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Abstract optimization trale-offs in circuit synthesis from a program

and in software compilation to a microprocessor are quite
The size and complexity of current custom VLS| havedifferent (for example, code size vs. operator and gate
forced the use of higlevel programming languages to count, register files vs. pipeline registers).
describe hardware, and compiler and synthesis technology When an inner loop has no cressration data
to map abstract designs into silicon. Since streaming datalependencies, many techniques provide efficient and
processing in DSP apiphtions is typically described by effective parallel performance for both microprocessors
loop constructs in a higlevel language, loops are the and custom VLSI. Unfortunately, a large number of loops
most critical portions of the hardware description and in practical signaprocessing applications have strong
special techniques are developed to optimally synthesizdoop-carried dependencies. Many cryptaygjnic
them. In this paper, we introduce a new method foralgorithms, such as unchained Skipjack and DES for
mapping and pipelining nested loops efficiently into €xample, have a nested loop structure where an iteration
hardware. It achieves fingrain parallelism even on parallel outer loop traverses the data stream while the inner
strong intra- and interiteration datadependent inner loop transforms each data block. For instance, Skipjack
loops and, by sharing resources economically, improves(Figure 1) encrypts #yte data blocks by running them
performance at the expense of a small amtowf through 32 rounds of 4 tableokups F) combined with
additional area. We implemented the transformationkey-lookups ¢v), a number of logical operations and input
within the Nimble Compiler environment and evaluated itsselection. TheF-lookups form a long cycle that prevents
performance on several signptocessing benchmarks. the encryption loop from &g pipelined efficiently. The
The method achieves up to 2x improvement in the areauter loop, however, has no strong irteration data
efficiency compared to the best kmowoptimization dependencies, which allows parallel execution of the

techniques. separate iterations.
_ This paper introduces a new loop transformation that
1. Introduction maps nested loops following this patterrtoirhardware

efficiently. The technique, which we calinroll-and
Growing consumer market needs that requiresquash exploits the outer loop parallelism and
processing of large amount of data with a limited power orconcentrates more computation in the inner loop. It
dollar budget have led to the development of increasinglyimproves the performance with little area increase by
complex embedded systems and applicasipecific IC's.  allocating the hardware resources hwitit expensive
As a result, highevel compilation and sophisticated CAD multiplexing or complex routing required by the traditional
tools are used to automate and accelerate the intricateesource sharing methods. The transformation can be
design process. These techniques raise the level applied to any outer iteratiguarallel loop to synthesize
abstraction and bring the hardware design closer and closéfie inner sequential loops in hardware. It was prototyped
to the system engineer. using the Nimble Compiler environment[1][2] and
Since loops are the most critical part of many evaluated on several siggabcessing benchmarks.
applications  (and,  specifically,  sigradocessing  Unrollandsquash reaches performance comparable to
algorithms[1]), the new generation of CAD tools needs to traditional loop transformations with 2 to 10 times less
borrow from the many traditional compiler transformation grea.
methods in order t@ynthesize hardware from hidével
languaged3][4][5]. However, direct application of these
techniques fails to produce efficient hardware because the
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Figure 3. A simple loop nest: unroll  -and-jam by 2

CVaksg

A more efficient way to improve the performance in
this example is to apply the unra@hdsquash tehnique
introduced in this papeFigure 4). This transformation,
similarly to unrollandjam, unrolls the outer loop but
maintains a single inner loop. However, the data sets of the
different outer loop iterations run through timmer loop
operators in a rountbbin manner allowing their parallel
execution. Moreover, the original operator count remains
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[y | [ weny | ] weey | [ ween | unchanged. Application of unredindsquash to the sample
loop nest by a factor of 2 is similar to unralhdjam with
Figure 1. Skipjack cryptographic algorithm respect tothe transformation of the outer loop the

The application of the technique is demonstrated usin jteration count is halved and 2 outer loop iterations are
the simple loop nest irFigure 2. The outer loop walks rocessed in parallel. However, the operator count in the
through the input data and writes out theulg while the inner '°°F’ remains the same as in the original program.
inner loop runs the data through several rounds of After adding variable shift/rotate statents and pulling

operatorsf andg, each completing in 1 clock cycle. The appropriate prolog and epilog out of the inner loop, the

) . transformation can be expressed correctly in software,
datadependence cycle carried by the inner loop makes P y

pipelining impossible, ie., inner loop iterations can’t be ?"though th'?’ may not be necessary .'f a pure hardware
executed in pallel. The interval at which consecutive |mplem_ent<_':1t|on Is pursued. Slnc_e the final Il is 1, the total
iterations are started is called timitiation interval (Il). As executiontime of the loop nest Is¥ (M/2JF(2¥N)=M¥N

depicted in the datfiow graph DFG), the minimum Il of (ignoring the prolog and the epilogThus, unrokand

the inner loop is 2 cycles and the total time for the |00psquash_rr_1ay almost double the performance without paying
the additional cost of extra operators.

nest i2¥ M¥ N.
PP " for (i=0; i<M i+=2) {
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Figure 2. A simple loop nest Figure 4. A simple loop nest: unrol I-and-squash by 2
Traditional loop optimizations such loop unrolling, It is also possible to combine both transformation

flattening and permutation[13] fail to exploit the techniques. Unrolandjam can be applied_ with an unroll
parallelism efficiently and improve the performance for factor that matches the desired or available amount of
this loop nest. One succesispproach is the application °OPerators and then unr@hdsquash can be used to
of unroll-and-jam (Figure 3), which unrolls the outer loop MProve further the péormance and achieve better
but fuses the resulting sequential inner loops to maintain QPerator utilization.

single inner loop[12]. Unroll-andjam with a facbr of 2 2 Method

(assuming thatM is even) increases the inner loop =
operators to 4 (twice the original number). The Il is still 2
but the total time is half the original because the outer Ioopne
iteration count is halved 2¥ (M/2}¥ N=M¥ N. Thus, unroH
andjam doubleghe performance of the application at the
expense of a doubled operator count.

Unroll-andsquash optimizes the performance dbap
sts by executing multiple outer loop iterations in
parallel. The inner loop operators cycle through the
separate outer loop data sets, whidbves them to work
simultaneously. This section assumes that uwanot



squash is applied to a nested loop pair where the outer lodh3. Transformation

iteration count i$/, the inner loop iteration counth§ and
the unroll factor i©S (Data Sets

Applying unrolkandsquash by a factoDS to a loop

nest requires an efficient schedule of the fun&tiamits in

2.1. Requirements the

inner loop to separate pipeline stages and a

corresponding transformation of the software portion of

To apply umoll-andsquash to a set of 2 nested 100ps the |oop. Although a hardwanly implementation of the
with a given u.nrolllfactorDS, it is necessary that the outer jnner loop is possible (without a prolog and an epilog in
loop can be tiled in blocks oDS iterations and that the  goftware), the outer Igostill needs to be unrolled and have

iterations in each block be parallel. The inner |00p ShOUlda proper variable assignment_ The basic Steps necessary to
comprise a single basic block ahave a constant iteration apply unroltandsquash are listed below:

count across the outer loop iterations. The latter condition
also implies that the contribw always passes through
the inner loop.

2.2. Compiler analysisand optimization
techniques

A number of traditional compiler analysis and
optimization methods can be used to determine whether a
loop nest follows the requirements, to convert it to one that
conforms with them, or to increase the efficiency of unroll
andsquash. Unfortunately, few transformations enlarge
the set of loops that thichnique applies to. *

One way to eliminate conditional statements in the
inner loop making it a single basic block (one of the®
restrictions) is to transform them to equivalent logical and
arithmetic expressions {donversion). Another alternative
is to wse code hoisting to move the conditional statements
out of the inneputer loop pair, if possible.

In order for the outer loop to be tiled in blocks BS .
iterations, its iteration couril should be a multiple dbS.

If this condition does not hold, loopeeling may be used
and M modDS iterations of the outer loop may be
executed independently from the remaining ¢
M-(M modDS).

The condition that the outer loop iterations are parallel
is much more difficult to determine or overcome.
Moreover, if the outer lop data dependence is an innate
part of the implemented algorithm, it is usually impossible
to apply unrolandsquash. One approach to eliminate
some of the scalar data dependencies in the outer loops is
induction variable identification— convert all indiction
variables in the outer loop to expressions of the loop index.
Another method is modulo variable expansion, which
makes multiple copies of a variable each corresponding to
a different iteration and combines them at the end. For
loops with array refences, dependence analydi4] may
be employed to determine the applicability of the
technique and array privatization may be used to better
exploit the parallelism. Finally, pointer analysis and other «
relevant methods (suchs converting pointer to array
accesses) may be utilized to determine whether code with
pointerbased memory accesses can be parallelized. .
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Figure 5. Unroll -and-squash — building the DFG

Build the DFG of the inner loogFigure 5). Live
variables are stored in registers at the top of the graph.
Transform live variables used in the inner but defined
in the outer loop (registers with no incoming edges)
into cycles (edges from the register back to itself).
“Stretch” the cycles in the graph so that the backedges
start from the bottom and end in the registers at the top.
Ignoring the backedges, pipeline the resulting DFG
(Figure6) producing exactlypS pipeline stages. Empty
stages maybe added or pipeline registers may be
removed to adjust the stage counD®

Expand each variable in the nest@$ copies. Some

of the resulting variables may not be necessary later.

Unroll the outer loop basic blocks (basic blocks that
dominate and postominate the inner loop).

L1 (0] [a]
stage 1
® ©

stage 2

stage 3 @

stage 4

Figure 6. Stretching cycles and pipelining

Generate prolog and epilog code to fill and flush the
pipeline (unless the inner loop is implemented purely
in hardware).

Replace each variable in the innepopowith the copy
(from variable expansion) corresponding to the



pipeline stage that the operator is assigned to. Note3, | mplementation
that some new (delay) variables may be needed to
handle expressions split across pipeline registers. The system presented in this paper was developed and
« Add variable shift/rotate to the innéoop. Note that evaluated within the Nimble Compiler environm¢hi2].
reverse shift/rotate may be required in the epilog or,The Nimble Compiler extracts hardwarkernels (inner
alternatively, a rotated variable assignment may beloops that take most of the execution time) from C
used. applications and accelerates them on a reconfigurable
The outer loop data sets pass through the pipeline stagesprocessor. It is built upon the SUIF compiler framework
in a roundrobin manner. All live variables are saved to [6]. The target architecture (Agile hardware) plas a
and restaed from the appropriate hardware registersgeneral purpose CPU with a dynamically reconfigurable

before and after execution. coprocessor. Communication channels connect the CPU,
_ _ the datapath and the memory hierarchy. The CPU can be
2.4. Algorithm analysis used to implement and execute contnténsive routines

) ] and system I/O, while the dath provides a large set of
The described loop transformation decreases thgnfigurable operators, registers and interconnects

number of outer loop iterations from to M/DS. A allowing acceleration of computatiéntensive code by
software implementation will increase the inner 100p fiexiple exploitation of ILP.

iteration counfrom N to DS¥N-(DS-1) and execute some

of the inner loop statements in the prolog and the epilog ird. Experimental results

the outer loop. The total iteration count of the loop nest

stays approximately the same as the origind¥ N. The We compared the performance of umaniidsquash on

total number of executed operators (etcghe copy the main computadhal kernels of several signal

statements that may be free in hardware) stays the same. processing benchmarks to the original loops, pipelined
There are several factors that need to be considered iariginal loops, and pipelined unrendjammed loops.

order to determine the optimal unroll facs. One of the  The collected data shows that untatidsquash is an

main barriers to performance increase is the maximumeffective way to speed up such applications at a relatively

number of inner lop pipeline stages. In a software low area cost.

implementation of the technique this number is limited by It is important to note that the prototype implements the

the operator count in the critical path in the DFG or mayregisters as regular operators. Considering the fact that

be smaller if different operator latencies are taken intoregisters can be much smaller, the presented values for

account. A hardwarenly implementation boundghe  area are conservative and the unesittsquash speedup

stage count to the critical path delay divided by the clockper area ratiawill increase significantly in a final hardware

period. The pipeline stage count determines the number dmplementation. Furthermore, many of the registers in the

outer loop iterations that can be executed in parallel and, iffansformed designs are shift/rotate registers that can be

general, the more data sets are processed in parallel, tHgwplemented even more efficiently with minimal

better the pdormance. The unroll factoDS should be  interconnect.

calculated in accordance to the outer loop iteration count

(loop peeling may be required) and the data dependence

analysis discussed in the previous section (lap@may 4-1. Benchmarks

eliminate the parallelism). . . . .
Another imporaint factor for determining the unroll The benchma_rk mldgscrlbed mTapIe L, Cor.]S.'StS of
amount is the extra area and, consequently, extra powet ° cryptogrgphlc algor|thm§ (unchamegl Sk|pjac!< .and
that comes with large values obS. Unroll-andsquash ES) and a filter (IIR). Tw.o'dlfferent versions of Skipjack

adds only pipeline registers and data feeds between therﬁnOI DES are “S.ed- Sk|pjamgm and DESmem are

and, because of the cycle stretching, most of t be regular software implementationasf the corresponding
y : S : ._crypto-algorithms with memory references. Skipjeaok

packed in groups fo form a single shift register. ThISand DEShw are versions specifically optimized for

optimization ~may decrease the impact of the ardware— they use local ROM for memory lookups and
transformation on the area and the power of the design, a% . y . Y ps
omain generators for some Hatvel operations. IIR is a

well as make routing easierno multiplexers are added, in  _ ) .
contrast to traditional hardwarsynthesis techniques. In f||_ter.|mp|ement_ed on the.target. platform by modeling
comparison with unrolandjam by the same unroll factor, pipelinable floatlngpmlnt ar|thmet|g operations.
unroll-andsquash results in less area since the operators We. compare ten d!fferent Versions Of. eagh benchmark
are not duplicated. The tradéf between speed and area is an original, norp|pellneq version, a pipelined version,
further illustrated in the benchmark report (Sectdpn unroll-gndsqua§heq versions by f'actors of 2, 4.’ 8 and 16,
and, finally, pipelined unrolandjammed versions by
factors of 2, 4, 8 and 16. Two memory references per clock



cycle were allowed and no cache misses were assumegbroportion to the unroll factor, unredindsquash results in
The latter assumption is not too restrictive for comparisormuch less extra area.

purposes because the differearansformed versions have Area

similar memory access patterns. Furthermore, a couple of
the benchmarks have been specially optimized for -_

18.00 7 -

hardware and have no memory references at all. Some of 5

16.00

the normalized data is presented below along with detailed H

analysis. H
Benchmark Description 5001 H
Skipjack-mem Sklpjack cryptoa!gonthm: encryption, software sood 1
implementation with memory references y
Skipjack crypto-algorithm: encryption, software 1 d 'l ]
Skipjack-hw implementation optimized for hardware without 2004 H
memory references 200 ]
DES-mem DES crypto-algorithm: encryption, SBOX implemented Skipjack-mem  Skipjack-hw ~ DES-mem DES-hw IR
in software with memory references [Eoriginal O Ssquash: 24,816 O jam: 2,4.8.16]
DES-hw DES crypto-algorithm: encryption, SBOX implemented
in hardware without memory references Figure 8. Area
IR 4-cascaded IIR biquad filter processing 64 points

The speedupo-area ratio (Figure 9) captures the
performance of the design per unit arehigher speed and
smaller design leads to larger value. By this measure,
4.2. Reaultsand analysis unroll-and-squash wins over unrefindjam in most cases.

The ratio decreases with increasing unroll factors when

While unroll-andsquash achieves better speedup thanynroll-andjam is applied to benchmarks with memory
regular pipelining and usually wins over the worst case references— this is caused by the higher Il due to a
unroll-and-jam Figure?), with large unroll facta unrolt congested memory bus. However, for designshovit
andjam outperforms unrondsquash by a big margin in - memory references unredindjam increases the operator
most cases. On several benchmarks, however, tamdll  count with the unroll factor and does not change the II, so
jam fails to obtain a speedup proportional to the unrollthe ratio stays about constant. The ratio for uranth
amount for larger factors. The transformation increasessquash stays about the same or decreases slightly with
proportionally the nulrer of memory references and the Il higher unroll factorswith the exception of IIR. The ratio
becomes bound by the two accesses per cycle hardwar@crease in that case can be attributed to the large original
limit. Unroll-andsquash, on the other hand, keeps thej| and the small minimum Il that unrefindsquash can
number of memory references constant (the initial amounfchieve— a much higher unroll factor is necessary to reach
of accesses forms a lower bound for the minimum Il), andto the point where the memory limits tHe |
therefore, designs with many memory references may
additionally benefit from this transformation.

Table 1. Table 1. Benchmark description.

Speedup/Area

5.00]
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4.50-4

30.00 4.00

3.50-4

25.004

3.00

2.50-4

Factor

20.00

2.00

15.00 150 L

Factor

1.00-]

10.00 0.50-4

- 0.00¢

5.00] Skipjack-mem Skipjack-hw DES-mem DES-hw IR
‘_FHTH{ [Eoriginai@ squash. 2.4,8.16 0 jam. 2.4.8.16]
0.001 g

Skipjack-mem  Skipjack-hw  DES-mem DES-hw IR Figure 9. Efficiency (speedup/area) - higher is better
original O O squash.2.4.8.16 O jam: 2.4.8.16]
Figure 7. Speedup 5 Reated work
The speedup from the different transformations comes ) )
at the expense of additional ar@dgure 8). Undoubtedly, An extensive survey of the available software

since unroHandsquash inserts only registers while unroll PiPelining techniques such as modulo scheduling
andjam also increases the number of operators ir@lgorithms, perfect pipelining, Petrnet model, and



Vegdahl’s technique, as well as a comparison between the
different methods is given in8]. Since basitblock
scheduling is an NHRard problem[9], most work on the
topic has been coantrated on a variety of heuristics to [
reach neaoptimal schedules. The main disadvantage of
all these methods when applied to loop nests is that the¥3]
consider and transform only innermost loops resulting in
poor exploitation of parallelism and lower eféincy due

to setup costs. Lam’s hierarchical reduction scheme aims
to overlap execution of the prolog and the epilog of the [4]
transformed loop with operations outside the Iddg].

The original Nimble  Compiler approach to
hardware/software partitioning of loops may pipeline outer 5]
loops but considers inner loop entries as exceptional exitL
from hardware[1]. Overall few techniques for scheduling
across basic block boundaries handle nested loops]
structues efficiently [7][11]. The general theory of
hardware pipelining and optimal scheduling of recurrences
can be found ifil5].

2]

[7]

6. Conclusion

This paper presented a loop eiming technique that (8]
targets nested loop pairs with an iteratfarallel outer
loop and a strong inteand intraiteration datadependent [9]
inner loop. The method was evaluated using the Nimble
compiler framework on several siggabcessing
benchmarksUnroll-andsquash improves the performance [10]
at a low additional area cost through resource sharing and
proves to be an effective way to exploit parallelism in
nested loops mapped to hardware. It can be used as a

valuable and simpler alternative to compleop  [11]
pipelining schemes that enables efficient hardware
synthesis from higtevel languages. [12]
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