushFloat((float)Math.sin(prev));
}
public void init(float theta) {
this.theta = theta; this.prev = theta * 3.2f;
output = new Channel(Float.TYPE, 1);

public SineSource(float theta) {
super (theta) ;
¥
}

class SineFilter extends Filter

{
float theta;

public void work() {
output.pushFloat ((float)Math.sin(theta*input.popFloat()));
¥
public void init(float theta) {
this.theta = theta;
input = new Channel(Float.TYPE, 1);
output = new Channel(Float.TYPE, 1);
¥
public SineFilter(float theta) {
super (theta) ;
i

class WaveReader extends Filter
{
boolean first = true;
short channels, bitsPerSample;
int size;
public WaveReader() {
}

public void init() {
input = new Channel(Short.TYPE, 22);
output = new Channel(Short.TYPE, 22);
i

short next() {
short current = input.popShort();
output .pushShort (current) ;
return current;

}

int nextInt() {
return (int) (next() &Oxffff) | (mext() << 16);
¥

char[] nextId(char[]l id) {
for(int i=0; i < id.length / 2; i++) {
short current = next();
id[(i << 1)] = (char) (current & O0x7F);
id[(i << 1) + 1] = (char) (current >> 8);
b
return id;

}

public void work() {
if (first) {
first = false;
char GROUP_ID[] = new char[4];
char RIFF_TYPE[] = new char[4];
char CHUNK_ID[] = new char[4];
int chunkSize;

nextId(GROUP_ID);
chunkSize = nextInt();
System.out.println(String.value0f (GROUP_ID));
if (!String.valueOf(GROUP_ID).
equalsIgnoreCase ("RIFF"))
System.exit(-1);
System.out.println("Size: " +
Integer.toHexString(chunkSize));

nextId(RIFF_TYPE);
System.out.println(String.value0Of (RIFF_TYPE)) ;
if (!String.valueOf (RIFF_TYPE).
equalsIgnoreCase ("WAVE"))
System.exit(-1);

nextId(CHUNK_ID);

while (!String.valueOf(CHUNK_ID).
equalsIgnoreCase ("fmt ")) {
chunkSize = nextInt();
for(int i=0; i < chunkSize / 2; i++)
next();
nextId(CHUNK_ID);
¥

chunkSize = nextInt();
if (next() != 1 || chunkSize != 16) {
System.err.println
("Error: Cannot handle compressed WAVE");
System.exit(-1);

154

}

channels = next();
System.out.println("Channels: " + channels);
int dataRate = nextInt();
System.out.println("Data Rate: " + dataRate + "hz");
int avgBytesPerSec = nextInt();
short blockAlign = next();
short bitsPerSample = next();
System.out.println(bitsPerSample + " % " +
channels + " =" +
blockAlign * 8);
if (bitsPerSample != 16) {
System.err.println
("Error: Can only handle 16 bit samples (" +
bitsPerSample + " bits)");
System.exit(-1);
i

nextId(CHUNK_ID) ;

while (!String.valueOf(CHUNK_ID).
equalsIgnoreCase("data")) {
chunkSize = nextInt();
for(int i=0; i < chunkSize / 2; i++)
next();
nextId(CHUNK_ID);

chunkSize = nextInt();
System.out.println("Size: " +
Integer.toHexString(chunkSize)) ;
} else {
for (int i=0; i < 22; i++)
next();

class WaveHeader extends Filter {

float speed, freq;

public WaveHeader(float speed, float freq) {
super (speed,freq) ; }

public void init(float speed, float freq) {
this.speed = speed; this.freq = freq;
input = new Channel(Short.TYPE, 22);
output = new Channel(Short.TYPE, 22);

¥

short next() {
return input.popShort();

}

void pass() {
send(next());

¥

void send(short s) {
output . pushShort(s) ;
¥
void sendInt(int i) {
send((short) (i & Oxffff));
send((short) (i >> 16));
}
int nextInt() {
return (int) (next() &Oxffff) | (next() << 16);
¥

public void work() {

/** Structure is: "RIFF" file_length "WAVE" "fmt "
* chunk_length compression channels sample_rate data_rate
* bytes_per_frame bits_per_sample 'data" length
**/

pass(); pass(); //"RIFF"

int file_length = nextInt();

//file_length is data chunk + 36 bytes of header info

file_length = (int) Math.round((file_length - 36)* speed)

+ 36;

sendInt (file_length);

pass(); pass(); //"WAVE"

pass(); pass(); //"fmt "

pass(); pass(); //fmt chunk_length; must be 16

pass(); //compression; must be 1

pass(); //channels; for now, assuming 2 channels

pass(); pass(); //sample_rate; don’t care about it

pass(); pass(); //data_rate; should be same

//same bytes_per_frame and bits_per_sample (16)

pass(); pass();

pass(); pass(); //"data"

int samples = nextInt();

samples = (int) Math.round(samples * speed);

sendInt (samples) ;

class WaveSplitter extends Filter

{

155

boolean first = true;

short channels, bitsPerSample;

int size;

int channel, current;

public WaveSplitter(int c) {
super(c);

}

public void init(int ¢) {
this.channel = c¢; this.current = 0;
input = new Channel(Short.TYPE, 1);
output = new Channel(Short.TYPE, 1);
¥

short next() {
short temp = input.popShort();
output . pushShort (temp) ;
return temp;

¥

int nextInt() {
return (int) (next() &Oxffff) | (mext() << 16);
}

char[] nextId(char[]l id) {
for(int i=0; i < id.length / 2; i++) {
short current = next();
id[(i << 1)] = (char) (current & 0x7F);
id[(i << 1) + 1] = (char) (current >> 8);
b
return id;

}

public void work() {
if (first) {
first = false;
char GROUP_ID[] = new char[4];
char RIFF_TYPE[] = new char[4];
char CHUNK_ID[] = new char[4];
int chunkSize;

nextId(GROUP_ID);
chunkSize = nextInt();
System.out.println(String.value0f (GROUP_ID));
if (!String.valueOf(GROUP_ID).
equalsIgnoreCase ("RIFF"))
System.exit(-1);
System.out.println("Size: " +
Integer.toHexString(chunkSize));

nextId(RIFF_TYPE);
System.out.println(String.value0f (RIFF_TYPE));
if (!String.valueOf (RIFF_TYPE).
equalsIgnoreCase ("WAVE"))
System.exit(-1);

nextId(CHUNK_ID);

while (!String.valueOf(CHUNK_ID).
equalsIgnoreCase ("fmt ")) {
chunkSize = nextInt();
for(int i=0; i < chunkSize / 2; i++)
next();
nextId(CHUNK_ID);

chunkSize = nextInt();
if (next() != 1 || chunkSize != 16) {
System.err.println
("Error: Cannot handle compressed");
System.exit(-1);
3

channels = input.popShort();
output .pushShort ((short)1);
System.out.println("Channels: " + channels);
int dataRate = nextInt();
System.out.println("Data Rate: " + dataRate + "hz")
int avgBytesPerSec = nextInt();
short blockAlign = input.popShort();
output .pushShort ((short) (blockAlign / channels));
short bitsPerSample = next();
System.out.println(bitsPerSample + " * " +
channels + " = " +
blockAlign * 8);
if (bitsPerSample != 16) {
System.err.println
("Error: Can only handle 16 bit samples (" +
bitsPerSample + " bits)");

System.exit(-1);
}

nextId(CHUNK_ID);

while (!String.valueOf(CHUNK_ID).
equalsIgnoreCase("data")) {
chunkSize = nextInt();
for(int i=0; i < chunkSize / 2; i++)
next();
nextId(CHUNK_ID);

chunkSize = nextInt();

System.out.println("Size: " +
Integer.toHexString(chunkSize)) ;
}
if (current % channels == channel) {
next();
current++;
¥
else {
current++;
input .popShort () ;
}

}

class Delay extends Filter {
float delayl[];
int length;

public Delay(int N) {
super(N);
}

public void init(int N) {

delay = new float[N];

for(int i=0; i < N; i++)

delay[il = 0;

length = N;

input = new Channel(Float.TYPE, 1);

output = new Channel(Float.TYPE, 1);
}

public void work() {
output .pushFloat(delay[0]);
for(int i=0; i < length - 1; i++)
delay[i] = delay[i+1];
delay[length - 1] = input.popFloat();

}

class FrontPadder extends Filter {
int length, padding;

public FrontPadder(int N, int i) {
super (N, i);

}

public void init(int N, int i) {
length = N;
padding = i;

input = new Channel(Float.TYPE, N);
output = new Channel(Float.TYPE, N+i);
}

public void work() {
for(int i=0;i < padding; i++)
output.pushFloat (0f) ;

for(int i=0; i < length; i++)
output . pushFloat (input .popFloat ());

¥

class Padder extends Filter {
int length, front, back;

public Padder(int N, int i, int j) {
super(N, i, j);

}

public void init(int N, int i, int j) {
length = N;
front = i;
back = j;

input = new Channel(Float.TYPE, N);
output = new Channel(Float.TYPE, N+i+j);

public void work() {
for(int i=0;i < front; i++)
output .pushFloat (0f) ;

for(int i=0; i < length; i++)
output .pushFloat (input.popFloat());

for(int i=0; i < back; i++)
output . pushFloat (0) ;

}

class InvDelay extends Filter {
float delay[];
int length;

public InvDelay(int N) {
super (N) ;
}

public void init(int N) {
delay = new float[N];
length = N;
input = new Channel(Float.TYPE, 1,N+1);
output = new Channel(Float.TYPE, 1);
¥

public void work() {
output . pushFloat (input.peekFloat (length));
input .popFloat () ;
}
}
/** RecToPolar *x*/
class RectangularToPolar extends Filter {
public void init() {
input = new Channel(Float.TYPE, 2);
output = new Channel(Float.TYPE, 2);
i

public void work() {
float x, y;
float r, theta;
x = input.popFloat(); y = input.popFloat();

r = (float)Math.sqrt(x * x + y * y);
theta = (float)Math.atan2(y, x);

output .pushFloat(r);
output .pushFloat (theta) ;

}

class PolarToRectangular extends Filter {
public void init() {
input = new Channel(Float.TYPE, 2);
output = new Channel(Float.TYPE, 2);
¥

public void work() {
float r, theta;
r = input.popFloat(); theta = input.popFloat();

output.pushFloat ((float) (r * Math.cos(theta)));
output .pushFloat ((float) (r * Math.sin(theta)));

}

class IntToFloat extends Filter {
public void init() {
input = new Channel(Integer.TYPE, 1);
output = new Channel(Float.TYPE, 1);
}
public void work() {
output .pushFloat ((float)input.popInt ());
i
}

class IntToDouble extends Filter {
public void init() {
input = new Channel(Integer.TYPE, 1);
output = new Channel(Double.TYPE, 1);
T
public void work() {
output . pushDouble (input.popInt());
¥
}

class ShortToDouble extends Filter {
public void init() {
input = new Channel(Short.TYPE, 1);
output = new Channel(Double.TYPE, 1);

156

public void work() { ¥
output . pushDouble (input.popShort()) ;

} public void init(int lemgth) {
¥ this.N = length;
real= 0;
class DoubleToShort extends Filter { input = new Channel(Float.TYPE, 2);
public void init() { imag = 0;
input = new Channel(Double.TYPE, 1); output = new Channel(Float.TYPE, 2);
output = new Channel(Short.TYPE, 1); }
} public ComplexPrinter(int length) {
public void work() { super (length) ;
output . pushShort ((short) (input.popDouble() + 0.5)); ¥
} }
¥
class ShortPrinter extends Filter {
class Timer extends Filter { public void work() { short i = input.popShort();
private int count, length, num; System.out.println(i); output.pushShort(i);}
private long lastTime; public void init() { input = new Channel(Short.TYPE, 1);
output = new Channel(Short.TYPE, 1);}
public void init(int N) { ShortPrinter() {}
this.length = N; }
this.count = 0; class DoublePrinter extends Filter {
this.num = 0; public void work() { double i = input.popDouble();
input = new Channel(Short.TYPE, 1); System.out.println(i); output.pushDouble(i);}
output = new Channel(Short.TYPE, 1); public void init() { input = new Channel(Double.TYPE, 1);
3 output = new Channel(Double.TYPE, 1);}
DoublePrinter() {}
public void work() {
output . pushShort (input .popShort () ; class FloatPrinter extends Filter {
count++;
if (count == length) { public void work() { float i = input.popFloat();
count = 0; System.out.println(i);
System.out.println (num++) ; output .pushFloat (i);}
} public void init() { input = new Channel(Float.TYPE, 1);
} output = new Channel(Float.TYPE, 1);}
FloatPrinter() {}
public Timer(int N) { }
super (N);
¥ class FloatVoid extends Filter {
} public void work() {input.popFloat();}

public void init() {input = new Channel(Float.TYPE, 1); }
class CountDown extends Filter {
private int length, count;
class ShortVoid extends Filter {

CountDown(int length) { public void work() {input.popShort();2}

super (length) ; public void init() {input = new Channel(Short.TYPE, 1); }
} }
public void init(int len) {

this.length = len; class IntVoid extends Filter {

this.count = len; public void work() {input.popInt();}

input = new Channel(Float.TYPE, 1); public void init() {input = new Channel(Integer.TYPE, 1); }
¥ }
public void work() {

count--; class FloatToShort extends Filter {

input.popFloat () ; public veoid work() {

if (count == 0) { output . pushShort ((short)

count = length; (input.popFloat() + 0.5f));
System.out.println(''done"); ¥

3} public void init() {input = new Channel(Float.TYPE, 1);

¥ output = new Channel(Short.TYPE, 1);}
} }
class IntPrinter extends Filter { class FloatToInt extends Filter {

int x; public void work() {
public void work() { int i = input.popInt(); output.pushInt ((int) (input.popFloat() + 0.5£)); }
System.out.print (x+++" "); public void init() {input = new Channel(Float.TYPE, 1);
System.out.println(i); output = new Channel(Integer.TYPE, 1);}

output.pushInt (i) ;

public void init() { class ShortToFloat extends Filter {
x = 0; public void work() {short i = input.popShort();
input = new Channel(Integer.TYPE, 1); float f = (float) ij;
output = new Channel(Integer.TYPE, 1); output.pushFloat(f); }
public void init() {input = new Channel(Short.TYPE, 1);
IntPrinter() {J output = new Channel(Float.TYPE, 1);}
¥ }
class ComplexPrinter extends Filter { class VocoderSystem extends SplitJoin
int real,imag; {
int N; public void init(int DFTLen, int newlLen, float c,
public void work() { float f = input.popFloat(); float speed) {
System.out.print ((real++ * 2 % Math.PI /N)+" "); setSplitter (ROUND_ROBIN());
System.out.println(f);
output.pushFloat (f) ; add(new MagnitudeStuff(DFTLen, newLen, speed));
f = input.popFloat(); add(new PhaseStuff(DFTLen, newLen, c, speed));
System.err.print ((imag++ * 2 * Math.PI /N)+" ");
System.err.println(f); setJoiner (ROUND_ROBIN());
output.pushFloat (f) ; ¥
if (real
real = 0; VocoderSystem(int DFTLen, int newLen, float c, float speed) {
imag = 0; super (DFTLen, newLen, c, speed);
¥ i

157

}

interface Constants {

//For this system, DFT_LENGTH_NOM is the nominal number of DFT
//coefficients to use when taking the DFT.

//Thus the behaviour of

//the system is that there are DFT_LENGTH_NOM filters between
/10, 2 * pi).

//This code assumes that the DFT_LENGTH_NOM

//is even, so that the

//range (pi, 2 * pi) is just a reflection

//of the range (0, pi).

//This is because the input signal is real and discrete;
//discreteness means the fourier

//transform is periodic with 2 * pi,

//and since the signal is real the

// magnitude of the DFT will be even

//and the phase odd. Since we only

//care about the real output of

//the system, and are only doing the

//inverse DFT for a single sample

//at the center of the window, the phase

//being odd makes no

//difference. Thus with filters in the range

//00, pil, the entire

//fourier transform can be represented, thus

//using approximately

//half the filters and computation.

/** DFT_LENGTH_NOM numbers:

4: can tell when someone is talking, but not recognize
that it’s a voice unless you already know

8: can tell that it’s a person talking, if you already
know the script, you can follow the voice

*
*
*
*
*
*
* 16: can tell that it’s a person, can understand the words,
* can kind of see that the vocoder is doing something

* that may be appropriate

*

*

*

*

*

*

*

32: better output; less grainy, more believable
64: still better output

128: probably the high-point of good output
vs. computation * and size. With 128, it’1l tradeof
quality in output for * time.

public static final int DFT_LENGTH_NOM = 28; //
public static final int DFT_LENGTH = DFT_LENGTH_NOM/2+1; //
public static final float FREQUENCY_FACTOR_ARGS[]1 =
{1f, 1f, 1f, 1.8f, 0.6f};
public static final float FREQUENCY_FACTOR = 0.6f;
public static final float GLOTTAL_EXPANSION_ARGS[] =
{1£, 1f, 1f, 1.2f, 1/1.2f};
public static final float GLOTTAL_EXPANSION = 1/1.2f;
public static final int NEW_LENGTH =
(int) (DFT_LENGTH * GLOTTAL_EXPANSION / FREQUENCY_FACTOR);

//DFT_LENGTH_RED and NEW_LENGTH_RED
//correspond to the reduced ratio

//of DFT_LENGTH to NEW_LENGTH. This
//ratio is needed to avoid
//interpolating and then decimating by
//redundant amounts. Normally

158

}

//these numbers could be calculated by
//taking the GCD of DFT_L and

//NEW_L, but the loop unroller is having
//trouble with it, so they

//currently need to be set by hand.

*

//NOTE: it’s very important that NEW_LENGTH_REDUCED
// DFT_LENGTH is

//a multiple of DFT_LENGTH_REDUCED.

//0therwise the decimation will

//not finish completely each window,

//and the windows will no longer

//be distinct.

public static final int DFT_LENGTH_REDUCED_ARGS[] =
{1,1,1,3,3};

public static final int DFT_LENGTH_REDUCED = 3;
public static final int NEW_LENGTH_REDUCED_ARGS[] =
11,1,1,2,4};

public static final int NEW_LENGTH_REDUCED = 4;
public static final float SPEED_FACTOR_ARGS[] =
{1f, 2f, 0.5f, 1f, 1f};

public static final float SPEED_FACTOR = 1f;

//n_LENGTH and m_LENGTH are similar to DFT_LENGTH_REDUCED and
//NEW_LENGHT_REDUCED above.

//The difference is that these should be

//the reduced ratio of SPEED_FACTOR. So if SPEED_FACTOR is 2,
//m_LENGTH should be 2, and n_LENGTH should be 1.

//1f SPEED_FACTOR

//is 2.5, m_LENGTH should be 5, and n_LENGTH should be 2.

public static final int n_LENGTH_ARGS[] = {1,1,2,1,1};
public static final int n_LENGTH = 1;
public static final int m_LENGTH_ARGS[] = {1,2,1,1,1};

public static final int m_LENGTH = 1;

class Vocoder extends Pipeline implements Constants {

}

public void init() {
add(new FilterBank(DFT_LENGTH_NOM));
add(new RectangularToPolar());
add(new VocoderSystem(DFT_LENGTH, NEW_LENGTH,
FREQUENCY_FACTOR, SPEED_FACTOR));
add(new PolarToRectangular());
add(new SumReals(NEW_LENGTH));

class Main extends StreamIt implements Constants {

public static void main(String args[]) {
new Main().run(args);

¥

public void init() {
add(new StepSource(100));
add(new IntToFloat());
add(new Delay(DFT_LENGTH_NOM));
add(new Vocoder());
add(new InvDelay((DFT_LENGTH -2) * m_LENGTH / n_LENGTH));
add(new FloatToShort());
add(new ShortPrinter());
add(new ShortVoid());

Figure H-1: Vocoder before partitioning.

159

Nt

T SiepSource_6_1443_IntToFloal_9_1446_Delay T3
hot

FIGHTED ROUND_ROBINGLT

e Tor Tase S udin) 5

T SumReals_1541_Fu

Figure H-2: Vocoder after partitioning.

i i

tileO PolarToRectangular Fused Fused
— 3| |

Multiplier WEIGHTED Duplicator Post

i

Fused Fused Fused Fused

| | —
Deconvolve Fused RectangularToPolar Pre_SplitJoin

Figure H-3: Vocoder layout.

160

IHI\||III|III]\III|II{I|III|¥|IIIIIIEIIIEII!IIIII\EIIH'II\%IIHII\II!II\\II\,IIkll IIII|1|II\IIIEIIFII]I\II\EII‘II\,III|IIHII|\III|I

W ||
IIHIIhIIIIIIHIIIIH l

|
AT
| I

[
[T
[l [0 |

1 I O I Il 1l
%IIIIIIIIfIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIEIIMM“‘M

KEY
[1 usefulwork [l Blocked on send or receive R Unused Tile

Figure H-4: Vocoder execution trace.

161

162

Appendix 1
3GPP Application

I.1 Description

This application implements algorithms for data and channel estimation that are de-
ployed in 3GPP TDD handhelds and basestations. This application first calculates
the system matrix, A, using the channel impulse response, h and the user signature
c. Then uses the matrix A to perform pre-withening and matched filtering opera-
tions. These operations require solving a system of linear equations based on (A_h.A)
and are, therefore, very computationally intensive. As a result an efficient matrix
factorization scheme, called Cholsky decomposition is used.

1.2 Code

import streamit.*;

import streamit.io.*; /! add (new chold(N));
}
class SourceAHL extends Pipeline{ }
public SourceAHL(int W, int Q, int N, int K, float[1[] h, class choldAhA extends SplitJoin{// the input is AhA, the
float[1[1 C) {super (W,Q,N,K,h,C);} \\output is cholskey decomposition, N is the dim of Aha
public void init(int W, int Q,int N,int X,float [1[] h, public choldAhA(int N) {super(N);}
float [1[1C){
add (new Sourceh(W,K,h)); public void init(int N){
add (new GenA(W,Q,N,K,C)); setSplitter (DUPLICATE());
add (new AandL (Q*N+W-1,K*N)); add (new chold(N));
} add (new Identity(Float.TYPE));
¥ setJoiner (WEIGHTED_ROUND_ROBIN(N*(N+1)/2,N*(N+1)/2));
¥
class AandlL extends SplitJoin{ }

// the input to this filter is the matrix A(row oriented),
//the out put is matrix A (row oriented) plus its cholskey

//decomposition factor L} class backs extends Filter // this Filter performs back
//substition LTd=y.
public AandL (int M, int N){super(M,N);} {
int N; // +the dimension of the matrix
public void init(int M, int N){ float[]1[]1 LT; // L is the input matrix
setSplitter (DUPLICATE()); float[]l d; // d is the output result
add (new Identity(Float.TYPE)); float[l y; //
add (new GenL(M,N));
setJoiner (WEIGHTED_ROUND_ROBIN (M*N,N*(N+1))); float sum ; //this will be used as a buffer variable
¥
} public backs(int N){ super (N);}
public void init (imt N) {
class GenL extends Pipeline{ input = new Channel(Float.TYPE, N+N*(N+1)/2);

output = new Channel(Float.TYPE, N);
public GenL (int M, int N) {super (M,N);}
y=new float[N];

public void init(int M,int N) { d=new float[N];
add (new RowCol(M,N)); LT=new float[N][NI;
add (new SelfProd(M,N)); //this.LT=LT;
add (new choldAhA(N)); this.N=N;

163

}
public void work() {
for (int i=0; i<N ; i++)

y[il=input.popFloat();

for (int i=0; i<N;i++)

for (int j=i; j<N;j++){
LT[i] [j]=input.popFloat();
¥
for (int i=N-1; i>=0;i--)
{
sum=y [i];
for (int j=i+l; j<N ; j++)
sum -= LT[il[jl*y[j1;
y[il=sum/LT[i][i];
output .pushFloat (y[il);
}

¥

class chold extends Filter
// this Filter performs the cholesky decomposition through
{

int N; // +the dimension of AhA

float[1[1 A; // A is the input matrix

float[]l p; // p is the out put elements on the diagonal
float sum; // sum will be used as a buffer
public chold(int N){ super (N);}
public void init (int N) {
input = new Channel(Float.TYPE, Nx(N+1)/2);
output = new Channel(Float.TYPE, N*(N+1)/2);
A= new float[N][NI;
p=new float[N];
this.N=N;

public void work() {
float sum; // sum serves as a buffer
for (int i=0; i<N;i++)
{
for (int j=0; j<=i ; j++)
A[i]1[j]1=input.popFloat();

}

for (int i=0; i <N ; i++) {
for (int j=i; j<N ; j++) {
sum=A[j1[i];
for (int k=i-1 ; k>=0; k--)
sum-=A[k] [i]1*A[k1[j];

if (i==j)
{
plil=(float)Math.sqrt (sum);
output .pushFloat (p[il);
¥
else
{
ALil[j]=sun/plil;
output .pushFloat (A[il1[j1);
¥

}

class LrL extends SplitJoin{// performes the forward
//substitution
public LrL(int N) {super (N);}
public void init(int N) {
setSplitter
(WEIGHTED_ROUND_ROBIN(N+N* (N+1)/2,N*(N+1)/2));
add (new forw(N));
add (new Identity(Float.TYPE));
setJoiner (WEIGHTED_ROUND_ROBIN (N,N* (N+1)/2));

class AddAHLAhA extends Pipelineq{
// calculates the matrix AH (row oriented?) and L and
// adds them to the tape, plus a copy of AhA
public AddAHLAhA(int W,int Q,int N, int K, float[1[] h,
float[1[1 C) {super (W,Q,N,K,h,C);}
public void init(int W,int Q,int N, int X, float[1[] h,
float [1[1 C) {
add (new SourceAHL(W,Q,N,K,h,C));

}

class vectdouble extends SplitJoin{// duplicates a vector
public vectdouble(int M) {super (M);}
public void init(int M) {
setSplitter (DUPLICATE());
add (new Identity(Float.TYPE));
add (new Identity(Float.TYPE));
setJoiner (ROUND_ROBIN(M));

}

class sourcerSplit extends SplitJoin {
public sourcerSplit(int M,int end,int left)
{/*super(M, end,r) ;*/}

public void init(int M,int end,int left) {
setSplitter (WEIGHTED_ROUND_ROBIN(0,left-M));
add(new Sourcer(M));
add(new Identity(Float.TYPE));
setJoiner (WEIGHTED_ROUND_ROBIN(M, left-M));

}

class multvectdoub extends Pipeline{// duplicates a vector
//and makes a copy
public multvectdoub(int M,int N,int end,int left)
{/*super (M,N,end,r);*/}
public void init(int M, int N,int end,int left) {
add (new sourcerSplit(M,end,left));
add (new multvect(M,N));
add (new vectdouble(N));

class AhrLl extends SplitJoin{// calculates Ahr and
//duplicates L and passes Ahr,L (2 of them) to
//the next level
public AhrLi(int M,int N,int end)
{/*super (M,N,end,r);*/}
public void init(int M,int N,int end) {
setSplitter
(WEIGHTED_ROUND_ROBIN(M* (N+1)-M,Nx(N+1)/2));
add (new multvectdoub(M,N,end,M*(N+1)));
add (new vectdouble(N*(N+1)/2));
set Joiner (WEIGHTED_ROUND_ROBIN(2*N,N*(N+1)));

}

class dsolve extends Pipeline { //input to this pipeline
//is Ahr(N),L(N*N) and the output is d
public dsolve(int N) {super(N);}
public void init(int N){
add (new LrL(N));
add (new backs(N));

}

class split_ahrd extends SplitJoin{

//In:2% Ahr(N)+ 2 * L(N*(N+1)/2)

public split_ahrd(int N) {super (N);}

public void init(int N) {
setSplitter (WEIGHTED_ROUND_ROBIN(N,N*(N+1)+N));
add (new vectdouble(N));
add (new dsolve(N));
setJoiner (WEIGHTED_ROUND_ROBIN(2xN,N)) ;

class Ahrd extends Pipeline{// the input is Ar, L ,
//the output is Ahr,d,AhA
public Ahrd(int M,int N,int end) {
/*super (M,N,end,r);*/}
public void init(int M,int N,int end) {
add (new AhrL1(M,N,end));
add (new split_ahrd(N));

164

}

class AhrdAhA extends SplitJoin{// the input is r,
//L,AhA, the output is Ahr,d,AhA
public AhrdAhA(int M,int N,int end)
{/*super (M,N,end,r);*/}
public void init(int M,int N,int end) {
setSplitter
(WEIGHTED_ROUND_ROBIN (M (N+1)+Nx (N+1)/
2-M,Nx(N+1)/2));
add (new Ahrd(M,N,end));
add (new Identity(Float.TYPE));
setJoiner (WEIGHTED_ROUND_ROBIN (3*N,N*(N+1)/2));

}

class AhrL2 extends SplitJoin{// calculates Ahr
//and duplicates L, suitable for use in the second stage
public AhrL2(int M,int N) {super (M,N);}
public void init(int M,int N) {
setSplitter (WEIGHTED_ROUND_ROBIN (Mx (N+1) ,N*(N+1)/2));
add (new multvect(M,N));
add (new vectdouble(N*(N+1)/2));
setJoiner (WEIGHTED_ROUND_ROBIN (N,N*(N+1)));

}

¥

class Sourcer extends Filter {
int N;
float[] r;

public Sourcer(int N) {super(N, r);}
public void init(int N){
r = new float[6];
r[0]=1;
r[1]1=2;
r[2]=3;
r[3]=4;
r[4]=5;
r[56]=6;
output = new Channel(Float.TYPE, N);
this.N=N;
}
public void work(){
for(int i=0;i<N;i++)
output.pushFloat (r[i]);

}

class SinkD extends Filter{

int N;

public SinkD(int N) {super(N);}

public void init(int N){
input = new Channel(Float.TYPE, N);
this.N=N;

¥

public void work() {
System.out.println("Starting");

for (int i=0; i< N;i++)
{
System.out .println(input.popFloat());
T

}

class error_est extends Filter{
// this class estimates the error in signal detection

int N;
float[] Ahr,d;

public error_est(int N) {super(N);}
public void init(int N){
this.N=N;
input = new Channel(Float.TYPE, 2xN);
output = new Channel(Float.TYPE, 1);
Ahr=new float[N];
d= new float[N];

¥
public void work() {
float sigma=0;
for (int i=0; i< N;i++){
Abr[il=input.popFloat();
b

for (imt i=N-1; i >=0; i--){
d[il=input.popFloat();

¥

for (int i=0; i <N ; i++)
sigma+=(d[i]-Ahr[i])*(d[i]l-Ahr[i]);

output.pushFloat (sigma) ;

class choldsigma extends Filter
// this Filter performs the cholesky decomposition through
{

int N; // the dimension of AhA

float[J[] A; // A is the input matrix

float[]l p; // p is the out put elements on the diagonal
float sum; // sum will be used as a buffer
float sigma;
public choldsigma(int N){ super (N);}
public void init (int N) {
input = new Channel(Float.TYPE, N*(N+1)/2+1);
output = new Channel(Float.TYPE, N*(N+1)/2);
A= new float[N][NI;
p=new float[N];
this.N=N;

public void work() {
float sum; // sum serves as a buffer
sigma=input.popFloat () ;
for (int i=0; i<N;i++)
{
for (int j=0; j<=i ; j++)
A[i]1[jl=input.popFloat();

¥

for (int i=0; i <N ; i++) {
for (imt j=i; j<N ; j++) {
sum=A[j1[il;
for (int k=i-1 ; k>=0; k--)
sum—=A[k] [i]1*A[kI[]1;
if (i==j)

plil=(float)Math. sqrt (sum+sigma/N) ;
output .pushFloat (p[il);

}
else
{
A[i1[j1=sum/p[il;
output .pushFloat (A[il[j1);
¥

}

class error_split extends SplitJoin{

// performs error estimation for the

//first 2%N elements and copies the AhA

public error_split(int N) {super (N);}

public void init(int N) {
setSplitter (WEIGHTED_ROUND_ROBIN (2*N,Nx(N+1)/2));
add (new error_est(N));
add (new Identity(Float.TYPE));
setJoiner (WEIGHTED_ROUND_ROBIN(1,N*(N+1)/2));

}

class Lest extends Pipeline{
// this pipeline estimates the error and
// then performes the cholskey decomp
public Lest(int N) {super (N);}
public void init(int N) {
add (new error_split(N));
add (new choldsigma(N));
add (new vectdouble(Nx(N+1)/2));

class Ahrchold extends SplitJoin{
// copies Ahr to its out put and performes the compensated
// cholesky decomp with Ahr,d,AHA
public Ahrchold(int N) {super (N);}
public void init(int N) {
setSplitter (WEIGHTED_ROUND_ROBIN(N,2#N+Nk(N+1)/2));

165

add (new Identity(Float.TYPE)); * Implements an FIR Filter

add (new Lest(N)); */
setJoiner (WEIGHTED_ROUND_ROBIN(N,N*(N+1)));
¥ public class FirFilter extends Filter {
}
int N;
class dcalc extends StreamIt { float COEFF[];
static public void main(String[] t) public FirFilter (float[] COEFF)
{ {
StreamIt test=new dcalc(); super (COEFF);
test.run(t); }
}
public void init(float[] COEFF) {
this.N=COEFF.length;
public void init() { //this.COEFF=COEFF;
int K; this.COEFF=new float[2];
int N; this.COEFF [0]=COEFF[0];
int Q; this.COEFF[1]=COEFF[1];
int W; input = new Channel(Float.TYPE, 1, COEFF.length);
float[1[] h; output = new Channel(Float.TYPE, 1);
float[1[1 C; ¥
float[] r;
K=2; public void work(){
N=2; float sum=0;
Q=2; for (int i=0; i<N ; i++)
W=2; sum+=input . peekFloat (i) *COEFF [N-1-i] ;
h=new float[2][2]; input.pop();
C=new float[2][2]; output . pushFloat (sum) ;
r=new float[6]; }
h[0][0]=1; }
h[0][1]=3;
h[1]1[0]1=2; class forw extends Filter // this Filter performs
h[1]1[1]=5; //forward substition LY=b.
clol[ol=1; {
CL0]1[1]1=0; public forw(int N) { super (N);}
c[11[0l=1; int N; // +the dimension of the matrix
c[11[1]=2; float[1[1 L; // L is the input matrix
r[0l=1; float[l y; // y is the output result
r[1]=2; // we do not need to store the vector b
r[2]=3; float sum ; //this will be used as a buffer variable
r[3]=4;
r[4]=5; public void init(int N) {
r[5]1=6; input = new Channel(Float.TYPE, N+N*(N+1)/2);
output = new Channel(Float.TYPE, N);
add(new SourceAHL(W,Q,N,K,h,C)); y=new float[N];
add(new AhrdAhA(Q*N+W-1,K*N,KxN*(Q*N+W-1)+ L=new float[N][N];
(K*N) % (K*N+1))); this.N=N;
add(new Ahrchold(K*N)); 3
add(new LrL(K#*N));
add(new backs(K*N)); public void work() {
add(new FileWriter("out",Float.TYPE)); for (int i=0; i <N; i++) {
} y[il=input.popFloat () ;
i 3
/%% for(int i=0; i <N; i++)
% Simple parameterized delay filter. for (int j=i; j<N; j++){
*%/ L[j1[il=input.popFloat();
3
public class DelayPipeline extends Pipeline {
public DelayPipeline(int delay) { for (int i=0; i<N;i++)
super (delay) ; {
}
public void init(int delay) { sum= y[i];
// basically, just add a bunch of unit delay filters for (int j=0; j<i ; j++)
for (int i=0; i<delay; i++) { sum -= LLi][j1*y[j];
this.add(new Delay()); y[il=sum/L[i][i];
} output .pushFloat (y[il);
} ¥
i i
}
/** Character Unit delay **/
class Delay extends Filter { class DelMat extends SplitJoin {
float state; // genrates the proper delays for the convolution of C and h
public void init() {
// initial state of delay is 0 public DelMat(int Q, int N) {super (Q,N);}
this.state = 0.0f;
input = new Channel(Float.TYPE,1); public void init(int Q,int N) {
output = new Channel(Float.TYPE,1); setSplitter (DUPLICATE());
} add(new Identity(Float.TYPE));
public void work() { for(int i=1;idN;i++){
// push out the state and then update add(new DelayPipeline(i*Q));
// it with the input 3
// from the channel setJoiner (ROUND_ROBIN());
output .pushFloat (this.state); }
this.state = input.popFloat(); }
¥
} class ConvMat extends SplitJoin{
// generates the matrix consisting of the convolution
/% //of h and c. reads h column wise as in [1]
* Class FirFilter
* public ConvMat(int K, int W, int Q,int N,float[][] C)

166

{super (X,W,Q,N,C);}
public void init(int K,int W, int Q,int N,float[1[]1 C){
float[] Crow;
setSplitter (ROUND_ROBIN(W));
for (int i=0;i<K;i++){
Crow = new float[Ql;
add(new extFilt(W,W+N*Q-1,Crow));
}
setJoiner (ROUND_ROBIN(W+N*Q-1));

}

class SplitMat extends SplitJoin {
// connects the ConvMat to
// DelMat

public SplitMat(int W,int Q,int K, int N)
{super (W,Q,K,N);}

public void init(int W,int Q,int X, int N){
setSplitter (ROUND_ROBIN(N*Q+W-1));
for (int i=0;i<K;i++)q{
add(new DelMat(Q,N));
}
setJoiner (ROUND_ROBIN(N));

}

class AddZeroEnd extends SplitJoin{
// adds (M-L)zeros to a sequence of length L to make
// it have the right size
public AddZeroEnd(int L, int M) {super (L,M);}
public void init(int L,int M) {
setSplitter (WEIGHTED_ROUND_ROBIN(L,0));
add (new Identity(Float.TYPE));
add (new ZeroGen());
setJoiner (WEIGHTED_ROUND_ROBIN(L,M-L));

}

class AddZeroBeg extends SplitJoin{
// adds M zeros to the begining of a sequence of
//length L to make it have the right size
public AddZeroBeg(int M,int L) {super (M,L);}
public void init(int M,int L) {
setSplitter (WEIGHTED _ROUND_ROBIN(O,L));
add (new ZeroGen());
add (new Identity(Float.TYPE));
setJoiner (WVEIGHTED_ROUND_ROBIN(M,L));

}

class ZeroGen extends Filter{
// this filter just gemerates a sequence of zeros
public void init() {
output = new Channel(Float.TYPE, 1);
}
public void work(){
output . pushFloat (0) ;
}
}

class extFilt extends Pipeline{
// this filter performs the convolution of L
// and then extends the sequenc
public extFilt(int W,int M,float[] impulse)
{super (W,M,impulse);}
public void init(int W, int M,float[] impulse)q{
add (new AddZeroBeg(impulse.length-1,W));
add (new FirFilter(impulse));
add (new AddZeroEnd(W+impulse.length-1,M));

class GenA extends Pipeline{
// the whole matrix A generator, the input is column wise
// and the out put is row wise
public GenA(int W,int Q, int N, int K, float[1[] C)
{super (W,Q,N,K,C);2}
public void init(int W, int Q, int N, int K,
float[1[1 C)
{
add(new ConvMat(K,W,Q,N,C));
add(new SplitMat(W,Q,K,N));

¥

class multvect extends Filter // this Filter performs b=AHr

{

int N; // the dimension of the matrix
float[1[1 AH; // AH is the input matrix

// it is not neccessary to save b. b is

// generated in the order b[0],b[1],b[2]....
float[l =x;//

float sum; //sum will be used as a buffer
int M;

public multvect(int M,int N) { super (M,N);}
public void init (int M,int N) {
input = new Channel(Float.TYPE, M+N*M);
output = new Channel(Float.TYPE, N);
r=new float[M];
AH=new float [N][M];
this.N=N;
this.M=M;

public void work() {
for (int i=0; i<M ; i++)
r[il=input.popFloat () ;
for (int i=0; i<M;i++)
for (int j=0; j<N;j++)
AH[j]1[il=input.popFloat ();
for (int i=0; i<N;i++)

sum=0;

for (int j=0; j<M ; j++)
sum += AH[i][j1*r[j];

output . pushFloat (sum) ;

class RowCol extends SplitJoin
// this Filter converts the elements of an m by n
// matrix from row by row format to column by column format
{
int M;// the number of rows
int N;// the number of columns

public RowCol(int M, int N){ super (M,N);}
public void init (int M, int N) {
setSplitter (ROUND_ROBIN());
for (int i=0; i< N;i++)
add(new Identity(Float.TYPE));
setJoiner (ROUND_ROBIN(M)) ;

class SelfProd extends Filter

// this Filter mutiplies a matrix by its conjugate
//M is the number of rows, N is the number columns,
//elements of the A are read column by column

int M;// the number of rows
int N;// the number of columns

public SelfProd(int M, int N){ super (M,N);}
public void init (int M, int N) {

input = new Channel(Float.TYPE, NxM);

output = new Channel(Float.TYPE, Nx(N+1)/2);

this.M=M;
this.N=N;

public void work() {
float[1[]1 A=new float[M][N];
for (int i=0; i<N;i++)

for (int j=0; j<M;j++)
A[j1[il=input.popFloat () ;

for (int k=0; k<=i ; k++)

{
float prod=0;
for(int j=0; j<M; j++)
prod=prod+ A[j][il*A[j][k]
}
output . pushFloat (prod) ;
i

167

H

Figure I-1: 3GPP before partitioning.

168

FIGHTED_ROUND_ROBINGZZ

Cont

Rowcar

WEIGHTED_ROUND_ROBING 11T

WEIGHTED ROUND._ROBIN(S 5,557

Py
20

Seitprod
‘push=t

Fsed_choldARR
push=20

\/* o

eI

(TED_ROUND_ROBIN(0.10

WEIGHTED._ROUND_ROBIN (20.10]

SEao

1078 _Fused_sourcerSplit

1091_Post_sourcerSplit_1095_1131_1615 mmaler
Iished.

bop-20
peci20

WEIGTTED_ROUND_ROBINGG.T0T

ROBIN (L)

WEIGHTED_ROUND_ROBIN (3.20]

Pt

WEIGHTED_ROUND_ROBING 21]

ST

E TEd Pro Ll 1231 Fused Lrl_1252 Post Lrl_ 1256 1208 1767 backs TTET7S5—t856
push=1
pop-21
et 24
WEIGHTED_ROUND ROBIN (LAY
RREIGHTED_ROUND_ROBINGAY
FEIGHTED_ROUND_ROBINGZ.107
AhrenolT
WEIGHTED_ROUND_ROBING 18]
=

ror_split_1150_Post_error_spiit
=

Taentey_127
push—1

fsii

e

WEIGHTED_ROUND_ROBIN(0.10)

WEIGHTED_ROUND_ROBIN (.20

Tl _1302_Fused_Lrl_1323_Post
push=i
pediza

LrL_1327_1369_1706_backe

Figure 1-2: 3GPP after partitioning.

169

WEIGHTED Fused Sourcel h . Fused

|

SelfProd

WEIGHTED WEIGHTED

WEIGHTED

|

forw . chold WEIGHTED backs

WEIGHTED

Figure I-3: 3GPP layout.

| NN | I

il] () I
L1 [T - (L L[I

| —] 17— 1
| 1 N
UI““ I III (I - |I|| I"IIIIIII]

(. o1
‘ [
[|]
(. I I
I | I
I [| | |
[N
| i il 1

KEY
[1 usefulwork [l Blocked on send or receive B Unused Tile

Figure I-4: 3GPP execution trace.

170

Bibliography

1]
2]
3]

[4]
[5]
[6]

[7]

8]

[9]

[10]

http://wuw.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm.

http://www.cs.berkeley.edu/ “randit/papers/csd-00-1106.pdf.

Lecture notes for University of California, Berkeley’s class CS267.
http://www.cs.berkeley.edu/ demmel/cs267/lecture24/lecture24.html.

Streamit homepage. http://compiler.lcs.mit.edu/streamit.
The Transputer Databook. Inmos Corporation, 1988.

3rd Generation Partnership Project. 3GPP TS 25.201, V3.3.0, Technical Speci-
fication, March 2002.

Gerard Berry and Georges Gonthier. The Esterel Synchronous Programming
Language: Design, Semantics, Implementation. Science of Computer Program-

ming, 19(2), 1992.

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis from
Dataflow Graphs. Kluwer Academic Publishers, 1996.

Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peperstraete. Cyclo-

static dataflow. IEEE Trans. on Signal Processing, 1996.

Shekhar Borkar, Robert Cohn, George Cox, Sha Gleason, Thomas Gross, H. T.
Kung, Monica Lam, Brian Moore, Craig Peterson, John Pieper, Linda Rankin,
P. S. Tseng, Jim Sutton, John Urbanski, and Jon Webb. iWarp: An integrated
solution to high-speed parallel computing. In Supercomputing, 1988.

171

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Eylon Caspi, Michael Chu, Randy Huang, Joseph Yeh, John Wawrzynek, and
André DeHon. Stream Computations Organized for Reconfigurable Execution
(SCORE): Extended Abstract. In Proceedings of the Conference on Field Pro-
grammable Logic and Applications, 2000.

Michael Bedford Taylor et. al. The Raw Microprocessor: A Computational Fabric
for Software Circuits and General Purpose Programs. IEEE Micro vol 22, Issue

2, 2002.

”J. Gaudiot, W. Bohm, T. DeBoni, J. Feo, and P. Mille”. The Sisal Model of
Functional Programming and its Implementation. In Proceedings of the Second

Aizu International Symposium on Parallel Algorithms/Architectures Synthesis,

1997.

Thierry Gautier, Paul Le Guernic, and Loic Besnard. Signal: A declarative
language for synchronous programming of real-time systems. Springer Verlag

Lecture Notes in Computer Science, 274, 1987.

Vincent Gay-Para, Thomas Graf, Andre-Guillaume Lemonnier, and Erhard

Wais. Kopi Reference manual. http://www.dms.at/kopi/docs/kopi.html, 2001.

Thomas Gross and David R. O’Halloron. iWarp, Anatomy of a Parallel Com-
puting System. MIT Press, 1998.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow
programming language LUSTRE. Proc. of the IEEE, 79(9), 1991.

R. Ho, K. Mai, and M. Horowitz. The Future of Wires. In Proc. of the IEEFE,
2001.

C. A. R. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8), 1978.

Inmos Corporation. Occam 2 Reference Manual. Prentice Hall, 1988.

172

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

Ujval J. Kapasi, Peter Mattson, William J. Dally, John D. Owens, and Brian
Towles. Stream scheduling. In Proc. of the 3rd Workshop on Media and Streaming

Processors, 2001.

Michal Karczmarek. Constrained and Phased Scheduling of Synchronous Data
Flow Graphs for the Streamlt Language. Master’s thesis, Department of Electri-
cal Engineering and Computer Science, Massachusetts Institute of Technology,

August 2002.

S. Kirkpatrick, Jr. C.D. Gelatt, and M.P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598), May 1983.

Donald Ervin Knuth. Art of Computer Programming, Volume 3: Sorting and
Searching. Addison-Wesley, 1998.

Andrea S. LaPaugh. Layout Algorithms for VLSI Design. ACM Computing
Surveys, 28(1), March 1996.

J. Lebak. Polymorphous Computing Architecture (PCA) Example Applications
and Description. External Report, Lincoln Laboratory, Mass. Inst. of Technology,
2001.

E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data
flow programs for digital signal processing. IEEE Transactions on Computers,

January 1987.

Edward A. Lee. Overview of the Ptolemy Project. UCB/ERL Technical Mem-
orandum UCB/ERL MO01/11, Dept. EECS, University of California, Berkeley,
CA, March 2001.

Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan
Babb, Vivek Sarkar, and Saman P. Amarasinghe. Space-Time Scheduling of
Instruction-Level Parallelism on a Raw Machine. MIT-LCS Technical Memo
LCS-TM-572, Cambridge, MA, December 1997.

173

[30] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz. Smart
memories: A modular recongurable architecture. In ISCA 2000, Vancouver, BC,

Canada.

[31] David May, Roger Shepherd, and Catherine Keane. Communicating Process
Architecture: Transputers and Occam. Future Parallel Computers: An Advanced

Course, Pisa, Lecture Notes in Computer Science, 272, June 1987.

[32] A. Mitschele-Thiel. Automatic Configuration and Optimization of Parallel Trans-

puter Applications. Transputer Applications and Systems 93, 1993.

[33] David R. O’Hallaron. The ASSIGN Parallel Program Generator. Carnegie Mellon
Technical Report CMU-CS-91-141, 1991.

[34] Todd A. Proebsting and Scott A. Watterson. Filter Fusion. In POPL, 1996.

[35] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany, Abelardo
Lopez-Lagunas, Peter R. Mattson, and John D. Owens. A bandwidth-efficient
architecture for media processing. In International Symposium on Microarchi-

tecture, 1998.

[36] K. Sankaralingam, R. Nagarajan, S.W. Keckler, and D.C. Burger. A Technology-
Scalable Architecture for Fast Clocks and High ILP. University of Texas at
Austin, Dept. of Computer Sciences Technical Report TR-01-02, 2001.

[37] Stephanie Seneff. Speech transformation system (spectrum and/or excitation)
without pitch extraction. Master’s thesis, Massachussetts Institute of Technology,

1980.
[38] Robert Stephens. A Survey of Stream Processing. Acta Informatica, 34(7), 1997.

[39] Michael Taylor. The Raw Prototype Design Document, V3.03. Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Tech-

nology, March 2002.

174

[40]

[41]

[42]

[43]

[44]

Michael Bedford Taylor, Walter Lee, Saman Amarasinghe, and Anant Agarwal.
Scalar Operand Networks: On-Chip Interconnect for ILP in Partitioned Archi-
tectures. Technical Report MIT-LCS-TR-859, Mass. Inst. of Technology, July
2002.

William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamlt: A Lan-
guage for Streaming Applications. In Proceedings of the International Conference

on Compiler Construction, Grenoble, France, 2002.

William Thies, Michal Karczmarek, Michael Gordon, David Maze, Jeremy Wong,
Henry Hoffmann, Matthew Brown, and Saman Amarasinghe. Streamlt: A Com-
piler for Streaming Applications. MIT-LCS Technical Memo LCS-TM-622, Cam-
bridge, MA, 2001.

Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Wal-
ter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua,
Jonathan Babb, Saman Amarasinghe, and Anant Agarwal. Baring it all to soft-

ware: Raw machines. IEEE Computer, 30(9), 1997.

Elliot L. Waingold. SIFt: A Compiler for Streaming Applications. Master’s the-
sis, Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, June 2000.

175

