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Abstract 
 

The size and complexity of current custom VLSI have 
forced the use of high-level programming languages to 
describe hardware, and compiler and synthesis technology 
to map abstract designs into silicon. Since streaming data 
processing in DSP applications is typically described by 
loop constructs in a high-level language, loops are the 
most critical portions of the hardware description and 
special techniques are developed to optimally synthesize 
them. In this paper, we introduce a new method for 
mapping and pipelining nested loops efficiently into 
hardware. It achieves fine-grain parallelism even on 
strong intra- and inter-iteration data-dependent inner 
loops and, by sharing resources economically, improves 
performance at the expense of a small amount of 
additional area. We implemented the transformation 
within the Nimble Compiler environment and evaluated its 
performance on several signal-processing benchmarks. 
The method achieves up to 2x improvement in the area 
efficiency compared to the best known optimization 
techniques. 

1. Introduction 

Growing consumer market needs that require 
processing of large amount of data with a limited power or 
dollar budget have led to the development of increasingly 
complex embedded systems and application-specific IC’s. 
As a result, high-level compilation and sophisticated CAD 
tools are used to automate and accelerate the intricate 
design process. These techniques raise the level of 
abstraction and bring the hardware design closer and closer 
to the system engineer. 

Since loops are the most critical part of many 
applications (and, specifically, signal-processing 
algorithms [1]), the new generation of CAD tools needs to 
borrow from the many traditional compiler transformation 
methods in order to synthesize hardware from high-level 
languages [3][4][5]. However, direct application of these 
techniques fails to produce efficient hardware because the 

optimization trade-offs in circuit synthesis from a program 
and in software compilation to a microprocessor are quite 
different (for example, code size vs. operator and gate 
count, register files vs. pipeline registers). 

When an inner loop has no cross-iteration data 
dependencies, many techniques provide efficient and 
effective parallel performance for both microprocessors 
and custom VLSI. Unfortunately, a large number of loops 
in practical signal-processing applications have strong 
loop-carried dependencies. Many cryptographic 
algorithms, such as unchained Skipjack and DES for 
example, have a nested loop structure where an iteration-
parallel outer loop traverses the data stream while the inner 
loop transforms each data block. For instance, Skipjack 
(Figure 1) encrypts 8-byte data blocks by running them 
through 32 rounds of 4 table-lookups (F) combined with 
key-lookups (cv), a number of logical operations and input 
selection. The F-lookups form a long cycle that prevents 
the encryption loop from being pipelined efficiently. The 
outer loop, however, has no strong inter-iteration data-
dependencies, which allows parallel execution of the 
separate iterations. 

This paper introduces a new loop transformation that 
maps nested loops following this pattern into hardware 
efficiently. The technique, which we call unroll-and-
squash, exploits the outer loop parallelism and 
concentrates more computation in the inner loop. It 
improves the performance with little area increase by 
allocating the hardware resources without expensive 
multiplexing or complex routing required by the traditional 
resource sharing methods. The transformation can be 
applied to any outer iteration-parallel loop to synthesize 
the inner sequential loops in hardware. It was prototyped 
using the Nimble Compiler environment [1][2] and 
evaluated on several signal-processing benchmarks. 
Unroll-and-squash reaches performance comparable to 
traditional loop transformations with 2 to 10 times less 
area. 
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Figure 1. Skipjack  cryptographic algorithm  

The application of the technique is demonstrated using 
the simple loop nest in Figure 2. The outer loop walks 
through the input data and writes out the result, while the 
inner loop runs the data through several rounds of 2 
operators, f and g, each completing in 1 clock cycle. The 
data-dependence cycle carried by the inner loop makes 
pipelining impossible, i. e., inner loop iterations can’t be 
executed in parallel. The interval at which consecutive 
iterations are started is called the initiation interval (II). As 
depicted in the data-flow graph (DFG), the minimum II of 
the inner loop is 2 cycles and the total time for the loop 
nest is 2¥ M¥ N. 

for (i=0; i<M; i++) {

  a = data_in[i];

  for (j=0; j<N; j++) {

    b = f(a);

    a = g(b);

  }

  data_out[i] = a;

}
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g
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Figure 2. A simple loop nest  

Traditional loop optimizations such loop unrolling, 
flattening and permutation [13] fail to exploit the 
parallelism efficiently and improve the performance for 
this loop nest. One successful approach is the application 
of unroll-and-jam (Figure 3), which unrolls the outer loop 
but fuses the resulting sequential inner loops to maintain a 
single inner loop [12]. Unroll-and-jam with a factor of 2 
(assuming that M is even) increases the inner loop 
operators to 4 (twice the original number). The II is still 2 
but the total time is half the original because the outer loop 
iteration count is halved – 2¥ (M/2)¥ N=M¥ N. Thus, unroll-
and-jam doubles the performance of the application at the 
expense of a doubled operator count. 

for (i=0; i<M; i+=2) {

  a1=data_in[i]; a2=data_in[i+1];

  for (j=0; j<N; j++) {

    b1 = f(a1); b2 = f(a2);

    a1 = g(b1); a2 = g(b2);

  }

  data_out[i]=a1; data_out[i+1]=a2;

}
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Figure 3. A simple loop nest: unroll -and-jam by 2  

A more efficient way to improve the performance in 
this example is to apply the unroll-and-squash technique 
introduced in this paper (Figure 4). This transformation, 
similarly to unroll-and-jam, unrolls the outer loop but 
maintains a single inner loop. However, the data sets of the 
different outer loop iterations run through the inner loop 
operators in a round-robin manner allowing their parallel 
execution. Moreover, the original operator count remains 
unchanged. Application of unroll-and-squash to the sample 
loop nest by a factor of 2 is similar to unroll-and-jam with 
respect to the transformation of the outer loop – the 
iteration count is halved and 2 outer loop iterations are 
processed in parallel. However, the operator count in the 
inner loop remains the same as in the original program. 
After adding variable shift/rotate statements and pulling 
appropriate prolog and epilog out of the inner loop, the 
transformation can be expressed correctly in software, 
although this may not be necessary if a pure hardware 
implementation is pursued. Since the final II is 1, the total 
execution time of the loop nest is 1¥ (M/2)¥(2¥ N)=M¥ N 
(ignoring the prolog and the epilog). Thus, unroll-and-
squash may almost double the performance without paying 
the additional cost of extra operators. 

for (i=0; i<M; i+=2) {

  a1=data_in[i]; a2=data_in[i+1];

  b1 = f(a1);

  for (j=0; j<2*N-1; j++) {

    b2 = f(a2); a1 = g(b1);

    a2 = a 1; b1 = b2;

  }

  a1 = g(b1);

  data_out[i]=a2; data_out[i+1]=a 1;

}
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Figure 4. A simple loop nest: unrol l-and-squash by 2  

It is also possible to combine both transformation 
techniques. Unroll-and-jam can be applied with an unroll 
factor that matches the desired or available amount of 
operators and then unroll-and-squash can be used to 
improve further the performance and achieve better 
operator utilization. 

2. Method 

Unroll-and-squash optimizes the performance of 2-loop 
nests by executing multiple outer loop iterations in 
parallel. The inner loop operators cycle through the 
separate outer loop data sets, which allows them to work 
simultaneously. This section assumes that unroll-and-
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squash is applied to a nested loop pair where the outer loop 
iteration count is M, the inner loop iteration count is N, and 
the unroll factor is DS (Data Sets). 

2.1. Requirements  

To apply unroll-and-squash to a set of 2 nested loops 
with a given unroll factor DS, it is necessary that the outer 
loop can be tiled in blocks of DS iterations and that the 
iterations in each block be parallel. The inner loop should 
comprise a single basic block and have a constant iteration 
count across the outer loop iterations. The latter condition 
also implies that the control-flow always passes through 
the inner loop. 

2.2. Compiler analysis and optimization 
techniques 

A number of traditional compiler analysis and 
optimization methods can be used to determine whether a 
loop nest follows the requirements, to convert it to one that 
conforms with them, or to increase the efficiency of unroll-
and-squash. Unfortunately, few transformations enlarge 
the set of loops that this technique applies to. 

One way to eliminate conditional statements in the 
inner loop making it a single basic block (one of the 
restrictions) is to transform them to equivalent logical and 
arithmetic expressions (if-conversion). Another alternative 
is to use code hoisting to move the conditional statements 
out of the inner-outer loop pair, if possible. 

In order for the outer loop to be tiled in blocks of DS 
iterations, its iteration count M should be a multiple of DS. 
If this condition does not hold, loop peeling may be used 
and M mod DS iterations of the outer loop may be 
executed independently from the remaining 
M-(M mod DS). 

The condition that the outer loop iterations are parallel 
is much more difficult to determine or overcome. 
Moreover, if the outer loop data dependence is an innate 
part of the implemented algorithm, it is usually impossible 
to apply unroll-and-squash. One approach to eliminate 
some of the scalar data dependencies in the outer loops is 
induction variable identification – convert all induction 
variables in the outer loop to expressions of the loop index. 
Another method is modulo variable expansion, which 
makes multiple copies of a variable each corresponding to 
a different iteration and combines them at the end. For 
loops with array references, dependence analysis [14] may 
be employed to determine the applicability of the 
technique and array privatization may be used to better 
exploit the parallelism. Finally, pointer analysis and other 
relevant methods (such as converting pointer to array 
accesses) may be utilized to determine whether code with 
pointer-based memory accesses can be parallelized. 

2.3. Transformation 

Applying unroll-and-squash by a factor DS to a loop 
nest requires an efficient schedule of the functional units in 
the inner loop to separate pipeline stages and a 
corresponding transformation of the software portion of 
the loop. Although a hardware-only implementation of the 
inner loop is possible (without a prolog and an epilog in 
software), the outer loop still needs to be unrolled and have 
a proper variable assignment. The basic steps necessary to 
apply unroll-and-squash are listed below: 

for (i=0; i<M; i++) {

  a = in[i];

  for (j=0; j<N; j++) {

    b = a + i;

    c = b - j;

    a = (c & 15) * k;

  }

  out[i] = a;

}
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Figure 5. Unroll -and-squash – building the DFG  

• Build the DFG of the inner loop (Figure 5). Live 
variables are stored in registers at the top of the graph. 

• Transform live variables used in the inner but defined 
in the outer loop (registers with no incoming edges) 
into cycles (edges from the register back to itself). 

• “Stretch” the cycles in the graph so that the backedges 
start from the bottom and end in the registers at the top. 

• Ignoring the backedges, pipeline the resulting DFG 
(Figure 6) producing exactly DS pipeline stages. Empty 
stages may be added or pipeline registers may be 
removed to adjust the stage count to DS. 

• Expand each variable in the nest to DS copies. Some 
of the resulting variables may not be necessary later. 

• Unroll the outer loop basic blocks (basic blocks that 
dominate and post-dominate the inner loop). 
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Figure 6. Stretching cycles and pipelining  

• Generate prolog and epilog code to fill and flush the 
pipeline (unless the inner loop is implemented purely 
in hardware). 

• Replace each variable in the inner loop with the copy 
(from variable expansion) corresponding to the 
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pipeline stage that the operator is assigned to. Note 
that some new (delay) variables may be needed to 
handle expressions split across pipeline registers. 

• Add variable shift/rotate to the inner loop. Note that 
reverse shift/rotate may be required in the epilog or, 
alternatively, a rotated variable assignment may be 
used. 

The outer loop data sets pass through the pipeline stages 
in a round-robin manner. All live variables are saved to 
and restored from the appropriate hardware registers 
before and after execution. 

2.4. Algorithm analysis 

The described loop transformation decreases the 
number of outer loop iterations from M to M/DS. A 
software implementation will increase the inner loop 
iteration count from N to DS¥N-(DS-1) and execute some 
of the inner loop statements in the prolog and the epilog in 
the outer loop. The total iteration count of the loop nest 
stays approximately the same as the original – M¥ N. The 
total number of executed operators (except the copy 
statements that may be free in hardware) stays the same. 

There are several factors that need to be considered in 
order to determine the optimal unroll factor DS. One of the 
main barriers to performance increase is the maximum 
number of inner loop pipeline stages. In a software 
implementation of the technique this number is limited by 
the operator count in the critical path in the DFG or may 
be smaller if different operator latencies are taken into 
account. A hardware-only implementation bounds the 
stage count to the critical path delay divided by the clock 
period. The pipeline stage count determines the number of 
outer loop iterations that can be executed in parallel and, in 
general, the more data sets are processed in parallel, the 
better the performance. The unroll factor DS should be 
calculated in accordance to the outer loop iteration count 
(loop peeling may be required) and the data dependence 
analysis discussed in the previous section (larger DS may 
eliminate the parallelism). 

Another important factor for determining the unroll 
amount is the extra area and, consequently, extra power 
that comes with large values of DS. Unroll-and-squash 
adds only pipeline registers and data feeds between them 
and, because of the cycle stretching, most of them can be 
packed in groups to form a single shift register. This 
optimization may decrease the impact of the 
transformation on the area and the power of the design, as 
well as make routing easier – no multiplexers are added, in 
contrast to traditional hardware synthesis techniques. In 
comparison with unroll-and-jam by the same unroll factor, 
unroll-and-squash results in less area since the operators 
are not duplicated. The trade-off between speed and area is 
further illustrated in the benchmark report (Section 4). 

3.  Implementation 

The system presented in this paper was developed and 
evaluated within the Nimble Compiler environment [1] [2]. 
The Nimble Compiler extracts hardware kernels (inner 
loops that take most of the execution time) from C 
applications and accelerates them on a reconfigurable 
coprocessor. It is built upon the SUIF compiler framework 
[6]. The target architecture (Agile hardware) couples a 
general purpose CPU with a dynamically reconfigurable 
coprocessor. Communication channels connect the CPU, 
the datapath and the memory hierarchy. The CPU can be 
used to implement and execute control-intensive routines 
and system I/O, while the datapath provides a large set of 
configurable operators, registers and interconnects 
allowing acceleration of computation-intensive code by 
flexible exploitation of ILP. 

4. Experimental results 

We compared the performance of unroll-and-squash on 
the main computational kernels of several signal-
processing benchmarks to the original loops, pipelined 
original loops, and pipelined unroll-and-jammed loops. 
The collected data shows that unroll-and-squash is an 
effective way to speed up such applications at a relatively 
low area cost. 

It is important to note that the prototype implements the 
registers as regular operators. Considering the fact that 
registers can be much smaller, the presented values for 
area are conservative and the unroll-and-squash speedup 
per area ratio will increase significantly in a final hardware 
implementation. Furthermore, many of the registers in the 
transformed designs are shift/rotate registers that can be 
implemented even more efficiently with minimal 
interconnect. 

 

4.1. Benchmarks  

The benchmark suit, described in Table 1, consists of 
two cryptographic algorithms (unchained Skipjack and 
DES) and a filter (IIR). Two different versions of Skipjack 
and DES are used. Skipjack-mem and DES-mem are 
regular software implementations of the corresponding 
crypto-algorithms with memory references. Skipjack-hw 
and DES-hw are versions specifically optimized for 
hardware – they use local ROM for memory lookups and 
domain generators for some bit-level operations. IIR is a 
filter implemented on the target platform by modeling 
pipelinable floating-point arithmetic operations. 

We compare ten different versions of each benchmark – 
an original, non-pipelined version, a pipelined version, 
unroll-and-squashed versions by factors of 2, 4, 8 and 16, 
and, finally, pipelined unroll-and-jammed versions by 
factors of 2, 4, 8 and 16. Two memory references per clock 
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cycle were allowed and no cache misses were assumed. 
The latter assumption is not too restrictive for comparison 
purposes because the different transformed versions have 
similar memory access patterns. Furthermore, a couple of 
the benchmarks have been specially optimized for 
hardware and have no memory references at all. Some of 
the normalized data is presented below along with detailed 
analysis. 

 
Benchmark  Description  

Skipjack-mem Skipjack crypto-algorithm: encryption, software 
implementation with memory references  

Skipjack-hw 
Skipjack crypto-algorithm: encryption, software 
implementation optimized for hardware without 
memory references  

DES-mem DES crypto-algorithm: encryption, SBOX implemented 
in software with memory references  

DES-hw DES crypto-algorithm: encryption, SBOX implemented 
in hardware without memory references  

IIR 4-cascaded IIR biquad filter processing 64 points 

Table 1. Table 1. Benchmark description.  

4.2. Results and analysis  

While unroll-and-squash achieves better speedup than 
regular pipelining and usually wins over the worst case 
unroll-and-jam (Figure 7), with large unroll factors unroll-
and-jam outperforms unroll-and-squash by a big margin in 
most cases. On several benchmarks, however, unroll-and-
jam fails to obtain a speedup proportional to the unroll 
amount for larger factors. The transformation increases 
proportionally the number of memory references and the II 
becomes bound by the two accesses per cycle hardware 
limit. Unroll-and-squash, on the other hand, keeps the 
number of memory references constant (the initial amount 
of accesses forms a lower bound for the minimum II) and, 
therefore, designs with many memory references may 
additionally benefit from this transformation. 
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Figure 7. Speedup  

The speedup from the different transformations comes 
at the expense of additional area (Figure 8). Undoubtedly, 
since unroll-and-squash inserts only registers while unroll-
and-jam also increases the number of operators in 

proportion to the unroll factor, unroll-and-squash results in 
much less extra area. 
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The speedup-to-area ratio (Figure 9) captures the 
performance of the design per unit area – higher speed and 
smaller design leads to larger value. By this measure, 
unroll-and-squash wins over unroll-and-jam in most cases. 
The ratio decreases with increasing unroll factors when 
unroll-and-jam is applied to benchmarks with memory 
references – this is caused by the higher II due to a 
congested memory bus. However, for designs without 
memory references unroll-and-jam increases the operator 
count with the unroll factor and does not change the II, so 
the ratio stays about constant. The ratio for unroll-and-
squash stays about the same or decreases slightly with 
higher unroll factors with the exception of IIR. The ratio 
increase in that case can be attributed to the large original 
II and the small minimum II that unroll-and-squash can 
achieve – a much higher unroll factor is necessary to reach 
to the point where the memory limits the II. 
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5. Related work 

An extensive survey of the available software 
pipelining techniques such as modulo scheduling 
algorithms, perfect pipelining, Petri net model, and 
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Vegdahl’s technique, as well as a comparison between the 
different methods is given in [8]. Since basic-block 
scheduling is an NP-hard problem [9], most work on the 
topic has been concentrated on a variety of heuristics to 
reach near-optimal schedules. The main disadvantage of 
all these methods when applied to loop nests is that they 
consider and transform only innermost loops resulting in 
poor exploitation of parallelism and lower efficiency due 
to setup costs. Lam’s hierarchical reduction scheme aims 
to overlap execution of the prolog and the epilog of the 
transformed loop with operations outside the loop [10]. 
The original Nimble Compiler approach to 
hardware/software partitioning of loops may pipeline outer 
loops but considers inner loop entries as exceptional exits 
from hardware [1] . Overall few techniques for scheduling 
across basic block boundaries handle nested loop 
structures efficiently [7][11]. The general theory of 
hardware pipelining and optimal scheduling of recurrences 
can be found in [15]. 

6. Conclusion 

This paper presented a loop pipelining technique that 
targets nested loop pairs with an iteration-parallel outer 
loop and a strong inter- and intra-iteration data-dependent 
inner loop. The method was evaluated using the Nimble 
compiler framework on several signal-processing 
benchmarks. Unroll-and-squash improves the performance 
at a low additional area cost through resource sharing and 
proves to be an effective way to exploit parallelism in 
nested loops mapped to hardware. It can be used as a 
valuable and simpler alternative to complex loop 
pipelining schemes that enables efficient hardware 
synthesis from high-level languages. 
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