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Abstract. Convergent scheduling is a general framework for instruction
scheduling and cluster assignment for parallel, clustered architectures.
A convergent scheduler is composed of many independent passes, each of
which implements a specific compiler heuristic. Each of the passes shares
a common interface, which allows them to be run multiple times, and
in any order. Because of this, a convergent scheduler is presented with
a vast number of legal pass orderings. In this work, we use machine-
learning techniques to automatically search for good orderings. We do so
by evolving, through genetic programming, s-expressions that describe
a particular pass sequence. Our system has the flexibility to create dy-
namic sequences where the ordering of the passes is predicated upon
characteristics of the program being compiled. In particular, we imple-
mented a few tests on the present state of the code being compiled. We
are able to find improved sequences for a range of clustered architec-
tures. These sequences were tested with cross-validation, and generally
outperform Desoli’s PCC and UAS.

1 Introduction

Instruction scheduling on modern microprocessors is an increasingly difficult
problem. In almost all practical instances, it is NP-complete, and it often faces
multiple contradictory constraints. For superscalars and VLIWSs, the two primary
issues are parallelism and register pressure. Traditional scheduling frameworks
handle conflicting constraints and heuristics in an ad hoc manner. One approach
is to direct all efforts toward the most serious problem. For example, many RISC
schedulers focus on finding ILP and ignore register pressure altogether. Another
approach is to attempt to address all the problems together. For example, there
have been reasonable attempts to perform instruction scheduling and register
allocation at the same time [1]. The third, and most common approach, is to
address the constraints one at a time in a sequence of passes. This approach
however, introduces pass ordering problems, as decisions made by early passes
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are based on partial information and can adversely affect the quality of decisions
made by subsequent passes.

Convergent Scheduling [2, 3] alleviates pass ordering problems by spreading
scheduling decisions over the entire compilation. Each pass makes soft decisions
about instruction placement: it asserts its preference of instruction placement,
but does not impose a hard schedule on subsequent passes. All passes in the
convergent scheduler share a common interface: the input and output to each one
is a collection of spatial and temporal preferences of instructions: a pass operates
by modifying these data. As the scheduler applies the passes in succession, the
preference distribution will converge to a final schedule that incorporates the
preferences of all the constraints and heuristics.

Passes can be run multiple times, and in any order. Thus, while mitigating
ordering problems due to hard constraints, a convergent scheduler is presented
with a limitless number of legal pass orders. In our previous work [3], we tediously
hand-tuned the pass order. This paper builds upon it by using machine learning
techniques to automatically find good orderings for a convergent scheduler. Be-
cause different parallel architectures have unique scheduling needs, the speedups
our system is able to obtain by creating architecture-specific pass orderings is
impressive.

Equally impressive is the ease with which it finds effective sequences. Using
a modestly sized cluster of workstations, our system is able to quickly find good
convergent scheduling sequences. In less than two days, it discovers sequences
that produce speedups ranging from 12% to 95% over our previous work, and
generally outperform UAS [1] and PCC [5].

The remainder of the paper is organized as follows. Section 2 describes Ge-
netic Programming, the machine-learning technique we use to explore the pass-
order solution space. We describe our infrastructure and methodology in Sec-
tion 3. Section 4 quickly describes the set of available heuristics. Section 5 follows
with a description of the experimental results. Section 6 discusses related work,
and finally, Section 7 concludes. Because of limited space, we refer you to [2, 3]
for architecture and implementation details related to convergent scheduling.

2 Genetic Programming

From one generation to the next, architectures in the same processor family may
have extremely different internal organizations. The Intel Pentium™ family of
processors is a case in point. Even though the ISA has remained largely the
same, the internal organization of the Pentium 4 is drastically different from
that of the baseline Pentium.

To help designers keep up with market pressure, it is necessary to automate
as much of the design process as possible. In our first work with convergent
scheduling, we tediously hand-tuned the sequence of passes. While the sequence
works well for the processors we explored in our previous work, it does not gen-
erally apply to new architectural configurations. Different parallel architectures
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reate initial population
gens =0

Compile and run each expression

Probabilistically select expressions

rossover and mutation
gens = gens + |

Fig.1. Flow of genetic programming. Genetic programming (GP) initially creates
a population of expressions. Each expression is then assigned a fitness, which is a mea-
sure of how well it satisfies the end goal. In our case, fitness is proportional to the exe-
cution time of the compiled application(s). Until some user-defined cap on the number
of generations is reached, the algorithm probabilistically chooses the best expressions
for mating and continues. To guard against stagnation, some expressions undergo mu-
tation

necessarily emphasize different grains of computation, and thus have unique
compilation needs.

We therefore developed a tool to automatically customize our convergent
scheduler to any given architecture. The tool generates a sequence of passes
from those described in section 4. This section describes genetic programming
(GP), the machine-learning technique that our tool uses.

Of the many available learning techniques, we chose to employ genetic pro-
gramming because its attributes fit the needs of our application. GP [6] is one
example of evolutionary algorithm (EA). The thesis behind evolutionary com-
putation is that a computational version of fitness-based selection, reproductive
inheritance and blind variation acting upon a population will lead the indi-
viduals in subsequent generations to adapt toward better performance in their
environment.

In the general GP framework, individuals are represented as parse trees (or
equivalently, as lisp expressions) [6]. In our case, the parse trees represent a se-
quence of conditionally executed passes.The result of each subexpression is either
a convergent scheduling pass, or a sequence of passes. Our system evaluates an
individual in a pre-order traversal of the tree.

Table 1 shows the grammar we use to describe pass orders. The <variable>
expression is used to extract pertinent information about the status of the sched-
ule, and the shape of the block under analysis. This introspection allows the
scheduler to run different passes based on schedule state. The four variables
that our system considers are shown in Table 2.
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Table 1. Grammar for genome s-expressions. <variable> returns the value computed
by our tests on the graph and the current schedule

( ‘sequence’ (sexpr) {sexpr) )
( ‘if’ {variable) {sexpr) (sexpr) )

( (pass) )

(variable) ::= #1 - Is imbalanced
| #2-Is fat
| #3 - Is within CPL
| #4 - Is placement bad

(sexpr) =
|
|

(pass) = ‘PATH’ | ‘COMM’ | ‘NOISE’ | ‘INITTIME’
| ‘SUCC’ | ‘LOAD’ | ‘EDGES’ | ‘DEP’

| ‘BEST’ | ‘FUNC’ | ‘PLACE’ | ‘SEQUENTIAL’
|

‘FIRST’ | ‘CLUSTER’ | ‘EMPHCP’

Table 2. The variables used by our system. Their values are updated during compi-
lation.

Variable True if
#1 Is imbalanced  |the difference in load between the most and the least loaded
cluster is larger than 1/numcluster
#2 Is fat the number of independent critical paths is larger than the num-
ber of tiles
#3 Is within CPL  |the number of instructions in the block is smaller than the num-
ber of tiles times the critical path length
#4 Is placement bad|the number of unplaced instructions is more than half the num-
ber of instructions in the block

Figure 1 shows the general flow of genetic programming. The algorithm starts
by creating an initial population of random parse trees. It then compiles and runs
each of the benchmarks in our training set for each individual in the population.
Each individual is then assigned a fitness based on how fast each of the associ-
ated programs in the training set execute. In our case, the fitness is simply the
average speedup (compared to the sequence used in previous work) over all the
benchmarks in the training set.

The fittest individuals are chosen for crossover, the GP analogy of sexual
reproduction. Crossover begins by choosing two well-fit individuals. Our system
then clones the selected individuals, chooses a random subexpression in each
of them, and swaps them. The net result is two new individuals, composed of
building blocks from two fit parents.

To guard against stagnant populations, GP often uses mutation. Mutations
simply replace a randomly chosen subtree with a new random expression. For
details on the mutation operators we implemented, see [7, p. 242]. In our imple-
mentation, the GP algorithm halts when a user-defined number of iterations has
been reached.
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We conclude this section by noting some of GP’s attractive features. First,
it is capable of exploring high-dimensional spaces. It is also highly scalable,
highly parallel and can run effectively on a distributed cluster of workstations.
In addition, its solutions are human-readable, compared with other algorithms
(e.g. neural networks) where the solution is embedded in a very complex state
space.

3 Infrastructure and Methodology

This section describes our compilation framework as well as the methodology
we used to collect results. We begin by describing the GP parameters we used
to train the convergent scheduler, then we give an overview of our experimental
compiler and VLIW simulator.

3.1 GP Parameters

We wrapped the GP framework depicted in Figure 1 around our compiler and
simulator. For each individual in the population, our harness compiles the bench-
marks in our training suite with the pass ordering described by its genome. All
experiments maintain a population of 200 individuals, initially randomly cho-
sen. After every generation we discard the weakest 20% of the population, and
replace them with new individuals. New individuals are created to replace the
discarded portion of the population. Of these new pass orderings, half of them
are complelety random, and the remainder are created via the crossover opera-
tor described in the last section. 5% of the individuals created via crossover are
subject to mutation. Finally, we run each experiment for 40 generations.

Fitness is measured as the average speed-up (over all the benchmarks in our
training suite) when compared against the pass ordering that we used in our
previous work [3]. We also reward parsimony by giving preference to the shorter
of two otherwise equivalently fit sequences.

3.2 Compiler Flow and Simulation Environment

Our compilation process begins in the SUIF front-end [8]. In addition to per-
forming alignment analysis [9], the front-end carries out traditional optimizations
such as loop unrolling, constant propagation, copy propagation, and dead code
elimination.

Our Chours VLIW back-end follows [10]. Written using MachSUIF [11], the
back-end allows us to easily vary the number of clusters, functional units, and
registers in the target architecture. Instruction latencies, memory access laten-
cies, and inter-cluster communication latencies are also configurable. The con-
vergent scheduler uses such information, combined with data from alignment
analysis, to generate effective code. Similarly, our register allocator must know
the number of registers in each cluster.
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The result of the compilation process is a compiled simulator that we use
to collect performance numbers. The simulator accurately models the latency
of each functional unit. We assume that all functional units are fully pipelined.
Furthermore, the simulator enforces lock-step execution. Thus, if a memory in-
struction misses in the cache, all clusters will stall. The memory system is run-
time configurable so we can easily isolate the performance of various memory
topologies. In total, the back-end comprises nine compiler passes and a simula-
tion library.

The four target architectures on which we experimented are described below.

Baseline (4cl) The baseline architecture is a 4-cluster VLIW with rich inter-
connectivity. In this configuration, the clusters are fully connected with a 4x4
crossbar. Thus, the clusters can exchange up to four words every cycle. The de-
lay for the communication is 1 cycle. Register file, functional units and L1 cache
are split into the clusters — even though every address of the memory can be
accessed by any cluster — with a penalty of 1 cycle for non-local addresses. The
cache takes 6 cycles to access and the register file takes 2 cycles. In addition,
memory writes take 1 cycle. Each cluster has 64 general-purpose registers and
64 floating-point registers.

Limited Bus (4cl-comm) This architecture is similar to the baseline archi-
tecture, the only difference being inter-cluster communication capabilities. This
architecture only routes one word of data per cycle on a shared bus, which can
be snooped, thus creating a basic broadcasting capability. Because this model
has limited bandwidth, the space-time scheduler must be more conservative in
splitting computation across clusters.

Limited Bus (2cl-comm) Another experiment uses an architecture that is
substantially weaker than the baseline. It is the same as machine 4cl-comm,
except it only has 2 clusters.

Limited Registers (4cl-regs) The final machine configuration on which we
test our system is identical to the baseline architecture, except that each clus-
ter has half the number of registers (32 general-purpose and 32 floating-point
registers).

4 Available Passes

In this section, we describe quickly the passes used in our experimental frame-
work. Passes are divided into time heuristics, passes for placement and critical
path, for communication and load balancing, and register allocation. The mis-
cellaneous passes help the convergence by breaking symmetry and strengthening
the current assignment. For implementation details, we refer the reader to [2, 3].
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4.1 Time Heuristics

Initital Time Assignment (INITTIME) initializes the weight matrix by
squeezing to 0 all the time slots that are unfeasible for a particular instruc-
tion. If the distance to the farthest root of the data-depedency graph is t,
the preference for that instruction to be scheduled a cycle earlier than ¢ is
set to 0. The distance to the leaf is similarly used.

Dependence Enforcement (DEP) verifies that no instruction is scheduled
before an instruction on which it depends. This is done by reducing the
preference for early time slots in the dependent instruction.

Functional Units (FUNC) reduces the preference for overloaded time-slots,
i.e. slots for which the load is higher than the number of available functional
units.

Emphasize Critical Path Distance (EMPHCRP) tries to schedule every
instruction at the time indicated by its level, i.e. the distance from roots
and leaves.

4.2 Placement and Critical Path

Push to First Cluster (FIRST) gives instructions a slight bias to the first
cluster, where our compiler guarantees the presence of all alive registers at
the end of each block (so, less communication is needed for instructions in
the first cluster).

Preplacement (PLACE) increases, for preplaced instructions (see [9]), the
preference for their home cluster.

Preplacement Propagation (PLACEPROP) propagates the information
about preplacement to neighbors in the data dependence graph. The prefer-
ence for each cluster decreases with the distance (in the dependence graph)
from the closest preplaced instruction in that cluster.

Critical Path Strengthening (PATH) identifies one critical path in the
schedule, and tries to keep it together in the least loaded cluster or in the
home cluster of its preplaced instructions.

Path Propagation (PATHPROP) identifies high-confidence instructions,
and propagates their preferences to the neighbors in the critical path.

Create Clusters (CLUSTER) creates small instruction clusters using the
Partial Component Clustering [5], and then allocates them to clusters trying
to minimize communication. This is useful when the preplacement informa-
tion is poor.

4.3 Communication and Load Balancing

Communication Minimization (COMM) tries to minimize communication
by keeping in the same cluster instructions that are neighbors in the depen-
dence graph.
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Parallelism for Successors (SUCC) exploits the broadcast feature of some
of our VLIW configurations by distributing across clusters the children of
an instruction which is already communicating data on the bus. The other
instructions can snoop the value, so no extra communications will be needed.

Load Balance(LOAD) reduces the preferences for the cluster that has the
highest preferences so far.

Level Distribute (LEVEL) tries to put in different clusters the instructions
that are in the same level (distance from roots and leaves) if they do not
communicate.

4.4 Register Allocation

Break Edges (EDGES) tries to reduce register pressure by breaking the data
dependence edges that cross any specific time ¢ in the schedule (if there
are more edges than the available registers). This is done by reducing the
preferences of the instructions in the edges to be scheduled around ¢.

Reduce Parallelism (SEQUENTIAL) cmphasizes the sequential order of
instructions in the basic block. This reduces parallelism and register pressure
due to values with long life-span.

4.5 Miscellaneous

Noise Introduction (NOISE) adds noise to the distribution to break sym-
metry in subsequent choices.

Assignment Strengthening (BEST) boosts the highest preference in the
schedule, so far.

5 Results

In this section, we compare the performance of convergent scheduling to two
existing assignment/scheduling techniques for clustered VLIW architectures:
UAS [4] and PCC [5]. We augmented each existing algorithm with preplacement
information. For UAS, we modified the CPSC heuristic described in the original
paper to give the highest priority to the home cluster of preplaced instructions.
For PCC, the algorithm for estimating schedule lengths and communication costs
properly accounts for preplacement information. It does so by modeling the extra
costs incurred by the clustered VLIW machine for a non-local memory access.
For simplicity, in the following, we will refer to the sequence (SEQ (PassA)
(PassB)) simply as (PassA) (PassB), removing SEQ: when no variables are
used, genomes reduce to a linear sequence of passes. Also, in all of our experi-
ments, (inittime) is hardwired to be the first pass, as part of the initialization,
and (place) is always run at the end of the sequence to guarantee semantics.
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Fig. 2. Performance comparisons between PCC, UAS, and Convergent scheduling on
a four-cluster VLIW architecture. Speedup is relative to a single-cluster machine

5.1 Baseline (4cl)

The baseline sequence was hand-tuned in our initial work with convergent
scheduling. For the baseline architecture, our compiler used the following se-
quence:

(inittime) (noise) (first) (path) (comm) (place)
(placeprop) (comm) (emphcp) (place)

As shown in Figure 2, convergent scheduling outperforms UAS and PCC
by 14% and 28%, respectively, on a four-clustered VLIW machine. Convergent
scheduling is able to use preplacement information to find good natural partitions
for our dense matrix benchmarks.

5.2 Limited Bus (4cl-comm)

We use this configuration to perform many experiments. We evolved a sequence
for 100 generations, with 200 individuals, over seven representative benchmarks.

Figure 4 plots the fitness of the best creature over time. The fitness is mea-
sured as the average (across benchmarks) normalized completion time with
respect to the sequence for our baseline architecture. The sequence improves
quickly in the first 36 generations. After that, only minor and slow improve-
ments in fitness could be observed. This is why, in our cross-validation tests (see
section 5.5), we limit our evolution to 40 generations.
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Fig. 3. Speedup on 4cl-comm compared with 1-cluster convergent scheduling (original
sequence). In the graph, conv. is the baseline sequence, evolved is the new sequence for
this architecture.

The evolved sequence is more conservative in communication. (dep) and
(func) are important: (dep), as a side effect, increases the probability that
two dependent instructions are scheduled next to each other in space and time;
(func) reduces peaks on overloaded clusters, which could lead to high amounts
of localized communication. Also, the (comm) pass is run twice, in order to limit
the total communication load.

(inittime) (func) (dep) (func) (load) (func) (dep) (func)
(comm) (dep) (func) (comm) (place)

The plot in Figure 3 compares the evolved sequence with the original se-
quence and our reference schedulers. The evolved sequence performs about 10%
better than UAS, and about 95% better than the sequence tuned for the base-
line architecture. In this test, PCC performed extremely poorly, probably due
to limitations in the modeling of communication done by our implementation of
the internal simplified scheduler (see []).

5.3 Limited Bus (2cl-comm)

(inittime) (dep) (noise) (func) (noise) (noise) (comm)
(func) (dep) (func) (place)

Similar to the previous tests, (comm), (dep) and (func) are important in
creating a smooth schedule. We notice the strong presence of (noise) in the
middle of the sequence. It appears as if the pass is intended to move away from
local minima by shaking up the schedule.

The evolved sequence outperforms UAS (about 4% better) and PCC (about
5% better). Here PCC does not show the same problems present with 4cl-comm
(see Figure 5). We observe an improvement of 12% over the baseline sequence.
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5.4 Limited Registers (4cl-regs)

Figure 6 shows the performance of the evolved sequence when compared with
our baseline and our reference. We measure an improvement of 68% over the
baseline sequence. Here again, (func) is a very important pass. UAS outruns
convergent scheduling in this architecture by 6%, and PCC by 2%. We believe
this is due to the need for new expressive heuristics for register allocation. Future
work will investigate this.

(inittime) (func) (dep) (func) (func) (func) (func) (path)
(func) (place)

5.5 Leave-One-Out Cross Validation

We tested the robustness of our system by using leave-one-out cross validation
on 4cl-comm. In essence, cross validation helps us quantify how applicable the
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Table 3. The sequence evolved in our cross-validation tests.
Excluded Sequence
benchmark
cholesky (inittime) (comm) (load) (comm) (load) (func) (place)
fir (inittime) (func) (place)
yuv (inittime) (func) (place)
tomcatv (inittime) (func) (best) (place)
mxm (inittime) (best) (best) (best) (func) (place) (place)
vvmul (inittime) (func) (dep) (func) (place)
rbsorf (inittime) (best) (func) (place)

sequences are when applied to benchmarks that were not in the training set.
The evolution was rerun excluding one of the seven benchmarks, and the result
tested again on the excluded benchmark. In Table 4, the results are shown as
speed-up compared with a one-cluster architecture. The seven cross-validation
evolutions reached results very similar to the full evolution, for the excluded
benchmarks too. In particular, the sequences evolved excluding one benchmark
still outperform, on average, the comparison compilers, UAS and PCC.

The seven evolved sequences (in Table 3) are all similar: (func) is the most
important pass for this architecture.

5.6 Summary of Results

We verified that convergent scheduling is well suited to a set of different ar-
chitectures. Running on 20 dual-processor Pentium 4 machines, evolution takes
a couple of days.

Sequences that contain conditional expressions never appeared in the best
individuals. It turns out that running a pass is more beneficial than running
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Table 4. Results of cross validation, speed-up compared with 1-cluster architecture.
The highlighted numbers refer to the performance of the excluded benchmark, when
using the evolved sequence.

Excluded benchmark

benchmark cholesky fir yuv tomcatv mxm vvmul rbsorf full
cholesky  2.18 2.18 218 218 2.18 217 218 218
fir 1.35 1.35 135 1.35 1.35 135 135 1.35
yuv 1.53 1.53 1.53 1.53 1.53 1.16 153 1.53
tomcatv  1.60 1.35 135 1.45 147 155 144  1.37
mxm 2.03 2.04 204 204 2.12 233 204 1.96

vvmul 2.18 2.18 218 2.18 2.18 2.25 218 2.18
rbsorf 2.41 241 241 244 236 244 241 241
average 1.90 1.86 1.86 1.88 1.89 1.89 1.88 1.86

a test to condition its execution. This is largely because convergent scheduling
passes are somewhat symbiotic by design. In other words, the results show that
passes do not disrupt good schedules. So, running extra passes is usually not
detrimental to the final result.

We verified that running a complex measurement can take as much time
as running a simple pass. Therefore, when measuring the complexity of result-
ing sequences, we assign equal weight to passes and tests. Our bias for shorter
genomes (parsimony pressure) penalizes sequences with extra tests as well as
sequences with useless passes. In the end, conditional tests were not used in the
best sequences. Rather, all passes are unconditionally run. Nevertheless, we still
believe in the potential of this approach, and leave further exploration to future
work.

6 Related Work

Many researchers have used machine-learning techniques to solve hard compi-
lation problems. Therefore, only the most relevant works are discussed here.
Cooper et al. use a genetic-algorithm solution to evolve the order of passes in
an experimental compiler [12]. Our research extends theirs in many significant
ways. First, our learning representation allows for conditional execution of passes,
while theirs does not. In addition, we differ in the end goal; because they were
targeting embedded microprocessors, they based fitness on code size. While this
is a legitimate metric, code size is not a big issue for parallel architectures, nor
does it necessarily correlate with wall clock performance. We also simultane-
ously train on multiple benchmarks to create general-purpose solutions. They
use the application-specific sequences to hand-craft a general-purpose solution.
Finally, we believe the convergent scheduling solution space is more interesting
than that of an ordinary backend. The symmetry and unselfishness of convergent
scheduling passes implies an interesting and immense solution space.

Calder et al. used supervised learning techniques to fine-tune static branch
prediction heuristics [13]. They employ two learning techniques — neural net-
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works and decision trees — to search for effective static branch prediction heuris-
tics. While our methodology is similar, our work differs in several important
ways. Most importantly, we use unsupervised learning, while they use super-
vised learning. Unsupervised learning is used to capture inherent organization
in data, and thus, only input data is required for training. Supervised learning
learns to match training inputs with known outcomes. This means that their
learning techniques rely on knowing the optimal outcome, while ours does not.
Our problem demands an unsupervised method since optimal compiler sequences
are not known.

The COGEN(t) compiler creatively uses genetic algorithms to map code to ir-
regular DSPs [14]. This compiler, though interesting, evolves on a per-application
basis. Nonetheless, the compile-once nature of DSP applications may warrant the
long, iterative compilation process.

7 Conclusion

Time-to-market pressures make it difficult to effectively target next generation
processors. Convergent scheduling’s simple interface alleviates such constraints
by facilitating rapid prototyping of passes. In addition, an architecture-specific
pass is not as susceptible to bad decisions made by previously run passes as in
ordinary compilers.

Because the scheduler’s framework allows passes to be run in any order, there
are countless legal pass orders to consider. This paper showed how machine-
learning techniques could be used to automatically search the pass-order solution
space. Our genetic programming technique allowed us to easily re-target new
architectures.

In this paper, we also experimented with learning dynamic policies. Instead
of choosing a fixed static sequence of passes, our system is capable of dynami-
cally choosing the best passes for each scheduling unit, based on the status of
the schedule. Although the learning algorithm did not find sequences that condi-
tionally executed passes, we still have reasons to believe that this is a promising
approach. Future work will explore this in greater detail.

In closing, our technique was able to find architecture-specific pass orders
which improved execution time by 12% to 95%. Cross validation showed that
performance improvement is not limited to the benchmarks on which the se-
quence was trained.
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