Genetic Programming Applied to Compiler
Heuristic Optimization

Mark Stephenson!, Una-May O’Reilly?,
Martin C. Martin?, and Saman Amarasinghe®

! Laboratory for Computer Science

2 Artificial Intelligence Laboratory

Massachusetts Inst. of Technology
Cambridge, MA, 02139

{mstephen,saman}@cag.lcs.mit.edu {unamay,mcm}@ai.mit.edu

Abstract. Genetic programming (GP) has a natural niche in the optimiza-
tion of small but high payoff software heuristics. We use GP to optimize the
priority functions associated with two well known compiler heuristics: pred-
icated hyperblock formation, and register allocation. Our system achieves
impressive speedups over a standard baseline for both problems. For hyper-
block selection, application-specific heuristics obtain an average speedup of
23% (up to 73%) for the applications in our suite. By evolving the com-
piler’s heuristic over several benchmarks, the best general-purpose heuristic
our system found improves the predication algorithm by an average of 25%
on our training set, and 9% on a completely unrelated test set. We also
improve a well-studied register allocation heuristic. On average, our system
obtains a 6% speedup when it specializes the register allocation algorithm for
individual applications. The general-purpose heuristic for register allocation
achieves a 3% improvement.

1 Introduction

Genetic programming (GP) [11] is tantalizing because it is a method for searching
a high dimensional, large space of executable expressions. GP is widely applicable
because its representation, a directly ezecutable expression, is so flexible. Koza [11]
argues that most problems can be reformulated to accept program-style solutions.

Yet, even without reformulation, there are a vast number of problems for which a
program or codelet is a direct solution. Consider substantially sized software systems
such as compilers, schedulers, text editors, web crawlers, and intelligent tutoring
systems. Current GP knowledge and practice certainly cannot generate such large
scale efforts. Yet, GP can act remedially. For example, Ryan et al. [18] used GP
to convert serial code to parallel. There was a sizeable payoff in updating legacy
software.

When large scale software systems are developed, they inevitably acquire short-
comings. We believe that GP can address many problems associated with complex
systems— either at development time or later. Large software systems have ‘admit-
ted’ shortcomings that arise from necessity. Real world problems of complex nature
often offer NP-complete sub-problems. Since these problems demand solutions to
be delivered within practical time limits, the employment of heuristics is neces-
sary. Heuristics, by definition, are supposed to be good enough, but not necessarily
perfect.

The genesis of our idea for using GP came from dissatisfaction with compiler
efficiency and design, combined with our realization that compiler designers are
overwhelmed with countless nonlinearly complex considerations. We examined dif-
ferent passes within a compiler and their heuristics. We found a common, easily
learned feature in the heuristics that we term a ‘priority function’. Put simply, pri-
ority functions prioritize the options available to a compiler algorithm. Could GP

generate more effective priority functions than currently exist in compilers? We use
Trimaran— a freely downloadable research compiler and simulator— to answer that
question [19]. This paper offers a proof of concept: we use genetic programming to
optimize the priority functions associated with register allocation as well as branch
removal via predication. Our contention is that priority functions are most certain to
also lurk in heuristics within other similar software systems. Genetic programming
is eminently suited to optimizing priority functions because they are best repre-
sented in GP terms: as directly executable expressions. Plus, GP offers the scalable
means of searching through priority function space.

2 Related Work

Both GP[15] and Grammatical Evolution (GRE)[13] have been used to optimize
a caching strategy. A caching strategy, in essence, has a priority function. It must
determine which program memory locations to assign to cache or move to main
memory in order to minimize ‘misses’. A miss occurs when main memory must
be accessed rather than the cache. One human designed priority function is Least
Recently Used (LRU). While LRU is intuitive, results evolved via GP and GRE
outperform it.

Many researchers have applied machine-learning methods to compilation, and
therefore, only the most relevant works are cited here. By evolving compiler heuris-
tics, and not the applications themselves, we need only apply our process once.
This contrasts with Cooper et al. who use genetic algorithms (GA) to solve com-
pilation phase ordering problems [7] and the COGEN(t) [10] compiler. Calder et
al. use supervised learning techniques to fine-tune static branch prediction heuris-
tics [4]. Since our performance criteria is based on execution time it requires an
unsupervised technique such as the one we present in this paper.

3 Compilation, Heuristics and Priority Functions

Compiler writers have a difficult task. They are expected to create effective and in-
expensive solutions to NP-hard problems such as instruction scheduling and register
allocation for intractably complex computer architectures. They cope by devising
clever heuristics that find good approximate solutions for a large class of applica-
tions.

A key insight in alleviating this situation is that many heuristics have a focal
point. A single priority or cost function often dictates the efficacy of a heuristic.
A priority function, a function of the factors that affect a given problem, measures
the relative value or weight of choices that a compiler algorithm can make.

Take register allocation, for example. When a graph coloring register allocator
cannot, successfully color an interference graph, it ‘spills’ a variable from a register
to memory and removes it from the graph. Choosing an appropriate variable to
spill is crucial. For many allocators, this decision is handled by a single priority
function. Based on an evaluation of relevant data (e.g., number of references, depth
in loop nest, etc.), the allocator invokes its priority function to assign a weight to
each uncolored variable. Examining the relative weights, the allocator determines
which variable to spill.

Compiler writers tediously fine-tune priority functions to achieve suitable per-
formance [2]. Priority functions are widely used and tied to complicated factors.
A non-exhaustive list of examples, just in compilation, includes list scheduling [9],
clustered scheduling [14], hyperblock formation [12], meld scheduling [1], modulo
scheduling [17] and register allocation [6]. GP’s representation appears ideal for
improving priority functions. We have tested this observation via two case studies:
predication and register allocation.

4 Predication

Studies show that branch instructions account for nearly 20% of all instructions ex-
ecuted in a program [16]. The control dependences that branch instructions impose
decrease execution speed and make compiler optimizations difficult. Moreover, the
uncertainty surrounding branches makes it difficult (and in many cases impossible)
to parallelize disjoint paths of control flow. The data and control dependences may
preclude instruction level parallelism.

Unpredictable branches are also incredibly costly on modern day processors.
The Pentium@®) 4 architecture invalidates up to 120 in-flight instructions when it
mispredicts. When a branch is mispredicted, not only does the processor have to
nullify incorrect operations, it may have to invalidate many unrelated instructions
following the branch that are in the pipeline.

The shortcomings of branching have led architects to rejuvenate predication.
Predication allows a processor that can execute and issue more than one instruction
at a time to simultaneously execute the taken and fall-through paths of control flow.
The processor nullifies all instructions in the incorrect path. A predicate operand
guards the execution of every instruction to ensure only correct paths modify pro-
cessor state.

Trimaran’s predication algorithm identifies code regions that are suitable for
predication. It then enumerates paths (i.e., sequences of instructions that it must
merge into a predicated hyperblock). Merging depends on the compiler’s confidence
that a path is processor efficient. The priority function assigns the confidence value
of a path.

Trimaran’s priority function is shown in Equation 1. In addition to considering
the probability of path execution, this priority function penalizes paths that have
hazards (e.g., pointer dereferences), relatively large dependence height, or too many
instructions.

priority; = exec_ratio; - h; - (2.1 — d_ratio; — o_ratio;) where (1)
b — {0.25 : if path; contains a hazard.

1 : if path; is hazard free.

dep_height; .
d_ratio; = epherg - , o_ratio; =
max;j—1- N dep_height; mMaX;=1- N NUM_0PS;

num_ops;

The variable exec_ratio, which is based on a runtime profile, is the probability
that the path is executed; num_ops; refers to the number of operations in path;,
and dep_height is the extent of control dependence.

4.1 Predication Primitives

In addition to the path properties used in Equation 1, there are other salient prop-
erties that could potentially distinguish good paths from useless paths. We created
a GP terminal corresponding to each property. Tables 1 and 5 contain lists of the
primitives we use.

5 Priority-Based Coloring Register Allocation

The gap between register access times and memory access times is growing. There-
fore, register allocation, the process of assigning variables to fast registers, is an
increasingly important compiler optimization. Many register allocation algorithms
use cost functions to determine which variables to spill when spilling is required.

|Property [Description

dep_height The maximum instruction dependence height over all instructions in
path.

num_ops The total number of instructions in the path.

erec_ratio How frequently this path is executed compared to other paths con-

sidered (from profile).
num_branches |The total number of branches in the path.
predictability Path predictability obtained by simulating a branch predictor (from

profile).

avg-ops_executed |The average number of instructions executed in the path (from pro-
file).

unsafe_JSR If the path contains a subroutine call that may have side-effects, it
returns true; otherwise it returns false.

safe-JSR If the path contains a side-effect free subroutine call, it returns true;
otherwise it returns false.

mem_hazard If the path contains an unresolvable memory access, it returns true;

otherwise it returns false.
maz_dep_height |The maximum dependence height over all paths considered for hy-
perblock inclusion.

total_ops The sum of all instructions in paths considered for hyperblock inclu-
sion.
num_paths Number of paths considered for hyperblock inclusion.

Table 1. GP Terminals for Predication Experiments. These properties may influ-
ence predication. Some are extracted from profile information while others do not require
program execution. We also include the min, mean, max, and standard deviation of all
paths to provide macroscopic information.

For instance in priority-based coloring register allocation, the priority function is
an estimate of the relative benefits of storing a given variable? in a register [6]. The
algorithm then assigns variables to registers in priority order. The success of the
register allocation algorithm depends on the priority function.

Priority-based coloring first associates a live range with every variable. This
range simply denotes the portion of code in which a variable is live. More specifically,
a live range is the composition of code segments (basic blocks), through which
the associated variable’s value must be preserved. The algorithm then prioritizes
each live range based on the estimated execution savings of register allocating the
associated variable:

savings; = w; - (LDsave - uses; + ST save - defs;) (2)

priority(lr) = Lieir SWWings; j’\c;mngsi (3)

Equation 2 is used to compute the savings of each code segment. LDsave and
ST save are estimates of the execution time saved by keeping the associated variable
in a register for references and definitions respectively. uses; and de fs; represent the
number of uses and definitions of a variable in code segment i. w; is the estimated
execution frequency for the segment.

Equation 3 sums the savings over the N code segments that compose the live
range. Thus, this priority function represents the savings incurred by accessing a
register instead of resorting to main memory.

3 For ease of explanation, our description of priority-based register allocation is not pre-
cisely accurate. A single variable may actually be assigned to several different registers.
See [6] for detalils.

|Property [Description |
spill_cost The estimated cost of spilling this range to memory. See Equation 2.
region_weight Number of times the basic block was executed (from profile).
live_ops The number of live operations in the block.

num_calls The number of procedure calls in a basic block.

callee_benefit

The callee’s ‘benefit’ of allocating the range.

caller_benefit

The caller’s ‘benefit’ of allocating the range.

def_num The number of definitions in the block.

use_num The number of uses in the block.

ST save Estimate of the execution time saved by keeping a definition in a
register.

LDsave Estimate of the execution time saved by keeping a reference in a

register.

has_single_ref

If the block has a single reference, return true, otherwise return

false.

If the number of live references in the block is greater than 0, return
true, otherwise return false.

The number of references in the block.

The number of registers available for the register class of the live
range.

The number of registers that are not available to the live range (be-
cause it interferes with an allocated live range).

If the live range belongs to the class GPR, FPR, or PR respectively,
return true, otherwise return false.

is_pass_through

ref_op_count
reg-size

forbidden_regs

GPR,FPR,PR

Table 2. GP Terminals for register allocation experiments.

5.1 Register Allocation Primitives

Trimaran’s register allocation heuristic essentially works at the basic block level. To
improve register allocation we evolved an expression to replace Equation 2. Since
Equation 3 simply sums and normalizes the priorities of the individual basic blocks,
we leave it intact. Table 2 shows the quantities we used as GP terminals for the
priority-based coloring register allocator.

6 Experimental Parameters

6.1 Infrastructure

Our experimental infrastructure is built upon Trimaran [19]. Trimaran is an inte-
grated compiler and simulator for a parameterized EPIC (Explicitly Parallel In-
struction Computing) architecture. Trimaran’s compiler, which is called IMPACT,
performs code profiling. Table 3 details the specific architecture over which we
evolved. This model is similar to Intel’s Itanium architecture. We enabled the fol-
lowing Trimaran compiler optimizations: function inlining, loop unrolling, backedge
coalescing, acyclic global scheduling [5], modulo scheduling [20], hyperblock forma-
tion, register allocation, machine-specific peephole optimization, and several other
classic optimizations.

We built a GP loop around Trimaran and internally modified IMPACT by re-
placing its predication priority function (Equation 1) with our GP expression parser
and evaluator. The predication algorithm provides variable bindings for the primi-
tives, and most of these were already available in IMPACT. We modified the com-
piler’s profiler to extract branch predictability statistics. We added the minimum,
maximum, mean, and standard deviation of all path-specific characteristics, which
together encapsulate some global knowledge. In addition, we added a 2-bit dynamic
branch predictor to the simulator.

|Feature [Description |

Registers 64 general-purpose registers, 64 floating-point registers, and 256
predicate
registers.

Integer units 4 fully-pipelined units with 1-cycle latencies, except for multiply
instructions, which require 3 cycles, and divide instructions, which
require 8.

Floating-point units |2 fully-pipelined units with 3-cycle latencies, except for divide in-
structions, which require 8 cycles.

Memory units 2 memory units. L1 cache accesses take 2 cycles, L2 accesses take 7
cycles, and L3 accesses require 35 cycles. Stores are buffered, and
thus require 1 cycle.

Branch unit 1 branch unit.
Branch prediction 2-bit branch predictor with a 5-cycle branch misprediction penalty.

Table 3. Characteristics of the EPIC architecture.

Similarly, to study register allocation we modified Trimaran’s Elcor register
allocator by replacing its priority function (Equation 2) with another expression
parser and evaluator. To more effectively stress the register allocator, we only use
32 general-purpose registers and 32 floating-point registers.

6.2 GP Run Parameters

For each run of 50 generations, the initial population consists of 399 randomly ini-
tialized expressions, as well as Trimaran’s original priority function (Equation 1 for
hyperblock formation, and Equation 2 for register allocation). Tournament selection
with a tournament size of seven is used. We randomly replace 22% of the population
every generation with offspring adapted by mutation and crossover. Roughly 5% of
the offspring are mutated, and the remainder result from crossover. Only the sin-
gle best expression is guaranteed survival. In addition to the specialized primitives
in Table 1 and Table 2, we add the standard arithmetic and boolean logical and
comparison primitives listed in Tables 4 and 5.

|Real—Valued Function |Representation |
Realy + Reals (add Reali Reals)
Realy — Reals (sub Reali Reals)
Realy - Reals (mul Real: Reals)
Reali/Real> : ifReals #0 (
0 : if Realo =0
(
(

div Reali Reals)

vRealy
{Reall . ifBooly

sqrt Realy)

Reals + if notBool, tern Booli Reali Reals)

{Reall - Real> : ifBooly

Reals :+ if notBool, (cmul Booli Reali Reals)

Returns real constant K (rconst K)
Returns real value of arg from environment |(rarg arg)

Table 4. General real-valued functions included in the primitive set.

6.3 Evaluation

The results presented in this paper use total execution time (reported by the Tri-
maran system) for either one or two sets of input data to assign fitness. This ap-
proach rewards the optimization of frequently executed procedures, and therefore,

|Boolean—Valued Function |Representation

Bool, and Bools (and Booli Bools)
Booly or Bools (or Booly Bools)

not Bool: (not Bool1)

Realy < Reals (It Real; Reals)
Realy > Reals (gt Real, Real,)
Realy = Real: (eq Reali Reals)
Returns Boolean (bconst {true, false})

constant {true, false}
Returns Boolean value of arg from environ-|(barg arg)
ment

Table 5. General purpose GP primitives. Both experiments use the primitives shown
in this table.

it may be slow to converge upon general-purpose solutions. However, when one
wants to specialize a compiler for a given program, this evaluation of fitness works
extremely well. Our system rewards parsimony by selecting the smaller of two oth-
erwise equally fit expressions [11, p. 109].

Our experiments select training and testing programs from a suite of 24 bench-
marks listed in Table 6. We run GP on nine benchmarks to examine specialized
predication priority functions and six benchmarks for register allocation priority
functions.

To find a general-purpose priority function (i.e., a function that works well for
multiple programs), we run GP on a set of ‘training’ programs, each with one set
of input data. To avoid the computational expense of a large training set, we use
dynamic subset selection (DSS) [8]. DSS essentially selects different subsets (size
4,5, or 6) of the benchmark training set that is used for fitness evaluation. Subset
selection is based on how poorly the current best expression performs. Thus, hard
to optimize training benchmarks are more likely to appear in the training set. The
training set consists of twelve and eight benchmarks for predication and register
allocation, respectively.

We present the best results of all runs completed to date. This illustrates our
focus on application performance. We used the recognized benchmarks in Table 6
to evaluate evolved priority functions. The set includes all of the Trimaran certified
benchmarks? [19] and most of the Mediabench benchmarks.

7 Results

7.1 Predication: Specialized Priority Functions

Specialized heuristics are created by optimizing a priority function for a particular
benchmark evaluated with one set of input data. Figure 1 shows that GP is ex-
tremely effective on this basis. The dark bar shows the speedup of each benchmark,
over Trimaran’s baseline heuristic, when run with the same data on which it was
trained. The light bar shows the speedup when alternate input data is used. We
obtain an average speedup of 23% (up to 73%) for our evaluation suite.

As we would expect, in most cases the speedup on the training data is greater
than that achieved on the test data. The alternate input data likely exercises dif-
ferent paths of control low—paths which may have been unused during training.

In most runs, the initial population contains at least one expression that out-
performs the baseline. This means that by simply creating and testing 399 random
expressions, we were able to find a priority function that outperformed Trimaran’s

* We could not get 134.perl to execute correctly, though [19] certified it.

[Benchmark [Suite [Description

codrle4 See [3] RLE type 4 encoder/decoder.

decodrle4

huff_enc See [3] A Huffman encoder/decoder.

huff_dec

djpeg Mediabench |Lossy still image decompressor.

g72lencode |Mediabench |CCITT voice

g721decode compressor/decompressor.

mpeg2dec Mediabench |Lossy video decompressor.

rasta Mediabench |Speech recognition application.

rawcaudio Mediabench |Adaptive differential pulse code

rawdaudio modulation audio encoder/decoder.

toast Mediabench |Speech transcoder.

unepic Mediabench |Experimental image decompressor.

085.ccl SPEC92 gee C compiler.

052.alvinn SPEC92 Single-precision neural network training.

179.art SPEC2000 A neural network-based image recognition algorithm.

osdemo Mediabench |Part of a 3-D graphics library.

mipmap Mediabench |similar to OpenGL.

129.compress |SPEC95 In-memory file compressor and
decompressor.

023.eqntott |SPEC92 Creates a truth table from a logical representation of a
Boolean equation.

132.ijpeg SPEC95 JPEG compressor and
decompressor.

130.1i SPEC95 Lisp interpreter.

124.m88ksim |SPEC95 Processor simulator.

147.vortex SPEC95 An object oriented database.

Table 6. Benchmarks used. The set includes applications from the SpecInt, SpecFP,
Mediabench benchmark suites, and a few miscellaneous programs.

for the given benchmark and input data. In many cases, GP finds a superior priority
function quickly, and finds only marginal improvements as the evolution continues.
In fact, the baseline priority function is often quickly obscured by GP-generated
expressions. Note, however, that human designed priority functions may have been
designed for more generality than can be evaluated in our investigative setup.

Once GP has homed in on a fairly good solution, the search space and operator
dynamics are such that most offspring will be worse, some will be equal and very
few turn out to be better. This seems indicative of a steep hill in the solution
space. In addition, multiple runs yield only minuscule differences in performance.
This might indicate the search space (determined by our primitive set) has many
possible solutions associated with a given fitness.

7.2 Predication: Finding General Purpose Priority Functions

We divided the benchmarks in Table 6 into two exclusive sets®: a 12 element training
set, and a 12 element test set. We then applied the resulting priority function to all
12 benchmarks in the test set. Since the benchmarks in the test set are not related
to the benchmarks in the training set, this is a measure of the priority function’s
generality.

Figure 2 shows the results of applying the single best priority function to the
benchmarks in the training set. The dark bar associated with each benchmark is
the speedup over Trimaran’s base heuristic when the training input data is used.

5 We chose to train mostly on Mediabench applications because they compile and run faster than the
Spec benchmarks. However, we randomly chose two Spec benchmarks for added coverage.

[Train data set @Alternate data set]

g721decode
huff_dec
huff_enc
rawcaudio
rawdaudio
toast
mpeg2dec
Average

& [
14 3
a o
o
f=
£ 5}
9] -
o N
5 ~
14 S
o

Fig. 1. GP Evolved Specialized Predication Priority Functions. Dark colored bars
indicate speedup over Trimaran’s baseline heuristic when using the same input data set on
which the specialized priority function was trained. The light colored bars show speedup
when alternate input data was tested.

This data set yields a 44% improvement. The light bar shows results when alternate
input data is used. The overall improvement for this set is 25%.

It is interesting that, on average, the general-purpose priority function out-
performs the application-specific priority function for the alternate data set. The
general-purpose solution is less susceptible to variations in input data precisely be-
cause it is more generally applicable.

Figure 3 shows how well the best general purpose priority function performed
on the test set. The average speedup over the test set is 9%. In three cases (unepic,
023.eqntott, and 085.ccl) Trimaran’s baseline heuristic marginally outperforms the
GP-generated priority function. For the remaining benchmarks, the heuristic our
system found is better.

7.3 Register Allocation: Specialized Priority Functions

Figures 4 shows speedups obtained by specializing the Trimaran register allocator’s
priority function for specific benchmarks. The dark bar associated with each bench-
mark represents the speedup obtained by using the same input data that was used
to specialize the heuristic. The light bar shows the speedup when an alternate input
data set is used. GP evolved register allocation functions that improve the heuristic
described in Section 5 by up to 13%.

Once again, it makes sense that the relative performance on training input data
is better than that achieved on the alternate input data. In contrast to predication,
however, with register allocation, we see that the difference between the two is less
pronounced. This is likely because predication is extremely data-driven and thus
vulnerable to diverse input data. An examination of the general-purpose predication
heuristic reveals two dynamic factors (exec_ratio and predictability) that are critical
components in the hyperblock decision process.

Figure 5 plots the best individual’s speedup over generations. The fairly con-
stant improvement in speedup over several generations seems to suggest that this
problem is harder to optimize than predication. Additionally, unlike the predica-
tion algorithm, the baseline heuristic was typically retained (i.e., it remained in the
population) for several generations.

Ml Train data set O Alternate data set

decodrle4
codrle4
g721decode
g721encode
rawdaudio
rawcaudio
toast
mpeg2dec
124.m88ksim
129.compress
huff_enc
huff_dec
Average

Fig. 2. GP Performance with General Purpose Predication Priority Functions.
Training on multiple benchmarks. A single priority function was obtained by training over
all the benchmarks in this graph. The dark bars represent speedups obtained by running
the given benchmark on the same data that was used to train the priority function. The
light bars correspond to an alternate data set.

unepic
djpeg
rasta
023.eqntott
132.ijpeg
052.alvinn
147 .vortex
085.cc1
art

130.1i
osdemo
mipmap
Average

Fig. 3. GP Performance with General Purpose Predication Priority Functions.
Cross validation of the general-purpose priority function. The best priority function found
by training on the benchmarks in Figure 2 is applied to the benchmarks in this graph.

7.4 Register Allocation: General Purpose Priority Functions

Just as we did in Section 7.2, we divide our benchmarks into a training set and a
test set®.

The benchmarks in Figure 6 show the training set for this experiment. The figure
also shows the results of applying the best priority function (from our DSS run) to
all the benchmarks in the set. The dark bar associated with each benchmark is the
speedup over Trimaran’s base heuristic when using the training input data. The
average for this data set is 3%. The light bar shows results when alternate data is
used. An average speedup of 3% is also attained with this data.

Figure 7 shows the test set for this experiment. The figure shows the speedups
(over Trimaran’s baseline) achieved by applying the single best priority function
to all the benchmarks. Even though we trained on a 32-register machine, we also

5 This experiment uses smaller test and training sets due to preexisting bugs in Trimaran.
It does not correctly compile several of our benchmarks when targeting a machine with

32 registers.

M Training data set @ Alternate data set

1.15

0.9

mpeg2dec
rawcaudio
29.compress
huff_enc
huff_dec
g721decode
Average

Fig. 4. GP Performance on Specialized Register Allocation Priority Functions.
The dark colored bars are speedups using the same data set on which the specialized
priority function was trained. The light colored bars are speedups that use an alternate
data set.

1.125 4

—o—mpeg2dec
—4— rawcaudio
—a—g721decode
& compress
- huff_enc
—%—huff_dec

1.025 4

0 5 10 15 20 25 30 35 40 45 50
Generation

Fig.5. GP Evolution on Specialized Register Allocation Priority Functions.
This figure graphs fitness over generations. Unlike the hyperblock selection evolution, these
fitnesses converge slowly.

apply the priority function to a 64-register machine. It is interesting that the learned
priority function is not only stable across benchmarks, it is also stable across similar
platforms.

8 Conclusions

We used GP in a straightforward fashion to optimize priority functions in compiler
heuristics and observed impressive results that improve on existing ones. These
results are valuable to the compiler development community because the speedup
comes in code sections that are difficult to hand-optimize because of nonlinearities
within the compiler as well as overwhelming complexity in the target processor
architecture. GP is especially appropriate for this application because it offers a
convenient representation; priority functions are executable expressions. In addition,
GP proved capable of searching the solution space of the two compiler problems that
we investigated in this paper. In general, GP is valuable to the compiler development
community because priority functions are prevalent in compiler heuristics.

1.15 4

B Train data set @ Alternate data set

1.05

Speedup

0.95 4

0.9 4

0.85 -

129.compress
g721decode
g721encode
huff_enc
huff_dec
rawcaudio
rawdaudio
mpeg2dec
Average

Fig.6. GP Performance with General Purpose Register Allocation Priority
Functions. Training on multiple benchmarks. Our DSS evolution trained on all the bench-
marks in this figure. The single best priority function was applied to all the benchmarks.
The dark bars represent speedups obtained by running the given benchmark on the same
data that was used to train the priority function. The light bars correspond to an alternate

data set.

M Speedup (32-Regs) @ Speedup (64—Regs)‘

decodrle4
codrle4
124.m88ksim
unepic
djpeg
023.eqntott
132.ijpeg
147 .vortex
085.cc1
130.1i
Average

Fig.7. GP Performance with General Purpose Register Allocation Priority
Functions. Cross validation of the general-purpose priority function. The best priority
function found by the DSS run is applied to the benchmarks in this graph. Results from
two target architectures are shown.

Our results suggest that GP offers both great potential and convenience in the
niche of optimizing isolatable, smaller-sized code sections that perform heuristics
within a larger software system base.

9 Future Work

We have presented our research as a proof of concept and as such, to derive general
conclusions, we have used a very standard (‘off the shelf’) version of GP in terms
of operators and the selection algorithm used. We have not added any ‘bells and
whistles’ that might offer more improvement. In order to improve the results for a
specific compiler, we must strive to better understand our system. To this end we
plan to study the priority functions’ fitness landscapes via hillclimbing, simplify and
better understand the GP evolved expressions, and conduct additional runs with
some parameter experimentation.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

S. G. Abraham, V. Kathail, and B. L. Deitrich. Meld Scheduling: Relaxing Scheduling
Constaints Across Region Boundaries. In Proceedings of the 29th Annual International
Symposium on Microarchitecture (MICRO-29), pages 308-321, 1996.

D. Bernstein, D. Goldin, and M. G. et. al. Spill Code Minimization Techniques for Op-
timizing Compilers. In Proceedings of the SIGPLAN °89 Conference on Programming
Language Design and Implementation, pages 258-263, 1989.

D. Bourgin. http://hpus.u-aizu.ac.jp/hppd/hpuz/Languages/codecs-1.0/. Losslessy
compression schemes.

B. Calder, D. G. ad Michael Jones, D. Lindsay, J. Martin, M. Mozer, and B. Zorn.
Evidence-Based Static Branch Prediction Using Machine Learning. In ACM Transac-
tions on Programming Languages and Systems (ToPLaS-19), volume 19, 1997.

P. Chang, D. Lavery, S. Mahlke, W. Chen, and W. Hwu. The Importance of Prepass
Code Scheduling for Superscalar and Superpipelined processors. In IEEE Transactions
on Computers, volume 44, pages 353—-370, March 1995.

F. C. Chow and J. L. Hennessey. The Priority-Based Coloring Approch to Register
Allocation. In ACM Transactions on Programming Languages and Systems (ToPLaS-
12), pages 501-536, 1990.

K. Cooper, P. Scheilke, and D. Subramanian. Optimizing for Reduced Code Space
using Genetic Algorithms. In Languages, Compilers, Tools for Embedded Systems,
pages 1-9, 1999.

C. Gathercole. An Investigation of Supervised Learning in Genetic Programming. PhD
thesis, University of Edinburgh, 1998.

P. B. Gibbons and S. S. Muchnick. Efficient Instruction Scheduling for a Pipelined
Architecture. In Proceedings of the ACM Symposium on Compiler Construction, vol-
ume 21, pages 11-16, 1986.

G. W. Grewal and C. T. Wilson. Mappping Reference Code to Irregular DSPs with
the Retargetable, Optimizing Compiler COGEN(T). In International Symposium on
Microarchitecture, volume 34, pages 192-202, 2001.

J. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. The MIT Press, 1992.

S. A. Mahlke. Ezploiting instruction level parallelism in the presence of branches.
PhD thesis, University of Illinois at Urbana-Champaign, Department of Electrical
and Computer Engineering, 1996.

M. O’Neill and C. Ryan. Automatic generation of caching algorithms. In K. Miettinen,
M. M. Mkel, P. Neittaanmki, and J. Periaux, editors, Evolutionary Algorithms in
Engineering and Computer Science, pages 127-134, Jyvskyl, Finland, 30 May - 3 June
1999. John Wiley & Sons.

E. Ozer, S. Banerjia, and T. Conte. Unified Assign and Schedule: A New Approach
to Scheduling for Clustered Register Filee Microarchitectures.

N. Paterson and M. Livesey. Evolving caching algorithms in C by genetic program-
ming. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Ri-
olo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference,
pages 262-267, Stanford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.
D. Patterson and J. Hennessy. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 1995.

B. R. Rau. Iterative Modulo Scheduling: An Algorithm for Software Pipelining
Loops. In Proceedings of the 27th Annual International Symposium on Microarchi-
tecture (MICRO-24), November 1994.

C. Ryan and P. Walsh. Automatic conversion of programs from serial to parallel
using genetic programming - the paragen system. In Proceedings of ParCo’95. North-
Holland, 1995.

Trimaran. hitp://www.trimaran.org.

N. Warter. Modulo Scheduling with Isomorphic Control Transformations. PhD thesis,
University of Illinois at Urbana-Champaign, Department of Electrical and Computer
Engineering, 1993.

