The Raw Microprocessor:
A Computational Fabric for Software Circuits and General Purpose Programs

Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff,
Fae Ghodrat, Ben Greenwald, Henry Hoffman, Jae-Wook Lee, Paul Johnson, Walter Lee,
Albert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen,
Matt Frank, Saman Amarasinghe, and Anant Agarwal

Laboratory for Computer Science
Massachusetts Institute of Technology

The Raw microprocessor consumes 122 million transistors, executes 16 different load, store, inte-
ger or floating point instructions every cycle, controls 25 GB/s of I/O bandwidth, and has 2 MB of
on-chip, distributed L1 SRAM memory, providing on-chip memory bandwidth of 43 GB/s. Is this
the latest billion-dollar 3,000 man-year processor effort? In fact, Raw was designed and imple-
mented by a handful of graduate students who had little or no experience in microprocessor
implementation.

Our research addresses a key technological problem for microprocessor architects today: how to
leverage growing quantities of chip resources even as wire delays become substantial.

In this article, we demonstrate how the Raw research prototype uses a scalable ISA to attack the
emerging wire delay problem by providing a parallel, software interface to the gate, wire, and pin
resources of the chip.

We argue that an architecture that has direct, first class analogues to all of these physical resources
will ultimately enable the programmer to extract the maximum amount of performance and
energy efficiency in the face of wire delay. We show how existing architectural abstractions like
interrupts, caches, context switches, and virtualization can continue to be supported in this envi-
ronment, even as a new low-latency communication mechanism, the static network, enables new
application domains.

Finally, we conclude with implementation details, a floorplan diagram and pictures of the design.

1.0 Technology Trends

Until recently, the abstraction of a wire as an instantaneous connection between transistors has
shaped our assumptions and architectural designs. In an interesting twist, just as the clock fre-
quency of processors has risen exponentially, the fraction of the chip that is reachable by a signal
in a single clock cycle has at the same time been decreasing exponentially [1]. Thus, the idealized
wire abstraction is becoming less and less representative of reality. Architects now need to explic-
itly account for wire delay in their designs. [12]

Today, it takes on the order of 2 clock cycles to travel from edge-to-edge (about 15 mm) of a 2
gigahertz processor die. Processor manufacturers have been innovating to maintain high clock

rates in the face of the increased impact of wires. This innovation has been at many levels. The
transition from aluminum to copper wires has reduced the resistivity and thus the RC delay of the
wires. Process engineers have also altered the aspect ratio of the wires to reduce resistance.
Finally, the introduction of low-K dielectrics will provide a one-time improvement in wire delay.

Unfortunately, materials and process changes have not been sufficient to contain the effects of
wire delay. Forced to worry about wire delays, designers place the logic elements of their proces-
sors very carefully, placing communicating transistors on critical paths very close to each other.
Where once silicon area was precious, and logic was reused, logic is now freely duplicated (for
example, the adders in the load/store unit and the ALU) to reduce wire lengths.

Even micro-architects are making concessions to wire delay. The architects of the Alpha 21264
were forced to split the integer unit into two physically dispersed clusters, with a one-cycle pen-
alty for communication of results between clusters. Later, the architects of the Pentium 4 were
forced to allocate two pipeline stages solely for the traversal of long wires.

The wire delay problem will only get worse. In the arena of 10 GHz processors, designers are
going to be experiencing latencies of 10 cycles or more across a processor die. It is going to
become increasingly more challenging for existing architectures to turn chip resources into per-
formance in the face of this wire delay.

DRAM
(L4)
— o (—
— T 1 —
i — _
= VAL | BN
y _ spec. \/__ -
execution _ control = 22— _
Ccore —_ —_—

— 1 cycle wire

Figure 1: How today’s micro-architectures will attempt to adapt as effective silicon area and pin
resources increase, and as wire delay becomes worse

2.0 An Evolutionary Response for Current ISA’s

Figure 1 shows our guess at how today’s micro-architectures will attempt to adapt as effective sil-
icon area and pin resources increase, and as wire delay becomes worse. Designers will want to
utilize the increased silicon resources, while at the same time maintaining high clock rates. One

can imagine a high frequency “execution core”, containing a number of nearby, clustered ALUs,
with speculative control guessing which ALU cluster to issue to. Around this core is a host of
pipelined “stuft” -- FPUs (which are less latency sensitive), pre-fetch engines, multilevel cache
hierarchies, speculative control, and other out-of-band logic that’s focused on making the tiny
core in the middle run as efficiently and as fast as possible. And because most conventional ISAs
do not have an architectural analogue to pins, the pins will mostly be allocated to wide, external
memory interfaces that are opaque to the software.

The “ISA gap” between software-usable processing resources and the actual amount of underly-
ing physical resources is going to steadily increase in these designs. Even today, it is easy to tell
that the percentage of silicon that is doing actual computation has been dropping quadratically

over time. The 21464 design, an 8-way issue superscalar, is in excess of 27 times as large as the

original 2-way issue 21064." The “management” dwarfs the area occupied by ALUs, and the per-
formance of these systems is getting increasingly non-deterministic and sensitive to the particu-
lars of the program implementation. Intel, for instance, has produced a 300+ page document that
suggests methods of avoiding stall conditions in the Pentium 4 micro-architecture. Furthermore,
the power consumption, design and verification cost of these increasingly complex architectures
is sky-rocketing.

3.0 The Raw Microprocessor

At MIT, we designed Raw to use a scalable ISA that provides a parallel software interface to the
gate, wire, and pin resources of a chip. We think that an architecture that has direct, first class ana-
logues to all of these physical resources will ultimately enable the programmer to extract the max-
imum amount of performance and energy efficiency in the face of wire delay. In effect, we try to
minimize the ISA gap by exposing the underlying physical resources as architectural entities.

The Raw processor divides the usable silicon area into an array of 16 identical, programmable
tiles. A tile contains an 8-stage in-order single-issue MIPS-derived processor, a 4-stage pipelined
FPU, a 32 KB data cache, two types of communication switches -- static and dynamic, and 96 KB
of memory that can be used for instructions and/or uncached local data. Each tile is sized so that
the amount of time for a signal to travel through a small amount of logic and across the tile is one
clock cycle. We expect that the Raw processors of the future will have hundreds or even thou-
sands of tiles.

These tiles are interconnected by four 32-bit full-duplex on-chip networks, consisting of over
12,500 wires [see Figure 2]. Two of the networks are static (routes are specified at compile time)
and two are dynamic (routes are specified at run time). Each tile is connected only to its four
neighbors. Every wire is registered at the input to its destination tile. This means that the longest

1. Joel Emer’s talk on the 21464 shows it being about 4.5 times as big as the 21264, and
the 21264 is over 6 times as big as the 21064. Emer also states that the SMT capabilities
of this machine do not use appreciably affect the die area.

wire in the system is no greater than the length or width of a tile. This property is very important
for ensuring high clock speeds, and the continued scalability of the architecture.

These on-chip networks are exposed to the software through the Raw ISA, thereby giving the pro-
grammer the ability to directly program the wiring resources of the processor, and to carefully
orchestrate the transfer of data values between the computational portions of the tiles -- much like
the routing in a full-custom chip. Effectively, the wire delay is exposed to the user as network
hops. To go from corner to corner of the processor takes 6 hops, which corresponds to approxi-
mately six cycles of wire delay.

On the edges of the network, the network buses are multiplexed down onto the pins of the chip
[see figure 3]. In order to toggle a pin, the user merely programs the on-chip network to route a
value off the side of the array. Our 1657 pin CCGA (ceramic column-grid array) package provides
us with fourteen full-duplex 7.2 Gb/s I/O ports at 225 MHz. This enormous pin budget often
raises eyebrows among industrial microprocessor designers. The design does not require this
many pins; rather the idea is to illustrate that, no matter how many pins a package has (100 or
100,000), Raw has a scalable architectural mechanism that will allow the programmer to put them

to good use. Fewer pins merely require more multiplexing.

Figure 2: On-chip interconnect in Raw. The Raw microprocessor comprises 16 tiles. Each tile has
some computational resources and four networks.

Computation
Resources

The Raw I/O port is a high-speed, simple (32 data pins, 2 control pins) and flexible word-oriented
abstraction that allows the system designer to ratio the quantities of I/O devices according to the
needs of the application domain. Memory intensive domains can have up to 14 dedicated inter-
faces to DRAM; other applications may not even have external memory (a single ROM hooked
up to any I/O port is sufficient to boot Raw so that it can execute out of the on-chip memory).
These devices can route through the on-chip networks to other devices in order to perform DMA
accesses. Our intention is to hook up arrays of high speed data input devices, including wide-

word A/Ds, to experiment with Raw in domains that are extremely I/O, communication and com-
pute intensive. In fact, one of our hardest problems is finding devices with interfaces that can pro-

duce data at the rates that we want.

Routes off the edge

14 7.2 Gb/s channels
(201 Gb/s Q@ 225 Mhz)

of the chip appear on

the pins.
I
I

Gives user site
direct access

to pin bandwidth.

Figure 3: Pin multiplexing in Raw

Table 1: How Raw converts physical resources into architectural entities

Pgi:iiti?l Er?:rolsu[: Conventional ISA Analogue
Gates Tiles Dynamic mapping of sequential program to small # of ALUs
Wire delay | Network Hops | Dynamic stalls for non-fastpath and mispredicted code
Pins I/O ports Speculative cache-miss handling (prefetching and large line
sizes)

We believe that creating first class architectural analogues to the physical chip resources is a key
technique for minimizing the ISA gap. The conventional superscalar ISA has enjoyed enormous
success because it hides the details of the underlying implementation behind a well-defined com-
patibility layer that matches the underlying implementation substrate fairly well. Much as the
existence of a physical multiplier in a processor merits the addition of a corresponding architec-
tural entity (the multiply instruction!), we believe that the performance,. prominence of gate
resources, wire delay, and pins merit the addition of corresponding architectural entities.

Table 1 contrasts the way the Raw ISA and conventional ISAs expose gates, wire delay, and pins
to the programmer. Because the Raw ISA has more direct interfaces, we think Raw processors
will have more functional units, and will have more flexible and more efficient pin utilization.
High-end Raw processors will probably also have more pins, because the architecture is better at
turning pin count into performance and functionality. Finally, Raw processors will be more pre-
dictable and have higher frequencies because of the explicit exposure of wire delay.

This exposure makes Raw very scalable. Creating subsequent, more powerful, generations of the
processor is very straightforward: we simply stamp out as many tiles and I/O ports as the silicon
die and package allow. The design has no centralized resources, no global buses, and no structures
that get larger as the tile or pin count increases. Finally, the longest wire, the design complexity,
and the verification complexity are all independent of transistor count.

4.0 Application Domains for the Raw Microprocessor

The Raw microprocessor is designed to run computations that form a superset of those run on
today’s general purpose processors. Our goal is to run not just SpecInt and SpecFP, but word-level
computations that require so much performance that they have been consigned to custom imple-
mentations on special purpose ASICs. We reason that if an application can take advantage of the
customized placement and routing, the ample gates, and the programmable pin resources that is
available in an ASIC process, it is likely that the application will benefit to some extent from the
architectural versions of those same resources in the Raw microprocessor. First instance, our first-
cut implementation of a software Gigabit IP router on a 225 MHz 16-tile Raw processor runs over
5 times faster than a hand-tuned implementation on a 700 MHz Pentium III processor. [11] Addi-
tionally, an implementation of video median filter on 128 tiles attained a 57 times speedup over a
single Raw tile.

Unlike an ASIC, however, applications for Raw can be written in a high-level language such as C
or Java, and the compilation process takes minutes, not months. Reflecting the Raw microproces-
sor’s ASIC-like place and route facility, applications for Raw are often termed ““software circuits.”
Sample software circuits with which we are experimenting include gigabit routers, video and
audio processing, I/0 protocols (RAID, SCSI, Firewire) and communications protocols (cell
phones, multiple channel cellular base stations, HDTV, wireless bluetooth, 802.11b and 802.11a).
These protocols could be running as a dedicated embedded host, or as a process on a general pur-
pose machine.

At any point in time, a Raw processor can be running multiple processes simultaneously. A given
process has been allocated some rectangular-shaped number of tiles (corresponding to “physical”
threads which may themselves be virtualized) which correspond to the amount of computation
that is required by that process. When the operating system context-switches in a given process, it
finds a contiguous region of tiles that corresponds to the dimension of the process, and resumes
the execution of the physical threads. This is because the physical threads of the process are likely
to communicate and should be gang scheduled. Continuous or real-time applications can be
“locked down” and will not be context switched.

Raw: How we want to use the tiles

| 4-way threaded

| JAVA program |
k application F

Custom
Datapath
Pipeline

Figure 4: Application mapping onto a Raw microprocessor

Figure 4 shows a set of processes that are being space and time multiplexed on a Raw processor.
Traditional applications like threaded java applications, MPI programs and server applications
utilize Raw as a high-density multiprocessor. The top eight tiles in Figure 4 illustrate a more
novel usage of the tiles. We are streaming in some video data over the pins, performing some sort
of filter operation (the “software circuit”) and streaming it out to a screen. In this situation, the
tiles work together, parallelizing the computation. We assign operations to tiles in a fashion to
minimize congestion and configure the network routes between these operations. This is very
much like the process of designing a customized hardware circuit. In Raw, the customization is
performed by the compiler [4, 5]. The customization can also be done by hand using Raw’s
assembly code.

In order to make all of this work, we need to have a very low-latency network. The faster the net-
work, the greater the range of applications that can be parallelized. Multiprocessor networks
designed for MPI programs have latencies on the order of a 1000 cycles, state of the art networks
have latencies of 30 cycles [10]. The Raw network can route the output of the ALU on one tile to
the input of the ALU of another tile in just 3 cycles. The networks are discussed in more detail
shortly.

5.0 The Raw Tile

The Raw tile design crystallized around the idea of providing low-latency communication for effi-
cient execution of software circuits. At the same time, we wanted to provide scalable versions of
the standard toolbox of useful architectural constructs like data and instruction virtualization,

caching, interrupts, context switches, address spaces, latency-tolerance, and event counting. To
achieve these goals, a Raw tile employs an 8-stage MIPS-derived single issue in-order pipeline
(the “main processor”), a static routing processor that controls the two static networks, and a pair
of dynamic routers. The static router manages the two static networks, which provides the low-
latency communication required for software circuits and other applications with compile-time
predictable communication. The dynamic routers manage the dynamic networks, which are used
for unpredictable operations like interrupts, cache misses and unpredictable communication
between tiles.

5.1 The Main Processor

Our goal in designing the main processor was to explore tightly-coupled network interfaces for
processor pipelines. We wanted to make the network “first class” in every sense. This would max-
imize its utility. The most common network interfaces are memory mapped; other networks use
special instructions for sending and receiving [7,10]. The most aggressive processor networks are
register-mapped -- instructions can target the networks just as easily as registers [8].

Ex: 1lb r25, 0x341(r26)

r2

r2

r27
Network Network
Input Output
FIFOs FIFOs

i JH[= IIITVIl}

P III U IIIF4 IWB

I IF III D III RF
A

i

Figure 5: Tile processor pipeline

Our design takes network integration one step further: we integrate the networks directly into the
bypass paths of the processor pipeline. This makes the network ports truly first-class citizens in
the architecture. Figure 5 shows how this works. Registers 24..27 are mapped to the four physical
networks on the chip. For example, a read from register 24 will actually pull an element from an
input FIFO, while a write to register 24 will send the data word out onto that network. If data is
not available on an input FIFO, or if an output FIFO does not have enough room to hold a result,

the processor will stall in the RF stage. The instruction format also provides a single bit in the
instruction which allows the instruction to specify two output destinations: one network or regis-
ter AND the network implied by $24. This gives the tile the option of keeping local copies of
transmitted values.

The interesting activity occurs on the output FIFOs. Each output FIFOs is connected to each pipe-
line stage. The FIFOs pulls the oldest value out of the pipeline as soon as it is ready, rather than
just at the writeback stage. This decreases the latency of an ALU-to-network instruction by as
much as 4 cycles. This logic is exactly like the standard bypass logic of a processor pipeline
except that it gives priority to older instructions rather than newer instructions.

This discussion of networks lends an interesting way of looking at a modern day processors. The
register file used to be the central communication mechanism between functional units in a pro-
cessor. Starting with the first pipelined processors, the bypass network has become largely respon-
sible for the communication of active values, and the register file is more of a dumping ground or
checkpointing facility for inactive values. The Raw networks are in some sense 2-D bypass net-
works serving as bridges between the bypass networks of separate tiles.

The early bypassing of values to the network has some challenging effects on the operation of the
pipeline. Perhaps most importantly, it changes the semantics of the commit point of the processor.
An instruction that has had a value bypassed out early has created a side-effect which makes it dif-
ficult to squash the instruction in a latter stage. The simplest solution that we have found is to
place the commit point at the execute stage. There is an interesting tension between responsive-
ness to the outside world, and the variety of performance optimization tricks that can be per-
formed at the microarchitectural level.

5.2 The Static Routing Processor

For software circuits, we utilize the two static networks to route values between tiles. The goal of
the static networks is to provide ordered, flow-controlled and reliable transfer of single word
operands between the tiles’ functional units. The operands need to be delivered in order so that the
instructions issued by the tiles are operating on the correct data. They need to be the flow-con-
trolled so that the program remains correct in the face of unpredictable architectural events like
cache misses and interrupts.

The static routing processor is a 5-stage pipeline whose job is to control two routing crossbars and
thus two physical networks. Each crossbar routes values between seven entities (the static router
pipeline, North, East, South, West, Main Processor, and the other crossbar). The static router uses
the same fetch unit design as the main processor, except it fetches a 64-bit instruction word from
the 8 Kword instruction memory. This instruction simultaneously encodes a small command (con-
ditional branches, accesses to a small register file, and decrements) and fourteen routes, one for
each crossbar output. That’s a total of fifteen operations per cycle per tile!

Goal: flow controlled,
in order delivery of operands

fadd r5, r3, r24

Figure 6: Two tiles communicating over the static network

For each word sent between tiles on the static network, there is a corresponding instruction in the
instruction memory of each router that the word will travel through. These words are typically
programmed at compile time, and are cached just like the instructions of the main processor.
Because the static router knows what route will be performed long before the word arrives, the
preparations for the route can be pipelined, and the data word can be routed immediately when it
arrives. The static router provides single-cycle-per-hop latencies and can route two values in each
direction per cycle. Figure 6 shows an example of a two tiles communicating across the static net-
work.

The word leaving the FMUL instruction spends one cycle in each switch, and one cycle in the
decode stage of the target tile, for a total latency of three cycles.

5.3 The Dynamic Networks

Early on in the Raw project, we realized the need for support for dynamic events as well as static
events. This lead to the addition of a pair of dimension-ordered, wormhole-routed dynamic net-
works to the architecture [9]. To send a message on this network, the user injects a single header
word that gives the destination tile (or I/O port), source tile, a user field and the length of the mes-
sage. It then sends up to 31 data words. While this is happening, the message worms its way
through the network to the destination tile. Our implementation of this network takes one cycle
per hop, plus an extra cycle for every hop that turns. (We use an optimization that assumes that
exploits the fact that most routes are straight.) On an uncongested network, the header will reach
the destination in 2+X+1+Y+2 cycles -- two cycles of latency to leave the main processor (this
counts as a hop and a turn), a number of X hops, one hop to turn (if X and Y != 0), a number of Y
hops, and then a hop and a turn to enter the main processor.

One of the major concerns with dynamic network is deadlocks caused by the over-commitment of
buffering resources. Classically, there are two solutions for deadlock: deadlock avoidance, which
involves limiting usage to a set of disciplines that are known not to deadlock, and deadlock recov-
ery, which involves draining the network to some source of copious memory when it appears to be
deadlocked. Avoidance, unfortunately, restricts the generality of the usage of the network, while
Recovery suffers from that fact that it depends on the existence of an out-of-band memory system
(which would not exist if the memory system uses a network that employs deadlock recovery!).
We found a relatively elegant solution -- we use a pair of networks, one (the “memory” network)
has a very restricted usage model that uses deadlock avoidance, and the other (the “general” net-
work) is unrestricted and uses deadlock recovery. If the general network deadlocks, it uses the
memory network to recover.

The memory network is used by trusted clients -- operating system, data cache, interrupts, DMA,
and I/0. These clients are each allocated a base number of unrestricted outstanding requests that

they can have. For large, high performance transfers, the clients can negotiate permission with the
operating system for larger quantities of outstanding requests to particular I/O ports.

The general network is used by untrusted clients who rely on the deadlock recovery mechanisms
hardware to maintain forward progress when deadlock occurs. The software-implemented dead-

lock recovery code programs a configurable counter on the main processor to detect if words have
been waiting for too long on the input [10]. This counter causes an interrupt so that the network

can be drained into DRAM. A separate interrupt then allows the general network input port to be
virtualized, substituting in the data from the DRAM. The general network is virtualized for each

group of tiles that corresponds to a process. The upper left tile is considered to be “Tile 0 for the
purposes of this process. (On a context switch, the contents of the general and static networks are
saved off, and the process and its network data can be restored at any time to a new offset on the

Raw grid.)

The memory network is shared by both software and the hardware caches. The hardware cache,
on a cache miss, merely consults a configurable hash function to map addresses to destination
ports. (The hash function approach is very elegant; it can even allow other tiles to service the
cache misses.) It then issues header words like every other client of the network, and then a
sequence of words that is interpreted by the DRAM controller. On a miss, it will also wait for the
result and then transfers words into the cache memory. The DRAMs are just another I/O device on
the network, and are equally accessible by hardware and software. We’ve found it useful on sev-
eral occasions to write codes that bypass the cache and directly stream data into and out of the
DRAMs.

The Raw processor supports parallel implementation of external (device I/O) interrupts - each tile
can process an interrupt independently of the others. The interrupt controller(s) (implemented by
a dedicated tile, or as part of the support chipset) signals an interrupt to a particular tile by sending
a special one-word message through an I/O port to that tile. The tile’s network hardware checks
for that message and transparently pulls it off and sets the external interrupt bit. When the main
processor services the interrupt, it will query the interrupt controller for the cause of the interrupt
and then contact the appropriate device or DRAM.

6.0 Implementation

The Raw chip is a 16-tile prototype that we are developing using IBM’s SA-27E .15 micron 6-
layer ASIC copper process. Although a tile is only 4 mm x 4mm, we used an 18.2 mm x 18.2 mm
die to allow us to use the high pin-count package. The 1657 CCGA (ceramic column grid array)
package provides us with 1080 HSTL I/O pins. We estimate that the chip consumes 25 watts,
mostly in memory accesses and pins. We quiesce unused functional units and memories and tri-
state unused data I/O pins. We targeted a 225 MHz worst-case frequency (average case is typi-
cally %25 higher), which is competitive with other .15 micron ASIC processors, like Berkeley’s
IRAM, and Tensilica’s customizeable processors.

Up to 64 chips to be combined into any rectangular mesh pattern to create virtual Raw systems of
up to 1024 tiles (data words routed between chips will observe an extra three cycles of latency).
We intend to use this ability to investigate Raw processors with hundreds of tiles. We think that
reaching that point at which a Raw tile is a relatively small portion of total computation will
totally change the way that we compute. One can imagine dedicating entire tiles to prefetching, to
gathering profile data from neighbor tiles, to translating (say for x86 emulation) and dynamically
optimizing instructions, or even to simulating traditional hardware structures like video RAM-
DAC:s.

We pipelined our processor aggressively and treated control paths very conservatively in order to
ensure that we would not have to spend significant periods closing timing in the backend. Despite
this, we found that wire delay inside a tile was still large enough that placement could not be
ignored. We created a library of routines (approximately 7000 lines of code) that automatically
places the majority of the structured logic in the tile. This structured logic is clearly visible in the
tile layout [see Figures 8]. This dropped the cycle time from 8 ns down to 4 ns, which matches
Synopsys’s timing estimates, and gave us a real feel for the size and structure of the architectural
mechanism we had created. The screen captures of the chip and tile placement and the floorplan
(which can be photocopied onto a transparency and overlayed) at the end of this paper show our
handywork. The synthesis, backend processing, and placement infrastructure that we created can
turn our RTL verilog source into a fully-placed chip in approximately 6 hours on one machine.
We used a logic emulator donated by IKOS coupled with the Raw motherboard to boot the RTL
verilog and run test simulations.

A difficult challenge for us was to keep ourselves from the temptations of making the absolutely
highest performance, highest frequency tile processor, and instead concentrate on the research
aspects of the project. The simplistic single-issue 8-stage pipeline uses static branch prediction
and has a branch mispredict penalty of 3 cycles. A two-way issue main processor would have eas-
ily fit into the existing tile and met timing, and generally improved our performance numbers
across the board. However, it would not have helped our research much.

We find that applications with a very small amount (two or three way) of instruction level paral-
lelism (ILP) generally do not benefit much from running on Raw because the inter-tile latency is
great enough that it is cheaper to compute locally then to distribute the computation to a neighbor
tile. The two-way issue main processor, even just a simple VLIW, would have helped us fill out
our parallelism profile for these applications, especially SpecInt benchmarks.

For fairly unstructured or legacy codes with a moderate degree of ILP, we found that our C and
Fortran compiler, RawCC [4], is quite effective at exploiting parallelism by automatically parti-
tioning the programming, placing the operations, and programming the routes on the static switch.
We attain speedups of 6-11 versus a single tile on unmodified SpecFP applications for a 16-tile
Raw processor, and 9-19 for a 32 tiles. When parallelism is limited by the application, we find that
RawCC gets close to the hand-parallelized speedup, but tends to use up to two times as many tiles
in doing so.

For structured applications with a lot of pipelined parallelism or heavy data movement like that
found in software circuits, we’ve found that careful orchestration and layout of operations and
network routes provides us with maximal performance because it maximizes the performance per
tile. For these applications (and for the OS code), we’ve developed a version of gec that allows
the programmer to specify the code and communication on a per-tile basis.

Although this seems laborious, the alternative for these sorts of performance-oriented applications
is an ASIC implementation, which is considerably more work than programming Raw. We are
currently working on a new compiler to provide higher-level compilation tools for this mode of
programming. [5].

The chip was a formidable learning experience for the Raw team overall. We found that the repli-
cated tile design saved us considerable time in all phases of the project: design, RTL verilog cod-
ing, re-synthesis, verification, placement, and backend flow run-times.

7.0 Conclusion

Although it takes a certain imagination to envision a 128 tile Raw processor, or how fast a full-
custom version will clock, or how a less simplistic main processor design will affect the overall
system, it is our hope that the Raw research will provide insight for architects who are looking for
new ways to build processors that leverage the vast resources and mitigate the considerable wire
delays that are on the horizon. We feel that the idea of creating architectural analogues to pins,
gates, and wires will ultimately lead to a class of chips that can truly address a greater range of
applications. We think existing architectural abstractions like interrupts, caches, and virtualization
can continue to be supported in this environment, even as new low-latency communication mech-
anisms like the static network enable effective orchestration of these gates.

Figure 8: Raw Tile - Placed

bist static switch crossbar 2
s static switch control
fetch
static switch (ss) unit P
instruction static switch crossbar 1
SRAM (8Kx64)
dynamic network #1 crossbar
dynamic network #1 control
R
F dynamic network #2 crossbar
Test
net
(work dynamic network #2 control
fuses Bypass network mainprocessor NIBs
integer
multiply — alu critical control bist
floating alu simple —
pmf\l special data LRY
unit . data N
alu medium purpose cache cache bits
event registers tags control
(4Kx38)
. counters fuses fuses bist
bist £
e
t
c
. h
mainprocessor data cache
instruction u SRAM (8Kx32)
SRAM (8Kx32) n
i
t

Figure 9: Tile Floorplan

[1]R. Ho, K. Mai, and M. Horowitz. The Future of Wires. Proceedings of the IEEE, April 2001, pages 490-504.

[2] Waingold et al., Baring it all to Software: Raw Machines, IEEE Computer Magazine, September 1997

[4] Lee et al., Space-Time Scheduling of Instruction-Level Parallelism on a Raw Machine, ASPLOS-VIII, October
1998

[5] Thies et al., StreamIT: A Compiler for Streaming Applications, MIT/LCS TM LCS-TM-620, August 2001.

[7] Marco Annaratone, Emmanuel Arnould, Thomas Gross, H. T. Kung, Monica Lam, Onat Menzilicioglu, and Jon
A. Webb, "The Warp computer: Architecture, implementation and performance," IEEE Transactions on Computers,
36(12):1523--1538, December 1987.

[8] Thomas Gross and David R. O’Halloron. iWarp, Anatomy of a Parallel Computing System. The MIT Press. Cam-
bridge, MA 1998.

[9] Dally, A VLSI Architecture for Concurrent Data Structures, Kluwer Academic Publishers, 1987

[10] Kubiatowicz, Integrated Shared-Memory and Message-Passing Communication in the Alewife Multiprocessor,
PhD thesis, MIT, 1998.

[11] Gleb Chuvpilo, David Wentzlaff, and Saman Amarasinghe. Gigabit IP Routing on

Raw. In Proceedings of the 8th International Symposium on High-Performance

Computer Architecture, Workshop on Network Processors, February 2002.

[12] R. Nagarajan, K. Sankaralingam, D.C. Burger, and S.W. Keckler. “A Design Space Evaluation of Grid Processor
Architectures.” 34th International Symposium on Microarchitecture (MICRO), pp. 40-51, December, 2001.

	1.0 Technology Trends
	2.0 An Evolutionary Response for Current ISA’s
	3.0 The Raw Microprocessor
	Table 1: How Raw converts physical resources into architectural entities

	4.0 Application Domains for the Raw Microprocessor
	5.0 The Raw Tile
	5.1 The Main Processor
	5.2 The Static Routing Processor
	5.3 The Dynamic Networks
	6.0 Implementation
	7.0 Conclusion

