
Linear Analysis and Optimization of Stream

Programs

by

Andrew Allinson Lamb

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2003

c© Andrew Allinson Lamb, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 9, 2003

Certified by. .
Saman P. Amarasinghe

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Linear Analysis and Optimization of Stream Programs

by

Andrew Allinson Lamb

Submitted to the Department of Electrical Engineering and Computer Science
on May 9, 2003, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

As more complex DSP algorithms are realized in practice, there is an increasing need
for high-level stream abstractions that can be compiled without sacrificing efficiency.
Toward this end, we present a set of aggressive optimizations that target linear sec-
tions of a stream program. Our input language is StreamIt, which represents programs
as a hierarchical graph of autonomous filters. A filter is linear if each of its outputs
can be represented as an affine combination of its inputs. Linearity is common in
DSP components; examples include FIR filters, expanders, compressors, FFTs and
DCTs.

We demonstrate that several algorithmic transformations, traditionally hand-
tuned by DSP experts, can be completely automated by the compiler. First, we
present a linear extraction analysis that automatically detects linear filters from the
C-like code in their work function. Then, we give a procedure for combining ad-
jacent linear filters into a single filter, a specialized caching strategy to remove re-
dundant computations, and a method for translating a linear filter to operate in the
frequency domain. We also present an optimization selection algorithm, which finds
the sequence of combination and frequency transformations that yields the maximal
benefit.

We have completed a fully-automatic implementation of the above techniques
as part of the StreamIt compiler. Using a suite of benchmarks, we show that our
optimizations remove, on average, 86% of the floating point instructions required. In
addition, we demonstrate an average execution time decrease of 450% and an 800%
decrease in the best case.

Thesis Supervisor: Saman P. Amarasinghe
Title: Associate Professor

3

4

Acknowledgments

First and foremost, I would like to thank my family and fiancée. Without their

continuous support and encouragement I do not know where I would be today (but

it certainly wouldn’t be here). I would like to thank Dave Maze, who first suggesting

using FFTW and did the initial implementation; William Thies, who both conceived

of and executed the automatic selection algorithm which has become a core idea of

this thesis; Alex Salcianu, who provided helpful comments on the presentation of

the dataflow analysis; and Michal Karczmarek, Jasper Lin, and Michael Gordon who

provided extensive support with the StreamIt infrastructure. The StreamIt project

is supported by DARPA contract F26901-01-2-01661, NSF contract EIA-00718412,

and the MIT LCS Oxygen Alliance. Further, I would like to thank my adviser, Saman

Amarasinghe, for providing an environment where I experienced the thrill of research

firsthand and learned so much. Finally, I would like to thank Bill Thies. He wrote

the original text of many of the sections in this thesis, and under his tutelage I have

learned what research, technical writing, and hard work are all about.

1RAW Fabric: A Technology for Rapid Embedded Systems
2Cise Experimental Partnerships: MIT RAW

5

6

Contents

1 Introduction 17

1.1 Motivation and Overview . 17

1.2 Organization . 19

1.3 Motivating Example . 19

2 Background 23

2.1 The StreamIt Language . 23

2.2 A Crash Course in Digital Signal Processing 26

2.2.1 LTI Filtering . 26

2.2.2 Frequency Analysis . 28

2.3 FFT Derivation . 29

2.3.1 Notation, Definitions and Identities 29

2.3.2 Derivation . 30

3 Linear Analysis 35

3.1 Representing Linear Nodes . 35

3.2 Linear Extraction Algorithm . 36

3.3 Combining Linear Filters . 41

3.3.1 Linear Expansion . 41

3.3.2 Collapsing Linear Pipelines 44

3.3.3 Collapsing Linear SplitJoins 46

3.3.4 Applications of Linear Combination 51

7

4 Linear Optimization 53

4.1 Translation to Frequency Domain . 53

4.1.1 Motivation . 53

4.1.2 Basic Frequency Implementation 55

4.1.3 Optimized Frequency Implementation 58

4.1.4 Applications of Frequency Transformation 59

4.2 Redundancy Elimination . 59

4.2.1 Motivation . 60

4.2.2 Redundancy Analysis . 62

4.2.3 Non Redundant Code Generation 64

4.3 Optimization Selection . 66

4.3.1 The Selection Problem . 67

4.3.2 Dynamic Programming Solution 67

4.3.3 Cost Functions . 68

4.4 Implementation Notes . 71

5 Results 75

5.1 Measurement Methodology . 75

5.2 Overall Performance . 78

5.3 Effect of Combination . 82

5.4 Effect of ATLAS . 85

5.5 FIR Scaling . 87

5.6 Redundancy Elimination . 89

5.7 Radar Scaling . 90

5.8 FFT Savings: Theory vs. Practice . 91

6 Related Work 95

7 Conclusion 97

7.1 Future Work . 98

A Benchmark Source Code 99

8

B Benchmark Stream Graphs 113

9

10

List of Figures

1-1 Block diagram of two FIR filters. 20

1-2 Two consecutive FIR filters in C. Channels are represented as circular

buffers, and the scheduling is done by hand. 20

1-3 Two consecutive FIR filters in StreamIt. Buffer management and

scheduling are handled by the compiler. 21

1-4 Combined version of the two FIR filters. Since each FIR filter is linear,

the weights can be combined into a single combined weights array. . 21

1-5 Combined version of two FIR filters in the frequency domain. 21

2-1 Stream structures supported by StreamIt. 24

2-2 Example StreamIt program: Downsample. 25

2-3 Schematic of the impulse response of an LTI filter. 27

2-4 z = ejω as a unit vector in the complex plane. 30

3-1 Representation of a linear node. 37

3-2 Data types for the extraction analysis. 38

3-3 Expanding a linear node to rates (e′, o′, u′). 42

3-4 Pipeline combination example. 46

3-5 Matrix resulting from combining a splitjoin of rate-matched children. 48

3-6 Splitjoin combination example. 50

4-1 Example filter with redundant computation across firings. 60

4-2 Example filter without redundant calculations. 61

4-3 Type declarations for code in Figures 4-4, 4-5, and 4-6. 67

11

4-4 Algorithm for optimization selection (part one). 68

4-5 Algorithm for optimization selection (part two). 69

4-6 Algorithm for optimization selection (part three). 70

5-1 Elimination of floating point operations by maximal linear replace-

ment, maximal frequency replacement, and automatic optimization

selection. 80

5-2 Elimination of floating point multiplications by maximal linear replace-

ment, maximal frequency replacement, and automatic optimization se-

lection. 81

5-3 Execution speedup for maximal linear replacement, maximal frequency

replacement, and automatic optimization selection. 82

5-4 Elimination of multiplications (left) and speedup (right) with linear re-

placement (top) and frequency replacement (bottom) with and without

combination. The (nc) label denotes that combination was disabled. . 83

5-5 Differences in speedup due to the addition of combination with linear

replacement and frequency replacement. 84

5-6 Speedups using ATLAS to implement linear replacement. 85

5-7 Code for diagonal matrix multiply for large filter sizes. 86

5-8 Elimination of floating point multiplications (top) and speedup (bot-

tom) with frequency replacement as a function of problem size for the

FIR benchmark. 87

5-9 Scatter plot of original execution time versus post optimization execu-

tion time for FIR scaling experiments. Plotted as a solid line is the

cost function used with the automatic selection algorithm. 88

5-10 Multiplications remaining (top) and speedup (bottom) after redun-

dancy replacement as a function of problem size for the FIR benchmark. 89

5-11 Multiplication reduction with maximal linear replacement as a function

of problem size for the Radar benchmark. 91

12

5-12 Elimination of floating point multiplications with frequency replace-

ment as a function of problem size and FFT length for the FIR program

using different transformation strategies. 93

A-1 Source code for FloatSink. 100

A-2 Source code for LowPassFilter. 100

A-3 Source code for the FIR benchmark. 101

A-4 Source code for Compressor. 101

A-5 Source code for Expander. 102

A-6 Source code for the RateConvert benchmark. 102

A-7 Source code for the TargetDetect benchmark. 103

A-8 Source code for matched filters in the TargetDetect benchmark. . . . 104

A-9 Source code for the FMRadio benchmark (part one). 105

A-10 Source code for the FMRadio benchmark (part two). 106

A-11 Source code for BandPassFilter. 107

A-12 Source code for BandStopFilter. 107

A-13 Source code for the FilterBank benchmark. 108

A-14 Source code for the Vocoder benchmark. 109

A-15 Source code for the Oversample benchmark. 110

A-16 Source code for the DToA benchmark. 111

B-1 FIR and RateConvert stream graphs. 114

B-2 TargetDetect stream graphs. 115

B-3 FMRadio stream graphs. 116

B-4 Radar stream graphs (part one). 117

B-5 Radar stream graphs (part two). 118

B-6 FilterBank stream graphs. 119

B-7 Vocoder stream graphs. 120

B-8 Oversampler stream graphs. 121

B-9 DToA stream graphs. 122

13

14

List of Tables

5.1 Intel IA-32 FLOPS. 77

5.2 Characteristics of benchmarks before and after running automatic se-

lection optimizations. 79

15

16

Chapter 1

Introduction

This chapter motivates our work and gives an overview of the problem domain (1.1).

Next, we describe the organization of this thesis (1.2). We conclude with a motivating

example that illustrates the types of optimizations our techniques automate (1.3).

1.1 Motivation and Overview

Digital computation is a ubiquitous element of modern life. Everything from cell

phones to HDTV systems to satellite radios require increasingly sophisticated algo-

rithms for digital signal processing. Optimization is especially important in this do-

main, as embedded devices commonly have high performance requirements and tight

resource constraints. Consequently, there are often two stages to the development

process: first, the algorithm is designed and simulated at a high level of abstraction,

and second, it is optimized and re-implemented at a low level by an expert DSP

programmer. In order to achieve high performance, the DSP programmer needs to

take advantage of architecture-specific features and constraints (usually via extensive

use of assembly code) as well as global properties of the application that can be ex-

ploited to obtain algorithmic speedups. Apart from requiring expert knowledge, this

effort is time-consuming, error-prone, costly, and must be repeated for every change

in the target architecture and every adjustment to the high-level system design. As

embedded applications continue to grow in complexity, these factors will become un-

manageable. There is a pressing need for high-level DSP abstractions that can be

compiled without any performance penalty.

17

According to Texas Instruments[10], more than fifty percent of the code that runs

the DSPs in a modern cell phone is written in assembly (the rest is written in anno-

tated C). Even provided the best available C compilers, programmers must still turn

to hand written code to meet the tight speed and power constraints of cell phones.

Generating code tailored for the power constraints, specialized coprocessors and spe-

cialized instructions of modern DSP chips from a program written in standard C is a

daunting task for modern compiler writers. The sheer volume of analysis required to

automatically use special purpose instructions leaves direct assembly language pro-

gramming as the only option.

In this thesis, we develop a set of optimizations that lower the entry barrier

for high-performance stream programming. Our work is done in the context of

StreamIt [15, 33], which is a high-level language for high performance signal pro-

cessing applications. A program in StreamIt is comprised of a set of concurrently

executing filters, each of which contains its own address space and communicates

with its neighbors using FIFO queues. Our analysis focuses on filters which are lin-

ear: their outputs can be expressed as an affine combination of their inputs. Linear

filters are common in DSP applications; examples include FIR filters, expanders,

compressors, FFTs and DCTs.

In practice, there are a host of optimizations that are applied to linear portions

of a stream graph. In particular, neighboring linear nodes can be combined into one,

and large linear nodes can benefit from translation into the frequency domain. How-

ever, these optimizations require detailed mathematical analysis and are tedious and

complex to implement. They are only beneficial under certain conditions — condi-

tions that might change with the next version of the system, or that might depend

on neighboring components that are being written concurrently by other develop-

ers. To improve the modularity, portability, and extensibility of stream programs,

the compiler should be responsible for identifying linear nodes and performing the

appropriate optimizations. Toward this end, we make the following contributions:

18

1. A linear dataflow analysis that extracts an abstract linear representation from
imperative C-like code.

2. An automated transformation of neighboring linear nodes into a single collapsed
representation.

3. An automated translation of linear nodes into the frequency domain.

4. An optimization selection algorithm that determines which transformations are
most beneficial to apply.

5. A fully-automatic implementation of these techniques in the StreamIt compiler,
demonstrating an average speedup of 450% and a best-case speedup of 800%.

1.2 Organization

In the rest of this chapter, we give a motivating example. In Chapter 2 we present

appropriate background material on StreamIt (2.1), a brief summary of digital signal

processing (2.2) and a derivation of the fast Fourier transform (2.3). In Chapter 3 we

describe our analysis methods. We first present our linear node representation (3.1)

and our supporting dataflow analysis (3.2). Next we describe structural transforma-

tions on linear nodes (3.3). In Chapter 4 we discuss our optimizations: frequency

domain translation (4.1), redundant computation elimination (4.2), and automated

application (4.3). We end with comments on our implementation experience (4.4).

Chapter 5 presents experimental validation of our methods. We first describe our

measurement methodology (5.1) and provide overall validation of our optimizations

(5.2). Then we present additional experiments and results (5.3 - 5.8) that are of

interest. We present related works in Chapter 6 and we conclude in Chapter 7 where

we also mention future research opportunities (7.1).

1.3 Motivating Example

To illustrate the program transformations that our technique is designed to automate,

consider a sequence of finite impulse response (FIR) filters as shown in Figure 1-

1. The imperative C style code that implements this simple DSP application is

19

FIR1 FIR2

Figure 1-1: Block diagram of two FIR filters.

/* perform two consecutive FIR filters with weights w1, w2 */

void two_filters(float* w1, float* w2, int N) {

int i;

float data[N]; /* input data buffer */

float buffer[N]; /* inter-filter buffer */

for (i=0; i<N; i++) { /* initialize the input data buffer */

data[i] = get_next_input();

}

for (i=0; i<N; i++) { /* initialize inter-filter buffer */

buffer[i] = filter(w1, data, i, N);

data[i] = get_next_input();

}

i = 0;

while(true) {

/* generate next output item */

push_output(filter(w2, buffer, i, N));

/* generate the next element in the inter-filter buffer */

buffer[i] = filter(w1, data, i, N);

/* get next data item */

data[i] = get_next_input();

/* update current start of buffer */

i = (i+1)%N;

}

}

/* perform N-element FIR filter with weights and data */

float filter(float* weights, float* data, int pos, int N) {

int i;

float sum = 0;

/* perform weighted sum, starting at index pos */

for (i=0; i<N; i++, pos++) {

sum += weights[i] * data[pos];

pos = (pos+1)%N;

}

return sum;

}

Figure 1-2: Two consecutive FIR filters in C. Channels are represented as circular
buffers, and the scheduling is done by hand.

20

float->float pipeline TwoFilters(float[N] w1, float[N] w2) {

add FIRFilter(w1);

add FIRFilter(w2);

}

float->float filter FIRFilter(float[N] weights) {

work push 1 pop 1 peek N {

float sum = 0;

for (int i=0; i<N; i++) {

sum += weights[i] * peek(i);

}

push(sum);

pop();

}

}

Figure 1-3: Two consecutive FIR filters in StreamIt. Buffer management and schedul-
ing are handled by the compiler.

float->float filter CollapsedTwoFilters(float[N] w1, float[N] w2) {

float[N] combined_weights;

init { /* calculate combined_weights from w1 and w2 */ }

work push 1 pop 1 peek N {

float sum = 0;

for (int i=0; i<N; i++) {

sum += combined_weights[i]*peek(i);

}

push(sum);

pop();

}

}

Figure 1-4: Combined version of the two FIR filters. Since each FIR filter is linear,
the weights can be combined into a single combined weights array.

float->float pipeline FreqTwoFilters(float[N] w1, float[N] w2) {

float[N] combined_weights = ... ; // calc. combined weights

complex[N] H = fft(combined_weights); // take FFT of weights

add FFT(); // add FFT stage to stream

add ElementMultiply(H); // add multiplication by H

add IFFT(); // add inverse FFT

}

Figure 1-5: Combined version of two FIR filters in the frequency domain.

21

shown in Figure 1-2. The program largely defies many standard compiler analysis

and optimization techniques because of its use of circular buffers and the muddled

relationship between data, buffer and the output.

Figure 1-3 shows the same filtering process in StreamIt. The StreamIt version is

more abstract than the C version. It indicates the communication pattern between

filters, shows the structure of the original block diagram and leaves the complexities

of buffer management and scheduling to the compiler.

Two optimized versions of the FIR program are shown in Figures 1-4 and 1-5. In

Figure 1-4, the programmer has combined the weights arrays from the two filters

into a single, equivalent array. This reduces the number of multiply operations by a

factor of two. In Figure 1-5, the programmer has done the filtering in the frequency

domain. Computationally intensive streams are more efficient in frequency than in

time.

Our linear analysis can automatically derive both of the implementations in Fig-

ures 1-4 and 1-5, starting with the code in Figure 1-3. These optimizations free the

programmer from the burden of combining and optimizing linear filters by hand. In-

stead, the programmer can design modular filters at the natural granularity for the

algorithm in question and rely on the compiler for combination and transformation.

22

Chapter 2

Background

This chapter is organized as follows. First we present an overview of our input

language, StreamIt (2.1). Then we give a high level overview and some key results

of basic digital signal processing (2.2). Finally, we provide a derivation of the FFT

algorithm (2.3) as justification for our frequency replacement optimization described

in Chapter 4.

2.1 The StreamIt Language

StreamIt is a language and compiler for high-performance signal processing [14, 15,

33]. In a streaming application, each data item is in the system for only a small

amount of time, as opposed to scientific applications where the data set is used ex-

tensively over the entire execution. Also, stream programs have abundant parallelism

and regular communication patterns. The StreamIt language aims to expose these

properties to the compiler while maintaining a high level of abstraction for the pro-

grammer.

StreamIt programs are composed of processing blocks called filters. Each filter

has an input tape from which it can read values and an output tape to which it can

write values. Each filter also contains a work function which describes the filter’s

atomic execution step in the steady state. If the first invocation of the work function

has different behavior than other executions, a special initWork function is defined.

23

stream

stream

stream

stream

splitter

stream stream

join
���

joiner

stream

splitter

stream

(a) A pipeline. (b) A splitjoin. (c) A feedbackloop.

Figure 2-1: Stream structures supported by StreamIt.

The work function contains C-like imperative code, which can access filter state,

call external routines and produce and consume data. The input and output channels

are treated as FIFO queues, which can be accessed with three primitive operations:

pop() returns the first item on the input tape and advances the tape by one item.

peek(i) returns the value at the ith position on the input tape

push(v) pushes value v onto the output tape.

Each filter must declare the maximum element it will peek at, the number of

elements it will pop, and the number of elements that it will push during an execution

of work. These rates must be resolvable at compile time and constant from one

invocation of work to the next.

A program in StreamIt consists of a hierarchical graph of filters. Filters can be con-

nected using one of the three predefined structures shown in Figure 2-1: 1) pipelines

represent the serial computation of one filter after another, 2) splitjoins represent

explicitly parallel computation, and 3) feedbackloops allow cycles to be introduced

into the stream graph. A stream is defined to be either a filter, pipeline, splitjoin or

feedbackloop. Every subcomponent of a structure is a stream, and all streams have

exactly one input tape and exactly one output tape.

24

void->float filter FloatSource {

float x;

init { x = 0; }

work push 1 { push(x++);}

}

float->void filter FloatPrinter {

work pop 1 { print(pop()); }

}

float->float filter LowPassFilter(float g, float cutoffFreq, int N) {

float[N] h;

init {

... // initialize the N weights appropriately

}

/* implement the FIR filtering operation as a convolution sum. */

work peek N pop 1 push 1 {

float sum = 0;

for (int i=0; i<N; i++)

sum += h[i]*peek(i);

push(sum); pop();

}

}

float->float filter Compressor(int M) {

work peek M pop M push 1 {

push(pop());

for (int i=0; i<(M-1); i++)

pop();

}

}

void->void pipeline Downsample {

add FloatSource();

add LowPassFilter(2, pi/2, 64);

add Compressor(2);

add FloatPrinter();

}

Figure 2-2: Example StreamIt program: Downsample.

It has been our experience that most applications can be represented using StreamIt’s

hierarchical structures. Though sometimes a program needs to be reorganized to fit

into the structured paradigm, there are benefits for both the programmer and the

compiler in having a structured language [33]. In particular, the linear analyses de-

scribed in this thesis rely heavily on the structure of StreamIt since they focus on each

hierarchical primitive rather than dealing with the complexity of arbitrary graphs.

Figure 2-2 shows an example StreamIt program that implements downsampling

by a factor of two. FloatSource pushes an incrementing value each execution and

FloatPrinter consumes one item and prints it to the screen. LowPassFilter imple-

ments a digital FIR filter1. Compressor passes the first value on its input to its output

tape and discards the next M − 1 values from the input. These filters are connected

serially using the Downsample pipeline. The void->void type of the Downsample

pipeline represents that it is the top level construct of the program.

1The coefficient calculations are left out for the sake of brevity.

25

2.2 A Crash Course in Digital Signal Processing

This section provides sufficient background in digital signal processing (DSP) for this

thesis to make sense on its own. Those already endowed with an undergraduate

background in signal processing can safely skip this section.

2.2.1 LTI Filtering

One of the most fundamental DSP operations is linear time-invariant (LTI) filtering.

A full treatment is well outside the scope of this thesis — we aim only to provide

enough background for an intelligent reading. We refer the reader to one of the many

excellent introductory textbooks on the subject such as Oppenheim and Wilskey [25]

for a thorough treatment.

A discrete time LTI filter has a single input and a single output which operates on

signals which are defined for discrete indices. An LTI filter is completely characterized

by its impulse response which is defined as the output of the filter when the input is

the unit impulse, δ[n]. The unit impulse signal, δ[n], is defined such that it takes the

value 1 at index 0 and the value 0 everywhere else. Figure 2-3 graphically depicts a

filter excited by δ[n] and its resulting impulse response. It is useful to divide filters

into two classes as follows:

FIR Finite Impulse Response — impulse responses is of finite length.

IIR Infinite Impulse Response — impulse response is of infinite length (e.g. (1
2
)n).

IIR filters require a feedback loop to implement, and FIR filters do not. FIR filters

have other advantages over IIR filters such as better immunity to finite precision

arithmetic, fewer stability concerns and highly efficient hardware implementations.

Again, see Oppenheim [27] for a thorough discussion. Because of their advantages,

actual applications typically use FIR filters for a majority of DSP designs.

We now explain the standard terminology of the DSP literature. The input to a

filter is typically called x[n] where the index n represents the discrete “time.” x[n]

is very much like a C-style array, except that negative indices are also permissible.

26

0 0

...

�����

Figure 2-3: Schematic of the impulse response of an LTI filter.

x[0] represents the input at time 0, x[1] represents the input at time 1, and so on.

The impulse response of the filter is similarly described with h[n]. The output of a

filter is called y[n] and its value at time n is given by the convolution sum defined in

Equation 2.1.

y[n] =
∞
∑

m=−∞

x[m]h[n−m] (2.1)

Even though Equation 2.1 contains ∞, h[n] in FIR filters is non zero for a finite

range of indices. Therefore, the convolution can be implemented on finite computing

hardware. To calculate the output y[n] at index n with a computer, we place the

values of h[n] in an array weights such that weights[i] = h[−i]. There are issues

involved such as shifting the weights array so that it is not negatively indexed which

we will not consider here. Armed with x[n] and weights[n] we can then calculate the

output at time 0 with Equation 2.2. Equation 2.2 assumes that weights is an array

of N elements and that the input has more than N elements.

y[0] =
N−1
∑

i=0

x[i]weights[i] (2.2)

To calculate the next output value, y[1], we simply shift the input by one (in C

we would increment the x pointer by one) and then evaluate Equation 2.2 again. We

keep calculating output values in this manner until we run out of inputs. For the

corner cases at the beginning and end of the convolution sum, special care must be

taken to ensure that we only use the appropriate part of the input. The convolution

operation can be interpreted as computing a weighted average over the input. We

slide the weights array along the input array, computing the weighted sum defined

by the values of weights matrix.

27

Since the convolution sum is such a fundamental operation, DSP processors often

contain specialized hardware to calculate Equation 2.1 in a highly optimized way. For

example, the FIRS instruction [32] in the Texas Instruments TMS320C54x family of

DSP processors has hardware that is capable of computing each x[i]weights[i] term

in a single processor cycle in the steady state.

2.2.2 Frequency Analysis

Analyzing the frequency content of signals is important to almost all fields of engi-

neering. For discrete time signal processing, it is especially important. A fundamental

way to calculate the frequency spectrum of a discrete time signal is to use the dis-

crete time Fourier transform (DTFT). The DTFT is a continuous time function of

the variable ω and is defined in Equation 2.3.

X(ejω) =
∞
∑

n=−∞

x[n]e−jωn (2.3)

Because the complex exponential terms e−jωn are periodic, the DTFT of a discrete

time signal is also periodic with a period of 2π. The periodicity of the DTFT is

demonstrated in Equation 2.4.

X(ejω+2π) =
∑∞

n=−∞ x[n]e−j(ω+2π)n

=
∑∞

n=−∞ x[n]e−jωne−j2πn

=
∑∞

n=−∞ x[n]e−jωn

= X(ejω)

(2.4)

Clearly, computers can not calculate continuous functions, they can calculate the

values of a function only at a finite number of points. To calculate the value of the

DTFT for the N points ω = 2π
N
i for i = [0..N − 1], the DFT can be used. The DFT

is defined in the next section as Equation 2.5.

28

2.3 FFT Derivation

This section derives the fast Fourier transform (FFT) algorithm from the definition of

the discrete Fourier transform (DFT) using matrix notation. There are many different

derivations for the FFT and their details are well beyond the scope of this thesis. We

present a derivation for the FFT which works for DFTs of sizes which are powers of

two. The derivation follows closely the derivation given by Sewell[30].

2.3.1 Notation, Definitions and Identities

In this section, we will explain the notation and prove the key identities of complex

exponentials used in the FFT derivation. The N -point DFT, X[k], for a N sample

discrete time signal is defined by the following equation (see Oppenheim[27] for more

details).

X[k] =
N−1
∑

n=0

x[n]W nk
N (2.5)

where WN is the Nth root of unity such that

WN = e−
j2π
N and j =

√
−1 (2.6)

Euler’s relation relates complex exponentials to sinusoids in the following way.

ejω = cos(ω) + j sin(ω) (2.7)

One interpretation of ejω is a unit vector starting at the origin in the complex

plane. The vector is at an angle of ω relative to the real axis as shown in Figure 2-4.

This interpretation might be helpful to the reader in verifying properties of WN . WN

plays prominently in the definition of the DFT and its properties are essential for

deriving the FFT. The required identities of WN and their derivations are shown in

Equation 2.8.

29

Im{z}

1ω

jω
z=e

-1

j

-j

Re{z}

Figure 2-4: z = ejω as a unit vector in the complex plane.

W 2
N = e−

j2π
N

2 = e−
j2π
N/2 = WN/2

WN
N = e−

j2π
N

N = e−j2π = 1

W
N/2
N = e−

j2π
N

N
2 = e−jπ = −1

(2.8)

2.3.2 Derivation

We first cast the problem of computing the N values of X[k] from the N values of

x[n] as a matrix multiplication such that ~xA = ~X. ~x is a row vector of length N

such that xi = x[i] and ~X is also a row vector of length N such that Xi = X[i]. We

assume that N is a power of 2. If the length of x[n] is not a power of two, we can “zero

pad” x[n] to the appropriate length. Zero padding can always be done safely. See

Oppenheim[27] for a full theoretical treatment on the subject. From Equation 2.5

A must be a N ×N matrix such that A[i, k] = W ik
N . We can write out the equation

~xA = ~X in the following way.

[

x0 x1 · · · xN−1

]





















W 0·0
N W 0·1

N · · · W
0·(N−1)
N

W 1·0
N W 1·1

N · · · W
1·(N−1)
N

...
...

. . .
...

W
(N−1)·0
N W

(N−1)·1
N · · · W

(N−1)·(N−1)
N





















=
[

X0 X1 · · · XN−1

]

(2.9)

30

The non obvious but essential step of the derivation is rewriting Equation 2.9 by

splitting ~x and ~X into their even indexed elements followed by their odd indexed

elements (Equation 2.10). In order to maintain the same semantics, A must also be

rewritten. With these changes, Equation 2.9 becomes Equation 2.11.

[

~xeven ~xodd

]

=
[

x0 x2 · · · xN−2 x1 x3 · · · xN−1

]

[

~Xeven
~Xodd

]

=
[

X0 X2 · · · XN−2 X1 X3 · · · XN−1

]

(2.10)

[

~xeven ~xodd

]







P Q

R S





 =
[

~Xeven
~Xodd

]

(2.11)

Our goal is to derive relationships between P, Q, R and S such that we can reduce

the computational requirements. We start by defining two new matrices B and D.

We let B be the (N/2)× (N/2) DFT matrix (i.e. B[i, k] = W ik
N/2).

B =





















W 0·0
N/2 W 0·1

N/2 · · · W
0·(N/2−1)
N/2

W 1·0
N/2 W 1·1

N/2 · · · W
1·(N/2−1)
N/2

...
...

. . .
...

W
(N/2−1)·0
N/2 W

(N/2−1)·1
N/2 · · · W

(N/2−1)·(N/2−1)
N/2





















(2.12)

And we let D be a diagonal (N/2)× (N/2) matrix such that D[i, i] = W i
N .

D =





















W 0
N 0 · · · 0

0 W 1
N · · · 0

...
...

. . .
...

0 0 · · · W
(N/2−1)
N





















(2.13)

We now express P, Q, R and S in terms of B and D.

31

P[i, k] = A[2i, k] = W 2ik
N = W ik

N/2 = B[i, k] ⇒ P = B

Q[i, k] = A[2i, N/2 + k] = W
2i(N/2+k)
N = WNi

N W 2ik
N = 1iW ik

N/2 = B[i, k] ⇒ Q = B

R[i, k] = A[2i+ 1, k] = W
(2i+1)k
N = W 2ik

N W k
N = W ik

N/2W
k
N = B[i, k]D[k, k] ⇒ R = BD

S[i, k] = A[2i+ 1, N
2
+ k] = W

(2i+1)(N/2+k)
N = W

Ni+2ik+N/2+k
N

= WNi
N W 2ik

N W
N/2
N W k

N

= (1i)W ik
N/2(−1)W k

N = −W ik
N/2W

i
N = −B[i, k]D[k, k] ⇒ S = −BD

We now rewrite Equation 2.11 in terms of B and D in the following manner:

[

~xeven ~xodd

]







B B

BD −BD





 =
[

~Xeven
~Xodd

]

(2.14)

The FFT algorithm falls out of expanding Equation 2.14.

~xevenB + ~xoddBD = ~Xeven

~xevenB − ~xoddBD = ~Xodd

(2.15)

We can now calculate the DFT of ~x using the following algorithm.

1. Compute ~xevenB and ~xoddB. This can be done recursively by using the fact that

B is the N/2 DFT matrix — we are calculating two N/2-point DFTs on ~xeven

and ~xodd. Since N is a power of two, N/2 is also a power of two. The base case

is N/2 = 1 (i.e. B = [1]).

2. Compute ~u ≡ (~xoddB)D using the following recursive formula which requires

N/2 +N/2 = N multiplications. Note that ~u is a N/2 length row vector.

D[0, 0] = WN

u[k] = (~xoddB)[k]D[k, k]

D[k + 1, k + 1] = D[k, k]WN

(2.16)

32

3. Calculate ~Xeven and ~Xodd in the following manner:

~Xeven = ~xevenB+ ~u

~Xodd = ~xevenB− ~u
(2.17)

4. Finally, interleave ~Xeven and ~Xodd appropriately to form the overall ~X.

The computational complexity of the above algorithm is described by the recur-

rence T (N) = 2T (N
2
) + N which has as its solution T (N) = O(N lgN). This is the

well know result that the FFT requires O(N lgN) time.

The derivation above demonstrates the origin of the complexity savings of the

FFT. There are myriads of other ways to optimize the computation of the DFT and

a wide body of literature devoted to the subject. For a very fast runtime implemen-

tation, the author suggests using FFTW [6, 7, 8], which is a library for calculating

the FFT which uses runtime tuning to maximize performance.

33

34

Chapter 3

Linear Analysis

In this chapter, we first describe a matrix framework which describes linear operations

(3.1). Then, we present the automatic method by which our compiler detects filters

that perform linear operations (3.2). We then describe the method by which we

combine the action of linear filters within higher level StreamIt structures (3.3).

3.1 Representing Linear Nodes

There is no general relationship that must hold between a filter’s input data and its

output data. In actual applications, the output is typically derived from the input,

but the relationship is not always clear since a filter can have state and can call

external functions.

However, we note that a large subset of DSP operations produce outputs that are

some affine function of their input, and we call filters that implement such operations

linear. Examples of such filters are finite impulse response (FIR) filters, compressors,

expanders and signal processing transforms such as the discrete Fourier transform

(DFT) and discrete cosine transformation (DCT). Our formal definition of a linear

node is as follows (refer to Figure 3-1 for an illustration).

35

Definition 1 (Linear node) A linear node λ = {A, ~b, e, o, u} represents an

abstract stream block which performs an affine transformation ~y = ~xA+~b from input
elements ~x to output elements ~y. A is an e× u matrix, ~b is a u-element row vector,
and e, o and u are the peek, pop and push rates, respectively.

A “firing” of a linear node λ corresponds to the following series of abstract execution
steps. First, an e-element row vector ~x is constructed with ~x[i] = peek(e − 1 − i).

The node computes ~y = ~xA+~b, and then pushes the u elements of ~y onto the output
tape, starting with ~y [u − 1] and proceeding through ~y [0]. Finally, o items are popped
from the input tape.

The notation in Definition 1 is related to the standard DSP notation introduced

in Section 2.2 as follows. The input ~x is the same as x[e − 1 − n], for n ∈ [0, e − 1].

The input element at time 0, x[0], is the same as ~x [e−1] and corresponds to peek(0).

Similarly, the output ~y is the same as the y[u − 1 − n] for n ∈ [0, u − 1]. The

first output element at time 0, y[0], is the same as ~y [u − 1] and corresponds to the

first push statement. For a linear stream, the output is related to the input by

~y [j] = (
∑e−1

i=0 A[e− 1− i, u− 1− j]~x [i]) +~b [u− 1− j].

The intuition of the computation represented by a linear node is simply that spe-

cific columns generate specific outputs and specific rows correspond to using specific

inputs. The values found in row e − 1 − i of A (i.e., the ith row from the bottom)

and column u − 1 − j of A (i.e., the jth column from the right) represents a term

in the formula to compute the jth output item using the value of peek(i). The value

in column u − 1 − j of ~b is a constant offset added to output j. Figure 3-1 shows a

concrete example of a work function and its corresponding linear node.

3.2 Linear Extraction Algorithm

Our linear extraction algorithm can identify a linear filter and construct a linear

node λ that fully captures its behavior. The technique, which appears as Algorithm 1

and Algorithm 2, is a flow-sensitive, forward dataflow analysis similar to constant

propagation. Unlike a standard dataflow analysis, we can afford to symbolically

execute all loop iterations, since most loops within a filter’s work function have small

36

float->float filter ExampleFilter {

 work peek 3 pop 1 push 2 {

 push(3*peek(2)+5*peek(1));

 push(2*peek(2)+peek(0)+6);

 pop();

 }

}

{A, b, 3, 1, 2}λ =

[]6 0b =

A = []2

0

1

3

5

0

Linear Extraction

A + =bx y

x y

Figure 3-1: Representation of a linear node.

bounds that are known at compile time (if a bound is statically unresolvable, the

filter is unlikely to be linear and we disregard it). During symbolic execution, the

algorithm computes the following for each point of the program (refer to Figure 3-2

for notation):

• A map between each program variable y and a linear form 〈~v, c〉 where ~v is a
Peek-element column vector and c is a scalar constant. In an actual execution,
the value of y would be given by y = ~x · ~v + c, where ~x represents the input
items.

• Matrix A and vector ~b, which will represent the linear node. These values are
constructed during the operation of the algorithm.

• pushcount, which indicates how many items have been pushed so far. This
is used to determine which column of A and ~b correspond to a given push
statement.

• popcount, which indicates how many items have been popped so far. This is
used to determine the input item that a given peek or pop expression refers to.

We now briefly discuss the operation of Extract at each program node. The

algorithm is formulated in terms of a simplified set of instructions, which appear

in Figure 3-2. First are the nodes that generate fresh linear forms. A constant

assignment y = c creates a form 〈~0, c〉 for y, since y has constant part c and does not

37

y ∈ program-variable
c ∈ constant>

~v,~b ∈ vector>

〈~v, c〉 ∈ linear-form>

map ∈ program-variable→ linear-form (a hashtable)
A ∈ matrix>

code ∈ list of instructions, each of which can be:

y1 := const push(y1)
y1 := pop() (loop N code)
y1 := peek(i) (branch code1 code2)
y1 := y2 op y3

Figure 3-2: Data types for the extraction analysis.

yet depend on the input. A pop operation creates a form 〈BuildCoeff(popcount), 0〉,
where BuildCoeff introduces a coefficient of 1 for the current index on the input

stream. A peek(i) operation is similar, but offset by the index i.

Next are the instructions which combine linear forms. In the case of addition

or subtraction, we simply add the components of the linear forms. In the case of

multiplication, the result is still a linear form if either of the terms is a known constant

(i.e., a linear form 〈~0, c〉). For division, the result is linear only if the divisor is a

non-zero constant1 and for non-linear operations (e.g., bit-level and boolean), both

operands must be known constants. If any of these conditions are not met, then the

LHS is assigned a value of >, which will mark the filter as non-linear if the value is

ever pushed.

The final set of instructions deal with control flow. For loops, we resolve the

bounds at compile time and execute the body an appropriate number of times. For

branches, we have to ensure that all the linear state is modified consistently on both

sides of the branch. For this we apply the confluence operator t, which we define for

scalar constants, vectors, matrices, linear forms, and maps. c1tc2 is defined according

to the lattice constant>. That is, c1tc2 = c1 if and only if c1 = c2; otherwise, c1tc2 =
1Note that if the dividend is zero and the divisor has a non-zero coefficients vector,

we cannot conclude that the result is zero, since certain runtime inputs might cause a
singularity.

38

Algorithm 1 Linear extraction analysis.

proc Toplevel(filter F) returns linear node for F

1. Set globals Peek, Pop, Push to I/O rates of filter F .

2. Let A0 ← new float[Peek, Push] with each entry = ⊥

3. Let ~b0 ← new float[Push] with each entry = ⊥

4. (map, A,~b, popcount, pushcount)←
Extract(Fwork, (λx.⊥), A0,~b0, 0, 0)

5. if A and ~b contain no > or ⊥ entries then
return linear node λ = {A,~b,Peek,Pop,Push}

else
fail

endif

proc BuildCoeff(int pos) returns ~v for peek at index pos

~v = ~0
~v [Peek− 1− pos] = 1
return ~v

>. For vectors, matrices, and linear forms, t is defined element-wise; for example,

A′ = A1 t A2 is equivalent to A′[i, j] = A1[i, j] t A2[i, j]. For maps, the join is taken

on the values: map1 tmap2 = map’, where map’.get(x) = map1.get(x)tmap2.get(x).

Our implementation of linear extraction is also interprocedural. It is straightfor-

ward to transfer the linear state across a call site, although we omit this from the

pseudocode for the sake of presentation. Also implicit in the algorithm description

is the fact that all variables are local to the work function. If a filter has persistent

state, all accesses to that state are marked as >.

39

Algorithm 2 Linear analysis.

proc Extract(code, map, A, ~b, int popcount, int pushcount)

returns updated map, A, ~b, popcount, and pushcount

for i← 1 to code.length
switch code[i]
case y := const
map.put(y, (~0, const))

case y := pop()
map.put(y, 〈BuildCoeff(popcount), 0〉)
popcount++

case y := peek(i)
map.put(y, 〈BuildCoeff(popcount+ i), 0〉)

case push(y)
〈~v, c〉 ← map.get(y)
if pushcount = > then fail
A[∗,Push− 1− pushcount]← ~v
~b[Push− 1− pushcount]← c
pushcount++

case y1 := y2 op y3, for op ∈
{+,−}
〈~v2, c2〉 ← map.get(y2)
〈~v3, c3〉 ← map.get(y3)
map.put(y1, 〈~v2 op ~v3, c2 op c3〉)

case y1 := y2 ∗ y3
〈~v2, c2〉 ← map.get(y2)
〈~v3, c3〉 ← map.get(y3)
if ~v2 = ~0 then
map.put(y1, (c2 ∗ ~v3, c2 ∗ c3))

else if ~v3 = ~0 then
map.put(y1, (c3 ∗ ~v2, c3 ∗ c2))

else
map.put(y1,>)

case y1 := y2/y3
〈~v2, c2〉 ← map.get(y2)
〈~v3, c3〉 ← map.get(y3)
if ~v3 = ~0 ∧ c3 6= 0 then
map.put(y1, (

1
c3
∗ ~v2, c2/c3))

else
map.put(y1,>)

case y1 := y2 op y3, for op ∈
{&, |,∧,&&, ||, !, etc.}
〈~v2, c2〉 ← map.get(y2)
〈~v3, c3〉 ← map.get(y3)
map.put(y1, (~0t~v2 t~v3, c2 op c3))

case (loop N code′)
for j ← 1 to N do

(map, A,~b, popcount, pushcount) ←
Extract(code,map, A,~b,

popcount, pushcount)

case (branch code1 code2)

(map1, A1,~b1, popcount1, pushcount1)←
Extract(code1,map, A,~b,

popcount, pushcount)

(map2, A2,~b2, popcount2, pushcount2)←
Extract(code2,map, A,~b,

popcount, pushcount)
map← map1 tmap2
A← A1 t A2
~b← ~b1 t~b2
popcount← popcount1tpopcount2
pushcount ← pushcount1 t
pushcount2

return (map, A, ~b, popcount, pushcount)

40

3.3 Combining Linear Filters

A primary benefit of linear filter analysis is that neighboring filters can be collapsed

into a single matrix representation if both of the filters are linear. This transformation

can automatically eliminate redundant computations in linear sections of the stream

graph, thereby allowing the programmer to write simple, modular filters and leaving

the combination to the compiler. In this section, we first describe a linear expansion

operation that is needed to match the sizes of A and ~b for different linear nodes and is

therefore an essential building block for the other combination techniques. We then

give rules for collapsing pipelines and splitjoins into linear nodes; we do not deal with

feedbackloops as they require “linear state,” which we do not describe here.

3.3.1 Linear Expansion

In StreamIt programs, the input and output rate of each filter in the stream graph is

known at compile time. The StreamIt compiler leverages this information to compute

a static schedule — that is, an ordering of the node executions such that each filter

will have enough data available to atomically execute its work function, and no buffer

in the stream graph will grow without bound in the steady state. A general method

for scheduling StreamIt programs is given by Karczmarek [20].

A fundamental aspect of the steady-state schedule is that neighboring nodes might

need to be fired at different frequencies. For example, if there are two filters, F1 and

F2, in a pipeline and F1 produces 2 elements during its work function but F2 consumes

4 elements, then it is necessary to execute F1 twice for every execution of F2.

Consequently, when we combine hierarchical structures into a linear node, we

often need to expand a matrix representation to represent multiple executions of the

corresponding stream. Expansion allows us to multiply and interleave columns from

matrices that originally had mismatching dimensions. The transformation can be

done as follows.

41

U' mod U U U U UU'

e o

e

e

e'

o

e

e

o

0

0

A
A

A

A
A

e' - (e + o (- 1))u'
u*

Figure 3-3: Expanding a linear node to rates (e′, o′, u′).

Transformation 1 (Linear expansion) Given a linear node λ = {A,~b, e, o, u}, the
expansion of λ to a rate of (e′, o′, u′) is given by expand(λ, e′, o′, u′) = {A′,~b′, e′, o′, u′},
where A′ is a e′ × u′ matrix and ~b′ is a u′-element row vector:

shift(r, c) is a u′ × e′ matrix :

shift(r, c)[i, j] =











A[i− r, j − c]
if i− r ∈ [0, e− 1] ∧ j − c ∈ [0, u− 1]

0 otherwise

A′ =
∑du′/ue

m=0 shift(u′ − u−m ∗ u, e′ − e−m ∗ o)

~b′[j] = ~b [u− 1− (u′ − 1− j) mod u]

The intuition behind linear expansion is straightforward (see Figure 3-3). Linear

expansion aims to scale the peek, pop and push rates of a linear node while preserving

the functional relationship between the values pushed and the values peeked on a

given execution. To do this, we construct a new matrix A′ that contains copies of

A along the diagonal starting from the bottom right. To account for items that are

42

popped between invocations, each copy of A is offset by o from the previous copy.

The complexity of the definition is due to the end cases. If the new push rate u′ is

not a multiple of the old push rate u, then the last copy of A includes only some of

its columns. Similarly, if the new peek rate e′ exceeds that which is needed by the

diagonal of As, then A′ needs to be padded with zeros at the top (since it peeks at

some values without using them in the computation).

Note that a sequence of executions of an expanded node λ′ might not be equivalent

to any sequence of executions of the original node λ, because expansion resets the

push and pop rates and can thereby modify the ratio between them. However, if

u′ = k ∗u and o′ = k ∗o for some integer k, then λ′ is completely interchangeable with

λ. In the combination rules that follow, we utilize linear expansion both in contexts

that do and do not satisfy this condition.

43

3.3.2 Collapsing Linear Pipelines

The pipeline construct is used to compose streams in sequence, with the output of

stream i connected to the input of stream i+1. The following transformation describes

how to collapse two linear nodes in a pipeline; it can be applied repeatedly to collapse

any number of neighboring linear nodes.

Transformation 2 (Pipeline combination) Given two linear nodes λ1 and λ2 where
the output of λ1 is connected to the input of λ2 in a pipeline construct, the combi-
nation pipeline(λ1, λ2) = {A′, ~b′, e′,o′,u′} represents an equivalent node that can
replace the original two. Its components are as follows:

chanPop = lcm(u1, o2)

chanPeek = chanPop+ e2 − o2

λe1 = expand(λ1, (
⌈

chanPeek
u1

⌉

− 1) ∗ o1 + e1,

chanPop ∗ o1
u1
, chanPeek)

λe2 = expand(λ2, chanPeek,
chanPop, chanPop ∗ u2

o2
)

A′ = Ae
1A

e
2

~b′ = ~be1A
e
2 +

~be2

e′ = ee1

o′ = oe1

u′ = ue2

The basic forms of the above equations are simple to derive. Let ~xi and ~yi be

the input and output channels, respectively, for λi. Then we have by definition that

~y1 = ~x1A1 +~b1 and ~y2 = ~x2A2 +~b2. But since λ1 is connected to λ2, we have that

~x2 = ~y1 and thus ~y2 = ~y1A2 +~b2. Substituting the value of ~y1 from our first equation

gives ~y2 = ~x1A1A2+~b1A2+~b2. Thus, the intuition is that the two-filter sequence can

be represented by matrices A′ = A1A2 and ~b′ = ~b1A2 +~b2, with peek and pop rates

borrowed from λ1 and the push rate borrowed from λ2.

There are two implicit assumptions in the above analysis which complicate the

equations for the general case. First, the dimensions of A1 and A2 must match for

44

the matrix multiplication to be well-defined. If u1 6= e2, we construct expanded nodes

λe1 and λe2 in which the push and peek rates match so Ae
1 and Ae

2 can be multiplied.

The second complication is with regards to peeking. If the downstream node λ2

peeks at items which it does not consume (i.e., if e2 > o2), then there needs to be

a buffer to hold items that are read during multiple invocations of λ2. However, in

our current formulation, a linear node has no concept of internal state, such that this

buffer cannot be incorporated into the collapsed representation. To deal with this

issue, we adjust the expanded form of λ1 to recalculate items that λ2 uses more than

once, thereby trading computation for storage space. This adjustment is evident

in the push and pop rates chosen for λe1: though λ1 pushes u1 items for every o1

items that it pops, λe1 pushes chanPeek ∗ u1 for every chanPop ∗ o1 that it pops.

When chanPeek > chanPop, this means that the outputs of λe1 are overlapping, and

chanPeek− chanPop items are being regenerated on every firing.

Note that although λe1 performs duplicate computations in the case where λ2 is

peeking, this computation cost can be amortized by increasing the value of chanPop.

That is, though the equations set chanPop as the least common multiple of u1 and o2,

any common multiple is legal. As chanPop grows, the regenerated portion chanPeek−
chanPop becomes smaller on a percentage basis.

It is the case that some collapsed linear nodes are always less efficient than the

original pipeline sequence. The worst case is when Ae
1 is a column vector and Ae

2

is a row vector, which requires O(N) operations originally but O(N 2) operations if

combined (assuming vectors of length N). To avoid such performance-degrading com-

binations, we employ an automated selection algorithm that only performs beneficial

transformations (see Section 4.3).

Figure 3-4 illustrates the combination of back to back FIR filters. Since the push

rate of the first filter (u1 = 1) differs from the peek rate of the second (e2 = 3), the

first filter must be expanded to λe1 = expand(λ1, 4, 1, 3). There is no need to expand

the second filter, so λe2 = λ2. By construction, the matrix product of Ae
1 and Ae

2

corresponds to the matrix for the overall linear node with peek rate e = 4, pop rate

o = 1 and push rate u = 1.

45

{ ,0,3,1,1}

Linear Expansion

{ ,0,3,1,1}

[] []1

2

3

4

5

[] []
1

2

0

0

0

1

2

0

0

0

1

2

[]
3

10

13

10

3

4

5

{ ,0,2,1,1}

{ ,0,4,1,3}

{ ,0,4,1,1}

λ1 1

e

e

'

'

e e

=

λ

λ

1=

=

λ2=

λ 2
=

A 2A

2A

e

2A =

2A =1A =

1A

1A =

A =

'A

e

Pipeline Combination

Figure 3-4: Pipeline combination example.

3.3.3 Collapsing Linear SplitJoins

The splitjoin construct allows the StreamIt programmer to express explicitly parallel

computations. Data elements that arrive at the splitjoin are directed to the parallel

child streams using one of two pre-defined splitter constructs: 1) duplicate, which

sends a copy of each data item to all of the child streams, and 2) roundrobin, which

distributes items cyclically according to an array of weights. The data from the

parallel streams are combined back into a single stream by means of a roundrobin

joiner with an array of weights w. First, w0 items from the leftmost child are placed

onto the overall output tape, then w1 elements from the second leftmost child are

used, and so on. The process repeats itself after
∑n−1

i=0 wi elements has been pushed.

In this section, we demonstrate how to collapse a splitjoin into a single linear node

when all of its children are linear nodes. Since the children of splitjoins in StreamIt

can be parameterized, it is often the case that all sibling streams are linear if any one

46

of them is linear. However, if a splitjoin contains only a few adjacent streams that

are linear, then these streams can be combined by wrapping them in a hierarchical

splitjoin and then collapsing the wrapper completely. Our technique also assumes

that each splitjoin admits a valid steady-state schedule; this property is verified by

the StreamIt semantic checker.

Our analysis distinguishes between two cases. For duplicate splitters, we directly

construct a linear node from the child streams. For roundrobin splitters, we first

convert to a duplicate splitter and then rely on the transformation for duplicate

splitters. We describe these translations below.

Duplicate Splitter

Intuitively, there are three main steps to combining a duplicate splitjoin into a linear

node. Since the combined node will represent a steady-state execution of the splitjoin

construct, we first expand each child node according to its multiplicity in the schedule.

Secondly, we ensure that each child’s matrix representation has the same number of

rows — that is, that each child peeks at the same number of items. Once these

conditions are satisfied, we can construct a matrix representation for the splitjoin by

simply arranging the columns from child streams in the order specified by the joiner.

Reordering columns is equivalent because with a duplicate splitter, each row of a

child’s linear representation refers to the same input element of the splitjoin. The

transformation is described in Transformation 3.

The formulation is derived as follows. The joinRep variable represents how many

cycles the joiner completes in an execution of the splitjoin’s steady-state schedule; it

is the minimal number of cycles required for each child node to execute an integral

number of times and for all of their output to be consumed by the joiner. Similarly,

repk gives the execution count for child k in the steady state. Then, in keeping

with the procedure described above, λek is the expansion of the kth node by a factor

of repk, with the peek value set to the maximum peek across all of the expanded

children. Following the expansion, each λei has the same number of rows, as the peek

uniformization causes shorter matrices to be padded with rows of zeros at the top.

47

w
n

w
n
w
n

w
2

w
2
w
2

w
1

w
1
w
1

A =1
e

A =2
e

A =n
e

A' =

Figure 3-5: Matrix resulting from combining a splitjoin of rate-matched children.

Transformation 3 (Duplicate splitjoin combination) Given a splitjoin s con-
taining a duplicate splitter, children that are linear nodes λ0 . . . λn−1, and a roundrobin
joiner with weights w0 . . . wn−1, the combination splitjoin(s) = {A′, ~b′, e′, o′, u′}
represents an equivalent node that can replace the entire stream s. Its components are
as follows:

joinRep = lcm(lcm(u0,w0)
w0

, . . . , lcm(un−1,wn−1)
wn−1

)

maxPeek = maxi(oi ∗ repi + ei − oi)

∀k ∈ [0, n− 1] :

wSumk =
∑k−1

i=0 wi

repk = wk∗joinRep
uk

λek = expand(λk,maxPeek, ok ∗ repk, uk ∗ repk)

∀k ∈ [0, n− 1],∀m ∈ [0, joinRep− 1],∀p ∈ [0, uk − 1] :

A′[∗, u′ − 1− p−m ∗ wSumn − wSumk] = Ae
k[∗, uek − 1− p]

~b′[u′ − 1− p−m ∗ wSumn − wSumk] = bek[u
e
k − 1− p]

e′ = ee0 = . . . = een−1
o′ = oe0 = . . . = oen−1
u′ = joinRep ∗ wSumn

The final phase of the transformation is to re-arrange the columns of the child

matrices into the columns of A′ and ~b′ such that they generate the correct order of

outputs. Though the equations are somewhat cumbersome, the concept is simple (see

Figure 3-5): for the kth child and the mth cycle of the joiner, the pth item that is

48

pushed by child k will appear at a certain location on the joiner’s output tape. This

location (relative to the start of the node’s execution) is p + m ∗ wSumn + wSumk,

as the reader can verify. But since the right-most column of each array A holds the

formula to compute the first item pushed, we need to subtract this location from the

width of A when we are re-arranging the columns. The width of A is the total number

of items pushed — u′ in the case of A′ and uek in the case of Ae
k. Hence the equation

as written above: we copy all items in a given column from Ae
k to A′, defining each

location in A′ exactly once. The procedure for ~b is analogous.

It remains to calculate the peek, pop and push rates of the combined node. The

peek rate e′ is simplymaxPeek, which we defined to be equivalent for all the expanded

child nodes. The push rate joinRep ∗ wSumn is equivalent to the number of items

processed through the joiner in one steady-state execution. Finally, for the pop rate

we rely on the fact that the splitjoin is well-formed and admits a schedule in which no

buffer grows without bound. If this is the case, then the pop rates must be equivalent

for all the expanded streams; otherwise, some outputs of the splitter would accumulate

infinitely on the input channel of some stream.

These input and output rates, in combination with the values of A′ and ~b′, define

a linear node that exactly represents the parallel combination of linear child nodes

fed with a duplicate splitter. Figure 3-6 provides an example of splitjoin combination.

The node on the left pushes four items per work function whereas the node on the

right pushes one item per work function. To match the output rates to the rate of

the roundrobin joiner the right filter needs to be expanded to λe2 = expand(λ2, 2, 2, 2).

The columns of the two linear nodes are then interleaved into the overall linear node

λ′ as show in Figure 3-5.

Roundrobin Splitter

In the case of a roundrobin splitter, items are directed to each child stream si ac-

cording to weight vi: the first v0 items are sent to s0, the next v1 items are sent to

s1, and so on. Since a child never sees the items that are sent to sibling streams,

the items that are seen by a given child form a periodic but non-contiguous segment

49

[]9
[]10

{ , ,1,1,1}λ2= 2A 2b

2b =

2A =

[]1 2 3 4

5 6 7 8

{ ,0,2,2,4}λ1 1= A

1A =

duplicate

duplicate

roundrobin(2,1)

roundrobin(2,1)

[]10 102b =

2A =[] []1 2 3 4

5 6 7 8

9

0

0

9

e

e

e

{ ,0,2,2,4}λ1 1= A

1A =

e
{ , ,2,2,2}λ2= 2A 2b

ee

e

e

{ , ,2,2,6} '

'

'

λ =

A =

' 'A

[]10 0 0 0 010b =

[]1

5

2

6

0

9

3

7

4

8

9

0

b

Linear Expansion

Splitjoin Combination

Figure 3-6: Splitjoin combination example.

of the splitjoin’s input tape. Thus, in collapsing the splitjoin, we are unable to di-

rectly use the columns of child matrices as we did with a duplicate splitter, since

with a roundrobin splitter these matrices are operating on disjoint sections of the

input. Instead, we collapse linear splitjoins with a roundrobin splitter by converting

the splitjoin to use a duplicate splitter. In order to maintain correctness, we add a

decimator on each branch of the splitjoin that eliminates items which were intended

for other streams.

50

Transformation 4 (Roundrobin to duplicate) Given a splitjoin s containing a
roundrobin splitter with weights v0 . . . vn−1, children that are linear nodes λ0 . . . λn−1,
and a round-robin joiner j, the transformed rr-to-dup(s) is a splitjoin with a dupli-
cate splitter, linear child nodes λ′

0 . . . λ
′
n−1, and roundrobin joiner j. The child nodes

are computed as follows:

vSumk =
∑k−1

i=0 vi

vTot = vSumn

∀k ∈ [0, n− 1] :

decimate[k] is a linear node {A,~0, vTot, vTot, vk}

where A[i, j] =

{

1 if i = vTot− vSumk+1 + j
0 otherwise

λ′k = pipeline(decimate[k], λk)

In the above translation, we utilize the linear pipeline combinator pipeline to

construct each new child node λei as a composition of a decimator and the original

node λi. The kth decimator consists of a vTot× vk matrix that consumes vTot items,

which is the number of items processed in one cycle of the roundrobin splitter. The

vk items that are intended for stream k are copied with a coefficient of 1, while all

others are eliminated with a coefficient of 0.

3.3.4 Applications of Linear Combination

There are numerous instances where the linear combination transformation could

benefit a programmer. For example, although a bandpass filter can be implemented

with a low pass filter followed by a high pass filter, actual implementations determine

the coefficients of a single combined filter that performs the same computation. While

a simple bandpass filter is easy to combine manually, in an actual system several

different filters might be designed and implemented by several different engineers,

making overall filter combination infeasible.

51

Another common operation in discrete time signal processing is downsampling

to reduce the computational requirements of a system. Downsampling is most often

implemented as a low pass filter followed by anM compressor which passes everyMth

input item to the output. In practice, the filters are combined to avoid computing

dead items in the low pass filter. However, the system specification contains both

elements for the sake of understanding. Our analysis can start with the specification

and derive the efficient version automatically.

A final example is a multi-band equalizer, in which N different frequency bands

are filtered in parallel (see our FMRadio benchmark). If these filters are time invari-

ant, then they can be collapsed into a single node. However, designing this single

overall filter is difficult, and any subsequent changes to any one of the sub filters will

necessitate a total redesign of the filter. With our automated combination process,

any subsequent design changes will necessitate only a recompile rather than a manual

redesign.

52

Chapter 4

Linear Optimization

In this chapter we describe our automatic optimizing transformations of frequency

replacement (4.1), redundancy removal (4.2), and optimization selection (4.3). We

conclude with some implementation notes (4.4).

4.1 Translation to Frequency Domain

In this section, we demonstrate how we can leverage our linear representation to

automatically perform a common domain-specific optimization: translation to the

frequency domain. First, we motivate the usefulness of a translation to the frequency

domain. Then, we show that a linear node is equivalent to a set of convolution

sums and present a näıve code generation strategy for transforming linear nodes to

frequency. Finally, we improve on our näıve implementation and present an optimized

code generation strategy.

4.1.1 Motivation

Our linear analysis framework provides a compile time formulation of the computa-

tion that a linear node performs and we use this information to exploit well known

domain specific optimizing transformations. Using linear node information, our com-

piler identifies convolution operations that require substantially fewer computations

53

if computed in the frequency domain.

Calculating a convolution sum is a common and fundamental operation in discrete

time signal processing. If the convolution is sufficiently large, transforming the data

to the frequency domain, performing a vector multiply and converting back to the

time domain requires fewer operations than the direct convolution.

The transformation from convolution sum into frequency multiplication has always

been done explicitly by a human algorithm designer because no compiler analysis has

had the information necessary to determine when a convolution sum is computed.

As the complexity of DSP programs grow, determining the disparate regions across

which these optimizations can be applied is an ever more daunting task. For example,

several filters individually may not perform sufficiently large convolutions to merit

a frequency transformation, but after a linear combination of multiple filters the

transformation will be beneficial. Differing levels of architectural support for various

convolution and frequency operations makes the task of determining when to apply

and actually implementing specific optimizations even harder.

54

4.1.2 Basic Frequency Implementation

Our first goal is to show that the computation of a linear node can be represented as a

convolution sum. Consider executing m iterations of a linear node λ = {A,~0, e, 1, 1}
— that is, a node with ~b = ~0 and push = pop = 1 (these assumptions will be relaxed

below). Let ~out[i] represent the ith value that is pushed during execution, let ~in[i] hold

the value of peek(i) as seen before the execution begins, and let ~y be the convolution

of the only column of A with the vector ~in (that is, ~y = A[∗, 0] ∗ ~in). Note that ~out

is an m-element vector, A[∗, 0] is an e-element vector, ~in is an (m + e − 1)-element

vector, and ~y is an (m+ 2e− 2)-element vector.

Then, we make the following claim:

∀i ∈ [0,m− 1] : ~out[i] = ~y [i+ e− 1] (4.1)

To see that this is true, recall the definition of convolution:

~y [i] = A[i, 0] ∗ ~in[i] =
∞
∑

k=−∞

A[k, 0]~in[i− k] (4.2)

Substituting ~in by its definition, and restricting k to range over the valid rows of A,

we have:

~y [i] =
e−1
∑

k=0

A[k, 0]peek(i− k) (4.3)

Remapping the index i to i+ e− 1 makes the right hand side equivalent to ~out[i],

by Definition 1. Claim 4.1 follows.

In other words, values pushed by a linear node can be calculated by a convolution

of the input tape with the coefficients A. The significance of this fact is that a

convolution operation can be implemented very efficiently by using the fast Fourier

transform (FFT) to translate into the frequency domain. To compute the convolution,

the N -point FFTs of ~in and A[∗, 0] are calculated to obtain ~X and ~H, respectively,

each of which is a complex-valued vector of length N . Element-wise multiplication

of ~X and ~H yields a vector ~Y , to which the inverse transform (IFFT) is applied to

55

obtain ~y. Convolution in the frequency domain requires O(N lg(N)) operations, as

each FFT and IFFT has a cost of O(N lg(N)) and the vector multiplication is O(N).

By contrast, the complexity is O(N 2) in the time domain, as each of the N output

values requires O(N) operations. For more details, refer to [27].

Transformation 5 (Näıve frequency implementation) Given a linear node

λ = {A,~b, e, o, u}, the following stream is a näıve implementation of λ in the fre-
quency domain:

float→ float pipeline naiveFreq (A,~b, e, o, u) {
add float→ float filter {

N ← 2dlg(2e)e
m← N − 2e+ 1

init {
for j = 0 to u− 1

~H[∗, j]← FFT(N, A[∗, u− 1− j])
}

work peek m+ e− 1 pop m push u ∗m {
~x← peek(0 . . . m+ e− 2)
~X ← FFT(N,~x)
for j = 0 to u− 1 {

~Y [∗, j]← ~X. ∗ ~H[∗, j]
~y [∗, j]← IFFT(N, ~Y [∗, j])
}
for i = 0 to m− 1 {
pop()
for j = 0 to u− 1
push(~y [i+ e− 1, j] +~b[j])

}
}
}
add Decimator(o, u)
}

float→ float filter Decimator (o, u) {
work peek u ∗ o pop u ∗ o push u {
for i = 0 to u− 1
push(pop())

for i = 0 to u− 1
for j = 0 to o− 2
pop()

}
}

56

We can use the procedure described above to implement a linear node in the

frequency domain. We simply calculate ~y = A[∗, 0] ∗~in, and extract values ~y [e −
1] . . . ~y [m + (e − 1) − 1] as the m values pushed by the node. Note that ~y [i] is also

defined for i ∈ [0, e − 2] and i ∈ [m + e − 1,m + 2e − 2]; these values represent

partial sums in which some coefficients were excluded. Our näıve implementation

simply disregards these values. However, in the next section, we give an optimized

implementation that takes advantage of them.

The only task remaining for the implementation is to choose N , the FFT size, and

m, the number of iterations to execute at once in the frequency domain. According to

Fourier’s theorem, an N -point FFT can exactly represent any discrete sequence of N

numbers, so the only constraint on N and m is that N ≥ m+2e−1. For performance

reasons, N should be a power of two and as large as possible. In our implementation,

we set N to the first power of two that is greater than or equal to 2e, and then set

m = N − 2e + 1. This strikes a reasonable compromise between storage space and

performance for our uniprocessor benchmarking platform; the choice of N should be

adjusted for the particular resource constraints of the target architecture.

Transformation 5 gives a näıve translation of a linear node to the frequency do-

main. In addition, it relaxes all of the assumptions that we made above. The algo-

rithm allows for a non-zero value of ~b by simply adding ~b after returning from the

frequency domain. To accommodate a push rate greater than one, the algorithm

generates matrices for ~Y and ~y and alternates pushing values from each column of

~y in turn. Finally, to accommodate a pop rate greater than one, the algorithm pro-

ceeds as if the pop rate was one and adds a special decimator node that discards

the extra outputs. Though this introduces inefficiency by calculating values that are

never used, it still leaves room for large performance improvements, as the frequency

transformation can improve performance by a large factor (see Chapter 5).

57

4.1.3 Optimized Frequency Implementation

Transformation 6 (Optimized frequency implementation) Given a linear

node λ = {A,~b, e, o, u}, the following stream is an optimized implementation of λ:

float→ float pipeline optimizedFreq (A,~b, e, o, u) {
add float→ float filter {

N ← 2dlg(2e)e
m← N − 2e+ 1

~partials← new array[0 . . . e− 2, 0 . . . u− 1]
r ← m+ e− 1
init {
for j = 0 to u− 1

~H[∗, j]← FFT(N, A[∗, u− 1− j])
}
initWork peek r pop r push u ∗m {

~x← pop(0 . . . m+ e− 2)
~X ← FFT(N,~x)
for j = 0 to u− 1 {

~Y [∗, j]← ~X. ∗ ~H[∗, j]
~y[∗, j]← IFFT(N, ~Y [∗, j])

~partials[∗, j]← ~y [m+ e− 1 . . .m+ 2e− 3, j]
}
for i = 0 to m− 1
for j = 0 to u− 1
push(~y [i+ e− 1, j] +~b[j])

}
work peek r pop r push u ∗ r {

~x← pop(0 . . . m+ e− 2)
~X ← FFT(N,~x)
for j = 0 to u− 1 {

~Y [∗, j]← ~X. ∗ ~H[∗, j]
~y[∗, j]← IFFT(N, ~Y [∗, j])
}
for i = 0 to e− 1
for j = 0 to u− 1 {
push(~y [i, j] + ~partials[i, j])

~partials[i, j]← ~y [m+ e− 1 + i, j]
}

for i = 0 to m− 1
for j = 0 to u− 1
push(~y [i+ e− 1, j] +~b[j])

}
}
add Decimator(o, u) // see Transformation 5
}

(4.4)

58

The näıve frequency implementation discards e − 1 elements from the beginning

and end of each column of ~y that it computes. These values represent partial sums

in which some of the coefficients of A are excluded. However, for i ∈ [0, e− 2], ~y [i, j]

in one iteration contains the missing terms from ~y [m + e − 1 + i, j] in the previous

iteration. The sum of these two elements gives a valid output for the filter. This

symmetry arises from the convolution of A “off the edges” of the input block that

we consider in a given iteration. Reusing the partial sums — which is exploited in

the transformation above — is one of several methods that use blocking to efficiently

convolve a short filter with a large amount of input [27].

4.1.4 Applications of Frequency Transformation

The transformation to the frequency domain is straightforward in theory and very

common in practice. However, the detailed record keeping, transform size selection,

and state management make an actual implementation quite involved. Further, as the

complexity of DSP programs continues to grow, manually determining the disparate

regions across which to apply this optimization is an ever more daunting task. For

example, several filters individually may not perform sufficiently large convolutions to

merit a frequency transformation, but after a linear combination of multiple filters the

transformation could be beneficial. Differing levels of architectural support for various

convolution and frequency operations further complicates the task of choosing the best

transform. Our compiler automatically determines all the necessary information and

transforms the computation into the frequency domain.

4.2 Redundancy Elimination

In this section, we demonstrate another use of our linear representation: to automat-

ically remove redundant multiplications by caching products between filter invoca-

tions. First we motivate the theory of redundancy removal. Then we show how to

recognize the redundancy in a given linear node and then we present an optimized

code generation strategy that takes advantage of this information.

59

float->float filter SimpleFIR {

work peek 3 pop 1 push 1 {

push(2*peek(2) +

peek(1) +

2*peek(0));

pop();

}

}

Figure 4-1: Example filter with redundant computation across firings.

4.2.1 Motivation

Redundancy removal is motivated by the observation that many linear filters compute

the same value using different expressions on different work function invocations. For

instance, a∗peek(2) in one invocation might have exactly the same value as a∗peek(0)
in the next invocation. By caching a term the first time it is computed we can save

the future cost of recomputing it.

In the context of DSP programs in StreamIt, we expect abundant redundancy in

our programs because a large portion of our benchmarks are FIR filters. Most FIR

filters have symmetric impulse responses1 and therefore symmetry in the matrices of

their linear nodes. Symmetric impulse responses are so prevalent in actual realizations

that specialized hardware instructions that implement FIR filtering (e.g. FIRS[32])

typically assume symmetry and use that information to optimize the calculation.

The prevalence of symmetry in DSP applications presents us with an obvious avenue

of optimization — to remove the redundant computations. Common subexpression

elimination (CSE), a standard compiler optimization, works well for removing re-

dundant computations within a single work function invocation. Our method also

removes redundant computations across filter firings. Therefore, our method may be

thought of as a more general form of CSE for linear filters.

1Symmetry in the time domain implies that the filter has a constant group delay. Group delay
is a measure of how much a given filter delays different frequency components of a signal. A filter
with constant group delay is desirable because all frequencies of a signal are delayed equally and
thus phase dispersion is avoided. Constant group delay is a very useful property in the design and
analysis of actual systems.

60

float->float filter NoredundFIR {

float[3] state; // state array of size 3

int index; // index into state array

initWork peek 3 pop 1 push 1 {

index = 0;

state[1] = 2*peek(1);

state[2] = 2*peek(2);

work();

}

work peek 3 pop 1 push 1 {

state[index] = 2*peek(0);

push(state[(index+2)%3] +

peek(1) +

state[(index+0)%3]);

pop();

index = index - 1;

if (index < 0)

index = 3;

}

}

Figure 4-2: Example filter without redundant calculations.

The analysis and optimization presented in this chapter only remove redundant

multiplications by caching individual terms. It is possible to remove additions as well

by storing reused partial sums of terms. For the general case, determining which are

the optimal partial sums to compute and store is an NP hard problem. We provide

no more discussion of the partial sums problem in this thesis.

Figure 4-1 and Figure 4-2 illustrate the potential advantage of a redundancy re-

moval optimization. Figure 4-1 shows the code for a filter which performs redundant

computations. The value of 2 ∗ peek(2) is the same as the value of 2 ∗ peek(0) two

invocations in the future. This same value is calculated two different times and there-

fore is a candidate for removal. Figure 4-2 shows a different implementation of the

same filter that avoids these redundant calculations by introducing state to cache

values. The cached values are stored in the field state. The state field is used as a

circular buffer with size 3, and the start of the buffer is held in the index field.

61

4.2.2 Redundancy Analysis

The goal of redundancy analysis is to identify redundant computations using a given

linear node (Definition 1). To begin, we define a linear computation tuple (LCT):

Definition 2 (Linear computation tuple) t = 〈coeff, pos〉 is a linear computation
tuple and represents an abstract multiplication of a constant with a runtime input. t
has a runtime value of coeff ∗ peek(pos).

The relevance of an LCT is as follows. The u outputs for each filter with an

associated linear node λ = {A,~b, e, o, u} are weighted sums of the input values such

that push(j) =
∑i=e−1

i=0 (A[i, u−1−j]peek(e−1−i)). Each of the terms in the previous

summation can be represented by the LCT t = 〈A[i, u− 1− j], e− 1− i〉. Hence, the
output of a linear filter can be exactly represented with a set of LCTs and a set of

constants. A LCT is defined in terms of the input tape for the present work function

invocation, and the goal of redundancy analysis is to determine which LCTs in the

present firing of work represent values calculated in future invocations. Redundancy

analysis produces a map of the LCTs generated in the current work function execution

to their use in future work function executions. The linear analysis algorithm is

presented as pseudo code in Algorithm 3. The following redundancy information is

generated:

map For d e
o
e firings, the linear node will reuse some of the values from the input

tape. For the first execution, the algorithm generates an LCT, t, for each element

of A and makes a note that t was used in execution 0 (the first execution). On the

second iteration, we generate LCTs for only the part of A that overlaps input values

that were available on the first execution. Continuing in this manner we generate all

LCTs for all future executions that use input values available to the initial execution.

minUse, maxUse minUse and maxUse record the minimum and maximum work

function that uses t. If minUse(t) = 0, t is generated in the first work function and

is a candidate for caching, but if minUse(t) > 0 then t represents an LCT that is

computed for the first time in the future. If maxUse(t) = 0 then t is only used in the

first work function invocation and doesn’t need to be cached.

62

reused The reused set holds all LCTs that are candidates for reuse. Only LCTs

that are computed in the first work function (i.e. minUse(t) = 0) and are used in

subsequent work functions (i.e. maxUse(t) > 0) are members of reused.

Algorithm 3 Redundancy information extraction algorithm. Given a linear node λ =
{A,~b, e, o, u} returns: map which maps LCTs t to a list of integers {k0, k1, · · · , kK−1}
where each integer kl denotes that t is reused in kl firings from the from the current
firing; maxUse and minUse which are the maximum and minimum future work func-
tion invocations in which t is calculated; reused which is the set of all LCTs that are
calculated in both the first work function and a subsequent one; and compMap which
maps an LCT newTuple in the current work function to the computation of oldTuple,
use firings ago (i.e. newTuple→ (oldTuple, use)).

proc Redundant(λ = {A,~b, e, o, u})
returns map, maxUse, minUse, reused, and compMap.

map← {}
for currentExecution← 0 · · · d e

o
e − 1 do

for row← currentExecution ∗ o · · · e− 1 do
for col← 0 · · · u− 1 do
t← 〈currentExecution ∗ o+ e− 1− row, A[row, col]〉
tlist← {map.get(t) ∪ currentExecution}
map.put(t, tlist)

end for
end for

end for
for each t ∈ map do
maxUse(t)← max i : i ∈ map.get(t)
minUse(t)← min i : i ∈ map.get(t)

end for
reused← all t : minUse(t) = 0 and maxUse(t) > 0
for each t ∈ reused do
compMap.put(t, (0, t))
for each i ∈ map.get(t) do
nt← 〈t.coeff, t.pos− i ∗ o〉
if minUse(nt) = 0 and i > compMap.get(nt).use then
compMap.put(nt, (t, i))

end if
end for

end for

compMap compMap has mappings of the form newTuple → (oldTuple, use). It

maps an LCT in the current work function invocation (newTuple) to an equivalent

LCT (oldTuple) and during which previous work function the old LCT was generated

63

(use). This mapping is used to determine which cached LCT value can be used as

the value of newTuple in the current work function.

4.2.3 Non Redundant Code Generation

With the information contained in map, maxUse, minUse, reused, and compMap

we present the following transformation, an optimized code generation strategy that

removes redundant computations with caching. The code generated by Transforma-

tion 7 keeps two state variables for each LCT whose value is cached. tupleState is

a circular buffer that contains the cached values and tupleIndex is an index into the

buffer representing the location of values computed during the present work func-

tion. The code in initWork initializes tupleState with the values that would have

been computed in prior work functions. The code in work first computes and stores

the values of the reused LCTs for the current work function. Then, the set of terms

whose sum makes up each output value is computed using either the stored values

from tupleState or direct calculation.

Note that for any t, its value is computed if t /∈ reused. If t ∈ reused and

(ot, use)← compMap(t), then the value of t is located in tupleState(ot)[(tupleIndex(ot)+

use) mod (maxUse(ot) + 1)]. The fact that tupleState(t) is a circular buffer of size

maxUse(t) + 1 can be seen in the mod expression of the index value. Finally, it re-

mains to update the tupleIndex value for each t. We decrement the index and reset

it to maxUse(t) + 1 if it is below zero.

While the Transformation 7 does very well at removing redundant computation,

it introduces too much overhead to be practical (see Chapter 5). The overhead

introduced is the memory required to save
∑

t∈reused(maxUse(t) + 1) values, the

code to store |reused | values each invocation, and the code to load each cached value

when it is needed. Each load and store instruction also carries the cost of an address

calculation. The overall time required for loads and stores is much greater than the

time required to simply recompute the value.

64

Transformation 7 (Redundancy elimination) Given a linear node λ =

{A,~b, e, o, u} and (map, maxUse, minUse, reused, compMap) ← Redundant(λ) the
following stream is an optimized implementation of λ:

float→ float filter noRedund (map, A,~b, e, o, u) {
init {
for each t ∈ reused {
tupleState(t)← new array[0 . . .maxUse(t)]
tupleIndex(t)← 0
}
}

initWork {
for each t ∈ reused
for use← 1 . . .maxUse(t)
tupleState(t)[use]← (t.coeff) ∗ peek(t.pos− o ∗ use)

work()
}

work {
for each t ∈ reused
tupleState(t)[tupleIndex(t)]← (t.coeff) ∗ peek(t.pos)
for col← u− 1 . . . 0 {
termList← {}
for row← 0 . . . e− 1 {
t← 〈A[row, col], e− 1− row〉
if compMap.contains(t) then {
(ot, use)← compMap.get(t)
termList← termList ∪ {tupleState(ot)[(tupleIndex(ot) + use) mod (maxUse(ot) + 1)]}
} else {
termList← termList ∪ {A[row, col] ∗ peek(e− 1− row)}
}
}
push(

∑

i∈termList(i) + b[col])

}
for each t ∈ reused {
tupleIndex(t)← tupleIndex(t)− 1
if (tupleIndex(t)) < 0 then
tupleIndex(t)← maxUse(t) + 1)
}
pop(o)
}

(4.5)

There are several obvious optimizations to improve the generated code that we

did not pursue because the potential savings didn’t justify the effort. The floating

65

point unit in modern CPUs is too efficient to merit reducing its workload using the

memory subsystem. An optimized transformation will not be competitive with simply

doing the redundant calculations unless 1) the ratio of the costs of computation to

memory access increases drastically or 2) redundancy was super abundant. We feel

that most filters are not going to be rich enough in intra firing redundancy to merit the

redundancy removal technique and the redundancy within the same work function can

be eliminated by traditional CSE. Below is a list of optimizations that we considered

but did not implement:

1. Make all buffer sizes powers of 2 and use a bitmask expression instead of a
modulo expression for index calculations.

2. Make cache aware (architecture dependent) memory layout decisions.

3. Put a minimum reuse floor for values to be cached. For example, only cache a
value that is reused more than 10 times.

4. Implement a solution to the partial sum problem.

4.3 Optimization Selection

To reap the maximum benefit from the optimizations described in the previous two

sections, it is important to apply them selectively. There are two components of the

optimization selection problem: first, to determine the sequence of optimizations that

will give the highest performance for a given arrangement of the stream graph, and

second, to determine the arrangement of the stream graph that will give the high-

est performance overall. In this section, we explain the relevance of each of these

problems, and we outline an effective selection algorithm that relies on dynamic pro-

gramming to quickly explore a large space of configurations. The selection algorithm

was both conceived and implemented by William Thies. We include this section in

the interest of completeness — many of the results in Chapter 5 rely on it. For more

information, please refer to [22] and [34].

66

// types of transformations we consider for each stream

enum Transform { ANY, LINEAR, FREQ, NONE }

// a tuple representing a cost and a stream

struct Config {

int cost : cost of the configuration

 Stream str : Stream corresponding to the lowest cost

}

// a hierarchical stream element

struct Stream {

int height : number of rows in the container

int width[y] : number of columns in row y

int child[x, y] : child in position (x, y) [column x, row y]

}

Figure 4-3: Type declarations for code in Figures 4-4, 4-5, and 4-6.

4.3.1 The Selection Problem

The selection of optimizations for a given stream graph can have a large impact on

performance. As alluded to in Section 3.3, linear combination can increase the number

of arithmetic operations required, e.g., if combining a two-element pipeline where the

second filter pushes more items than it peeks. However, such a combination might be

justified if it enables further combination with other components and leads to a benefit

overall. Another consideration is that as the pop rate grows, the benefit of converting

to frequency diminishes; thus, it might be preferable to transform smaller sections of

the graph to frequency, or to perform linear combination only. The arrangement of

the stream graph might also constrain the transformations that are possible. Since

our transformations operate on an entire pipeline or splitjoin construct, the graph

often needs to be refactored to put linear nodes in their own hierarchical unit.

4.3.2 Dynamic Programming Solution

Our optimization selection algorithm, shown in Figure 4-3, Figure 4-4, Figure 4-5,

and Figure 4-6, automatically derives the example transformations described above.

Intuitively, the algorithm works by estimating the minimum cost for each structure in

the stream graph. The minimum cost represents the best of three configurations: 1)

collapsed and implemented in the time domain, 2) collapsed and implemented in the

67

// global variable holding the lowest-cost Config for nodes

// (x1..x2, y1..y2) of Stream <s> if Transform <t> is applied

Config memoTable[s, t, x1, x2, y1, y2]

// given original Stream <s>, return optimized stream

Stream toplevel (Stream s)

 initialize all entries of memoTable to Config(-1, null)

return getCost(s, ANY).str

// returns lowest-cost Config for Stream <s> under Transform <t>

Config getCost (Stream s, Transform t)

if (t = ANY)

 c1 � getCost(s, LINEAR)

 c2 � getCost(s, FREQ)

 c3 � getCost(s, NONE)

 return ci s.t. ci.cost = min(c1.cost, c2.cost, c3.cost)

else if (s is Node) return getNodeCost(s, t)

else // s is Container

 maxWidth � max(s.width[0], ..., s.width[s.height-1])

 return getContainerCost(s, t, 0, maxWidth-1, 0, s.height-1)

Figure 4-4: Algorithm for optimization selection (part one).

frequency domain, and 3) uncollapsed and implemented as a hierarchical unit. The

cost functions for the collapsed cases are guided by profiler feedback, as described

elsewhere. For the uncollapsed case, the cost is the sum of each child’s minimum

cost. However, instead of considering the children directly, the children are refactored

into many different configurations, and the cost is taken as the minimum over all

configurations. This allows the algorithm to simultaneously solve for the best set of

transformations and the best arrangement of the stream graph.

4.3.3 Cost Functions

The pseudocode in Figure 4-4, Figure 4-5, and Figure 4-6 refers to functions getDi-

rectCost and getFrequencyCost that estimate a node’s execution time if implemented

in the time domain or the frequency domain. These cost functions can be tailored

to a specific architecture and code generation strategy. For example, if there is

architecture-level support for convolution operations, then this would effect the cost

for certain dimensions of matrices; similarly, if a matrix multiplication algorithm is

68

// returns lowest-cost Config for Node <s> under Transform <t>

Config getNodeCost (Stream s, Transform t)

 // scale cost by the number of times <s> executes in the steady-state schedule

 scalingFactor � executionsPerSteadyState(s)

if (t = LINEAR)

 if (isLinear(s)) return Config(scalingFactor
�
 getDirectCost(s),

 makeLinearImplementation(s))

 else return Config(� , s)

else if (t = FREQ)

 if (isLinear(s) � canConvertToFrequency(s))

 return Config(scalingFactor
�
 getFrequencyCost(s),

 makeFreqImplementation(s))

 else return Config(� , s)

else // t = NONE

 if (isLinear(s)) return Config(scalingFactor
�
 getDirectCost(s), s)

 else return Config(0, s) // don’t tally up costs of non-linear nodes

Figure 4-5: Algorithm for optimization selection (part two).

available that exploits symmetry or sparsity in a matrix, then this benefit could be

accounted for where it applies. In our implementation, we use the following versions

of the cost functions. Note that both cost functions are undefined if s is non-linear

(i.e., if there is no corresponding λs). In this case they are assigned infinite cost.

The motivation for this choice of cost functions is described in [22] and [34]. Let

λ = (A,~b, e, o, u) be the linear node corresponding to stream s:

getDirectCost(s) =







































∞ (if s is roundrobin splitjoin)

185 + 2 ∗ u+ (otherwise)

|{i s.t. ~bi 6= 0}| +
3 ∗ |{(i, j) s.t. Ai,j 6= 0}|

getFrequencyCost(s) =



185 + 2 ∗ u+ u ∗ ln




1 + 4 ∗ e
1 + 2dlg(2∗e)e

50







 ∗max(o, 1) + dec(s)

dec(s) = (o− 1) ∗ (185 + 4 ∗ u)

69

// returns lowest-cost Config for children (x1..x2, y1..y2) of <s> under <t>

Config getContainerCost (Stream s, Transform t, int x1, int x2, int y1, int y2)

 // if we've exceeded the width of this node, then trim down to actual width

 x2
� min (x2, max (width[y1], ..., width[y2]) - 1)

// if value is memoized, return it

if (memoTable[s, t, x1, x2, y1, y2]
�

 -1)

 return memoTable[s, t, x1, x2, y1, y2]

if (x1 = x2 � y1 = y2) // if down to one child, descend into it

 result � getCost(s.child[x1, y1], t)

 // if the transform will collapse children, then treat them as a single node

if (t = LINEAR � t = FREQ)

 result � getNodeCost(extractSubstream(s, x1, x2, y1, y2), t)

if (t = NONE)

 result = Cost (� , s)

 // try horizontal cut

 for yPivot � y1 to y2-1 do

 // get cost of 2-element Pipeline; remember Config if it is best so far

 c1
� getCost(s, ANY, x1, x2, y1, yPivot)

 c2
� getCost(s, ANY, x1, x2, yPivot+1, y2)

 if (c1.cost + c2.cost < result.cost)

 result � Config(c1.cost+c2.cost, Pipeline(c1.str, c2.str))

 // can only do vertical cut if all child streams belong to same splitjoin

 if (sameSplitJoinParent(s.child[x1, y1], s.child[x2, y2]))

 for xPivot = x1 to x2-1 do

 // get cost of 2-element SplitJoin; remember Config if it is best so far

 c1
� getCost(s, ANY, x1, xPivot, y1, y2)

 c2
� getCost(s, ANY, xPivot+1, x2, y1, y2)

 if (c1.cost + c2.cost < result.cost)

 result � Config(c1.cost+c2.cost, SplitJoin(c1.str,c2.str))

 memoTable[s, t, x1, x2, y1, y2]
� result

return result

Figure 4-6: Algorithm for optimization selection (part three).

70

4.4 Implementation Notes

This section presents some notes about our implementation. The StreamIt compiler is

built upon the KOPI [13] java compiler infrastructure. The stream intermediate rep-

resentation (SIR) is used as the internal representation of StreamIt programs. Each

node of the SIR represents a stream construct: filter, pipeline, splitjoin or feedback-

loop. Filter SIR nodes contain the code for the filter’s work function(s). Functions

are represented with modified versions of the KOPI intermediate representation (IR)

nodes. The StreamIt IR nodes consist of minimally modified KOPI IR nodes and sev-

eral new nodes that represent StreamIt specific constructs like peek, pop, and push.

At compile time, the structure of the SIR mirrors the hierarchal stream structure

present in the original program. Compiler passes in KOPI are implemented using

the visitor design pattern [9] to visit each IR node. There are two types of visitors.

One type iterates over a program’s SIR representation (the stream structure) and the

other type iterates over the IR nodes in a given function body (the C-like code).

Our linear analysis is implemented as two different types of visitors, one for each

type of IR. The linear analyzer visits each of the program’s SIR nodes and determines

the associated linear node (or that the SIR node is nonlinear). When analyzing fil-

ters, the linear analyzer sends another visitor through the IR nodes that make up the

body of the work function. The IR visitor implements the dataflow analysis algorithm

presented in Section 3.2. There are very few differences between the implementation

and the abstract algorithm. As the linear analyzer progresses through the SIR nodes,

it keeps a mapping of SIR nodes to linear nodes. When a hierarchal construct such

as a pipeline or splitjoin is encountered, the combination rules defined in Section 3.3

are applied where possible to determine the linear nodes that correspond to the over-

all construct. At the end of the analysis pass, the linear analyzer has generated a

complete mapping of SIR nodes to linear nodes. This mapping is used as input by

the optimization passes.

Both linear replacement and frequency replacement require replacing various nodes

in the SIR tree. The SIR in StreamIt is mutable, so visitors can modify the program

71

as they descend through the hierarchy. The linear replacement and the frequency

replacement visitors replace the appropriate nodes in the SIR with new filters that

either 1) implement the corresponding linear node directly (linear replacement) or 2)

use the FFT (frequency replacement). The IR nodes that represent the body of the

new work functions are built directly within the compiler. Automatic IR generation

is cumbersome but it allows the new filters to behave like any other SIR node within

the compiler. As a general rule, the fewer special cases required the better. In the

StreamIt compiler, not special casing means that the unmodified linear analysis and

linear replacement passes were usable with the Raw backend and needed almost no

extra work. Unfortunately, the frequency replacement optimization needs an external

routine to efficiently calculate the FFT. As our external library of choice, FFTW,

has not been compiled or tested on the Raw architecture, the frequency replacement

optimization is unusable with the Raw backend at the present time.

FFTW is used with the uniprocessor backend. To keep the impact of calling

FFTW localized and to avoid adding unnecessary external dependencies, we take

advantage of the existing infrastructure to add the necessary callouts to FFTW. At

present, the output from the StreamIt uniprocessor backend must be linked against

a runtime library2 anyway. This affords an ideal location for the required hooks.

Because creating code in the IR is so cumbersome, the frequency replacer generates

only the code necessary for the external interface from within the compiler. The

generated code relies on additional handwritten C code linked in with the runtime

system to perform the details. Below we describe our interface approach at a high

level.

Automatically generated frequency filters first copy data from the input tape

into a temporary buffer and call an external function that converts the buffer to

the frequency domain. The external function handles the details of interfacing with

FFTW (such as generating the appropriate FFTW plan). When control returns to

the work function, the original buffer contains the transform of the input data in

2The runtime library provides support for managing buffer resources (tapes) among other house-
keeping chores.

72

half-complex form. Then, an external function is called to multiply the transformed

input data with the transformed impulse response. One final external call arranges

for FFTW to transform the output data back to the time domain. Finally, the

work function pushes the contents of the buffer onto the output tape. Note that the

overhead we incur by copying data to the buffer is more than made up for by our

algorithmic savings and the speed of FFTW. Please see Chapter 5 for details.

One interesting optimization (directly due to FFTW) is using half-complex or

“Hermitian” arrays to store frequency transforms. Since the FFT of a real sequence

is symmetric, only N
2

complex values need to be stored to represent an N -point

FFT. Our wrapper functions take advantage of this fact and all operations are done

on half-complex arrays . The external routines are slightly more complicated when

using the half-complex format (corner cases require special attention) but since they

are written in C and not generated by the compiler, the additional complexity for the

sake of speed is acceptable.

73

74

Chapter 5

Results

This chapter is organized as follows: First, we introduce our measurement method-

ology (5.1). Then, we present results that validate our overall optimizations in the

context the StreamIt compiler (5.2). Finally, we present experimental results that

provide additional justification of our methods: the effect of combination on perfor-

mance (5.3); the effect of using ATLAS (5.4); the effect of problem size scaling on the

FIR benchmark (5.5); the effect of removing redundancy (5.6); the effect of problem

size scaling on the Radar benchmark (5.7); and the effect of implementation choices

on the frequency transformation (5.8).

5.1 Measurement Methodology

The StreamIt compiler currently has two code generation backends. The uniprocessor

backend generates sequential C code that is compiled and linked against a support-

ing library. The second backend generates code for the Raw microprocessor [35, 24],

which features a grid of processors interconnected via various communication struc-

tures. We chose to use the uniprocessor backend for our measurements to control

for the variability inherent in mapping a StreamIt program to the Raw architecture.

This mapping is complicated by issues such as communication, load balancing and

partitioning [15]. It is difficult to separate the effects of our optimizations from the

effects of the different tile placement, routing, and fusion which result from modifying

75

the program’s structure.

The most appropriate performance metric is always debatable. In this thesis, we

choose to measure the strength of our optimizations in terms of execution time and

floating point instruction counts.

Execution Time Execution time is a complex function of the operating environ-

ment, complicated cache dependencies, and the super scalar architectures of modern

processors. Additionally, the uniprocessor backend for the StreamIt compiler is meant

for prototyping and the supporting runtime library is not optimized for speed. Im-

provements in uniprocessor running time do provide an indication of the potential real

world benefits of our optimizations, but they should be interpreted with the above

factors in mind.

Operation Reduction Our optimizations reduce the fundamental amount of com-

putation required by our benchmark programs. To capture this reduction, we present

the changes in floating point operation count alongside timing information. Our op-

timizations most commonly remove multiplications, so in the rest of this chapter we

also present reductions in multiplications. In this thesis, our measurement platform

uses the IA-32 instruction set. We define FLOPS as in Table 5.11. We define multi-

plication instructions to be any of fmul fmulp fimulp fdiv fdivp fidivp fdivr

fdivrp fidivr.

Our measurement platform is a dual 2.2 GHz Intel P4 Xenon system with 2GB of

memory running GNU/Linux. We compile our benchmarks using StreamIt’s unipro-

cessor backend and generate executables from the resulting C files using gcc -O2.

To measure the number of floating point operations, we use an instruction counting

DynamoRIO[1] client. We normalize both execution time and instruction counts to

the number of program outputs generated. Since StreamIt is a new language, there

are no external sources of benchmarks. Thus, we have assembled the following set of

representative streaming components and have rewritten them in StreamIt:

1By Bill Thies from http://courses.ece.uiuc.edu/ece291/resources/instructionref.pdf

76

Flop? Opcode Description
. FABS Absolute Value
. FADD Add
. FADDP Add
. FIADD Add

FBLD Load Binary Coded Decimal
FBSTP Store BCD Integer and Pop

. FCHS Change Sign
FCLEX Clear Exceptions
FNCLEX Clear Exceptions
FCMOVcc Floating-Point Conditional Move

. FCOM Compare Floating Point Values

. FCOMP Compare Floating Point Values

. FCOMPP Compare Floating Point Values

. FCOMI Compare Floating Point
Values and Set EFLAGS

. FCOMIP Values and Set EFLAGS

. FUCOMI Values and Set EFLAGS

. FUCOMIP Values and Set EFLAGS

. FCOS Cosine
FDECSTP Decrement Stack-Top Pointer

. FDIV Divide

. FDIVP Divide

. FIDIV Divide

. FDIVR Reverse Divide

. FDIVRP Reverse Divide

. FIDIVR Reverse Divide
FFREE Free Floating-Point Register

. FICOM Compare Integer

. FICOMP Compare Integer
FILD Load Integer
FINCSTP Increment Stack-Top Pointer
FINIT Initialize Floating-Point Unit
FNINIT Initialize Floating-Point Unit
FIST Store Integer
FISTP Store Integer
FLD Load Floating Point Value
FLD1 Load Constant
FLDL2T Load Constant
FLDL2E Load Constant
FLDPI Load Constant
FLDLG2 Load Constant
FLDLN2 Load Constant
FLDZ Load Constant
FLDCW Load x87 FPU Control Word

Flop? Opcode Description
FLDENV Load x87 FPU Environment

. FMUL Multiply

. FMULP Multiply

. FIMUL Multiply
FNOP No Operation

. FPATAN Partial Arctangent

. FPREM Partial Remainder

. FPREM1 Partial Remainder

. FPTAN Partial Tangent

. FRNDINT Round to Integer
FRSTOR Restore x87 FPU State
FSAVE Store x87 FPU State
FNSAVE Store x87 FPU State

. FSCALE Scale

. FSIN Sine

. FSINCOS Sine and Cosine

. FSQRT Square Root
FST Store Floating Point Value
FSTP Store Floating Point Value
FSTCW Store x87 FPU Control Word
FNSTCW Store x87 FPU Control Word
FSTENV Store x87 FPU Environment
FNSTENV Store x87 FPU Environment
FSTSW Store x87 FPU Status Word
FNSTSW Store x87 FPU Status Word

. FSUB Subtract

. FSUBP Subtract

. FISUB Subtract

. FSUBR Reverse Subtract

. FSUBRP Reverse Subtract

. FISUBR Reverse Subtract

. FTST TEST (compares with 0.0)

. FUCOM Unordered Compare Floating Point Values

. FUCOMP Unordered Compare Floating Point Values

. FUCOMPP Unordered Compare Floating Point Values
FWAIT Wait

. FXAM Examine
FXCH Exchange Register Contents
FXRSTOR Restore x87 FPU, MMX, SSE,

and SSE2 State
FXSAVE Save x87 FPU, MMX, SSE, and SSE2 State

. FXTRACT Extract Exponent and Significand

. FYL2X Compute y * log2x

. FYL2XP1 Compute y * log2(x +1)

Table 5.1: Intel IA-32 FLOPS.

77

FIR a single 256 coefficient low pass FIR filter.

RateConvert an audio down sampler that converts the sampling rate by a non-
integral factor (2

3
).

TargetDetect four matched filters in parallel with threshold target detection.

FMRadio an FM software radio with equalizer.

Radar the core functionality in modern radar signal processors, based on a system
from the Polymorphic Computing Architecture [23].

FilterBank a multi-rate signal decomposition processing block common in commu-
nications and image processing.

Vocoder a channel voice coder, commonly used for speech analysis and compression.

Oversampler a 16x oversampler, a function found in many audio CD players.

DToA an audio post-processing stage prior to a 1-bit D/A converter with an over-
sampler and a first order noise shaper.

Table 5.2 shows characteristics of our benchmarks both before and after our opti-

mizations. The stream graphs are presented in Appendix B.

5.2 Overall Performance

We have completed a fully automatic implementation of the linear combination, fre-

quency replacement, and optimization selection algorithms described in the previous

chapter. In this section, we evaluate three configurations of linear optimizations for

the uniprocessor backend:

• Linear replacement, which transforms maximal linear sections of the stream

graph into a single linear node, which we implement as a matrix multiply.

For small nodes (less than 256 operations), this takes the form of an unrolled

arithmetic expression, whereas for large nodes we implement an indexed matrix

multiply that avoids zero entries at the top and bottom of each column.

• Frequency replacement, which transforms maximal linear sections of the stream

graph into a single node which performs the calculation in the frequency domain.

78

Originally
Benchmark Filters Pipelines SplitJoins Average

(linear) (linear) (linear) vector size
FIR 3 (1) 1(0) 0 (0) 256
RateConvert 5 (3) 2 (1) 0 (0) 102
TargetDetect 10 (4) 6 (0) 1 (0) 300
FMRadio 26 (22) 11 (9) 2 (2) 40
Radar 76 (60) 17 (0) 2 (0) 4412
FilterBank 27 (24) 17 (9) 4 (4) 52
Vocoder 17 (13) 10 (8) 2 (1) 60
Oversampler 10 (8) 1 (1) 0 (0) 33
DToA 14 (10) 3 (1) 0 (0) 52

After Optimizations
Benchmark Filters Pipelines SplitJoins
FIR 3 1 0
RateConvert 4 1 0
TargetDetect 7 1 1
FMRadio 5 1 0
Radar 38 17 2
FilterBank 3 1 0
Vocoder 6 2 1
Oversampler 3 1 0
DToA 7 2 0

Table 5.2: Characteristics of benchmarks before and after running automatic selection
optimizations.

To implement the necessary basis conversions, we use FFTW [6, 7, 8], which is

an adaptive and high-performance FFT library.

• Automatic selection, which employs both of the previous transformations judi-

ciously in order to obtain the maximal benefit. We use the algorithm presented

in Section 4.3.

One interesting aspect of our optimizations is that they eliminate floating point

operations (FLOPS) from the program, as shown in Figure 5-1. Figure 5-2 shows that

multiplies are removed in roughly the same proportion. The removal of FLOPS repre-

sents fundamental computation savings that is independent of the streaming runtime

79

-40%

-20%

0%

-140%

20%

40%

60%

80%

100%

��� �

Ra
� � ���

	
 � �
�

Ta
rg
� � D
� � � ct

FM
Ra
dio

Ra
da
r

Fi
l
� � � Ba

nk

Vo
co
d
� �

O

 � � s

a

��
 le
DT
oA

Benchmark

F
lo

p
s

 R
e
m

o
v
e

d
 (

%
)

linear

freq

autosel

Figure 5-1: Elimination of floating point operations by maximal linear replacement,
maximal frequency replacement, and automatic optimization selection.

system and other (FLOPS-preserving) optimizations in the compiler. As shown in

Figure 5-1, each optimization leads to a significant reduction of FLOPS. Linear re-

placement eliminates FLOPS for all except for FIR, TargetDetect, and Radar, while

frequency replacement eliminates FLOPS for all except Radar.

The automatic selection option eliminates more FLOPS than either of the other

options for TargetDetect, FMRadio, Radar, and Vocoder. The effect is especially

pronounced in Radar, where linear and frequency replacement increase the number

of FLOPS, but automatic selection decreases FLOPS; the selection algorithm chooses

to combine only some of the filters, transforming none to the frequency domain.

Automatic selection always performs at least as well as the other two options, which

implies that our cost functions have some level of accuracy.

Execution speedup for each benchmark is shown in Figure 5-3. With automatic

selection, our benchmarks speed up by an average factor of 450% and by a factor of

800% in the best case. While the graph suggests that frequency replacement almost

always performs better than linear replacement, this is not strictly the case; in FM-

Radio, Radar, and Vocoder, the automatic selection algorithm obtains its speedup

80

-40%

-20%

0%

20%

40%

60%

80%

100%

��� �

Ra
��� �	�

�� �

�

Ta
rg
et
D
� � � ct

FM
Ra
dio

Ra
da
r

Fi
lt
�
 Ba

nk

Vo
co
d
�

O
� � rs
a

��� le
DT
oA

Benchmark

M
u

lt
ip

li
c
a

ti
o
n

s
 R
e
m

o
v
e

d
 (

%
) linear

freq

autosel

Figure 5-2: Elimination of floating point multiplications by maximal linear replace-
ment, maximal frequency replacement, and automatic optimization selection.

by using linear replacement instead of frequency replacement for part of the stream

graph. However, linear replacement does reduce performance for FIR, TargetDetect,

and DToA despite reducing the number of FLOPS. We believe that this is due to

inefficiencies in our implementation of the matrix multiplication routine, as well as

auxiliary effects on the runtime overhead in the StreamIt library. We have exper-

imented with using the machine-tuned ATLAS library for the matrix multiply [36]

(see Section 5.4), but performance varies widely: linear replacement with ATLAS

performs anywhere from -36% (on FMRadio) to 58% (on Oversampler) better than it

does with our own matrix multiply routine, and average performance with ATLAS is

4.3% lower. Note that these numbers reflect our overhead in interfacing with ATLAS

rather than the performance of ATLAS itself.

Perhaps the most interesting benchmark is Radar2 (see Figure B-4 for stream

graph). Maximal linear and frequency replacement lead to abysmal performance on

2This is the same Radar application presented in [15], with some filters adjusted to work at a
coarser level of granularity. This eliminates persistent state in exchange for increased I/O rates.
Also, frequency replacement caused an internal error in gcc for this program, so we used egcs 2.91
instead.

81

-200%

-100%

0%

100%

200%

5%

300%

400%

500%

600%

700%

800%

900%

��� �

Ra
� � ���

	
 � �
�

Ta
rg
� � D
� � � ct

FM
Ra
dio

Ra
da
r

Fi
l
� � � Ba

nk

Vo
co
d
� �

O

 � � s

a

��
 le
DT
oA

Benchmark

S
p
e
e

d
u

p
 (

%
)

linear

f ��� q
autosel

Figure 5-3: Execution speedup for maximal linear replacement, maximal frequency
replacement, and automatic optimization selection.

Radar, due to a vector-vector multiply filter named “Beamform” at the top of a

pipeline construct. The Beamform filter pushes 2 items, but pops and peeks 24; thus,

when the replacement algorithms combine it with a downstream FIR filter, much of its

work is duplicated. Moreover, the frequency replacement option suffers from the large

pop rates in the application (as high as 128 for some filters), thereby increasing FLOPS

and execution time by more than a factor of 30. The automatic selection algorithm is

essential in this case: it averts the performance-degrading combinations and benefits

from linear combinations elsewhere in the program, resulting in a significant reduction

in FLOPS and a 5% performance gain.

5.3 Effect of Combination

While a good portion of our execution speedup and our FLOP reduction come from

the efficiency of the FFTW library, the combination methods presented in this thesis

inherently reduce FLOPS as well. We ran the same execution time and operation

count measurements when combination was disabled. Figure 5-4 compares the per-

82

-20%

0%

20%

40%

60%

80%

100%

� � �

Ra
� � � �

� � � 	
�

Ta
rg
� � D
� � � ct

FM
Ra
dio

Ra
da
r

Fi
lt
� 	 Ban

k

Vo
co
d
� 	

O
� � rsa

�� le
DT
oA

Benchmark

M
u

lt
ip

li
c
a

ti
o
n

s
 R
e
m

o
v
e

d
(%

)
linear(nc)

linear

-200%

-100%

0%

100%

200%

300%

400%

500%

600%

 � �

Ra
� � ���

� � � �
�

Ta
rg
et
D
� � � ct

FM
Ra
dio

Ra
da
r

Fi
lt
� � Ba

nk

Vo
co
d
� �

O
� � rs

a

��� le
DT
oA

Benchmark

S
p
e
e

d
u

p
 (

%
)

linear(nc)

linear

0%

20%

40%

60%

80%

100%

120%

� � �

Ra
� � !

" # � $
�

Ta
rg
� � D
� � � ct

FM
Ra
dio

Ra
da
r

Fi
lt
� $ Ban

k

Vo
co
d
� $

O
� rsa

%'& le
DT
oA

Benchmark

M
u

lt
ip

li
c
a

ti
o
n

s
 R
e
m

o
v
e

d
 (

%
)

freq(nc)

freq

N/AN/A

-200%

-100%

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

() *

Ra
+ , - .

/ 0 ert

Ta
rg
, + De

+ , ct

FM
Ra
dio

Ra
da
r

Fi
lte
rB
an
k

Vo
co
de
r

O
ve
rs
a

1�2 le
DT
oA

Benchmark

S
p
e
e

d
u

p
 (

%
)

freq(nc)

freq

Figure 5-4: Elimination of multiplications (left) and speedup (right) with linear re-
placement (top) and frequency replacement (bottom) with and without combination.
The (nc) label denotes that combination was disabled.

formance with no combination to that with combination.

The top two graphs in Figure 5-4 show that for linear replacement, combination

leads to most of the multiplication reduction. FilterBank is the only application that

has significant multiplication reduction without combination. We attribute the re-

duction to our implementation of matrix multiply which does not generate unused

expressions. Execution time for linear replacement is better in all cases where combi-

nation is enabled than when it is disabled except for Radar. We interpret these result

as validation of the fundamental strength of our combination algorithms in their own

right as well as their usefulness as components of other optimizations (i.e. frequency

replacement).

The bottom two graphs in Figure 5-4 show the effect of combination on speedup

and multiplication reduction when using the frequency replacer. In all of the bench-

83

-100%

0%

100%

200%

300%

400%

500%

600%

700%

��� �

Ra
� � ���

	
 � �
�

Ta
rg
et
D
� � � ct

FM
Ra
dio

Ra
da
r

Fi
lt
� � Ba

nk

Vo
co
d
� �

O

 � rs

a

��
 le
DT
oA

Benchmark

S
p
e
e

d
u

p
 (

%
)

linear collapse increase

freq collapse increase

Figure 5-5: Differences in speedup due to the addition of combination with linear
replacement and frequency replacement.

marks except Radar and FIR, frequency replacement generates impressive reductions

even when combination disabled. Enabling combination further improves the re-

duction for all benchmarks. Execution time is decreased in all benchmarks except

TargetDetect. Since the multiplication reduction is the same for TargetDetect both

with and without combination, we attribute the 3% decrease in speedup to overhead

in the runtime system and variations in our timing platform.

Figure 5-5 summarizes the increase in execution time due to combination for lin-

ear and frequency replacement. It is interesting to note that combination makes no

difference for the FIR benchmark. This result makes intuitive sense because there

are no adjacent linear filters that combination might improve. Due to the nature of

the Radar benchmark (described above in Section 5.2), the numbers in Figure 5-5 for

Radar reflect the fact that filters with a pop rate other than one were not transformed

by frequency replacement3. The unit pop rate restriction disallows frequency trans-

formations for the entire Radar benchmark and it explains the lack of multiplication

reduction for frequency replacement.

3Without the unit pop rate restriction, code size explodes for the Radar benchmark.

84

-100%

0%

100%

200%

300%

400%

500%

��� �
Ra
te
Co
nv
er
� � r

Ta
rg
� � De

� � ct

FM
Ra
di
o

Ra
da
r

Fi
lte
rB
an
k

Vo
co
de
r

O
ve
rs
a

��� ler

DT
oA

Benchmark

S
p
e
e
d
u
p

Direct matrix multiply

N/A

ATLAS matrix multiply

Figure 5-6: Speedups using ATLAS to implement linear replacement.

5.4 Effect of ATLAS

Using the ATLAS linear algebra system to implement matrix multiplies was inspired

by the abysmal performance of our linear replacement optimization without combina-

tion. The FIR benchmark executes 34% slower with linear replacement even though

the code is implementing exactly the same operation as the original program and it

requires exactly the same number of FLOPS. This observation implies that the code

generation strategy for pure linear forms is sub optimal.

For small filters (e < 256), code generated by linear replacement contains one push

statement per column of the associated linear node whose argument is an expression

of the form a ∗ peek(i) (i.e. push(a0 ∗ peek(0) + a1 ∗ peek(1) + . . .)). For larger

filters (e ≥ 256), we store the matrix coefficients in an array A and compute the

result in a loop nest, rather than inlining the computation into a single expression as

shown in Figure 5-7. Note that our code is optimized for the case in which a column

of A begins and/or ends with a series of zero entries. We avoid storing these zero

entries by using a sparse A matrix in which the zeros have been removed from the

ends of each column; we also adjust the loop bounds accordingly. This optimization

improves performance for a number of our benchmarks. We also experimented with a

85

int sum, count;

for (int j=0; j<numPush; j++) {

float sum = 0.0;

// don’t multiply the zero-entries

// at beginning and end of column

int count = firstNonZero[j];

int length = lastNonZero[j] - firstNonZero[j];

for (int i=0; i<length; i++) {

sum += sparseA[i][j] * peek(count);

count++;

}

sum += b[j];

push (sum);

}

Figure 5-7: Code for diagonal matrix multiply for large filter sizes.

sparse matrix multiply in which all of the zero entries are removed and an additional

array is used to index the non-zero elements. However, the overhead incurred by this

level of indirection outweighs the benefits over the programs in our benchmark suite.

In the uniprocessor backend, a peek expression is transformed into a complicated

array access whose address calculation includes a logical bitmask operation. As the

original program contains the same number of peek expressions, complicated processor

instruction scheduling interactions are probably to blame for the poor performance.

The execution slowdown doesn’t represent any inherent penalty due to our opti-

mization technique; It merely represents a deficiency in the specific code we generate.

We experimented using the ATLAS machine tuned linear algebra library to do the

necessary computation instead of generating C code from within the compiler. Fig-

ure 5-6 shows execution speedups when using the linear replacement optimization

with ATLAS compared to the original code generation strategy. In some applications

ATLAS helps (RateConvert, FilterBank and Oversampler) but in the others it has no

effect and even decreases performance (FIR, TargetDetect, FMRadio, Vocoder, and

DToA). Again, this is not due to any deficiency in ATLAS but rather in the overhead

incurred in our interface with it.

86

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

1 6 � �
16 21 26 31 36 41 46 51 56 61 � �

71 76 81 86 91 96
10
1
10
6 � � �

� � 6
12
1
12
6

FIR Size

M
u
lt

ip
li
c
a
ti
o
n
s

� �

m
a

in
in
g

 (
%
)

0%

50%

100%

150%

200%

250%

1 6 � �
16 21 26 31 36 41 46 51 56 61 � �

71 76 81 86 91 96
10
1
10
6 � � �

� � 6
12
1
12
6

FIR Size

S
p

e
e
d
u
p

Figure 5-8: Elimination of floating point multiplications (top) and speedup (bottom)
with frequency replacement as a function of problem size for the FIR benchmark.

5.5 FIR Scaling

Because the performance improvement due to our frequency replacement optimiza-

tion is a function of the problem size, N , the extent to which problem size matters

for our benchmarks is of interest. To determine the effect of problem size on perfor-

mance we varied the size of the FIR benchmark from 1 filter coefficient to 128 filter

coefficients and measured the multiplication reduction and the execution speedup for

each size. Figure 5-8 shows the results obtained from this experiment. The original

FIR benchmark contains 256 coefficients, but we do not show the plot to 256 co-

87

0

1

2

0 1 2 3 4 5 6 7 8

Seconds in Time

S
e

c
o

n
d

s
 i

n
 F
re
q
u

e
n

c
y

Figure 5-9: Scatter plot of original execution time versus post optimization execution
time for FIR scaling experiments. Plotted as a solid line is the cost function used
with the automatic selection algorithm.

efficients because all of the pertinent features appear closer to the origin. The top

graph in Figure 5-8 shows the multiplications remaining after the optimization was

applied and demonstrates good agreement with the theoretical prediction4 of lg(N)
N

.

The bottom graph of Figure 5-8 shows execution speedup. The graph is more noisy

than the multiplication reduction graph and it looks approximately linear. However,

in Figure 5-9 we plot the timing data as a function of original execution time and

post optimization execution time. It is much easier to see the expected lg(N) shape5.

Figure 5-9 also plots the cost function used by our automated selection algorithm

which is shown in the following equation.

freqVal(firSize, timeVal) = 0.65 + ln
(

1 + timeVal−timeVal0
1+ 1

50
firSize

)

4The theoretical lg(N)
N

prediction is due to the N lg(N) frequency implementation compared to
the N2 original implementation.

5We expect N

lg(N) speedup if speedup is inversely proportional to multiplication reduction.

88

0%

20%

40%

60%

80%

100%

120%

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

FIR Size

F
P

 M
u
lt

ip
li
c
a
ti
o
n
s

 R
e
m
a

in
in
g

-150%

-100%

-50%

0%

50%

100%

150%

200%

250%

7
13 19 25 31 37 43 49 � �

61 67 73 79 85 91 97 � � 3 � � 9 � � �
12
1
12
7

FIR Size

S
p

e
e
d
u
p

Figure 5-10: Multiplications remaining (top) and speedup (bottom) after redundancy
replacement as a function of problem size for the FIR benchmark.

5.6 Redundancy Elimination

We now present simple measurements for the redundancy removal optimization de-

scribed in Section 4.2. Because of the extensive state required for our implementation

of redundancy removal, the code size for the benchmark programs grows out of con-

trol when we apply the optimization. To understand the effect of redundancy removal

on performance, we measured multiplications and speedup as a function of FIR size.

The FIR benchmark has approximately 50% redundancy due to the fact that A is

a symmetric column vector yet the program was small enough that gcc compiled it

without complaint.

89

The results of the experiments are shown in Figure 5-10. Redundancy removal

does a good job of removing multiplications as shown in the top graph. However, the

overhead necessary to affect this removal erases any potential benefit and slows the

program down. Even worse, as the program size grows and the amount of removed

redundancy increases, the program slows down even more. This decrease in perfor-

mance as a function of FIR size is due to the fact that as the redundancy increases,

more time must be spent to load and store cached values. Since the overhead to load

and store is greater than the savings from removing the multiplication the overall

program becomes slower.

One interesting feature of the top graph in Figure 5-10 is its peculiar “zig-zag”

shape. The saw-toothed curve is not an accident. It results from the difference

in redundancy of even and odd sized FIR filters. In an odd sized filter the values

computed with the center coefficient can’t be reused, while in an even sized filter

there is no middle coefficient and all values can be reused. Therefore, if N is odd,

after Transformation 7 is applied a filter of size N +1 will have fewer multiplications

than a filter of size N even though the problem size is larger.

5.7 Radar Scaling

As mentioned previously, the Radar benchmark is challenging for our optimization

techniques. Even more interesting is that our optimizations’ performance depends

on the problem configuration. The Radar benchmark as written has 12 “Channels”

and 4 “Beams” representing 12 data sources being focused in 4 different directions.

Referring to Figure B-4, “Channels” are in the top of the application and “Beams”

are in the bottom. Figure 5-11 shows how maximal linear replacement changes the

number of multiplications as a function of problem size. As the parameters grow,

linear replacement does worse. The degradation due to increasing the number of

Beams is much more pronounced than is increasing the number of Channels.

90

1

2

3

4

5

1

��

a
n

e
l

2

��

a
n

e
ls

3

��

a
n

e
ls

4

��

a
n

e
ls

5

��

a
n

n
e

ls

6

��

a
n

n
e

ls

7

��

a
n

e
ls

8

��

a
n

e
ls

9

��

a
n

n
e

ls

1
0

��

a
n

n
e

ls

1
1

��

a
n

n
e

ls

1
2

��

a
n

n
e

ls

0%

20%

40%

60%

80%

100%

120%

140%

M
u

ltip
lie

s
 R

e
m

a
in

in
g

 (%
)

BeamsChannels

Figure 5-11: Multiplication reduction with maximal linear replacement as a function
of problem size for the Radar benchmark.

5.8 FFT Savings: Theory vs. Practice

The strength of our results rely only partially on the efficiency of FFTW. Using the

optimized frequency transformation (Transformation 6) over the näıve transforma-

tion (Transformation 5) also improves performance. To quantitatively evaluate the

performance improvement due to various improvements in our frequency replacement

technique we present the experiments summarized in Figure 5-12.

Figure 5-12 shows the effects of different frequency transformation strategies on

post transformation multiplications. To highlight the differences between methods,

we report the multiplication reduction factor which is defined as the number of multi-

plications originally required per output over the number of multiplications required

91

per output after applying the specified frequency transformation. The x axis is the

size of the FIR and the y axis is the size of the FFT. The FFT size was manually

specified instead of automatically chosen.

• Figure 5-12 a) shows the theoretical reduction.

• Figure 5-12 b) shows the multiplication reduction using the näıve transformation

(Transformation 5) and a simple FFT implementation.

• Figure 5-12 c) shows the improvement from Figure 5-12 b) due to the optimized

frequency transformation (Transformation 6).

• Figure 5-12 d) shows the improvement from Figure 5-12 c) due to using FFTW

to perform the FFT.

From Figure 5-12 we can see that the optimized transformation improves performance

by a factor of 1.5 over the näıve transformation and using FFTW improves it by a

factor of 6. While FFTW provides a large performance boost, our optimizations are

also worthwhile in their own right.

92

1

4

16

64

256

1

4

16

64

256

FIR sizeFFT size

a) Theoretical

1

16

256

1

32

512

0

1

1

2

2

3

3

4

4

M
u

lt
ip

li
c

a
ti

o
n

 r
e

d
u

c
ti

o
n

 f
a

c
to

r

FIR size
FFT size

b) Näıve

1

16

256

1

32

512

0

1

2

3

4

5

6

7

M
u

lt
ip

li
c

a
ti

o
n

 r
e

d
u

c
ti

o
n

 f
a

c
to

r

FIR sizeFFT size

c) Optimized

1

16

256

1

32

512

0

5

10

15

20

25

30

35

40

M
u

lt
ip

li
c

a
ti

o
n

 r
e

d
u

c
ti

o
n

 f
a

c
to

r

FIR size

FFT size

d) Optimized (FFTW)

Figure 5-12: Elimination of floating point multiplications with frequency replacement
as a function of problem size and FFT length for the FIR program using different
transformation strategies.

93

94

Chapter 6

Related Work

Several groups are researching strategies for efficient code generation for DSP ap-

plications. SPIRAL is a system that generates libraries for signal processing algo-

rithms [5, 18, 19]. Using a feedback-directed search process, DSP transforms are opti-

mized for the underlying architecture. The input language to SPIRAL is SPL [37, 38],

which provides a parameterizable way of expressing matrix computations. Given a

matrix representation in SPL, SPIRAL generates formulas that correspond to differ-

ent factorizations of the matrix. It searches for the most efficient formula using several

techniques, including dynamic programming and stochastic evolutionary search.

We consider our work to be complementary to SPIRAL. While SPIRAL starts

with a matrix representation in SPL, we start with general StreamIt code and use

linear dataflow analysis to extract a matrix representation where possible. Our lin-

ear combination rules are distinct from the factorizations of SPIRAL, as StreamIt

nodes can peek at items that they do not consume. In the future, SPIRAL could be

integrated with StreamIt to optimize a matrix factorization for a given architecture.

The ATLAS project [36] also aims to produce fast libraries for linear algebra

manipulations, focusing on adaptive library generation for varying architectures.

FFTW [6] is a runtime library of highly optimized FFT’s that dynamically adapt

to architectural variations. StreamIt is again complementary to these packages: it

allows programmers to interface with them using general user-level code.

ADE (A Design Environment) is a system for specifying, analyzing, and manip-

95

ulating DSP algorithms [4]. ADE includes a rule-based system that can search for

improved arrangements of stream algorithms using extensible transformation rules.

However, the system uses predefined signal processing blocks that are specified in

mathematical terms, rather than the user-specified imperative code that appears in a

StreamIt filter. Moreover, ADE is intended for algorithm exploration, while StreamIt

includes support for code generation and whole-program development. In addition to

ADE, other work on DSP algorithm development is surveyed in [26].

Karr [21] and Cousot and Halbwachs [3] describe general methods for detecting

linear relationships among program variables. Karr maintains an affine representation

(similar to ours) for each program variable, while Cousot and Halbwachs use a poly-

hedral model in which each dimension corresponds to a program variable. For general

programs, the analyses described by these authors is more general than ours. In fact,

the novelty of our linear dataflow analysis is in its specialization for the streaming

domain. Rather than tracking general relationships, we only track relationships to

items on the input tape. This restriction — in combination with the atomic, fine-

grained nature of filter work functions — makes it feasible to symbolically execute all

loops, thereby obtaining more precise linearity information.

A number of other programming languages are oriented around a notion of a

stream; see [31] for a survey. Synchronous languages such as LUSTRE [16], Esterel [2],

and Signal [12] target the embedded domain, while languages such as Occam [17],

SISAL [11] and StreamC [28] target parallel and vector targets. However, none of

the compilers for these languages have coarse-grained, DSP-specific analyses such as

linear filter detection. Also note that the “linear data flow analysis” of Ryan [29] is

completely unrelated to our work; it aims to do program analysis in linear time.

96

Chapter 7

Conclusion

This thesis presents a set of automated analyses for detecting, analyzing, and optimiz-

ing linear filters in streaming applications. Though the mathematical optimization

of linear filters has been a longtime focus of the DSP community, our techniques are

novel in the automated application of these techniques to programs that are written

in a flexible and high-level programming language. We demonstrate that using our

linear dataflow analysis, linear combination, frequency translation and automated

optimization selection we can improve execution speed by an average factor of 450%

and 800% in the best case. This improvement is primarily due to the removal, on

average, of 86% of the floating point instructions.

The ominous rift between the design and implementation of signal processing

applications is growing by the day. Algorithms are designed at a conceptual level

utilizing modular processing blocks that naturally express the computation. However,

in order to obtain good performance, each hand-tuned implementation is forced to

disregard the abstraction layers and painstakingly consider specialized whole-program

optimizations. The StreamIt project aims to reduce this process to a single stage in

which the designers and implementors share a set of high-level abstractions that can

be efficiently handled by the compiler.

The linear analysis described in this thesis represents a first step toward this

goal. By automatically performing linear combination, frequency translation, and

optimization selection, it allows programmers to write linear stream operations in a

natural and modular fashion without any performance penalty.

97

7.1 Future Work

Linear analysis can easily be extended to incorporate a notion of linear state. A

stateful linear node is characterized by

λ = ((Ax, As), (Cx, Cs), (~bx,~bs))

Each filter in the stream graph contains a state vector ~s such that ~yi (the output at

time i) and ~si+1 (the state at time i+ 1) are given by

~yi = ~xAx + ~siAs +~bx

~si+1 = ~xCx + ~siCs +~bs

The addition of stateful nodes allows us to describe a larger class of programs using our

linear analysis framework. Using linear state, our structure combination rules can be

extended to include feedbackloops. Examples of programs that exhibit stateful linear

nodes are control systems and infinite impulse response (IIR) filters.

Another promising avenue of research is to exploit matrix factorization in order to

automatically derive fast implementations of large computations such as DSP trans-

forms. Matrix representations will also be useful for generating load-balanced parallel

code in the StreamIt Raw backend [15]. Finally, to increase the class of programs

that would fit into our linear framework, the entries of the A and ~b of linear nodes

could contain symbolic constants that are resolved at runtime.

98

Appendix A

Benchmark Source Code

As our benchmarks are not provided by a standard source, this appendix includes

the StreamIt source code. Two of the benchmarks, FMRadio and Radar, are written

in an older syntax. Thankfully, the StreamIt compiler is capable of compiling several

types of syntax. Because of the verbosity of the old syntax, we are unable to provide

the source code for the Radar benchmark here.

99

/**

* Simple StreamIt filter that simply absorbs floating

* point numbers without printing them.

**/

float->void filter FloatSink {

work pop 1 {

pop();

}

}

Figure A-1: Source code for FloatSink.

/**

* Simple FIR low pass filter with gain=g,

* wc=cutoffFreq(in radians) and N samples.

* Eg:

* ^ H(e^jw)

* |

* ---------------

* | | |

* | | |

* <-------------------------> w

* -wc wc

*

* This implementation is a FIR filter is a rectangularly windowed

* sinc function (eg sin(x)/x), which is the optimal FIR low pass

* filter in mean square error terms.

*

* Specifically, h[n] has N samples from n=0 to (N-1)

* such that h[n] = sin(cutoffFreq*pi*(n-N/2))/(pi*(n-N/2)).

* and the field h holds h[-n].

*/

float->float filter LowPassFilter(float g, float cutoffFreq, int N) {

float[N] h;

/* since the impulse response is symmetric,

I don’t worry about reversing h[n]. */

init {

int OFFSET = N/2;

for (int i=0; i<N; i++) {

int idx = i + 1;

// generate real part

if (idx == OFFSET)

/* take care of div by 0 error (lim x->oo

of sin(x)/x actually equals 1)*/

h[i] = g * cutoffFreq / pi;

else

h[i] = g * sin(cutoffFreq * (idx-OFFSET)) / (pi*(idx-OFFSET));

}

}

/* implement the FIR filtering operation as the convolution sum. */

work peek N pop 1 push 1 {

float sum = 0;

for (int i=0; i<N; i++) {

sum += h[i]*peek(i);

}

push(sum);

pop();

}

}

Figure A-2: Source code for LowPassFilter.

100

/**

* This streamit program contains a simple low pass filter

* that filters the data from a source and funnels it directly

* to a sink. This is more of a "kernel" type benchmark because

* FIR filtering is widely used in actual DSP applications.

**/

/**

* Top level program.

**/

void->void pipeline FIRProgram {

add FloatSource();

add LowPassFilter(1, pi/3, 256);

add FloatPrinter();

}

/**

* Simple float source -- puts out a ramp from

* 0 to 15 over and over again. Note that it

* generates its output data in its init function

* and the oly work that occurs in the work function

* is pushing the data on to the tape and doing some

* buffer management.

**/

void->float filter FloatSource {

float[16] inputs;

int idx;

init {

for(int i=0; i<16; i++) {

inputs[i] = i;

}

idx = 0;

}

work push 1 {

push(inputs[idx]);

idx = (idx + 1) % 16;

}

}

Figure A-3: Source code for the FIR benchmark.

/**

* This filter compresses the signal at its input by a factor M.

* Eg it inputs M samples, and only outputs the first sample.

**/

float->float filter Compressor(int M) {

work peek M pop M push 1 {

push(pop());

for (int i=0; i<(M-1); i++) {

pop();

}

}

}

Figure A-4: Source code for Compressor.

101

/**

* This filter expands the input by a factor L. Eg in takes in one

* sample and outputs L samples. The first sample is the input

* and the rest of the samples are zeros.

**/

float->float filter Expander(int L) {

work peek 1 pop 1 push L {

push(pop());

for (int i=0; i<(L-1); i++) {

push(0);

}

}

}

Figure A-5: Source code for Expander.

/**

* This program uses multirate filtering to change the sampling rate of

* the input by a non integer amount. We assume that the original sampling

* rate was every T seconds (eg at a frequency of 2*pi/T radians)

* and the output of the system will be the same as if the original

* signal had been sampled at every 3T/2 seconds instead. As this

* is a non-integer ratio conversion, we need to upsample, low-pass filter

* (eg interpolate) and then downsample.

**/

void->void pipeline SamplingRateConverter {

add SampledSource(pi/10);

add pipeline {

add Expander(2);

/* gain 3, cutoff freq of pi/3, 300 sample FIR */

add LowPassFilter(3, pi/3, 300);

add Compressor(3);

};

add FloatPrinter();

}

/**

* Simple filter that provides a source of sampled data.

* For now we are going to produce just a cosine at a frequency

* specified.

*/

void->float filter SampledSource(float w) {

int n = 0;

work push 1 {

push(cos(w*n));

n++;

}

}

Figure A-6: Source code for the RateConvert benchmark.

102

/**

* Target detection application. This app has several matched filters that

* run in parallel (in a splitjoin). The results

* are then combined back into a single stream and a threshold detector

* prints off the filters which detect targets.

**/

void->void pipeline TargetDetect {

/* N is the length of the filters */

int N = 300;

add TargetSource(N);

add TargetDetectSplitJoin(N,8);

/* there are four matched filters */

add FloatPrinter();

}

float->float splitjoin TargetDetectSplitJoin(int N, float thresh) {

split duplicate;

add pipeline {

add MatchedFilterOne(N);

add ThresholdDetector(1,thresh);

};

add pipeline {

add MatchedFilterTwo(N);

add ThresholdDetector(2, thresh);

};

add pipeline {

add MatchedFilterThree(N);

add ThresholdDetector(3,thresh);

};

add pipeline {

add MatchedFilterFour(N);

add ThresholdDetector(4,thresh);

};

join roundrobin;

}

float->float filter ThresholdDetector(int number, float threshold) {

work pop 1 push 1 {

/* pop the input value off of the input stream. */

float t = pop();

/* do the threshold test -- if it is greater, then push out number, otherwise push 0 */

if (t > threshold) {

push(number);

} else {

push(0);

}

}

}

void->float filter TargetSource(int N) {

int currentPosition = 0;

work push 1 {

if (currentPosition < N) {

push(0);

} else if (currentPosition < (2*N)) {

float trianglePosition = currentPosition - N;

// figure out which side of the triangle we are on.

if (trianglePosition < (N/2)) {

push((trianglePosition * 2) / N);

} else {

push(2-((trianglePosition * 2)/ N));

}

} else {

push(0);

}

// update the current position.

currentPosition = (currentPosition + 1)%(10*N);

}

}

Figure A-7: Source code for the TargetDetect benchmark.

103

float->float filter MatchedFilterOne(int N) {

float[N] h;

init {

for (int i=0; i<N; i++) {

float trianglePosition = i;

/* make the triangle */

h[i] = ((i < (N/2)) ? ((trianglePosition * 2) / N) :

(2 - ((trianglePosition * 2) / N))) - 0.5;

}}

work peek N pop 1 push 1 {

float sum = 0;

for (int i=0; i<N; i++) {

sum += h[i]*peek(i);

}

push(sum);

pop();

}}

float->float filter MatchedFilterTwo(int N) {

float[N] h;

init {

for (int i=0; i<N; i++) {

float pos = i;

/* make the sine (mean is zero) */

h[i] = (1/(2*pi)) * sin(pi * pos / N) - 1;

}}

work peek N pop 1 push 1 {

float sum = 0;

for (int i=0; i<N; i++) {

sum += h[i]*peek(i);

}

push(sum);

pop();

}}

float->float filter MatchedFilterThree(int N) {

float[N] h;

init {

for (int i=0; i<N; i++) {

float pos = i;

/* make the sine (mean is already 0) */

h[i] = (1/(2*pi)) * sin(2 * pi * pos / N);

}}

work peek N pop 1 push 1 {

float sum = 0;

for (int i=0; i<N; i++) {

sum += h[i]*peek(i);

}

push(sum);

pop();

}}

float->float filter MatchedFilterFour(int N) {

float[N] h;

init {

for (int i=0; i<N; i++) {

float pos = i;

/* make the ramp -- have to worry about time reversal */

h[(N-i)-1] = (0.5) * ((pos / N) - 0.5);

}}

work peek N pop 1 push 1 {

float sum = 0;

for (int i=0; i<N; i++) {

sum += h[i]*peek(i);

}

push(sum);

pop();

}}

Figure A-8: Source code for matched filters in the TargetDetect benchmark.

104

import streamit.*; import streamit.io.*;

import java.lang.Math;

class FloatNAdder extends Filter {

int N;

public FloatNAdder(int count) {super(count);}

public void init (final int count) {

N = count;

input = new Channel (Float.TYPE, count,

count);

output = new Channel (Float.TYPE, 1);

}

public void work() {

float sum = 0.0f;

int i;

for (i = 0; i < N; i++)

sum += input.popFloat();

output.pushFloat(sum);

}

}

class FloatDiff extends Filter {

public void init() {

input = new Channel(Float.TYPE, 2, 2);

output = new Channel(Float.TYPE, 1);

}

public void work() {

output.pushFloat(input.peekFloat(0) -

input.peekFloat(1));

input.popFloat(); input.popFloat();

}

}

class FloatDup extends Filter {

public void init() {

input = new Channel(Float.TYPE, 1, 1);

output = new Channel(Float.TYPE, 2);

}

public void work() {

float val = input.popFloat();

output.pushFloat(val);

output.pushFloat(val);

}

}

class EqualizerInnerPipeline extends Pipeline {

public EqualizerInnerPipeline(float rate,

float freq){

super(rate, freq);

}

public void init(final float rate,

final float freq) {

add(new LowPassFilter(rate, freq, 64, 0));

add(new FloatDup());

}

}

class EqualizerInnerSplitJoin extends SplitJoin {

public EqualizerInnerSplitJoin(

float rate, float low,

float high, int bands) {

super(rate, low, high, bands);

}

public void init(final float rate,

final float low,

final float high,

final int bands) {

int i;

setSplitter(DUPLICATE());

for (i = 0; i < bands - 1; i++)

add(new EqualizerInnerPipeline

(rate,

(float)java.lang.Math.exp

((i+1) *

(java.lang.Math.log(high) -

java.lang.Math.log(low)) /

bands + java.lang.Math.log(low))));

setJoiner(ROUND_ROBIN(2));

}

}

class EqualizerSplitJoin extends SplitJoin {

public EqualizerSplitJoin(

float rate, float low,

float high, int bands) {

super(rate, low, high, bands);

}

public void init(final float rate, final float low,

final float high, final int bands) {

setSplitter(DUPLICATE());

add(new LowPassFilter(rate, high, 64, 0));

add(new EqualizerInnerSplitJoin(rate, low,

high, bands));

add(new LowPassFilter(rate, low, 64, 0));

setJoiner(WEIGHTED_ROUND_ROBIN(1, (bands-1)*2, 1));

}

}

class Equalizer extends Pipeline {

public Equalizer(float rate) {

super(rate);

}

public void init(final float rate) {

final int bands = 10;

final float low = 55;

final float high = 1760;

add(new EqualizerSplitJoin(rate, low,

high, bands));

add(new FloatDiff());

add(new FloatNAdder(bands));

}

}

class FloatOneSource extends Filter {

int x;

public void init () {

output = new Channel(Float.TYPE, 1);

x = 0;

}

public void work() {

output.pushFloat(x++);

}

}

class FloatPrinter extends Filter {

public void init () {

input = new Channel(Float.TYPE, 1);

}

public void work () {

System.out.println(input.popFloat ());

}

}

Figure A-9: Source code for the FMRadio benchmark (part one).

105

class FMRadio extends Pipeline {

public FMRadio() {super();}

public void init()

{

final float samplingRate = 200000;

final float cutoffFrequency = 108000000;

final int numberOfTaps = 64;

final float maxAmplitude = 27000;

final float bandwidth = 10000;

add(new LowPassFilter(samplingRate,

cutoffFrequency, numberOfTaps, 4));

add(new FMDemodulator(samplingRate,

maxAmplitude, bandwidth));

add(new Equalizer(samplingRate));

}

}

class FMDemodulator extends Filter {

float mGain;

float sampleRate;

float maxAmplitude;

float modulationBandwidth;

public FMDemodulator (float sampRate,

float max, float bandwidth) {

super (sampRate, max, bandwidth);

}

public void init(float sampRate,

float max, float bandwidth) {

input = new Channel (Float.TYPE, 1, 2);

output = new Channel (Float.TYPE, 1);

sampleRate = sampRate;

maxAmplitude = max;

modulationBandwidth = bandwidth;

mGain = maxAmplitude *

(sampleRate /

(modulationBandwidth*(float)Math.PI));

}

public void work() {

float temp = 0;

temp = (float)((input.peekFloat(0)) *

(input.peekFloat(1)));

temp = (float)(mGain * Math.atan(temp));

input.popFloat();

output.pushFloat(temp);

}

}

public class LinkedFMTest extends StreamIt {

static public void main(String[] t) {

new LinkedFMTest().run(t);

}

public void init() {

add(new FloatOneSource());

add(new FMRadio());

add(new FloatPrinter());

}

}

class LowPassFilter extends Filter {

int numberOfTaps;

float COEFF[];

float cutoffFreq, samplingRate, tapTotal;

int mDecimation;

public LowPassFilter(float sampleRate,

float cutFreq, int numTaps, int decimation){

super(sampleRate, cutFreq, numTaps,

decimation);

}

public void init(final float sampleRate,

final float cutFreq, final int numTaps,

final int decimation) {

float pi, m, w;

int i;

samplingRate = sampleRate;

cutoffFreq = cutFreq;

numberOfTaps = numTaps;

pi = (float)java.lang.Math.PI;

m = numberOfTaps -1;

// m is the order of filter

mDecimation = decimation;

input = new Channel (Float.TYPE,

1+decimation, numTaps);

output = new Channel (Float.TYPE, 1);

//all frequencies are in hz

COEFF = new float[numTaps];

if(cutoffFreq == 0.0) {

//Using a Hamming window

tapTotal = 0;

for(i=0;i<numberOfTaps;i++) {

COEFF[i] = (float)(0.54 -

0.46*java.lang.Math.cos((2*pi)*(i/m)));

tapTotal = tapTotal + COEFF[i];

}

//normalize all the taps to a sum of 1

for(i=0;i<numberOfTaps;i++)

COEFF[i] = COEFF[i]/tapTotal;

} else{

//ideal lowpass filter ==> Hamming window

//has IR h[n] = sin(omega*n)/(n*pi)

//reference: Oppenheim and Schafer

w = (2*pi) * cutoffFreq/samplingRate;

for(i=0;i<numberOfTaps;i++) {

//check for div by zero

if(i-m/2 == 0)

COEFF[i] = w/pi;

else

COEFF[i] =

(float)(java.lang.Math.sin(w*(i-m/2)) / pi

/ (i-m/2)

* (0.54 - 0.46

* java.lang.Math.cos((2*pi)*(i/m))));

}

}

}

public void work() {

float sum = 0;

int i;

for (i=0; i<numberOfTaps; i++)

sum += input.peekFloat(i)*COEFF[i];

input.popFloat();

for(i=0;i<mDecimation;i++)

input.popFloat();

output.pushFloat(sum);

}

}

Figure A-10: Source code for the FMRadio benchmark (part two).

106

/* This is a bandpass filter with the rather simple implementation of

* a low pass filter cascaded with a high pass filter. The relevant parameters

* are: end of stopband=ws and end of passband=wp, such that 0<=ws<=wp<=pi

* gain of passband and size of window same for both filters. Note that the high

* pass and low pass filters currently use a rectangular window.

**/

float->float pipeline BandPassFilter(float gain, float ws, float wp, int numSamples) {

add LowPassFilter(1, wp, numSamples);

add HighPassFilter(gain, ws, numSamples);

}

Figure A-11: Source code for BandPassFilter.

/* This is a bandstop filter with the rather simple implementation of

* a low pass filter cascaded with a high pass filter. The relevant parameters

* are: end of passband=wp and end of stopband=ws, such that 0<=wp<=ws<=pi

* gain of passband and size of window same for both filters. Note that the high

* pass and low pass filters currently use a rectangular window.

*

* We take the signal, run both the low and high pass filter separately and then

* add the results back together.

**/

float->float pipeline BandStopFilter(float gain, float wp, float ws, int numSamples) {

add splitjoin {

split duplicate;

add LowPassFilter(gain, wp, numSamples);

add HighPassFilter(gain, ws, numSamples);

join roundrobin;

};

/* sum the two outputs together. */

add Adder(2);

}

Figure A-12: Source code for BandStopFilter.

107

/**

* This is a generic filter bank that decomposes an incoming stream into

* M frequency bands. It then performs some processing on them

* and then reconstructs them.

**/

void->void pipeline FilterBank {

add DataSource();

add FilterBankPipeline(3);

add FloatPrinter();

}

float->float pipeline FilterBankPipeline(int M) {

add FilterBankSplitJoin(M);

add Adder(M);

}

/**

* Filterbank splitjoin (everything before the final adder.)

**/

float->float splitjoin FilterBankSplitJoin(int M) {

split duplicate;

for (int i=0; i<M; i++) {

add ProcessingPipeline(M,i);

}

join roundrobin;

}

/**

* The main processing pipeline: analysis, downsample, process, upsample, synthesis.

* I use simple bandpass filters for the Hi(z) and Fi(z).

**/

float->float pipeline ProcessingPipeline(int M, int i) {

/* analysis pipeline */

add pipeline {

/* take the subband from i*pi/M to (i+1)*pi/M */

add BandPassFilter(1, (i*pi/M), ((i+1)*pi/M), 100);

/* decimate by M */

add Compressor(M);

};

/* process the subband */

add ProcessFilter(i);

/* synthesis pipeline */

add pipeline {

/* upsample by M */

add Expander(M);

/* synthesize (eg interpolate) */

add BandStopFilter(M, (i*pi/M), ((i+1)*pi/M), 100);

};

}

/* This is (obviously) the data source. */

void->float filter DataSource() {

int n = 0;

float w1 = pi/10;

float w2 = pi/20;

float w3 = pi/30;

work push 1 {

push(cos(w1*n) + cos(w2*n) + cos(w3*n));

n++;

}

}

/* this is the filter that we are processing the sub bands with. */

float->float filter ProcessFilter(int order) {

work pop 1 push 1 {

push(pop());

}

}

Figure A-13: Source code for the FilterBank benchmark.

108

void->void pipeline ChannelVocoder {

add DataSource();

// low pass filter to filter out high freq noise

add LowPassFilter(1, (2*pi*5000)/8000, 64);

add MainSplitjoin();

add FloatPrinter();

}

/** This class is just a wrapper so that we

don’t have anonymous inner classes. **/

float->float splitjoin MainSplitjoin {

int PITCH_WINDOW = 100;

int DECIMATION = 50;

int NUM_FILTERS = 4;

split duplicate;

add PitchDetector(PITCH_WINDOW, DECIMATION);

add VocoderFilterBank(NUM_FILTERS, DECIMATION);

join roundrobin(1,4);

}

/** a simple data source. **/

void->float filter DataSource() {

int SIZE = 11;

int index;

float[SIZE] x;

init {

index = 0;

x[0] = -0.70867825;

x[1] = 0.9750938;

x[2] = -0.009129746;

x[3] = 0.28532153;

x[4] = -0.42127264;

x[5] = -0.95795095;

x[6] = 0.68976873;

x[7] = 0.99901736;

x[8] = -0.8581795;

x[9] = 0.9863592;

x[10] = 0.909825;

}

work push 1 {

push(x[index]);

index = (index+1)%SIZE;

}

}

/**

* Pitch detector.

**/

float->float pipeline PitchDetector(

int winsize, int decimation) {

add CenterClip();

add CorrPeak(winsize, decimation);

}

/** The channel vocoder filterbank. **/

float->float splitjoin VocoderFilterBank(

int N, int decimation) {

split duplicate;

for (int i=0; i<N; i++) {

add FilterDecimate(i, decimation);

}

join roundrobin;

}

/**

* A channel of the vocoder filter bank --

* has a band pass filter centered at

* i*200 Hz followed by a decimator with

* decimation rate of decimation.

**/

float->float pipeline FilterDecimate(

int i, int decimation) {

//add VocoderBandPassFilter(i, 64); // 64 tap filter

add BandPassFilter(2, 400*i, 400*(i+1), 64);

add Compressor(decimation);

}

float->float filter CenterClip {

float MIN = -0.75;

float MAX = 0.75;

work pop 1 push 1 {

float t = pop();

if (t<MIN) {

push(MIN);

} else if (t>MAX) {

push(MAX);

} else {

push(t);

}

}

}

float->float filter CorrPeak(int winsize, int decimation) {

float THRESHOLD = 0.07;

work peek winsize push 1 pop decimation {

float[winsize] autocorr; // auto correlation

for (int i=0; i<winsize; i++) {

float sum = 0;

for (int j=i; j<winsize; j++) {

sum += peek(i)*peek(j);

}

autocorr[i] = sum/winsize;

}

// armed with the auto correlation,

// find the max peak in a real vocoder,

// we would restrict our attention to

// the first few values of the auto corr

// to catch the initial peak

// due to the fundamental frequency.

float maxpeak = 0;

for (int i=0; i<winsize; i++) {

if (autocorr[i]>maxpeak) {

maxpeak = autocorr[i];

}

}

//println("max peak" + maxpeak);

// output the max peak if it is above the threshold.

// otherwise output zero;

if (maxpeak > THRESHOLD) {

push(maxpeak);

} else {

push(0);

}

for (int i=0; i<decimation; i++) {

pop();

}

}

}

Figure A-14: Source code for the Vocoder benchmark.

109

/**

* This app is intended to implement a one bit d to a oversampler.

**/

void->void pipeline Oversampler {

// the source of data (eventually, this should be an audio stream)

add DataSource();

// go through the process of oversampling

add OverSampler();

add DataSink();

}

/**

* This is a 16x oversampler -- eg it upsamples

* its input by a factor of 16. The 16 factor is

* achieved in four steps. In each step we upsample

* and then low pass filter with cutoff of pi/2.

**/

float->float pipeline OverSampler {

for (int i=0; i<4; i++) {

add Expander(2);

add LowPassFilter(2,pi/2,64);

}

}

/**

* Simple data source that outputs a combination of

* three sine waves with a period of 100 samples.

**/

void->float filter DataSource {

int SIZE = 100;

float[SIZE] data;

int index;

init {

// initialize the data array.

for (int i=0; i<SIZE; i++) {

float t = i;

data[i] = (sin((2*pi)*(t/SIZE)) +

sin((2*pi)*(1.7*t/SIZE) + (pi/3)) +

sin((2*pi)*(2.1*t/SIZE) + (pi/5)));

}

index = 0;

}

work push 1 {

push(data[index]);

index = (index + 1)%SIZE;

}

}

/** Simple sink that prints out the data that it receives. **/

float->void filter DataSink {

work pop 1 {

println(pop());

}

}

/** Simple data selector filter (for filtering out multiplexed output for debugging) **/

float->float filter DataSelector {

work pop 2 push 1 {

//push(pop());

pop();

push(pop());

}

}

Figure A-15: Source code for the Oversample benchmark.

110

void->void pipeline OneBitDToA {

// the source of data

add DataSource();

add OverSampler();

add NoiseShaper();

add LowPassFilter(1,pi/100,256);

add DataSink();

}

/**

* This is a 16x oversampler -- eg it upsamples

* its input by a factor of 16. The 16 factor is

* achieved in four steps. In each step we upsample

* and then low pass filter with cutoff of pi/2.

**/

float->float pipeline OverSampler {

for (int i=0; i<4; i++) {

add Expander(2);

add LowPassFilter(2,pi/2,64);

}

}

/**

* This is a first order noise shaper. It is

* built with a feedback loop. See Oppenheim,

* Shafer and Buck, 2nd ed.

* page 211 for a more detailed explaination.

**/

float->float feedbackloop NoiseShaper {

join roundrobin(1,1);

body pipeline {

add AdderFilter();

add QuantizerAndError();

}

loop Delay();

split roundrobin(1,1);

enqueue 0;

}

/**

* Simple data source that outputs a combination of

* three sine waves with a period of 100 samples.

**/

void->float filter DataSource {

int SIZE = 100;

float[SIZE] data;

int index;

init {

// initialize the data array.

for (int i=0; i<SIZE; i++) {

float t = i;

data[i] = (sin((2*pi)*(t/SIZE)) +

sin((2*pi)*(1.7*t/SIZE) + (pi/3)) +

sin((2*pi)*(2.1*t/SIZE) + (pi/5)));

}

index = 0;

}

work push 1 {

push(data[index]);

index = (index + 1)%SIZE;

}

}

float->void filter DataSink {

work pop 1 {

println(pop());

}

}

float->float filter DataSelector {

work pop 2 push 1 {

//push(pop());

pop();

push(pop());

}

}

/**

* Quantizer filter that converts the input into

* either 1 or -1 as a first output and then

* outputs the error value (input-output) as second

* output.

**/

float->float filter QuantizerAndError {

work pop 1 push 2 {

float inputValue = pop();

float outputValue;

// calculate[5~ output based on sign of input

if (inputValue < 0) {

outputValue = -1;

} else {

outputValue = 1;

}

// now calculate the error value

float errorValue = (outputValue-inputValue);

// and push both of the values

push(outputValue);

push(errorValue);

}

}

/** Simple adder (add two sequential

values on tape). **/

float->float filter AdderFilter {

work pop 2 push 1 {

push (pop() + pop());

}

}

/** Unit delay -- delays values by one. **/

float->float filter Delay {

float state;

init {state = 0;}

work pop 1 push 1 {

push(state);

state = pop();

}

}

Figure A-16: Source code for the DToA benchmark.

111

112

Appendix B

Benchmark Stream Graphs

This section contains the stream graphs of the benchmark programs used to measure

the performance of our optimizations. Stream graphs are figures automatically gen-

erated by the StreamIt compiler which show the interconnections among the filters

in a StreamIt program. We include the following for each benchmark:

1. The program as originally written (Original).

2. The program after automatic optimizations (After optimizations).

3. The program annotated to show linear filters (Linear filters). Linear filters are
denoted by blue and linear structures are denoted by pink.

4. The program annotated to show the optimization regions determined by the
automatic selection algorithm (Optimization regions marked). Nodes that are
the same color are collapsed together before the appropriate optimization is
performed.

113

FIR RateConvert

FIRProgram_0

FloatSource_1

push=1

pop=0

peek=0

LowPassFilter_2

push=1

pop=1

peek=256

FloatPrinter_3

push=0

pop=1

peek=1

Original.

FIRProgram_Hier_8

FloatSource_1

push=1

pop=0

peek=0

TwoStageFreqLowPassFilter_11

push=769

pop=769

peek=769

initPush=514

initPop=769

initPeek=769

FloatPrinter_3

push=0

pop=1

peek=1

After
optimizations.

SamplingRateConverter_0

SampledSource_2

push=1

pop=0

peek=0

Expander_3

push=2

pop=1

peek=1

LowPassFilter_4

push=1

pop=1

peek=300

Compressor_5

push=1

pop=3

peek=3

FloatPrinter_6

push=0

pop=1

peek=1

Original.

SamplingRateConverter_Hier_28

SampledSource_2

push=1

pop=0

peek=0

TwoStageFreqSamplingRateConverter_child1_32

push=1744

pop=872

peek=872

initPush=1440

initPop=872

initPeek=872

__Decimator_33

push=2

pop=6

peek=6

FloatPrinter_6

push=0

pop=1

peek=1

After
optimizations.

FIRProgram

FloatSource

LowPassFilter

FloatPrinter

Linear filters.

FIRProgram_0

FloatSource_1

partition=0

LowPassFilter_2

partition=1

FloatPrinter_3

partition=2

Optimization
regions
marked.

SamplingRateConverter

SampledSource

Expander

LowPassFilter

Compressor

FloatPrinter

Linear filters.

SamplingRateConverter_0

SampledSource_2

partition=0

Expander_3

partition=1

LowPassFilter_4

partition=1

Compressor_5

partition=1

FloatPrinter_6

partition=2

Optimization
regions
marked.

Figure B-1: FIR and RateConvert stream graphs.

114

TargetDetect

TargetDetect_0

TargetDetectSplitJoin_6

Pipeline_1 Pipeline_2 Pipeline_3 Pipeline_4

TargetSource_5

push=1

pop=0

peek=0

DUPLICATE(1,1,1,1)

MatchedFilterOne_7

push=1

pop=1

peek=300

MatchedFilterTwo_9

push=1

pop=1

peek=300

MatchedFilterThree_11

push=1

pop=1

peek=300

MatchedFilterFour_13

push=1

pop=1

peek=300

WEIGHTED_ROUND_ROBIN(1,1,1,1)

FloatPrinter_15

push=0

pop=1

peek=1

ThresholdDetector_8

push=1

pop=1

peek=1

ThresholdDetector_10

push=1

pop=1

peek=1

ThresholdDetector_12

push=1

pop=1

peek=1

ThresholdDetector_14

push=1

pop=1

peek=1

Original.

TargetDetect_Hier_108

TargetDetectSplitJoin_1_19

TargetSource_5

push=1

pop=0

peek=0

TwoStageFreqTargetDetectSplitJoin_0_111

push=6996

pop=1749

peek=1749

initPush=5800

initPop=1749

initPeek=1749

WEIGHTED_ROUND_ROBIN(1,1,1,1)

ThresholdDetector_8

push=1

pop=1

peek=1

ThresholdDetector_10

push=1

pop=1

peek=1

ThresholdDetector_12

push=1

pop=1

peek=1

ThresholdDetector_14

push=1

pop=1

peek=1

WEIGHTED_ROUND_ROBIN(1,1,1,1)

FloatPrinter_15

push=0

pop=1

peek=1

After optimizations.

TargetDetect

TargetDetectSplitJoin

Pipeline Pipeline Pipeline Pipeline

TargetSource

DUPLICATE(1,1,1,1)

MatchedFilterOne MatchedFilterTwo MatchedFilterThree MatchedFilterFour

WEIGHTED_ROUND_ROBIN(1,1,1,1)

FloatPrinter

ThresholdDetector ThresholdDetector ThresholdDetector ThresholdDetector

Linear filters.

TargetDetect_0

TargetDetectSplitJoin_0_18

TargetDetectSplitJoin_1_19

TargetSource_5

partition=0

DUPLICATE(1,1,1,1)

partition=null

MatchedFilterOne_7

partition=1

MatchedFilterTwo_9

partition=1

MatchedFilterThree_11

partition=1

MatchedFilterFour_13

partition=1

WEIGHTED_ROUND_ROBIN(1,1,1,1)

partition=null

WEIGHTED_ROUND_ROBIN(1,1,1,1)

partition=null

ThresholdDetector_8

partition=2

ThresholdDetector_10

partition=3

ThresholdDetector_12

partition=4

ThresholdDetector_14

partition=5

WEIGHTED_ROUND_ROBIN(1,1,1,1)

partition=null

FloatPrinter_15

partition=6

Optimization regions marked.

Figure B-2: TargetDetect stream graphs.

115

FMRadio

LinkedFMTest_13

EqualizerSplitJoin_2

EqualizerInnerPipeline_4 EqualizerInnerPipeline_5 EqualizerInnerPipeline_6 EqualizerInnerPipeline_7 EqualizerInnerPipeline_8 EqualizerInnerPipeline_9 EqualizerInnerPipeline_10 EqualizerInnerPipeline_11 EqualizerInnerPipeline_12

FloatOneSource_14

push=1

pop=0

peek=0

LowPassFilter_15

push=1

pop=5

peek=64

FMDemodulator_16

push=1

pop=1

peek=2

DUPLICATE(1,1,1,1,1,1,1,1,1,1,1)

LowPassFilter_17

push=1

pop=1

peek=64

LowPassFilter_18

push=1

pop=1

peek=64

LowPassFilter_20

push=1

pop=1

peek=64

LowPassFilter_22

push=1

pop=1

peek=64

LowPassFilter_24

push=1

pop=1

peek=64

LowPassFilter_26

push=1

pop=1

peek=64

LowPassFilter_28

push=1

pop=1

peek=64

LowPassFilter_30

push=1

pop=1

peek=64

LowPassFilter_32

push=1

pop=1

peek=64

LowPassFilter_34

push=1

pop=1

peek=64

LowPassFilter_36

push=1

pop=1

peek=64

WEIGHTED_ROUND_ROBIN(1,2,2,2,2,2,2,2,2,2,1)

FloatDiff_37

push=1

pop=2

peek=2

FloatDup_19

push=2

pop=1

peek=1

FloatDup_21

push=2

pop=1

peek=1

FloatDup_23

push=2

pop=1

peek=1

FloatDup_25

push=2

pop=1

peek=1

FloatDup_27

push=2

pop=1

peek=1

FloatDup_29

push=2

pop=1

peek=1

FloatDup_31

push=2

pop=1

peek=1

FloatDup_33

push=2

pop=1

peek=1

FloatDup_35

push=2

pop=1

peek=1

FloatNAdder_38

push=1

pop=10

peek=10

FloatPrinter_39

push=0

pop=1

peek=1

Original.

LinkedFMTest_Hier_457

FloatOneSource_14

push=1

pop=0

peek=0

LowPassFilter_15

push=1

pop=5

peek=64

FMDemodulator_16

push=1

pop=1

peek=2

TwoStageFreqLinkedFMTest_child1_child0_46

push=193

pop=193

peek=193

initPush=130

initPop=193

initPeek=193

FloatPrinter_39

push=0

pop=1

peek=1

After optimizations.

LinkedFMTest

EqualizerSplitJoin

EqualizerInnerPipelineEqualizerInnerPipelineEqualizerInnerPipelineEqualizerInnerPipelineEqualizerInnerPipelineEqualizerInnerPipelineEqualizerInnerPipelineEqualizerInnerPipelineEqualizerInnerPipeline

FloatOneSource

LowPassFilter

FMDemodulator

DUPLICATE(1,1,1,1,1,1,1,1,1,1,1)

LowPassFilter

LowPassFilter LowPassFilter LowPassFilter LowPassFilter LowPassFilter LowPassFilter LowPassFilter LowPassFilter LowPassFilter

LowPassFilter

WEIGHTED_ROUND_ROBIN(1,2,2,2,2,2,2,2,2,2,1)

FloatDiff

FloatDup FloatDup FloatDup FloatDup FloatDup FloatDup FloatDup FloatDup FloatDup

FloatNAdder

FloatPrinter

Linear filters.

LinkedFMTest_13

EqualizerSplitJoin_0_44

EqualizerSplitJoin_1_45

FloatOneSource_14

partition=0

LowPassFilter_15

partition=1

FMDemodulator_16

partition=2

DUPLICATE(1,1,1,1,1,1,1,1,1,1,1)

partition=null

LowPassFilter_17

partition=3

LowPassFilter_18

partition=3

LowPassFilter_20

partition=3

LowPassFilter_22

partition=3

LowPassFilter_24

partition=3

LowPassFilter_26

partition=3

LowPassFilter_28

partition=3

LowPassFilter_30

partition=3

LowPassFilter_32

partition=3

LowPassFilter_34

partition=3

LowPassFilter_36

partition=3

WEIGHTED_ROUND_ROBIN(1,1,1,1,1,1,1,1,1,1,1)

partition=null

WEIGHTED_ROUND_ROBIN(1,1,1,1,1,1,1,1,1,1,1)

partition=null

Identity_42

partition=3

FloatDup_19

partition=3

FloatDup_21

partition=3

FloatDup_23

partition=3

FloatDup_25

partition=3

FloatDup_27

partition=3

FloatDup_29

partition=3

FloatDup_31

partition=3

FloatDup_33

partition=3

FloatDup_35

partition=3

Identity_43

partition=3

WEIGHTED_ROUND_ROBIN(1,2,2,2,2,2,2,2,2,2,1)

partition=null

FloatDiff_37

partition=3

FloatNAdder_38

partition=3

FloatPrinter_39

partition=4

Optimization regions marked.

Figure B-3: FMRadio stream graphs.
116

Radar

� � � � � � � � � � � � � 	 �
 � � � �
 � � � � � � � �

SplitJoin_17

Pipeline_0 Pipeline_1 Pipeline_2 Pipeline_3 Pipeline_4 Pipeline_5 Pipeline_6 Pipeline_7 Pipeline_8 Pipeline_9 Pipeline_10 Pipeline_11

SplitJoin_78

Pipeline_12 Pipeline_13 Pipeline_14 Pipeline_15

NULL_SJ(0,0,0,0,0,0,0,0,0,0,0,0)

InputGenerate_18

push=2

pop=0

peek=0

InputGenerate_23

push=2

pop=0

peek=0

InputGenerate_28

push=2

pop=0

peek=0

InputGenerate_33

push=2

pop=0

peek=0

InputGenerate_38

push=2

pop=0

peek=0

InputGenerate_43

push=2

pop=0

peek=0

InputGenerate_48

push=2

pop=0

peek=0

InputGenerate_53

push=2

pop=0

peek=0

InputGenerate_58

push=2

pop=0

peek=0

InputGenerate_63

push=2

pop=0

peek=0

InputGenerate_68

push=2

pop=0

peek=0

InputGenerate_73

push=2

pop=0

peek=0

WEIGHTED_ROUND_ROBIN(2,2,2,2,2,2,2,2,2,2,2,2)

DUPLICATE(1,1,1,1)

Decimator_19

push=2

pop=2

peek=2

CoarseBeamFirFilter_20

push=128

pop=128

peek=128

Decimator_21

push=2

pop=4

peek=4

CoarseBeamFirFilter_22

push=64

pop=64

peek=64

Decimator_24

push=2

pop=2

peek=2

CoarseBeamFirFilter_25

push=128

pop=128

peek=128

Decimator_26

push=2

pop=4

peek=4

CoarseBeamFirFilter_27

push=64

pop=64

peek=64

Decimator_29

push=2

pop=2

peek=2

CoarseBeamFirFilter_30

push=128

pop=128

peek=128

Decimator_31

push=2

pop=4

peek=4

CoarseBeamFirFilter_32

push=64

pop=64

peek=64

Decimator_34

push=2

pop=2

peek=2

CoarseBeamFirFilter_35

push=128

pop=128

peek=128

Decimator_36

push=2

pop=4

peek=4

CoarseBeamFirFilter_37

push=64

pop=64

peek=64

Decimator_39

push=2

pop=2

peek=2

CoarseBeamFirFilter_40

push=128

pop=128

peek=128

Decimator_41

push=2

pop=4

peek=4

CoarseBeamFirFilter_42

push=64

pop=64

peek=64

Decimator_44

push=2

pop=2

peek=2

CoarseBeamFirFilter_45

push=128

pop=128

peek=128

Decimator_46

push=2

pop=4

peek=4

CoarseBeamFirFilter_47

push=64

pop=64

peek=64

Decimator_49

push=2

pop=2

peek=2

CoarseBeamFirFilter_50

push=128

pop=128

peek=128

Decimator_51

push=2

pop=4

peek=4

CoarseBeamFirFilter_52

push=64

pop=64

peek=64

Decimator_54

push=2

pop=2

peek=2

CoarseBeamFirFilter_55

push=128

pop=128

peek=128

Decimator_56

push=2

pop=4

peek=4

CoarseBeamFirFilter_57

push=64

pop=64

peek=64

Decimator_59

push=2

pop=2

peek=2

CoarseBeamFirFilter_60

push=128

pop=128

peek=128

Decimator_61

push=2

pop=4

peek=4

CoarseBeamFirFilter_62

push=64

pop=64

peek=64

Decimator_64

push=2

pop=2

peek=2

CoarseBeamFirFilter_65

push=128

pop=128

peek=128

Decimator_66

push=2

pop=4

peek=4

CoarseBeamFirFilter_67

push=64

pop=64

peek=64

Decimator_69

push=2

pop=2

peek=2

CoarseBeamFirFilter_70

push=128

pop=128

peek=128

Decimator_71

push=2

pop=4

peek=4

CoarseBeamFirFilter_72

push=64

pop=64

peek=64

Decimator_74

push=2

pop=2

peek=2

CoarseBeamFirFilter_75

push=128

pop=128

peek=128

Decimator_76

push=2

pop=4

peek=4

CoarseBeamFirFilter_77

push=64

pop=64

peek=64

Beamform_79

push=2

pop=24

peek=24

Beamform_83

push=2

pop=24

peek=24

Beamform_87

push=2

pop=24

peek=24

Beamform_91

push=2

pop=24

peek=24

WEIGHTED_ROUND_ROBIN(1,1,1,1)

FloatPrinter_95

push=0

pop=1

peek=1

CoarseBeamFirFilter_80

push=64

pop=64

peek=64

Magnitude_81

push=1

pop=2

peek=2

Detector_82

push=1

pop=1

peek=1

CoarseBeamFirFilter_84

push=64

pop=64

peek=64

Magnitude_85

push=1

pop=2

peek=2

Detector_86

push=1

pop=1

peek=1

CoarseBeamFirFilter_88

push=64

pop=64

peek=64

Magnitude_89

push=1

pop=2

peek=2

Detector_90

push=1

pop=1

peek=1

CoarseBeamFirFilter_92

push=64

pop=64

peek=64

Magnitude_93

push=1

pop=2

peek=2

Detector_94

push=1

pop=1

peek=1

Original.

CoarseSerializedBeamFormer_Hier_259

SplitJoin_0_SplitJoin_1_SplitJoin_2_SplitJoin_3_SplitJoin_4_291

InputGenerate_LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_292 InputGenerate_LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_293 InputGenerate_LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_294 InputGenerate_LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_295 InputGenerate_LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_296 InputGenerate_LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_297 InputGenerate_LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_298 InputGenerate_LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_299 InputGenerate_LinearDecimator_CoarseBeamFirFilter_Decimat � � � � � � � � � � � � � � � � � ilter_300 InputGenerate_LinearDecimator_CoarseBeamFirFilter_Decimat � � � � � � � � � � � � � � � � � ilter_301 InputGenerate_LinearDecimator_CoarseBeamFirFilter_Decimat � � � � � � � � � � � � � � � � � ilter_302 InputGenerate_LinearDecimator_CoarseBeamFirFilter_Decimat � � � � � � � � � � � � � � � � � ilter_303

SplitJoin_1_SplitJoin_2_SplitJoin_3_304

CoarseBeamFirFilter_Magnitude_Detector_305CoarseBeamFirFilter_Magnitude_Detector_306CoarseBeamFirFilter_Magnitude_Detector_307CoarseBeamFirFilter_Magnitude_Detector_308

WEIGHTED_ROUND_ROBIN(0,0,0,0,0,0,0,0,0,0,0,0)

InputGenerate_18

push=2

pop=0

peek=0

InputGenerate_23

push=2

pop=0

peek=0

InputGenerate_28

push=2

pop=0

peek=0

InputGenerate_33

push=2

pop=0

peek=0

InputGenerate_38

push=2

pop=0

peek=0

InputGenerate_43

push=2

pop=0

peek=0

InputGenerate_48

push=2

pop=0

peek=0

InputGenerate_53

push=2

pop=0

peek=0

InputGenerate_58

push=2

pop=0

peek=0

InputGenerate_63

push=2

pop=0

peek=0

InputGenerate_68

push=2

pop=0

peek=0

InputGenerate_73

push=2

pop=0

peek=0

WEIGHTED_ROUND_ROBIN(2,2,2,2,2,2,2,2,2,2,2,2)

LinearSplitJoin_0_288

push=256

pop=768

peek=768

LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_264

push=64

pop=128

peek=128

LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_266

push=64

pop=128

peek=128

LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_268

push=64

pop=128

peek=128

LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_270

push=64

pop=128

peek=128

LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_272

push=64

pop=128

peek=128

LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_274

push=64

pop=128

peek=128

LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_276

push=64

pop=128

peek=128

LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_278

push=64

pop=128

peek=128

LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_280

push=64

pop=128

peek=128

LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_282

push=64

pop=128

peek=128

LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_284

push=64

pop=128

peek=128

LinearDecimator_CoarseBeamFirFilter_Decimator_CoarseBeamFirFilter_286

push=64

pop=128

peek=128

WEIGHTED_ROUND_ROBIN(64,64,64,64)

CoarseBeamFirFilter_80

push=64

pop=64

peek=64

CoarseBeamFirFilter_84

push=64

pop=64

peek=64

CoarseBeamFirFilter_88

push=64

pop=64

peek=64

CoarseBeamFirFilter_92

push=64

pop=64

peek=64

WEIGHTED_ROUND_ROBIN(1,1,1,1)

FloatPrinter_95

push=0

pop=1

peek=1

Magnitude_81

push=1

pop=2

peek=2

Detector_82

push=1

pop=1

peek=1

Magnitude_85

push=1

pop=2

peek=2

Detector_86

push=1

pop=1

peek=1

Magnitude_89

push=1

pop=2

peek=2

Detector_90

push=1

pop=1

peek=1

Magnitude_93

push=1

pop=2

peek=2

Detector_94

push=1

pop=1

peek=1

After optimizations.

CoarseSerializedBeamFormer

SplitJoin

Pipeline Pipeline Pipeline Pipeline Pipeline Pipeline Pipeline Pipeline Pipeline Pipeline Pipeline Pipeline

SplitJoin

Pipeline Pipeline Pipeline Pipeline

NULL_SJ(0,0,0,0,0,0,0,0,0,0,0,0)

InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate

WEIGHTED_ROUND_ROBIN(2,2,2,2,2,2,2,2,2,2,2,2)

DUPLICATE(1,1,1,1)

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Decimator

CoarseBeamFirFilter

Beamform Beamform Beamform Beamform

WEIGHTED_ROUND_ROBIN(1,1,1,1)

FloatPrinter

CoarseBeamFirFilter

Magnitude

Detector

CoarseBeamFirFilter

Magnitude

Detector

CoarseBeamFirFilter

Magnitude

Detector

CoarseBeamFirFilter

Magnitude

Detector

Linear filters.

Figure B-4: Radar stream graphs (part one).

117

Radar

CoarseSerializedBeamFormer_16

SplitJoin_0_100

SplitJoin_1_101

SplitJoin_2_102

SplitJoin_3_103

SplitJoin_4_104

SplitJoin_0_105

SplitJoin_1_106

SplitJoin_2_107

SplitJoin_3_108

WEIGHTED_ROUND_ROBIN(0,0,0,0,0,0,0,0,0,0,0,0)

partition=null

InputGenerate_18

partition=0

InputGenerate_23

partition=1

InputGenerate_28

partition=2

InputGenerate_33

partition=3

InputGenerate_38

partition=4

InputGenerate_43

partition=5

InputGenerate_48

partition=6

InputGenerate_53

partition=7

InputGenerate_58

partition=8

InputGenerate_63

partition=9

InputGenerate_68

partition=10

InputGenerate_73

partition=11

WEIGHTED_ROUND_ROBIN(128,128,128,128,128,128,128,128,128,128,128,128)

partition=null

WEIGHTED_ROUND_ROBIN(128,128,128,128,128,128,128,128,128,128,128,128)

partition=null

Decimator_19

partition=12

Decimator_24

partition=13

Decimator_29

partition=14

Decimator_34

partition=15

Decimator_39

partition=16

Decimator_44

partition=17

Decimator_49

partition=18

Decimator_54

partition=19

Decimator_59

partition=20

Decimator_64

partition=21

Decimator_69

partition=22

Decimator_74

partition=23

WEIGHTED_ROUND_ROBIN(128,128,128,128,128,128,128,128,128,128,128,128)

partition=null

WEIGHTED_ROUND_ROBIN(128,128,128,128,128,128,128,128,128,128,128,128)

partition=null

CoarseBeamFirFilter_20

partition=12

CoarseBeamFirFilter_25

partition=13

CoarseBeamFirFilter_30

partition=14

CoarseBeamFirFilter_35

partition=15

CoarseBeamFirFilter_40

partition=16

CoarseBeamFirFilter_45

partition=17

CoarseBeamFirFilter_50

partition=18

CoarseBeamFirFilter_55

partition=19

CoarseBeamFirFilter_60

partition=20

CoarseBeamFirFilter_65

partition=21

CoarseBeamFirFilter_70

partition=22

CoarseBeamFirFilter_75

partition=23

WEIGHTED_ROUND_ROBIN(128,128,128,128,128,128,128,128,128,128,128,128)

partition=null

WEIGHTED_ROUND_ROBIN(128,128,128,128,128,128,128,128,128,128,128,128)

partition=null

Decimator_21

partition=12

Decimator_26

partition=13

Decimator_31

partition=14

Decimator_36

partition=15

Decimator_41

partition=16

Decimator_46

partition=17

Decimator_51

partition=18

Decimator_56

partition=19

Decimator_61

partition=20

Decimator_66

partition=21

Decimator_71

partition=22

Decimator_76

partition=23

WEIGHTED_ROUND_ROBIN(64,64,64,64,64,64,64,64,64,64,64,64)

partition=null

WEIGHTED_ROUND_ROBIN(64,64,64,64,64,64,64,64,64,64,64,64)

partition=null

CoarseBeamFirFilter_22

partition=12

CoarseBeamFirFilter_27

partition=13

CoarseBeamFirFilter_32

partition=14

CoarseBeamFirFilter_37

partition=15

CoarseBeamFirFilter_42

partition=16

CoarseBeamFirFilter_47

partition=17

CoarseBeamFirFilter_52

partition=18

CoarseBeamFirFilter_57

partition=19

CoarseBeamFirFilter_62

partition=20

CoarseBeamFirFilter_67

partition=21

CoarseBeamFirFilter_72

partition=22

CoarseBeamFirFilter_77

partition=23

WEIGHTED_ROUND_ROBIN(2,2,2,2,2,2,2,2,2,2,2,2)

partition=null

DUPLICATE(1,1,1,1)

partition=null

Beamform_79

partition=24

Beamform_83

partition=24

Beamform_87

partition=24

Beamform_91

partition=24

WEIGHTED_ROUND_ROBIN(64,64,64,64)

partition=null

WEIGHTED_ROUND_ROBIN(64,64,64,64)

partition=null

CoarseBeamFirFilter_80

partition=25

CoarseBeamFirFilter_84

partition=26

CoarseBeamFirFilter_88

partition=27

CoarseBeamFirFilter_92

partition=28

WEIGHTED_ROUND_ROBIN(64,64,64,64)

partition=null

WEIGHTED_ROUND_ROBIN(64,64,64,64)

partition=null

Magnitude_81

partition=29

Magnitude_85

partition=30

Magnitude_89

partition=31

Magnitude_93

partition=32

WEIGHTED_ROUND_ROBIN(32,32,32,32)

partition=null

WEIGHTED_ROUND_ROBIN(32,32,32,32)

partition=null

Detector_82

partition=33

Detector_86

partition=34

Detector_90

partition=35

Detector_94

partition=36

WEIGHTED_ROUND_ROBIN(1,1,1,1)

partition=null

FloatPrinter_95

partition=37

Optimization regions marked.

Figure B-5: Radar stream graphs (part two).

118

FilterBank
FilterBank_0

FilterBankSplitJoin_2

ProcessingPipeline_3

SplitJoin_8

ProcessingPipeline_9

SplitJoin_14

ProcessingPipeline_15

SplitJoin_20

DataSource_21

push=1

pop=0

peek=0

DUPLICATE(1,1,1)

LowPassFilter_22

push=1

pop=1

peek=100

LowPassFilter_30

push=1

pop=1

peek=100

LowPassFilter_38

push=1

pop=1

peek=100

WEIGHTED_ROUND_ROBIN(1,1,1)

Adder_46

push=1

pop=3

peek=3

HighPassFilter_23

push=1

pop=1

peek=100

Compressor_24

push=1

pop=3

peek=3

ProcessFilter_25

push=1

pop=1

peek=1

Expander_26

push=3

pop=1

peek=1

DUPLICATE(1,1)

LowPassFilter_27

push=1

pop=1

peek=100

HighPassFilter_28

push=1

pop=1

peek=100

WEIGHTED_ROUND_ROBIN(1,1)

Adder_29

push=1

pop=2

peek=2

HighPassFilter_31

push=1

pop=1

peek=100

Compressor_32

push=1

pop=3

peek=3

ProcessFilter_33

push=1

pop=1

peek=1

Expander_34

push=3

pop=1

peek=1

DUPLICATE(1,1)

LowPassFilter_35

push=1

pop=1

peek=100

HighPassFilter_36

push=1

pop=1

peek=100

WEIGHTED_ROUND_ROBIN(1,1)

Adder_37

push=1

pop=2

peek=2

HighPassFilter_39

push=1

pop=1

peek=100

Compressor_40

push=1

pop=3

peek=3

ProcessFilter_41

push=1

pop=1

peek=1

Expander_42

push=3

pop=1

peek=1

DUPLICATE(1,1)

LowPassFilter_43

push=1

pop=1

peek=100

HighPassFilter_44

push=1

pop=1

peek=100

WEIGHTED_ROUND_ROBIN(1,1)

Adder_45

push=1

pop=2

peek=2

FloatPrinter_47

push=0

pop=1

peek=1

Original.

FilterBank_Hier_387

DataSource_21

push=1

pop=0

peek=0

TwoStageFreqFilterBank_child0_391

push=5247

pop=1749

peek=1749

initPush=4350

initPop=1749

initPeek=1749

__Decimator_392

push=3

pop=9

peek=9

FloatPrinter_47

push=0

pop=1

peek=1

After
optimizations.

FilterBank

FilterBankSplitJoin

ProcessingPipeline

SplitJoin

ProcessingPipeline

SplitJoin

ProcessingPipeline

SplitJoin

DataSource

DUPLICATE(1,1,1)

LowPassFilter LowPassFilter LowPassFilter

WEIGHTED_ROUND_ROBIN(1,1,1)

Adder

HighPassFilter

Compressor

ProcessFilter

Expander

DUPLICATE(1,1)

LowPassFilter HighPassFilter

WEIGHTED_ROUND_ROBIN(1,1)

Adder

HighPassFilter

Compressor

ProcessFilter

Expander

DUPLICATE(1,1)

LowPassFilter HighPassFilter

WEIGHTED_ROUND_ROBIN(1,1)

Adder

HighPassFilter

Compressor

ProcessFilter

Expander

DUPLICATE(1,1)

LowPassFilter HighPassFilter

WEIGHTED_ROUND_ROBIN(1,1)

Adder

FloatPrinter

Linear filters.

FilterBank_0

FilterBankSplitJoin_0_56

FilterBankSplitJoin_1_57

FilterBankSplitJoin_2_58

FilterBankSplitJoin_3_59

FilterBankSplitJoin_4_60

FilterBankSplitJoin_5_61

SplitJoin_8 SplitJoin_14 SplitJoin_20

FilterBankSplitJoin_6_62

DataSource_21

partition=0

DUPLICATE(1,1,1)

partition=null

LowPassFilter_22

partition=1

LowPassFilter_30

partition=1

LowPassFilter_38

partition=1

WEIGHTED_ROUND_ROBIN(3,3,3)

partition=null

WEIGHTED_ROUND_ROBIN(3,3,3)

partition=null

HighPassFilter_23

partition=1

HighPassFilter_31

partition=1

HighPassFilter_39

partition=1

WEIGHTED_ROUND_ROBIN(3,3,3)

partition=null

WEIGHTED_ROUND_ROBIN(3,3,3)

partition=null

Compressor_24

partition=1

Compressor_32

partition=1

Compressor_40

partition=1

WEIGHTED_ROUND_ROBIN(1,1,1)

partition=null

WEIGHTED_ROUND_ROBIN(1,1,1)

partition=null

ProcessFilter_25

partition=1

ProcessFilter_33

partition=1

ProcessFilter_41

partition=1

WEIGHTED_ROUND_ROBIN(1,1,1)

partition=null

WEIGHTED_ROUND_ROBIN(1,1,1)

partition=null

Expander_26

partition=1

Expander_34

partition=1

Expander_42

partition=1

WEIGHTED_ROUND_ROBIN(3,3,3)

partition=null

WEIGHTED_ROUND_ROBIN(3,3,3)

partition=null

DUPLICATE(1,1)

partition=null

DUPLICATE(1,1)

partition=null

DUPLICATE(1,1)

partition=null

WEIGHTED_ROUND_ROBIN(6,6,6)

partition=null

WEIGHTED_ROUND_ROBIN(6,6,6)

partition=null

LowPassFilter_27

partition=1

HighPassFilter_28

partition=1

WEIGHTED_ROUND_ROBIN(1,1)

partition=null

LowPassFilter_35

partition=1

HighPassFilter_36

partition=1

WEIGHTED_ROUND_ROBIN(1,1)

partition=null

LowPassFilter_43

partition=1

HighPassFilter_44

partition=1

WEIGHTED_ROUND_ROBIN(1,1)

partition=null

Adder_29

partition=1

Adder_37

partition=1

Adder_45

partition=1

WEIGHTED_ROUND_ROBIN(1,1,1)

partition=null

Adder_46

partition=1

FloatPrinter_47

partition=2

Optimization
regions marked.

Figure B-6: FilterBank stream graphs.
119

Vocoder

ChannelVocoder_0

MainSplitjoin_1

PitchDetector_2 FilterDecimate_4 FilterDecimate_6 FilterDecimate_8 FilterDecimate_10

DataSource_12

push=1

pop=0

peek=0

LowPassFilter_13

push=1

pop=1

peek=64

DUPLICATE(1,1,1,1,1)

CenterClip_14

push=1

pop=1

peek=1

LowPassFilter_16

push=1

pop=1

peek=64

LowPassFilter_19

push=1

pop=1

peek=64

LowPassFilter_22

push=1

pop=1

peek=64

LowPassFilter_25

push=1

pop=1

peek=64

WEIGHTED_ROUND_ROBIN(1,1,1,1,1)

FloatPrinter_28

push=0

pop=1

peek=1

CorrPeak_15

push=1

pop=50

peek=100

HighPassFilter_17

push=1

pop=1

peek=64

Compressor_18

push=1

pop=50

peek=50

HighPassFilter_20

push=1

pop=1

peek=64

Compressor_21

push=1

pop=50

peek=50

HighPassFilter_23

push=1

pop=1

peek=64

Compressor_24

push=1

pop=50

peek=50

HighPassFilter_26

push=1

pop=1

peek=64

Compressor_27

push=1

pop=50

peek=50

Original.

ChannelVocoder_Hier_344

MainSplitjoin_0_MainSplitjoin_1_MainSplitjoin_2_Hier_350

CenterClip_CorrPeak_Identity_366

DataSource_12

push=1

pop=0

peek=0

TwoStageFreqLowPassFilter_365

push=193

pop=193

peek=193

initPush=130

initPop=193

initPeek=193

DUPLICATE(1,1)

CenterClip_14

push=1

pop=1

peek=1

LinearMainSplitjoin_0_MainSplitjoin_1_MainSplitjoin_2_child1_par_361

push=4

pop=50

peek=213

WEIGHTED_ROUND_ROBIN(1,4)

FloatPrinter_28

push=0

pop=1

peek=1

CorrPeak_15

push=1

pop=50

peek=100

After optimizations.

ChannelVocoder

MainSplitjoin

PitchDetector FilterDecimate FilterDecimate FilterDecimate FilterDecimate

DataSource

LowPassFilter

DUPLICATE(1,1,1,1,1)

CenterClip LowPassFilter LowPassFilter LowPassFilter LowPassFilter

WEIGHTED_ROUND_ROBIN(1,1,1,1,1)

FloatPrinter

CorrPeak HighPassFilter

Compressor

HighPassFilter

Compressor

HighPassFilter

Compressor

HighPassFilter

Compressor

Linear filters.

ChannelVocoder_0

MainSplitjoin_0_32

MainSplitjoin_1_33

MainSplitjoin_2_34

DataSource_12

partition=0

LowPassFilter_13

partition=1

DUPLICATE(1,1,1,1,1)

partition=null

CenterClip_14

partition=2

LowPassFilter_16

partition=5

LowPassFilter_19

partition=5

LowPassFilter_22

partition=5

LowPassFilter_25

partition=5

WEIGHTED_ROUND_ROBIN(50,50,50,50,50)

partition=null

WEIGHTED_ROUND_ROBIN(50,50,50,50,50)

partition=null

CorrPeak_15

partition=3

HighPassFilter_17

partition=5

HighPassFilter_20

partition=5

HighPassFilter_23

partition=5

HighPassFilter_26

partition=5

WEIGHTED_ROUND_ROBIN(1,50,50,50,50)

partition=null

WEIGHTED_ROUND_ROBIN(1,50,50,50,50)

partition=null

Identity_31

partition=4

Compressor_18

partition=5

Compressor_21

partition=5

Compressor_24

partition=5

Compressor_27

partition=5

WEIGHTED_ROUND_ROBIN(1,1,1,1,1)

partition=null

FloatPrinter_28

partition=6

Optimization regions marked.

Figure B-7: Vocoder stream graphs.

120

Oversampler

Oversampler_1

DataSource_2

push=1

pop=0

peek=0

Expander_3

push=2

pop=1

peek=1

LowPassFilter_4

push=1

pop=1

peek=64

Expander_5

push=2

pop=1

peek=1

LowPassFilter_6

push=1

pop=1

peek=64

Expander_7

push=2

pop=1

peek=1

LowPassFilter_8

push=1

pop=1

peek=64

Expander_9

push=2

pop=1

peek=1

LowPassFilter_10

push=1

pop=1

peek=64

DataSink_11

push=0

pop=1

peek=1

Original.

Oversampler_Hier_128

DataSource_2

push=1

pop=0

peek=0

TwoStageFreqOversampler_child0_13

push=3136

pop=196

peek=196

initPush=2176

initPop=196

initPeek=196

DataSink_11

push=0

pop=1

peek=1

After
optimizations.

Oversampler

DataSource

Expander

LowPassFilter

Expander

LowPassFilter

Expander

LowPassFilter

Expander

LowPassFilter

DataSink

Linear filters.

Oversampler_1

DataSource_2

partition=0

Expander_3

partition=1

LowPassFilter_4

partition=1

Expander_5

partition=1

LowPassFilter_6

partition=1

Expander_7

partition=1

LowPassFilter_8

partition=1

Expander_9

partition=1

LowPassFilter_10

partition=1

DataSink_11

partition=2

Optimization
regions
marked.

Figure B-8: Oversampler stream graphs.

121

DToA

OneBitDToA_0

NoiseShaper_11

Pipeline_12

DataSource_2

push=1

pop=0

peek=0

Expander_3

push=2

pop=1

peek=1

LowPassFilter_4

push=1

pop=1

peek=64

Expander_5

push=2

pop=1

peek=1

LowPassFilter_6

push=1

pop=1

peek=64

Expander_7

push=2

pop=1

peek=1

LowPassFilter_8

push=1

pop=1

peek=64

Expander_9

push=2

pop=1

peek=1

LowPassFilter_10

push=1

pop=1

peek=64

WEIGHTED_ROUND_ROBIN(1,1)

AdderFilter_13

push=1

pop=2

peek=2

WEIGHTED_ROUND_ROBIN(1,1)

Delay_15

push=1

pop=1

peek=1

LowPassFilter_16

push=1

pop=1

peek=256

QuantizerAndError_14

push=2

pop=1

peek=1

DataSink_17

push=0

pop=1

peek=1

Original.

OneBitDToA_Hier_195

NoiseShaper_11

Pipeline_12

DataSource_2

push=1

pop=0

peek=0

TwoStageFreqOneBitDToA_child1_child0_203

push=3136

pop=196

peek=196

initPush=2176

initPop=196

initPeek=196

WEIGHTED_ROUND_ROBIN(1,1)

AdderFilter_13

push=1

pop=2

peek=2

WEIGHTED_ROUND_ROBIN(1,1)

Delay_15

push=1

pop=1

peek=1

TwoStageFreqLowPassFilter_204

push=769

pop=769

peek=769

initPush=514

initPop=769

initPeek=769

QuantizerAndError_14

push=2

pop=1

peek=1

DataSink_17

push=0

pop=1

peek=1

After optimizations.

OneBitDToA

NoiseShaper

Pipeline

DataSource

Expander

LowPassFilter

Expander

LowPassFilter

Expander

LowPassFilter

Expander

LowPassFilter

WEIGHTED_ROUND_ROBIN(1,1)

AdderFilter

WEIGHTED_ROUND_ROBIN(1,1)

Delay LowPassFilter

QuantizerAndError

DataSink

Linear filters.

OneBitDToA_0

NoiseShaper_11

Pipeline_12

DataSource_2

partition=0

Expander_3

partition=1

LowPassFilter_4

partition=1

Expander_5

partition=1

LowPassFilter_6

partition=1

Expander_7

partition=1

LowPassFilter_8

partition=1

Expander_9

partition=1

LowPassFilter_10

partition=1

WEIGHTED_ROUND_ROBIN(1,1)

partition=null

AdderFilter_13

partition=2

WEIGHTED_ROUND_ROBIN(1,1)

partition=null

Delay_15

partition=4

LowPassFilter_16

partition=5

QuantizerAndError_14

partition=3

DataSink_17

partition=6

Optimization regions
marked.

Figure B-9: DToA stream graphs.
122

Bibliography

[1] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A trans-

parent dynamic optimization system. In Proceedings of the ACM SIGPLAN

1999 Conference on Programming Language Design and Implementation (PLDI),

1999.

[2] Gerard Berry and Georges Gonthier. The Esterel Synchronous Programming

Language: Design, Semantics, Implementation. Science of Computer Program-

ming, 19(2), 1992.

[3] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among

variables of a program. In Conference Record of the Fifth Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1978.

[4] Michele Mae Covell. An Algorithm Design Environment for Signal Processing.

PhD thesis, Massachusetts Institute of Technology, Research Laboratory for Elec-

tronics, 1989.

[5] S. Egner, J. Johnson, D. Padua, M. Püschel, and J. Xiong. Automatic derivation

and implementation of signal processing algorithms. SIGSAM Bulletin, 35(2):1–

19, 2001.

[6] M. Frigo. A Fast Fourier Transform Compiler. In Proceedings of the ACM SIG-

PLAN 1999 Conference on Programming Language Design and Implementation

(PLDI), 1999.

[7] M. Frigo and S. Johnson. Homepage of FFTW. http://www.fftw.org.

123

[8] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architec-

ture for the FFT. In Proceedings of the 1998 IEEE International Conference of

Acoustics Speech and Signal Processing, volume 3, pages 1381–1384. IEEE, 1998.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Longman

Publishing Co., Inc., 1995.

[10] Wanda Gass. Digital signal processors: Past, present, and future. Massachusetts

Institute of Technology, RLE VLSI Seminar Series, November 5 2002.

[11] J. Gaudiot, W. Bohm, T. DeBoni, J. Feo, and P. Mille. The sisal model of

functional programming and its implementation. In Proceedings of the 2nd Aizu

International Symposium on Parallel Algorithms/Architecture Synthesis, 1997.

[12] Thierry Gautier, Paul Le Guernic, and Loic Besnard. Signal: A declarative

language for synchronous programming of real-time systems. Springer Verlag

Lecture Notes in Computer Science, 274, 1987.

[13] Vincent Gay-Para, Thomas Graf, Andre-Guillaume Lemonnier, and Erhard

Wais. Kopi Reference manual. http://www.dms.at/kopi/docs/kopi.html, 2001.

[14] Michael Gordon. A stream-aware compiler for communication-exposed architec-

tures. Master’s thesis, Massachusetts Institute of Technology, Laboratory for

Computer Science, August 2002.

[15] Michael Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,

Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze,

and Saman Amarasinghe. A Stream Compiler for Communication-Exposed Ar-

chitectures. In ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, 2002.

[16] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow

programming language LUSTRE. Proceedings of the IEEE, 79(9), 1991.

124

[17] Inmos Corporation. Occam 2 Reference Manual. Prentice Hall, 1988.

[18] Jeremy Johnson, Robert W. Johnson, David A. Padua, and Jianxin Xiong. SPI-

RAL Home Page. http://www.ece.cmu.edu/ spiral/.

[19] Jeremy Johnson, Robert W. Johnson, David A. Padua, and Jianxin Xiong.

Searching for the best FFT formulas with the SPL compiler. Springer Verlag

Lecture Notes in Computer Science, 2017, 2001.

[20] Michael A. Karczmarek. Constrained and phased scheduling of synchronous data

flow graphs for the streamit language. Master’s thesis, Massachusetts Institute

of Technology, Laboratory for Computer Science, October 2002.

[21] Michael Karr. Affine relationships among variables of a program. Acta Infor-

matica, pages 133–155, 1976.

[22] Andrew A. Lamb, William Thies, and Saman Amarasinghe. Linear analysis

and optimization of stream programs. In Proceedings of the ACM SIGPLAN

2003 Conference on Programming Language Design and Implementation (PLDI),

2003.

[23] J. Lebak. Polymorphous Computing Architecture (PCA) Example Applications

and Description. External Report, Lincoln Laboratory, Massachusetts Institute

of Technology, 2001.

[24] M.B. Taylor et. al . The raw microprocessor: a computational fabric for software

circuits and general-purpose programs. IEEE Micro, 22(2):25–35, March/April

2002.

[25] A. V. Oppenheim and A. S. Willsky with S. H. Nawab. Signals and Systems.

Prentice-Hall, second edition, 1997.

[26] Alan V. Oppenheim and S. Hamid Nawab, editors. Symbolic and Knowledge-

Based Signal Processing. Prentice Hall, 1992.

125

[27] Alan V. Oppenheim, Ronald W. Shafer, and John R. Buck. Discrete-Time Signal

Processing. Prentice Hall, second edition, 1999.

[28] Scott Rixner, William J. Dally, Ujval J. Kapani, Brucek Khailany, Abelardo

Lopez-Lagunas, Peter R. Mattson, and John D. Owens. A Bandwidth-Efficient

Architecture for Media Processing. In International Symposium on High Perfor-

mance Computer Architecture, Dallas, TX, November 1998.

[29] Steven Ryan. Linear data flow analysis. ACM SIGPLAN Notices, 27(4):59–67,

1992.

[30] Granville Sewell. Computational Methods of Linear Algebra. Ellis Horwood,

Chichester, England, 1990.

[31] Robert Stephens. A Survey of Stream Processing. Acta Informatica, 34(7), 1997.

[32] Texas Instruments. TMS320C54x DSP Reference Set, volume 2: Mnemonic

Instruction Set. 2001.

[33] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A Lan-

guage for Streaming Applications. In Proceedings of the International Conference

on Compiler Construction (CC), 2002.

[34] William Thies, Jasper Lin, and Saman Amarasinghe. Partitioning a structured

stream graph using dynamic programming. Work in progress, April 2003.

[35] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Wal-

ter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua,

Jonathan Babb, Saman Amarasinghe, and Anant Agarwal. Baring it all to soft-

ware: Raw machines. Computer, 30(9):86–93, 1997.

[36] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical

optimizations of software and the ATLAS project. Parallel Computing, 27(1–

2):3–35, 2001.

126

[37] Jianxin Xiong. Automatic Optimization of DSP Algorithms. PhD thesis, Uni-

versity of Illinois at Urbana-Champaign, 2001.

[38] Jianxin Xiong, Jeremy Johnson, Robert W. Johnson, and David A. Padua. SPL:

A language and compiler for DSP algorithms. In Proceedings of the ACM SIG-

PLAN 2001 Conference on Programming Language Design and Implementation

(PLDI), 2001.

127

