

Defying the Speed of Light: Wire-Exposed Architectures and Spatially-Aware Compilers
Saman Amarasinghe

Laboratory for Computer Science, Massachusetts Institute of Technology,
200 Technology Square, Cambridge, MA 02139

1-617-253-8879 / saman@lcs.mit.edu / http://compiler.lcs.mit.edu/commit

Abstract
As wire-delay is becoming the most important design constraint of
microprocessors, wire-expose architectures are emerging as a
strong solution to maintaining the performance growth of modern
processors. However, a von Neumann programming model cannot
harness the power of these machines.
We have developed StreamIt, a novel language as a viable
common machine language for wire-exposed architectures. It
abstracts away the target's granularity, memory layout, and
network interconnect, while capturing the notion of replicated
processors that communicate in regular patterns. With this
representation, we believe that the StreamIt compiler will match
the performance of C code that was hand-tailored for a given
grid-based machine.

1. INTRODUCTION
With the increasing miniaturization of transistors, wire delays are
becoming a dominant factor in microprocessor performance. To
address this issue, a number of emerging architectures contain
replicated processing units with software-exposed communication
between one unit and another (e.g., Raw[2], SmartMemories[1],
TRIPS[3]). However, for them to be effective, it is necessary to
use languages that circumvent the von Neumann bottleneck,
inherent in current programming languages such as C, C++ and
Java.
StreamIt is a streaming language that is ideally suited for wire-
exposed architectures. StreamIt provides novel high-level
representations to improve programmer productivity and program
robustness within the streaming domain. At the same time,
StreamIt exposes the inherent communication pattern of the
program, allowing the compiler to aggressively optimize and
effectively utilize wire-exposed architectures.
Though StreamIt exposes the parallelism and communication
patterns of stream programs, much analysis is needed to adapt a
stream program to a wire-exposed processor. These include
fission and fusion transformations that is used to adjust the
granularity of a stream graph, a layout algorithm for mapping a
stream graph to a given network topology, and a scheduling
algorithm for generating a fine-grained static communication
pattern for each computational element.
We have developed a StreamIt compiler for the Raw architecture.
The Raw processor, developed at MIT, is a simple tiled
architecture that fully exposes the interconnectivity to the
compiler. We demonstrate that the StreamIt compiler can
automatically map a high-level stream abstraction to Raw without
loosing performance. We consider this work to be a first step
towards a portable programming language for wire exposed
architectures.

2. The StreamIt Language
In this section we provide a brief overview of the StreamIt
language; please see [6] for a more detailed description. The
current version of StreamIt is legal Java syntax to simplify our
presentation and implementation, and it is designed to support
only streams with static input and output rates.

2.1 Filters
The basic unit of computation in StreamIt is the Filter. An
example of a Filter is the FIRFilter, shown in Figure 1. The
central aspect of a filter is the work function, which describes the
filter's most fine grained execution step in the steady state.
Within the work function, a filter can communicate with
neighboring blocks using the input and output channels, which
are FIFO queues declared as fields in the Filter base class. These
high-volume channels support the three intuitive operations: 1)
pop() removes an item from the end of the channel and returns its
value, 2) peek(i) returns the value of the item i spaces from the
end of the channel without removing it, and 3) push(x) writes x
to the front of the channel. The argument x is passed by value; if
it is an object, a separate copy is enqueued on the channel.

class FIRFilter extends Filter {
 float[] weights;
 int N;

 void int(float[] weights) {
 setInput(Float.TYPE); setOutput(Float.TYPE);
 setPush(N); setPop(1); setPeek(N);
 this.weights = weights;
 this.N = weights.length;
 }

 void work() {
 float sum = 0;
 for(int i=0; i<N; i++)
 sum += input.peek(i)*weights[i];
 input.pop();
 putput.push(sum);
 }
}

class Main extends Pipeline {
 void init() {
 add(new DataSource());
 add(new FIRFilter());
 add(new Display());
 }
}

Figure 1. An FIR Filter in StreamIt.

Each Filter also contains an init function, which is called at
initialization time. The init function serves two purposes. Firstly,

it is for the user to establish the initial state of the filter. For
example, the FIRFilter records weights, the coefficients that it
should use for filtering. A filter can also push, pop, and peek
items from within the init function if it needs to set up some initial
state on its channels, although this usually is not necessary. A
user should instantiate a filter by using its constructor, and the
init function will be called implicitly with the same arguments
that were passed to the constructor.
The second purpose of the init function is to specify the filter's I/O
types and data rates to the StreamIt compiler. The types are
specified with calls to setInput and setOutput, while the rates
are specified with calls to setPush, setPop, and setPeek. The
setPeek call can be ommitted if the peek count is the same as the
pop count.

2.2 Connecting Filters
StreamIt provides three constructs for composing filters into a
communicating network: Pipeline, SplitJoin, and
FeedbackLoop. Each structure specifies a pre-defined way of
connecting filters into a single-input, single-output block, which
we will henceforth refer to as a “stream”. That is, a stream is any
instance of a Filter, Pipeline, SplitJoin, or FeedbackLoop.
Every StreamIt program is a hierarchical composition of these
stream structures.
The Pipeline construct is for building a sequence of streams. Like
a Filter, a Pipeline has an init function that is called upon its
instantiation. Within init, component streams are added to the
Pipeline via successive calls to add.
The SplitJoin construct is used to specify independent parallel
streams that diverge from a common splitter and merge into a
common joiner. As in a Pipeline, the components of a SplitJoin
are specified with successive calls to add from the init function.
The splitter specifies how items from the input of the SplitJoin
are distributed to the parallel components. For simplicity, we
allow only compiler-defined splitters, of which there are three
types: 1) Duplicate, which replicates each data item and sends a
copy to each parallel stream, 2) RoundRobin(i1, i2, …, ik), which
sends the first i1 data items to the stream that was added first, the
next i2 data items to the stream that was added second, and so on,
and 3) Null, which means that none of the parallel components
require any input, and there are no input items to split.
The FeedbackLoop construct provides a way to create cycles in
the stream graph. Each FeedbackLoop contains: 1) a body
stream, which is the block around which a backwards “feedback
path” is being created, 2) a loop stream, which can perform some
computation along the feedback path, 3) a splitter, which
distributes data between the feedback path and the output channel
at the bottom of the loop, and 4) a joiner, which merges items
between the feedback path and the input channel at the top of the
loop.
Each of the stream constructs can either be executed on its own,
or embedded in an enclosing stream structure. When a stream is
embedded in another construct, the first and last components of
the stream are implicitly connected to the stream's neighbors in
the parent construct.

3. The Raw Architecture
The Raw Microprocessor[1] addresses the wire delay problem by
providing direct instruction set architecture (ISA) analogs to three
underlying physical resources of the processor: gates, wires and
pins. Because ISA primitives exist for these resources, a compiler
such as StreamIt has direct control over both the computation and
the communication of values between the functional units of the
microprocessor, as well as across the pins of the processor.
The architecture exposes the gate resources as a scalable 2-D
array of identical, programmable tiles, that are connected to their
immediate neighbors by four on-chip networks. Each network is
32-bit, full-duplex, flow-controlled and point-to-point. On the
edges of the array, these networks are connected via logical
channels to the pins. Thus, values routed through the networks
off of the side of the array appear on the pins, and values placed
on the pins by external devices (for example, wide-word A/Ds,
DRAMS, video streams and PCI-X buses) will appear on the
networks.

SMEM

Switch

Registers

DMEM
PC

PC

ALU

IMEM

Figure 2. A block diagram of the Raw architecture.

Each of the tiles contains a compute processor, some memory and
two types of routers – one static, one dynamic – that control the
flow of data over the networks as well as into the compute
processor (see Figure 2). The compute processor interfaces to the
network through a bypassed, register-mapped interface[1] that
allows instructions to use the networks and the register files
interchangeably. In other words, a single instruction can read up
to two values from the networks, compute on them, and send the
result out onto the networks, with no penalty. Reads and writes in
this fashion are blocking and flow-controlled, which allows for
the computation to remain unperturbed by unpredictable timing
variations such as cache misses and interrupts.
Each tile's static router has a virtualized instruction memory to
control the crossbars of the two static networks. Collectively, the
static routers can reconfigure the communication pattern across
these networks every cycle. The instruction set of the static router
is encoded as a 64-bit VLIW word that includes basic instructions
(conditional branch with/without decrement, move, and nop) that
operate on values from the network or from the local 4-element
register file. Each instruction also has 13 fields that specify the
connections between each output of the two crossbars and the
network input FIFOs, which store values that have arrived from
neighboring tiles or the local compute processor. The input and
output possibilities for each crossbar are: North, East, South,
West, Processor, to the other crossbar, and into the static router.
The FIFOs are typically four or eight elements large.

4. Compiling StreamIt for Raw
The StreamIt language aims to be portable across communication-
exposed machines. StreamIt exposes the parallelism and
communication of streaming applications without depending on
the topology or granularity of the underlying architecture. We
have implemented a fully-functional prototype of the StreamIt
compiler for Raw[2]. However, the compiler employs three
general techniques that can be applied to compile StreamIt to
machines other than Raw: 1) partitioning, which adjusts the
granularity of a stream graph to match that of a given target, 2)
layout, which maps a partitioned stream graph to a given network
topology, and 3) scheduling, which generates a fine-grained static
communication pattern for each computational element. We
consider this work to be a first step towards a portable
programming model for communication-exposed architectures.
The StreamIt compiler is composed of the following stages that
are specific for communication-exposed architectures: stream
graph scheduling, stream graph partitioning, layout, and
communication scheduling. The next four sections provide a brief
overview of these phases, see [8] for more details.

4.1 Stream Graph Scheduling
The automatic scheduling of the stream graph is one of the
primary benefits that StreamIt offers, and the subtleties of
scheduling and buffer management are evident throughout the
phases of the compiler described below. The scheduling is
complicated by StreamIt's support for the peek operation, which
implies that some programs require a separate schedule for
initialization and for the steady state. The steady state schedule
must be periodic—that is, its execution must preserve the number
of live items on each channel in the graph (since otherwise a
buffer would grow without bound.) A separate initialization
schedule is needed if there is a filter with peek > pop, by the
following reasoning. If the initialization schedule were also
periodic, then after each firing it would return the graph to its
initial configuration, in which there were zero live items on each
channel. But a filter with peek > pop leaves peek - pop (a
positive number) of items on its input channel after every firing,
and thus could not be part of this periodic schedule. Therefore,
the initialization schedule is separate, and non-periodic.

4.2 Stream Graph Partitioning
StreamIt provides the filter construct as the basic abstract unit of
autonomous stream computation. The programmer should decide
the boundaries of each filter according to what is most natural for
the algorithm under consideration. While one could envision
each filter running on a separate machine in a parallel system,
StreamIt hides the granularity of the target machine from the
programmer. Thus, it is the responsibility of the compiler to
adapt the granularity of the stream graph for efficient execution
on a particular architecture.
We use the word partitioning to refer to the process of dividing a
stream program into a set of balanced computation units. Given
that a maximum of N computation units can be supported, the
partitioning stage transforms a stream graph into a set of no more
than N filters, each of which performs approximately the same
amount of work during the execution of the program. Following
this stage, each filter can be run on a separate processor to obtain
a load-balanced executable.

Our partitioner employs a set of fusion, fission, and reordering
transformations to incrementally adjust the stream graph to the
desired granularity. To achieve load balancing, the compiler
estimates the number of instructions that are executed by each
filter in one steady-state cycle of the entire program; then,
computationally intensive filters can be split, and less demanding
filters can be fused. Currently, a simple greedy algorithm is used
to automatically select the targets of fusion and fission, based on
the estimate of the work in each node.

4.3 Layout
The goal of the layout phase is to assign nodes in the stream graph
to computation nodes in the target architecture while minimizing
the communication and synchronization present in the final
layout. The layout assigns exactly one node in the stream graph
to one computation node in the target. The layout phase assumes
that the given stream graph will fit onto the computation fabric of
the target and that the filters are load balanced. These
requirements are satisfied by the partitioning phase described
above.
The layout phase of the StreamIt compiler is implemented using
simulated annealing[9]. We choose simulated annealing for its
combination of performance and flexibility. To adapt the layout
phase for a given architecture, we supply the simulated annealing
algorithm with three architecture-specific parameters: a cost
function, a perturbation function, and the set of legal layouts.
The cost function should accurately measure the added
communication and synchronization generated by mapping the
stream graph to the communication model of the target. Due to
the static qualities of StreamIt, the compiler can provide the
layout phase with exact knowledge of the communication
properties of the stream graph. The terms of the cost function can
include the counts of how many items travel over each channel
during an execution of the steady state. Furthermore, with
knowledge of the routing algorithm, the cost function can infer
the intermediate hops for each channel.

4.4 Communication Scheduler
With the nodes of the stream graph assigned to computation nodes
of the target, the next phase of the compiler must map the
communication explicit in the stream graph to the interconnect of
the target. This is the task of the communication scheduler. The
communication scheduler maps the infinite FIFO abstraction of
the stream channels to the limited resources of the target. Its goal
is to avoid deadlock and starvation while utilizing the parallelism
explicit in the stream graph.
The exact implementation of the communication scheduler is tied
to the communication model of the target. The simplest mapping
would occur for targets implementing an end-to-end, infinite
FIFO abstraction, in which the scheduler needs only to determine
the sender and receiver of each data item. This information is
easily calculated from the weights of the splitters and joiners. As
the communication model becomes more constrained, the
communication scheduler becomes more complex, requiring
analysis of the stream graph. For targets implementing a finite,
blocking nearest-neighbor communication model, the exact
ordering of tile execution must be specified.
Due to the static nature of StreamIt, the compiler can statically
orchestrate the communication resources. The schedules can give

us an order for execution of the graph if necessary. One can
generate orderings to minimize buffer length, maximize
parallelism, or minimize latency.

5. Results
For each application, we compare the throughput of StreamIt with
a hand-written C program, running the latter on either a single tile
of Raw or on a Pentium IV. For Radio, GSM[4], and Vocoder[7],
the C source code was obtained from a third party; in other cases,
we wrote a C implementation following a reference algorithm.
We show the performance of the C code, which is not available
for C programs that did not fit onto a single Raw tile (Radar[5],
GSM, and Vocoder). Figures 3 and 4 illustrate the speedups
obtained by StreamIt compared to the C implementations.
The results are encouraging. In many cases, the StreamIt
compiler obtains good processor utilization—over 60% for four
benchmarks and over 40% for two additional ones.
StreamIt performs respectably compared to the C
implementations, although there is room for improvement. The
aim of StreamIt is to provide a higher level of abstraction than C
without sacrificing performance. Our current implementation has
taken a large step towards this goal.

0

4

8

12

16

20

24

28

32

F IR R a d io S o rt F F T F ilte rb an k 3G P P
Figure 3. StreamIt throughput on a 16-tile Raw machine,
normalized to throughput of hand-written C running on

a single Raw tile.

0

2

4

6

8

1 0

1 2

1 4

1 6

F IR R a d a r R a d io S o rt F F T F ilte rb a n k G S M V o c o d e r 3 G P P

Sequential C program on 1 tile

S tre a m It p ro g ra m o n 1 6 tile s

Figure 4. Throughput of StreamIt code running on 16

tiles and C code running on a single tile, normalized to
throughput of C code on a Pentium IV.

6. ACKNOWLEDGEMENTS
This paper presents contributions of many members of the MIT
Commit and Raw projects. This work is supported in part by a
grant from DARPA (PCA F29601-04-2-0166), an award from
NSF (CISE EIA-0071841), and fellowships from the Singapore-
MIT Alliance and the MIT-Oxygen Project.

7. References
[1] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, M.

Horowitz. Smart memories: A modular recongurable
architecture. In ISCA 2000, Vancouver, BC, Canada.

[2] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee,
V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S.
Amarasinghe, A. Agarwal. Baring it all to software: Raw
machines. IEEE Computer, 30(9), 1997.

[3] K. Sankaralingam, R. Nagarajan, S. Keckler, D. Burger, A
Technology-Scalable Architecture for Fast Clocks and High
ILP, University of Texas at Austin, Dept. of Computer
Sciences Technical Report TR-01-02, 2001.

[4] M. Mouly, M. Pautet, The GSM System for Mobile
Communications Cell & Sys, 1992.

[5] J. Lebak, Polymorphous Computing Architecture (PCA)
Example Applications and Description, External Report,
Lincoln Laboratory, Mass. Inst. of Technology, 2001.

[6] W. Thies, M. Karczmarek, S. Amarasinghe, StreamIt: A
Language for Streaming Applications, in Proceedings of the
International Conference on Compiler Construction,
Grenoble, France, 2002.

[7] S. Seneff, Speech transformation system (spectrum and/or
excitation) without pitch extraction, Master's thesis,
Massachussetts Institute of Technology, 1980.

[8] M. Gordon, W. Thies, M. Karczmarek, J. Wong, H.
Hoffmann, D. Maze, and S. Amarasinghe, A stream
compiler for communication-exposed architectures, In
ASPLOS X, October 2002.

[9] S. Kirkpatrick, J. C.D. Gelatt, and M. Vecchi, Optimization
by Simulated Annealing, Science, vol. 220, no. 4598, May
1983.

8. BIBLIOGRAPHY
Saman P. Amarasinghe is an Associate Professor in the
Department of Electrical Engineering and Computer Science at
Massachusetts Institute of Technology and a member of the MIT
Laboratory for Computer Science. He received his BS in
Electrical Engineering and Computer Science from Cornell
University in 1988, and his MSEE and Ph.D from Stanford
University in 1990 and 1997, respectively. Currently he leads the
Commit compiler group and is the co-leader of the MIT Raw
project. His research interests are in discovering novel approaches
to improve the performance of modern computer systems without
unduly increasing the complexity faced by either application
developers, compiler writers, or computer architects.

