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Abstract

A computer can never be too fast or too cheap. Com-
puter systems pervade nearly every aspect of science,
engineering, communications and commerce because
they perform certain tasks at rates unachievable by any
other kind of system built by humans. A computer sys-
tem’s throughput, however, is constrained by that sys-
tem’s ability to find concurrency. Given a particular
target work load the computer architect’s role is to de-
sign mechanisms to find and exploit the available con-
currency in that work load.

This thesis describes SUDS (Software Un-Do Sys-
tem), a compiler and runtime system that can auto-
matically find and exploit the available concurrency
of scalar operations in imperative programs with ar-
bitrary unstructured and unpredictable control flow.
The core compiler transformation that enables this is
scalar queue conversion. Scalar queue conversion makes
scalar renaming an explicit operation through a process
similar to closure conversion, a technique traditionally
used to compile functional languages.

The scalar queue conversion compiler transforma-
tion is speculative, in the sense that it may introduce
dynamic memory allocation operations into code that
would not otherwise dynamically allocate memory.
Thus, SUDS also includes a transactional runtime sys-
tem that periodically checkpoints machine state, exe-
cutes code speculatively, checks if the speculative exe-
cution produced results consistent with the original se-
quential program semantics, and then either commits
or rolls back the speculative execution path. In addi-
tion to safely running scalar queue converted code, the
SUDS runtime system safely permits threads to specu-
latively run in parallel and concurrently issue memory
operations, even when the compiler is unable to prove
that the reordered memory operations will always pro-
duce correct results.

Using this combination of compile time and runtime
techniques, SUDS can find concurrency in programs
where previous compiler based renaming techniques
fail because the programs contain unstructured loops,
and where Tomasulo’s algorithm fails because it se-
quentializes mispredicted branches. Indeed, we de-

scribe three application programs, with unstructured
control flow, where the prototype SUDS system, run-
ning in software on a Raw microprocessor, achieves
speedups equivalent to, or better than, an idealized,
and unrealizable, model of a hardware implementation
of Tomasulo’s algorithm.
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1 Introduction

Computer programmers work under a difficult set of
constraints. On the one hand, if the programs they
produce are to be useful, they must be correct. A pro-
gram that produces an incorrect result can be, literally,
deadly. A medical radiation therapy machine that oc-
casionally delivers the wrong dose can kill the patient
it was intended to heal [76].

On the other hand, to be useful a program must also
produce its results in a timely manner. Again, the dif-
ference can be critical. Aircraft collision avoidance sys-
tems would be useless if it took them longer to detect
an impending collision than for the collision to occur.
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Similarly, today’s vision and speech recognition sys-
tems work too slowly to be used as tools for interacting
with human beings.

After correctness, then, the computer engineer’s
main area of focus is the “speed” or “performance” of
the computer system. That this is the case, (and should
remain so), is a consequence of the fact that perfor-
mance can often be traded for other desirable kinds of
functionality. For example, in the low-power circuits
domain, improved system throughput enables reduced
power consumption through voltage scaling [23]. In
the software engineering domain, the widely used Java
programming language (first released in 1995) includes
garbage collection and runtime type checking features
that were considered too expensive when the C++ pro-
gramming language was designed (circa 1985) [112].

Unfortunately, the twin goals of correctness and
speed conflict. To make it more likely that their pro-
grams are correct, programmers tend to write their
programs to run sequentially, because sequential pro-
grams are easier to reason about and understand. On
the other hand, the rate at which a computer can ex-
ecute a program is constrained by the amount of con-
currency in the program.

One solution to this conundrum is to allow the pro-
grammer to write a sequential program in a standard
imperative programming language, and then automat-
ically convert that program into an equivalent concur-
rent program by techniques that are known to be cor-
rect. There are two relatively standard approaches for
converting sequential imperative programs into equiv-
alent concurrent programs, Tomasulo’s algorithm [117,
57, 104, 83, 105], and compiler based program re-
structuring based on a technique called scalar expan-
sion [68].

Each of these techniques presents the architect with
a set of tradeoffs. In particular, Tomasulo’s algorithm
guarantees the elimination of register storage depen-
dences, and is relatively easily extended to speculate
across predictable dependences, but does so at the cost
of partially sequentializing instruction fetch. On the
other hand, compiler based restructuring techniques
can find all of the available fetch concurrency in a
program, and have relatively recently been extended
to speculate across predictable dependences, but have
not, prior to this work, been capable of eliminating
register storage dependences across arbitrary unstruc-
tured control flow. The SUDS automatic parallelization
system eliminates the tradeoffs between Tomasulo’s algo-
rithm and compiler based program restructuring techniques.

Informally, renaming turns an imperative program
into a functional program. Functional programs have
the attribute that every variable is dynamically written
at most once. Thus functional programs have no anti-

or output- dependences. The cost of renaming is that
storage must be allocated for all the dynamically re-
named variables that are live simultaneously. The par-
ticular problem that any renaming scheme must solve,
then, is how to manage the fixed, and finite, storage
resources that are available in a real system.

Tomasulo’s algorithm deals with the register storage
allocation problem by taking advantage of its inher-
ently sequential fetch mechanism. That is, if Toma-
sulo’s algorithm runs out of register renaming re-
sources, it can simply stall instruction fetch. Because
instructions are fetched in-order, and sequentially, the
previously fetched instructions that are currently using
register renaming resources are guaranteed to make
forward progress and, eventually, free up the resources
required to restart the instruction fetch mechanism.

Traditional compiler based renaming techniques,
like scalar expansion, take a different approach, renam-
ing only those scalars that are modified in loops with
structured control flow and loop bounds that are com-
pile time constants. This enables the compiler to pre-
allocate storage for scalar renaming, but limits the ap-
plicability of this technique to structured loops that can
be analyzed at compile time.

The SUDS approach, in contrast, is to rename spec-
ulatively. The SUDS compile time scheduler uses a
compile time technique called scalar queue conversion
to explicitly rename scalar variables. Scalar queue
conversion dynamically allocates storage for renamed
scalars, and thus can rename across arbitrary control
flow (even irreducible control flow). Unlike Toma-
sulo’s algorithm, which depends on sequential fetch
to avoid overflowing the finite renaming resources,
SUDS fetches instructions from different parts of the
program simultaneously and in parallel. As a result,
scalar queue conversion’s dynamically allocated re-
naming buffers may overflow.

SUDS deals with these overflow problems using a
checkpointing and repair mechanism. SUDS periodi-
cally checkpoints machine state, and if any of the re-
naming buffer dynamic allocations should overflow,
SUDS rolls back the machine state to the most recent
checkpoint and reexecutes the offending portion of
code without renaming. In the (hopefully) common
case the renaming buffers do not overflow.

Because SUDS can fetch multiple flows of control si-
multaneously, and even when the control flow graph
is unstructured or irreducible, SUDS exploits concur-
rency that neither Tomasulo’s algorithm nor previous
compiler based renaming techniques can exploit. De-
spite the fact that SUDS implements both scalar renam-
ing and speculative checkpoint/repair in software, it
is able to achieve speedups equal to, or better than,
an idealized (unrealizable) hardware implementation
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of Tomasulo’s algorithm.
The next section explains why finding concurrency

is fundamental to computer system performance. Sec-
tion 1.2 describes the SUDS approach to finding con-
currency. Section 1.3 describes the specific technical
contributions of this work.

1.1 Technology Constraints

Why is automatic parallelization important? There are
two ways to make a computer system “faster.” The first
is to reduce the amount of time to execute each opera-
tion. This goal can only be achieved by improved cir-
cuit design and improved fabrication techniques.

The second technique is to increase the throughput
of the system. This is the domain of the computer ar-
chitect. In this section we will point out that the only
way to increase system throughput is to increase the
number of independent operations simultaneously in
flight. And we will further demonstrate that technol-
ogy constraints demand that system throughput can
only increase sublinearly in the amount of available
parallelism. Thus, architectural performance improve-
ments depend on our ability to find parallelism in real world
workloads.

One method for demonstrating this claim is to in-
voke Little’s Law [78],

X = N/R. (1)

Little’s Law says that the system throughput, (number
of operations completed per unit time), X, is equal to
the quotient of the number of independent operations
simultaneously active in the system, N, and the time
required to complete each operation, R.

Assuming that we can increase parallelism without
increasing operation latency, (i.e., R = O(1), which is
not true, as we will see subsequently), then the achiev-
able system throughput is limited to the number of
independent operations that can run simultaneously.
That is, at best, X ∝ N.

Pipelining is one popular architectural technique for
increasing system throughput. In a pipelined design
each fundamental operation is divided into multiple
stages of approximately equal latency, and latches are
placed between the stages. Assume that the time to ex-
ecute each fundamental operation is tf (i.e., the time for
just the combinational logic) and the time to latch a re-
sult is tl. Then if we divide the fundamental operation
into N pipeline stages we increase the latency of each
operation from tf to Ntl + tf. Thus by Little’s Law

Xpipeline =
N

Ntl + tf
.

We can conclude two things from this derivation.
First, as N grows, pipelining improves throughput
only to the limit of

lim
N→∞Xpipeline =

1

tl
.

That is, pipelining throughput is limited to the maxi-
mum rate at which we can cycle a latch in a particular
technology.

Second, suppose we desire to pipeline until we
achieve a desired fraction, fx, where 0 < fx < 1, of
the maximum throughput 1/tl. Then

fx

tl
=

N

Ntl + tf

and so
N =

tf

tl

fx

1− fx
.

The fraction fx/(1− fx) approximates a linear function
when fx is close to 0, but grows to infinity as fx ap-
proaches 1. Thus only a small fraction (about half) of
the maximum pipelining throughput is achievable, un-
less we can find a way to grow N, the available op-
eration parallelism, hyperbolically. Recent microproces-
sor designs have come close to the limits of the linear
regime [81, 3, 11], and thus future designs will need
to find another approach if they are to achieve greater
system throughput.

A second approach to increasing system throughput
is to increase the number of functional units. If it were
the case that we could fetch the operands for each op-
eration in constant time, then we would be able to in-
crease throughput linearly as we increased the num-
ber of independent operations available in the system.
Unfortunately, this argument depends on the assump-
tion that the functional units are executing work that is
completely independent and that they never commu-
nicate. If even a small constant fraction of the results
produced by each functional unit need to be communi-
cated to another arbitrarily chosen functional unit, then
we need to account for these communication costs in
our calculation.

Recent analysis of technology scaling trends shows
that communication costs will be the dominant concern
in computer architecture design by the year 2013 [81, 3,
11]. For example, in 35nm technology, and assuming a
clock cycle time equivalent to 8 fan-out-of-4 gate delays
it is expected that it will cost more than two hundred
cycles to propagate a signal all the way across a chip.
We can accurately model these assumptions with the
following simple abstract rules:

1. The propagation of information takes time linear
in distance traveled.
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do
s = f(i)
if s

t = g(i)
u = h(i)
*t = u

i = j(i)
v = k(i)

while v

Figure 1: An example program.

2. The universe is finite dimensional.

3. Storing information consumes area linear in the
quantity of information stored.

Thus, the area of the entire system is at least propor-
tional to N, where N is the number of simultaneously
active independent operations. An arbitrary communi-
cation operation in the system takes time proportional
to the distance traveled, which, on a two-dimensional
computer chip, will on average, be proportional to√

N.1 Plugging the result R =
√

N into Little’s Law
we are led to the conclusion that at best2

X ∝
√

N.

Thus, to improve computer system throughput by a
factor of two, one must find at least four times as much
parallelism. Put another way, parallelism is the com-
puter architect’s constrained resource, and thus im-
proving parallelism is the most critical component to
future improvements in computer system throughput.

1.2 Finding Parallelism

How, then, are we to find the parallelism required to
improve throughput in the next generation of com-
puter architectures? The execution of a program can
be viewed as a process of unfolding the dynamic de-
pendence graph of that program. The nodes of this
graph correspond to arithmetic operations that need to
be performed, while edges in the graph correspond to a
partial ordering of operations that needs to be enforced
if the program is to produce the correct results. When
viewed in this way, then the process of finding paral-
lelism becomes a process of finding operations in the
dynamic dependence graph that don’t depend on one

1Online locality management techniques, like caching, might be
able to reduce this distance somewhat, but it is an open question
whether the benefits would be substantial. Even offline techniques,
like VLSI circuit placement algorithms, typically produce results in
the range R ∝ N0.1 to R ∝ N0.3 [73, 36].

2I can find no previous publication of this argument, but the de-
signers of the Tera computer system were clearly aware of it before
1990 [5].

another. Much of the difficulty in finding parallelism in
imperative programs comes from the fact that existing
compilers and architectures build dependence graphs
that are too conservative. They insert false dependence
arcs that impede parallelism without affecting the cor-
rectness of program execution.

The SUDS automatic parallelization system relies on
three basic principles:

1. Every imperative program can be converted into a
functional program by making renaming explicit.
A functional (i.e., explicitly renamed) program has
the attribute that every variable is (dynamically) writ-
ten at most once thus functional programs have no
anti- or output- dependences.

2. The flow dependences produced by following the
single flow of control in the standard control flow
graph representation are more conservative than
necessary. Control dependence analysis produces a
more accurate, and sparser, representation of ac-
tual program structure that makes multiple flows
of control explicit.

3. Many true-dependences (in particular those
on data structures in memory) and control-
dependences can be further eliminated by
speculation.

Figure 1 shows an example of a simple loop with
non-trivial dependences. Figure 2 shows the conser-
vative dynamic dependence graph of two iterations
of the loop. The figure is annotated with the depen-
dences that limit parallelism. The variable i creates a
true-dependence, because the value written to variable
i in the first iteration is used in the second iteration.
The reads of variables s , t , u and v in the first itera-
tion create anti-dependences with the writes of the corre-
sponding variables in the second iteration. In this con-
servative representation every operation is also flow-
dependent on the branch that proceeds it. Finally, there
is a memory-dependence between the potentially conflict-
ing store operations in the two iterations. We can see
by looking at the graph that, without any further im-
provement this loop can execute at a maximum rate of
one iteration every six “cycles” (assuming that each in-
struction takes a cycle to execute).

Figure 3 shows the benefits of renaming to re-
move anti-dependences. Renaming creates a uniquely
named location in which to hold each intermediate
value produced by the program. Since each location is
written exactly once the anti- and output-dependences
are eliminated [57]. Renaming improves the through-
put of the example loop from one loop iteration every
six cycles to one loop iteration every five cycles.
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s = f(i)

branch s

i = j(i)

s = f(i)

t = g(i)u = h(i)

store *t = u

t = g(i)u = h(i)

store *t = u

v = k(i)

i = j(i)

branch v

v = k(i)

branch s

branch v

Figure 2: The conservative dynamic dependence graph generated from the code in Figure 1. Arcs represent depen-
dences between instructions that must be honored for correct execution. Dotted arcs represent anti-dependences
that can be removed through dynamic renaming. Dashed arcs represent flow dependences that can be removed
through accurate control dependence analysis. The height of this conservative dynamic dependence graph is 12
nodes, because there is a path through the graph of length 12. The throughput of this program would be one
iteration every six cycles.

s7 = f(i6)

branch s7

t7 = g(i6) u7 = h(i6) i7 = j(i6)

store *t7 = u7

store *t8 = u8

v7 = k(i7)

s8 = f(i7)

i8 = j(i7)

branch v7

branch s8

t8 = g(i7) u8 = h(i7)

v8 = k(i8)

branch v8

Figure 3: Dynamic renaming removes anti–
dependences. The height of the graph has been
reduced from the 12 nodes of the conservative dynamic
dependence graph to 10 nodes. The throughput has
been improved from one iteration every six cycles to
one iteration every five cycles.

i7 = j(i6)

v7 = k(i7)

s8 = f(i7) i8 = j(i7)

branch v7

s7 = f(i6)

branch s7

t7 = g(i6)u7 = h(i6)

store *t7 = u7

store *t8 = u8

branch s8

t8 = g(i7)u8 = h(i7)

v8 = k(i8)

branch v8

Figure 4: Control dependence analysis removes con-
servative branch-dependence arcs. The combination
of dynamic renaming and control dependence analy-
sis has reduced the height of the graph to 7 nodes. The
throughput has been improved to one iteration every
three cycles.
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s7 = f(i6)

branch s7

t7 = g(i6) u7 = h(i6)

store *t7 = u7

i7 = j(i6)

v7 = k(i7) s8 = f(i7)i8 = j(i7)

branch v7 branch s8

t8 = g(i7) u8 = h(i7)

store *t8 = u8

v8 = k(i8)

branch v8

Figure 5: Speculation breaks predictable dependences. The graph height has been reduced to 5 nodes. The through-
put has been improved to one iteration every cycle.

Figure 4 shows the results of applying control de-
pendence analysis [40, 30]. This eliminates the flow-
dependence between the branch statement on variable
s and later code (e.g., the statement “i = j(i) ”) that
execute irrespective of whether the branch is taken or
not. The combination of renaming and control depen-
dence analysis improves the throughput of the exam-
ple loop from one loop iteration every six cycles to one
loop iteration every three cycles.

Figure 5 illustrates what happens when two of the re-
maining dependences are eliminated using speculation
techniques. While there is a true control dependence
between the branch at the end of the first iteration and
the execution of the code in the second iteration we can
use traditional branch speculation techniques [103, 132]
to parallelize across this dependence with high proba-
bility. The dependence between the stores in the two
iterations is necessary in a conservative sense, in that
the addresses in t7 and t8 could be the same under
some program execution, but using memory dependence
speculation [44] we can take advantage of the idea that
probabilistically the addresses in t7 and t8 are differ-
ent.

These speculative dependences are monitored at
runtime. The system checkpoints the state occasionally
and executes code in parallel, even though this may
cause dependence violations that produce inconsistent
states. The runtime system later checks for (dynamic)
violations. If the runtime system finds any violations,
execution is temporarily halted, the system state is re-
stored to and restarted at the most recent checkpoint.
If such violations are rare then the system achieves the
parallelization benefits.

Figure 5 demonstrates that the combination of re-
naming, control dependence analysis and speculation
have found a substantial amount of parallelism in the
original code. While each iteration of the original loop
includes eight operations, we can (conceptually) im-
prove the throughput to one loop iteration every cycle,

or eight instructions per cycle.
This thesis addresses the issues involved in the

above example, in the context of SUDS (the Soft-
ware Un-Do System), an “all-software” automatic
parallelization system for the Raw microprocessor.
SUDS performs explicit dynamic renaming by closure-
converting C programs. SUDS exploits control inde-
pendence by mapping control-independent code to in-
dependent branch units on Raw. Finally, the SUDS run-
time system speculates past loop control dependence
points, which tend to be highly predictable, and allows
memory operations to speculatively execute out of or-
der.

1.3 Contributions

The main contribution of this thesis is a compiler trans-
formation called scalar queue conversion. Scalar queue
conversion is an instruction reordering algorithm that
simultaneously renames scalar variables. Scalar queue
conversion has at least five unique features.

1. Scalar queue conversion works on flow graphs
with arbitrary control flow. The flow graph can be
unstructured, or even irreducible.

2. Scalar queue conversion can move instructions out
of loops with bounds that can not be determined
until runtime.

3. Scalar queue conversion guarantees the elimina-
tion of all scalar anti- and output- dependences
that might otherwise restrict instruction reorder-
ing. Thus scheduling algorithms based on scalar
queue conversion can make instruction ordering
decisions irrespective of register storage depen-
dences.

4. Scalar queue conversion, unlike Tomasulo’s algo-
rithm, can rename and reorder instructions across
mispredicted branches whenever the reordered
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instructions are not control dependent on that
branch.

5. Scalar queue conversion is a speculative compiler
transformation, in that it inserts dynamic mem-
ory allocation operations into code that might not
otherwise dynamically allocate memory. We de-
scribe an efficient software based checkpoint re-
pair mechanism that safely applies speculative
compiler optimizations.

In addition to describing scalar queue conversion
this thesis makes the following additional contribu-
tions.

1. It shows how to move the renaming operations
introduced by scalar queue conversion to mini-
mize the runtime overheads introduced by scalar
renaming.

2. It shows how to use scalar queue conversion to
implement a generalized form of loop distribution
that can distribute loops that contain arbitrary in-
ner loops.

3. It describes the pointer and array analysis issues
that needed to be addressed when using scalar
queue conversion in a practical context.

4. It describes the SUDS software runtime system,
which performs memory dependence speculation
while only increasing the latency of memory oper-
ations by about 20 machine cycles.

5. It provides a demonstration that the SUDS system
effectively schedules and exploits parallelism in
the context of a complete running system on the
Raw microprocessor.

It is my hope that the work in this thesis will serve as
a starting point for the research that I believe needs to
be done to enable the next several generations of high
performance microprocessors. Tomasulo’s algorithm
issues instructions out of order, but its ability to fetch
out of order is limited by mispredicted branch points.
To overcome this fetch limit the microprocessor must
somehow transform a sequential thread into multiple,
concurrent, threads of control. The research in this the-
sis demonstrates the kinds of problems that need to be
overcome when the sequential thread is both impera-
tive and has completely arbitrary control flow.

1.4 Road Map

The rest of this thesis is structured as follows. Chap-
ter 2 defines the relatively standard graph-theoretic

terms widely used in the compiler community. Read-
ers with a strong background in compiler design can
profitably skip Chapter 2.3

The next four chapters describe scalar queue conver-
sion. Chapter 3 describes the transformation, and ex-
plains why scalar queue conversion is able to, prov-
ably, eliminate all the scalar anti- and output- depen-
dences that might otherwise inhibit a particular sched-
ule. Chapter 4 discusses an optimization that im-
proves scalar queue conversion’s placement of copy in-
structions. Chapter 5 describes several extensions and
improvements that widen the applicability of scalar
queue conversion. Chapter 6 describes the generalized
loop distribution transformation that scalar queue con-
version enables.

Several practical questions with regard to scalar
queue conversion are addressed in Chapter 7. The first
problem is that scalar queue conversion introduces dy-
namic memory allocation operations into loops that
might not otherwise allocate memory dynamically.
Thus, scalar queue conversion is unsafe in the sense
that it does not provide strict guarantees on the mem-
ory footprint of the transformed program. Chapter 7
describes an efficient software based checkpoint repair
mechanism that we use to eliminate this problem. The
SUDS Software Un-Do System described in Chapter 7
allows scalar queue conversion to be applied specula-
tively. If scalar queue conversion introduces a dynamic
memory allocation error then SUDS rolls back execu-
tion to a checkpointed state and runs the original ver-
sion of the code. SUDS performs an additional impor-
tant task in that it implements a memory dependence
speculation system that breaks (speculatively and at
runtime) memory dependences that would otherwise
forbid the parallelization of many loops.

Chapter 8 describes the inter-relationship of the
work described in Chapters 3 through 7 in the context
of a working system. Several case studies describe, in
some detail, how, and why, the transformations are ap-
plied to specific loops.

Chapter 9 describes the relationship of scalar queue
conversion and generalized loop distribution to previ-
ous work in program slicing, scalar expansion, loop
distribution, thread-level parallelization, critical path
reduction and data speculation. Chapter 10 concludes.

3But please keep in mind the difference between the value depen-
dence graph (the graph comprising the scalar def-use chains, con-
trol dependence arcs, and memory dependences) and the conserva-
tive program dependence graph (the graph comprising the value depen-
dence graph with additional edges for the scalar use-def and def-def
chains). Both of these graphs are sometimes called “program depen-
dence graphs” in the literature, but the difference is important in the
work described in subsequent chapters.
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sum = 0
i = 0
do

partial_sum = 0
j = 0
use(i, sum)
do

use2(sum, partial_sum, i, j)
partial_sum = partial_sum + 1
j = next(j)
c1 = cond1(i, j)

while c1
i = i + 1
sum = sum + partial_sum
c2 = cond2(i)

while c2
use(sum)

Figure 6: An example program with a doubly nested
loop.

2 The Dependence Analysis
Framework

As stated in Section 1.2 the SUDS approach to finding
parallelism rests on three principles:

1. Dynamic renaming eliminates anti- and output-
dependences.

2. Control dependence analysis eliminates conserva-
tive flow-dependences.

3. Speculation eliminates some dynamically pre-
dictable true- and control-dependences.

In this chapter we define basic terms and describe what
we mean by a dependence.

2.1 The Flow Graph

To start with, let us define some basic terms. We will
use the term program to refer to the finite set of instruc-
tions that specifies the set of operations that we wish
to perform. For the purposes of the conceptual de-
velopment in this chapter we choose a simple “control
flow graph” representation of programs. An example
of some code is shown if Figure 6. The resulting control
flow graph is shown in Figure 7.

The nodes in the control flow graph representation
represent instructions. Each instruction specifies an op-
eration that changes some part of the underlying ma-
chine state. The control flow graph has two additional
nodes, labeled begin and end that correspond to the
initial and final states of the program execution. The

BEGIN

END

1: sum = 0

2: i = 0

3: partial_sum = 0

4: j = 0

5: use(i, sum)

6: use2(sum, partial_sum, i, j)

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

(c1 = true)

11: i = i + 1

(c1 = false)

12: sum = sum + partial_sum

13: c2 = cond2(i)

14: branch c2 (c2 = true)

15: use(sum)

(c2 = false)

Figure 7: The control flow graph corresponding to the
program in Figure 6.
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edges in the control flow graph represent (programmer
specified) temporal constraints on the order of opera-
tions. More specifically, if there is a directed path from
instruction A to instruction B in the control flow graph,
then there may be a correct sequence of (dynamic) state
transitions where transition A occurs before transition
B. Note that Figure 7 includes an edge that flows di-
rectly from the begin node to the end node. This edge
represents the possibility that the program will not ex-
ecuted at all. We will call the control flow graph edges
flow dependences.

The kinds of instructions permitted in our represen-
tation include

1. 3-Address operations (e.g., a = b + c , where
“a” is a register name, “b” and “c” are register
names or constants, and “+” is a binary operation
with no side effects. The semantics are that the
contents of register a are replaced with the value
produced by performing the specified operation
on the contents of registers b and c . We call a the
destination operand and b and c source operands.

2. Load instructions, x = *y , where “x” and “y” are
register names. The semantics are that the current
contents of the memory location with address y
are loaded into the x register.

3. Store instructions, *y = x , where “x” and “y” are
register names. The semantics are that the current
contents of register x overwrite the value in the
memory location with address given by register y .

4. Branch instructions, branch c , where “c” is a
register name. The semantics are that of a dynamic
decision point with respect to which of two output
edges we take out of the node.4

5. Call instructions, call p , where “p” is a register
or constant containing the identifier of some node
in some flow graph. The call instruction implicitly
places the identifier of its own node on an implicit
stack, so that it can be used by the return instruc-
tion.

6. Return instructions, return , that pop the identi-
fier of a node off the top of the implicit stack, and
return flow of control to the successor of that node.

7. Jump instructions, jump c , where “c” is a regis-
ter name. It is assumed the register contains the

4We could have made state transitions on a program counter an
explicit part of the representation, but have chosen not to because
control flow graphs are standard. Control flow graphs represent
transitions on the program counter implicitly through the flow de-
pendences, with branches representing the only points at which run-
time information effects transitions on the program counter state.

identifier of some flow graph node, and control
flow is rerouted to that node. This permits “multi-
way” branches, such are required to efficiently im-
plement C switch statements.

The semantics of a particular program can be de-
termined (operationally) by starting with a predeter-
mined machine state with one register for each named
register in the program, and a memory, and then step-
ping through the control flow graph, performing the
state transitions specified by each instruction one at a
time. We call the sequence of state transitions produced
by this process the sequential order. A sequential order
for two iterations of the outer loop of the flow graph
in Figure 7 is shown in Figure 8. In this example, the
inner loop executes three times during the first outer
loop iteration and twice during the second. There are
39 total instructions shown in this total order.

The question we are trying to address is whether
there are sequences of state transitions, other than the
sequential order, in which we can execute the state
transitions and get the same final state. That is, the
sequential order is a total order on the set of state tran-
sitions. We would like to find less restrictive partial or-
ders that produce the same final state.

2.2 The Conservative Program Depen-
dence Graph

The first observation we make is that the flow depen-
dences on individual instructions are overly conserva-
tive with respect to register operands. A combination
of standard dataflow analyses can produce less restric-
tive orderings.

We say that given nodes d and n in a control flow
graph d dominates n if every directed path from begin
to n passes through d [75]. Every node dominates it-
self. For example, in Figure 7 node 14 dominates nodes
14 and 15, but not end . This is because every path from
begin to node 15 goes through node 14, but there is a
path (begin → end ) that does not go through node 14.
The postdominance relation is defined similarly, with the
flow graph reversed. Node d postdominates n if d is
on every path from n to end . In Figure 7 node 15 post-
dominates every node in the flow graph except nodes
begin and end .

We can also define the set of dominators of a node n,
Dom[n], recursively as the least fixed point of the set of
simultaneous equations:

Dom[n] = {n} ∪
(⋂

p∈pred[n]Dom[p]
)
∀n,

where we work downwards in the lattice of sets from
full sets towards empty sets.
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3: partial_sum = 0

4: j = 0

5: use(i, sum)

6: use2(sum, partial_sum, i, j)

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

6: use2(sum, partial_sum, i, j)

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

6: use2(sum, partial_sum, i, j)

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

11: i = i + 1

12: sum = sum + partial_sum

13: c2 = cond2(i)

14: branch c2

3: partial_sum = 0

4: j = 0

5: use(i, sum)

6: use2(sum, partial_sum, i, j)

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

6: use2(sum, partial_sum, i, j)

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

11: i = i + 1

12: sum = sum + partial_sum

13: c2 = cond2(i)

14: branch c2

Figure 8: The sequential ordering of the state transitions produced by two iterations of the outer loop of the flow
graph in Figure 7. The inner loop executes three times during the first outer loop iteration and twice during the
second.

The dominance relation introduces a well defined
partial order on the nodes in a flow graph. Thus, we
can define a backward dependence edge as any edge from
a node n to a node d that dominates n. We will infor-
mally refer to any edge that is not a backward edge as
a forward edge. (Note that this overloads the word “for-
ward” somewhat since it includes edges x → y where
neither x nor y dominate the other). For example, in
Figure 7 node 6 dominates node 10 so the edge 10→ 6

is a backedge in the flow graph.
The intuitive reason that the dominance relation is

central to our analysis (as it is in most modern compiler
optimizations) is that it summarizes information about
all possible sequential orderings of state transitions, no
matter the initial state at the beginning of execution.
That is, if node d dominates node n in the flow graph,
then every sequential ordering generated from the flow
graph will have the property that the first appearance
of d will come before the first appearance of n. If node
d does not appear in the sequential ordering, then node
n can not appear either.

Given two nodes, we say that x strictly dominates w

iff x dominates w and x 6= w. The dominance frontier of
a node x is the set of all edges v → w such that x dom-
inates v, but does not strictly dominate w [75]. (The
original work on dominance frontiers used the set of
nodes w, but the edge formulation is more accurate and
more useful. See, for example, [92].) In Figure 7 node
6 dominate nodes 10, 14 and 15, but does not strictly
dominate any of nodes 6, 3 or end , so the dominance
frontier of node 6 is the edges 10 → 6, 14 → 3 and
15 → end . The postdominance frontier of node x is the
set of all edges v→ w such that x postdominates w, but
does not strictly postdominate v (note that we have, es-
sentially, reversed the edge).

The postdominance frontier gives us information
about control dependence [40, 30]. In particular we say
that a node n is control dependent on edge x → y iff the

BEGIN

10: branch c1

14: branch c2

END

1: sum = 0

2: i = 0

15: use(sum)

3: partial_sum = 0

4: j = 0

5: use(i, sum)

11: i = i + 1

6: use2(sum, partial_sum, i, j)

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

12: sum = sum + partial_sum

13: c2 = cond2(i)

Figure 9: The control dependences corresponding to the
flow graph in Figure 7.

edge is in the postdominance frontier of n. The intu-
itive reason for this is that the postdominance frontier
represents the set of edges that cross from regions of
the program where n is not guaranteed to execute to re-
gions of the program where n is guaranteed to execute.
The nodes x in the control dependence edges are thus
the branch points that decide whether or not node n

should execute. For example, in Figure 7 the postdom-
inance frontier of node 7 is the set of edges begin → 1,
10 → 6 and 14 → 3, and indeed, it is exactly the be-
gin node and the branches at nodes 10 and 14 that de-
termine how many times node 7 will execute. (Recall
that one should think of the begin node as a branch
that decides whether or not the program will execute
at all.) The complete set of control dependences for the
flow graph from Figure 7 is shown in Figure 9.

For each node x that contains an instruction that has
register r as a destination operand we call x a definition
of r. For each node y that contains an instruction that
uses register r as a source operand we call y a use of
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3: partial_sum = 0

6: use2(sum, partial_sum, i, j)

7: partial_sum = partial_sum + 1

1: sum = 0

12: sum = sum + partial_sum

5: use(i, sum) 6: use2(sum, partial_sum, i, j)

12: sum = sum + partial_sum

15: use(sum)

Figure 10: The du-webs corresponding to variables
partial sum and sum for the flow graph from Fig-
ure 7.

r. For example, in Figure 7 nodes 4 and 8 define the
variable j , while nodes 6, 8 and 9 use the variable j .

We say that a definition (use) x of register r reaches
a node y if there exists a path from x to y in the flow
graph such that there is no other definition of register r

on that path. For example, the definition of variable j
at node 4 reaches node 8, because there is a path from 4
to 8 with no other definition of j , but the definition at
node 4 does not reach node 9 because every path from
4 to 9 goes through the definition at node 8.

More generally, given any directed graph (N, E) and
subsets Gen ⊂ N and Pass ⊂ N, we define the Reaching
relation on the graph with respect to Gen and Pass as
the set of nodes y ∈ N such that there is a path from a
node x ∈ Gen to y such that all the intermediate nodes
on the path are in Pass. Techniques for efficiently gen-
erating the reaching relation can be found in any stan-
dard undergraduate compiler textbook [4]. Typically it
is found as the least fixed point of the equation

Reaching = Succs(Gen ∪ (Reaching ∩ Pass)).

Where Succs(X) = {n ∈ N|x ∈ X∧ (x→ n) ∈ E}.
Then we can more specifically define the reaching def-

initions relation for a node x that defines a register r as
the solution to the Reaching relation where Gen = {x}
and Pass is the set of nodes that do not define r. Like-
wise the reaching uses relation for a node x that uses a
register r is the solution to the Reaching relation where
Gen = {x} and Pass is the set of nodes that do not define
r. For example, in Figure 7, the definition of variable
j in node 8 reaches node 6 (through the path, 8, 9, 10,
6). But the definition at node 8 does not reach node 5,
because node 4 is not in the Pass set.

Of particular interest to us is the subset of the reach-
ing definitions relation that relates the definitions to the
uses of a particular register r. This subset of the reach-
ing definitions relation is typically called the def-use-
chains or du-chains for the variable r. A maximally con-
nected subset of the du-chains for a particular register

r is called a du-web. The du-chains for variable j in Fig-
ure 7 are 4→ 6, 4→ 8, 8→ 9, 8→ 6 and 8→ 8. This set
of du-chains is also a du-web, since it is a connected set.
The du-webs for variables partial sum and sum are
shown in Figure 10. Given the du-chains for a register
r, the du-webs can be efficiently calculated by comput-
ing the connected components (e.g., using depth first
search) on the graph of du-chains [68].

Similarly, the def-def-chains relation for the register r

is the subset of the reaching defs relation that relates
the definitions of r to other definitions of r. For exam-
ple, 8 → 4 is a def-def chain for variable j in Figure 7.
The use-def-chains for a variable r are the subset of the
reaching uses of r that are also definitions. Note that
the use-def chains are not simply the def-use chains
turned around backwards. For example, in Figure 7
7 → 12 is a def-use chain for variable partial sum,
but 12 → 7 is not a use-def chain, because every path
from node 12 to node 7 must go through node 3, which
redefines partial sum.

We have defined the def and use chains with respect
to registers only. We will also define a particularly con-
servative set of dependences with respect to memory
operations (load and store instructions). We say that
any memory operation, x, reaches memory operation, y,
if there is a path from x to y in the control flow graph.
(Pass is the set of all nodes). We say there is a memory
dependence from x to y if at least one of x and y is a store
instruction. (That is, we don’t care about load-load de-
pendences).

Now we are ready to define the conservative pro-
gram dependence graph, and relate the conservative
program dependence graph (which is a static represen-
tation of the program) to the allowable dynamic order-
ings of instructions.

We define the conservative program dependence graph
as the graph constructed by the following procedure.
Take the nodes from the control flow graph. For every
pair of nodes, x, y, insert an edge, x → y, if there is
either a def-use-chain from x to y, a use-def-chain from
x to y, a def-def-chain from x to y, a memory depen-
dence from x to y or a control dependence from x to
y.5

Suppose the sequential execution of a control flow
graph on a particular initial state produces a partic-
ular sequential (total) ordering of state transitions (as
described above for the semantics for control flow
graphs). Now for every pair of dynamic instruction
nodes x, y, such that x comes before y in the sequential
ordering, we insert an edge from x to y if there is an
edge in the conservative program dependence graph

5We defined control dependence from edges to nodes, (i.e., (b →
d) → n). Here we are using the standard node definition of control
dependence, b→ n for simplicity.
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3: partial_sum = 0

6: use2(sum, partial_sum, i, j)

4: j = 05: use(i, sum)

11: i = i + 1

12: sum = sum + partial_sum

7: partial_sum = partial_sum + 1

8: j = next(j)

6: use2(sum, partial_sum, i, j)

9: c1 = cond1(i, j)

10: branch c1

7: partial_sum = partial_sum + 1

8: j = next(j)

6: use2(sum, partial_sum, i, j)

9: c1 = cond1(i, j)

10: branch c1

7: partial_sum = partial_sum + 1 8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

13: c2 = cond2(i)

5: use(i, sum)

14: branch c2

3: partial_sum = 0 4: j = 0

6: use2(sum, partial_sum, i, j)

11: i = i + 1

12: sum = sum + partial_sum

7: partial_sum = partial_sum + 1

8: j = next(j)

6: use2(sum, partial_sum, i, j)

9: c1 = cond1(i, j)

10: branch c1

7: partial_sum = partial_sum + 1 8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

13: c2 = cond2(i)

14: branch c2

Figure 11: The conservative dynamic dependence graph for two iterations of the outer loop of the flow graph in Figure 7.
The inner loop executes three times during the first outer loop iteration and twice during the second. The depth of
the graph has been reduced to 26 instructions, from the 39 instructions in the sequential order shown in Figure 8.

between the corresponding (static) instruction nodes.
We call the resulting graph the conservative dynamic de-
pendence graph. The conservative dynamic dependence
graph corresponding to the sequential order shown in
Figure 8 is shown in Figure 11.

The edges in the conservative dynamic dependence
graph have standard names [57], which we will also
use. If the edge on the dynamic ordering was cre-
ated because there was def-def-chain or use-def-chain
in the conservative program dependence graph we
call the edge in the dynamic ordering a register stor-
age dependence. We will sometimes distinguish between
these two types by calling them output-dependences
and anti-dependences, respectively. If the edge on the
dynamic ordering was created because there was a
def-use-chain in the conservative program dependence
graph we call the edge in the dynamic ordering a value-
dependence, or less formally, a “true-dependence”. If
the edge on the dynamic ordering was created because
there was a memory dependence from a store to a load
we will call it a memory value dependence. If the edge on
the dynamic ordering was created because there was
a memory dependence from a load to a store we will
call it a memory anti-dependence. If the edge on the dy-
namic ordering was created because there was a mem-
ory dependence from a store to a store we will call it

a memory output-dependence. Finally, if the edge on the
dynamic ordering was created because there was a con-
trol dependence in the conservative program depen-
dence graph we will call it a dynamic control dependence.

Note that the conservative dynamic dependence
graph is a directed acyclic graph, and thus defines a
partial order on the state transitions during the execu-
tion of the program. The value of the conservative pro-
gram dependence graph comes from the fact that any
sequence of these state transitions that obeys the partial or-
dering demanded by the conservative dynamic dependence
graph will produce the same final state as the sequential or-
dering. This can be argued informally by noticing that
we have

1. Placed a total order on changes to the memory
state (through memory-dependences).

2. Guaranteed that every instruction executes after
the branches in the sequential order that control
whether or not that instruction executes (through
control-dependences).

3. Placed a total order on changes to each individual
register state (through def-def-chains).

4. Guaranteed that source operands always receive
the value they would have received in the sequen-
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tial order by placing each use of register r in the
conservative dynamic dependence graph between
the same two defs of register r that it was between
in the sequential order (through def-use and use-
def chains).

We have gained some parallelization flexibility by
moving from the control flow graph to the conservative
program dependence graph, because we have moved
from the total order on state transitions imposed by
the sequential order, to the somewhat less restrictive
partial order given by the conservative dynamic de-
pendence graph. For example, in Figure 11 we have
reduced the dependence distance to 26 nodes from the
36 nodes shown in the sequential order from Figure 8.

2.3 The Value Dependence Graph

One of the main constraints to further parallelization
of the conservative program dependence graph is the
existence of a large number of storage dependences. In
Chapter 3 we will describe scalar queue conversion, a
compiler transformation that can always add copies to
the flow graph that eliminate all register storage de-
pendences. Thus, instruction scheduling algorithms
can make instruction ordering decisions irrespective of
register storage dependences. In particular, instruc-
tion scheduling algorithms can work on a less restric-
tive graph than the conservative program dependence
graph.

To differentiate this graph from the conservative pro-
gram dependence graph we will call it the value depen-
dence graph. We define the value dependence graph
as the graph constructed by the following procedure.
Take the nodes from the control flow graph. For every
pair of nodes, x, y, insert an edge, x → y, if there is
either a def-use-chain from x to y, a memory depen-
dence from x to y or a control dependence from x to y.
Thus the value dependence graph is the subgraph of
the conservative program dependence graph created
by removing the use-def and def-def chains from the
conservative program dependence graph.

Suppose the sequential execution of a control flow
graph on a particular initial state produces a partic-
ular sequential (total) ordering of state transitions (as
described above for the semantics for control flow
graphs). Now for every pair of dynamic instruction
nodes x, y, such that x comes before y in the sequential
ordering, we insert an edge from x to y if there is an
edge in the value dependence graph between the corre-
sponding (static) instruction nodes. We call the result-
ing graph the dynamic value graph. The dynamic value
graph corresponding to the sequential order shown in
Figure 8 is shown in Figure 12.

Renaming scalars to avoid register storage depen-
dences produces substantial concurrency gains. This
concurrency comes at the cost of increasing the number
of simultaneously live values, and thus the required
storage space. For example, in Figure 12 we have re-
duced the dependence distance to 10 nodes from the 26
nodes in the conservative dynamic dependence graph
from from Figure 11. As a result the graph is, infor-
mally, both “shorter” and “fatter.” In the following
chapters we will describe scalar queue conversion, a
compiler transformation that effects this renaming.

3 Scalar Queue Conversion

As described in the last chapter, scalar renaming is one
of the most effective techniques known for exposing in-
struction concurrency in a program. In this section we
will show that the compiler can restructure the code
to eliminate all register storage dependences. The abil-
ity to eliminate any register storage dependence means
that instruction scheduling algorithms can make instruc-
tion ordering decisions irrespective of register storage de-
pendences. The increased flexibility results in schedules
that would otherwise be impossible to construct.

We call this transformation to eliminate register
storage dependences scalar queue conversion, because
it completely generalizes the traditional technique of
scalar expansion [68] to arbitrary unstructured (even
irreducible) control flow, and provably eliminates all
register anti- and output-dependences that would vio-
late a particular static schedule. In Chapter 6 we show
how to use scalar queue conversion as the key sub-
routine to enable a generalized form of loop distribu-
tion. Loop distribution is best viewed as a schedul-
ing algorithm that exposes the available parallelism in
a loop [68]. The loop distribution algorithm in Chap-
ter 6 generalizes previous scheduling techniques by
scheduling across code with completely arbitrary con-
trol flow, in particular, code with inner loops. This gen-
eralization is possible only, and exactly, because scalar
queue conversion guarantees the elimination of all reg-
ister anti- and output-dependences.

3.1 Motivation

Consider node 6 in the flow graph in Figure 7. Suppose
we want to run this instruction out of order. For ex-
ample, execution of the operation “use2(sum, par-
tial sum, i, j) ” might consume many cycles, and
we might wish to start execution of node 7 before node
6 completed its work. Unfortunately there is a use
of variable partial sum in node 6 and a definition
of partial sum in node 7, so dynamically executing
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3: partial_sum = 0

6: use2(sum, partial_sum, i, j) 7: partial_sum = partial_sum + 1

4: j = 0

8: j = next(j)

5: use(i, sum)

6: use2(sum, partial_sum, i, j)

7: partial_sum = partial_sum + 1

9: c1 = cond1(i, j)

10: branch c1

8: j = next(j)

6: use2(sum, partial_sum, i, j) 7: partial_sum = partial_sum + 1

9: c1 = cond1(i, j)

10: branch c1

8: j = next(j)

12: sum = sum + partial_sum9: c1 = cond1(i, j)

10: branch c1

11: i = i + 1

13: c2 = cond2(i)

12: sum = sum + partial_sum

14: branch c2

3: partial_sum = 0 4: j = 05: use(i, sum) 11: i = i + 1

6: use2(sum, partial_sum, i, j)

7: partial_sum = partial_sum + 1

8: j = next(j)

6: use2(sum, partial_sum, i, j)7: partial_sum = partial_sum + 1

9: c1 = cond1(i, j)

10: branch c1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

13: c2 = cond2(i)

14: branch c2

Figure 12: The dynamic value graph for two iterations of the outer loop of the flow graph in Figure 7. The inner loop
executes three times during the first outer loop iteration and twice during the second. The depth of the graph has
been reduced to 10 instructions, from the 39 instructions in the sequential order shown in Figure 8.

an instance of node 6 out of order with the immedi-
ately following instance of node 7 could produce in-
correct results. If, however, we were to make a copy of
the variable partial sum into a new variable, called,
for example partial sum tmp , then we could execute
nodes 6 and 7 in either order. This transformation is
demonstrated in Figure 13.

Suppose, however, that we want to defer execution
of all dynamic instances of node 6 until after execu-
tion of all the dynamic instances of node 7. In this case
we need to generalize the transformation so that rather
than saving the values required by node 6 in a (stati-
cally allocated) register, we save the values in dynami-
cally allocated storage. By this process we can simulta-
neously save the machine states required to execute an
arbitrary number of dynamic instances of node 6.

More concretely, we turn node 6 into a closure. A
closure can be thought of as a suspended computa-
tion [72, 107]. It is typically implemented as a data
structure that contains a copy of each part of the state
required to resume the computation, plus a pointer to
the code that will perform the computation. There are
then a set of operations that we can perform on a clo-
sure:

1. We can allocate a closure by requesting a portion of
memory from the dynamic memory allocator that
is sufficient to hold the required state plus code
pointer.

2. We can fill a closure by copying relevant portions
of the machine state into the allocated memory
structure.

3. We can invoke a closure by jumping to (calling) the

closures code pointer and passing a pointer to the
associated data structure that is holding the rele-
vant machine state.

Closures will be familiar to those who have used lexi-
cally scoped programming languages. For example, in
C++ and Java closures are called objects. In these lan-
guages closures are allocated by calling operator new,
filled by the constructor for the object’s class, and in-
voked by calling one of the methods associated with the
object’s class.

In the general case we can defer execution of some
subset of the code by creating a closure for each de-
ferred piece of code, and saving that closure on a
queue. Later we can resume execution of the deferred
code by invoking each member of the queue in FIFO
order. For example, Figure 14 demonstrates how we
use queues of closures to defer execution of every dy-
namic instance of node 6 until after the execution of
every dynamic instance of node 7.

The intuition behind this result is that every impera-
tive program is semantically equivalent to some functional
program [72, 58, 7]. Since a functional program never
overwrites any part of an object (but rather creates
an entirely new object) there are no storage depen-
dences. Another way to view the result is in terms
of the dynamic register renaming performed by Toma-
sulo’s algorithm [117, 57, 104, 83, 105]. Tomasulo’s al-
gorithm performs a dynamic mapping of “virtual” reg-
ister names to “physical” registers, each of which is
written only once. After this renaming all register stor-
age dependences are eliminated, because (conceptu-
ally) no physical register ever changes its value. Thus,
the instruction scheduling algorithm is less constrained
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BEGIN

END

1: sum = 0

2: i = 0

3: partial_sum = 0

4: j = 0

5: use(i, sum)

6’: partial_sum_tmp = partial_sum

7: partial_sum = partial_sum + 1

6: use2(sum, partial_sum_tmp, i, j)

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

(c1 = true)

11: i = i + 1

(c1 = false)

12: sum = sum + partial_sum

13: c2 = cond2(i)

14: branch c2 (c2 = true)

15: use(sum)

(c2 = false)

Figure 13: Copying the value of the variable par-
tial sum allows reordering of nodes 6 and 7.

BEGIN

END

1: sum = 0

2: i = 0

3: partial_sum = 0

4: j = 0

5: use(i, sum)

6a: c = new closure{6f, partial_sum, j}

6b: q.push(c)

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

(c1 = true)

6c: c = q.pop()

(c1 = false)

6d: c->invoke()

6e: while (!q.empty())

11: i = i + 1

12: sum = sum + partial_sum

13: c2 = cond2(i)

14: branch c2 (c2 = true)

15: use(sum)

(c2 = false)

BEGIN

6f: partial_sum = c->partial_sum

END

6g: j = c->j

6h: use2(sum, partial_sum, i, j)

return

Figure 14: Copying the value of variables par-
tial sum and j to the dynamic storage represented
by closure queue allows us to defer executions of
instantiations of node 6 past an arbitrary number of in-
stantiations of nodes 7 and 8.
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by register storage dependences.
Tomasulo’s algorithm, however, fetches branches in

the order they are given by the flow dependences from
the control flow graph. Similarly, existing techniques
for proving the equivalence of imperative to functional
programs [58, 7] rely on continuation passing style.
Conversion to continuation passing style requires that
continuations nest in an order corresponding to flow
dependences [6]. Scalar queue conversion, in contrast,
places closure allocation and fill operations only where
they are required in the value dependence graph. As a re-
sult, scheduling algorithms based on scalar queue con-
version (such as the generalized loop distribution al-
gorithm described in Chapter 6), are not restricted to
fetching a single sequential flow of control.

3.2 Road Map

The remainder of this chapter addresses the questions
of when it is legal to defer execution of a region of
code, and where closures need to be created to per-
form the renaming required by the requested code de-
ferment. In Sections 3.3, 3.4, 3.5 and 3.6 we demon-
strate that scalar queue conversion can defer any set of
instructions that does not violate the dependences in
the value dependence graph. The additional register
storage dependences of the conservative program de-
pendence graph can be completely ignored.

Subsequent chapters deal with a number of practical
issues surrounding scalar queue conversion. In Chap-
ter 4 we give an eager dead-copy elimination algorithm,
motivated by algorithms that convert to SSA form, that
optimizes (in a minimax sense) the number of dynamic
copy operations introduced by scalar queue conver-
sion.

Section 5.1 demonstrates how to extend the results
from this chapter from regions with single exits to re-
gions with multiple exits. Section 5.2 shows how to use
the closures created by scalar queue conversion as a ba-
sic unit of concurrency. Scalar queue conversion elim-
inates scalar anti- and output- dependences, but does
not eliminate memory dependences. Chapter 5 also
describes a set of program transformations that reduce
or eliminate memory dependences, thus extending the
applicability of scalar queue conversion.

Chapter 6 additionally shows how to use scalar
queue conversion as the key enabling technology for a
generalized form of loop distribution. In particular, the
generalized loop distribution transformation described
in Chapter 6 relies on the ability of scalar queue conver-
sion to place closure allocation and fill operations only
at points where they are required by the value depen-
dence graph, rather than the more restrictive control
flow graph.

A key practical question with regard to scalar queue
conversion is addressed in Chapter 7. The problem
is that scalar queue conversion introduces dynamic
memory allocation operations (i.e., closure allocations)
into loops that might not otherwise allocate memory
dynamically. Thus, scalar queue conversion is unsafe
in the sense that it does not provide strict guarantees
on the memory footprint of the transformed program.
In particular, a scalar queue converted program could,
potentially, try to allocate more memory than is avail-
able in the system, and thus create an error condition
that would not have occured in the untransformed pro-
gram.

Chapter 7 describes an efficient software based
checkpoint repair mechanism that we use to eliminate
this problem. The SUDS Software Un-Do System de-
scribed in Chapter 7 allows scalar queue conversion to
be applied speculatively. If scalar queue conversion in-
troduces a dynamic memory allocation error condition
then SUDS rolls back execution to a checkpointed state
and runs the original version of the code.

The relationship of scalar queue conversion to
program slicing, scalar expansion, loop distribution,
Tomasulo’s algorithm and thread level speculation is
described in Chapter 9.

Running Example

The concepts, definitions and proofs in the rest of this
chapter are all illustrated with respect to an example
based on the program shown in Figure 7. I have done
my best to choose the example such that it illustrates
the relationships between the relevant ideas, but so that
it is not so complicated as to overwhelm the reader.

The example problem is as follows. Suppose we
wish to reschedule the loop in Figure 7 into two loops,
one that does the work corresponding to nodes 2, 3,
4, 7, 8, 9, 10, 11, 13 and 14, and one corresponding to
nodes 1, 5, 6, 12 and 15. Is there a legal way to restruc-
ture the code to effect this rescheduling? In this chapter
we will demonstrate that this transformation is legal
exactly because the flow of value and control depen-
dences across the partitioning of nodes in the region is
unidirectional.

Consider a connected, single-entry, single-exit region
R of the flow graph. We induce the region flow graph
by taking the set of nodes in the region and all the
edges x → y such that both x and y are in the region.
With the begin node we associate a set of definitions
for variables that correspond to the def-use chains that
reach from nodes r̄ 6∈ R to nodes r ∈ R. With the end
node we associate a set of uses for variables that cor-
respond to the def-use chains that reach from nodes
r ∈ R to nodes r̄ 6∈ R. On the resulting region flow
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BEGIN

END

1: sum = 0

2: i = 0

3: partial_sum = 0

5: use(i, sum)

6: use2(sum, partial_sum, i, j)

4: j = 0

7: partial_sum = partial_sum + 1

8: j = next(j)

12: sum = sum + partial_sum

9: c1 = cond1(i, j)

10: branch c1

(c1 = true)

11: i = i + 1

(c1 = false)

13: c2 = cond2(i)

14: branch c2 (c2 = true)

15: use(sum)

(c2 = false)

Figure 15: Partitioning the outer loop into the two sub-
sets, 2, 3, 4, 7, 8, 9, 10, 11, 13, 14 and 1, 5, 6, 12, 15 pro-
duces a unidirectional cut because no dependence edges
flow from the second subset into the first. Cut depen-
dence edges are shown in dotted lines. They all flow
from the first subset into the second.

graph we calculate the value dependence graph. Re-
call that this is the def-use chains, the memory depen-
dence chains, and the control dependences calculated
on the flow graph. Note that we have explicitly used
the value dependence graph, rather than the conserva-
tive program dependence graph, which also includes
use-def and def-def chains, because these are exactly
the dependences that will be eliminated using scalar
queue conversion.

3.3 Unidirectional Cuts

Now we define a cut of the set of nodes in a region, R,
as a partitioning of the set of nodes into two subsets,
A, B such that A ∩ B = ∅ and A ∪ B = R. We say that
a cut is unidirectional iff there are no edges x → y such
that x ∈ B and y ∈ A. That is, all the edges either
stay inside A, stay inside B or flow from A to B, and no
edges flow from B to A. For example, given the region
corresponding to the outer loop in Figure 15, the par-
tition {2, 3, 4, 7, 8, 9, 10, 11, 13, 14} and {1, 5, 6, 12, 15} is a
unidirectional cut because there are no def-use chains,

memory or control dependences flowing from the sec-
ond set to the first.

In the following sections we will demonstrate that
by the process of queue conversion we can always trans-
form a unidirectional cut A-B of a single-entry single-
exit region into a pair of single-entry single-exit re-
gions, that produce the same final machine state as the
original code, but have the feature that all of the in-
structions from partition A execute (dynamically) be-
fore all the instructions from partition B.

Any particular value dependence graph might have
many different unidirectional cuts. The criteria for
choosing a specific cut will depend on the reasons
for performing the transformation. In Section 5.1 and
Chapter 6 we will discuss two different applications in
which unidirectional cuts appear naturally. In particu-
lar, we will present two different methods for finding a
unidirectional cut efficiently, each depending on a dif-
ferent set of goals.

3.4 Maximally Connected Groups

First we will show that we can create a “reasonable”
flow graph that consists only of the nodes from subset
A of a unidirectional A-B cut. The property that makes
this possible is that every maximally connected group of
the nodes from subset B will have only a single exit.
Thus we can remove a maximally connected subset of
nodes from subset B from the region flow graph and
“fix-up” the breaks in the flow graph by connecting
the nodes that precede the removed set to the (unique)
node that succeeds the removed set.

Given a unidirectional cut A-B of a flow graph then
we will call a subset of nodes β ⊂ B in the graph a max-
imally connected group iff every node in β is connected
in the flow graph only to other nodes of β or to nodes
of A. That is, given β̄ = B − β and nodes b ∈ β, b̄ ∈ β̄

there are no edges b → b̄ or b̄ → b. For example,
given the unidirectional cut shown in Figure 15 where
A = {2, 3, 4, 7, 8, 9, 10, 11, 13, 14} and B = {1, 5, 6, 12, 15},
the maximally connected groups are the subsets {1},
{5, 6}, {12} and {15} of B.

But now suppose that we are given a unidirectional
cut A-B. This means that there can be no control depen-
dences from B to A. Informally, there are no branches
in B that can in any way determine when or if a node in
A is executed. Now suppose that we are given a max-
imally connected group β ⊂ B. If β has an exit edge
b → a (an edge where b ∈ β, a 6∈ β), then, because β

is maximally connected it must be the case that a ∈ A.
The node a can not be in B because then β would not
be maximally connected.

If there are two (or more) such exit edges, b0 → a0
and b1 → a1, where b0 6= b1 then it must be the case
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that there is a branch or set of branches in β that causes
the flow graph to fork. In particular, b0 and b1 must
have different control dependences, and at least one of
those control dependences must be on a node inside
β. But a1 and a0 can not be control dependent on any
node inside β, because they are on the wrong side of
the A-B cut.

Consider node a0. There is an edge from b0 to a0,
thus there is at least one path from b0 to exit that
passes through a0. But a0 is not control dependent on
b0, so every path from b0 to exit must pass through
a0. Thus a0 postdominates b0. Similarly, for every
node bi ∈ β such that there is any path from bi to b0,
it must be the case that a0 postdominates bi.

Consider this set of bi ∈ β that are on a path to b0.
Now, β is connected, thus there must either be a path
from bi to b1 or there must be a path from b1 to bi. If
there is a path from b1 to bi then there is a path from
b1 to b0 and thus a0 also postdominates b1. Suppose
there is no path from b1 to b0, then there must be a
path from one of the bi to b1. But we already know
that every path from bi to exit goes through a0, so
every path from b1 to exit must go through a0. Thus
a0 postdominates both b0 and b1.

By a similar argument a1 postdominates both b1 and
b0. More specifically, a1 immediately postdominates b1,
because there is a flow graph edge b1 → a1. Thus a0
must postdominate a1 if it is to also postdominate b1.
A similar argument shows that a1 must postdominate
a0. Postdominance is a partial order, thus a0 = a1.
So the maximally connected group β exits to a unique
node in A.

As an example, consider Figure 16. This figure
shows a flow graph containing an irreducible loop.
Suppose that we would like to include node 4 (a branch
instruction) in set B of a unidirectional A-B cut. We
will demonstrate that any maximally connected group
β ⊂ B that contains node 4 must also contain nodes 8
and 9, and will, therefore, exit through node 10. We can
see this by examining Figure 17, which shows control
dependence graph corresponding to the flow graph in
Figure 16. There is a cycle in the control dependence
graph between the two exit branches in nodes 4 and
7. Thus if either of the exit branches for the irreducible
loop is included on one side of the unidirectional cut,
then the other must as well, because we require that no
control dependences in a unidirectional cut flow from
B to A.

Given a unidirectional cut A-B of a flow graph we
can efficiently find all the maximally connected groups
β ⊂ B as follows. First we scan the edges of the flow
graph to find all the edges bj → ai where bj ∈ B and
ai ∈ A. By the argument above the set of nodes ai
found in this manner represent the set of unique exits

BEGIN

END

1: branch x

2: ...

(x = true)

3: ...

(x = false)

4: branch y

5: ...

(y = false)

9: ...

(y = true)

6: ...

7: branch z

(z = true)

8: ...

(z = false)

10: ...

11: ...

Figure 16: Any maximally connected subset of nodes
from the bottom of a unidirectional cut always exits to
a single point. In this case (an irreducible loop) if ei-
ther node 4 or 7 is in the bottom of a unidirectional cut
then so must all the nodes 2, 4, 5, 6, 7, 8 and 9. Thus a
maximally connected subset containing node 4 or node
7 will exit to node 10.

BEGIN

1: branch x 10: ... 11: ...

2: ...

3: ...4: branch y

5: ... 6: ...7: branch z 9: ...

8: ...

Figure 17: The control dependence graph for the flow
graph in Figure 16 has a cycle between nodes 4 and 7.
Thus both nodes must be on the same side of a unidi-
rectional cut of the flow graph.
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of maximal groups βi ⊂ B. Then for each ai we can
find the associated maximally connected group βi by
performing a depth first search (backwards in the flow
graph by following predecessor edges) starting at ai,
and where we follow only edges that lead to nodes in
B.

For example, recall that in Figure 15 the maximally
connected subgroup {5, 6} exits to node 7. A backwards
search from node 7 finds nodes 5 and 6 from set B

but does not find node 12, because that would require
traversing intermediate nodes (e.g., node 4) that are in
set A.

Now we can create a flow graph that performs ex-
actly the work corresponding to part A of the unidi-
rectional A-B cut by removing each of the maximally
connected groups of B one by one. Given a maxi-
mally connected group βi ⊂ B with entry edges a

y

i0
→

b
y
i0

, . . . , a
y
in
→ b

y
in

and exits bxi0 → axi , . . . , b
x
in
→

axi to the unique node axi , then we can remove βi
from the flow graph by removing all the nodes of βi
from the flow graph, and inserting the edges a

y
i0
→

axi , . . . , a
y
in
→ axi . We call the resulting flow graph the

sliced flow graph for partition A.
Figure 18 shows the sliced flow graph for the parti-

tion {2, 3, 4, 7, 8, 9, 10, 11, 13, 14}. The maximal groups
in the original flow graph (Figure 15) were the sets
{5, 6}, and {12}. The entry edges to {5, 6} were {4 → 5}
and {10 → 6}, while the exit edge was {6 → 7}. Thus
in the sliced flow graph we remove nodes 5 and 6 and
insert edges {4→ 7} and {10→ 7}. Node 12 is removed
and the edge {11 → 13} is inserted. Similarly, nodes 1
and 15 have been removed and edges connecting their
entries to their exits have been inserted.

3.5 The Deferred Execution Queue

In addition to creating a flow graph that performs ex-
actly the work corresponding to part A of a unidirec-
tional A-B cut, we can also annotate the flow graph
so that it keeps track of exactly the order in which the
maximal groups βi ⊂ B will be executed. We do this
by creating a queue data structure at the entry point of
the region flow graph. We call this queue the deferred
execution queue.

Every edge a
y

ij
→ b

y

ij
, a
y

ij
∈ A, b

y

ij
∈ βi in the flow

graph represents a point at which control would have
entered the maximal group βi. Likewise, every edge
bxik → axi , bxik ∈ βi, axi ∈ A, represents exactly the
points at which control would have returned to region
A.

Thus, after creating the sliced flow graph for parti-
tion A, by removing the regions βi from the flow graph
(as described in the previous section), we can place an
instruction along each edge a

y

ij
→ axi that pushes the

BEGIN

END

2: i = 0

3: partial_sum = 0

4: j = 0

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

(c1 = true)

11: i = i + 1

(c1 = false)

13: c2 = cond2(i)

14: branch c2

(c2 = false)

(c2 = true)

Figure 18: The sliced flow graph for nodes 2, 3, 4, 7,
8, 9, 10, 11, 13 and 14. For example, nodes 4 and 10
(the entries to the maximal group consisting of nodes 5
and 6) are connected to node 7, (the single exit node for
group 5, 6).
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BEGIN

END

1’: push(1)

BEGIN

2: i = 0

3: partial_sum = 0

4: j = 0

5’: push(5)

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

11: i = i + 1

(c1 = false)

6’: push(6)

(c1 = true)

12’: push(12)

13: c2 = cond2(i)

14: branch c2

(c2 = true)

15’: push(15)

(c2 = false)

BEGIN

BEGIN

END

5: use(i, sum)

6: use2(sum, partial_sum, i, j)

return

END

12: sum = sum + partial_sum

BEGIN

return

END

1: sum = 0

return

END

15: use(sum)

return

Figure 19: Queue conversion annotates the sliced flow
graph for A with instructions that record which max-
imal groups of B would have executed, and in what
order. Each maximal group of B is converted into its
own procedure.

corresponding code pointer for the node b
y

ij
on to the

deferred execution queue. The edges a
y
ij
→ axi execute

in exactly the order in which the βis would have exe-
cuted in the original flow graph. Thus after execution
of the sliced flow graph for partition A, the deferred
execution queue will contain all of the information we
need to execute the code from partition B in exactly the
correct order and exactly the correct number of times.

We can accomplish this by converting each βi into
a procedure that contains a flow graph identical to the
flow graph that corresponds to the original βi, but re-
turns at each exit point of βi.6 Then we can recreate the
original execution sequence of partition B by popping
each code pointer b

y

ij
off the front of the deferred exe-

cution queue and calling the corresponding procedure.
The queue conversion of our example program is

shown in Figure 19. Push instructions for the appro-
priate maximal group entry points have been inserted
along the edges begin → 2, 4 → 7, 10 → 7, 11 → 13
and 14→ end . The maximal groups {1}, {5, 6}, {12} and
{15} are each converted into a procedure.

Closure Conversion

If it were the case that there were no register storage
dependences flowing from B to A then the deferred ex-
ecution queue would be sufficient. Our definition of
a unidirectional A-B cut did not, however, exclude the
existence of use-def or def-def chains flowing from re-
gion B to region A. Thus, we must solve the problem
that partition A might produce a value in register x that
is used in region B but then might overwrite the regis-
ter with a new value before we have a chance to ex-
ecute the corresponding code from partition B off the
deferred execution queue.

The problem is that the objects we are pushing and
popping on to the deferred execution queue are merely
code pointers. Instead, we should be pushing and pop-
ping closures. A closure is an object that consists of the
code pointer together with an environment (set of name-
value pairs) that represents the saved machine state in
which we want to run the corresponding code. Thus a
closure represents a suspended computation.7

Consider the registers (variables) associated with the
set of def-use chains that reach into a maximal group
βi ⊂ B. If we save a copy of the values associated with
each of these registers along with the code pointer, then

6If the underlying infrastructure does not support multiple-entry
procedures, then each maximal group βi can be further partitioned
into a set of subprocedures, each corresponding to a maximal basic
block of βi. Each subprocedure that does not exit βi tail calls [107]
its successor(s) from βi.

7Closures that take no arguments, as is the case here, are some-
times called thunks, but typically only in the context of compiling
call-by-name languages, which is not the case here.
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BEGIN

END

1’: c1 = new closure{1}

2: i = 0

3: partial_sum = 0

4: j = 0

5’: c56 = new closure{5a, i, j, partial_sum}

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

11: i = i + 1

(c1 = false)

6’: c56 = new closure{6a, i, j, partial_sum}

(c1 = true)

12’: c12 = new closure{12a, partial_sum}

13: c2 = cond2(i)

14: branch c2

(c2 = true)

15’: c15 = new closure{15}

(c2 = false)

1’’: push(c1)

5’’: push(c56)

6’’: push(c56)

12’’: push(c12)

15’’: push(c15)

c = pop()

call c

while (!queue_empty())

BEGIN

END

5a: i = c->i

6a: i = c->i

BEGIN

5b: j = c->j

5c: partial_sum = c->partial_sum

5: use(i, sum)

6: use2(sum, partial_sum, i, j)

6b: j = c->j

6c: partial_sum = c->partial_sum

return

BEGIN

END

12a: partial_sum = c->partial_sum

BEGIN

12: sum = sum + partial_sum

return

END

1: sum = 0

return

END

15: use(sum)

return

Figure 21: Closure conversion ensures that each value crossing the cut gets copied into a dynamically allocated
structure before the corresponding register gets overwritten.
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3: partial_sum = 0

6: use2(sum, partial_sum, i, j)

7: partial_sum = partial_sum + 1

1: sum = 0

12: sum = sum + partial_sum

5: use(i, sum) 6: use2(sum, partial_sum, i, j)

12: sum = sum + partial_sum

15: use(sum)

2: i = 0

5: use(i, sum) 6: use2(sum, partial_sum, i, j) 9: c1 = cond1(i, j)

11: i = i + 1

4: j = 0

6: use2(sum, partial_sum, i, j)

8: j = next(j)

9: c1 = cond1(i, j)

Figure 20: Cuts in the du-webs for variables i , j , sum
and partial sumgiven the cut from nodes 2, 3, 4, 7, 8,
9, 10, 11, 13, 14 to nodes 1, 5, 6, 12, 15 (shown in bold).
Def-use chains that cross the cut are shown as dotted
edges.

we can eliminate all the use-def chains that flow from
B to A, and replace them, instead, with use-def chains
that flow only within partition A.

To convert each maximal group βi ⊂ B into a closure
we transform the code as follows.

1. Consider the graph of nodes corresponding to βi.
For each of the entry nodes b

y
ij

of this graph find
the set of nodes βij ⊂ βi reachable from b

y
ij

. For
each set βij find the set of variables, Vij = {vijk}

such that there is a def-use chain flowing from par-
tition A into βij . (That is, there is a definition of
vijk somewhere in A and a use of vijk somewhere
in βij ). Figure 20 shows that this set can be eas-
ily derived from the du-webs corresponding to the
flow graph. For example, V

{12} = {partial sum}

and V
{15} = ∅. The maximal group β

{5,6} has two
entry points, (at 5 and 6). In this case it happens
that V

{5,6},5 = V
{5,6},6 = {i , j , partial sum}.

2. Consider each edge a
y

ij
→ axi in the sliced flow

graph for partition A that corresponds to entry
point b

y

ij
of maximal group βi. Along this edge

we place an instruction that dynamically allocates
a structure with |Vij|+1 slots, then copies the values
〈byij , vij1, . . . , vij|Vij|〉 into the structure, and then
pushes a pointer to this structure onto the deferred
execution queue. Figure 21 demonstrates this pro-
cess. For example, along the edge 4 → 7 we have

placed instructions that allocate a structure con-
taining the values of the code pointer, “5”, and the
copies of the values contained in variables, i , j
and partial sum.

3. For each βi we create a procedure that takes a sin-
gle argument, c , which is a pointer to the struc-
ture representing the closure. The procedure has
the same control flow as the original subgraph
for βi except that along each entry we place a se-
quence of instructions that copies each entry from
each slot of the closure into the corresponding
variable vik . Figure 21 shows that the two en-
tries to the procedure corresponding to the max-
imal group {5, 6} have been augmented with in-
structions that copy the values of variables i , j
and partial sum out of the corresponding clo-
sure structure.

4. To invoke a closure from the deferred execution
queue we pop the pointer to the closure off the
front of the queue. The first slot of the correspond-
ing structure is a pointer to the code for the proce-
dure corresponding to βi. Thus we call this pro-
cedure, passing as an argument the pointer to the
closure itself. In Figure 21 this process is shown to-
wards the bottom of the original procedure, where
we have inserted a loop that pops closures off the
deferred execution queue, and invokes them.

This completes the basic scalar queue conversion
transformation. Because a copy of each value reach-
ing a maximal group βi is made just before the point in
the program when it would have been used, the correct
set of values reaches each maximal group, even when
execution of the group is deferred. Additionally, since
the copy is created in partition A, rather than partition
B, we have eliminated any use-def chains that flowed
from partition B to partition A. In the next section we
will demonstrate how to generalize the result to elim-
inate def-def chains flowing from B to A. In Chap-
ter 4 we will show how to move the closure creation
points so that they least restrict further transformations
to partition A.

3.6 Unidirectional Renaming

In the previous section we demonstrated that we could
transform a unidirectional A-B cut on a single-entry
single-exit region into an equivalent piece of code such
that all the instructions in partition A run, dynamically,
before all the instructions in partition B. Further we
demonstrated that we could do this even in the pres-
ence of use-def chains flowing from partition B to par-
tition A. In this section we will show that the result
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BEGIN

END

1: sum = 0

2: i = 0

2’: i’ = i

3: partial_sum = 0

3’: partial_sum’ = partial_sum

4: j = 0

4’: j’ = j

5: use(i’, sum)

6: use2(sum, partial_sum’, i’, j’)

7: partial_sum = partial_sum + 1

7’: partial_sum’ = partial_sum

8: j = next(j)

8’: j’ = j

9: c1 = cond1(i, j)

10: branch c1

(c1 = true)

11: i = i + 1

(c1 = false)

11: i’ = i

12: sum = sum + partial_sum’

13: c2 = cond2(i)

14: branch c2 (c2 = true)

15: use(sum)

(c2 = false)

Figure 22: An example of statically renaming the vari-
ables i , j and partial sum.

can be generalized, in a straightforward way, to A-B
cuts where there are additionally def-def chains flow-
ing from partition B to partition A.

The result depends on the fact that given a unidi-
rectional A-B cut, we can insert a new instruction any-
where in the flow graph, and that if we give that in-
struction a labeling that includes it in partition B, then
we will not introduce any new control dependences
that flow from partition B to partition A. (The oppo-
site is not true. That is, if we place a new instruction
in partition A at a point that is control dependent on
an instruction in partition B, then we will introduce a
control dependence edge that will violate the unidirec-
tionality of the cut.)

For the remainder of the thesis we will assume that
each du-web in the program has been given a unique
name. This transformation is already done by most
optimizing compilers because it is so common for pro-
grammers to reuse variable names, even when the vari-
ables are completely independent. For example, many
programmers reuse the variable name i for the index
of most loops. Once the du-webs are calculated, as de-
scribed in Section 2.2, we iterate through the set of du-
webs for each variable x, renaming all the uses and def-
initions in each node in the ith web to xi. Thus we can,
without loss of generality, talk about the du-web for a
particular variable.

Now consider the du-web for variable x on a unidi-
rectional cut A-B where some of the definitions of x are
in A and some of the uses of x are in B. Thus, there
is a value dependence flowing from A to B. It may be
the case that there are definitions of x in B and uses of
x in A, but, because A-B is a unidirectional cut, it can-
not be the case that there are any def-use chains reach-
ing from B to A. Thus the du-web has a unidirectional
structure, just as the value dependence graph did. (In
fact, another way of seeing this is to observe that each
du-web is an induced subgraph of the value depen-
dence graph). For example, in the du-webs shown in
Figure 20 one can observe that the def-use chains cross-
ing the cut (shown with dotted edges) all flow in one
direction.

The du-web for variable x thus has a structure that
is almost renameable, except for those edges in the web
that cross the cut. Suppose, however that we were to
place a copy instruction “x’ = x ” directly after each
of the definitions of x from A that reach a use in B.
Then we could rename all the definitions and uses of
x in B to x ′. The program will have exactly the same
semantics, but we will have eliminated all of the def-
def chains flowing from B to A. We will call such a
renaming of of a du-web that crosses a unidirectional
cut a unidirectional renaming.

An example of a unidirectional renaming is shown
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3: partial_sum = 0

3’: partial_sum’ = partial_sum

7: partial_sum = partial_sum + 1

6: use2(sum, partial_sum’, i’, j’)

2: i = 0

7’: partial_sum’ = partial_sum

12: sum = sum + partial_sum’

2’: i’ = i

9: c1 = cond1(i, j)11: i = i + 1

5: use(i’, sum) 6: use2(sum, partial_sum’, i’, j’)

4: j = 0

11’: i’ = i

4’: j’ = j 8: j = next(j)

6: use2(sum, partial_sum’, i’, j’)

8’: j’ = j9: c1 = cond1(i, j)

Figure 23: The unidirectionally renamed du-webs for
variables i , j and partial sum.

in Figure 22. Each time one of the variables i , j and
partial sum is modified it is copied to a correspond-
ing variable i’ , j’ or partial sum’ . The uses of i ,
j and partial sum in partition B are then renamed
to i’ , j’ and partial sum’ . The du-webs for this
unidirectional renaming are shown in Figure 23.

To see how unidirectional renaming eliminates back-
wards flowing def-def chains, consider Figure 24. We
examine the cut from the set of nodes {1, 2, 3, 4, 6, 7} to
the set {5, 8}. This is a unidirectional cut because all of
the value and control dependences flow from the first
set to the second. Figure 25 shows the corresponding
du-web for variable x . There is, however, a def-def
chain flowing from node 5 to node 7 (against the cut
direction).

Unidirectionally renaming the flow graph, as shown
in Figures 26 and 27 solves this problem. After placing
copy instructions “x’ = x ” after the definitions that
reach across the cut, and renaming x to x’ in nodes 5
and 7, all of the definitions of x are on one side of the
cut while all of the definitions of x’ are on the other
side of the cut. Thus there are no def-def chains flowing
across the cut. All the def-def chains are now contained
within one partition or the other.

Placing the copy instructions for the unidirectional
renaming directly after the corresponding definition of
each variable produces a correct result, but, in fact, we
can do better. We can maintain the program semantics
and eliminate the output dependences if we place the
copy instructions along any set of edges in the program

BEGIN

END

1: x = 1

2: branch

3: x = x + 3

4: branch

5: x = x + 5

6: branch

7: x = 7

(def-def
chain)

8: use x

Figure 24: The cut separating nodes 1, 2, 3, 4, 6 and
7 from nodes 5 and 8 is unidirectional because all the
value and control dependences flow unidirectionally.
The def-def chain flowing from node 5 to node 7 does
not violate the unidirectionality of the cut.

1: x = 1

3: x = x + 3

5: x = x + 5

8: use x

7: x = 7

Figure 25: The du-web for variable x from the flow
graph in Figure 24. The cut is unidirectional because
all the def-use chains flow in one direction across the
cut. Dotted edges show cut edges.
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BEGIN

END

1: x = 1

1’: x’ = x

2: branch

3: x = x + 3

4: branch

3’ x’ = x

5: x’ = x’ + 5

6: branch

7’: x’ = x

(def-def
chain)

7: x = 7

8: use x’

Figure 26: After unidirectionally renaming the variable
x the def-def chain between nodes 5 and 7 is elimi-
nated, and replaced instead with a def-def chain from
node 5 to node 7’. The new def-def chain does not cross
the cut because node 5 and 7’ are both in the same par-
tition (indicated by nodes with a bold outline).

1: x = 1

1’: x’ = x 3: x = x + 3

5: x’ = x’ + 5

3’ x’ = x

8: use x’

7: x = 7

7’: x’ = x

Figure 27: The du-web for variables x and x’ from
the flow graph in Figure 26. The cut is still unidirec-
tional because all the def-use chains flow in one direc-
tion across the cut. Dotted edges show cut edges. Now,
however, there is no def-def chain crossing the cut be-
cause definitions of variable x happen in one partition,
while definitions of variable x’ happen in the other.

that have the property that they cover all the paths
leading from definitions of x in A that reach uses of
x in B and are not reached by any of the definitions of
x in B. In the next section we will show how to derive
such a set of edges that is optimal, in the sense that
they will execute only as often as the innermost loop
that contains both the definitions and the uses.

Thus given any unidirectional cut A-B we can in-
sert copy instructions into each du-web that has edges
flowing from A to B and derive a semantically equiv-
alent flow graph with the property that there are no
def-def chains flowing from B to A.

There is a second, perhaps more important, benefit
of performing unidirectional renaming on the du-webs
that cross the cut. This is that after renaming, closure
conversion and a single pass of local copy propagation,
all the uses of a variable will be entirely contained on
one side of the cut or the other. That is, all commu-
nication across the cut will occur through the deferred
execution queue. There will be no “shared” scalar vari-
ables. Because of this property we perform unidirec-
tional renaming on all du-webs that cross the cut, even
when there are no def-def chains that need to be bro-
ken. Specific examples are given in Chapter 4 and Sec-
tion 5.2.

3.7 Wrapup

In this chapter we demonstrated that, through the pro-
cess of scalar queue conversion, we can restructure any
unidirectional cut of the true scalar dependences in any
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program, and reschedule the code so that all of the in-
structions in the top half of the cut run (dynamically)
before all of the instructions in the bottom half. Scalar
queue conversion completely eliminates scalar anti- and
output-dependences that might otherwise make this
rescheduling impossible.

In this chapter we described how to apply scalar
queue conversion to a single-entry single-exit region of
code. Chapter 5 demonstrates how to extend the re-
sult to regions of code with multiple exits, by a single
application of scalar queue conversion to a somewhat
larger region of code. Chapter 5 also describes a set of
transformations that eliminate memory dependences
from the program dependence graph, thus exposing
unidirectional cuts in a wider variety of circumstances.
Chapter 6 describes how to use scalar queue conver-
sion as a subroutine of a generalized version of loop
distribution that can reschedule regions of code with
arbitrary control flow (including inner loops).

Chapter 7 describes the SUDS Software Un-Do Sys-
tem, which complements scalar queue conversion in
two ways. First, as mentioned above, scalar queue con-
version is unsafe in the sense that it does not strictly
guarantee the amount of dynamic memory the trans-
formed program will allocate. The SUDS system solves
this problem by allowing scalar queue conversion to
be applied speculatively. SUDS checkpoints the system
state, and then runs the transformed program. If the
transformation causes a memory allocation error, then
the execution can be rolled back to the checkpointed
state, and resumed with the original (untransformed)
code.

SUDS additionally complements scalar queue con-
version by providing memory dependence specula-
tion. Memory dependence speculation allows scalar
queue conversion to work across memory depen-
dences that can not be handled by the techniques in
Chapter 5, and that would otherwise hide unidirec-
tional cuts.

4 Optimal Unidirectional Renam-
ing

In Chapter 3 we demonstrated that, through the pro-
cess of scalar queue conversion, we could transform
a unidirectional cut A-B on a single-entry single-exit
region into an equivalent piece of code such that all
the instructions in partition A run, dynamically, be-
fore all the instructions in partition B. Further, in Sec-
tion 3.6, we demonstrated that, through a process of
static unidirectional renaming, we could do this even
in the presence of use-def or def-def chains flowing
from partition B to partition A. In this section we will

demonstrate that we can move the unidirectional re-
naming points to a position in the flow graph that is
optimal, in the sense that we place them at the legal
points in the graph such that they are in the outermost
possible loop.

We do this by implementing an eager form of par-
tial dead code elimination [64]. The algorithm takes
advantage of two additional facts. First, that the copy
instructions we inserted for unidirectional renaming
(Section 3.6) can be moved or replicated at any point
in the graph that is not reached by any other definition
that is not a copy instruction. Additionally, we take
advantage of a useful property of the static single as-
signment (SSA) flow graph. After conversion to SSA
every use of a variable in the program will be reached
by only a single definition, and, further, that definition
will dominate the use [30].

Informally, the algorithm moves copy instructions
downward through join points in the flow graph un-
til it reaches a join point that dominates a use. This
node has the property that it is the earliest (static) point
in the program where we can determine exactly the
value that reaches the use. Then we use the partial
dead code elimination algorithm to move the copy in-
struction through the intervening branches in the flow
graph that might make the copy instruction less likely
to execute at all.

4.1 “Least Looped” Copy Points

The objective of optimal unidirectional renaming is
similar to the objective of conversion to static single as-
signment form [30]. That is, we desire to connect each
use of a variable with a single copy statement. The only
place where this condition might be violated is at join
points in the flow graph. That is, places in the flow
graph that two different definitions might reach. But
recall the definition of the dominance frontier of a node
x. This is the set of edges in the flow graph that flow be-
tween nodes y and z where all paths to y go through x,
but where there are paths to z that do not go through x.
In other words, z is a join node in the flow graph such
that a definition at node x will no longer be unique.
Consider, for example, the definitions of variable j in
the flow graph in Figure 28. The definition at node 8
dominates nodes 9 and 10, but not node 6. So node 6 is
on the dominance frontier of node 8, and indeed, two
definitions of j can reach node 6. One from node 8 and
the other from node 4.

The key to the construction of static single assign-
ment form is that it places copy instructions on the iter-
ated dominance frontier of each definition. A straight-
forward method of constructing the iterated domi-
nance frontier for a set of definitions that are already
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BEGIN

END

1: sum = 0

2: i = 0

2’: i’ = i

3: i’ = i
j’ = j
partial_sum’ = partial_sum

partial_sum = 0

3’: partial_sum’ = partial_sum

4: j = 0

4’: j’ = j

5: use(i’, sum)

6: j’ = j
partial_sum’ = partial_sum

use2(sum, partial_sum’, i’, j’)

7: partial_sum = partial_sum + 1

7’: partial_sum’ = partial_sum

8: j = next(j)

8’: j’ = j

9: c1 = cond1(i, j)

10: branch c1

(c1 = true)

11: i = i + 1

(c1 = false)

11: i’ = i

12: sum = sum + partial_sum’

13: c2 = cond2(i)

14: branch c2 (c2 = true)

15: use(sum)

(c2 = false)

Figure 28: After unidirectional renaming we place
replicas of each copy instructions at all the join points
reachable by that copy instruction.

copy instructions is as follows. For each copy instruc-
tion “x’ = x ”, replicate the instruction at each node
in the dominance frontier of the definition that has not
already been marked. Since the new instruction is also
a new definition for the variable, the procedure must
iterate until it reaches a fixed point [30]. The caveat, in
this case, is that we must not place instruction replicas
at any point in the graph that is also reached by a “real”
definition of the variable x’ .

In Figure 28 we show how replicas of the copy in-
structions “i’ = i ”, “j’ = j ” and “partial sum’
= partial sum” are placed at the iterated dominance
frontier of the unidirectionally renamed flow graph
from Figure 22.

More concretely, we proceed as follows. We are
given a du-web for variable x over a unidirectional cut
A-B. As described in Section 3.6 we give this web a uni-
directional renaming by renaming x to x ′ in all nodes
belonging to B, and then inserting new copy instruc-
tions, x ′ = x in the flow graph directly after the defini-
tions of x in the original flow graph that both belong to
A and reach one of the uses in B. The new copy instruc-
tions are included in partition B, rather than A, and
thus we are left with a semantically equivalent flow
graph that is still unidirectionally cut, but is guaran-
teed not to have any def-def chains flowing from B to
A.

We now define five subsets of the nodes in the uni-
directionally renamed du-webs with original variable
x and renamed variable x ′. The set Copy

x ′←x consists
of the set of nodes that contain newly inserted copy in-
structions x’ = x . The set Defx is the set of nodes that
define x. The set Defx ′ is the set of nodes that define
x ′ minus the set Copy

x ′←x. The set Usex is the set of
nodes that use x minus the set Copy

x ′←x. The set Usex ′
is the set of nodes that use x ′.

Now recall the definition, from page 13 of the Reach-
ing relation for subsets Gen and Pass of the set of nodes
in a flow graph. This was the set of nodes for which
there is a path in the flow graph from some node in
Gen, passing only through nodes in Pass. We then let
Illegal

x ′←x be the set of nodes reached by Defx ′ . That
is, we generate the Reaching relation with Gen = Defx ′
and Pass = Defx ′ ∪Defx. Illegal

x ′←x is then the set of
points in the program at which inserting an instruction
x’ = x might cause the program to produce incorrect
results.

Now let ItDomx ′←x be the set of nodes that corre-
sponds to the iterated dominance frontier of Copy

x ′←x.
If we place copy instructions at all the nodes in
AllCopies = (ItDomx ′←x ∪ Copy

x ′←x) − Illegal
x ′←x

we will have, by the properties of the iterated domi-
nance frontier [30], found exactly the set of join nodes
through which it would be legal to move the copy in-
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structions.

4.2 Lazy Dead Copy Elimination

Now let Livex ′ be the set of nodes for which there is
a path to a use of x ′, that does not pass through a
definition of x ′ [4]. We can generate Livex ′ by gener-
ating Reaching on the reverse flow graph with Gen =
Usex ′ and Pass = Defx ′ ∪ Copy

x ′←x. We can elimi-
nate any dead copies by keeping only those on nodes in
AllCopies∩Livex ′ , and deleting the rest, since the value
they produce will never be used by any instruction. For
example, in Figure 28 the copies of i at nodes 2’, and
11’ are dead. Additionally, the copies of j at nodes 3,
4’ and 8’ are dead, and the copies of partial sum are
dead at nodes 3 and 3’. Removal of these dead copy
instructions is shown in Figure 29.

Finally, following Knoop et al [64], we define
ReachingUses

x ′
as the set of nodes that can be reached

by a use of x ′ without passing through a definition of
x ′. (“ReachingUses” corresponds to the complement
of the set that Knoop et al call “Delayed”). Then if
we let BadNodesx ′ = ReachingUses

x ′
∪ Illegal

x ′←x
we can sink the copy instructions to the frontier be-
tween BadNodesx ′ and BadNodesx ′ . That is, to edges
m → n in the flow graph where m ∈ BadNodesx ′
and n ∈ BadNodesx ′ . Iteration of dead copy elimi-
nation and copy sinking produces the optimal result.
Figure 30 shows the sinking of the copy instruction
partial sum’ = partial sum at node 7’ from in-
side the inner loop to a position in the outer loop just
before the corresponding use.

Figure 31 shows what happens when optimal unidi-
rectional renaming precedes scalar queue conversion.
We point out two things when comparing Figure 31 to
Figure 21. First, the scalars used by the two halves
of the partitioning are entirely distinct. The sliced
flow graph corresponding to the top of the cut de-
fines and uses only variables i , j and partial sum.
The flow graphs for the closures produced by scalar
queue conversion define and use only variables i’ , j’ ,
partial sum’ and sum. Second, note that unidirec-
tional renaming has made it possible to avoid the extra
queueing and dequeuing of variable i that occurs in
the inner loop in Figure 21.

Finally, we note one additional feature of optimal
unidirectional renaming. It tends to be the case that op-
timal unidirectional renaming makes du-webs sparser.
This is intuitively reasonable, given that the optimal
unidirectional renaming process, like conversion to
SSA form, puts copy instructions at the iterated dom-
inance frontier of each definition. The result is that
most (but not all) of the unidirectionally renamed uses
will be reached by only a single definition. Com-

BEGIN

END

1: sum = 0

2: i = 0

3: i’ = i
partial_sum = 0

4: j = 0

5: use(i’, sum)

6: j’ = j
partial_sum’ = partial_sum

use2(sum, partial_sum’, i’, j’)

7: partial_sum = partial_sum + 1

7’: partial_sum’ = partial_sum

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

(c1 = true)

11: i = i + 1

(c1 = false)

12: sum = sum + partial_sum’

13: c2 = cond2(i)

14: branch c2 (c2 = true)

15: use(sum)

(c2 = false)

Figure 29: After placement of copies on the iterated
dominance frontier at most one copy instruction will
reach each use, and the remaining copy instructions
can be dead-code eliminated.
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BEGIN

END

1’: c1 = new closure{1}

2: i = 0

3: partial_sum = 0

4: j = 0

5’: c56 = new closure{5a, i, j, partial_sum}

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

11: i = i + 1

(c1 = false)

6’: c56 = new closure{6a, j, partial_sum}

(c1 = true)

12’: c12 = new closure{12a, partial_sum}

13: c2 = cond2(i)

14: branch c2

(c2 = true)

15’: c15 = new closure{15}

(c2 = false)

1’’: push(c1)

5’’: push(c56)

6’’: push(c56)

12’’: push(c12)

15’’: push(c15)

c = pop()

call c

while (!queue_empty())

BEGIN

END

5a: i’ = c->i

6b: j’ = c->j

BEGIN

5b: j’ = c->j

5c: partial_sum’ = c->partial_sum

5: use(i’, sum)

6: use2(sum, partial_sum’, i’, j’)

6c: partial_sum’ = c->partial_sum

return

BEGIN

END

12a: partial_sum’ = c->partial_sum

BEGIN

12: sum = sum + partial_sum’

return

END

1: sum = 0

return

END

15: use(sum)

return

Figure 31: After scalar queue conversion of the optimally renamed flow graph from Figure 30 and a pass of local
copy propagation there are neither any uses or definitions of variables i , j or partial sum in any of the closures
produced by scalar queue conversion.
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BEGIN

END

1: sum = 0

2: i = 0

3: partial_sum = 0

4: j = 0

5: i’ = i
use(i’, sum)

6: j’ = j
partial_sum’ = partial_sum

use2(sum, partial_sum’, i’, j’)

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

(c1 = true)

11: i = i + 1

(c1 = false)

7’: partial_sum’ = partial_sum

12: sum = sum + partial_sum’

13: c2 = cond2(i)

14: branch c2
(c2 = true)

15: use(sum)

(c2 = false)

Figure 30: We can “sink” the copy instruction in node
7’ out of the inner loop.

3: partial_sum = 0

6’: partial_sum’ = partial_sum

7: partial_sum = partial_sum + 1

6: use2(sum, partial_sum’, i’, j’)

7’: partial_sum’ = partial_sum

12: sum = sum + partial_sum’

Figure 32: Optimal unidirectional renaming introduces
additional opportunities for static renaming. The
du-chains for the variables partial sum and par-
tial sum’ have been cut in such a way that the du-
chains for partial sum’ actually form two indepen-
dent webs.

pare, for example, the du-chains for partial sumand
partial sum’ after optimal unidirectional renaming
(Figure 32) with the du-chains shown in Figure 23.
After optimal unidirectional renaming the chains for
partial sum’ actually form two independent webs,
and can thus be given different static names.

5 Extensions and Improvements to
Scalar Queue Conversion

Scalar queue conversion provides the basic mechanism
for renaming and rescheduling any unidirectional cut
of a single-entry single-exit value dependence graph.
In this chapter we discuss five practical extensions to
scalar queue conversion. In Section 5.1 we demonstrate
how to extend scalar queue conversion to single-entry
multiple-exit regions of a flow graph. A particularly
interesting feature of this extension is that it is also an
application of scalar queue conversion, because we use
scalar queue conversion itself to separate the multi-exit
region from its successors in the flow graph. Section 5.2
further demonstrates how to localize scalars to the clo-
sures created by scalar queue conversion thereby en-
abling concurrent execution.

Scalar queue conversion guarantees that we can
reschedule any unidirectional cut of the value depen-
dence graph. In Chapters 2, 3 and 4 we took a con-
servative view of memory dependences by inserting
edges in the value dependence graph for all load-
after-store, store-after-load and store-after-store depen-
dences. These, extra, conservative dependences may
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restrict the applicability of scalar queue conversion be-
cause they might create cycles in the value dependence
graph across what would otherwise be unidirectional
cuts. In Sections 5.3, 5.4 and 5.5 we discuss three meth-
ods of improving the quality of memory dependence
information in the value dependence graph, widening
the applicability of scalar queue conversion.

5.1 Restructuring Loops with Multiple Ex-
its

The scalar queue conversion transformation given in
Chapter 3 is described only in terms of single-entry
single-exit regions of flow graph. It turns out, how-
ever, that a single application of scalar queue conver-
sion to a single-exit region can be used to extract a mul-
tiple exit subloop of that region. The main intuition is
that scalar queue conversion makes the continuations of
each loop iteration explicit. That is, we can treat a re-
gion of code as a computation that, along with the rest
of the work it does, also explicitly computes a “next
program counter.”

Given a flow graph we can identify a natural loop
using standard techniques. Recall that a back edge in
the flow graph is any edge b → h where h dominates
b. Then h is called the loop header, b is called the loop
branch, and every reducible loop can be uniquely iden-
tified by its back edge. The natural loop associated with
a back edge is defined to be the set of nodes that can
reach b without going through h [4]. Further the loop
exits are exactly those edges x → y where node x is a
node in the loop and node y is a node outside the loop.

Consider the flow graph in Figure 33. Here the back
edge is the edge from node 8 to node 1. The natural
loop associated with that back edge is the set of nodes
{1, 2, 3, 5, 6, 7, 8}. The loop exits are the edge from node
3 to node 4 and the edge from node 8 to node 9.

Given a natural loop with more than one exit, we
transform that loop into a single exit loop, using a
stripped-down version of scalar queue conversion, as
follows. We create a variable, k, and initialize it to 0

at the top of the loop. We create a new loop branch b ′

that branches to the top of the loop if k = 0 and exits
the loop otherwise. Then for every loop exit x → y in
the original loop we redirect the edge as x → y ′ → b ′

where y ′ is a new node that sets k to the label of node y.
Finally, we insert a new node b ′′ after the exit from b ′

where b ′′ is a multiway branch that jumps to the label
stored in variable k.

This transforms the example flow graph as shown in
Figure 34. Node 1 ′ initializes the continuation variable
k . To exit from the loop nodes 3 and 8 now condition-
ally set k to the correct non-zero value and then go to
node 8 ′. Node 8 ′ is now the only loop exit, and ex-

BEGIN

END

0: i = 0

1: block 1

2: c1 = cond(i)

3: branch c1

4: block 4

(c1 = true)

5: block 5

(c1 = false)

9: block 9

6: i = i + 1

7: c2 = i < N

8: branch c2

(c2 = true)

(c2 = false)

Figure 33: The flow graph for a loop with multiple ex-
its.

33



BEGIN

END

0: i = 0

1’: k = 0

1: block 1

2: c1 = cond(i)

3: branch c1

4’: k = 4

(c1 = true)

5: block 5

(c1 = false)

8’: branch k

4: block 4

9: block 9

6: i = i + 1

7: c2 = i < N

8: branch c2

(c2 = true) 9’: k = 9

(c2 = false)

(k = 0)

8’’: jump k

(k != 0)

(k = 4)

(k = 9)

Figure 34: The loop of Figure 33 transformed so that it
has only a single exit.

its only when k is non-zero. Finally, when the loop is
exited, node 8 ′′ uses the value stored in the continua-
tion variable k to jump to the correct code, either block
4 or block 9, depending on whether node 3 or node 8

caused the loop to exit.
In the expected common case, where the loop is not

exited, control flows the same way it would have in
the original code. The continuation variable k is ini-
tialized to zero at the top of the loop iteration. Neither
loop exit is taken, so nodes 5, 6, 7 and 8 execute while
nodes 4 ′ and 9 ′ do not, and the value of k will be zero
when node 8 ′ is reached. Thus, node 8 ′ branches back
to node 1 ′ at the top of the loop.

A similar transformation has been implemented pre-
viously in the loop distribution phase of the IBM
PTRAN compiler [51]. The SUDS compiler implements
the additional optimization that in the frequently ob-
served case that all exit nodes xi exit to the same node
y along edges xi → y, then b ′ can simply exit to y and
the multiway branch b ′′ can be omitted. This optimiza-
tion is particularly desirable, because it allows the con-
tinuation variable, k to be treated as private to the loop
body during subsequent compiler phases.

5.2 Localization

We assume that each closure is given a unique activa-
tion record when it is invoked. This requires heap al-
location of activation records [71]. In practice this re-
quires only a straightforward change to the code gener-
ator, and produces code that is competitive with stack
allocated activation records [9]. In this section we de-
scribe how to localize scalars to a particular activa-
tion record. More specifically, we show that through
this localization process we can eliminate register stor-
age dependences between invocations of closures, en-
abling concurrent execution of the closures produced
by scalar queue conversion.

In Chapter 4 we noted that optimal unidirectional re-
naming tends to produce more static renaming oppor-
tunities. As a result it tends to be the case that few du-
chains flow between the closures produced by scalar
queue conversion. We take advantage of this by intro-
ducing a notion of scope and, when possible, assign
variables to a scope smaller than the entire program.
By scope we simply mean the lifetime of an activation
record, and thus we assign variables to scopes by asso-
ciating variables with activation records.

We follow the straightforward rules that

1. If all the nodes of the du-web for a particular vari-
able x fall into partition A of a unidirectional A-B
cut. Then x is assigned the scope associated with
the procedure containing the sliced flow graph for
A.
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2. If all the nodes of the du-web for a particular vari-
able x fall into the same procedure, βi, produced
by scalar queue conversion, then x is assigned the
scope associated with that procedure.

3. If the nodes of the du-web for a particular variable
x fall into different procedures, then x is assigned
the scope of B. (This is the scope containing the set
of procedures βi ⊂ B.)

Note that it is not necessary to have a global scope to
cover the case that some of the nodes of a du-web are
part of A and some part of B, because after unidirec-
tional renaming and scalar queue conversion each du-
web is guaranteed to be entirely contained on one side
of the cut or the other.

For example, consider Figure 31. In this case the
variables i , j and partial sum can be localized to
the procedure on the left. The variables i’ , j’ and
partial sum’ can be localized to the procedure cor-
responding to nodes 5 and 6. An independent version
of variable partial sum’ can be localized to the pro-
cedure corresponding to node 12. Finally, the variable
sum can be localized to the scope containing the set of
procedures on the right side of the figure.

The result of this localization process is the elimina-
tion of anti-dependences between different invocations
of the same procedure. For example, each closure for
the procedure corresponding to nodes 5 and 6 in Fig-
ure 31 will have its own, private, copies of variables i’ ,
j’ and partial sum’ in its own activation record,
and thus these closures can be invoked concurrently.

5.3 Equivalence Class Unification

Our current compiler uses a context-sensitive inter-
procedural pointer analysis [129, 97] to differentiate
between memory accesses to different data structures.
The result of the pointer analysis is a points-to set
for each load, store and call site in the flow graph.
The points-to set is a conservative list of all the possi-
ble allocation sites that could be responsible for allo-
cating the memory touched by the operation in ques-
tion. (Examples of “allocation sites” include points in
the flow graph that call the malloc() routine, decla-
rations of global aggregates, and declarations of any
global scalars that might be aliased.)

The points-to sets resulting from the pointer analy-
sis will be conservative in the sense that if the points-
to sets for two instructions do not intersect, then
the pointer analysis has proved that there is no situ-
ation under which the two instructions might access
the same memory location. As a result, we can re-
move from the value dependence graph any memory

dependence chain between instructions having non-
intersecting points-to sets.

This technique is now widely used in parallelizing
compilers whenever a decent pointer analysis is avail-
able [108, 14, 19].

5.4 Register Promotion

The renaming operations of scalar queue conversion
work only for unaliased scalar variables. It is often the
case, however, that in some region of code some invari-
ant pointer will be repeatedly loaded and stored. When
this is the case we can register promote [26, 79] the mem-
ory location to a scalar for the duration of the region.
Register promotion is a generalization/combination
of partial redundancy elimination and partial dead
code elimination, targeted at load and store operations.
When register promotion can be applied, especially
when it can be applied to loops, it turns memory ref-
erences into scalar references, which can then be re-
named and rescheduled by scalar queue conversion.

Consider the following example of summing an ar-
ray into a memory location (similar to an example
given by Cooper and Lu [26]):

*p = 0
for (i = 0; i < N; i++)

x = *p
pA = &A[i]
y = *pA
z = x + y
*p = z

If the pointer analysis can guarantee that p and pA
always point to different memory locations then we
know that (a) the pointer p is invariant during the exe-
cution of the loop and (b) memory references to the lo-
cation pointed to by pA will never interfere with mem-
ory references to the location pointed to by p.

Thus we can transform the code by allocating a “vir-
tual register” (scalar), rp , loading *p into rp before the
start of the loop, storing rp back to *p after the end of
the loop and replacing all references to *p inside the
loop with references to rp . The resulting code is:

*p = 0
rp = *p
for (i = 0; i < N; i++)

x = rp
pA = &A[i]
y = *pA
z = x + y
rp = z

*p = rp

This enables scalar queue conversion on the new
scalar variable rp .

The idea of using register promotion to improve par-
allelism has been previously investigated in [19].
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5.5 Scope Restriction

Scope restriction is an analysis performed at the front
end of the compiler that uses scoping information on
aggregates (arrays and structures) to restrict the live
ranges of the aggregates to the scope they were origi-
nally declared in. The front end passes this information
to the back end by changing the stack allocated data
structure into a heap allocated data structure, with a
call to a special version of malloc at the point where
the object comes in to scope, and a call to a special ver-
sion of free at the point(s) where the object goes out
of scope.

The back end is augmented so that when it generates
the reaching relation for memory dependence chains
it recognizes that the special version of free kills (i.e.,
does not pass) definitions and uses of the correspond-
ing pointer. Thus memory anti- and output- depen-
dence chains that otherwise would have reached back-
wards through loops can be eliminated before scalar
queue conversion. At code generation time if the calls
to matching versions of malloc and free are still in
the same procedure, then they can be turned back into
stack pointer increment/decrement operations.

This transformation relies on the programmer to de-
clare each aggregate in the innermost scope in which
it might be accessed. While this programmer behavior
is desirable, from a software engineering standpoint,
popular programming languages, like ANSI-C, have
only (relatively) recently started supporting automatic
allocation of aggregates. Thus, scope restriction is not
applicable to “dusty deck” codes. If it is desired to sup-
port parallelization of such programs then one should
consider incorporating an array privatization analysis
in the compiler [77, 82, 118].

6 Generalized Loop Distribution

In this chapter we describe how to apply scalar queue
conversion to enable a generalized form of loop dis-
tribution that can reschedule any region of code with
arbitrary control flow, including arbitrary looping con-
trol flow. The goal of loop distribution is to transform
the chosen region so that any externally visible changes
to machine state will occur in minimum time. Roughly
speaking, then, we begin by finding externally visible
state changes for the region in question, which we call
critical definitions. We then find the smallest partition
of the value dependence graph that includes the critical
node, yet still forms a unidirectional cut with its com-
plement. Finally we apply scalar queue conversion to
create a provably minimal (and hopefully small) piece
of code that performs only the work that cyclically de-
pends on the critical definition. For simplicity we will

present the transformation in terms of a single-entry
single-exit region, R, of the value dependence graph.
The transformation can be extended to multiple exit re-
gions by applying the transformation from Section 5.1.

Section 6.4 discusses the relationship of generalized
loop distribution to recurrences, (roughly speaking, re-
currences are loop carried dependences that are up-
dated with only a single associative operator (e.g., ad-
dition)). In particular, we demonstrate that generalized
loop distribution enables a broader class of recurrences
to be reassociated than can be handled with less pow-
erful scheduling techniques.

Loop distribution is closely related to a variety of re-
cently proposed scheduling techniques called “critical
path reductions.” Section 9.2 describes this relation-
ship, and how the generalized loop distribution tech-
nique also extends critical path reduction transforma-
tions.

6.1 Critical Paths

Consider again the example used throughout Chap-
ters 2 and 3, which we replicate in Figure 35 for ease
of reference. Roughly speaking, this loop has two loop
carried dependences, on the variables i and sum. The
other variables, (e.g., j , partial sum, c1 and c2 ) are
private to each loop iteration, and thus are not part of
the state changes visible external to the loop.

Following this intuitive distinction, we more con-
cretely identify the critical definitions of a region. We
do this by finding all uses (anywhere in the program)
such that at least one definition dR within the region
R reaches the use and at least one definition from out-
side the region dR̄ reaches the use. Then we call the
definition dR (the one inside region R) a critical defi-
nition. To reiterate, intuitively, the critical definitions
represent changes to the part of the state that is visible
from outside the region. Critical definitions represent
points inside the region at which that visible state is
changed. (As opposed to region (loop) invariant and
externally invisible (private) state).

For the region corresponding to the outer loop in Fig-
ure 35 the critical definitions are the nodes 11 and 12.
Nodes 5, 6, 9 and 11, for example, are reached both by
node 11 (inside the loop) and node 2 (outside the loop),
so node 11 is a critical definition for the loop. Likewise,
nodes 5, 6 and 12 are reached both by node 12 (inside
the loop) and node 1 (outside the loop), so node 12 is
also a critical definition for the loop.

Next we construct the critical node graph. The nodes
of the critical node graph are the critical definitions as
defined above. There is an edge in the critical node
graph between nodes d0 and d1 exactly when there is
a path from d0 to d1 in the value dependence graph.
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BEGIN

END

1: sum = 0

2: i = 0

3: partial_sum = 0

4: j = 0

5: use(i, sum)

6: use2(sum, partial_sum, i, j)

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

(c1 = true)

11: i = i + 1

(c1 = false)

12: sum = sum + partial_sum

13: c2 = cond2(i)

14: branch c2 (c2 = true)

15: use(sum)

(c2 = false)

Figure 35: The control flow graph of the example loop.
(This is the same as Figure 7, replicated here only for
ease of reference.)

11: i = i + 1

12: sum = sum + partial_sum

11: i = i + 1

12: sum = sum + partial_sum

Figure 36: The critical node graph (left) and the critical
node dag (right) for the outer loop of the flow graph in
Figure 35.

The critical node graph for the outer loop of the flow
graph from Figure 35 is shown on the left side of Fig-
ure 36. There is a critical node graph edge from node
11 to node 12 because there is a path in the dependence
graph 11 → 13 → 14 → 12. (The dependence from
node 14 to node 12 is a control dependence, while the
other edges in the path are due to scalar value depen-
dences.)

Finally, we construct the critical node dag by collaps-
ing cycles in the critical node graph. This isn’t strictly
necessary, but a cycle in the critical node graph repre-
sents a sequence of state changes that is mutually de-
pendent, and thus can’t be reordered. Thus we gain no
flexibility by not collapsing, and the collapsed result
is easier to deal with. Note that a dag is just a picto-
rial representation of a partial ordering. That is we say
that given two nodes a and b in the dag a < b if there
a path from a to b in the dag. This partial ordering
is well defined since there are no cycles in the critical
node dag. The critical node dag for the outer loop of
the flow graph from Figure 35 is shown on the right
side of Figure 36.

6.2 Unidirectional Cuts

We use the critical node dag to prioritize the instruc-
tions in the value dependence graph into a sequence of
unidirectional cuts (see Chapter 3). There will be twice
as many priorities as there are levels in the critical node
dag.

We start by giving each critical node a priority cor-
responding to its level in the critical node dag. Next,
for each critical node we find all nodes in the value de-
pendence graph that have a cyclic dependence with the
critical node. That is, given critical node d and node
n, if there is a path from d to n in the value depen-
dence graph and a path from n to d in the value de-
pendence graph, then we give n the same priority as
d. For example, in the loop in Figure 35 the cyclic path
11 → 13 → 14 → 11 in the value dependence graph
indicates that nodes 13 and 14 form a cycle with the
critical node 11.

All remaining nodes will receive priorities between
the critical node priorities. That is, for each node n find
the critical node dbelow with the highest priority, such that
there is a path from n to dbelow in the value dependence
graph. Then give n a priority higher than dbelow’s prior-
ity, but just lower than the priority of dbelow’s parent.

For example, in Figure 35 node 12 depends on node
7. Node 7, in turn, is dependent on nodes 3, 4, 7, 8,
9 and 10. (There exists, for example, the dependence
path 4 → 8 → 9 → 10 → 7.) None of these nodes has
a path in the value dependence graph leading to any
of nodes 11, 13 or 14. Thus we give nodes 3, 4, 7, 8, 9
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11: i = i + 1

13: c2 = cond2(i)

14: branch c2

3: partial_sum = 0

4: j = 0

7: partial_sum = partial_sum + 1

8: j = next(j)

9: c1 = cond1(i, j)

10: branch c1

12: sum = sum + partial_sum

5: use(i, sum)6: use2(sum, partial_sum, i, j)

Figure 37: The Prioritization of the nodes in the outer
loop of the flow graph in Figure 35.

and 10 a priority between the priority of node 11 and
the priority of node 12. The prioritization of the nodes
from the outer loop of the flow graph of Figure 35 is
shown in Figure 37.

More generally one can also solve the dual problem:
find the critical node dabove with the lowest priority such
that there is a path from dabove to n, and then give n

any priority between that of dabove and dbelow. Note that
for any node n with cyclic dependences with a criti-
cal node dcrit it is the case that dabove = dbelow = dcrit, and
thus the priority of these nodes will be set consistently
with the above criteria. In the transformation described
below, it will turn out that cross-priority dependence
edges are more expensive to handle than dependence
edges within a priority, and the dual information could
be used, in combination with a maxflow/mincut al-
gorithm to minimize the number of cross-priority de-
pendence edges. This will be investigated in future
work. In any case both the primal and dual problems
can be individually solved by a simple dataflow analy-
sis based on depth-first search. The implemented algo-
rithm uses only the primal information.

6.3 Transformation

For each priority we have a unidirectional cut from the
higher priorities to this priority and those below. Thus
we perform scalar queue conversion on each priority
(from the bottom up) to complete our code transfor-
mation.

There are, however, two subtleties. The first is that
as we perform scalar queue conversion on a unidirec-
tional A-B cut we must place instructions to create, and
fill, closures into the graph of partition A for each max-
imally connected group βi ⊂ B. The question then
arises as to which priority the closure creation and fill
instructions for each maximal group should belong to.
We solve this problem by running the prioritization
algorithm from Section 6.2 on the instructions intro-
duced by each pass of scalar queue conversion. Note
that because we are working with unidirectional cuts
we never introduce nodes that can “undo” any of the
priority decisions we have already made.

The second, practical, problem is that we are trying
to use loop distribution to schedule concurrency. That
concurrency exists in the non-critical priority groups
produced by the prioritization scheme in Section 6.2.
The problem is that the concurrency we have exposed
is between iterations of the outer loop that we are dis-
tributing. Thus we would like to create a thread for
each outer loop iteration, even if that thread invokes
many closures. We solve this problem by running
scalar queue conversion twice for the non-critical pri-
ority groups.
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BEGIN

END

1: sum = 0
i = 0

3: q0 = new queue
partial_sum = 0
j = 0
c57 = malloc(20)
c57->k = 5
c57->i = i
c57->sum = sum
c57->j = j
c57->partial_sum = partial_sum

q0.push(c57)

7: partial_sum = partial_sum + 1
j = next(j)
c1 = cond1(i, j)

branch c1

11: i = i + 1
sum = sum + partial_sum
c2 = cond2(i)
invoke q0
free q0

branch c2

(c1 = false)

6’: c67 = malloc(12)
c67->k = 6
c67->j = j
c67->partial_sum = partial_sum

q0.push(c67)

(c1 = true)

(c2 = true)

15: use(sum)

(c2 = false)

BEGIN

END

5: i’ = c->i
sum’ = c->sum
use(i’, sum’)

6: j’ = c->j
partial_sum’ = c->partial_sum
use2(sum’, partial_sum’, i’, j’)

return

Figure 38: The example loop after using scalar queue conversion to move the lowest priority group (nodes 5 and 6)
to the bottom of the loop body.
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In the first pass we run scalar queue conversion with
respect to the loop body (i.e., not including the loop
backedge). This packages the entire work done for that
priority group in each iteration into a deferred execu-
tion queue (one deferred execution queue per itera-
tion), which is then invoked. Figure 38 shows the re-
sults of performing this scalar queue conversion on the
lowest priority group (nodes 5 and 6) of the example
loop. A deferred execution queue (q0) is created, and
the correct closures are pushed on to q0 to perform the
low priority work from the entire inner loop of a single
iteration of the outer loop.

In the second pass we run scalar queue conversion
with respect to the entire loop (including the loop
backedge). This creates a second deferred execution
queue with one closure per loop iteration. The closures
in this deferred execution queue can be invoked in par-
allel because the prioritization analysis from Section 6.2
has already determined that there are no dependences
between these closures. This second transformation is
shown in Figure 39. A deferred execution queue (q1)
is created. The closures (c13 ) on this queue receive the
deferred execution queue, q0 , created in the first pass
as a parameter. Then after the loop exits, the closures
on deferred execution queue q1 can be invoked in con-
currently.

Figure 40 shows the result of running scalar queue
conversion on the lower priority critical path. Note that
while the original critical path consisted only of the
node “12: sum = sum + partial sum,” the pri-
oritization algorithm has determined that the closure
filling operation “c57->sum = sum ” must be sched-
uled at the same priority. Thus a pointer to the c57
closure is passed as a parameter to the c12 closure so
that c12 can fill in the current value of the sumvariable
before it is modified.

Figure 41 shows the end result of running general-
ized loop distribution. After another two passes of
scalar queue conversion the work corresponding to the
inner loop of the original code has been moved into
a deferred execution queue, q3 , the closures of which
can be invoked concurrently.

6.4 Generalized Recurrence Reassociation

A common problem in the doubly nested loops that
are handled by the generalized loop distribution algo-
rithm described in Sections 6.1, 6.2 and 6.3 is that criti-
cal paths (loop carried dependences) of the outer loop
will often also contain nodes in the inner loop. Since
critical paths represent cycles in the code that must be
run sequentially, we would like to reduce the length of
these paths when ever possible.

This section describes how we leverage generalized

loop distribution to shorten critical paths when the up-
date operator in the critical path is associative.8 When
the update operator is associative we can often trans-
form the code to make the dependence graph more
“treelike.”

Consider the following code:

for ( int i = 0; i < N; i++)
for ( int j = 0; j < M; j++)

use(sum)
sum = sum + f[i][j]

The loop carried dependent variable sum is tradition-
ally called a recurrence [68]. The critical path for
this recurrence contains the instruction “sum = sum
+ f[i][j] ” in the inner loop. Using a combination of
static renaming and forward substitution [68] we will
demonstrate that because the update operator here is
associative we can move this critical node out of the
inner loop, into the outer loop.

Briefly, recurrence reassociation introduces a tempo-
rary variable that sums the values in the inner loop,
and then adds the temporary to the original recurrence
variable only in the outer loop. This transformation
produces the following code:

for ( int i = 0; i < N; i++)
int partial_sum = 0
for ( int j = 0; j < M; j++)

use(sum + partial_sum)
partial_sum = partial_sum + f[i][j]

sum = sum + partial_sum

Note that we have simultaneously introduced the tem-
porary variable partial sum and forward substi-
tuted the expression sum + partial sum into the in-
ner loop statement use(sum) , creating the new inner
loop statement use(sum + partial sum) .

The basic idea is that while any scheduling algo-
rithm has to honor all the value dependences, gener-
alized loop distribution, with scalar queue conversion,
will eliminate all the anti-dependences. Thus recur-
rence reassociation takes advantage of operation as-
sociativity to turn loop-carried true-dependences into
anti-dependences. Generalized loop distribution then
eliminates the anti-dependence during scheduling.

In this context we define reassociatable recurrence vari-
ables to be loop-carried true-dependences that are mod-
ified only with a single associative operator. Note, in
particular that in the example sum is both used and
modified inside the inner loop, but is still considered
to be a recurrence variable. Figure 42 shows sum’s de-
pendence pattern.

8The most common associative operator is addition. Associative
operators are binary operators with the property that (a + b) + c =
a + (b + c). Other common programming operators having this
property are multiplication, “max” and “min.”
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BEGIN

END

1: sum = 0
i = 0
q1 = new queue

3: q0 = new queue
partial_sum = 0
j = 0
c57 = malloc(20)
c57->k = 5
c57->i = i
c57->sum = sum
c57->j = j
c57->partial_sum = partial_sum

q0.push(c57)

7: partial_sum = partial_sum + 1
j = next(j)
c1 = cond1(i, j)

branch c1

11: i = i + 1
sum = sum + partial_sum
c2 = cond2(i)
c13 = malloc(8)
c13->k = 13
c13->q0 = q0
q1.push(c13)

branch c2

(c1 = false)

6’: c67 = malloc(12)
c67->k = 6
c67->j = j
c67->partial_sum = partial_sum

q0.push(c67)

(c1 = true)

(c2 = true)

15: par_invoke q1
free q1

use(sum)

(c2 = false)

BEGIN

END

5: i’ = c->i
sum’ = c->sum
use(i’, sum’)

6: j’ = c->j
partial_sum’ = c->partial_sum
use2(sum’, partial_sum’, i’, j’)

return

BEGIN

END

13: invoke c->q0
    free c->q0

return

Figure 39: The example loop after a second use of scalar queue conversion to move the lowest priority group (nodes
5 and 6) out of the loop.
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BEGIN

END

1: sum = 0
i = 0
q1 = new queue
q2 = new queue

BEGIN

3: q0 = new queue
partial_sum = 0
j = 0
c57 = malloc(20)
c57->k = 5
c57->i = i
c57->j = j
c57->partial_sum = partial_sum

q0.push(c57)

7: partial_sum = partial_sum + 1
j = next(j)
c1 = cond1(i, j)

branch c1

11: i = i + 1
c12 = malloc(12)
c12->k = 12
c12->c57 = c57
c12->partial_sum = partial_sum
q2.push(c12)
c2 = cond2(i)
c13 = malloc(8)
c13->k = 13
c13->q0 = q0
q1.push(c13)

branch c2

(c1 = false)

6’: c67 = malloc(12)
c67->k = 6
c67->j = j
c67->partial_sum = partial_sum

q0.push(c67)

(c1 = true)

(c2 = true)

15: invoke q2
free q2
par_invoke q1
free q1

use(sum)

(c2 = false)

BEGIN

END

5: i’ = c->i
sum’ = c->sum
use(i’, sum’)

6: j’ = c->j
partial_sum’ = c->partial_sum
use2(sum’, partial_sum’, i’, j’)

return

BEGIN

END

13: invoke c->q0
    free c->q0

return

END

12: c57’ = c->c57
partial_sum’ = c->partial_sum
c57’->sum = sum
sum = sum + partial_sum’

return

Figure 40: The example loop after using scalar queue conversion to move the lower priority critical path (corre-
sponding to node 12) out of the loop. Note that a pointer to the c57 closure (which initializes sum’ ) is passed as a
parameter to the closure c12 so that c12 can fill in the current value of the sum variable before it is modified.
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BEGIN

END

1: sum = 0
i = 0
q1 = new queue
q2 = new queue
q3 = new queue

11: c12 = malloc(12)
c13 = malloc(8)
c3 = malloc(16)
c3->k = 3
c3->i = i
c3->c12 = c12
c3->c13 = c13
q3.push(c3)
i = i + 1
q2.push(c12)
c2 = cond2(i)
q1.push(c13)

branch c2

(c2 = true)

15: par_invoke q3
free q3
invoke q2
free q2
par_invoke q1
free q1

use(sum)

(c2 = false)

BEGIN

END

3: i’ = c->i
c12’ = c->c12
c13’ = c->c13
q0 = new queue
partial_sum = 0
j = 0
c57 = malloc(20)
c57->k = 5
c57->i = i’
c57->j = j
c57->partial_sum = partial_sum

q0.push(c57)

7: partial_sum = partial_sum + 1
j = next(j)
c1 = cond1(i’, j)

branch c1

11: c12’->k = 12
c12’->c57 = c57
c12’->partial_sum = partial_sum
c13’->k = 13
c13’->q0 = q0

return

(c1 = false)

6’: c67 = malloc(12)
c67->k = 6
c67->j = j
c67->partial_sum = partial_sum

q0.push(c67)

(c1 = true)

BEGIN

BEGIN

END

5: i’ = c->i
sum’ = c->sum
use(i’, sum’)

6: j’ = c->j
partial_sum’ = c->partial_sum
use2(sum’, partial_sum’, i’, j’)

return

END

13: invoke c->q0
    free c->q0

return

BEGIN

END

12: c57’ = c->c57
partial_sum’ = c->partial_sum
c57’->sum = sum
sum = sum + partial_sum’

return

Figure 41: The example loop after using scalar queue conversion to reschedule and move the group 3, 4, 7, 8, 9 and
10 out of the loop. The outer loop of the original flow graph corresponds to the flow graph in the lower left corner of
the figure. The inner loop of the original flow graph corresponds to the flow graph in the upper right of the figure.
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Figure 42: The dynamic dependence graph between
updates to the sum recurrence variable in the original
code.

j

i

Figure 43: The dynamic dependence graph between
updates to the sum variable after recurrence reassoci-
ation has been performed.

In the example, shown above, a temporary, par-
tial sum has been introduced above the inner loop.
Each use of sum has been converted to a use of sum
+ partial sum. The update of sum in the inner loop
has been changed to an update of partial sum and
finally, partial sum is added to sum after the inner
loop is finished. At first glance it would appear that
we have not improved the situation. But in fact, we
are no longer modifying the variable sum in the inner
loop. From the perspective of the outer loop, this sep-
arates the modification of sum from its use. Figure 43
shows how sum’s dependence pattern has changed.

Traditionally, reassociatable recurrence variables are
considered to be those that are

1. Loop-carried true-dependences.

2. Updated only with a single associative operator
(e.g., plus, times or max).

3. Unused except in the update operation(s) [68].

The simultaneous application of static renaming and for-
ward substitution described above allows the third re-
quirement to be circumvented in the case that we want
to move a critical update out of an inner loop.

7 SUDS: The Software Un-Do Sys-
tem

Since scalar queue conversion can only break scalar
anti- and output- dependences, additional solutions
are required to parallelize around memory depen-
dences. The transformations described in Chapter 5
are a necessary component to solving the memory de-
pendence problem, but they are not sufficient. More
specifically, any transformation that relies only on in-
formation available at compile time can not legally re-
move edges from the memory dependence graph that
are only usually irrelevant.

In this chapter we describe SUDS, the Software Un-
Do System, which speculatively eliminates edges from
the dependence graph. Informally, SUDS checkpoints
the machine state and then runs a piece of code that has
been parallelized assuming that certain dependences
“don’t matter.” Once the code is done running SUDS
checks that the parallel execution produced a result
consistent with sequential semantics. If the result is
found to be consistent, SUDS commits the changes and
continues. If the result is found inconsistent, SUDS
rolls back execution to the last checkpoint and re-runs
the code sequentially.

As shown in Figure 44, SUDS partitions Raw’s tiles
into two groups. Some portion of the tiles are des-
ignated as compute nodes. The rest are designated as
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Figure 44: An example of how SUDS allocates re-
sources on a 72 tile Raw machine. The 64 gray tiles
are memory nodes. The 8 white tiles, approximately
in the middle, are worker nodes, the gray hatched tile
near the center is the master node. Loop carried de-
pendences are forwarded between compute nodes in
the pattern shown with the arrow.

memory nodes. One of the compute nodes is designated
as the master node, the rest are designated as workers
and sit in a dispatch loop waiting for commands from
the master. The master node is responsible for running
all the sequential code.

SUDS parallelizes loops by cyclically distributing the
loop iterations across the compute nodes. We call the
set of iterations running in parallel a speculative strip.
Each compute node runs the loop iterations assigned
to it, and then all the nodes synchronize through the
master node.

In the next section we describe speculative strip min-
ing, the technique SUDS uses to checkpoint and run a
portion of a loop. In Section 7.2 we describe the SUDS
runtime system component that efficiently checks the
correctness of a particular parallel execution.

7.1 Speculative Strip Mining

Speculative strip mining is the technique SUDS uses
to checkpoint and run a portion of a loop. Like tra-
ditional strip mining techniques [1], speculative strip
mining turns a loop into a doubly nested loop, where
each invocation of the newly created inner loop iterates
a fixed number of times.

Speculative strip mining differs from traditional
strip mining in that it generates the control structure
shown in Figure 46. After the transformation, the outer
loop body starts by checkpointing machine state. Then
a speculative strip of 32 iterations are run. This inner
loop is the loop that generalized loop distribution will
be applied to, and that the SUDS system will try to run
speculatively and in parallel.

A new variable, error , is introduced that is used
to keep track of any misspeculation that might happen
during the speculative strip. This variable can get set
in any of three ways. First, the speculative strip runs
for exactly 32 iterations. If during any one of those 32
iterations the loop condition variable, c , becomes set,
then, semantically, the inner loop should have exited
in fewer than 32 iterations, and thus the error variable
gets set. Second, the error variable is implicitly set if
any of the memory operations sent to the SUDS mem-
ory dependence speculation system (described below)
are found to have executed out of order. Third the er-
ror variable will be set if any of the dynamic memory
allocation operations (those introduced by generalized
loop distribution) fail because of an out of memory
condition.

After the speculative strip runs, the error condi-
tion is checked. If it is not set (hopefully the com-
mon case), then the outer loop iteration is finished, and
a new outer loop iteration will start. The process of
checkpointing, running a speculative strip, and check-
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do
(LOOP BODY)

while !c

Figure 45: An arbitrary loop.

do
checkpoint machine state
error = false
for i = 0; i < 32; i++

(LOOP BODY)
error |= c

if (error)
roll back to checkpointed state
for i = 0; (i < 32) && !c; i++

(LOOP BODY)
while !c

Figure 46: The same loop after speculative strip mining. Ma-
chine state is checkpointed. A strip of 32 iterations is run. Af-
ter the strip completes the error variable is checked. It run-
ning the strip caused any kind of misspeculation, (early exit from
the loop, out-of-order memory access or a deferred execution
queue dynamic memory allocation error), then machine state is
rolled back to the checkpoint, and the original code is run non-
speculatively for up to 32 iterations to get past the misspecula-
tion point.

ing the error condition will be repeated. If, on the
other hand, the error condition is set, then the code
rolls back to the checkpointed state, and a different copy
of the inner loop is run.

In this case, the inner loop runs the original (unop-
timized) loop body code. This “nonspeculative strip”
runs for at most 32 iterations, but unlike the specula-
tive strip, this strip runs sequentially and the original
loop conditional, c , is checked on every iteration for
early exit. Since generalized loop distribution is not
applied, the nonspeculative strip can not take an out-
of-memory exception (unless the semantics of the orig-
inal code would have done so). Since the loop is run
sequentially, the memory operations can not execute
out-of-order.

Speculative strip mining, as described here, works
only on loops with a single exit. If we wish to apply
speculative strip mining to a loop with multiple ex-
its then the transformation from Section 5.1 is applied
first. Note that speculative strip mining assumes that
the loop conditional, c will be false if the loop is to con-
tinue, and non-false if the loop is to exit. The trans-
formation from Section 5.1, which turns multiple exit
loops into single exit loops, produces condition vari-
ables that have this property. If the loop was single
exit to begin with, and has a loop conditional with the
opposite boolean sense, then a new loop conditional
must be introduced, before applying speculative strip
mining.

The “checkpoints” that speculative strip mining in-
troduces need to be handled carefully. There are two
parts to this. The first has to do with “checkpoint-

ing” the memory state of the machine. The memory
state is typically enormous, and checkpointing the en-
tire memory would be too costly. What the SUDS mem-
ory dependence speculation system (described below)
does instead, is to log all of the modifications to mem-
ory requested during the speculative strip. Then, if
rollback is required, the log is “run backwards” to re-
store the original memory state. If, after running the
speculative strip, rollback is not required, then the log
is erased and reused.

The second part of checkpointing has to do with the
register (scalar) state of the machine. Speculative strip
mining makes a copy of every scalar whose state might
visibly change during the running of the speculative
strip. But, these variables are exactly the “loop car-
ried dependences” that generalized loop distribution
recognizes in its critical path analysis. Thus specula-
tive strip mining performs the critical definition anal-
ysis described in Section 6.1. Any scalars identified as
critical during this analysis are copied into temporaries
before the speculative strip. If rollback is required the
values in the temporaries are copied back to the origi-
nal scalars. If the speculative strip runs with no errors
the temporaries are discarded.

Speculative strip mining allows generalized loop
distribution to legally introduce dynamic memory al-
locations into the program. Because all memory opera-
tions are logged during a speculative strip, and spec-
ulative strip mining also makes copies of the (visi-
ble) register state, any dynamic memory allocation er-
ror introduced by generalized loop distribution can be
fixed. This checkpoint/repair mechanism allows a sec-
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data memory:

last_read:

last_written:

Figure 47: A conceptual view of Basic Timestamp Or-
dering. Associated with every memory location is a
pair of timestamps that indicate the logical time at
which the location was last read and written.

ond, important, performance optimization. Because all
memory operations are logged, we can speculatively
execute memory operations out-of-order. Thus, after
speculative strip mining, and before generalized loop
distribution, we remove from the value dependence
graph all of the memory dependences that are carried
on the outer loop. These memory dependences can be
removed from the value dependence graph by gener-
ating reaching information for memory operations on
the region flow graph for the loop body, with the loop
back edge removed.

In addition to logging memory operations, if mem-
ory operations are issued out-of-order, then the mem-
ory access pattern must also be checked. The SUDS
runtime memory dependence speculation system does
this logging and checking. The memory dependence
speculation system is described in the next section.

7.2 Memory Dependence Speculation

The memory dependence speculation system is in
some ways the core of the system. It is the fallback
dependence mechanism that works in all cases, even
if the compiler cannot analyze a particular variable.
Since only a portion of the dependences in a program
can be proved by the compiler to be privatizable or
loop carried dependences, a substantial fraction of the
total memory traffic will be directed through the mem-
ory dependence speculation system. As such it is nec-
essary to minimize the latency of this subsystem.

7.2.1 A Conceptual View

The method we use to validate memory dependence
correctness is based on Basic Timestamp Ordering [15],
a traditional transaction processing concurrency con-
trol mechanism. A conceptual view of the proto-
col is given in Figure 47. Each memory location
has two timestamps associated with it, one indicat-
ing the last time a location was read (last read ) and
one indicating the last time a location was written

timestamp
cache

log

data
memory

addr: data

last_reader
last_writer

tag

hash_entry

checkpoint
data

addr

hash

node_id

compare

Figure 48: Data structures used by the memory depen-
dence speculation subsystem.

(last written ). In addition, the memory is check-
pointed at the beginning of each speculative strip so
that modifications can be rolled back in the case of an
abort.

The validation protocol works as follows. As each
load request arrives, its timestamp (read time ) is
compared to the last written stamp for its memory
location. If read time ≥ last written then the load
is in-order and last read is updated to read time ,
otherwise the system flags a miss-speculation and
aborts the current speculative strip.

On a store request, the timestamp (write time ) is
compared first to the last read stamp for its memory
location. If write time ≥ last read then the store is
in-order, otherwise the system flags a miss-speculation
and aborts the current speculative strip.

We have implemented an optimization on store re-
quests that is known as the Thomas Write Rule [15].
This is basically the observation that if write time
< last written then the value being stored by the
current request has been logically over-written with-
out ever having been consumed, so the request can
be ignored. If write time ≥ last written then
the store is in-order and last written is updated as
write time .

7.2.2 A Realizable View

We can’t dedicate such a substantial amount of mem-
ory to the speculation system, so the system is actu-
ally implemented using a hash table. As shown in Fig-
ure 48, each processing element that is dedicated as a
memory dependence node contains three data struc-
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Operation Cost
Send from compute node 1
Network latency 4 + distance
Memory node 8
Network latency 4 + distance
Receive on compute node 2
Total 19 + 2 × distance

Figure 49: The round trip cost for a load operation is
19 cycles + 2 times the manhattan distance between the
compute and memory node. The load operation also
incurs additional occupancy of up to 40 cycles on the
memory node after the data value is sent back to the
compute node.

tures in its local memory. The first is an array that is
dedicated to storing actual program values. The next
is a small hash table that is used as a timestamp cache
to validate the absence of memory conflicts. Finally,
the log contains a list of the hash entries that are in use
and the original data value from each memory location
that has been modified. At the end of each specula-
tive strip the log is used to either commit the most re-
cent changes permanently to memory, or to roll back to
the memory state from the beginning of the speculative
strip.

The fact that SUDS synchronizes the processing el-
ements between each speculative strip permits us to
simplify the implementation of the validation protocol.
In particular, the synchronization point can be used to
commit or roll back the logs and reset the timestamp
to 0. Because the timestamp is reset we can use the re-
quester’s physical node-id as the timestamp for each
incoming memory request.

In addition, the relatively frequent log cleaning
means that at any point in time there are only a small
number of memory locations that have a non-zero
timestamp. To avoid wasting enormous amounts of
memory space storing 0 timestamps, we cache the ac-
tive timestamps in a relatively small hash table. Each
hash table entry contains a pair of last read and
last written timestamps and a cache-tag to indicate
which memory location owns the hash entry.

As each memory request arrives, its address is
hashed. If there is a hash conflict with a different ad-
dress, the validation mechanism conservatively flags
a miss-speculation and aborts the current speculative
strip. If there is no hash conflict the timestamp order-
ing mechanism is invoked as described above.

Log entries only need to be created the first time one
of the threads in a speculative strip touches a memory
location, at the same time an empty hash entry is al-

located. Future references to the same memory loca-
tion do not need to be logged, as the original memory
value has already been copied to the log. Because we
are storing the most current value in the memory itself,
commits are cheaper, and we are able to implement a
fast path for load operations. Before going through the
validation process, a load request fetches the required
data and returns it to the requester. The resulting la-
tency at the memory node is only 8 cycles as shown
in Figure 49. The validation process happens after the
data has been returned, and occupies the memory node
for an additional 14 to 40 cycles, depending on whether
a log entry needs to be created.

In the common case the speculative strip completes
without suffering a miss-speculation. At the synchro-
nization point at the end of the speculative strip, each
memory node is responsible for cleaning its logs and
hash tables. It does this by walking through the en-
tire log and deallocating the associated hash entry. The
deallocation is done by resetting the timestamps in the
associated hash entry to 0. This costs 5 cycles per mem-
ory location that was touched during the speculative
strip.

If a miss-speculation is discovered during the execu-
tion of a speculative strip, then the speculative strip is
aborted and a consistent state must be restored. Each
memory node is responsible for rolling back its log to
the consistent memory state at the end of the previous
strip. This is accomplished by walking through the en-
tire log, copying the checkpointed memory value back
to its original memory location. The hash tables are
cleaned at the same time. Rollback costs 11 cycles per
memory location that was touched during the specula-
tive strip.

The synchronization between speculative strips
helps in a second way. Hash table entries are only
deleted in bulk, during the commit or rollback phases.
Thus, we are guaranteed that between synchronization
points the hash table will only receive insertion and
lookup requests. As a result, the hash table can be im-
plemented using open addressing with double hash-
ing [65]. (That is, if a hash of a key produces a con-
flict, then we deterministically rehash the key until we
find an open entry). The SUDS implementation does
up to sixteen rehashes. Open addressing with double
hashing has the properties that it avoids the costs of
linked list traversal but still keeps the average number
of hashes low.9

9For example, when the hash table is half full, the average number
of rehashes will be 1 and the probability of not finding an open entry
within sixteen rehashes will be 1

65536
.
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7.2.3 Implementation

The SUDS memory dependence speculation system is
designed to run on Raw microprocessors [123]. A
Raw microprocessor can roughly be described as a
single-chip, distributed-memory multiprocessor. Un-
like traditional distributed-memory multiprocessors,
however, the Raw design is singularly focused around
providing low-latency, register-level communication
between the processing units (which we call tiles).
In particular, the semantics of the network and net-
work interface are carefully designed to remove mes-
sage dispatch overheads [74, 115] and deadlock avoid-
ance/recovery overheads [67] from the critical path.
Because of these considerations, a single-word data
message can be sent from one tile to a neighboring tile,
and dispatched, in under six 4.44ns machine cycles.

Each Raw tile contains an eight-stage single-issue
RISC microprocessor, about 96 Kbyte of SRAM caches,
an interface to the on-chip interconnect, and one of
the interconnect routers. The tiles on each chip are ar-
ranged in a two-dimensional mesh, or grid, similar to
the structure shown in Figure 44. While each tile con-
tains a general-purpose RISC microprocessor pipeline,
it is sometimes more appropriate to view this micro-
processor as a deeply pipelined programmable microcon-
troller for a set of hardware resources that include an
ALU and some SRAM memory. This, in any case, is
the view I adopted for the implementation of the SUDS
memory dependence speculation system.

As shown in Figure 44, SUDS partitions Raw’s tiles
into two groups. Some portion of the tiles are des-
ignated as compute nodes. The rest are designated as
dedicated memory nodes. The memory nodes work to-
gether to implement a logically shared memory on top
of Raw’s physically distributed memory. Each time a
compute node wishes to make a memory request from
the logically shared memory it injects a message into
the on-chip interconnect directed at the memory node
that owns the corresponding memory address. The
owner is determined by a simple xor-based hash of the
address, similar to that used in some L1 caches [46].
Thus, if there are 64 tiles dedicated as memory nodes,
the logically shared memory can be viewed as being
banked 64 ways.

After the request is injected, it travels through Raw’s
on-chip interconnect at one machine cycle per hop (ex-
cept when the message turns, which takes two machine
cycles). Messages are handled, at their destination, in
the order they are received, and atomically. The Raw
network interface provides support so that if, when a
request arrives, the tile processor is still busy process-
ing a previously received request, the new request is

queued in a small buffer local to the destination tile.10

Protocol replies are sent on a network logically distinct
from that used to send protocol requests, and storage
to sink reply messages is preallocated before requests
are made, so the communication protocol is guaran-
teed not to deadlock [67].

The hand optimized code at the memory node uses
the header of each arriving request to dispatch to the
appropriate request handler in just two cycles in the
case of a load request, and seven cycles for store re-
quests or control messages. The dispatch loop and load
request handler are optimized to minimize load reply
latency, at the expense of slightly poorer overall band-
width. The load handler thus accesses the requested
memory location and injects the data reply message
to the requesting compute node before accessing the
timestamp cache or log. As a result, the total end-to-
end latency observed by a compute node making a
load request is 19 machine cycles + 2x the manhattan
distance between the compute node and the memory
node. (Unless there is contention at the memory node
or the memory node takes a cache miss while accessing
the requested memory location).

Consider, for example, the 72 node Raw system
shown in Figure 44, and assume the 225MHz clock
speed of the existing Raw prototype. The end-to-end
memory latency would be between 21 and 39 4.44ns
machine cycles, or between 93ns and 174ns. If we as-
sume that each Raw tile has a 64Kbyte data cache, then
the effective size of the logically shared memory ac-
cessible with this latency is about 4Mbytes. (Actually,
slightly less, since the data cache on each memory tile
is used to store the timestamp cache and log in addition
to any memory locations accessed.)

Given that half to three-fourths of this latency (be-
tween 44ns and 125ns) is in Raw’s highly tuned in-
terconnect, it is difficult to imagine that a dedicated,
custom designed, cache controller could deliver signif-
icantly lower latency in this technology.

A dedicated, custom designed, cache controller
might, however, deliver higher bandwidth. Each
transaction handled by the SUDS memory dependence
speculation protocol requires access to, at least, one 64-
bit timestamp cache entry, one 64-bit log entry, and a
32-bit data memory access. One might improve the
transaction rate by accessing these data structures si-
multaneously. In addition, each transaction must make
at least four decisions in the timestamp cache, based on
the requested address and timestamp. (Two of these
decisions are to check that the correct hash entry has

10Raw’s network provides flow-control support so that if a des-
tination node becomes heavily contended the sending nodes can
be stalled without either dropping packets or deadlocking the net-
work [33, 32].
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been found, the other two are for timestamp compar-
isons). One might additionally improve the transaction
rate by simultaneously generating, and dispatching on,
these conditions.

Even without these optimizations, the SUDS mem-
ory dependence speculation system delivers sufficient
(although in no way superb) bandwidth. In the cur-
rent system each of the eight worker nodes is allowed
at most four outstanding store operations or one out-
standing load operation. Thus there can be at most
thirty-two requests simultaneously active in the sixty-
four memory banks. The maximum probability of ob-
serving contention latency at a memory bank is thus
less than 50%. Each transaction generates a total of be-
tween 22 and 53 machine cycles of work at the mem-
ory node (including the cost of commit), depending on
whether or not a timestamp cache entry needs to be al-
located during the request. Thus, the SUDS memory
dependence speculation system can deliver an average
throughput of better than one transaction per machine
cycle.

7.2.4 The Birthday Paradox

This section explains a fundamental limit of paral-
lelism on essentially randomly generated dependence
graphs (such as one sees in many sparse matrix al-
gorithms). The limitation basically boils down to the
“birthday paradox” argument that with only 23 people
in a room, the probability that some pair of them have
the same birthday is greater than 50%.11 As demon-
strated here, the same argument shows that a memory
dependence speculation system can expect to achieve
a maximum speedup proportional to 3

√
n when ran-

domly updating a data structure of size n.
Suppose we have b different processors, each of

which is updating a randomly chosen array element,
Bi ∈ 1 . . . n. What is the probability that every proces-
sor updates a different array element?

We have n ways of choosing the first array element,
n − 1 ways of choosing the second array element, so
that it is different from the first, n − 2 ways of choos-
ing the third array element so that it is different than
the first two, and so on. Thus there are n!

(n−b)!
ways

of assigning n array elements to b processors, so that
the updates do not interfere. Yet there are a total of
nb ways of assigning n array elements to b processors
randomly. Thus the probability, p, that all b accesses
are non-interfering is

p =
n!

nb(n − b)!
. (2)

11The origin of the birthday paradox is obscure. Feller [39] cites a
paper by R. von Mises, circa 1938, but Knuth [65], believes that it was
probably known well before this.
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Figure 50: Speedup curves for speculatively paralleliz-
ing a loop that randomly updates elements of an ar-
ray of length n as we change the number of processors
that are running in parallel. The stars show the points
at which parallelism equals 3

√
n, as described in Equa-

tion 6.

Let us optimistically assume that, if a sequential pro-
cessor can run b iterations in time b, that running in
parallel on b processors, we can run b iterations in time
1 if none of the accesses conflict (which occurs with
probability p), and time 1 + b if there is an access con-
flict (which occurs with probability 1−p). The average
speedup, S, will be

S =
b

p + (1− p)(1 + b)
=

b

1+ b(1− p)
. (3)

Note that the assumption that each speculative strip
of parallel work is rerun from the beginning on mis-
speculation, rather than from the point of failure, af-
fects the result only by a small constant factor, since
the point of failure will, on average, be about halfway
into the speculative strip.

Speedup curves for a variety of n are shown in Fig-
ure 50. As b varies on the x axis, the speedup increases
nearly linearly to some optimal point, but then falls off
dramatically as the probability of conflicting iterations
starts to increase.

Now let us find the point at which speedup is maxi-
mized as a function of b. This will occur when dS/db =

0. We work this out as follows. Let v = 1 + b(1 − p).
Then S = b/v,

dv

db
= −b

dp

db
+ 1− p,
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dS

db
=

v− b dv
db

v2

=
1− b dv

db
+ b(1− p)

(1+ b(1− p))2

=
1+ b2 dp

db

(1+ b(1− p))2
.

Setting dS/db = 0 yields

dp

db
=
−1

b2
. (4)

Equation 2 defines p using factorials, an integer func-
tion for which the derivative is not well defined. But
we can approximate dp/db by recalling the definition
of the derivative.12 We examine the function (p(b+h)−

p(b))/h. Letting h = 1 we get:

dp

db
≈ p(b + 1) − p(b)

=
n!

nb+1(n − (b + 1))!
−

n!

nb(n − b)!

=
−bn!

nnb(n − b)!

=
−b

n
p.

Solving this differential equation yields

p ≈ e−b
2/2n. (5)

Combining the condition on dp/db given by Equa-
tion 4 with this approximation we get

−1

b2
=
−be−b

2/2n

n
,

or
b3 = neb

2/2n.

Let us approximate the solution to this equation as
b∗ = c 3

√
n. The error from this approximation is

n(c3 − ec
2/(2 3

√
n)). If c = 1 then the error is negative

for all n > 0. For c > 1 note that the error is positive
whenever c3 > ec

2/(2 3
√
n), or taking logarithms, when

n > c6/8(ln c3)3. If c = e1/6 ≈ 1.18136 then the error
is positive for all n > e. Thus for all n > e,

3
√

n ≤ b∗ ≤ 1.19 3
√

n. (6)

This approximation is demonstrated in Figure 50,
with stars placed at the optimal points, as calculated by
Equation 6. Every time the array size is multiplied by
a factor of 8, the maximum parallelism increases by a
factor of only 2. The intuition behind this cubic result is
that as b increases, the probability of success decreases
approximately proportional to b2 while the cost of fail-
ure increases approximately as b.

12I am indebted to my father, David L. Frank, for suggesting this
approach.

7.3 Discussion

Another way to think about a speculative concurrency
control system is to break it into two subsystems. The
first subsystem is the checkpoint repair mechanism.
The second subsystem checks that a particular concur-
rent execution produced a result consistent with a se-
quential ordering of the program. In the SUDS system,
the log provides checkpoint repair functionality, while
the timestamp cache performs concurrency checking.

Section 7.2.4 discussed the fundamental limits inher-
ent to any system that uses speculation to discover
concurrency in essentially randomly generated depen-
dence graphs. This section describes two implemen-
tation choices made with respect to the design of the
SUDS log and the qualitative impact those implemen-
tation choices had on system performance. First, the
log implements a bulk commit mechanism instead of
a rolling commit mechanism. Second, the log design
permits only a single version of each memory location
to exist at any one time, rather than a more sophisti-
cated approach where multiple values may be stored
simultaneously at a particular memory location.

The impact of several other design and implementa-
tion choices is discussed in Chapters 8 and 10. One
of the main themes of Chapter 8 involves an imple-
mentation mistake with regard to the caching struc-
ture implemented above the SUDS system. In fact, the
SUDS concurrency control subsystem is designed in
such a way that implementing a better cache above
SUDS would have been particularly easy, and Chap-
ter 8 explains why I failed to do so. Chapter 10 dis-
cusses a longer term issue having to do with flat ver-
sus nested transaction models. In particular SUDS,
like all existing memory dependence speculation and
thread level speculation systems implements an inher-
ently flat transaction model. Chapter 10 explains why
I believe that future concurrent computer architectures
will require nested transaction models.

Bulk Commit

The SUDS log is designed in such a way that commit
only happens, in bulk, at the end of a speculative strip.
Many other memory dependence speculation systems,
especially those based directly on Franklin and Sohi’s
Multiscalar Address Resolution Buffer [43, 44], permit
commits to occur on a rolling basis. That is, Multiscalar
systems contain an implicit “commit token” that is
passed from thread to thread as each completes. When
a thread receives the token, the log entries correspond-
ing to that thread are committed and flushed. Thus,
in Multiscalar systems, the log commit operations oc-
cur concurrently with program execution, as long as no
misspeculations occur.
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SUDS, in contrast, runs a set of threads correspond-
ing to a speculative strip, and then barrier synchronizes
the entire system before committing the logs. The cost
of this barrier synchronization step is not overlapped
with program execution, and one might worry that the
synchronization cost could overwhelm speedup gains.
A simple implementation trick, however, amortizes the
synchronization cost across several thread invocations,
making the effective cost nearly irrelevant. The trick is
that, in the SUDS implementation, a speculative strip
contains four times as many threads as there are exe-
cution units in the system (thirty-two versus eight). As
a result, the runtime system only needs to synchronize
one-fourth as often, and the synchronization costs are
significantly amortized.

While the cost of bulk synchronization is easily
amortized, the benefit is substantial. In particular, the
work required for log entry allocation and garbage col-
lection becomes nearly trivial. In SUDS, log entries
are allocated from a memory buffer in-order (with re-
spect to the arrival of write requests). This can be ac-
complished simply by incrementing a pointer into this
buffer. Deallocation of buffer entries is even more triv-
ial. The pointer is just reset to point to the beginning of
the buffer.

With a rolling commit scheme, on the other hand, log
entries would be committed in a different order than
they were received. Thus the log manager either needs
to keep log entries sorted in timestamp order, or else
deallocation creates “holes” in the log buffer, forcing
the log manager to keep and manage an explicit free
list.

Single Version Concurrency Control

The second design choice with respect to the SUDS log
is that the SUDS concurrency control system is based
on basic timestamp ordering [15], and thus makes only
a single version of each memory location available at
any time. Memory dependence speculation systems
based on the Multiscalar Address Resolution Buffer,
in contrast, essentially implement multiversion times-
tamp ordering [94].

This choice involves a tradeoff. On the one hand,
multiversion timestamp ordering is capable of break-
ing the memory anti-dependence between a load and
the following store to the same memory location. On
the other hand, since there may be multiple versions
associated with each memory location, each load oper-
ation must now perform an associative lookup to find
the appropriate value.

The empirical question, then, becomes the relative
importance of load latency to the cost of flagging some
memory anti-dependences as misspeculations. Load

latency is almost always on the critical path, and is
particularly important in the SUDS runtime, since ev-
ery load operation goes through the software imple-
mented concurrency control system. How frequent,
then, are memory anti-dependences between threads
in the same speculative strip?

The key empirical observation is that most short-
term memory anti-dependences are caused by the stack al-
location of activation frames, (rather than heap alloca-
tion). That is, if two “threads” are using the same
stack pointer, then register spills by the two threads
will target the same memory locations. Most contem-
porary computer systems allocate activation frames on
a stack, rather than the heap, because stacks provide
slightly lower cost deallocation than does a garbage
collected heap [9]. The SUDS compiler allocates acti-
vation frames on the heap, rather than a stack, simply
because it was the most natural thing to do in a com-
piler that was already closure converting.13 Thus, in
the SUDS system every thread in the speculative strip
gets its own, distinct, activation frame, and register
spills between threads never conflict.

This separation of concerns between concurrency
control, on the one hand, and memory renaming, on
the other, enables the SUDS memory system to imple-
ment a particularly low latency path for loads. The
SUDS log is specifically, and only, a mechanism for un-
doing store operations. That is, for each store opera-
tion, the store writes directly to memory, and the pre-
vious value at that memory location is stored in the log
so that the store can be “backed out,” if necessary. Thus
load operations can read values directly from the mem-
ory without touching the log at all.

Caching

Finally, we note the relationship of the SUDS concur-
rency control mechanism to caching. Unlike other pro-
posals for memory dependence speculation systems,
SUDS does not integrate the concurrency control mech-
anism with the cache coherence mechanism. More
specifically, the SUDS concurrency control system sits
below the level of the cache coherence protocol in the
sense that it assumes requests for each particular mem-
ory location arrive in a globally consistent order. Thus
decisions about caching can be made almost indepen-
dently of the concurrency control mechanism. The
caveat is that most caching mechanisms are imple-
mented at the level of multi-word cache lines, while the
SUDS concurrency control mechanism is implemented
at the level of individual memory words.

13“We should forget about small efficiencies, say about 97% of the
time: premature optimization is the root of all evil,” Knuth, Comput-
ing Surveys, 6(4), 1974.
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8 Putting It All Together

In this chapter we describe how all of the parts de-
scribed in Chapters 3 through 7 fit together in the con-
text of a working prototype SUDS system. The proto-
type system is described in Section 8.1. Section 8.2 de-
scribes, in some detail, several case studies of the use
of generalized loop distribution to find concurrency.

SUDS is designed to run on Raw microprocessors.
A Raw microprocessor can roughly be described as a
single-chip, distributed-memory multiprocessor. Un-
like traditional distributed-memory multiprocessors,
however, the Raw design is singularly focused around
providing low-latency, register-level communication
between the processing units (which we call tiles).
In particular, the semantics of the network and net-
work interface are carefully designed to remove mes-
sage dispatch overheads [74, 115] and deadlock avoid-
ance/recovery overheads [67] from the critical path.
Because of these considerations, a single-word data
message can be sent from one tile to a neighboring tile,
and dispatched, in under six 4.44ns machine cycles.

As reported elsewhere [113, 114], each Raw chip con-
tains a 4 by 4 array of tiles; multiple chips can be com-
posed to create systems as large as 32 by 32 tiles. A
complete prototype single chip Raw system, running
at 225 MHz, has been operational since February 2003.
The processor was designed and implemented at MIT
over a period of six years by a team that included sev-
eral dozen students and staff members (although there
were probably never more than a dozen people on the
project at any one time). The processor was fabricated
by IBM in their 0.15 micron SA-27E ASIC process.

8.1 Simulation System

We wanted to understand the properties of SUDS in
the context of systems with sizes of 72 tiles, rather than
the 16 available in the hardware prototype. Thus, the
results in this thesis were generated on a system level
simulator of the Raw microprocessor, called usstdl .14

The simulator is both relatively fast, allowing us to
run big programs with large data sets, and accurate,
providing cycle counts that are within about 10% of
the cycle counts provided by the hardware prototype.
(usstdl is more than 100x faster than the completely
cycle accurate behavioral model used by the hardware
designers).

There are a few minor functional differences be-
tween the simulator and the hardware prototype. First,

14The name usstdl is an acronym for “Unified SUDS Simulator
and Transactional Data Library,” because (for no particularly good
reason) both the simulator and library are checked in to the same
subtree of the local version control system.

the simulator does not model interconnect network
contention. This is of little consequence to the results
reported here, since the total message traffic in the sys-
tem is sufficiently low compared to the available net-
work bandwidth on the prototype. Although the sim-
ulator does not simulate contention inside the intercon-
nect, it does simulate contention at the network inter-
faces to the tile processors.

The second functional difference between usstdl
and the hardware prototype is the addition of a second
set of load/store instructions. These instructions make
it possible to compile, and use, the C library routines
(e.g., strcpy() ) so that they will work with either ar-
rays stored in the local memory of a tile, or in the SUDS
logically-shared, speculative memory described in Sec-
tion 7.2.2 and 7.2.3.

These load/store instructions work as follows. They
examine the high bit of the requested address. If that
bit is a 0, then the the request is destined for one of
the software-based memory nodes described in Sec-
tion 7.2.3. For these requests the machine constructs,
and sends, an appropriate message to the memory
node, with the same instruction latencies that would be
experienced if the message were constructed in software on
the hardware prototype. This variety of load instruction
(called “glw ”) does not have a destination register. In-
stead, the requested data is returned by a message ar-
riving in the register-mapped network interface.

The code generator is thus designed so that, when-
ever the semantics of a load instruction are required,
two instructions are generated. The first instruction is
a glw instruction, which has one register operand spec-
ifying the address to be loaded. The second instruction
copies the result out of the network interface register
to one of the general purpose registers. (Raw’s net-
work interface registers are designed so that accesses
to a register stall the processor until a message arrives
in that register).

If the high bit of the address in a glw instruction is a
1, on the other hand, then the address is accessed from
the tile’s local data cache and the data is fed back to
the network input register as if a data message had ar-
rived from the interconnect. Because of this function-
ality, loads and stores in the C library can be compiled
using glw and gsw instructions, instead of the normal
load and store instructions. As a result, library routines
can access data from both the local data cache or from
the logically shared memory without recompilation.

Since the latency of local loads is somewhat higher
when a library is compiled with this scheme, the C li-
brary routines are slightly slower when running under
SUDS than they are when running on a conventional
microprocessor. On the other hand, the convenience of
not having to compile multiple versions of the library,
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and then determine which version should be used in
each circumstance amply makes up for the small loss
in performance. (Consider, for example, the strcpy
routine from the C library. Without the glw and gsw in-
structions we would have to compile four different ver-
sions, one for each possible combination of the source
and destination strings being in remote memory or on
the local stack. Worse, we would then need to deter-
mine, for each call, where the two parameters were lo-
cated, which would require whole program analysis.)

The final, and most important, functional difference
between usstdl and the Raw hardware prototype is
the addition of a set of eight additional dedicated reg-
isters for receiving messages from Raw’s dynamic net-
work. Each message header includes an index into this
register file, and when a message arrives it is directed
to the register corresponding to that index. This sim-
ply extends the “zero-cycle” message dispatch concept
from Raw’s other networks so that it works with the
particular network that is used by SUDS [115]. (The
Raw hardware prototype implements zero-cycle mes-
sage dispatch on its “static” network, but not on the
“dynamic” network that SUDS uses).

Microarchitecturally, adding zero-cycle dispatch to
Raw’s dynamic network would be a straightforward
change, in that it involves changes only in the reg-
ister fetch stage of the local tile processor pipelines.
From a performance standpoint, on the other hand, this
change was critical. For example, Section 7.2 gave a
breakdown of the 21 cycle round trip cost of perform-
ing a load in the SUDS speculative transactional mem-
ory system. Without usstdl ’s zero-cycle message dis-
patch support, the critical path cost of performing a
load increases by more than 12 cycles. This greater
than 50% cost increase for each message received at the
compute nodes is due entirely to the cost of message
dispatching in software. Without zero-cycle dispatch
the 2 to 3x SUDS speedup numbers reported below
would be impossible to achieve. Instead SUDS would
get slowdowns.

Programs running with the SUDS system are paral-
lelized by a prototype SUIF based compiler that out-
puts SPMD style C code. The transformations per-
formed by this compiler are described in Chapters 3,
4, 5, 6 and 7. The resulting code is compiled for the in-
dividual Raw tiles using gcc version 2.8.1 with the -O3
flag. Raw single-tile assembly code is similar to MIPS
assembly code, so our version of the gcc code genera-
tor is a modified version of the standard gcc MIPS code
generator.

Comparison Systems

For comparison purposes I implemented simulators
for two additional systems. The first is a baseline,
single-issue 8-stage pipelined RISC processor with a
MIPS ISA (similar to a single Raw tile). Programs are
compiled directly to this system using the MIPS ver-
sion of gcc 2.8.1 with the -O3 flag. The second compar-
ison system is an eight-way issue superscalar running
an idealized version of Tomasulo’s algorithm. This
processor also has a MIPS ISA and programs are com-
piled directly to the system using the MIPS version of
gcc 2.8.1 with the -O3 flag.

The superscalar simulation is “idealized” in the
sense that (a) the trace-fetch mechanism permits traces
to be contained in multiple arbitrary cache lines (i.e.,
the instruction cache is arbitrarily multi-ported), (b) the
processor has an effectively infinite set of physical reg-
isters, (c) the processor has an effectively infinite set
of functional units and (d) the processor has “perfect”
zero-latency and infinite bandwidth, bypass networks,
scheduling windows and register-file write back paths.
The four ways in which the comparison superscalar is
not idealized are (a) it is limited to fetching a trace of
at most eight instructions per cycle, (b) a branch mis-
prediction causes fetch to stall for two cycles, (c) the in-
struction scheduler obeys register value dependences
and (d) only a single data store operation can occur in
each cycle. The store buffer implements load bypassing
of stores with forwarding. The cache to memory inter-
face permits an effectively infinite number of simulta-
neous overlapping cache misses. Both the baseline, in-
order, and comparison, out-of-order, models use a 32
Kbit gshare branch predictor.

Memory Systems

The memory systems for the baseline (in-order) and
comparison (out-of-order) processors include a 4-way
associative 64KByte combined I&D L1, 4 MByte L2
with 12 cycle latency and 50 cycle cost for L2 misses to
DRAM. The memory system for the SUDS simulations
is less idealized.

For the SUDS simulations we use a 72-tile Raw mi-
croprocessor. Eight of these tiles are dedicated as
“workers” and the other sixty-four are dedicated as
“memory nodes.” Each of the worker tiles has a 4-
way associative 64Kbyte combined I&D L1 cache that
is used only for caching instructions and thread-local
stacks.

In the SUDS system the sixty-four memory tiles
work together, as described in Section 7.2.2, to provide
a logically shared, speculative, L2 cache accessible to
the eight worker nodes. Since this L2 cache is imple-
mented in software on the sixty-four memory nodes, it
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has an effective size of slightly less than 64×64Kbyte =
4 MBytes. This is because the instructions for the mem-
ory dependence speculation software, the hash table
data structures, and the log data structures, all com-
pete for use of the 64Kbyte SRAM cache local to each
memory tile. In the SUDS simulations L1 cache misses
are assumed to take 50 cycles (this is equivalent to the
L2 cache miss penalty for the baseline and superscalar
systems).

As described, above and in Section 7.2.2, the worker
nodes do not cache potentially shared data in their lo-
cal L1 caches. Rather every access to potentially shared
data is forced to undergo the relatively expensive pro-
cess of remotely accessing the software based memory
dependence mechanism on one of the memory nodes.
usstdl simulates every aspect of this process in full
detail.

I chose all of these parameters simply because I was
trying to see whether, in the context of a large and com-
plex system, generalized loop distribution was making
a difference. In all cases I have tried to bias the re-
sults slightly toward the superscalar. The superscalar’s
4 Mbyte L2 cache is of similar size to the 4 Mbytes of
cache collectively available on the SUDS memory sys-
tem, thus any particular program has about the same
off-chip miss rates on both systems. The L2 cache la-
tency on the superscalar is lower (by a factor of almost
two) than the minimum latency of a SUDS access to
the software based memory dependence system. The
superscalar L2 cache bandwidth is effectively unlim-
ited, while the SUDS logically shared L2 cache has 64
banks, each of which is limited (by the software based
protocol) to servicing approximately one request every
53 cycles (see Section 7.2.3).

Both systems can fetch at most eight useful, user-
program, instructions per cycle. The superscalar model
is permitted to issue, dispatch, and execute an ef-
fectively unlimited number of operations each cy-
cle. usstdl accurately simulates the eight in-order
pipelines that SUDS has at its disposal. The scalar
operand matching/bypass network on the superscalar
has no latency. usstdl accurately models the inter-
connect latencies of the implemented Raw hardware
prototype.

The superscalar model automatically, and in zero cy-
cles, renames every scalar in to an effectively infinite
and zero-latency physical register file. The SUDS sys-
tem renames, in software, into the deferred execution
queues created by the loop distribution compiler pass.
These queues are stored in the L1 caches of the worker
nodes, must be accessed by load and store instructions,
and can even suffer cache misses.

The same back end code generator is used for both
systems (gcc 2.8.1) and is, at least, decent. Even this,

however, slightly favors the superscalar since the glw
and gsw instructions are inserted by the parallelizing
compiler as volatile gcc inline assembly directives. The
semantics of these directives are unknown to the gcc
back end, and thus somewhat restrict the compiler’s
ability to optimize or reorder code.

I have tried, for every architectural parameter that
I could think of, to either model that parameter the
same way (e.g., off chip memory access latency), or
to bias the comparison towards the idealism of Toma-
sulo’s algorithm and against the realistically imple-
mentable version of Raw and SUDS. The Raw group
at MIT has demonstrated that the Raw hardware pro-
totype, in IBM’s SA-27E ASIC process, can be clocked
at 225 MHz. It is doubtful whether the idealized su-
perscalar could be clocked at a similar rate, especially
given the (zero-cycle) latency chosen for its scalar by-
pass network.

Thus I feel justified in making the qualitative claim
that, when running the same program under the ide-
alized superscalar model and under SUDS on the
usstdl simulator, then if the two runs have similar cy-
cle counts, generalized loop distribution is finding at least
as much concurrency, if not more, than does Tomasulo’s al-
gorithm. In fact, for two out of the three programs dis-
cussed below, the result is unequivocal, because the cy-
cle counts for SUDS are better than the cycle counts for
the idealized version of Tomasulo’s algorithm.

8.2 Case Studies

This section describes how generalized loop distribu-
tion, the SUDS speculation system, and the other trans-
formations described in this thesis interact in the con-
text of three applications. We describe the application
of generalized loop distribution to a molecular dynam-
ics simulation program, a decompression program and
a program that makes heavy use of recursion.

8.2.1 Moldyn

Moldyn is a molecular dynamics simulation, originally
written by Shamik Sharma [102], that is difficult to par-
allelize without speculation support. Rather than cal-
culate all O(N2) pairwise force calculations every itera-
tion, Moldyn only performs force calculations between
particles that are within some cutoff distance of one an-
other (Figure 51). The result is that only O(N) force
calculations need to be performed every iteration.

The original version of Moldyn recalculated all
O(N2) intermolecular distances every 20 iterations.
This made it impossible to run the program on any rea-
sonably large data set. We rewrote the distance calcu-
lation routine so that it would also run in O(N) time.
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ComputeForces ( vector <particle> molecules,
real cutoffRadius)

epot = 0.0
foreach m in molecules

foreach m’ in m.neighbors()
if (distance(m, m’) < cutoffRadiusSquare)

force_t force = calc_force(m, m’)
m.force += force
m’.force -= force
epot += calc_epot(m, m’)

return epot

Figure 51: Pseudocode for ComputeForces , the Mol-
dyn routine for computing intermolecular forces. The
neighbor sets are calculated every 20th iteration by call-
ing the BuildNeigh routine (Figure 52).

BuildNeigh ( vector <list <int >> adjLists,
vector <particle> molecules,
real cutoffRadius)

vector <list <particle>> boxes

foreach m in molecules
int mBox = box_of(m.position())
boxes[mBox].push_back(m)

foreach m in molecules
int mBox = box_of(m.position())
foreach box in adjLists[mBox]

foreach m’ in box
if (distance(m, m’) <

(cutoffRadius * TOLERANCE))
m.neighbors().push_back(m’);

Figure 52: Pseudocode for BuildNeigh , the Moldyn
routine for recalculating the set of interacting particles.
adjLists is a pre-calculated list of the boxes adjacent
to each box.

This is accomplished by chopping the space up into
boxes that are slightly larger than the cutoff distance,
and only calculating distances between particles in ad-
jacent boxes (Figure 52). This improved the speed of
the application on a standard workstation by three or-
ders of magnitude.

Generalized loop distribution and SUDS can paral-
lelize each of the outer loops (those labeled “foreach
m in molecules ” in Figures 51 and 52). Although
the ComputeForces routine accounts for more than
90% of program runtime on a standard workstation,
each loop has different characteristics when run in par-
allel, and it is thus instructive to observe the behavior
of the other two loops as well.

The first loop in the BuildNeigh routine moves
through the array of molecules quickly. For each
molecule it simply calculates which box the molecule
belongs in, and then updates one element of the (rel-
atively small) boxes array. This loop does not paral-
lelize well on the SUDS system because updates to the
boxes array have a relatively high probability of con-
flicting when run in parallel.

The second loop in the BuildNeigh routine is
actually embarrassingly parallel, although potential
pointer aliasing makes it difficult for the compiler to
prove that this loop is parallel. (The list data struc-
tures, “m.neighbors() ,” are dynamically allocated,
individually, at the same program point, and thus the
pointer analysis package we are using puts them in
the same equivalence class). SUDS, on the other hand,
handles the pointer problem by speculatively sending
the pointer references to the memory nodes for resolu-
tion. Since none of the pointer references actually con-
flict, the system never needs to roll back, and this loop
achieves scalable speedups.

The ComputeForces routine consumes the major-
ity of the runtime in the program. For large problem
sizes, the molecules array will be very large, while
the number of updates per molecule stays constant, so
the probability of two parallel iterations of the outer
loop updating the same element of the molecules ar-
ray is relatively small. Unfortunately, while this loop
parallelizes well up to about a dozen compute nodes,
speedup falls off for larger numbers of compute nodes
because of the birthday paradox problem with memory
dependence speculation described in Section 7.2.4. (Re-
call that this is a fundamental limitation of data specu-
lation systems, not one unique to the SUDS system.)

Despite its small size and seemingly straight-
forward structure, parallelization of the Compute-
Forces routine required nearly every compiler trans-
formation and analysis described in Chapters 5, 6 and
7. The recurrence on the epot variable is reassociated
as described in Section 6.4. The memory accesses for
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Figure 53: Comparison of speedups over an inorder
pipeline for Moldyn running on SUDS versus a super-
scalar.

the updates specified by the statement “m.force +=
force ” are register promoted to the outer loop, as de-
scribed in Section 5.4. Equivalence class unification
(Section 5.3) is used to discover that there is no mem-
ory dependence between the distance and force calcu-
lations (which require the position of each molecule),
and the updates to the force vector associated with
each molecule.

Speculative strip mining (Section 7.1) speculatively
breaks the (true) memory dependences between outer
loop iterations caused by the force updates. Finally,
generalized loop distribution (Section 6) finds two crit-
ical nodes in the outer loop. One critical node corre-
sponds to the “index variable” mand the other corre-
sponds to the reassociated updates of the epot vari-
able. The memory dependences between iterations of
the outer loop are (speculatively) removed by spec-
ulative strip mining, so generalized loop distribution
identifies the rest of the work in the outer loop (the dis-
tance and force calculations and force updates) as par-
allelizable.

Figure 53 shows the speedups of running Moldyn
with an input dataset of 256,000 particles on SUDS and
the idealized superscalar. The baseline in order MIPS
R4000 design achieves an average of only 0.223 instruc-
tions per cycle (IPC). This is largely due to poor L1
cache behavior. As is common with many numeri-
cal/scientific workloads, the working set of this pro-
gram is considerably larger than the caches. Thus
the program gets cache miss rates of about 5% during
BuildNeigh and 3% during ComputeForces .

The idealized superscalar design achieves an IPC of
about 0.705, or about 3.16x speedup over the single is-
sue in-order processor. This improvement is achieved
largely because the superscalar is able to overlap useful
work with some of the cache miss latency.

The SUDS system achieves a speedup of about 3.38x
over the single issue in-order processor. This despite
the fact that on the superscalar more than 95% of mem-
ory accesses are to the L1 cache, while in the SUDS sys-
tem only about one third of the memory accesses are
to stack-allocatable values that can be stored in the L1.
The other two thirds of the SUDS memory accesses are
routed directly to the logically shared L2 cache, and the
SUDS L2 cache is roughly 2x slower than the super-
scalar L2 cache, because it is implemented in software.
Thus, we can conclude that the SUDS system is, some-

how, managing to overlap a great deal more work with
the long latency memory operations than is the ideal-
ized superscalar.

The key to understanding the difference lies in a
closer examination of the doubly nested loops that
consume most of the program running time. In both
cases the number of times that the innermost loop
will execute is almost completely unpredictable. Thus,
even though the prediction rate for this loop branch
is very high (greater than 99%) the superscalar will
take a branch misprediction during almost every it-
eration of the outer loop. The superscalar is thus re-
stricted to finding parallelism in the inner loop, while
the SUDS system exploits parallelism in the outer loop.
In fact, the conditional inside the ComputeForces
loop makes things even worse for the superscalar. This
branch is not particularly predictable, and thus the su-
perscalar is restricted to looking for parallelism over
only a relatively small number of iterations of the inner
loop. The SUDS system is finding more concurrency
largely because it is able to exploit the control indepen-
dence of the outer loop upon the inner loop branches.

8.2.2 LZW Decompress

Compression is a technique for reducing the cost of
transmitting and storing data. An example is the LZW
compression/decompression algorithm [126], widely
used in modems, graphics file formats and file com-
pression utilities. Example pseudocode for the version
of LZW decompress used in the Unix compress utility
is shown in Figure 54. Each iteration of the outer loop
reads a symbol from the input data stream, and tra-
verses an adaptive tree data structure to output a (vari-
able length) output string corresponding to the input
symbol.

Note that the input data stream has been engineered
to remove redundant (easy to predict) patterns. Thus,
while the branch prediction rate for any particular
static branch is relatively good, the probability of per-
forming an entire iteration of the outer loop without
any branch mispredictions is close to 0. As a result,
Tomasulo’s algorithm is limited to searching for con-
currency in a relatively small window of instructions.

Generalized loop distribution and memory depen-
dence speculation, on the other hand, can be used to
search for concurrency between iterations of the outer
loop. The structure of this loop is much more complex
than is that of the program described in the previous
section, and thus a considerable amount of analysis
and transformation needed to be done to expose this
outer-loop concurrency.

First, several of the scalar variables (e.g., outptr )
are globals and one is a call-by-reference parameter
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outptr = 0
incode = getcode(&input_buf)
while ( incode > EOF )

int stackp = 0
code_int code = incode
char_type the_stack[1<<BITS]

if (incode == CLEAR)
free_ent = FIRST
if (check_error(&input_buf))

break; /* untimely death! */
incode = getcode(&input_buf);

/* Special case for KwKwK string. */
if ( code >= free_ent )

the_stack[stackp] = finchar
stackp = stackp + 1
code = oldcode

/* Generate output characters
in reverse order */

while ( code >= 256 )
the_stack[stackp] = tab_suffix[code]
stackp = stackp + 1
code = tab_prefix[code]

the_stack[stackp] = tab_suffix[code]
stackp = stackp + 1

/* And put them out in forward order */
do

stackp = stackp - 1
out_stream[outptr] = the_stack[stackp]
outptr = outptr + 1

while ( stackp > 0 )

/* Generate the new tree entry. */
if ( free_ent < maxcode )

tab_prefix[free_ent] = oldcode
tab_suffix[free_ent] = tab_suffix[code]
free_ent = free_ent + 1
if (check_error(&input_buf)

break; /* untimely death! */

finchar = tab_suffix[code]
oldcode = incode
incode = getcode(&input_buf)

Figure 54: Pseudocode for lzw decompress.

(input buf ). Since these scalars would normally be
referenced through loop carried dependent loads and
stores, they must be register promoted before general-
ized loop distribution runs. The input buf variable
is referenced inside the getcode subroutine, and thus
to enable register promotion, this subroutine needed to
be inlined.

The local array variable, the stack , must be pri-
vatized. In this case the array privatization is per-
formed using the scope restriction technique described
in Section 5.5. The equivalence class unification (Sec-
tion 5.3) analysis proves that memory accesses to
the tab prefix , tab suffix and out stream data
structures are mutually independent.

Both the tab prefix and tab suffix data struc-
tures are read and written in a data-dependent fash-
ion during every iteration of the outer loop. This cre-
ates true memory dependences between iterations of
the outer loop. Speculative strip mining and mem-
ory dependence speculation are used to dynamically
break these dependences when the data-dependent ac-
cess pattern allows it.

Next the outptr recurrence variable is reassociated,
because it is updated with an associative operator in
the second inner loop. Recall that this variable was
originally a global, and thus register promotion has al-
ready been run to turn the references from memory op-
erations into register accesses.

Finally, generalized loop distribution finds six criti-
cal nodes in the loop. These correspond to updates to
the variables incode , finchar , outptr , oldcode ,
free ent and input buf . When collapsing to the
critical node dag we discover that the updates to in-
code , input buf , and free ent form a cyclic critical
path. The updates to these variables are “intertwined”
in the sense that they depend upon one another. in-
code is data dependent on input buf (through the
getcode routine). The updates to input buf , in turn,
are control dependent on the outer loop branch, which
is data dependent upon incode . Control dependences
form a cycle between free ent and incode .

Generalized loop distribution thus creates four se-
quential loops corresponding to the four cyclic critical
paths. The first sequential loop updates incode , in-
put buf and free ent , and creates deferred execu-
tion queues for all subsequent loops. The second se-
quential loop corresponds to updating oldcode .

The next loop can be (speculatively) parallelized,
and corresponds to evaluating the parts of the first
inner loop and the conditional for the “special case”
that updates the, private, code and stackp variables,
and to the conditional updates to tab prefix and
tab suffix .

The third sequential loop corresponds to updating
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Figure 55: Comparison of speedups over an inorder
pipeline for lzw running on SUDS versus a super-
scalar.

finchar . This is followed by another parallelizable
loop that corresponds to all the updates to the private
array, the stack . The iterations of this loop are prov-
ably independent of one another, but the code in this
loop has also been reordered with respect to the up-
dates to tab suffix performed in the previous spec-
ulatively parallel loop. This is what makes speculative
strip mining necessary. Both parallel loops are part of
the same strip, so the reordering of the code between
the two loop bodies can be checked and, if necessary,
corrected.

The fourth sequential loop corresponds to updat-
ing outptr . This enables the final parallelizable loop,
which corresponds to the writes to out stream .

Figure 55 shows the speedups for the idealized su-
perscalar and for SUDS compared to running lzw de-
compress on the in-order single-issue pipeline. Nei-
ther system does particularly well. The superscalar
only achieves a speedup of 2x, while SUDS achieves
a speedup of 1.8x. Again the superscalar is limited by
its inability to predict past the exits of the inner loops.

Generalized loop distribution actually finds a great
deal more concurrency in this case than does the ide-
alized version of Tomasulo’s algorithm. On the other
hand, this code is particularly memory intensive, and,
on the in-order microprocessor, almost all of these
memory operations hit in the L1 cache. The SUDS
memory dependence speculation system, on the other
hand, dramatically increases the latency of access-
ing the tab prefix and tab suffix data structures.
While generalized loop distribution is finding enough
concurrency to cover a substantial portion of this ad-
ditional latency, it is not finding quite enough to com-
pletely make up for the lack of L1 caching in this case.

8.2.3 A Recursive Procedure

Recursive procedural calls are another way of organiz-
ing the control flow in a program. Procedural calls,
however, are semantically equivalent to jumps, and
thus can be automatically transformed to jumps using
generalizations of tail recursion elimination [107]. In
particular, this generalization creates explicit trees of
activation records, and saves continuations to and re-
stores continuations from this tree [111, 107, 8].

If it is known that sibling procedure calls in the acti-
vation tree do not depend upon one another, then it is

Traverse (node)
read(node->parent)
modify(node)
foreach c in node->children

spawn Traverse(c)

Figure 56: Pseudocode for the tree traversal routine
from the health program. The spawn keyword is
simply an annotation that indicates that sibling calls to
Traverse are guaranteed to correctly run concurrently.

legal to traverse the tree in either depth first or breadth
first order [18, 96, 98]. The breadth first traversal tends
to execute sibling nodes in the tree concurrently, but
does so at the cost of pushing continuations on to the
front, and popping continuations from the back, of a
FIFO queue. Each of the pointers (to the front and back
of the queue) thus forms an implicit critical node in
the resulting program. An additional issue with this
breadth first implementation is that a child node may
(but will not usually) execute concurrently with its par-
ent, thus violating a true memory dependence.

I wanted to make sure that generalized loop distri-
bution and the SUDS memory dependence specula-
tion system were capable of handling these implicit de-
pendences. For this purpose I chose a program called
health , written by Martin Carlisle, that was already
annotated with information about the legal concur-
rency between sibling calls in its recursive tree traver-
sal routine [20, 135].

Highly simplified pseudocode for the tree traversal
routine in health is shown in Figure 56. The spawn
keyword annotation was inserted by the author to in-
dicate that it is legal to run sibling calls to the Tra-
verse subroutine concurrently. Note that while it is le-
gal to run sibling calls concurrently, it is not legal to run
a child concurrently with its parent, because the child
call will read a memory location that may also be mod-
ified by the parent. Also, note that, again, Tomasulo’s
algorithm will be limited to searching for concurrency
within a single call to the Traverse routine, because
the probability of executing an entire call to Traverse
without any branch mispredictions is near 0.

Figure 57 demonstrates how the code in Figure 56
is transformed to continuation passing style, and then
converted to breadth first traversal, by introducing the
explicit fifo array, and head and tail pointers into
that array. Note that this transformation has not im-
proved (or particularly degraded) the performance of
Tomasulo’s algorithm, because it is still the case that,
due to branch mispredictions, it can only search for
concurrency within a single iteration of the outer loop.

After speculative strip mining on this loop the two
critical nodes found by generalized loop distribution
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while head < tail
node = fifo[head++]
read(node->parent)
modify(node)
foreach c in node->children

fifo[++tail] = c

Figure 57: After conversion of the recursive Traver-
sal routine to “continuation passing style,” and intro-
duction of a fifo to make traversal breadth-first rather
than depth-first. The routine now has the structure of
a loop that can be handled by generalized loop distri-
bution.

SUDS 2.22
idealized superscalar 1.92

Figure 58: Comparison of speedups over an inorder
pipeline for health running on SUDS versus a super-
scalar.

correspond to the updates to head and tail . In addi-
tion, the tail variable is updated in the inner loop,
and thus must be reassociated by generalized recur-
rence reassociation.

When the loop distributed code is run concurrently
under the SUDS memory dependence speculation sys-
tem it tends to be the case that there are very few mem-
ory misspeculations. There do tend to be a few mem-
ory misspeculations when the loop first starts to exe-
cute, because the root of the tree attempts to execute
concurrently with its immediate children. After get-
ting past this initial misspeculation phase however, the
tree branches out widely enough that no more memory
system conflicts occur.

As a result of these factors, the SUDS system runs
this code about 15% faster than does the idealized
model of Tomasulo’s algorithm. Again, this is despite
the fact that only about 50% of the memory accesses
in this program are spills to activation frames that the
SUDS system is capable of L1 caching. This program is
particularly memory intensive because the operations
performed on each node involve linked list traversals.
The working set for this program, moreover, is rela-
tively small, and fits completely in the superscalar’s L1
cache, so the superscalar is paying almost no latency
for L2 cache accesses, while SUDS is paying L2 cache
latencies for approximately 50% of the loads operations
it performs.

8.3 Discussion

In this section I discuss three limitations of the SUDS
prototype system, and ways in which they might be
addressed in future work. The first limitation is that

SUDS lacks an effective L1 cache. I will discuss sub-
sequently why I believe this to be an implementa-
tion error, rather than a more fundamental design
flaw. The second limitation has to do with the scal-
ability of the required compiler support. In particu-
lar, both the lzw and health applications required
inter-procedural analysis and inlining to perform the
required register promotion transformation described
in Section 5.4. It is not clear that the inlining trans-
formation, in particular, will effectively scale to appli-
cations that are significantly larger than the ones de-
scribed here. Finally, I will discuss limitations on the
parallel scalability of the SUDS system.

An additional limitation of the SUDS system, as with
all existing memory dependence speculation systems,
is that it implements a flat, rather than nested, trans-
action protocol. As a result, only one granularity of
parallelism can be exploited at a time. This limitation,
and some issues that need to be solved before it can be
addressed, are discussed in Chapter 10.

L1 Caching

In all three of the applications discussed above, SUDS
achieved speedups approximately equal to, or better
than, those achieved by the idealized model of Toma-
sulo’s algorithm. In all cases the SUDS system was par-
ticularly handicapped by its lack of L1 caching. The
lack of L1 caching in the SUDS system, however, is
not fundamental. As was mentioned briefly at the end
of Section 7.3, it is relatively straight forward to add a
caching system on top of SUDS, and in fact a software
based L1 cache was implemented on top of an earlier
version of SUDS [128].

The basic idea behind adding caching on top of
SUDS would be to implement a standard directory
based cache coherence scheme [21, 10, 2]. The key to
a directory based cache coherence scheme is that the
directory is guaranteed to see all the traffic to a par-
ticular memory location, and in the same global order
that is observed in all other parts of the system. Thus,
the directory controller can simply forward the list of
requests to the concurrency control system, which can
then process the information out-of-band.

This would all work fine, but our initial studies
showed that the temporal locality exploitable by this
scheme is extremely low. This is true for several rea-
sons. First, because the L1 caches are distributed
among eight execution units, an L1 fetch by one execu-
tion unit does not improve the cache hit rate of any of
the seven other execution units. There is another issue,
which is not a problem, but that severely limits the tem-
poral locality exploitable by an L1 cache implemented
over the SUDS runtime. This is that the SUDS system

60



is already directing between 30% and 50% of the mem-
ory traffic to the L1 cache in the form of (non-shared)
accesses to activation frames. (Primarily for register
spills). While the register spill traffic does have a high
temporal locality of reference, the rest of the memory
traffic, which would be directed to the cache coherence
system, does not [128].

The reason that the idealized superscalar is getting
L1 cache miss rates significantly better than is the
SUDS system lies in the superscalar’s 8-word wide
L1 cache lines. Essentially, the superscalar is able to
prefetch useful data before it is required. The SUDS sys-
tem, without L1 caching, is not able to leverage this
advantage.

There are three reasons I did not implement coher-
ent L1 caches for SUDS. The first had to do with my
misunderstanding the importance of the spatial local-
ity exploited by wide cache lines. After the initial stud-
ies showing the low temporal locality available in the
memory system (both in Wilson’s thesis [128] and in
several informal studies we never published), I became
mistakenly convinced that caching wouldn’t really buy
much.

The second reason I did not implement coherent L1
caches for SUDS was that I wasn’t sure how to reconcile
word-level concurrency control with multi-word cache
lines. I now believe that information about the specific
words in a line that have been accessed can probably be
piggy-backed on the standard coherence messages, but
more work will need to be done to make this efficient.

The third reason I did not implement coherent L1
caches for SUDS had to do with an, arguably, un-
reasonable fixation that I had on implementing cache
controllers in software. It turned out that while this
can be spectacularly successful in specific cases [84], it
works rather less well for random access data mem-
ories. Thus, as described in Wilson’s thesis [128], we
were unable to implement an L1 data cache with la-
tencies that were significantly lower than the observed
latencies in the transactional L2 cache implemented in
the final SUDS prototype. In the future I plan to ad-
dress this deficiency in the context of a hardware im-
plemented L1 cache coherence scheme.

Compiler Scalability

A second question with regard to the SUDS prototype
has to do with the scalability of the compiler analy-
ses and transformations. The scalar queue conversion
transformation, unidirectional renaming transforma-
tion and generalized loop distribution transformations
are all intra-procedural. Although I have not done any
complexity analysis on these algorithms, several of the
control flow graphs in the programs I looked at are rel-

atively large (hundreds of nodes), and on the occasions
when I made the mistake of implementing O(N3) algo-
rithms, I noticed immediately, and was forced to reim-
plement.

The equivalence class unification and register pro-
motion algorithms described in Sections 5.3 and 5.4, on
the other hand, require inter-procedural pointer anal-
ysis. For this analysis I relied on Radu Rugina’s span
tool, which is believed to scale, in practice, to programs
that are relatively large [97].

A potentially more severe problem was that sev-
eral of these programs (and in particular lzw decom-
press ) were written using global (scalar) variables
that were modified inside subprocedures. In order to
perform scalar queue conversion on these variables it
was necessary to promote them to registers used and
modified within the loop being transformed. To per-
form this register promotion, however, required inlin-
ing the corresponding subprocedures.

It is unlikely that such inlining will scale to pro-
grams much larger than several tens of thousands of
lines of code. It is an open question (and as far as
I know, an unexamined question), whether there is
a way of performing efficient inter-procedural regis-
ter promotion. One approach might be to, on an
procedure-by-procedure basis, promote globals to call-
by-reference parameters, and then promote call-by-
reference to copy-in-copy-out. Effecting such a scheme
would be an interesting direction for future research.

Parallel Scalability

A third question with regard to the SUDS prototype
has to do with the ability of the system to scale to larger
degrees of parallelism. The answer to this question ac-
tually depends on the application one is looking at.
In the case of the three applications discussed in this
chapter, the answer is that they do not scale beyond
about eight compute nodes.

The reasons are threefold. First, parallel speedups
are limited by Amdahl’s law, and all of the applications
considered here are “do-across” loops, rather than “do-
all” loops. That is, these loops contain scalar loop car-
ried dependences (the “critical nodes” identified by
generalized loop distribution), and these loop carried
dependences limit the available parallelism. For ex-
ample, the lzw program has six critical nodes, and the
fraction of execution time spent in the sequential code
corresponding to these critical nodes grows as paral-
lelism is increased. Informal experimentation showed
that lzw sped up by only an additional 2% when run
on a system with 16 compute nodes instead of the 8
node system described above.

The second impediment to speedup involves the

61



“birthday paradox” problem described in Section 7.2.4.
Recall that this is a problem fundamental to all mem-
ory dependence speculation systems, not one specific
to the SUDS system. For example, the moldyn pro-
gram modifies a sparse-matrix data structure in an ef-
fectively random pattern. Informal experimentation
showed that moldyn exhibits speedup curves quali-
tatively similar to those shown in Figure 50. In fact,
the speedup curves for moldyn are worse than those
shown in the figure, because the figure models only a
single update per thread, while in moldyn each thread
makes, on average, several hundred updates to the
shared data structure. For the problem size of 256,000
particles described in Section 8.2.1 maximum speedup
occured in a system with eight compute nodes. A six-
teen compute node system exhibited less speedup due
to an increased number of concurrency violations ver-
sus the eight node system.

The final impediment to parallel speedup involves
the fundamentally distributed nature of the memory
system, as described in Section 1.1. That is, as the size
of the memory system grows, the average latency to ac-
cess a random element in the memory system grows as
the square root of the memory size. This problem does
not place any maximum limit on the speedup achiev-
able by any application, but it does mean that one can
not expect performance to scale linearly as problem
size grows.

9 Related Work

This chapter describes the relationship of the work in
this thesis to previous work in scalar expansion, loop
distribution, program slicing, thread-level speculation,
critical path reduction and data speculation.

9.1 Scalar Queue Conversion

The idea of renaming to reduce the number of stor-
age dependences in the dependence graph has long
been a goal of parallelizing and vectorizing compilers
for Fortran [68]. The dynamic closure creation done
by the queue conversion algorithm in Section 3 can be
viewed as a generalization of earlier work in scalar ex-
pansion [68, 29]. Given a loop with an index variable
and a well defined upper limit on trip count, scalar ex-
pansion turns each scalar referenced in the loop into an
array indexed by the loop index variable. The queue
conversion algorithm works in any code, even when
there is no well defined index variable, and no way to
statically determine an upper bound on the number of
times the loops will iterate. Moreover, earlier meth-
ods of scalar expansion are heuristic. Queue conver-

sion is the first compiler transformation that guarantees
the elimination of all register storage dependences that
create cycles across what would otherwise be a unidi-
rectional cut.

Given a loop containing arbitrary forward control
flow, loop distribution [68] can reschedule that graph
across a unidirectional cut [59, 51], but since loop
distribution does no renaming, the unidirectional cut
must be across the conservative program dependence
graph (i.e., including the register storage dependences).
Queue conversion works across any unidirectional cut
of the value dependence graph. Because scalar queue
conversion always renames the scalars that would cre-
ate register storage dependences, those dependences
need not be considered during analysis or transforma-
tion. It is sometimes possible to perform scalar ex-
pansion before loop distribution, but loop distribution
must honor any register storage dependences that are
remaining.

Moreover, existing loop distribution techniques only
handle arbitrary forward control flow inside the loop,
and do so by creating arrays of predicates [59, 51]. The
typical method is to create an array of three valued
predicates for each branch contained in the loop. Then
on each iteration of the top half of the loop a predi-
cate is stored for each branch (i.e., “branch went left”,
“branch went right” or “branch was not reached dur-
ing this iteration”). Any code distributed across the
cut tests the predicate for its closest containing branch.
This can introduce enormous numbers of useless tests,
at runtime, for predicates that are almost never true.

Queue conversion, on the other hand, creates and
queues closures if and only if the dependent code is
guaranteed to run. Thus, the resulting queues are (dy-
namically) often much smaller than the corresponding
set of predicate arrays would be. More importantly,
queue conversion works across inner loops. Further,
because queue conversion allocates closures dynami-
cally, rather than creating static arrays, it can handle
arbitrary looping control flow, in either the outer or in-
ner loops, even when there is no way to statically de-
termine an upper bound on the number of times the
loops will iterate.

Feautrier has generalized the notion of scalar expan-
sion to the notion of array expansion [38]. As with
scalar expansion, Feautrier’s array expansion works
only on structured loops with compile time constant
bounds, and then only when the array indices are
affine (linear) functions of the loop index variables.
Feautrier’s technique has been extended to the non-
affine case [62], but only when the transformed ar-
ray is not read within the loop (only written). The
equivalence class unification and register promotion
techniques described in Chapter 5 extend scalar queue
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conversion to work with structured aggregates (e.g., C
struct s), but not with arrays. Instead, scalar queue
conversion relies on the memory dependence spec-
ulation system described in Chapter 7 to parallelize
across array references (and even arbitrary pointer ref-
erences).

The notion of a unidirectional cut defined in Sec-
tion 3.3 is similar to the notion, from software engineer-
ing, of a static program slice. A static program slice is
typically defined to be the set of textual statements in a
program upon which a particular statement in the pro-
gram text depends [125]. Program slices are often con-
structed by performing a backward depth first search
in the value dependence graph from the nodes corre-
sponding to the statements of interest[90]. This pro-
duces a unidirectional cut.

In Section 3.4 we proved that we could produce an
executable control flow graph that includes exactly the
nodes from the top of a unidirectional cut of the value
dependence graph. Yang has proved the similar prop-
erty, in the context of structured code, that an executable
slice can be produced by eliding all the statements
from the program text that are not in the slice [131].
Apparently it is unknown, given a program text with
unstructured control flow, how to produce a control
flow graph from the text, elide some nodes from the
graph and then accurately back propagate the elisions
to the program text [13].15 Generalizations of Yang’s
result to unstructured control flow work only by insert-
ing additional dependences into the value dependence
graph [13, 24], making the resulting slices larger and
less accurate. The proof in Section 3.4 demonstrates
that when working directly with control flow graphs
(rather than program texts) this extra work is unneces-
sary, even when the control flow is irreducible.

Further, program slicing only produces the portion
of the program corresponding to partition A of a uni-
directional cut A-B. In Sections 3.5 and 3.6 we demon-
strated how to queue and then resume a set of closures
that reproduce the execution of partition B as well.

The reason queue conversion generalizes both loop
distribution and program slicing is that queue conver-
sion makes continuations [111, 107, 8] explicit. That is, any
time we want to defer the execution of a piece of code,
we simply create, and save, a closure that represents
that code, plus the suspended state in which to run that
code. It is standard to compile functional languages by
making closures and continuations explicit [107, 8], but
this set of techniques is relatively uncommon in com-
pilers for imperative languages.

15A potential solution, of which I am unable to find any mention
in the literature, would be to associate information about goto state-
ments with edges in the control flow graph, rather than nodes. Hope-
fully, this will be investigated in the future.

In fact, the SSA based static renaming optimization
in Chapter 4 was anticipated by work from formal pro-
gramming language semantics that demonstrates that
continuation passing style representations and SSA
form flow graphs of imperative programs are seman-
tically equivalent [58]. Based on this work, Appel has
suggested that a useful way of viewing the φ nodes at
the join points in SSA flow graphs is as the point in
the program at which the actual parameters should be
copied into the formal parameters of the closure rep-
resenting the code dominated by the φ node [7]. This
roughly describes what the algorithm given in Chap-
ter 4 does.

That is, given a maximal group β containing a use
of variable x for which we are going to create a clo-
sure, we rename x to x ′ (which can be viewed as the
formal parameter). Then we introduce a new closure,
containing the instruction x′ = x, at the φ point which
shares an environment containing x′ with β. It is useful
to view the new closure as simply copying the actual
parameter, x, to the formal parameter x ′.

Traditional superscalar micro-architectures do re-
naming only at the top of the stack by having the com-
piler register allocate automatic variables and then re-
naming the registers at runtime [117, 57, 104, 83, 105].
This technique is used ubiquitously in modern archi-
tectures because it performs at least enough renam-
ing to reach the parallelism limits imposed by flow
dependences [124]. Unfortunately, the renamed regis-
ters are an extraordinarily constrained resource, mak-
ing it impossible for superscalars to exploit flow de-
pendences that can be eliminated through control de-
pendence analysis [40].

Dataflow architectures [35, 34, 91, 28] do as much
(or more) renaming as does queue conversion, but at
the cost of insisting that all programs be represented
purely functionally. This makes converting to dynam-
ically allocated closures easy (because loops are repre-
sented as recursive procedures), but substantially re-
stricts the domain of applicability. Queue conversion
works on imperative programs, and, at least for scalar
variables, performs renaming in a similar way.

Even more troubling than the inability of dataflow
architectures to execute imperative programs, was that
they contained no provision for handling overflow
of renaming buffers [27]. Recently, work on effi-
cient task queue implementations for explicitly parallel
functional programming languages [85] has been ex-
tended to provide theoretical bounds on the renaming
resources required by such systems [18, 17]. SUDS pro-
vides constant bounded resource guarantees through
its checkpoint repair mechanism. This mechanism al-
lows SUDS to rollback and sequentially reexecute any
program fragment that exhausts renaming resources
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when run in parallel. Further, the SUDS memory
dependence speculation mechanism allows SUDS to
automatically parallelize sequential programs, written
in conventional imperative programming languages,
rather than relying on programmers to explicitly par-
allelize their programs.

The original motivation for queue conversion comes
from previous work in micro-optimization. Micro-
optimization has two components. The first, interface
decomposition involves breaking up a monolithic inter-
face into constituent primitives. Examples of this from
computer architecture include Active Messages as a
primitive for building more complex message passing
protocols [121], and interfaces that allow user level pro-
grams to build their own customized shared memory
cache coherence protocols [22, 70, 95]. Examples of the
benefits of carefully chosen primitive interfaces are also
common in operating systems research for purposes as
diverse as communication protocols for distributed file
systems [99], virtual memory management [50], and
other kernel services [16, 55].

The second component of micro-optimization in-
volves using automatic compiler optimizations (e.g.,
partial redundancy elimination) to leverage the de-
composed interface, rather than forcing the applica-
tion programmer to do the work. This technique has
been used to improve the efficiency of floating-point
operations [31], fault isolation [122], shared memory
coherence checks [100], and memory access serializa-
tion [37, 14]. On Raw, micro-optimization across de-
composed interfaces has been used to improve the ef-
ficiency of both branching and message demultiplex-
ing [74], instruction cache tag checks [84, 80], and data
cache tag checks [86, 130].

Queue conversion micro-optimizes by making the
renaming of scalar variables an explicit operation. Be-
cause queue conversion renames into dynamic mem-
ory, rather than a small register file, instructions can be
scheduled over much longer time frames than they can
with Tomasulo’s algorithm. On the other hand, queue
conversion can limit the costs of renaming to exactly
those points in a program where an anti- dependence
or output- dependence might be violated by a specific
schedule. Further, we will show in Chapter 4 that, be-
cause scalar queue conversion makes renaming an ex-
plicit operation, the compiler can move the renaming
point to a point in the program between the production
of a value and its consumption, thus minimizing the
number of times the renaming must occur.

9.2 Loop Distribution and Critical Path Re-
duction

As described above, generalized loop distribution gen-
eralizes loop distribution [68, 59, 51], by using scalar
queue conversion to guarantee the elimination of all
scalar anti- and output- dependences. Thus, general-
ized loop distribution simultaneously does the work
of scalar expansion and loop distribution. In addi-
tion, generalized loop distribution distributes loops
that contain arbitrary control flow, including inner
loops.

A transformation similar to loop distribution, called
critical-path reduction has been applied in the context of
thread-level speculative systems [120, 109, 133]. Rather
than distribute a loop into multiple loops, critical-path
reduction attempts to reschedule the body of the loop
so as to minimize the amount of code executed during
an update to a critical node. While the transformation
is somewhat different than that performed by loop dis-
tribution, loop distribution and critical-path reduction
share the goal of trying to minimize the time observed
to update state visible outside the loop body.

Schlansker and Kathail [101] have a critical-path re-
duction algorithm that optimizes critical paths in the
context of superblock scheduling [53], a form of trace
scheduling [41]. Vijaykumar implemented a critical-
path reduction algorithm for the multiscalar proces-
sor that moves updates in the control flow graph [120].
Steffan et al have implemented a critical-path reduction
algorithm based on Lazy Code Motion [63] that moves
update instructions to their optimal point [109, 133].
As with previous loop distribution algorithms, none of
these critical-path reduction algorithms can reschedule
loops that contain inner loops.

9.3 Memory Dependence Speculation

Timestamp based algorithms have long been used for
concurrency control in transaction processing systems.
The memory dependence validation algorithm used
in SUDS is most similar to the “basic timestamp or-
dering” technique proposed by Bernstein and Good-
man [15]. More sophisticated multiversion timestamp
ordering techniques [94] provide some memory re-
naming, reducing the number of false dependences de-
tected by the system at the cost of a more complex
implementation. Optimistic concurrency control tech-
niques [69], in contrast, attempt to reduce the cost of
validation, by performing the validations in bulk at the
end of each transaction.

Memory dependence speculation is even more sim-
ilar to virtual time systems, such as the Time Warp
mechanism [54] used extensively for distributed event
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driven simulation. This technique is very much like
multiversion timestamp ordering, but in virtual time
systems, as in data speculation systems, the assign-
ment of timestamps to tasks is dictated by the sequen-
tial program order. In a transaction processing system,
each transaction can be assigned a timestamp when-
ever it enters the system.

Knight’s Liquid system [61, 60] used a method more
like optimistic concurrency control [69] except that
timestamps must be pessimistically assigned a priori,
rather than optimistically when the task commits, and
writes are pessimistically buffered in private memo-
ries and then written out in serial order so that dif-
ferent processing elements may concurrently write to
the same address. The idea of using hash tables rather
than full maps to perform independence validation
was originally proposed for the Liquid system.

Knight also pointed out the similarity between cache
coherence schemes and coherence control in transac-
tion processing. The Liquid system used a bus based
protocol similar to a snooping cache coherence proto-
col [47]. SUDS uses a scalable protocol that is more
similar to a directory based cache coherence proto-
col [21, 10, 2] with only a single pointer per entry, some-
times referred to as a Dir1B protocol.

The ParaTran system for parallelizing mostly func-
tional code [116] was another early proposal that re-
lied on speculation. ParaTran was implemented in soft-
ware on a shared memory multiprocessor. The proto-
cols were based on those used in Time Warp [54], with
checkpointing performed at every speculative opera-
tion. A similar system, applied to an imperative, C like,
language (but lacking pointers) was developed by Wen
and Yelick [127]. While their compiler could identify
some opportunities for privatizing temporary scalars,
their memory dependence speculation system was still
forced to do renaming and forward true-dependences
at runtime, and was thus less efficient than SUDS.

SUDS is most directly influenced by the Multiscalar
architecture [43, 106]. The Multiscalar architecture was
the first to include a low-latency mechanism for ex-
plicitly forwarding dependences from one task to the
next. This allows the compiler to both avoid the ex-
pense of completely serializing do-across loops and
also permits register allocation across task boundaries.
The Multiscalar validates memory dependence spec-
ulations using a mechanism called an address resolu-
tion buffer (ARB) [43, 44] that is similar to a hardware
implementation of multiversion timestamp ordering.
From the perspective of a cache coherence mechanism
the ARB is most similar to a full-map directory based
protocol.

More recent efforts have focused on modifying
shared memory cache coherence schemes to support

memory dependence speculation [42, 48, 110, 66, 56,
49]. SUDS implements its protocols in software rather
than relying on hardware mechanisms. In the future
SUDS might permit long-term caching of read-mostly
values by allowing the software system to “perma-
nently” mark an address in the timestamp cache.

Another recent trend has been to examine the pre-
diction mechanism used by dependence speculation
systems. Some early systems [61, 116, 49] transmit all
dependences through the speculative memory system.
SUDS, like the Multiscalar, allows the compiler to stat-
ically identify true-dependences, which are then for-
warded using a separate, fast, communication path.
SUDS and other systems in this class essentially stat-
ically predict that all memory references that the com-
piler can not analyze are in fact independent. Several
recent systems [87, 119, 25] have proposed hardware
prediction mechanisms, for finding, and explicitly for-
warding, additional dependences that the compiler can
not analyze.

Memory dependence speculation has also been ex-
amined in the context of fine-grain instruction level
parallel processing on VLIW processors. The point of
these systems is to allow trace-scheduling compilers
more flexibility to statically reorder memory instruc-
tions. Nicolau [89] proposed inserting explicit address
comparisons followed by branches to off-trace fix up
code. Huang et al [52] extended this idea to use pred-
icated instructions to help parallelize the comparison
code. The problem with this approach is that it requires
m× n comparisons if there are m loads being specula-
tively moved above n stores. This problem can be al-
leviated using a small hardware set-associative table,
called a memory conflict buffer (MCB), that holds re-
cently speculated load addresses and provides single
cycle checks on each subsequent store instruction [45].
An MCB is included in the Hewlett Packard/Intel IA-
64 EPIC architecture [12].

The LRPD test [93] is a software speculation system
that takes a more coarse grained approach than SUDS.
In contrast to most of the systems described here, the
LRPD test speculatively block parallelizes a loop as if
it were completely data parallel and then tests to en-
sure that the memory accesses of the different process-
ing elements do not overlap. It is able to identify pri-
vatizable arrays and reductions at runtime. A direc-
tory based cache coherence protocol extended to per-
form the LRPD test is described in [134]. SUDS takes
a finer grain approach that can cyclically parallelize
loops with true-dependences and can parallelize most
of a loop that has only a few dynamic dependences.
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10 Conclusion

I believe that the time is right for a revival of some-
thing similar to the “dataflow” architectures of the last
decade. The dataflow machines of the past, however,
had two problems. Fortunately, a system like SUDS
can help to address these problems.

The first problem was that dataflow machines did
not run imperative programs, but only programs writ-
ten in functional programming languages [35, 34, 91,
85, 28, 18, 17].16 Scalar queue conversion can help ad-
dress this problem because it converts scalar updates
into function (closure) calls.

The second problem with dataflow machines was
that their renaming mechanisms were not fundamen-
tally deadlock free [27]. Checkpoint repair mecha-
nisms, like that provided by the SUDS transactional
memory speculation system, can help address this
problem by rolling back to a checkpointed state when-
ever the renaming mechanism overflows the available
buffers.

On the other hand, dataflow machines have a desir-
able property that the SUDS system does not. This is
that dataflow machines allow the expression of concur-
rency at the finest granularity, while the runtime sys-
tem can be made responsible for choosing the granu-
larity most appropriate for the available resources [85,
18, 17].

SUDS, like all existing memory dependence specu-
lation and thread speculation systems, implements a
flat transaction model, and thus allows only one level
of parallelism to be expressed in any particular loop.
Consider the example program used throughout Chap-
ters 2, 3 and 4 (shown in Figure 7). In this example
we decided to use generalized loop distribution to par-
allelize the outer loop, but, depending on the relative
trip counts of the inner and outer loops this choice
could have been disastrous. If the outer loop iterates
many times while the inner loop iterates only a few
times then generalized loop distribution on the outer
loop will work quite well. Most of the concurrency
would be discovered and exploited. The deferred ex-
ecution queues, created by scalar queue conversion,
would have stayed relatively small because the size of
these queues is proportional to the trip count of the in-
ner loop.

On the other hand, if the outer loop iterates only
a few times and the inner loop iterates many times,

16More recent dataflow languages, like Cilk [18], permit impera-
tive state updates. Unfortunately, the programmer is still forced to
write their parallel code in terms of recursive calls to stateless func-
tions. This actually makes the problem worse, since unlike the pure
functional languages used in early dataflow machines, Cilk provides
no way for the compiler to automatically check that programmers
have not unwittingly inserted data races into their programs.

then applying generalized loop distribution to the
outer loop would produce poor results. The system
would try to exploit concurrency only in the outer loop.
Meanwhile, each iteration of the outer loop would cor-
respond to a thread, and that thread would create a
deferred execution queue corresponding to the work
in the inner loop. Since the inner loop executes many
times, the deferred execution queues grow large, and
could potentially overflow the available memory re-
sources. This overflow would invoke the (relatively
expensive) checkpoint recovery mechanism. Thus, the
loop would end up executing completely sequentially
with the added cost of attempting and then aborting
each speculative strip.

One solution to this problem has been to develop
heuristic compiler analyses to try to guess which loops
will be most profitable to parallelize [133]. Another
(not very attractive) solution would be to apply specu-
lative strip mining and generalized loop distribution to
every loop, and then use a runtime predictor to decide
which loop in each loop nest should be speculatively
parallelized.

Combining dataflow with scalar queue conversion
and transactional concurrency control might provide
an attractive alternative. In this case scalar queue con-
version could be applied to every unidirectional cut
in an imperative program that might expose concur-
rency. The result would be that (except for memory
dependences) the program would be, essentially, trans-
formed into a fine grain, functional, dataflow program.
The runtime system could then, as in lazy task sys-
tems [85, 18, 17] dynamically choose to invoke each clo-
sure either as a conventional procedure call or as a con-
current thread as parallel resource become available.

To actually build such a system one would have to
solve a number of problems. There are at least two
problems that seem particularly difficult (and there-
fore, fun) to me. The first is how to reconcile the nested
concurrency exposed by the system with the specula-
tive transactional model. SUDS, like all other exist-
ing memory dependence and thread speculation sys-
tems, implements a flat transaction model. Theoretical
nested transaction processing protocols have been pro-
posed [88, 54], but actual, efficient, implementations of
such systems seem to be in short supply. In nested
transaction systems even seemingly simple problems,
like efficient timestamp implementation, seem to re-
quire baroque solutions (see, for example, [116]). A sec-
ond problem has to do with how one could extend the
existing work on dynamic memory dependence pre-
diction [87, 119, 25] to nested transaction systems.

Perhaps then, this dissertation, in the end, raises
more questions than it answers. In the introduction I
stated that the SUDS system was built on three tech-
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niques. They were dynamic scalar renaming, control
dependence analysis, and speculation. I believe that
these three techniques are necessary for finding and ex-
ploiting concurrency. On the other hand, I have not
shown, (and do not believe), that these three tech-
niques are sufficient for finding and exploiting concur-
rency. I like to think that this dissertation brings us a
step closer to the goal of building a microprocessor that
effectively finds and exploits concurrency in the kinds
of programs that programmers really write. Reaching
that goal will, I think, require a journey that is both
long and enjoyable.
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