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Abstract 
As wire-delay is becoming the most important design constraint of 
microprocessors, wire-expose architectures are emerging as a 
strong solution to maintaining the performance growth of modern 
processors. However, a von Neumann programming model cannot 
harness the power of these machines.  
We have developed StreamIt, a novel language as a viable 
common machine language for wire-exposed architectures.  It 
abstracts away the target's granularity, memory layout, and 
network interconnect, while capturing the notion of replicated 
processors that communicate in regular patterns.  With this 
representation, we believe that the StreamIt compiler will match 
the performance of C code that was hand-tailored for a given 
grid-based machine. 

1. INTRODUCTION 
With the increasing miniaturization of transistors, wire delays are 
becoming a dominant factor in microprocessor performance.  To 
address this issue, a number of emerging architectures contain 
replicated processing units with software-exposed communication 
between one unit and another (e.g., Raw[2], SmartMemories[1], 
TRIPS[3]).  However, for them to be effective, it is necessary to 
use languages that circumvent the von Neumann bottleneck, 
inherent in current programming languages such as C, C++ and 
Java.   
StreamIt is a streaming language that is ideally suited for wire-
exposed architectures.  StreamIt provides novel high-level 
representations to improve programmer productivity and program 
robustness within the streaming domain.  At the same time, 
StreamIt exposes the inherent communication pattern of the 
program, allowing the compiler to aggressively optimize and 
effectively utilize wire-exposed architectures.   
Though StreamIt exposes the parallelism and communication 
patterns of stream programs, much analysis is needed to adapt a 
stream program to a wire-exposed processor.  These include 
fission and fusion transformations that is used to adjust the 
granularity of a stream graph, a layout algorithm for mapping a 
stream graph to a given network topology, and a scheduling 
algorithm for generating a fine-grained static communication 
pattern for each computational element.  
We have developed a StreamIt compiler for the Raw architecture. 
The Raw processor, developed at MIT, is a simple tiled 
architecture that fully exposes the interconnectivity to the 
compiler. We demonstrate that the StreamIt compiler can 
automatically map a high-level stream abstraction to Raw without 
loosing performance. We consider this work to be a first step 
towards a portable programming language for wire exposed 
architectures. 

2. The StreamIt Language 
In this section we provide a brief overview of the StreamIt 
language; please see [6] for a more detailed description.  The 
current version of StreamIt is legal Java syntax to simplify our 
presentation and implementation, and it is designed to support 
only streams with static input and output rates. 

2.1  Filters 
The basic unit of computation in StreamIt is the Filter.  An 
example of a Filter is the FIRFilter, shown in Figure 1.  The 
central aspect of a filter is the work function, which describes the 
filter's most fine grained execution step in the steady state.  
Within the work function, a filter can communicate with 
neighboring blocks using the input and output channels, which 
are FIFO queues declared as fields in the Filter base class.  These 
high-volume channels support the three intuitive operations: 1) 
pop() removes an item from the end of the channel and returns its 
value, 2) peek(i) returns the value of the item i spaces from the 
end of the channel without removing it, and 3) push(x) writes x 
to the front of the channel.  The argument x is passed by value; if 
it is an object, a separate copy is enqueued on the channel. 
 
class FIRFilter extends Filter { 
 float[] weights; 
 int N; 
 
 void int(float[] weights) { 
  setInput(Float.TYPE); setOutput(Float.TYPE); 
  setPush(N); setPop(1); setPeek(N); 
  this.weights = weights; 
  this.N = weights.length; 
 } 
 
 void work() { 
  float sum = 0; 
  for(int i=0; i<N; i++)  
   sum += input.peek(i)*weights[i]; 
  input.pop(); 
  putput.push(sum); 
 } 
} 
 
class Main extends Pipeline { 
 void init() { 
  add(new DataSource()); 
  add(new FIRFilter()); 
  add(new Display()); 
 } 
} 

Figure 1. An FIR Filter in StreamIt. 
 
Each Filter also contains an init function, which is called at 
initialization time.  The init function serves two purposes. Firstly, 



 

 

it is for the user to establish the initial state of the filter.  For 
example, the FIRFilter records weights, the coefficients that it 
should use for filtering.  A filter can also push, pop, and peek 
items from within the init function if it needs to set up some initial 
state on its channels, although this usually is not necessary.  A 
user should instantiate a filter by using its constructor, and the  
init function will be called implicitly with the same arguments 
that were passed to the constructor. 
The second purpose of the init function is to specify the filter's I/O 
types and data rates to the StreamIt compiler.  The types are 
specified with calls to setInput and setOutput, while the rates 
are specified with calls to setPush, setPop, and setPeek.  The 
setPeek call can be ommitted if the peek count is the same as the 
pop count. 

2.2 Connecting Filters 
StreamIt provides three constructs for composing filters into a 
communicating network: Pipeline, SplitJoin, and 
FeedbackLoop.  Each structure specifies a pre-defined way of 
connecting filters into a single-input, single-output block, which 
we will henceforth refer to as a “stream”.  That is, a stream is any 
instance of a Filter, Pipeline, SplitJoin, or FeedbackLoop. 
Every StreamIt program is a hierarchical composition of these 
stream structures. 
The Pipeline construct is for building a sequence of streams. Like 
a Filter, a Pipeline has an init function that is called upon its 
instantiation.  Within init, component streams are added to the 
Pipeline via successive calls to add.   
The SplitJoin construct is used to specify independent parallel 
streams that diverge from a common splitter and merge into a 
common joiner.  As in a Pipeline, the components of a SplitJoin 
are specified with successive calls to add from the init function.  
The splitter specifies how items from the input of the SplitJoin 
are distributed to the parallel components.  For simplicity, we 
allow only compiler-defined splitters, of which there are three 
types: 1) Duplicate, which replicates each data item and sends a 
copy to each parallel stream, 2) RoundRobin(i1, i2, …, ik), which 
sends the first i1 data items to the stream that was added first, the 
next i2 data items to the stream that was added second, and so on, 
and 3) Null, which means that none of the parallel components 
require any input, and there are no input items to split.   
The FeedbackLoop construct provides a way to create cycles in 
the stream graph.  Each FeedbackLoop contains: 1) a body 
stream, which is the block around which a backwards “feedback 
path” is being created, 2) a loop stream, which can perform some 
computation along the feedback path, 3) a splitter, which 
distributes data between the feedback path and the output channel 
at the bottom of the loop, and 4) a joiner, which merges items 
between the feedback path and the input channel at the top of the 
loop.   
Each of the stream constructs can either be executed on its own, 
or embedded in an enclosing stream structure.  When a stream is 
embedded in another construct, the first and last components of 
the stream are implicitly connected to the stream's neighbors in 
the parent construct. 

3. The Raw Architecture 
The Raw Microprocessor[1] addresses the wire delay problem by 
providing direct instruction set architecture (ISA) analogs to three 
underlying physical resources of the processor: gates, wires and 
pins. Because ISA primitives exist for these resources, a compiler 
such as StreamIt has direct control over both the computation and 
the communication of values between the functional units of the 
microprocessor, as well as across the pins of the processor. 
The architecture exposes the gate resources as a scalable 2-D 
array of identical, programmable tiles, that are connected to their 
immediate neighbors by four on-chip networks.  Each network is 
32-bit, full-duplex, flow-controlled and point-to-point. On the 
edges of the array, these networks are connected via logical 
channels to the pins.  Thus, values routed through the networks 
off of the side of the array appear on the pins, and values placed 
on the pins by external devices (for example, wide-word A/Ds, 
DRAMS, video streams and PCI-X buses) will appear on the 
networks. 
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Figure 2. A block diagram of the Raw architecture. 

 
Each of the tiles contains a compute processor, some memory and 
two types of routers – one static, one dynamic – that control the 
flow of data over the networks as well as into the compute 
processor (see Figure 2). The compute processor interfaces to the 
network through a bypassed, register-mapped interface[1] that 
allows instructions to use the networks and the register files 
interchangeably. In other words, a single instruction can read up 
to two values from the networks, compute on them, and send the 
result out onto the networks, with no penalty.  Reads and writes in 
this fashion are blocking and flow-controlled, which allows for 
the computation to remain unperturbed by unpredictable timing 
variations such as cache misses and interrupts. 
Each tile's static router has a virtualized instruction memory to 
control the crossbars of the two static networks. Collectively, the 
static routers can reconfigure the communication pattern across 
these networks every cycle.  The instruction set of the static router 
is encoded as a 64-bit VLIW word that includes basic instructions 
(conditional branch with/without decrement, move, and nop) that 
operate on values from the network or from the local 4-element 
register file. Each instruction also has 13 fields that specify the 
connections between each output of the two crossbars and the 
network input FIFOs, which store values that have arrived from 
neighboring tiles or the local compute processor.  The input and 
output possibilities for each crossbar are: North, East, South, 
West, Processor, to the other crossbar, and into the static router. 
The FIFOs are typically four or eight elements large. 



 

 

4. Compiling StreamIt for Raw 
The StreamIt language aims to be portable across communication-
exposed machines.  StreamIt exposes the parallelism and 
communication of streaming applications without depending on 
the topology or granularity of the underlying architecture.  We 
have implemented a fully-functional prototype of the StreamIt 
compiler for Raw[2].  However, the compiler employs three 
general techniques that can be applied to compile StreamIt to 
machines other than Raw: 1) partitioning, which adjusts the 
granularity of a stream graph to match that of a given target, 2) 
layout, which maps a partitioned stream graph to a given network 
topology, and 3) scheduling, which generates a fine-grained static 
communication pattern for each computational element.  We 
consider this work to be a first step towards a portable 
programming model for communication-exposed architectures. 
The StreamIt compiler is composed of the following stages that 
are specific for communication-exposed architectures: stream 
graph scheduling, stream graph partitioning, layout, and 
communication scheduling.  The next four sections provide a brief 
overview of these phases, see [8] for more details. 

4.1 Stream Graph Scheduling 
The automatic scheduling of the stream graph is one of the 
primary benefits that StreamIt offers, and the subtleties of 
scheduling and buffer management are evident throughout the 
phases of the compiler described below.  The scheduling is 
complicated by StreamIt's support for the peek operation, which 
implies that some programs require a separate schedule for 
initialization and for the steady state.  The steady state schedule 
must be periodic—that is, its execution must preserve the number 
of live items on each channel in the graph (since otherwise a 
buffer would grow without bound.)  A separate initialization 
schedule is needed if there is a filter with peek > pop, by the 
following reasoning.  If the initialization schedule were also 
periodic, then after each firing it would return the graph to its 
initial configuration, in which there were zero live items on each 
channel.  But a filter with peek > pop leaves peek - pop (a 
positive number) of items on its input channel after every firing, 
and thus could not be part of this periodic schedule.  Therefore, 
the initialization schedule is separate, and non-periodic. 

4.2 Stream Graph Partitioning 
StreamIt provides the filter construct as the basic abstract unit of 
autonomous stream computation.  The programmer should decide 
the boundaries of each filter according to what is most natural for 
the algorithm under consideration.  While one could envision 
each filter running on a separate machine in a parallel system, 
StreamIt hides the granularity of the target machine from the 
programmer.  Thus, it is the responsibility of the compiler to 
adapt the granularity of the stream graph for efficient execution 
on a particular architecture. 
We use the word partitioning to refer to the process of dividing a 
stream program into a set of balanced computation units.  Given 
that a maximum of N computation units can be supported, the 
partitioning stage transforms a stream graph into a set of no more 
than N filters, each of which performs approximately the same 
amount of work during the execution of the program.  Following 
this stage, each filter can be run on a separate processor to obtain 
a load-balanced executable. 

Our partitioner employs a set of fusion, fission, and reordering 
transformations to incrementally adjust the stream graph to the 
desired granularity.  To achieve load balancing, the compiler 
estimates the number of instructions that are executed by each 
filter in one steady-state cycle of the entire program; then, 
computationally intensive filters can be split, and less demanding 
filters can be fused.  Currently, a simple greedy algorithm is used 
to automatically select the targets of fusion and fission, based on 
the estimate of the work in each node. 

4.3 Layout 
The goal of the layout phase is to assign nodes in the stream graph 
to computation nodes in the target architecture while minimizing 
the communication and synchronization present in the final 
layout.  The layout assigns exactly one node in the stream graph 
to one computation node in the target.  The layout phase assumes 
that the given stream graph will fit onto the computation fabric of 
the target and that the filters are load balanced.  These 
requirements are satisfied by the partitioning phase described 
above. 
The layout phase of the StreamIt compiler is implemented using 
simulated annealing[9].  We choose simulated annealing for its 
combination of performance and flexibility.  To adapt the layout 
phase for a given architecture, we supply the simulated annealing 
algorithm with three architecture-specific parameters: a cost 
function, a perturbation function, and the set of legal layouts.  
The cost function should accurately measure the added 
communication and synchronization generated by mapping the 
stream graph to the communication model of the target.  Due to 
the static qualities of StreamIt, the compiler can provide the 
layout phase with exact knowledge of the communication 
properties of the stream graph.  The terms of the cost function can 
include the counts of how many items travel over each channel 
during an execution of the steady state. Furthermore, with 
knowledge of the routing algorithm, the cost function can infer 
the intermediate hops for each channel.   

4.4 Communication Scheduler 
With the nodes of the stream graph assigned to computation nodes 
of the target, the next phase of the compiler must map the 
communication explicit in the stream graph to the interconnect of 
the target.  This is the task of the communication scheduler.  The 
communication scheduler maps the infinite FIFO abstraction of 
the stream channels to the limited resources of the target.  Its goal 
is to avoid deadlock and starvation while utilizing the parallelism 
explicit in the stream graph. 
The exact implementation of the communication scheduler is tied 
to the communication model of the target.  The simplest mapping 
would occur for targets implementing an end-to-end, infinite 
FIFO abstraction, in which the scheduler needs only to determine 
the sender and receiver of each data item.  This information is 
easily calculated from the weights of the splitters and joiners.  As 
the communication model becomes more constrained, the 
communication scheduler becomes more complex, requiring 
analysis of the stream graph. For targets implementing a finite, 
blocking nearest-neighbor communication model, the exact 
ordering of tile execution must be specified. 
Due to the static nature of StreamIt, the compiler can statically 
orchestrate the communication resources.  The schedules can give 



 

 

us an order for execution of the graph if necessary.  One can 
generate orderings to minimize buffer length, maximize 
parallelism, or minimize latency. 

5. Results 
For each application, we compare the throughput of StreamIt with 
a hand-written C program, running the latter on either a single tile 
of Raw or on a Pentium IV.  For Radio, GSM[4], and Vocoder[7], 
the C source code was obtained from a third party; in other cases, 
we wrote a C implementation following a reference algorithm.   
We show the performance of the C code, which is not available 
for C programs that did not fit onto a single Raw tile (Radar[5], 
GSM, and Vocoder). Figures 3 and 4 illustrate the speedups 
obtained by StreamIt compared to the C implementations. 
The results are encouraging.  In many cases, the StreamIt 
compiler obtains good processor utilization—over 60% for four 
benchmarks and over 40% for two additional ones.   
StreamIt performs respectably compared to the C 
implementations, although there is room for improvement.  The 
aim of StreamIt is to provide a higher level of abstraction than C 
without sacrificing performance.  Our current implementation has 
taken a large step towards this goal.   
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Figure 4. Throughput of StreamIt code running on 16 
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throughput of C code on a Pentium IV. 
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