
Efficient Pipelining of Nested Loops:
Unroll-and-Squash

Darin Petkov Randolph Harr Saman Amarasinghe
Massachusetts Institute of

Technology
darin_petkov@alum.mit.edu

Synopsys, Inc.

Massachusetts Institute of
Technology

saman@lcs.mit.edu

Abstract

The size and complexity of current custom VLSI have
forced the use of high-level programming languages to
describe hardware, and compiler and synthesis technology
to map abstract designs into silicon. Since streaming data
processing in DSP applications is typically described by
loop constructs in a high-level language, loops are the
most critical portions of the hardware description and
special techniques are developed to optimally synthesize
them. In this paper, we introduce a new method for
mapping and pipelining nested loops efficiently into
hardware. It achieves fine-grain parallelism even on
strong intra- and inter-iteration data-dependent inner
loops and, by sharing resources economically, improves
performance at the expense of a small amount of
additional area. We implemented the transformation
within the Nimble Compiler environment and evaluated its
performance on several signal-processing benchmarks.
The method achieves up to 2x improvement in the area
efficiency compared to the best known optimization
techniques.

1. Introduction

Growing consumer market needs that require
processing of large amount of data with a limited power or
dollar budget have led to the development of increasingly
complex embedded systems and application-specific IC’s.
As a result, high-level compilation and sophisticated CAD
tools are used to automate and accelerate the intricate
design process. These techniques raise the level of
abstraction and bring the hardware design closer and closer
to the system engineer.

Since loops are the most critical part of many
applications (and, specifically, signal-processing
algorithms [1]), the new generation of CAD tools needs to
borrow from the many traditional compiler transformation
methods in order to synthesize hardware from high-level
languages [3][4][5]. However, direct application of these
techniques fails to produce efficient hardware because the

optimization trade-offs in circuit synthesis from a program
and in software compilation to a microprocessor are quite
different (for example, code size vs. operator and gate
count, register files vs. pipeline registers).

When an inner loop has no cross-iteration data
dependencies, many techniques provide efficient and
effective parallel performance for both microprocessors
and custom VLSI. Unfortunately, a large number of loops
in practical signal-processing applications have strong
loop-carried dependencies. Many cryptographic
algorithms, such as unchained Skipjack and DES for
example, have a nested loop structure where an iteration-
parallel outer loop traverses the data stream while the inner
loop transforms each data block. For instance, Skipjack
(Figure 1) encrypts 8-byte data blocks by running them
through 32 rounds of 4 table-lookups (F) combined with
key-lookups (cv), a number of logical operations and input
selection. The F-lookups form a long cycle that prevents
the encryption loop from being pipelined efficiently. The
outer loop, however, has no strong inter-iteration data-
dependencies, which allows parallel execution of the
separate iterations.

This paper introduces a new loop transformation that
maps nested loops following this pattern into hardware
efficiently. The technique, which we call unroll-and-
squash, exploits the outer loop parallelism and
concentrates more computation in the inner loop. It
improves the performance with little area increase by
allocating the hardware resources without expensive
multiplexing or complex routing required by the traditional
resource sharing methods. The transformation can be
applied to any outer iteration-parallel loop to synthesize
the inner sequential loops in hardware. It was prototyped
using the Nimble Compiler environment [1][2] and
evaluated on several signal-processing benchmarks.
Unroll-and-squash reaches performance comparable to
traditional loop transformations with 2 to 10 times less
area.

 2

w1(n) w2(n) w3(n) w4(n)

w1(n+1) w2(n+1) w3(n+1) w4(n+1)

g1 (high byte) g2 (low byte)

F

F

F

F

g5 (high byte) g6 (low byte)

cv4k

cv4k+1

cv4k+2

cv4k+3

G

Counter
(k)

 (1 to 32)

mux mux

A B AB

Figure 1. Skipjack cryptographic algorithm

The application of the technique is demonstrated using
the simple loop nest in Figure 2. The outer loop walks
through the input data and writes out the result, while the
inner loop runs the data through several rounds of 2
operators, f and g, each completing in 1 clock cycle. The
data-dependence cycle carried by the inner loop makes
pipelining impossible, i. e., inner loop iterations can’t be
executed in parallel. The interval at which consecutive
iterations are started is called the initiation interval (II). As
depicted in the data-flow graph (DFG), the minimum II of
the inner loop is 2 cycles and the total time for the loop
nest is 2¥ M¥ N.

for (i=0; i<M; i++) {

 a = data_in[i];

 for (j=0; j<N; j++) {

 b = f(a);

 a = g(b);

 }

 data_out[i] = a;

}

f

g

DFG

pipeline register

Figure 2. A simple loop nest

Traditional loop optimizations such loop unrolling,
flattening and permutation [13] fail to exploit the
parallelism efficiently and improve the performance for
this loop nest. One successful approach is the application
of unroll-and-jam (Figure 3), which unrolls the outer loop
but fuses the resulting sequential inner loops to maintain a
single inner loop [12]. Unroll-and-jam with a factor of 2
(assuming that M is even) increases the inner loop
operators to 4 (twice the original number). The II is still 2
but the total time is half the original because the outer loop
iteration count is halved – 2¥ (M/2)¥ N=M¥ N. Thus, unroll-
and-jam doubles the performance of the application at the
expense of a doubled operator count.

for (i=0; i<M; i+=2) {

 a1=data_in[i]; a2=data_in[i+1];

 for (j=0; j<N; j++) {

 b1 = f(a1); b2 = f(a2);

 a1 = g(b1); a2 = g(b2);

 }

 data_out[i]=a1; data_out[i+1]=a2;

}

DFG

pipeline register

f

g

f

g

Figure 3. A simple loop nest: unroll -and-jam by 2

A more efficient way to improve the performance in
this example is to apply the unroll-and-squash technique
introduced in this paper (Figure 4). This transformation,
similarly to unroll-and-jam, unrolls the outer loop but
maintains a single inner loop. However, the data sets of the
different outer loop iterations run through the inner loop
operators in a round-robin manner allowing their parallel
execution. Moreover, the original operator count remains
unchanged. Application of unroll-and-squash to the sample
loop nest by a factor of 2 is similar to unroll-and-jam with
respect to the transformation of the outer loop – the
iteration count is halved and 2 outer loop iterations are
processed in parallel. However, the operator count in the
inner loop remains the same as in the original program.
After adding variable shift/rotate statements and pulling
appropriate prolog and epilog out of the inner loop, the
transformation can be expressed correctly in software,
although this may not be necessary if a pure hardware
implementation is pursued. Since the final II is 1, the total
execution time of the loop nest is 1¥ (M/2)¥(2¥ N)=M¥ N
(ignoring the prolog and the epilog). Thus, unroll-and-
squash may almost double the performance without paying
the additional cost of extra operators.

for (i=0; i<M; i+=2) {

 a1=data_in[i]; a2=data_in[i+1];

 b1 = f(a1);

 for (j=0; j<2*N-1; j++) {

 b2 = f(a2); a1 = g(b1);

 a2 = a 1; b1 = b2;

 }

 a1 = g(b1);

 data_out[i]=a2; data_out[i+1]=a 1;

}

DFG

pipeline register

f

g

f

g

Figure 4. A simple loop nest: unrol l-and-squash by 2

It is also possible to combine both transformation
techniques. Unroll-and-jam can be applied with an unroll
factor that matches the desired or available amount of
operators and then unroll-and-squash can be used to
improve further the performance and achieve better
operator utilization.

2. Method

Unroll-and-squash optimizes the performance of 2-loop
nests by executing multiple outer loop iterations in
parallel. The inner loop operators cycle through the
separate outer loop data sets, which allows them to work
simultaneously. This section assumes that unroll-and-

 3

squash is applied to a nested loop pair where the outer loop
iteration count is M, the inner loop iteration count is N, and
the unroll factor is DS (Data Sets).

2.1. Requirements

To apply unroll-and-squash to a set of 2 nested loops
with a given unroll factor DS, it is necessary that the outer
loop can be tiled in blocks of DS iterations and that the
iterations in each block be parallel. The inner loop should
comprise a single basic block and have a constant iteration
count across the outer loop iterations. The latter condition
also implies that the control-flow always passes through
the inner loop.

2.2. Compiler analysis and optimization
techniques

A number of traditional compiler analysis and
optimization methods can be used to determine whether a
loop nest follows the requirements, to convert it to one that
conforms with them, or to increase the efficiency of unroll-
and-squash. Unfortunately, few transformations enlarge
the set of loops that this technique applies to.

One way to eliminate conditional statements in the
inner loop making it a single basic block (one of the
restrictions) is to transform them to equivalent logical and
arithmetic expressions (if-conversion). Another alternative
is to use code hoisting to move the conditional statements
out of the inner-outer loop pair, if possible.

In order for the outer loop to be tiled in blocks of DS
iterations, its iteration count M should be a multiple of DS.
If this condition does not hold, loop peeling may be used
and M mod DS iterations of the outer loop may be
executed independently from the remaining
M-(M mod DS).

The condition that the outer loop iterations are parallel
is much more difficult to determine or overcome.
Moreover, if the outer loop data dependence is an innate
part of the implemented algorithm, it is usually impossible
to apply unroll-and-squash. One approach to eliminate
some of the scalar data dependencies in the outer loops is
induction variable identification – convert all induction
variables in the outer loop to expressions of the loop index.
Another method is modulo variable expansion, which
makes multiple copies of a variable each corresponding to
a different iteration and combines them at the end. For
loops with array references, dependence analysis [14] may
be employed to determine the applicability of the
technique and array privatization may be used to better
exploit the parallelism. Finally, pointer analysis and other
relevant methods (such as converting pointer to array
accesses) may be utilized to determine whether code with
pointer-based memory accesses can be parallelized.

2.3. Transformation

Applying unroll-and-squash by a factor DS to a loop
nest requires an efficient schedule of the functional units in
the inner loop to separate pipeline stages and a
corresponding transformation of the software portion of
the loop. Although a hardware-only implementation of the
inner loop is possible (without a prolog and an epilog in
software), the outer loop still needs to be unrolled and have
a proper variable assignment. The basic steps necessary to
apply unroll-and-squash are listed below:

for (i=0; i<M; i++) {

 a = in[i];

 for (j=0; j<N; j++) {

 b = a + i;

 c = b - j;

 a = (c & 15) * k;

 }

 out[i] = a;

}

+

-

&

*

aij

++

15

k

Figure 5. Unroll -and-squash – building the DFG

• Build the DFG of the inner loop (Figure 5). Live
variables are stored in registers at the top of the graph.

• Transform live variables used in the inner but defined
in the outer loop (registers with no incoming edges)
into cycles (edges from the register back to itself).

• “Stretch” the cycles in the graph so that the backedges
start from the bottom and end in the registers at the top.

• Ignoring the backedges, pipeline the resulting DFG
(Figure 6) producing exactly DS pipeline stages. Empty
stages may be added or pipeline registers may be
removed to adjust the stage count to DS.

• Expand each variable in the nest to DS copies. Some
of the resulting variables may not be necessary later.

• Unroll the outer loop basic blocks (basic blocks that
dominate and post-dominate the inner loop).

+

-

&

*

aij

++

15

+

-

&

*

aij

++

15

stage 1

stage 2

stage 3

stage 4
k k

Figure 6. Stretching cycles and pipelining

• Generate prolog and epilog code to fill and flush the
pipeline (unless the inner loop is implemented purely
in hardware).

• Replace each variable in the inner loop with the copy
(from variable expansion) corresponding to the

 4

pipeline stage that the operator is assigned to. Note
that some new (delay) variables may be needed to
handle expressions split across pipeline registers.

• Add variable shift/rotate to the inner loop. Note that
reverse shift/rotate may be required in the epilog or,
alternatively, a rotated variable assignment may be
used.

The outer loop data sets pass through the pipeline stages
in a round-robin manner. All live variables are saved to
and restored from the appropriate hardware registers
before and after execution.

2.4. Algorithm analysis

The described loop transformation decreases the
number of outer loop iterations from M to M/DS. A
software implementation will increase the inner loop
iteration count from N to DS¥N-(DS-1) and execute some
of the inner loop statements in the prolog and the epilog in
the outer loop. The total iteration count of the loop nest
stays approximately the same as the original – M¥ N. The
total number of executed operators (except the copy
statements that may be free in hardware) stays the same.

There are several factors that need to be considered in
order to determine the optimal unroll factor DS. One of the
main barriers to performance increase is the maximum
number of inner loop pipeline stages. In a software
implementation of the technique this number is limited by
the operator count in the critical path in the DFG or may
be smaller if different operator latencies are taken into
account. A hardware-only implementation bounds the
stage count to the critical path delay divided by the clock
period. The pipeline stage count determines the number of
outer loop iterations that can be executed in parallel and, in
general, the more data sets are processed in parallel, the
better the performance. The unroll factor DS should be
calculated in accordance to the outer loop iteration count
(loop peeling may be required) and the data dependence
analysis discussed in the previous section (larger DS may
eliminate the parallelism).

Another important factor for determining the unroll
amount is the extra area and, consequently, extra power
that comes with large values of DS. Unroll-and-squash
adds only pipeline registers and data feeds between them
and, because of the cycle stretching, most of them can be
packed in groups to form a single shift register. This
optimization may decrease the impact of the
transformation on the area and the power of the design, as
well as make routing easier – no multiplexers are added, in
contrast to traditional hardware synthesis techniques. In
comparison with unroll-and-jam by the same unroll factor,
unroll-and-squash results in less area since the operators
are not duplicated. The trade-off between speed and area is
further illustrated in the benchmark report (Section 4).

3. Implementation

The system presented in this paper was developed and
evaluated within the Nimble Compiler environment [1] [2].
The Nimble Compiler extracts hardware kernels (inner
loops that take most of the execution time) from C
applications and accelerates them on a reconfigurable
coprocessor. It is built upon the SUIF compiler framework
[6]. The target architecture (Agile hardware) couples a
general purpose CPU with a dynamically reconfigurable
coprocessor. Communication channels connect the CPU,
the datapath and the memory hierarchy. The CPU can be
used to implement and execute control-intensive routines
and system I/O, while the datapath provides a large set of
configurable operators, registers and interconnects
allowing acceleration of computation-intensive code by
flexible exploitation of ILP.

4. Experimental results

We compared the performance of unroll-and-squash on
the main computational kernels of several signal-
processing benchmarks to the original loops, pipelined
original loops, and pipelined unroll-and-jammed loops.
The collected data shows that unroll-and-squash is an
effective way to speed up such applications at a relatively
low area cost.

It is important to note that the prototype implements the
registers as regular operators. Considering the fact that
registers can be much smaller, the presented values for
area are conservative and the unroll-and-squash speedup
per area ratio will increase significantly in a final hardware
implementation. Furthermore, many of the registers in the
transformed designs are shift/rotate registers that can be
implemented even more efficiently with minimal
interconnect.

4.1. Benchmarks

The benchmark suit, described in Table 1, consists of
two cryptographic algorithms (unchained Skipjack and
DES) and a filter (IIR). Two different versions of Skipjack
and DES are used. Skipjack-mem and DES-mem are
regular software implementations of the corresponding
crypto-algorithms with memory references. Skipjack-hw
and DES-hw are versions specifically optimized for
hardware – they use local ROM for memory lookups and
domain generators for some bit-level operations. IIR is a
filter implemented on the target platform by modeling
pipelinable floating-point arithmetic operations.

We compare ten different versions of each benchmark –
an original, non-pipelined version, a pipelined version,
unroll-and-squashed versions by factors of 2, 4, 8 and 16,
and, finally, pipelined unroll-and-jammed versions by
factors of 2, 4, 8 and 16. Two memory references per clock

 5

cycle were allowed and no cache misses were assumed.
The latter assumption is not too restrictive for comparison
purposes because the different transformed versions have
similar memory access patterns. Furthermore, a couple of
the benchmarks have been specially optimized for
hardware and have no memory references at all. Some of
the normalized data is presented below along with detailed
analysis.

Benchmark Description

Skipjack-mem Skipjack crypto-algorithm: encryption, software
implementation with memory references

Skipjack-hw
Skipjack crypto-algorithm: encryption, software
implementation optimized for hardware without
memory references

DES-mem DES crypto-algorithm: encryption, SBOX implemented
in software with memory references

DES-hw DES crypto-algorithm: encryption, SBOX implemented
in hardware without memory references

IIR 4-cascaded IIR biquad filter processing 64 points

Table 1. Table 1. Benchmark description.

4.2. Results and analysis

While unroll-and-squash achieves better speedup than
regular pipelining and usually wins over the worst case
unroll-and-jam (Figure 7), with large unroll factors unroll-
and-jam outperforms unroll-and-squash by a big margin in
most cases. On several benchmarks, however, unroll-and-
jam fails to obtain a speedup proportional to the unroll
amount for larger factors. The transformation increases
proportionally the number of memory references and the II
becomes bound by the two accesses per cycle hardware
limit. Unroll-and-squash, on the other hand, keeps the
number of memory references constant (the initial amount
of accesses forms a lower bound for the minimum II) and,
therefore, designs with many memory references may
additionally benefit from this transformation.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

F
ac

to
r

Skip jack-mem Skip jack-hw D E S - m e m D E S - h w IIR

S p e e d u p

or ig ina l p ipel ined squash : 2 ,4 ,8 ,16 jam: 2 ,4 ,8 ,16
Figure 7. Speedup

The speedup from the different transformations comes
at the expense of additional area (Figure 8). Undoubtedly,
since unroll-and-squash inserts only registers while unroll-
and-jam also increases the number of operators in

proportion to the unroll factor, unroll-and-squash results in
much less extra area.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

F
ac

to
r

Sk ip jack -mem Sk ip jack -hw D E S - m e m D E S - h w IIR

Area

or ig ina l pipel ined squash : 2 ,4 ,8 ,16 jam: 2 ,4 ,8 ,16
Figure 8. Area

The speedup-to-area ratio (Figure 9) captures the
performance of the design per unit area – higher speed and
smaller design leads to larger value. By this measure,
unroll-and-squash wins over unroll-and-jam in most cases.
The ratio decreases with increasing unroll factors when
unroll-and-jam is applied to benchmarks with memory
references – this is caused by the higher II due to a
congested memory bus. However, for designs without
memory references unroll-and-jam increases the operator
count with the unroll factor and does not change the II, so
the ratio stays about constant. The ratio for unroll-and-
squash stays about the same or decreases slightly with
higher unroll factors with the exception of IIR. The ratio
increase in that case can be attributed to the large original
II and the small minimum II that unroll-and-squash can
achieve – a much higher unroll factor is necessary to reach
to the point where the memory limits the II.

0 . 0 0

0 . 5 0

1 . 0 0

1 . 5 0

2 . 0 0

2 . 5 0

3 . 0 0

3 . 5 0

4 . 0 0

4 . 5 0

5 . 0 0

F
ac

to
r

S k i p j a c k - m e m Sk ip jack -hw D E S - m e m DES-hw IIR

S p e e d u p / A r e a

or ig ina l pipel ined s q u a s h : 2 , 4 , 8 , 1 6 jam: 2 ,4 ,8 ,16
Figure 9. Efficiency (speedup/area) – higher is better

5. Related work

An extensive survey of the available software
pipelining techniques such as modulo scheduling
algorithms, perfect pipelining, Petri net model, and

 6

Vegdahl’s technique, as well as a comparison between the
different methods is given in [8]. Since basic-block
scheduling is an NP-hard problem [9], most work on the
topic has been concentrated on a variety of heuristics to
reach near-optimal schedules. The main disadvantage of
all these methods when applied to loop nests is that they
consider and transform only innermost loops resulting in
poor exploitation of parallelism and lower efficiency due
to setup costs. Lam’s hierarchical reduction scheme aims
to overlap execution of the prolog and the epilog of the
transformed loop with operations outside the loop [10].
The original Nimble Compiler approach to
hardware/software partitioning of loops may pipeline outer
loops but considers inner loop entries as exceptional exits
from hardware [1] . Overall few techniques for scheduling
across basic block boundaries handle nested loop
structures efficiently [7][11]. The general theory of
hardware pipelining and optimal scheduling of recurrences
can be found in [15].

6. Conclusion

This paper presented a loop pipelining technique that
targets nested loop pairs with an iteration-parallel outer
loop and a strong inter- and intra-iteration data-dependent
inner loop. The method was evaluated using the Nimble
compiler framework on several signal-processing
benchmarks. Unroll-and-squash improves the performance
at a low additional area cost through resource sharing and
proves to be an effective way to exploit parallelism in
nested loops mapped to hardware. It can be used as a
valuable and simpler alternative to complex loop
pipelining schemes that enables efficient hardware
synthesis from high-level languages.

7. Acknowledgement

This work was completed at the Advanced Technology
Group at Synopsys, Inc. with additional support from
DARPA’s ACS program under AFRL contract
#F33615-98-2-1317. The authors would like to thank our
collaborators at Lockheed Martin ATL and UC Berkeley.

References

[1] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J.
Stockwood. Hardware-software co-design of embedded

reconfigurable architectures, Proc. 37th Design
Automation Conference, pp. 507-512, Los Angeles, CA,
2000.

[2] D. Petkov. Efficient Pipelining of Nested Loops: Unroll-
and-Squash, M.Eng. thesis, Massachusetts Institute of
Technology, January 2001.

[3] R. Dick, and N. Jha. Cords: hardware-software co-
synthesis of reconfigurable real-time distributed embedded
systems, Proc. Intl. Conference on Computer-Aided
Design, 1998.

[4] M. Kaul, et al. An automated temporal partitioning and
loop fission approach for FPGA based reconfigurable
synthesis of DSP applications, Proc. 36th Design
Automation Conference, 1999.

[5] M. Gokhale, and A. Marks. Automatic synthesis of parallel
programs targeted to dynamically reconfigurable logic
arrays, Proc. FPL, 1995.

[6] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R.
Murphy, S.-W. Liao, E. Bugnion and M. S. Lam.
Maximizing Multiprocessor Performance with the SUIF
Compiler, IEEE Computer, December 1996.

[7] S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers, San
Francisco, CA, 1997.

[8] V. Allan, R. Jones, R. Lee, and S. Allan. Software
Pipelining. ACM Computing Surveys, 27(3):367-432,
September 1995.

[9] M. Garey, and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman
and Co., San Francisco, CA, 1979.

[10] M. Lam. Software Pipelining: An Effective Scheduling
Technique for VLIW Machines. Proceedings in SIGPLAN
’88 Conference on Programming Language Design and
Implementation (PLDI), pp. 318-328, 1988.

[11] A. Appel, and M. Ginsburg. Modern Compiler
Implementation in C. Cambridge University Press,
Cambridge, United Kingdom, 1998.

[12] D. Callahan, S. Carr, and K. Kennedy. Improving register
allocation for subscripted variables. Proc. SIGPLAN '90
Conference on Programming Language Design and
Implementation, White Plains, NY, June 1990.

[13] F. E. Allen and J. Cocke. A catalogue of optimizing
transformations. Design and Optimization of Compilers,
Prentice-Hall, 1972.

[14] M. Wolfe, Optimizing Supercompilers for Supercomputers,
MIT Press, Cambridge, MA, 1989.

[15] P. Kogge. The Architecture of Pipelined Computers,
McGraw Hill, NY, 1981.

