
An API for Dynamic Partial Evaluation under

DynamoRIO

by

Christopher Leger

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

c© Massachusetts Institute of Technology 2004. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 20, 2004

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gregory T. Sullivan

Research Scientist
Thesis Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Saman Amarasinghe
Associate Professor

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Arthur C. Smith

Chairman, Department Committee on Graduate Students



2



An API for Dynamic Partial Evaluation under DynamoRIO

by

Christopher Leger

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2004, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Dynamic optimization systems have available runtime (dynamic) data and can cross
more boundaries than traditional static optimization systems in the pursuit of pro-
gram transformations. However, dynamic optimization systems are limited by the
fact that any time spent in analysis or transformation is included in the running time
of the program; thus any transformations must not only improve the performance of
the program, but also make up for the time spent in analysis.

Interpreters in general confound current heuristics for dynamic optimization. In
previous work, the dynamic optimization system DynamoRIO was extended with Dynamo-

RIO-with-Log-PC to address this issue by maintaining extra state; this thesis gener-
alizes the additions made by DynamoRIO-with-Log-PC and develops a useful API for
a wider range of programs running under the DynamoRIO system.
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Chapter 1

Introduction

Static analysis at its best is limited to optimizations performed on static data; the

content of dynamic data cannot be used in analysis. Furthermore, with the increased

usage of run-time binding paraphernalia (e.g. dynamic libraries, etc.) static analysis

of programs is becoming more limited in the transformations it can do to improve

performance. One way to obtain better performance is through dynamic optimization.

This allows optimizations to cross the boundary of dynamically linked code, as well

as allowing optimizations to be performed concerning the dynamic (run-time) input

to the program.

One particular class of programs relying heavily on runtime data is interpreters.

Interpreters have two forms of runtime data: the program to be interpreted, and any

input to the program. Interpreters also have more to gain from dynamic optimization;

interpreters inherently have an interpretive overhead in producing the desired output.

Thus, previous efforts in dynamic optimization through partial evaluation (Dynamo-

RIO-with-Log-PC) have focused on improving the performance of interpreters. This

thesis follows in that vein, but provides a more general API to guide dynamic opti-

mization for a broader range of applications.

Our work builds on top of an existing dynamic optimization system for Intel’s

x86 [20] architecture, DynamoRIO. DynamoRIO has previously been modified to ap-

ply the techniques of partial evaluation for the declarative dynamic partial evalua-

tor DynamoRIO-with-Log-PC. In this thesis, we present an alternative expansion of
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DynamoRIO, aiming for a more generally applicable system than DynamoRIO-with-

-Log-PC.

This thesis presents an API for assisting a dynamic native translator in optimiz-

ing execution through native partial evaluation. In the first chapter we introduce

the thesis and provide an outline. The second chapter presents some related work

and alternative bases. The third chapter describes DynamoRIO, and the Logical PC

extensions made to effect DynamoRIO-with-Log-PC. The fourth chapter analyzes a

class of situations in which DynamoRIO can perform more optimizations, while the

fifth chapter demonstrates the changes necessary to effect better optimization. The

sixth chapter describes the internal details of the modifications necessary to improve

optimization. The seventh chapter describes the current state of DynamoRIO-PE,

describing current mechanisms and presenting some high-level results. Finally, the

eighth chapter concludes and touches upon future work.
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Chapter 2

Related Work

Our work inherits from three main, interrelated areas: partial evaluation, dynamic

code generation, and binary translation. This section introduces concepts and related

work from each category.

2.1 Partial Evaluation/Specialization

The authoritative source on partial evaluation is that of Jones, Gomard and Ses-

toff [21]. This work introduces the notion of partial evaluation and presents a partial

evaluator, MIX.

The idea of program specialization is to provide a specialized version of a more

general program by considering some input as fixed, or static (in functional languages

this is related to currying, or binding of variables). For instance, consider a program

P with two input types S and D, returning a result of type R (P : S x D → R). For

each input s ∈ S, there is also a derivable program Ps requiring one piece of input d,

such that for all values d ∈ D: Ps(d) = P(s,d). Furthermore, any code conditioned on

the value of s can be resolved in Ps. Figure 2-1 (adapted from [21]) presents a general

function (f) for raising a number (x) to an integer exponent(n) and a specialized

version (f5) specialized to n = 5.

In the example, n is defined as static, since its value is known at specialization

time, while x is dynamic, since its value is unknown. One note of interest is that
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A two-input program p =
f(n, x) : if n = 0 then 1

else if even(n) then f(n/2, x) ↑2
else x ∗ f(n-1,x)

Program p, specialized to static input n = 5:

p5 = f5(x) = x ∗ ((x↑2)↑2)

Figure 2-1: Specialization of a program to compute xn. Notice how the conditional
code has been resolved, recursive calls to f have been removed, and we are left with
a single straightforward expression.

using n as static greatly simplifies the computation, wherease using x as static would

not have resulted in any noticeable improvement. We will say that f is specialized

against (or specialized with respect to n) when n is static.

Partial evaluation (PE) is the process that automates program specialization. A

partial evaluator takes as input a program and a set of static data; the program is

then partially evaluated by performing calculations depending only on the static data.

The output of partial evaluation is another program that requires the dynamic data

as input and produces the expected result.

There are, traditionally, two main classes of partial evaluation: on-line and off-

line. An on-line partial evaluator takes as input the source of a program P and the

static values of a subset of the program input, S. Through symbolic computation on

the available data the evaluator produces the source for a specialized program PS. An

off-line partial evaluator divides the work into two steps. In the first step, binding-

time analysis is provided with which input is to be static and propagates information

about other constructions that will be static based on the provided classification. The

second phase is subsequently provided with the actual value of the static data and

produces specialized code. Note that the terms online and offline refer to the time

at which specialization is done with respect to the static values; online systems can

perform partial evaluation at compile-time (statically) or at run-time (dynamically),

as can offline systems.

This section introduced the notion of program specialization through partial eval-

uation and provided an example. The next section describes the related field of

dynamic code generation, providing details for some off-line partial evaluators that

20



generate code dynamically.

2.2 Dynamic Code Generation

We define the term dynamic code generation as the act of producing machine code

at runtime. Most partial evaluators have the ability to produce specialized code at

runtime; however, such systems generally require guidance on what and when to spe-

cialize, as well as which state to make static and which dynamic. Among dynamic code

generating partial evaluators, there are three broad categories: imperative, declara-

tive, and automatic. The imperative approach requires the user to write programs

that explicitly generate and manipulate the dynamic constructs at run-time. The

declarative approach, on the other hand, only requires the user to provide annota-

tions to guide dynamic code generation. Finally, the automatic approach determines

how to specialize without user intervention.

2.2.1 Imperative Code Generation

This subsection presents a few example systems using an imperative approach to dy-

namic code generation and describes some of the trade-offs. The imperative approach

requires the user to explicity manipulate program fragments at runtime.

One example of a system taking the imperative approach is dcg [17]. The API

presented by dcg allows the programmer to generate dynamic code through constructs

representing the intermediate representation (IR) of the LCC compiler, one method

at a time. Through the abstraction of the LCC IR, dcg is able to easily provide

portability; client code does not require alteration when linked with dcg routines on a

new target machine. Once the client is ready to compile its generated method, it calls

the dcg gen method and is provided a pointer to the generated code. The dcg gen

method translates the IR tree into machine instructions for the targetted machine;

reportedly at the rate of one machine instruction produced for every 350 instructions.

‘C (Tick C) [16, 25] is a further project loosely based on DCG. ‘C itself is a

language definition for dynamic code generation; the ‘C language is a superset of
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void cspec mkscale(int ∗∗m, int n, int s) { 1

return ‘{ 2

int i,j; 3

for(i=0; i < $n; i++) { /∗ Loop can be dynamically unrolled ∗/ 4

int ∗v = ($m)[i]; 5

for(j = 0; j < $n; j++) 6

v[j] = v[j] ∗ $s; /∗ Multiplication can be strength-reduced ∗/ 7

} }; 8

} 9

Figure 2-2: ‘C code to specialize multiplication of a matrix by an integer. The value
returned is a dynamic code specification which will need to be compiled before being
used. Notice that the $ indicates data that is considered static.

ANSI C. ‘C allows the programmer to generate code specifications in ANSI C, which

are static descriptions of dynamically generated code. These code specifications can

be composed at run time to build larger specifications. These specifications can

then be dynamically compiled, at which time the program obtains a pointer to the

generated code. See Figure 2-2 (taken from [16]) for an example showing the dynamic

creation of code designed to multiply a matrix by a integer scalar.

Tcc is an implementation of a compiler for the ‘C language, based on lcc. It uses

VCODE [15] as one of the possible runtime code generators. VCODE is a template-

based system for dynamic code generation, providing a similar interface to that of an

ideal RISC architecture.

The imperative approach to dynamic code generation allows the user to have al-

most complete control over the generated code. This is, of course, both an advantage

and a disadvantage. Although it offers great flexibility and control, it requires signif-

icant programmer effort and is difficult to debug. The next subsection describes an

alternative, the declarative approach.

2.2.2 Declarative Code Generation

The declarative approach to dynamic code generation requires the user to provide an-

notations guiding the partial evaluator in choosing how to perform its specializations,

but the system then performs the actual specializations.
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DyC [18] provides functionality for dynamic code generation with two calls: make static

and make dynamic. At the most basic level, these calls simply denote regions around

which to classify variables as either static or dynamic. When a variable is marked

as static, DyC generates a generating extension (GE) to produce code specialized

against the runtime value of said variable until a corresponding make dynamic call

(or the variable exits scope). The region of code between a make static annotation

for a variable and the corresponding make dynamic is called a dynamic specialization

region, or dynamic region for short.

One major difference between DyC and other dynamic code generating systems

is its flexibility in dynamic regions allowed. Specifically, it allows both polyvari-

ant specialization and polyvariant division. Polyvariant specialization allows multiple

compiled versions to be produced, each specialized for different values of the static

variables. Polyvariant division allows the same program point to be analyzed for

different combinations of variables being treated as static. Additionally, dynamic

regions for different variables can overlap, be contained in, or interact in any way

with dynamic regions of other variables. See Figure 2-3 (expanded from [18]) for an

example of its flexibility. As is common throughout off-line partial evaluators, DyC

runs a binding-time analysis to generate the necessary GEs which are then run at

runtime to produce code specialized against the values of static data.

In addition to the basic functionality presented above for DyC, at each make static

call site, each variable can be augmented with a list of policy choices to guide DyC

in specialization. For instance, one policy choice represents how likely it is for a dy-

namic region to occur with the same static values; if only a single static value will be

present, more time and effort can be spent in optimizing for that value (as it will be

used frequently and cost can be amortized). At the other extreme, if a static value

will only occur a single time, there’s no point trying to optimize highly or test to see

if the value has already generated code.

Tempo [10, 11] is another declarative partial evaluator for the C programming

language, driven by the goal of improving the performance of actual systems level

applications. Tempo defines a declarative language for the developer to describe
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int x, y;
if (condition) {
   x = 10;
   make_static(x);
   ...
} else {
   x = getch();
   make_static(x);
   ...
}
y = x - 2;
make_static(y);
...
if (condition) {
   make_dynamic(y);
   y = getch();
} else {
   make_dynamic(x);
   x = get_time_of_day();
}

Figure 2-3: A graph fragment showing the flexibility of DyC in theflow of dynamic
regions. The code on the right could have generated the different dynamic regions
shown on the left.

specialization opportunities. The developer uses this language to construct special-

ization scenario modules that identify functions, global variables, or data structures

that can be specialized, as well as classification of components as static or dynamic.

These modules are compiled to produce declarations to guide Tempo’s binding-time

analysis. Tempo then performs a series of preprocessing transformations to produce

specializable code. This specializable code can then be provided with the value of

static data and processed to produce specialized code. Tempo can perform the pro-

cessing either at compile-time or run-time. In addition to compile-time or run-time

program specialization, Tempo provides the ability for data specialization.

Tempo and DyC are two examples of declarative partial evaluators that rely on

user-provided annotations to guide partial evaluation. Compared with the imperative

approach, declaration provides easier and safer partial evaluation, since annotations

do not alter the behaviour of the program. The next subsection briefly talks about a

third approach to dynamic code generation.
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2.2.3 Automatic Code Generation

At the other extreme from imperative partial evaluation is automatic partial evalua-

tion where the partial evaluator is not provided with any guidance from a user. These

systems offer less control even than declarative systems, but also require less from a

user.

Calpa [24] uses a combination of injected profiling and cost-benefit analysis to

automatically insert DyC annotations. Calpa requires some profiled executions to

run and be analysed before creating the annotations and is designed more to be

run before execution than concurrently at runtime. Empirically, Calpa generated

annotations performed as well as hand-crafted ones tuned over a number of weeks.

A recent project in automatic partial evaluation can be found in [28]. This system

can use semantic constraints in Java code for use in static vs. dynamic classification;

for instance, the final keyword specifies that values will be initialized once and never

again modified. Additionaly, for data that cannot be guaranteed to be static, special-

ization can occur protected by run-time guards to invalidate specializations upon any

changes. The system performs analysis on the byte-code to try and determine a key

variable that can specialize many instructions. A specialization scope is then defined

(similar to a dynamic region in DyC) and different versions are created optimized

against different values of the key. This system performs analysis and specializes

code automatically at the time of program execution.

This section presented three alternative approaches for dynamic code generation:

imperative, declarative, and automatic. The next section introduces the notion of

binary translation and discusses several different goals and systems.

2.3 Binary Translation

The term binary translation generically refers to translation from one binary format

to another (possibly the same) binary format. There are many different uses for

binary translation: one notable use is Just-In-Time (JIT) compilation of interpreted

languages; another is architectural compatability; a third use is for optimization; and
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a fourth is introspection (see [1] for a more thorough survey of binary translation goals

and systems). The next subsections address each of these uses, with optimization and

introspection combined into a single subsection.

2.3.1 Just-In-Time (JIT) compilation

A JIT compiler translates an intermediate byte-code representation to architecture

dependent machine code at run-time. The purpose of a JIT is to improve perfor-

mance by reducing interpretive overhead (see [26] for a comparison of techniques for

increasing performance of executing Java programs).

JIT compilers have recently become extremely popular for Java Virtual Machines

(JVMs). Since Java is widely used, any improvement in performance has drastic ram-

ifications in the software industry. Furthermore, the conceptual design of a JVM has

inherent performance penalties when run on any modern architecture; specifically,

the JVM is a stack-based machine, but modern chips are register based. JITs such

as Jalapeño [2] and LaTTe [32] can improve performance greatly by performing reg-

ister allocation for sequences of Java bytecode, thus reducing the number of memory

accesses. Also the translation of bytecodes can be cached, thus reducing the dynamic

overhead for commonly executed sequences.

A similar approach is taken by Psyco [27] to partially evaluate Python code. Psyco

introduces a notion of representations, and calls itself a just-in-time representation-

based specializer for the Python language. Psyco includes a run-time dispatcher,

and a specializer to iteratively generate machine code based on Python bytecodes as

needed.

2.3.2 Architectural Compatibility

The goal of binary translation for architectural compatibility is to dynamically retar-

get machine code from one architecture to another, thus emulating the original archi-

tecture. Such emulation can be used to expand the base of usable applications for a

different architecture or for taking advantage of hardware support not available when
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the machine code was produced. IBM’s DAISY [14] was created to support applica-

tions developed for the PowerPC RISC architecture on a VLIW machine. Similarly,

Transmeta’s Crusoe [22] was created to emulate Intel’s x86 architecture on a VLIW.

In a somewhat similary vein, DISCO [7], presents a single-processor, uniform-memory

abstraction to commodity guest operating systems on a multi-processor NUMA ma-

chine.

2.3.3 Dynamic Optimization

Dynamic optimization systems are used to improve the performance of machine code,

while introspection systems are used to examine and inspect running programs. No-

tice that these two uses are highly related and can be performed by a single system;

this thesis will focus on the optimization aspect. The rest of this section describes

some benefits of dynamic optimization and presents a situation that defies common

heuristics.

Dynamic optimization systems have more data available to them (at run-time)

than static (compile-time) optimization systems, and thus are better suited for certain

optimizations. For instance, a static optimization system cannot cross any bound-

aries for dynamically loaded modules, while a dynamic system may examine (and

optimize) any code executed. Also, a dynamic optimization system has knowledge of

the particular processor on which the application is being executed and may apply

architecture specific optimizations. For instance, the Intel Pentium 3 processor can

execute inc and dec instructions faster than add or sub while the Pentium 4 can

execute the add or sub faster. A static compiler would have to choose one, slowing

the runtime on the other, while a dynamic system can translate at runtime from one

to the other, allowing optimal running time on both.

The DynamoRIO system [6, 5] (explained in more detail in the next chapter) is

a runtime optimization and introspection system. Its goal is to provide a view on

running processes, allowing an external control to see (and possibly modify) every

instruction before it is executed by the processor. Although DynamoRIO performs

reasonably well on most classes of programs, interpreters in general defy the heuristics
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it uses. DynamoRIO-with-Log-PC [30, 4] is an extension of DynamoRIO created to

improve the performance of interpreters; towards this goal, DynamoRIO-with-Log-PC

has developed an API for interpreter writers to transmit information for the purpose

of optimization. Our work, DynamoRIO-PE provides an extension to DynamoRIO that

subsumes the changes for DynamoRIO-with-Log-PC, again with a goal of performance

improvements. The next chapter goes into more detail about DynamoRIO as the base

for our work, and DynamoRIO-with-Log-PC as an alternative design.
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Chapter 3

DynamoRIO and

DynamoRIO-with-Log-PC

This chapter provides an overview of the operation of DynamoRIO and DynamoRIO-

-with-Log-PC and introduces some terminology and concepts that will be used

throughout this thesis. We first begin with an overview of DynamoRIO’s operations in

emulating the execution of a client application, and some optimizations DynamoRIO

performs to compensate for its overhead. We then discuss the modifications made by

DynamoRIO-with-Log-PC.

3.1 DynamoRIO Implementation

The DynamoRIO system contains two main components: emulation and optimization.

This section first presents the emulation component and then briefly describes the

optimization component.

DynamoRIO takes a common approach to emulating a program: rather than sim-

ulating the processor running the program, DynamoRIO translates a basic block of

machine code on demand and then lets that block run natively. A DynamoRIO basic

block is defined as a sequential block of code with one entry point and ends with

the first conditional or indirect jump instruction. Call instructions are walked into,

replacing the call with pushing the return address and continuing translation at the
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destintation. Any jump instruction that would normally exit a basic block is replaced

with a jump to an exit stub. This exit stub is then responsible for returning control

to DynamoRIO. To maintain program transparency, DynamoRIO monitors basic blocks

to detect if code is self-modifying since such blocks must be handled specially.

Beyond the basic translation necessary for correctness, DynamoRIO can also per-

form optimizations on the translated blocks. Some optimizations performed by Dynamo-

RIO include copy propagation, dead code elimination, and peephole optimizations.

Since such optimizations are not guaranteed to improve performance (the time spent

in optimization itself has to be compensated for), DynamoRIO refers to environment

variables specifying which optimizations are to be performed, and how aggresively.

The next section describes some DynamoRIO-specific techniques for reducing overhead

and improving performance.

3.2 DynamoRIO Techniques

A major goal of DynamoRIO is to reduce the overhead added by emulation. Three

main techniques are used to achieve this goal: caching, linking, and trace generation.

These techniques are described further in the rest of this section.

To avoid translating the same basic blocks repeatedly, translations are cached in

a code cache. When the emulated program is about to enter a new basic block,

DynamoRIO checks to see if the target is in the cache before translating again. This

reduces overhead greatly, but emulation across basic blocks must still return to the

translator before continuing (essentially a context switch, to save and restore machine

state).

To reduce the number of context switches, basic blocks are linked together in the

code cache. That is, if a basic block ends with a direct jump to a basic block already

in the code cache, DynamoRIO inserts a direct jump to the address of the target block

in the code cache. Indirect jumps, however, cannot be changed as easily since the

actual target is unknown. Instead, indirect jumps can be replaced with a test for

the most common branch target; if the test succeeds, then a context switch can be
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avoided by performing a direct jump to the expected block within the code cache.

Otherwise, control must return to the translator.

Finally, to achieve better code layout DynamoRIO performs trace generation. Dynamo-

RIO marks certain blocks as candidate trace heads; candidate trace heads are either

1) the target of an exit from a trace, or 2) the target of a direct backward jump.

Trace heads are monitored to record how frequently they are targets. If a trace head

is executed more times than a run-time evironment-defined threshold, then Dynamo-

RIO starts recording a trace. Trace recording follows the current path of execution,

stitching together basic blocks as it goes. If a conditional jump is taken, the condition

is reversed and the non-taken jump target is changed to an exit stub. If an indirect

jump is encountered, a comparison is embedded into the trace against the target at

trace creation time. If during some later trace execution the indirect jump target

does not match, execution will exit the trace and return to DynamoRIO’s translator.

Trace recording stops when any of the following conditions is met: 1) encountering

another target that is marked as a trace head, 2) encountering a target that cannot

be a trace head (such as self-modifying code), 3) if there is not room in the cache to

expand the trace farther, or 4) the trace has reached a provided maximum number

of basic blocks. Notice that trace generation is only helpful if the traces are executed

frequently and for the length of the full trace; emulation of the trace must stop any

time conditional checks or indirect targets differ from when the trace was recorded.

We collectively refer to basic blocks and traces as fragments.

This section has described some techniques that DynamoRIO uses to improve per-

formance of executed code and compensate for overhead in translations. Building on

top of the structure described, DynamoRIO-with-Log-PC adds the ability for partial

evaluation and functional memoization.

3.3 DynamoRIO-with-Log-PC Implementation

DynamoRIO-with-Log-PC was developed as a way to improve the performance of in-

terpreters under DynamoRIO. DynamoRIO in essence tries to improve the performance
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of an interpreter at the lowest level; if the focus instead is on improving the perfor-

mance of an input program to an interperter then better performance can be achieved.

Generally, interpreters follow a similar design scheme: instruction fetch and dispatch

within a loop. In such a system, DynamoRIO will notice that the head of the loop is a

frequent target and attempt to record a trace starting there. However, each different

operation will be dispatched differently, and thus the trace will frequently not be

fully executed. DynamoRIO-with-Log-PC was designed to address this shortcoming,

focusing on two main features present in many interpreters. The first is an immutable

input program, and the second a mutable index into the program acting as a logical

program counter for interpretation. The interpreter writer provides annotations that

make run-time calls into DynamoRIO-with-Log-PC to guide optimization.

To accomdate the first feature, an immutable input program, DynamoRIO-with-

-Log-PC provides the annotation dynamorio set region immutable(start, end ).

This annotation marks the region of memory between start and end as unchanging for

the life of the program. Any fixed reference of memory in that region can equivalently

be replaced with a constant.

To accomodate the mutable logical program counter, DynamoRIO-with-Log-PC

provides the notion of a Logical PC that can be changed with the provided anno-

tation dynamorio set logical pc(log pc ). Notice that the logical pc does not

actually have to be represented in memory, or correspond to any concrete data in the

program; instead it is used as an abstract key into the run-time state of the inter-

preter. Whenever a logical jump occurs (for instance, in interpreting a logical CALL or

logical RETURN operation), a parallel call to either dynamorio logical direct jump

or dynamorio logical indirect jump should take place. Internally, DynamoRIO-

-with-Log-PC uses the logical jump annotations to determine candidate trace heads.

It does, however, use the same considerations for when to stop recording a trace as

does DynamoRIO. DynamoRIO-with-Log-PC additionally tags each trace with a value

for the logical pc. So for instance, the same program point can mark the state of

multiple trace heads, each with a different value of the logical pc. If the logical pc

corresponds to the execution path from that point then these different traces will be
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executed fully, in general.

When execution reaches the point of a logical jump, DynamoRIO-with-Log-PC

needs to perform a lookup to see if a trace already exists for the program point and

the current value of the logical pc. If a trace does exist, then execution should be

dispatched to the correct trace. If not, then the number of times the point has been

reached with the current value of logical pc should be incremented and if it passes a

threshold a trace should be recorded.

In addition to the annotations described earlier, there are annotations for marking

variables as either trace constants (that is, the value is purely dependant on the value

of the logical pc), or as unaliased. There is also an annotation for functions that have

no side effects and can be safely memoized (see [23] for a more in-depth description

of memoization).

This chapter described an overview of DynamoRIO and the modifications made for

DynamoRIO-with-Log-PC. The next chapter presents some motivating examples for

how partial evaluation under DynamoRIO can be better performed.
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Chapter 4

Motivation for extending DynamoRIO

This chapter presents two motivating examples detailing places in which both Dynamo-

RIO and DynamoRIO-with-Log-PC can be improved. The examples are two different

implementations of the same minimal virtual machine, µVM, one recursive and the

other iterative. We begin this chapter with a definition and description of the µ-

language, and an example program in the µ-language. We then analyze a recursive

and an iterative implementation of a µVM: For each implementation, we present

example code for the eval function in the interpreter. We then walk through the

traces generated by DynamoRIO on the example input program. We then present an

annotated interpreter for use with DynamoRIO-with-Log-PC, and walk through the

traces generated by DynamoRIO-with-Log-PC.

4.1 A Microscopic language and Virtual Machine

(µVM)

The language targetted here is a primitive accumulator language; there is an accu-

mulation register and a program counter register. A program consists of a sequence

of instructions, where each instruction contains two bytes: an operation byte, and an

argument byte. There are two different kinds of operations: continue and end. The

continue instruction requests that the argument byte be added to the accumulator,

35



0 1 2 3 4 5
instrs c 2 c 3 e 4

Figure 4-1: An example program written in the micro language. Every even-numbered
byte is an operation byte (either c(ontinue) or e(nd)), and every odd-numbered byte
is an argument byte. The full program text is an array of bytes labelled instrs.
Execution of the program shown here will result in the value 9 (2+3+4).

and execution continue with the next instruction. The end instruction requests that

the argument byte be added to the accumulator and that execution cease. The ar-

gument byte is an integer value that is added to the accumulator. See Figure 4-1 for

an example program in this language.

An interpreter for the µ-language described here has two intuitive implementa-

tions: recursive and iterative. The recursive implementation recursively evaluates

the next instruction for a continue instruction, and then returns the sum of the

current argument and the value returned. The iterative implementation contains a

single sum variable, and loops through the input program adding each argument to

the sum. Although these examples are conceptually simplistic, they illustrate how

partial evaluation can help performance under DynamoRIO.

The next sections present concrete implementations of the different kinds of in-

terpreters. Each interpreter’s execution is simulated, and its performance analyzed

under basic DynamoRIO and with annotations provided for DynamoRIO-with-Log-PC.

4.2 Recursive Implementation

This section presents a concrete recursive implementation of µVM written in the C

programming language. We then show how the interpreter could be annotated for

use by DynamoRIO-with-Log-PC, and evaluate the performance.

For brevity in later examples, Figure 4-2 presents the structure for all µVM

interpreters we examine. The only difference will be in the implementation of the

eval function. Notice the annotation declaring the instrs array as immutable; this

annotation is only used when considering execution under DynamoRIO-with-Log-

-PC. We frequently refer to source code statements by corresponding line numbers.
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When we do so, we use the notation function :line number , where the line number

is taken from the figure presenting the source code; when referring to a particular

implementation of the eval function we disambiguate by appending a suffix of either

i (iterative) or r (recursive) followed by either R (DynamoRIO) or L (DynamoRIO-with-

-Log-PC) (e.g., evalrR:5 for line 5 of eval in the recursive implementation executed

under DynamoRIO). In figures, we also reduce both call instructions and return

instructions into their component instructions. Thus, a subroutine call is replaced

with pushing a return address followed by a direct jumps (that can be inlined into

a DynamoRIO block), whereas a return statement is replaced with popping the return

address followed by an indirect jump to that location. (When presenting figures, we

depict indirect jumps as jumping to the address RIO INDIRECT DISPATCH and show

a dotted line to the run-time target.)

4.2.1 Recursive µVM under DynamoRIO

Figure 4-3 shows a straightforward recursive implementation of a µVM. The eval-

uation function consists of four DynamoRIO basic blocks: fetching and dispatching

the next instruction, executing an END OP, and two blocks for executing a CON-

TINUE OP, one performing a recursive call to eval, and the other performing the

sum and returning. These are shown in Figure 4-4. In portraying the basic blocks we

have included the starting application instruction pointer value.

The execution of µVM defies DynamoRIO’s trace heuristics and furthermore Dynamo-

RIO does not perform partial evaluation. DynamoRIO attempts to amortize the cost of

building traces using the heuristic that a trace will be followed completely through;

here, the head of the eval function will be recognized as a great trace head but execu-

tion will differ for the interpretation of each operation type1. Even more importantly,

DynamoRIO does not take advantage of the fact that instrs is an immutable region of

memory. Within a trace, it is possible to dereference the memory lookup and replace

1This isn’t actually a big concern here, since each program is defined to have only one END OP,
and thus most operations will be CONTINUE OPs. However, a slight modification of µVM (e.g.
the addition of a subtract operation) will effect the described results.
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byte ∗instrs; /∗ array of program instructions ∗/ 1

int eval(int pc); /∗ prototype for eval function ∗/ 2

3

int main(int argc, char ∗argv[ ]) { 4

int length; 5

length = read instructions(&instrs, argc, argv); 6

DECLARE IMMUTABLE REGION(instrs, length∗sizeof(byte)); 7

return eval(0); /∗ return value is obtained by evaluating start of program ∗/ 8

} 9

Figure 4-2: The common structure around the different implementations of µVM.
The annotation establishing instrs as an immutable region is removed when not
compiling under DynamoRIO-with-Log-PC

int eval(int pc) { /∗ returns sum of args, starting at pc ∗/ 1

int op; 2

op = instrs[pc]; 3

4

if (op == END OP) { /∗return with value of next arg ∗/ 5

return instrs[pc+1]; 6

} else if (op == CONTINUE OP) { /∗add value of this arg to rest ∗/ 7

int result; 8

result = eval(pc+2); /∗recursive call on next instruction ∗/ 9

return instrs[pc+1] + result; 10

} 11

} 12

Figure 4-3: Example code for a recursive implementation of µVM’s evalrR function.
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Figure 4-4: The generated Basic Block fragments for evalrR when run under Dynamo-
RIO.
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it with a constant, then perform constant propagation/folding.

4.2.2 Recursive µVM under DynamoRIO-with-Log-PC

DynamoRIO-with-Log-PC solves both of the issues discussed regarding DynamoRIO.

Each time the head of the eval function is reached the logical pc determines the code

executed in the body. DynamoRIO generates at most a single trace starting at the head

of the eval function containing only a single execution of the body; thus, the only

time the trace will be beneficial is when control flow follows the same path as that

at the time of trace creation (i.e. only when the interpreted operation is the same).

DynamoRIO-with-Log-PC augments this with a trace for each value of pc, improving

the chance that the entire trace will be executed. Additionally, by specializing traces

against the value of pc, DynamoRIO-with-Log-PC is able to fold constant references

and remove some conditional jumps within a trace.

Example Traces Generated under DynamoRIO-with-Log-PC

To further explain some of the limitations of DynamoRIO-with-Log-PC we now work

through the example code (Figure 4-5) on the example input in Figure 4-1.

Figure 4-5 presents a first attempt at annotating the recursive µVM with Dynamo-

RIO-with-Log-PC annotations, and Figure 4-6 presents the corresponding traces gen-

erated when running on the example in Figure 4-1 (assuming either a hot threshold

of 1, or that the main program is in a loop). The first trace begins with the first exe-

cution of eval(0). In DynamoRIO-with-Log-PC, traces may only begin after a logical

jump, here the DIRECT JUMP on line evalrL:4 of the code fragment. The first trace

then is annotated specifying that whenever the logical pc value is 0, and the native

pc value is evalrL:5, the value of the variable pc will always be the same as it is on

this trace (namely, the constant 0 since pc is the concrete realization of the logical

pc). These assumptions allow the memory address calculation in line evalrL:6 to be

held fixed as a constant as well. Since the memory address is fixed and the memory

region is immutable, the entire statement is replaced by moving a constant value into
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int eval(int pc) { /∗ returns sum of args, starting at pc ∗/ 1

int op; 2

SET LOGICAL PC(pc); 3

DIRECT JUMP(); 4

TRACE CONSTANT STACK(pc); 5

op = instrs[pc]; 6

7

if (op == END OP) { /∗ return with value of next arg ∗/ 8

return instrs[pc+1]; 9

} else if (op == CONTINUE OP) { /∗ add value of this arg to rest ∗/ 10

int result; 11

result = eval(pc+2); 12

return instrs[pc+1] + result; 13

} 14

} 15

Figure 4-5: Example code for a recursive implementation of µVM’s eval function,
annotated in the style used in DynamoRIO-with-Log-PC.
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Figure 4-6: Example of traces created under DynamoRIO-with-Log-PC on source code
shown in Figure 4-5. The legend notes convention we follow through our figures:
underlined text has been specialized, italic text represents C code that has been
mangled, bold text represents DynamoRIO-inserted control flow. Trace assumptions
that DynamoRIO-with-Log-PC makes are represented in the box above the trace code,
where ip represents the architecture native instruction pointer (register %eip), and
pc represents the abstract logical program counter.
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op (op = CONTINUE_OP;). Now that op is a constant as well, the conditional check at

line evalrL:8 can be resolved to false, and the whole block can be removed. Addi-

tionally, the check at line evalrL:10 can be resolved to true and the code executed

without the check. Execution now follows to line evalrL:11 and then the evaluation

of the next instruction at instrs[2]. DynamoRIO mangles the recursive call to eval

into pushing the arguments on the stack, followed by pushing the return address and

execution of the code at the target (evalrL:0). The first instruction in the recursive

call sets the logical pc and the next performs a direct logical jump. (Thus, Trace 1 can

be directly linked to Trace 2). The next trace, Trace 2, has the same considerations

and is treated similarly.

The third trace (and third interpreted instruction) contains the base case to exit

the recursion, and is thus different from the first two. Here, the current op is found

to be an END OP and thus the conditional check at line evalrL:8 resolves to true

now. Thus, the return statement on line evalrL:9 is to be executed. DynamoRIO

has mangled this call into storing the return value in the return register (%eax),

followed by an inlined runtime check against the return address recorded at trace

creation time. If the check fails, then the trace is exited and execution makes its way

to RIO_INDIRECT_DISPATCH. Otherwise, execution continues in the trace. Here the

return value is the trace constant instrs[pc+1] which is 4. Following the return

instruction are the latter parts of the first two calls to eval, including subsequent

runtime guards on the return addresses.

A careful study of the traces generated reveals that the first eval execution is

interrupted midway through to start another trace corresponding to the second exe-

cution of eval. The second is likewise interrupted with the third execution. However,

the third trace actually contains not only the entire third execution of eval, but also

the latter half of the first and second executions. Having the third trace contain

these sections of code is counterintuitive and runs contrary to many goals of Dynamo-

RIO-with-Log-PC; the likelihood of execution staying in the trace diminishes, and

optimizations on the contained code are impossible since they are classified under the

wrong logical pc.
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Second Attempt at Recursive µVM under DynamoRIO-with-Log-PC

After analyzing the traces and encountering the difficulties mentioned, one could add

annotations following the return instruction to start a new trace. The modified anno-

tations are shown in Figure 4-7 and corresponding traces are presented in Figure 4-8.

Some salient traits are that the expected traces are generated and optimized as we

had wanted. One interesting note is that the conditional execution in Figure 4-6

has been replaced with both conditional execution and indirect jumps in Figure 4-8.

Notice that these indirect jumps are much more costly than the conditional execu-

tion inlined in the earlier traces. Also notice the amount of annotation necessary

for better optimization; not only is the annotation cumbersome for the user, but

each annotation adds at least a function call overhead until the call is removed in

a trace. This means that if a trace is not created, then this overhead is paid on

every execution; it also adds more initial overhead that must be compensated for.

More importantly, the second round of annotation requires too much expertise and

knowledge of DynamoRIO-with-Log-PC’s inner workings.

These are some issues in DynamoRIO-with-Log-PC stemming just from the min-

imal recursive µVM. The next section discusses an iterative version, detailing the

problems found there. After more problems are related in the iterative case, the next

chapter presents a modified DynamoRIO system and shows how it solves the problems

mentioned in this chapter.

4.3 Iterative Implementation

This section provides an iterative implementation of a µVM interpreter and analyses

its performance natively under DynamoRIO, and with annotations under DynamoRIO-

-with-Log-PC.

The purpose of analysing the iterative implementation is to show how loops are

handled in DynamoRIO and DynamoRIO-with-Log-PC. There is a tradeoff between

code blowup and the possibilities for specialization: loop unrolling is nice because it

allows each iteration to be specialized, and reduces the number of jumps; however,
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int eval(int pc) { /∗ returns sum of args, starting at pc ∗/ 1

int op; 2

SET LOGICAL PC(pc); 3

DIRECT JUMP(); 4

TRACE CONSTANT STACK(pc); 5

op = instrs[pc]; 6

7

if (op == END OP) { /∗ return with value of next arg ∗/ 8

return instrs[pc+1]; 9

} else if (op == CONTINUE OP) { /∗ add value of this arg to rest ∗/ 10

int result; 11

result = eval(pc+2); 12

SET LOGICAL PC(pc); 13

INDIRECT JUMP(); 14

TRACE CONSTANT STACK(pc); 15

TRACE CONSTANT STACK(result); 16

return instrs[pc+1] + result; 17

} 18

} 19

Figure 4-7: Example code for a recursive implementation of µVM’s eval function,
annotated in the style used in DynamoRIO-with-Log-PC(second attempt).
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Figure 4-8: Example of traces created under DynamoRIO-with-Log-PC on re-
annotated source code shown in Figure 4-8. We use the same convention as in previous
figures.
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int eval(int pc) { /∗ returns sum of args, starting at pc ∗/ 1

int sum; /∗ Accumulation register ∗/ 2

int op; 3

sum = 0; 4

while (END OP != op) { 5

op = instrs[pc]; 6

switch (op) { /∗ dispatch on op-code ∗/ 7

case CONTINUE OP: 8

sum += instrs[pc+1]; 9

break; 10

} 11

pc+=2; /∗ update pc ∗/ 12

} 13

sum += instrs[pc+1]; 14

return sum; 15

} 16

Figure 4-9: Example code for a iterative implementation of µVM’s eval function.

if loops are unrolled without limit then a single loop can expand to fill the cache.

Additionally, DynamoRIO generates a substantial amount of code for loop unrolling:

each possible exit from the loop requires its own trace exit stub. We address a parallel

remark concerning recursion at the end of this chapter.

Each system uses its own extreme policy for handling loops, and thus both perform

suboptimally. In basic DynamoRIO loops are never unrolled in traces. This conserves

room in the cache, at the cost of not allowing traces to contain any loops (traces

are defined as single entrance, multiple exit, and so a jump cannot be performed into

the middle of a trace). Alternatively, DynamoRIO-with-Log-PC unrolls however many

times the loop is executed when that trace is generated2. This allows DynamoRIO-

-with-Log-PC to optimize what it can during these loop iterations, but also bloats

the code.

2Actually, one can limit the maximum size of a trace. In DynamoRIO-with-Log-PC then, when a
loop is unrolled enough to expand the trace size to the upper bound, the trace will end and unrolling
will stop. In this case, no optimizations are performed after the trace ends, until the next time a
logical jump occurs.
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int eval(int pc) { /∗ returns sum of args, starting at pc ∗/ 1

int sum; /∗ Accumulation register ∗/ 2

int op; 3

SET LOCAL PC(pc); 4

DIRECT JUMP(); 5

TRACE CONSTANT STACK(pc); 6

sum = 0; 7

while (END OP != op) { 8

op = instrs[pc]; 9

switch (op) { /∗ dispatch on op-code ∗/ 10

case CONTINUE OP: 11

sum += instrs[pc+1]; 12

break; 13

} 14

pc+=2; /∗ update pc ∗/ 15

} 16

sum += instrs[pc+1]; 17

return sum; 18

} 19

Figure 4-10: Example code for an iterative implementation of µVM’s eval function,
annotated in the style used in DynamoRIO-with-Log-PC.

4.3.1 Iterative µVM under DynamoRIO

Figure 4-9 presents the code for the interpreter to be run under DynamoRIO. Dynamo-

RIO will create a trace starting at the head of the while loop at line evaliR:4. This

trace will only contain one iteration of the loop (and the subsequent direct jump back

to the loop-head). As mentioned in the previous section, only one path through the

loop will be recorded (that for a CONTINUE OP). Also, again, no partial evaluation

is performed under DynamoRIO.

4.3.2 Iterative µVM under DynamoRIO-with-Log-PC

We next present annotated code for the iterative µVM in Figure 4-10. Notice that

we had a choice in whether to place the annotations before the loop (at evaliR:3), or

inside (at evaliR:7). We discuss a few considerations about placement later. Placing

the logical jump annotation before the loop causes the recorded trace to completely

unroll the loop (until reaching the trace-size limit). In the example shown, this is
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actually beneficial, as all dispatch in the loop can be removed, all conditional exits

before the final iteration can be removed and all that remains is a list of sum +=

const instructions. If any more instructions were dynamic, the trace size would

grow quickly - especially if the exit condition were not statically computable.

Placing the annotations inside the loop would result in two reasons for worse

performance: one obvious, the other not so much. First, many more traces would

be created, one for each iteration. Asymptotically this just results in executing a

hardware jump for each iteration (once the traces are all directly linked); as well as

a lot of lengthy exit stubs and bookkeeping overhead for DynamoRIO-with-Log-PC.

Second, however, is the fact that at the assembly level, the compiler has probably

loaded a register with the value of the base address for the instrs array; if so, then

DynamoRIO-with-Log-PC may not be able to recognize the opportunity for constant

folding.

4.4 Summary of Motivation

We now summarize issues we introduced across the various implementations of µVM

under DynamoRIO-with-Log-PC, since the main issue with DynamoRIO is its lack of

partial evaluation.

Cumbersome Annotations Requirements Notice the cumbersome annotations

required for correctness and optimization. The second attempt definition of

evalrL is twice the size of evalrR. Furthermore, the annotations for better

optimization required extensive knowledge of internal DynamoRIO-with-Log-

-PC structure.

Issues with Linking In the second definition of evalrL, the final two traces are not

able to be linked directly. Indirect links force re-entrance into the DynamoRIO

subsystem for dispatch at extensive cost. One is forced to choose between lack

of optimizations in the first version against indirect jumps in the second.

Extreme Choices for Code Growth The underlying DynamoRIO system performs
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no loop unrolling in its traces, while DynamoRIO-with-Log-PC has no ability to

stop. Furthermore, if one were able to stop DynamoRIO-with-Log-PC from

unrolling loops, there is no way to reestablish all the trace invariants discovered

before stopping loop unrolling (one can provide annotations for named memory

locations, but not for derived or temporary locations). This issue is addressed

next.

Propagating Information During the course of optimizing a trace, DynamoRIO-

-with-Log-PC is able to infer the values of some variables based on the in-

coming assumptions and the TRACE CONSTANT annotations (such as op in

evalrL:6). However, unless the interpreter writer annotates it, this information

is lost if a new trace should begin execution. For an example of this, examine the

new trace head declared at the second definition of evalrL:14. When returning

from the recursive call to evalrL at line evalrL:12, the value of op is the same

as before the call; however, the new trace does not take advantage of this fact.

Not only does this impose an added burden on the annotator, temporary values

or other values not easily referenced cannot be annotated and are thus lost. If

the information is propagated to the new trace, then better optimizations can

be performed.

Limited to a Single Dispatch Variable Although the examples shown did not

exhibit any need for it, a more general system could handle polyvariant division.

This would allow the same execution point to be specialized against the value

of more than a single variable to exploit more static knowledge.

Abundance of Specialized Traces As alluded to in the iterative section, a single

static program point annotated as a logical jump may be specialized against any

number of values for logical pc. If there are too many the code growth could be

substantial, adversely affecting performance. A logical jump at the head of a

loop, or the head of a resursive function, such as evalrL, are likely candidates

for causing such behaviour.
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This chapter presented the µ-language and analysed the performance of both a

recursive and iterative version, each under DynamoRIO and DynamoRIO-with-Log-PC.

The next chapter presents the features and characteristics of a partial evaluation

system designed to address these restrictions.
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Chapter 5

Proposed extensions to DynamoRIO

This chapter proposes an alternative extension to DynamoRIO than DynamoRIO-with-

-Log-PC, DynamoRIO-PE. We then show how the extension is able to better handle

both the recursive and iterative µVM implementations introduced in the preceding

chapter. Finally, we present a few alternative designs and reasons to not use them.

5.1 Generalized DynamoRIO with DynamoRIO-PE

This section describes the features and annotations necessary to correct the short-

comings summarized in the previous section. We begin by describing the annotation

differences and the translation from DynamoRIO-with-Log-PC to the new annotation

style, known as DynamoRIO-PE.

We maintain the annotations of immutable memory regions introduced in Dynamo-

RIO-with-Log-PC. However, instead of singling out one value to specialize a trace

against (the logical pc), we let annotators specify any number and type of Locations

of Interest (LoI). An LoI, is simply a memory location (either absolute address or

stack-based offset) that the annotator has determined useful to specialize against:

this includes locations that affect control flow, locations that assume only a fixed set

of values, etc. These LoIs are treated as static when optimizing a recorded trace.

The annotator specifies relevant LoIs at a Point of Interest (PoI). A PoI is a place

in execution where a new set of LoIs take effect. A PoI is similar to the beginning
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DynamoRIO-with-LogPC → POI/LOI notation
SET LOGICAL PC(val) → logpc = val
LOGICAL DIRECT JUMP() → POINT OF INTEREST(LOI)
LOGICAL INDIRECT JUMP() → POINT OF INTEREST(LOI)
TRACE CONSTANT(&addr, val) → LOI = (LOI . ¡addr¿)
UNALIASED MEMORY(&addr) → LOI = (LOI . ¡addr¿)

Table 5.1: A table of translations from annotations in DynamoRIO-with-Log-PC to
annotations in DynamoRIO-PE. The left column presents the original annotations in
DynamoRIO-with-Log-PC, while the right shows how to represent the same informa-
tion in DynamoRIO-PE. Notice that the number of total annotations is reduced to a
single annotation declaring all LoIs.

of a scope, or a dynamic region; a PoI also marks the end of the previously executed

PoI. This command subsumes both the SET LOG PC call and the subsequent LOG-

ICAL DIRECT JUMP or LOGICAL INDIRECT JUMP call. It also incorporates

SET TRACE CONSTANT calls through either direct inclusion in the list of LoIs or

through discovering more LoIs as the LoIs are propagated. For a full translation of

annotations provided by DynamoRIO-with-Log-PC, see Table 5.1. The signature for

PoI is:

void POINT OF INTEREST( int stack count, int *stack addr0, . . . ,

int *stack addrstack count−1, int global count,

int *global addr0, . . . , int *global addrglobal count);

We call a collection of LoIs an optimization template, and the mapping of all

LoIs to values an optimization context (OC). Every program point in a trace has an

associated OC, defined as follows. The head of the trace has an OC determined by

the optimization template presented at the PoI call point. A subsequent instruction

instr’s OC is based on the OC of the previous instruction, modified by the results

of instr. The results of an instruction could: add a new LoI if all instruction sources

are LoI and the destination is not; modify an LoI if all instruction sources and the

destination are LoIs; or remove an LoI if the instruction destination was considered

an LoI, but the sources are not.

Although DynamoRIO-with-Log-PC is able to intuitively define the notions of di-

rect or indirect logical jumps, DynamoRIO-PE has to more carefully extend the notions

to multiple LoIs. We say that a transition from one PoI to another is direct if the
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OC at the destination PoI’s start is contained in the OC of the instruction making

the transition; otherwise the transition is indirect (i.e. going from a specific context

to a more generalized context is a direct jump). We show an example of this criterion

in the next section.

Internally, DynamoRIO-PE uses the PoI points to mark trace heads and trace

exits in a manner that parallels DynamoRIO-with-Log-PC’s handling of logical jumps.

When DynamoRIO-PE encounters a PoI it dispatches to a trace specialized against the

current values of all LoIs. If no such trace exists, and the number of attempts reaches

a threshold, then a new trace will be recorded and specialized against the current

OC. Furthermore, DynamoRIO-PE can choose to supplement the provided LoIs in a

PoI with any other LoIs it may happen to know of at that program point. Finally,

DynamoRIO-PE also has the ability to mark any instruction that begins a basic block

as a PoI with any LoI that are known about at that point.

There are two major changes in this new system: a trace can be selected and spe-

cialized based on any number of trace parameters, and there are only two annotations.

With these two main changes, we can overcome the previously reported deficiencies

with DynamoRIO and DynamoRIO-with-Log-PC. The next section shows how the fea-

tures described here address the problems with recursion that we summarized in the

previous chapter.

5.2 Example 1: Recursive µVM

Figure 5-1 presents the source code for the recursive µVM annotated in the new style.

Figure 5-2 then shows traces generated under the proposed DynamoRIO-PE system.

We now step through Figure 5-2, explaining how and why each trace is generated.

As in evalrL, all conditional code is resolved at the time of partial evaluation.

Suppose the trace threshold for the PoI in eval has been reached and eval has

been called with pc = 0. The first trace begins after the first call to PoI, where

pc is declared as a LoI. (Thus, the OC for this trace consists of ip := evalrP:4,

and pc := 0). Since pc is a LoI and the instrs array has been declared immutable,
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int eval(int pc) { /∗ returns sum of args, starting at pc ∗/ 1

int op; 2

POINT OF INTEREST(1, pc, 0); 3

op = instrs[pc]; 4

5

if (op == END OP) { /∗return with value of next arg ∗/ 6

return instrs[pc+1]; 7

} else if (op == CONTINUE OP) { /∗add value of this arg to rest ∗/ 8

int result; 9

result = eval(pc+2); /∗recursive call on next instruction ∗/ 10

return instrs[pc+1] + result; 11

} 12

} 13

Figure 5-1: Example code for a recursive implementation of µVM, annotated in the
style suggested for use in DynamoRIO-PE.
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Figure 5-2: Example of traces created under DynamoRIO-PE on source code shown in
Figure 5-1. Trace assumptions that DynamoRIO-PE makes are represented in the box
above the trace code, where ip represents the architecture native instruction pointer,
and any other parameters were provided through annotation at a PoI. Variables with
a [n ] imply that the variable is defined in a scope n frames away from the current
one. Solid lines represent direct links from one trace to another.
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instrs[pc] can be folded to a trace constant. Since op is assigned a trace constant

in line evalrP:4, op too becomes a LoI. The following conditional checks are then

resolved as constants, and eval(2) is executed. We then encounter the next PoI;

since the new OC is known (because pc is a trace constant of the first trace), the

control transfer is direct, and therefore the traces can be linked directly. We also show

here the ability of DynamoRIO-PE to include known LoI at the end of trace 1 into the

OC for trace 2. The LoIs included are the values of pc and op in the previous stack

frame. Similarly we are able to directly link from the second to the third trace, and

add more LoIs to trace 3.

The third trace has an extensive list of LoI at its head, and immediately adds the

op field in the current frame. It then has to emulate the return instruction, and thus

compares the return address against the value at the time of trace recording. The

return statement also regresses a stack frame, and so now the newest value of pc (4) is

invalid and the previous op (with value CONTINUE_OP) and pc (with value 2) are valid.

Since the current value of pc is known, partial evaluation can continue, replacing the

expression instrs[pc+1] + result with the constant value 7. Another return occurs

(again regressing a stack frame), and the final result of 9 is known. Notice that the

trace cannot remove the multiple assignments of results or %eax, since execution

could leave the trace at emulation of return instructions. It is possible to include

the return address as another LoI, thus enabling those runtime checks to be removed

from trace 3 and the multiple assignments eliminated as dead code. This is another

example of the tradeoff between more information leading to better optimizations but

also less generality or applicability, since we are adding more trace requirements.

The traces generated with evalrP mirror those in the first definition of evalrL. If

we included another PoI annotation after the return from evalrP at line evalrP:11

(as we did for evalrL), we could again split the final trace into 3 different traces.

This time, however, the links would be direct, since the requirements at the head of

trace 3 are restrictive enough to guarantee correctness. The next section presents the

method for handling loops in DynamoRIO-PE.
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Figure 5-3: Figure detailing different run-time traces generated for code that contains
a loop. The first generated trace contains the prologue (part between the call to PoI
and the loop head), and the first n iterations of the loop (where n is the run-time
parameter for number of times to unroll a loop). The second generated trace contains
a single iteration of the loop specialized against the same optimization context. The
third generated trace is also a single iteration of the loop, but is specialized against
a more general optimization context. The OC has been generalized enough that the
end of the trace is able to jump back to its own head. The final trace contains the
epilogue and is specialized against a more detailed optimization context propagated
from the first trace.

5.3 Example 2: Iterative µVM

5.3.1 Handling Loops

This section describes the mechanisms necessary to handle loops well. The goal is to

provide a limit to code growth caused by loop unrolling without sacrificing knowledge.

The general idea is to split a loop-containing trace into three sections: the first section

contains the instructions until the start of the loop, as well as a limited number of

loop iterations. The second section contains the body of a single iteration of the loop.

If this second trace loops back to the instruction marking its head, a third trace is

created. This third trace also contains just a single loop iteration, although with a

more generalized trace so that the last transition can be made directly to its head.

The third section is the final trace containing the epilogue. Figure 5-3 displays the

three sections and generated traces as described, for an abstract loop. The rest of

this section describes each trace in detail.
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Before the loop

The first trace is created using the mechanism described earlier: the trace begins

recording at the point of the annotation to PoI prior to the prologue. Once a loop is

detected to have occurred max loop unroll times, trace generation for the first trace

stops.

After the trace is ended it is optimized, and a final OC is generated. Here we

encounter a general dilemma: a new trace is going to be created; should the current

OC be propagated to the new trace, or not? Propagation is useful if the parameters

occur frequently, and enables partial evaluation. However, unnecessary specifications

reduce the applicability of traces. DynamoRIO-PE associates the next basic block (the

head of the loop) with the resultant optimization template. To force recording a new

trace on the subsequent instruction, DynamoRIO-PE can set the count to be the value

of hot threshold.

The loop body

When DynamoRIO-PE encounters the basic block at the head of the loop, it finds

an associated optimization template and an execution count that has reached the

threshold; thus, a new trace is recorded. If this trace includes a direct jump back to the

head of the trace, then it contains a single iteration of the loop and so DynamoRIO-PE

stops recording. The conditional exit from the loop is marked with an optimization

template based on the OC of the conditional loop exit instruction. This will be used

to create the final trace.

The goal of the loop body trace is to have general enough requirements that the

final backwards jump can be a direct link to itself. Thus, when optimizing a loop

body any LoI whose value changes within the trace body is removed from the final

OC. At the end of the trace, only LoIs that have remained unchanged are left in

the OC. If the OC is the same as that at the head, DynamoRIO-PE can immediately

make a direct link; otherwise, DynamoRIO-PE needs to record another loop iteration

with the more general OC. If so, we then begin recording a new trace headed by the
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final OC from the previous trace. This trace stops recording at a backwards jump.

We repeat the process of testing for a compatible direct link, and recording a new

trace if the end OC and head OC are not compatible. This process is guaranteed to

eventually terminate, since an empty OC would meet the criterion; also, due to the

dynamic nature of DynamoRIO-PE, we will stop trying to record a general loop body

once the application exits the loop.

DynamoRIO-PE will continue dynamically executing the generalized loop body until

the program exits the loop. At this point DynamoRIO-PE begins recording the final

trace.

After the Loop

Once the application exits from the loop, DynamoRIO-PE will begin recording a new

trace beginning at the epilogue, specialized against an OC based on the optimization

template provided from the first trace. Note that the values of the LoIs may have

changed since the first trace, and so the new trace should not be optimized against

those values, just the locations. Notice also that if the loop body trace had to be

generalized for correctness, its exit cannot be a direct link to the new trace. Instead,

DynamoRIO-PE will have to first guarantee that the values of all LoIs match, or will

have to record a new trace specialized against different values.

Other Possible Loop Behaviors

The scenario described above is what occurs when the number of iterations for the

loop is greater than the max loop unroll runtime variable. If the number of iterations

is less than max loop unroll, then only one trace, with the loop unwound, will be

recorded.

5.4 Alternatives to DynamoRIO-PE

This section presents some alternative designs to DynamoRIO-PE that could have

solved the motivating problems.
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Rather than unconditionally breaking traces at logical jump points, we could have

modified DynamoRIO-with-Log-PC to heuristically keep longer traces. This solves the

problem of propagating information to the return site, since the return site will be

included in the enormous trace. It also solves any issues with linking, since there will

be no need to link across traces. The two main drawbacks with this approach are

related to each other: code bloat and loss of generality. The suggested approach will

have huge traces that might have a very low chance of being executed the whole way

through. [4] relates that long traces are a performance problem in DynamoRIO-with-

-Log-PC; this approach would create more traces that are long. Additionally, if a new

trace includes the entire eval(0) ↓ eval(2) ↓ eval(4) ↑ eval(2) ↑ eval(0) se-

quence, there will be no trace containing just eval(2) in the cache. Thus, there will

necessarily be duplicated code in the cache requiring duplicate efforts at specializa-

tion. And finally, this approach contains an additional knob to tweak (when to break

traces). The best setting for this parameter is dependant on the executing program,

and so would either need an externally modifiable policy, or require the annotator to

add hints specific to this choice.

The approach we suggest here is really more of an extension to DynamoRIO than

to DynamoRIO-with-Log-PC; we could have kept the same interface with DynamoRIO-

-with-Log-PC, and simply modified the system internally. We could have used the

same concept of a controlling logical pc, and simply added the OC to the internal

traces generated. (Adding the OC is necessary to propagate information, something

desired for both the recursive and iterative µVM). This would have presented the

same interface to the annotator, but achieved some benefits internally. The reason we

decided to revamp the API is that we thought it too restrictive and too complicated.

We believe that the DynamoRIO-PE system lends itself more readily to a wider class of

program than interpreters, the target of DynamoRIO-with-Log-PC. We also feel that

the same modifications would have to be made internally whether we kept the same

API or not, and so it makes sense to externalize the generalized capabilities.

One additional option we explored was to have a DynamoRIO-maintained return

stack. In the recursive µVM case, the action we wanted is to return from the recursive
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call back to the same OC that was in effect before the call. It makes the most sense

to achieve this with a native return to a DynamoRIO constructed trace. However, to

maintain program transparency, we cannot simply replace the return address on the

stack with the address of such a trace. Thus, we would need DynamoRIO to maintain

such a return stack. This means we would have to add extra overhead to every

call/return point that we want to use the new system, and maintain consistency.

This chapter presented the external API, and the requirements necessary for han-

dling the recursive and iterative µVMs in a better manner. The next chapter delves

into the internal details of implementation necessary to effect the desired behaviour

from DynamoRIO-PE.
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Chapter 6

Implementation

This chapter provides an overview of the changes necessary to dispatch on multiple

LoIs. This chapter is divided into two sections: the internal changes necessary to

DynamoRIO, and a detailed explanation of a specific generated traces file.

6.1 Internal Changes

For a full walk-through of basic DynamoRIO execution, see Appendix A. We begin by

introducing the newly created structures and modules, noting whether these struc-

tures are architecture-dependent or general. We then walk through emulation under

DynamoRIO-PE, focusing on those parts that have changed from DynamoRIO execution.

6.1.1 Added Modules

The newly introduced modules are poi (general) and oc (specific). The poi module

is responsible for interacting with the monitor module in determining when to start

and stop trace recording, and under what conditions direct links are possible. The

oc module maintains the data structures OptimizationContext, POIBasicBlock,

and some utility structures for representing LoI, GlobalOpParam and StackOpParam.

The OptimizationContext has already been described; it contains a starting appli-

cation pc, and a list of LoIs, implemented as instances of either GlobalOpParam or
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StackOpParam. The POIBasicBlock represents traces and candidate traces. Each

POIBasicBlock has an associated OC, a counter, and a possible Trace. The counter

keeps track of how hot the POIBasicBlock is; that is, the number of times we have

tried to emulate starting at the application pc with the values of LoIs in the OC.

6.1.2 Modified Execution

We now describe the differences in execution between DynamoRIO-PE and the un-

modified DynamoRIO system. These differences are often similar to those between

DynamoRIO-with-Log-PC and DynamoRIO. We begin by detailing how the interp

module responds differently when constructing a basic block containing a call to PoI

(basic blocks not containing such a call are handled exactly as in DynamoRIO).

Building the Basic Block

The first time that a basic block containing a call to PoI is to be executed, the

dispatch module will not find a corresponding fragment and so will return to interp.

interp then finds the target application pc, and constructs a new basic block through

its call to build basic block, which in turn calls build bb ilist. build bb ilist

decodes the executable loosely (L1 decoding, only the opcode) at the target until it

encounters a control-transfer instruction (CTI). The instruction bundle containing all

instructions between the start of decoding and the CTI are appended to the block’s

instruction list. Since this basic block includes a call to PoI, the first CTI will be a

function call. For reasons we detail shortly, the first function call found will target

the pre poi function in the poi module. DynamoRIO-PE performs a check to ascertain

that the function call targets pre poi. When successful, the instruction list currently

being created is stored temporarily, and a new instruction list is created to record

new exit stub code.

New instructions are appended to the exit stub until a call to PoI is seen. The

reason instructions start getting appended to the exit stub is that if we ever want to

link directly from this site to a trace, we want to avoid the overhead of the call to
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PoI. Placing instructions in the exit stub is related to why the first call is to pre poi

instead of PoI itself; the call to pre poi marks the start of code that can safely be

and should be placed in the exit stub. When a call to PoI is encountered, DynamoRIO-

-PE appends a few arguments: a push app pc, push %ebp, and a placeholder push

0 instruction are inserted immediately prior to the call. This matches the internal

signature for PoI:

point of interest(Linkstub *ls, int *base, app pc target,

int stack loi count, ..., int global loi count, ...).

The basic block is then finalized, mangled, and emitted before control returns to

dispatch.

Finalization of the block includes associating the generated exit stub with the

final instruction in the block and marking the following basic block FutureFragment

as a candidate trace head. The effects of the code mangling and emitting modules

are similar to that in DynamoRIO. The only difference is that while emitting code in

emit, a call occurs to finalize the arguments for PoI. This function replaces the place-

holding push mentioned earlier with pushing the address of the Linkstub structure

corresponding to the exit stub in which the call to PoI has been placed.

Emulating the Basic Block

Upon being reinvoked from interp, dispatch then jumps to the newly emitted code.

Emulation eventually makes its way to the exit stub where the setup for and call to

PoI occurs.

The actual implementation of PoI is minimal. Its only purpose is to mark the

following instruction as a candidate tracehead by associating it with an optimization

template. Thus, the function simply tests to see if the following instruction has

already been marked; if not, then it is marked with the current OC as a template.

Once emulation of the PoI call occurs, execution returns to the dispatch module

in DynamoRIO-PE. As mentioned in Appendix A, the dispatch module informs the

monitor module before beginning emulation of a basic block. In DynamoRIO-PE,

the monitor module then makes one of two calls into the poi module depending on
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context. If the monitor is currently recording a trace, before extending the trace with

the next basic block, it makes a call into extend poi trace asking if the block should

be added to the current trace, or if the trace should end. Alternatively, if no trace is

being recorded, the monitor checks the flags of the basic block provided by dispatch

to see if the block denotes a candidate trace head. If so, then the monitor calls

start poi trace in the poi module. The next section discusses the implementation

of extend poi trace and start poi trace.

Implementation of Trace Policies

This section describes the implementation of two policy guiding functions in the poi

module. We first describe the function that determines when a new trace should be

recorded, start poi trace; this function is also responsible for determining if a trace

exists that can be emulated. We then describe the related function extend poi trace

that determines whether a trace should be extended with a basic block.

bool start poi trace(DynamoContext *dcontext, Fragment **f);

start poi trace is called on any basic block that has been flagged as a candidate

trace head. The first step in this function is testing to see if the provided Fragment

has an associated optimization template. If not, then no trace should start, and thus

false is returned. If there is an optimization template, then a current OC is created

by recording the current values of the LoIs stored in the template. We then use this

OC as the lookup key in the table of POIBasicBlocks. If no POIBasicBlock yet

exists for this OC, we have a choice; we can either add a new entry for this OC, or

find a more general OC (fewer LoIs) that does exist, or add a new entry for a more

general OC. If the application pc of the basic block already has too many traces

associated with it, we try and find a more generalized OC that already exists; if no

such entry exists, then we insert a new POIBasicBlock with a more generalized OC.

Once we have a POIBasicBlock, we check to see if an accompanying trace already

exists. If so, then we update the argument Fragment to the corresponding Trace.

This is also the point at which direct linking is performed; if emulation has just come

from a trace with a valid OC that is compatible with that of the found trace, then
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the most recent exit stub is directly linked to the target trace in the code cache. In

any case, if an existing trace is found, we return false (telling monitor not to start a

new trace, but just to dispatch to the new target). If no trace exists, we increment the

POIBasicBlock’s counter and compare the value to the hot threshold value. If the

POIBasicBlock has reached the threshold, we return true implying to start recording

a new trace. Otherwise, we return false. We next describe the policy for whether

to extend a trace with a given basic block.

bool extend poi trace(DynamoContext *dcontext, Fragment *f);

We define trace stopping points in a similar manner to those defined by Dynamo-

RIO-with-Log-PC. Specifically, we always stop recording a trace at the point of a new

call to PoI. Additionally, we stop recording when the number of basic blocks exceeds

the runtime threshold. The last condition we check for not extending the trace is

if the trace contains a loop that has been unrolled a number of times equal to the

threshold. When we stop extending a trace, we also mark the last instruction with

an empty optimization template whose tag is the instruction heading the subsequent

basic block. This is also the point at which we annotate any synthetic calls to point

of interest.

Following DynamoRIO’s lead, we could mark every conditional exit point as a can-

didate trace head. Instead, however, we only selectively mark certain instructions.

Remember that at the point of trace recording, the poi module has no knowledge of

the actual OC; every OC except for that at the start of the trace will not be known

until the trace is being optimized, since each instruction could modify the OC. Thus,

during trace extension, we mark that certain instructions should have their live OC

associated as a template for the head of a basic block. For instance, if we wanted

to propagate information from before a call to after the call, we would mark the call

instruction with an empty optimization context here. This OC would have as its

application pc tag the address of the instruction following the call. Later, after the

OC live at the call point is filled in, we will see that the target tag is the instruction

following the call point, and so mark that instruction as a candidate trace head, with

an optimization template given by the OC. Alternatively, in a loop we could mark
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the instruction following the loop with a detailed optimization template so that if the

OC is generalized to avoid loop unrolling, it is still possible to regain information af-

ter the loop. Thus, we propagating information past recursion and iteration through

this single mechanism.

6.2 Trace Changes

We now take as a concrete example the recursive implementation of µVM, walking

through the traces file and how it is generated. Figure 6-1 and Figure 6-2 present the

first trace generated (see Appendix B for the full traces file). The full file consists of

three different trace segments; the traces shown in Figure 5-2 (page 52). There are

two traces representing the start of two calls to the evalrP function, and a final trace

containing the third call and the remnant of the first two.

6.2.1 Trace Header and Original Code

We begin by analyzing Figure 6-1 line by line in its entirety. The first line provides

a unique identifier in the list of traces; this is TRACE number two (in a zero-based

counting scheme), even though it was the first recorded. The next line presents the

unique Fragment identifier assigned to this trace. Either of these can be used to track

the trace’s development in the log file. The third line presents the Tag associated with

the trace; this is the starting pc from the emulated application’s perspective. The

next line, CachePC displays the physical address at which this trace’s corresponding

code is placed in DynamoRIO-PE’s code cache.

The fifth line begins describing the optimization context against which this

trace was optimized. Each optimization context automatically includes the tag (same

as the trace’s tag mentioned earlier) as a LoI. The frame field is used to keep track of

when stack-based parameters are valid; more will be said about this later. The next

line presents the number of stack-based LoIs contained in this OC. This particular

OC has 1 stack based LoI, at an offset of 8 from the frame pointer (%ebp) with the

value of 0. Since the number in square brackets ([0]) and the OC’s frame match, this
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1 TRACE # 2

2 Fragment # 184

3 Tag = 0x0804833f

4 CachePC = 0x40064004

5 Optimization_Context (tag = 0x0804833f, frame = 0)

6 # of stack_based params = 1

7 stack param 0: 8(%ebp[0]) := 00

8 # of globally addressed params = 0

9 Thread = 16214

10

11 ORIGINAL CODE:

12 basic block # 0: start pc = 0x0804833f

13 [eval() @ bench1.c:100] operation = instrs[pc];

14 0x0804833f 8b 0d 84 08 12 08 mov 0x8120884 -> %ecx

15 0x08048345 8b 45 08 mov 0x8(%ebp) -> %eax

16 [eval() @ bench1.c:102] if (operation == END_OP) {

17 0x08048348 83 c4 10 add $0x10 %esp -> %esp

18 [eval() @ bench1.c:100] operation = instrs[pc];

19 0x0804834b 0f be 14 08 movsx (%eax,%ecx,1) -> %edx

20 [eval() @ bench1.c:102] if (operation == END_OP) {

21 0x0804834f 85 d2 test %edx %edx

22 0x08048351 75 0d jnz $0x8048360

23 exit pc = 0x08048353

24 basic block # 1: start pc = 0x08048360

25 [eval() @ bench1.c:105] } else if (operation == CONTINUE_OP) {

26 0x08048360 83 fa 01 cmp %edx $0x01

27 0x08048363 75 1d jnz $0x8048382

28 exit pc = 0x08048365

29 basic block # 2: start pc = 0x08048365

30 [eval() @ bench1.c:108] rec = eval(pc+2);

31 0x08048365 83 c4 f4 add $0xf4 %esp -> %esp

32 0x08048368 83 c0 02 add $0x02 %eax -> %eax

33 0x0804836b 50 push %eax %esp -> %esp (%esp)

34 0x0804836c e8 b3 ff ff ff call $0x8048324

35 direct call at 0x0804836c

36 continuing in callee at 0x08048324

37 [eval() @ bench1.c:0]

38 0x08048324 55 push %ebp %esp -> %esp (%esp)

39 0x08048325 89 e5 mov %esp -> %ebp

40 0x08048327 83 ec 08 sub $0x08 %esp -> %esp

41 [eval() @ bench1.c:97] POI(1,&pc,0);

42 0x0804832a e8 bd 2a 01 00 call $0x805adec <pre_poi>

43 direct call at 0x0804832a

44 NOT inlining call to 0x0805adec

45 0x0804832f 83 c4 fc add $0xfc %esp -> %esp

46 0x08048332 6a 00 push $0x00 %esp -> %esp (%esp)

47 0x08048334 8d 45 08 lea 0x8(%ebp) -> %eax

48 0x08048337 50 push %eax %esp -> %esp (%esp)

49 0x08048338 6a 01 push $0x01 %esp -> %esp (%esp)

50 0x0804833a e8 25 27 01 00 call $0x805aa64 <point_of_interest>

51 RIOEXT: Found poi call at 0x0804833a, so ending block

52 exit pc = 0x0804833f

53 END ORIGINAL CODE

Figure 6-1: This figure presents the header and original code section of a trace from
DynamoRIO-PE’s trace output file. This particular trace is the first presented in
Figure 5-2 (page 52). The header presents some general information, while the original
code section intersperses the originating C code with the produced assembly (also
noting the boundary of DynamoRIO basic blocks). Each line of C code is prefaced
with the containing function, file, and line number. Each line of assembly contains the
address (as the application sees it), the actual representation in memory (organized
into bytes represented as 2 hexadecimal digits), and an operation followed by the
source and target operands. Due to instruction reordering and the complex nature of
C statements, the layout of generated assembly is not entirely synchronized with the
original C code. 65



parameter is valid in the current stack frame. This OC has no global LoI. The last

line of this section specifies the thread identifier provided by the operating system,

Thread 16214.

The next section in the Figure displays the code on which this trace is based. The

first basic block begins at application pc 0x0804833f. Line 13 presents an excerpt

from the generating C source-code file. eval() is the name of the containing function,

bench4.c is the file from which the line was taken, and the line was the 100th in the

file. The next two lines present some assembly code that (in part) achieves the effects

of the C statement (operation = instrs[pc]. First, the address of the instrs array

is loaded into the %ecx register. Then, the value at an offset of 8 from the current

frame (the stack address allocated for pc) is loaded into the %eax register. While

the memory referencing instructions are working, the stack is prepared for the next

scope at lines 16 and 17. The next instruction dereferences the memory location for

instrs[pc], and sign extends the value into the %edx register. The expression END OP

is defined as the value zero, and so the next instructions test if %edx is zero. The

conditional jump if not zero ends the first DynamoRIO-PE basic block at application

pc 0x08048353.

Line 24 begins the next basic block, at the application pc value 0x08048370. This

implies that the conditional jump was taken while recording the trace; we’ll later

discover that specializing against the value pc as zero guarantees that the conditional

jump will be taken. The value of op (in register %edx) is then compared against

CONTINUE OP, which is the value one. The next conditional jump ends the second

basic block.

Line 29 begins the third basic block, which begins the recursive call into evalrP .

The first assembly instruction prepares the stack to be aligned on a 16-byte (para-

graph) boundary. The following assembly instruction (Line 32) prepares register %eax

with the value pc+2, which is then pushed as the argument for the call. We see on

lines 35 and 36 that the call instruction has been continued without creating a ba-

sic block boundary. Lines 38 and 39 are the standard entry in a subroutine, saving

a copy of the current frame pointer and copying the current stack pointer into the
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frame pointer. Line 40 again aligns the stack pointer on a 16-byte boundary (since

the return address and the previous frame pointer, two double-words, were pushed,

alignment requires another 8 bytes). Line 42 is recognized as a DynamoRIO-PE-internal

function (pre poi), and so the call is not inlined. The following instructions push

the arguments to PoI in reverse order. As shown in line 41, the arguments are: one,

the address of pc, and 0. This tells DynamoRIO-PE to expect no global LoI and one

stack-based LoI (the address of pc). Thus, lines 45-49 prepare the stack for alignment,

push the value zero, the address of pc, and finally the value one. Since DynamoRIO-PE

has seen a call to PoI now, this ends the current trace.

This section has walked through the exact desired behaviour of this trace, and

where each instruction originated. The next section walks through the actual assem-

bly for this trace that achieves the desired behaviour, given the values of LoIs in this

trace’s OC.

6.2.2 Optimized Trace

This section discusses every aspect of the generated trace for the first call to evalrP ,

with argument pc set to zero. The generated trace is shown in Figure 6-2, which has

been generated from the original code and OC defined in Figure 6-1.

The first line presents the size of the entire trace in bytes, which in this case is

98 bytes. The rest of this figure presents the body of the trace. The indirect branch

target entry and the prefix entry finish performing the context switch necessary to

resume emulation after executing DynamoRIO-PE, coming from different contexts. The

first disassembled instruction copies the constant value of the address of instrs[0]

into register %ecx. Although gcc was only using %ecx as a temporary register, and

this assignment is unnecessary, DynamoRIO-PE faithfully keeps the assignment.

The next instruction is a combination of the stack alignment prior to the call

to evalrP and the reclamation of stack space from line 17 of Figure 6-1. Notice

that the assignment of pc to register %eax has been removed entirely. Also, the

dereferencing operation to load operation into register %edx has been replaced with

an assignment from CONTINUE OP. These optimizations are possible because we have
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1 Size = 98

2 Body:

3 -------- indirect branch target entry: --------

4 0x40064004 a1 c0 14 00 40 mov 0x400014c0 -> %eax

5 -------- prefix entry: --------

6 0x40064009 8b 0d c8 14 00 40 mov 0x400014c8 -> %ecx

7 -------- normal entry: --------

8 0x4006400f c7 c1 d0 12 12 08 mov $0x081212d0 -> %ecx

9 0x40064015 83 c4 04 add $0x04 %esp -> %esp

10 0x40064018 c7 c2 01 00 00 00 mov $0x00000001 -> %edx

11 0x4006401e c7 c0 02 00 00 00 mov $0x00000002 -> %eax

12 0x40064024 68 02 00 00 00 push $0x00000002 %esp -> %esp (%esp)

13 0x40064029 68 71 83 04 08 push $0x08048371 %esp -> %esp (%esp)

14 0x4006402e 55 push %ebp %esp -> %esp (%esp)

15 0x4006402f 89 e5 mov %esp -> %ebp

16 0x40064031 83 ec 08 sub $0x08 %esp -> %esp

17 0x40064034 e9 56 00 00 00 jmp $0x4006408f <trace 185>

18 -------- exit stub 0: -------- <target: 0x0804833f>

19 Exit stub has following optimization context:

20 Optimization_Context (tag = 0x0804833f, frame = 1)

21 # of stack_based params = 3

22 stack param 0: 8(%ebp[0]) := 00

23 stack param 1: 4(%ebp[1]) := 0x08048371

24 stack param 2: 8(%ebp[1]) := 02

25 # of globally addressed params = 0

26 0x40064039 83 c4 fc add $0xfc %esp -> %esp

27 0x4006403c 6a 00 push $0x00 %esp -> %esp (%esp)

28 0x4006403e 8d 45 08 lea 0x8(%ebp) -> %eax

29 0x40064041 50 push %eax %esp -> %esp (%esp)

30 0x40064042 6a 01 push $0x01 %esp -> %esp (%esp)

31 0x40064044 68 3f 83 04 08 push $0x0804833f %esp -> %esp (%esp)

32 0x40064049 55 push %ebp %esp -> %esp (%esp)

33 0x4006404a 68 f0 39 08 40 push $0x400839f0 %esp -> %esp (%esp)

34 0x4006404f e8 10 6a ff c7 call $0x805aa64 <point_of_interest>

35 0x40064054 83 c4 0c add $0x0c %esp -> %esp

36 0x40064057 a3 c0 14 00 40 mov %eax -> 0x400014c0

37 0x4006405c b8 f0 39 08 40 mov $0x400839f0 -> %eax

38 0x40064061 e9 4f 02 fd ff jmp $0x400342c0 <fcache_return>

39 END TRACE 2

Figure 6-2: This figure presents the contents of a generated trace. It includes a full
dissassembled listing of all prefixes, the main body, and the collection of exit stubs.
Each exit stub is marked with its corresponding optimization context (if one exists).
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optimized against the fact that pc has a value of zero at the start of this trace, and

that the instrs array is a region of immutable data. As with the assignment to

register %ecx, register %edx is also unnecessary at this point, but without inter-trace

optimizations, this cannot be detected.

Line 11 stores the value of the next pc (here, optimized to the value 2) into

register %eax and also pushes this value as the argument to evalrP . Line 13 is the

only instruction added by the trace that is not obviously in the original code; it is

the translation of the call instruction on line 34 in Figure 6-1 to push the return

address. Since the frame pointer, register %ebp, is still considered dynamic data,

the trace cannot optimize its reference into a constant on line 14. This also applies

to the reference to the stack pointer, register %esp, on line 15. Finally, the stack

alignment on line 16 must also remain in the trace. The last instruction in this trace

has been linked to another recorded trace, with Fragment identifier 187. This trace

is identical to this trace, with the following two exceptions. It has been optimized

against location pc having the value two and it has a broader OC that is described

later in this section. If the direct link had not been made, line 17 would instead be a

jump to exit stub 0, at cache address 0x40064039.

We note that the trace’s body contains 42 bytes of instruction data compared to

43 in the original code. It also has 10 instructions compared to 15 in the original code.

We also remark that the generated trace has had all conditional jumps removed, and

all static values propagated as constants rather than memory or register references.

The only memory references left are necessary stack manipulations.

We now examine this trace’s only exit stub, noting that if there had been any

conditional jumps left in the body there would be one more exit stub for each jump.

The purpose of this exit stub was described earlier in this Chapter, in Section 6.1.

Specifically, it was created to avoid the overhead of preparing an OC and calling PoI

when a direct link from this trace to another is possible.

In explaining this exit stub we begin with some general observations about the

exit stub, and an explanation of the derived OC. We then explain each disassembled

instruction.
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The first thing we see on line 19 is that this exit stub is direct, and the target

is to the application pc 0x0804833f. Line 19 presents the OC associated with this

exit stub produced from optimization of the trace body. This OC is similar to that

of the head of this trace (shown in Figure 6-1), but has notable differences. The first

apparent difference is that this OC’s frame is the value one. The next difference is

that there are three known stack parameters, spanning across multiple stack frames.

The first stack LoI is in the frame one higher than the OC’s current frame and

has been propagated from this trace’s original OC, since the address has not been

overwritten in the trace body. The next stack LoI was detected through optimization

of the trace body, specifically the instruction pushing the return address in line 13 of

Figure 6-2. The third, and final, stack-based LoI results from similar circumstance in

line 12 of the trace body.

The instructions comprising this exit stub are a mixture of those generated by

the C code presented in Figure 6-1 and extra instructions added by DynamoRIO-PE as

described earlier in this Chapter. First, we remark that neither the trace body nor

the exit stub contains the call to pre poi shown in the original source code. Dynamo-

RIO-PE has removed this instruction as unnecessary when generating the trace. The

first five instructions in the exit stub (lines 26-30) are passed directly from the original

code. They prepare the stack for alignment and push the arguments provided by the

annotator to PoI. The next three pushes were added by DynamoRIO-PE, as explained

earlier in this chapter, to inform PoI of the target application pc, current value of

the frame pointer, and address of the Linkstub structure representing this exit stub,

respectively. The subroutine call on line 34 performs the actual call into DynamoRIO-

-PE’s PoI function, and the add instruction on line 35 pops the space stored for the

three DynamoRIO-PE-provided function arguments.

The final three instructions prepare the arguments and register state for the return

into DynamoRIO-PE through the fcache return function. Line 36 saves the value of

register %eax into the current DynamoContext’s MachineState structure (notice the

parallel load of %eax on line 4, when entering the code cache). The next instruc-

tion loads the address of this exit stub’s Linkstub structure (same as in the call
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to PoI) in preparation for the final instruction, the jump to the fcache return

function. The fcache return function has to save the rest of the registers into

the MachineState structure before returning control into DynamoRIO-PE. Eventually,

when fcache return makes its way back into the dispatch module, the value of

%eax will be used as the last exit back into DynamoRIO-PE. This pointer is then used

in the poi module to determine that the link can be made direct (and bypass both

the call to PoI and any lookup code). As mentioned earlier, a link can be made direct

if every LoI in the successive trace is contained in this exit stub’s OC.

This section walked through one generated trace line-by-line, starting with the

trace header, continuing with the original code and finishing with the generated trace

instructions, both the trace body and the exit stubs. The chapter presented the

changes to DynamoRIO’s structure necessary to effect the desired behaviour of Dynamo-

RIO-PE, as detailed in Chapter 5. The next chapter describes the current state of

DynamoRIO-PE and presents some very preliminary performance numbers for different

interpreters.
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Chapter 7

Analysis

This chapter provides more information on the current progress of DynamoRIO-PE.

We first discuss the mechanisms implemented very generally, then show some perfor-

mance numbers on a more realistic interpreter than µVM, TinyVM. Next, we discuss

ease of annotating more interpreters, and provide some very preliminary performance

numbers for two widely used interpreters, OCaml and Ruby.

7.1 Capabilities of DynamoRIO-PE

This section discusses the mechanisms that are currently implemented in Dynamo-

RIO-PE. We remark that PoI annotations for an arbitrary number of LoIs create

traces as described earlier in this thesis. We have also implemented naive algorithms

for detecting and linking direct transitions among traces. The rest of this section

mentions some other mechanisms currently implemented in PoI.

DynamoRIO-PE is able to add LoIs that it knows about to a given PoI call. This

capability is demonstrated in the traces file presented in Appendix B. With this

mechanism, DynamoRIO-PE is able to generate precisely the desired traces for evalrP

shown in Figure 5-2 (page 52). This mechanism still needs much work on policy

guidance, though.

Finally, DynamoRIO-PE is able to split apart a trace containing a loop into different

sections as described and presented in Chapter 5. This includes: 1) not extending a
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trace when it has unrolled a loop a specified number of times, 2) creating a new trace

for a single loop iteration, 3) generalizing a single loop iteration, if necessary, to allow

a direct link (to avoid further unrolling), and 4) resuming a specialized context after

generalization in step 3.

The next section presents some performance numbers for emulation of TinyVM

interpreting a range of programs under DynamoRIO-PE.

7.2 Performance of TinyVM under DynamoRIO-PE

The TinyVM interpreter is a much more realistic virtual machine than µVM: it in-

cludes operations for function calls and returns, conditional branching, and a collec-

tion of primitive operations (e.g. arithmetic, logical). Although we have not focused

on performance yet, initial results are very encouraging. For some input programs,

DynamoRIO-PE can even achieve better performance than DynamoRIO-with-Log-PC,

although it is slightly slower in general. We next present some performance numbers

and briefly describe the characteristics of some test input programs.

native DynamoRIO DynamoRIO-with-Log-PC DynamoRIO-PE

bubble 24.01 44.28 14.68 15.08
fibonacci 27.20 36.35 15.65 14.92

matrix 4.00 8.07 4.67 6.22
matrix2 29.43 55.65 22.24 24.48

sieve 28.37 52.14 18.17 18.68

Table 7.1: Timing information comparing the performance of TinyVM interpreting 5
applications natively, and under DynamoRIO, DynamoRIO-with-Log-PC, and Dynamo-

RIO-PE.

Table 7.1 presents performance numbers on five input programs. All of these

benchmarks only perform a single indirect logical jump (the logical return), and thus

all traces formed are able to be linked directly. DynamoRIO-PE will pay a much higher

cost when the link cannot be made direct, because of its intrinsically higher dispatch

cost. Another characteristic of these programs is that they all express only a sin-

gle LoI, the logical pc. DynamoRIO-PE’s performance on these benchmarks is very
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encouraging. For these five test programs, the runtime parameters were uniformly:

’-hot_threshold 10 -constant_prop 32 -stack_adjust -remove_dead_code 32 -call_return_matching’

7.3 Applicability to Larger Systems

This section presents the application of DynamoRIO-PE to some realistic interpreters.

We have so far tested interpreters for OCaml and Ruby running under DynamoRIO-

-PE execution. This work was made easier by the fact that these interpreters had

already been annotated for use with DynamoRIO-with-Log-PC. As shown in Table 5.1

(page 50), there is a direct translation from DynamoRIO-with-Log-PC annotations to

those used by DynamoRIO-PE.

TinyVM OCaml Ruby
Number of lines inserted for DynamoRIO 8 7 9

Number of lines inserted for immutable regions 7 2 240
Number of lines inserted for DynamoRIO-PE 8 3 2

Total lines inserted 23 12 251
Lines in Interpreter Source File 495 1036 9283

Number of lines inserted for DynamoRIO-PE 8 3 2
Number of lines inserted for DynamoRIO-with-Log-PC 22 13 11

Table 7.2: Breakdown of the number of lines of code added to three interpreters
to effect each module of execution under DynamoRIO-PE. The row relating lines in
interpreter source file only counts the number of lines in the main interpreter file
(generally interp.c or eval.c). The last line presents the number of lines necessary
for annotating the interpreter for use under DynamoRIO-with-Log-PC as a comparison
to lines for DynamoRIO-PE.

Table 7.2 presents the number of added lines to make three interpreters run under

DynamoRIO-PE’s control. We report the number of lines necessary to call into Dynamo-

RIO to gain control (DynamoRIO can inject itself into executables to take control, but

we have specifically given control to DynamoRIO). We then present the number of lines

to annotate the immutable regions. Note that these first two line counts would be

the same when annotating for DynamoRIO-with-Log-PC as well. We then report the

number of lines necessary to annotate PoI and their corresponding LoIs. We report

the number of lines that had to be changed for correct execution in the following
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tables. We finally remark that the existence of annotations for DynamoRIO-with-

-Log-PC allowed all changes necessary to allow these three interpreters to run under

DynamoRIO-PE to be done in less than a day. Further, the annotations added are very

simple and straightforward.

OCaml native DynamoRIO DynamoRIO-with-Log-PC DynamoRIO-PE

ary3 7.95 7.99 5.86 26.96
ackermann 28.65 27.40 55.62 798.60

fib 12.09 14.48 18.17 369.24
hash2 5.17 5.21 6.27 34.07

matrix 11.22 10.75 17.67 25.83
methcall 4.63 4.62 1.88 39.31

nestedloop 15.92 15.39 5.18 198.08
sieve 6.23 6.41 4.65 36.57
tak 7.72 7.57 6.86 149.63

Table 7.3: Some timing information for running OCaml on various applications, under
various systems. The different systems presented here are: native execution, under
DynamoRIO, under DynamoRIO-with-Log-PC, and under DynamoRIO-PE.

Table 7.31 presents some performance numbers comparing the performance of

OCaml interpretation under various systems. Although DynamoRIO-PE’s performance

is much worse, it is worthy to note that the various programs currently run.

Ruby native DynamoRIO DynamoRIO-with-Log-PC DynamoRIO-PE

ary3 6.40 8.79 7.85 25.04
fib 251.11 312.62 286.73 953.22

hash2 11.47 14.90 * 1752.86
matrix 2.44 3.55 3.58 12.46

methcall 38.56 51.69 40.23 146.61
nestedloop 190.53 242.52 208.91 565.42

sieve 9.65 12.98 10.60 41.68
tak 190.96 250.69 222.22 1048.96

Table 7.4: Some timing information for running Ruby on various applications, under
various systems. The different systems presented here are: native execution, under
DynamoRIO, under DynamoRIO-with-Log-PC, and under DynamoRIO-PE.

Table 7.4 presents some performance numbers comparing the performance of Ruby

1Most of these benchmarks were taken from http://www.bagley.org/ doug/shootout/bench/. For
the two that were not: tak was taken from http://www.lib.uchicago.edu/keith/crisis/benchmarks/,
and fib was written by the author as a naive, recursive function.
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interpretation under various systems. Although DynamoRIO-PE’s performance is much

worse, it is worthy to note that the various programs currently run. Another inter-

esting note about both OCaml and Ruby is that native execution, DynamoRIO, and

DynamoRIO-with-Log-PC generally perform equivalently, while DynamoRIO-PE shows

a factor of 4 slowdown. The fib and ackermann benchmarks are enormously recur-

sive (in fact, Ruby quickly fails the ackermann benchmark due to excessive stack

depth). Whenever such logical recursion is present, there will be a high number of

interpretations of logical indirect jumps, leading to indirect trace transitions. These

benchmarks exemplify DynamoRIO-PE’s poor performance for dispatch.

We have not yet investigated the cause of the heavy performance penalty of

DynamoRIO-PE on either the OCaml or Ruby benchmark suites. Beyond the inherent

inefficiency of creating and dispatching to traces, we believe that the current data

structures in use scale very poorly to a large number of traces and candidate trace

heads. More work can be done to determine the actual bottleneck and construct more

scalable structures.

This chapter has given a brief analysis of the current state of DynamoRIO-PE.

We first showed that it can perform the basic mechanisms described elsewhere in

this thesis on simple input programs, and then show that it can perform on a level

equivalent with DynamoRIO-with-Log-PC, better than both DynamoRIO and native

execution, on a more complex version. On realistic interpreters, however, although

DynamoRIO-PE can emulate the interpreters, performance suffers heavily. The next

section presents some future work and concludes this thesis.
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Chapter 8

Conclusion and Future Work

This chapter presents possibilities for future work and concludes the thesis. We begin

by discussing current limitations in our work that we would like to remove in future

versions. We then discuss possible areas of expansion. Finally, we summarize this

thesis.

8.1 Future Work

One technical limitation in our current work is that LoIs are assumed to be integer

sized (4 bytes). We would like to remove this restriction and allow arbitrary-length

LoIs. We would also like to add register-based LoI, to supplement stack-based and

globally addressed LoIs. Additionally, some of our analyses and optimizations rely

on certain constraints (e.g. the C calling convention); we would like to isolate and

relax these constraints. We are also looking to expand the expressiveness of our an-

notations, similar to the policy guidance in DyC. Along with each LoI, the annotator

could provide a list of policy choices to guide partial evaluation, and the handling

of individual LoIs. The partial evaluator has many decisions to make; controllable

policies would help in obtaining better results.

We would like to devise a fast, efficient, algorithm for generalisation of optimiza-

tion contexts. We can count the number of optimization contexts generated for a

given program point, and if too many are being generated then create a few more
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generalized contexts instead. In general, our algorithms are merely designed to be

a proof of concept for including partial evaluation in DynamoRIO. As such, a full re-

vision of algorithms and data structures would greatly help in the running time of

optimizations. We would also like to apply our partial evaluation system to more

complex examples than µVM and TinyVM.

We would like to examine the feasability of automating annotations for Dynamo-

RIO-PE. Currently, the only annotations we use are points of interest and marking

immutable memory regions. There are interesting avenues to pursue for automatically

classifying locations as LoIs, based on analyses of how beneficial classifying a location

as static could be. To reduce our reliance on immutable memory region annotations,

our work could be used in conjunction with mondrian memory protection [31] (MMP);

this fine-grained protection scheme allows permissions control at the granularity of

words. Using this scheme, we can make assumptions about the immutability of certain

regions and mark any such region to cause a memory protection fault on an update.

When handling this trap, we can then invalidate any traces relying on now invalid

assumptions.

Another interesting area to look into is support for different phases. Applications

generally can be divided into different phases of initialization, followed by processing.

We currently support such a two-phase application by allowing the user to annotate

regions as immutable after having initialized them. We would like to investigate how

much more applicable our system could be if we provided an annotation for temporary

immutability, or for marking a region as mutable.

Finally, we are interested in the notion of lazy PoIs. Currently, the value of every

LoI is tested before dispatching to a particular trace. If the trace never specializes

against the LoI, then this is unnecessarily specific. In a lazy PoI, LoIs are only tested

immediately prior to the first point at which their value has been specialized against.

This provides a whole new range of possibilities for performance improvement. For

instance, if a certain LoI is purely a function of another then the check/dispatch can

be removed completely. It is interesting to note that lazy PoIs are very similar to the

way that DynamoRIO handles indirect jumps in traces. The trace has been optimized
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against a particular target for an indirect jump; however, DynamoRIO waits until the

point at which the jump would occur before testing to see if the current target is the

same as the inlined target. If the test succeeds, execution remains in the trace, while

otherwise, the trace is exited.

Finally, we are interested in achieving full-blown functional memoization purely

through partial evaluation. Specifically, if a method has no side effects and depends

only on its input parameters, it should be possible to specialize the program against

all inputs and replace the function call with a lookup in a table. Currently, there

are many hindrances to such a simple approach, such as stack modifications, memory

writes, indirect jumps, and the x86’s complex flag structure.

8.2 Conclusion

We began this thesis with a brief introduction to the problem domain and an overview

of the thesis layout. We then provided related work across a range of different fields,

finally narrowing in on dynamic optimization in DynamoRIO. After describing Dynamo-

RIO and DynamoRIO-with-Log-PC in more detail, we demonstrated how polyvariant

division and specialization can improve performance of a wide range of applications

under DynamoRIO-PE, including interpreters. We then described some of the changes

necessary to achieve our goals, and analysed the results. Finally, in this chapter we

presented different ways to solidify and expand on our work.
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Appendix A

Internal DynamoRIO Structure

This section describes the internal layout of DynamoRIO, going over the main struc-

tures used, and the interaction among different modules. DynamoRIO has been de-

signed with a clean division between general DynamoRIO features and architecture-

dependent features. Since the only supported architecture is still Intel’s x86, all

architecture-dependent files are in the x86 subdirectory and a general interface is

provided for DynamoRIO’s use. When discussing the internal structure, we make a

note of whether a particular feature is architecture dependent through classification

of either general or specific. Also, as a general convention, we describe execution of

code in DynamoRIO’s code cache as emulation, and execution of internal DynamoRIO’s

as execution.

A.1 DynamoRIO Structures

There are a number of different structures used to implement DynamoRIO. The main

structure is the DynamoContext structure (general). This contains all of the current

context known about the program; including the machine context (values of all visible

registers, specific), the application’s next targeted pc, error information, current trace

information (when recording a trace), pointers for various memory management and

a pointer to the most recent Linkstub to have exited the code cache. There is a

DynamoContext for each active application thread. Additionally, there is a singleton
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class Options (general) detailing parameters for execution (including maximum trace

size, which optimizations to perform, etc.).

The related structures Instr (specific), Opnd (specific) and InstrList (general)

are used to represent instructions in the application and any instructions we generate.

An Instr represents a single instruction containing an opcode, and a list of source and

destination operands (Opnds). Useful functions dealing with instructions are decoding

(creating a semantic instruction from its binary representation), encoding (the reverse

function), and modifying source or destination operands. An InstrList contains any

number of serial instructions. After an instruction list has been translated and placed

in the code cache, a corresponding Fragment (general) structure is created and the

instruction list is deleted; a related structure is the Trace (general).

The last structure we mention in this chapter is the Linkstub (general), whose

use will be described later when discussing building block creation. Some fields in

the Linkstub are a pointer to the target, flags indicating whether the jump is direct

or indirect, and a pointer to the containing Fragment. This section has left out some

structures irrelevant to this work.

A.2 Emulation of an Application

This section first introduces some modules involved in emulation, and then walks

through the execution sequence of DynamoRIO. The main set of modules is: dispatch

(general), interp (specific), mangle (specific), emit (general), link (general), and

monitor (general).

When DynamoRIO assumes control of a program’s execution, it begins execution in

the interp module, interp function. The interp module is basically responsible for

architecture dependent emulation of the program: it performs the translation of basic

blocks upon demand and determines when emulation should stop. It also requests

linking of fragments when translating a new basic block. Although interp builds the

basic blocks, it uses the (general) dispatch function to actually emulate them. The

invocation of dispatch only returns to interp when the targeted address is not in the
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code cache; otherwise it handles jumping into the code cache to perform emulation,

and retains control when emulation returns from the code cache. Additionally, interp

makes calls into monitor to determine when to start a trace and other monitoring.

We now walk through what happens when a basic block is to be emulated for the

first time.

The first time that a basic block is to be executed, dispatch will not find a corre-

sponding fragment and so will return to interp. interp then finds the target appli-

cation pc, and constructs a new basic block through its call to build bbasic block,

which in turn calls build bb ilist. build bb ilist decodes the executable loosely

(L1 decoding, only the opcode) at the target until it encounters a control-transfer in-

struction (CTI). The instruction bundle containing all instructions between the start

of decoding and the CTI are appended to the block’s instruction list. If the CTI is a

direct call or jump, and the basic block is still not too large, then the basic block con-

tinues accumulating at the point of the target. Otherwise, the basic block is mangled

and emitted.

Mangling an instruction list is where the actual translation mentioned earlier

occurs: call instructions are replaced with pushing the return address, indirect jumps

prepare the registers for the eventual call to dynamorio indirect branch lookup,

etc.

The emit function is where a fragment is encoded and any necessary exit stubs are

generated1. Each exit stub is represented by a corresponding instance of the Linkstub

class. This Linkstub instance is used for linking or unlinking its source CTI. When

linked, the CTI targets the destination fragment and bypasses the exit stub entirely. If

the destination fragment is flushed from the cache or otherwise altered, then the CTI

needs to be unlinked. Once the necessary exit stubs are generated, every instruction

and the list of exit stubs is encoded into a Fragment that is placed in the code cache.

1An exit stub is necessary for any CTI that would leave the fragment. Such CTIs are then
modified to target their corresponding exit stub, so that DynamoRIO can ensure total control. Basic
Block fragments ending in conditional branches will contain two exit stubs: one for the taken branch
and one for the fall-through case. Basic Block fragments ending in indirect branches will only contain
one exit stub for the unconditional indirect jump. Traces, however, could contain any number of
exit stubs.

85



Finally, at the tail end of emitting, the newly created fragment is linked. The list

of Linkstubs is traversed looking for any jumps that can be linked (through a call

to the monitor interface). If a direct jump is found targeting another fragment that

already exists then the exit stub is linked to the destination fragment. Additionally,

any direct jumps targeting fragments that have not yet been created are instead linked

to a FutureFragment representing the eventual Fragment. Finally, candidate trace

heads are marked while monitor checks for jumps that can be linked.

After the instruction list has been emitted, dispatch is called on the returned

Fragment. The body of dispatch is a loop around actual dispatch to emulate the

Fragment. Before dispatch actually jumps to the Fragment, however, it makes a

call into monitor through internal dynamo monitor; this call lets monitor be aware

that the Fragment is going to be run and update its internal counters for how hot

a candidate trace head is. This is the point at which monitor decides whether to

begin recording a trace. Should a trace be recorded at this point, DynamoRIO discards

the extant basic block fragment, since the trace is equally applicable and probably

more optimized. We discuss the details of trace generation shortly. In either case,

execution eventually makes its way back into dispatch and the Fragment is emulated.

Notice that emulation could actually traverse multiple basic blocks before returning

to dispatch, if the Fragment is linked. Once execution returns from emulation,

dispatch enters the next iteration of its loop, with the destination Fragment as the

new target. If this Fragment does not yet exist, dispatch returns to interp.

We now give an overview of trace generation. If monitor decides to begin recording

a trace, it initializes some variables in the DynamoContext, specifically the trace tag

field to the application address of the next fragment, and an InstrList to record

the instructions. monitor then makes a call into the interp module to copy the

instructions in the next fragment into the trace list. During this call, interp might

reverse the condition for the most recent conditional jumps if the jump was taken

in this trace. This is so that the jump is only taken if it would leave the trace; if

the condition evaluates to the same as during trace recording we want it to stay in

the trace. Also, the targeted fragment has all of its exit CTIs unlinked to force re-
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entrance into dispatch (and thus monitor). Execution now returns to dispatch as

mentioned before (and the monitor records the fact that it is currently recording a

trace).

Eventually, in a future execution of internal dynamo monitor, the monitor de-

cides to end the trace. When this happens, the accumulated instruction list is passed

off to the optimize (specific) module for optimization. The resultant instruction

list is then emitted exactly as described earlier for basic blocks. Finally, the origi-

nal Fragment from which the trace was generated is removed so that future lookups

return the generated Trace.

This section presented the structure and basic steps for emulating basic block

fragments: emitting and linking fragments, recording traces, and dispatching to a

fragment for emulation.
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Appendix B

Generated Trace File

Shared library assumptions:

===========================================================================

TRACE # 0

Fragment # 186

Tag = 0x0804833f

CachePC = 0x40064104

Optimization_Context (tag = 0x0804833f, frame = 2)

# of stack_based params = 5

stack param 0: 8(%ebp[0]) := 00

stack param 1: 4(%ebp[1]) := 0x08048371

stack param 2: 8(%ebp[1]) := 02

stack param 3: 4(%ebp[2]) := 0x08048371

stack param 4: 8(%ebp[2]) := 04

# of globally addressed params = 0

Thread = 16214

ORIGINAL CODE:

basic block # 0: start pc = 0x0804833f

[eval() @ bench1.c:100] operation = instrs[pc];

0x0804833f 8b 0d 84 08 12 08 mov 0x8120884 -> %ecx

0x08048345 8b 45 08 mov 0x8(%ebp) -> %eax

[eval() @ bench1.c:102] if (operation == END_OP) {

0x08048348 83 c4 10 add $0x10 %esp -> %esp

[eval() @ bench1.c:100] operation = instrs[pc];

0x0804834b 0f be 14 08 movsx (%eax,%ecx,1) -> %edx

[eval() @ bench1.c:102] if (operation == END_OP) {

0x0804834f 85 d2 test %edx %edx

0x08048351 75 0d jnz $0x8048360

exit pc = 0x08048353

basic block # 1: start pc = 0x08048353

[eval() @ bench1.c:103] return instrs[pc+1];

0x08048353 0f be 44 01 01 movsx 0x1(%ecx,%eax,1) -> %eax

0x08048358 eb 28 jmp $0x8048382

direct jump at 0x08048358

continuing at target 0x08048382

[eval() @ bench1.c:133]}

0x08048382 89 ec mov %ebp -> %esp

0x08048384 5d pop %esp (%esp) -> %ebp %esp

0x08048385 c3 ret %esp (%esp) -> %esp

exit pc = 0x08048386

basic block # 2: start pc = 0x08048371

[eval() @ bench1.c:114] tmp = instrs[pc+1];
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0x08048371 8b 55 08 mov 0x8(%ebp) -> %edx

[eval() @ bench1.c:108] rec = eval(pc+2);

0x08048374 89 c1 mov %eax -> %ecx

[eval() @ bench1.c:114] tmp = instrs[pc+1];

0x08048376 a1 84 08 12 08 mov 0x8120884 -> %eax

0x0804837b 0f be 44 10 01 movsx 0x1(%eax,%edx,1) -> %eax

[eval() @ bench1.c:117] return tmp + rec;

0x08048380 01 c8 add %ecx %eax -> %eax

[eval() @ bench1.c:133]}

0x08048382 89 ec mov %ebp -> %esp

0x08048384 5d pop %esp (%esp) -> %ebp %esp

0x08048385 c3 ret %esp (%esp) -> %esp

exit pc = 0x08048386

basic block # 3: start pc = 0x08048371

[eval() @ bench1.c:114] tmp = instrs[pc+1];

0x08048371 8b 55 08 mov 0x8(%ebp) -> %edx

[eval() @ bench1.c:108] rec = eval(pc+2);

0x08048374 89 c1 mov %eax -> %ecx

[eval() @ bench1.c:114] tmp = instrs[pc+1];

0x08048376 a1 84 08 12 08 mov 0x8120884 -> %eax

0x0804837b 0f be 44 10 01 movsx 0x1(%eax,%edx,1) -> %eax

[eval() @ bench1.c:117] return tmp + rec;

0x08048380 01 c8 add %ecx %eax -> %eax

[eval() @ bench1.c:133]}

0x08048382 89 ec mov %ebp -> %esp

0x08048384 5d pop %esp (%esp) -> %ebp %esp

0x08048385 c3 ret %esp (%esp) -> %esp

exit pc = 0x08048386

basic block # 4: start pc = 0x080482bf

[main() @ bench1.c:56] val = eval(0);

0x080482bf 89 c6 mov %eax -> %esi

[main() @ bench1.c:55] for(index=0; index < NUM_LOOPS; index++) {

0x080482c1 83 c4 10 add $0x10 %esp -> %esp

0x080482c4 4b dec %ebx -> %ebx

0x080482c5 79 ee jns $0x80482b5

exit pc = 0x080482c7

basic block # 5: start pc = 0x080482b5

[main() @ bench1.c:56] val = eval(0);

0x080482b5 83 c4 f4 add $0xf4 %esp -> %esp

0x080482b8 6a 00 push $0x00 %esp -> %esp (%esp)

0x080482ba e8 65 00 00 00 call $0x8048324

direct call at 0x080482ba

continuing in callee at 0x08048324

[eval() @ bench1.c:0]

0x08048324 55 push %ebp %esp -> %esp (%esp)

0x08048325 89 e5 mov %esp -> %ebp

0x08048327 83 ec 08 sub $0x08 %esp -> %esp

[eval() @ bench1.c:97] POI(1,&pc,0);

0x0804832a e8 bd 2a 01 00 call $0x805adec <pre_poi>

direct call at 0x0804832a

NOT inlining call to 0x0805adec

0x0804832f 83 c4 fc add $0xfc %esp -> %esp

0x08048332 6a 00 push $0x00 %esp -> %esp (%esp)

0x08048334 8d 45 08 lea 0x8(%ebp) -> %eax

0x08048337 50 push %eax %esp -> %esp (%esp)

0x08048338 6a 01 push $0x01 %esp -> %esp (%esp)

0x0804833a e8 25 27 01 00 call $0x805aa64 <point_of_interest>

RIOEXT: Found poi call at 0x0804833a, so ending block

exit pc = 0x0804833f

END ORIGINAL CODE

Size = 289

Body:

-------- indirect branch target entry: --------

0x40064104 a1 c0 14 00 40 mov 0x400014c0 -> %eax

-------- prefix entry: --------

0x40064109 8b 0d c8 14 00 40 mov 0x400014c8 -> %ecx

-------- normal entry: --------
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0x4006410f c7 c0 04 00 00 00 mov $0x00000004 -> %eax

0x40064115 33 d2 xor %edx %edx -> %edx

0x40064117 89 ec mov %ebp -> %esp

0x40064119 5d pop %esp (%esp) -> %ebp %esp

0x4006411a c7 05 c8 14 00 40 d0 mov $0x081212d0 -> 0x400014c8

12 12 08

0x40064124 59 pop %esp (%esp) -> %ecx %esp

0x40064125 8d 89 8f 7c fb f7 lea 0xf7fb7c8f(%ecx) -> %ecx

0x4006412b e3 0b jecxz $0x40064138 %ecx

0x4006412d 8d 89 71 83 04 08 lea 0x8048371(%ecx) -> %ecx

0x40064133 e9 81 00 00 00 jmp $0x400641b9 <exit stub 0>

0x40064138 c7 c2 02 00 00 00 mov $0x00000002 -> %edx

0x4006413e c7 c0 07 00 00 00 mov $0x00000007 -> %eax

0x40064144 89 ec mov %ebp -> %esp

0x40064146 5d pop %esp (%esp) -> %ebp %esp

0x40064147 c7 05 c8 14 00 40 04 mov $0x00000004 -> 0x400014c8

00 00 00

0x40064151 59 pop %esp (%esp) -> %ecx %esp

0x40064152 8d 89 8f 7c fb f7 lea 0xf7fb7c8f(%ecx) -> %ecx

0x40064158 e3 0b jecxz $0x40064165 %ecx

0x4006415a 8d 89 71 83 04 08 lea 0x8048371(%ecx) -> %ecx

0x40064160 e9 64 00 00 00 jmp $0x400641c9 <exit stub 1>

0x40064165 33 d2 xor %edx %edx -> %edx

0x40064167 c7 c0 09 00 00 00 mov $0x00000009 -> %eax

0x4006416d 89 ec mov %ebp -> %esp

0x4006416f 5d pop %esp (%esp) -> %ebp %esp

0x40064170 c7 05 c8 14 00 40 07 mov $0x00000007 -> 0x400014c8

00 00 00

0x4006417a 59 pop %esp (%esp) -> %ecx %esp

0x4006417b 8d 89 41 7d fb f7 lea 0xf7fb7d41(%ecx) -> %ecx

0x40064181 e3 0b jecxz $0x4006418e %ecx

0x40064183 8d 89 bf 82 04 08 lea 0x80482bf(%ecx) -> %ecx

0x40064189 e9 4b 00 00 00 jmp $0x400641d9 <exit stub 2>

0x4006418e 8b 0d c8 14 00 40 mov 0x400014c8 -> %ecx

0x40064194 c7 c6 09 00 00 00 mov $0x00000009 -> %esi

0x4006419a 83 c4 10 add $0x10 %esp -> %esp

0x4006419d 4b dec %ebx -> %ebx

0x4006419e 0f 88 eb 57 05 00 js $0x400b998f <fragment 187>

0x400641a4 83 c4 f4 add $0xf4 %esp -> %esp

0x400641a7 6a 00 push $0x00 %esp -> %esp (%esp)

0x400641a9 68 bf 82 04 08 push $0x080482bf %esp -> %esp (%esp)

0x400641ae 55 push %ebp %esp -> %esp (%esp)

0x400641af 89 e5 mov %esp -> %ebp

0x400641b1 83 ec 08 sub $0x08 %esp -> %esp

0x400641b4 e9 56 fe ff ff jmp $0x4006400f <trace 184>

-------- exit stub 0: -------- <target: 0x40034340>

0x400641b9 89 1d c4 14 00 40 mov %ebx -> 0x400014c4

0x400641bf bb 80 53 08 40 mov $0x40085380 -> %ebx

0x400641c4 e9 77 01 fd ff jmp $0x40034340 <indirect_branch_lookup>

-------- exit stub 1: -------- <target: 0x40034340>

0x400641c9 89 1d c4 14 00 40 mov %ebx -> 0x400014c4

0x400641cf bb a4 53 08 40 mov $0x400853a4 -> %ebx

0x400641d4 e9 67 01 fd ff jmp $0x40034340 <indirect_branch_lookup>

-------- exit stub 2: -------- <target: 0x40034340>

0x400641d9 89 1d c4 14 00 40 mov %ebx -> 0x400014c4

0x400641df bb c8 53 08 40 mov $0x400853c8 -> %ebx

0x400641e4 e9 57 01 fd ff jmp $0x40034340 <indirect_branch_lookup>

-------- exit stub 3: -------- <target: 0x080482c7>

0x400641e9 a3 c0 14 00 40 mov %eax -> 0x400014c0

0x400641ee b8 ec 53 08 40 mov $0x400853ec -> %eax

0x400641f3 e9 c8 00 fd ff jmp $0x400342c0 <fcache_return>

-------- exit stub 4: -------- <target: 0x0804833f>

Exit stub has following optimization context:

Optimization_Context (tag = 0x0804833f, frame = 0)

# of stack_based params = 2

stack param 0: 4(%ebp[0]) := 0x080482bf

stack param 1: 8(%ebp[0]) := 00

# of globally addressed params = 0
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0x400641f8 83 c4 fc add $0xfc %esp -> %esp

0x400641fb 6a 00 push $0x00 %esp -> %esp (%esp)

0x400641fd 8d 45 08 lea 0x8(%ebp) -> %eax

0x40064200 50 push %eax %esp -> %esp (%esp)

0x40064201 6a 01 push $0x01 %esp -> %esp (%esp)

0x40064203 68 3f 83 04 08 push $0x0804833f %esp -> %esp (%esp)

0x40064208 55 push %ebp %esp -> %esp (%esp)

0x40064209 68 10 54 08 40 push $0x40085410 %esp -> %esp (%esp)

0x4006420e e8 51 68 ff c7 call $0x805aa64 <point_of_interest>

0x40064213 83 c4 0c add $0x0c %esp -> %esp

0x40064216 a3 c0 14 00 40 mov %eax -> 0x400014c0

0x4006421b b8 10 54 08 40 mov $0x40085410 -> %eax

0x40064220 e9 90 00 fd ff jmp $0x400342c0 <fcache_return>

END TRACE 0

===========================================================================

TRACE # 1

Fragment # 185

Tag = 0x0804833f

CachePC = 0x40064084

Optimization_Context (tag = 0x0804833f, frame = 1)

# of stack_based params = 3

stack param 0: 8(%ebp[0]) := 00

stack param 1: 4(%ebp[1]) := 0x08048371

stack param 2: 8(%ebp[1]) := 02

# of globally addressed params = 0

Thread = 16214

ORIGINAL CODE:

basic block # 0: start pc = 0x0804833f

[eval() @ bench1.c:100] operation = instrs[pc];

0x0804833f 8b 0d 84 08 12 08 mov 0x8120884 -> %ecx

0x08048345 8b 45 08 mov 0x8(%ebp) -> %eax

[eval() @ bench1.c:102] if (operation == END_OP) {

0x08048348 83 c4 10 add $0x10 %esp -> %esp

[eval() @ bench1.c:100] operation = instrs[pc];

0x0804834b 0f be 14 08 movsx (%eax,%ecx,1) -> %edx

[eval() @ bench1.c:102] if (operation == END_OP) {

0x0804834f 85 d2 test %edx %edx

0x08048351 75 0d jnz $0x8048360

exit pc = 0x08048353

basic block # 1: start pc = 0x08048360

[eval() @ bench1.c:105] } else if (operation == CONTINUE_OP) {

0x08048360 83 fa 01 cmp %edx $0x01

0x08048363 75 1d jnz $0x8048382

exit pc = 0x08048365

basic block # 2: start pc = 0x08048365

[eval() @ bench1.c:108] rec = eval(pc+2);

0x08048365 83 c4 f4 add $0xf4 %esp -> %esp

0x08048368 83 c0 02 add $0x02 %eax -> %eax

0x0804836b 50 push %eax %esp -> %esp (%esp)

0x0804836c e8 b3 ff ff ff call $0x8048324

direct call at 0x0804836c

continuing in callee at 0x08048324

[eval() @ bench1.c:0]

0x08048324 55 push %ebp %esp -> %esp (%esp)

0x08048325 89 e5 mov %esp -> %ebp

0x08048327 83 ec 08 sub $0x08 %esp -> %esp

[eval() @ bench1.c:97] POI(1,&pc,0);

0x0804832a e8 bd 2a 01 00 call $0x805adec <pre_poi>

direct call at 0x0804832a

NOT inlining call to 0x0805adec

0x0804832f 83 c4 fc add $0xfc %esp -> %esp

0x08048332 6a 00 push $0x00 %esp -> %esp (%esp)

0x08048334 8d 45 08 lea 0x8(%ebp) -> %eax

0x08048337 50 push %eax %esp -> %esp (%esp)

0x08048338 6a 01 push $0x01 %esp -> %esp (%esp)
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0x0804833a e8 25 27 01 00 call $0x805aa64 <point_of_interest>

RIOEXT: Found poi call at 0x0804833a, so ending block

exit pc = 0x0804833f

END ORIGINAL CODE

Size = 98

Body:

-------- indirect branch target entry: --------

0x40064084 a1 c0 14 00 40 mov 0x400014c0 -> %eax

-------- prefix entry: --------

0x40064089 8b 0d c8 14 00 40 mov 0x400014c8 -> %ecx

-------- normal entry: --------

0x4006408f c7 c1 d0 12 12 08 mov $0x081212d0 -> %ecx

0x40064095 83 c4 04 add $0x04 %esp -> %esp

0x40064098 c7 c2 01 00 00 00 mov $0x00000001 -> %edx

0x4006409e c7 c0 04 00 00 00 mov $0x00000004 -> %eax

0x400640a4 68 04 00 00 00 push $0x00000004 %esp -> %esp (%esp)

0x400640a9 68 71 83 04 08 push $0x08048371 %esp -> %esp (%esp)

0x400640ae 55 push %ebp %esp -> %esp (%esp)

0x400640af 89 e5 mov %esp -> %ebp

0x400640b1 83 ec 08 sub $0x08 %esp -> %esp

0x400640b4 e9 56 00 00 00 jmp $0x4006410f <trace 186>

-------- exit stub 0: -------- <target: 0x0804833f>

Exit stub has following optimization context:

Optimization_Context (tag = 0x0804833f, frame = 2)

# of stack_based params = 5

stack param 0: 8(%ebp[0]) := 00

stack param 1: 4(%ebp[1]) := 0x08048371

stack param 2: 8(%ebp[1]) := 02

stack param 3: 4(%ebp[2]) := 0x08048371

stack param 4: 8(%ebp[2]) := 04

# of globally addressed params = 0

0x400640b9 83 c4 fc add $0xfc %esp -> %esp

0x400640bc 6a 00 push $0x00 %esp -> %esp (%esp)

0x400640be 8d 45 08 lea 0x8(%ebp) -> %eax

0x400640c1 50 push %eax %esp -> %esp (%esp)

0x400640c2 6a 01 push $0x01 %esp -> %esp (%esp)

0x400640c4 68 3f 83 04 08 push $0x0804833f %esp -> %esp (%esp)

0x400640c9 55 push %ebp %esp -> %esp (%esp)

0x400640ca 68 10 3b 08 40 push $0x40083b10 %esp -> %esp (%esp)

0x400640cf e8 90 69 ff c7 call $0x805aa64 <point_of_interest>

0x400640d4 83 c4 0c add $0x0c %esp -> %esp

0x400640d7 a3 c0 14 00 40 mov %eax -> 0x400014c0

0x400640dc b8 10 3b 08 40 mov $0x40083b10 -> %eax

0x400640e1 e9 cf 01 fd ff jmp $0x400342c0 <fcache_return>

END TRACE 1

===========================================================================

TRACE # 2

Fragment # 184

Tag = 0x0804833f

CachePC = 0x40064004

Optimization_Context (tag = 0x0804833f, frame = 0)

# of stack_based params = 1

stack param 0: 8(%ebp[0]) := 00

# of globally addressed params = 0

Thread = 16214

ORIGINAL CODE:

basic block # 0: start pc = 0x0804833f

[eval() @ bench1.c:100] operation = instrs[pc];

0x0804833f 8b 0d 84 08 12 08 mov 0x8120884 -> %ecx

0x08048345 8b 45 08 mov 0x8(%ebp) -> %eax

[eval() @ bench1.c:102] if (operation == END_OP) {

0x08048348 83 c4 10 add $0x10 %esp -> %esp

[eval() @ bench1.c:100] operation = instrs[pc];

0x0804834b 0f be 14 08 movsx (%eax,%ecx,1) -> %edx
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[eval() @ bench1.c:102] if (operation == END_OP) {

0x0804834f 85 d2 test %edx %edx

0x08048351 75 0d jnz $0x8048360

exit pc = 0x08048353

basic block # 1: start pc = 0x08048360

[eval() @ bench1.c:105] } else if (operation == CONTINUE_OP) {

0x08048360 83 fa 01 cmp %edx $0x01

0x08048363 75 1d jnz $0x8048382

exit pc = 0x08048365

basic block # 2: start pc = 0x08048365

[eval() @ bench1.c:108] rec = eval(pc+2);

0x08048365 83 c4 f4 add $0xf4 %esp -> %esp

0x08048368 83 c0 02 add $0x02 %eax -> %eax

0x0804836b 50 push %eax %esp -> %esp (%esp)

0x0804836c e8 b3 ff ff ff call $0x8048324

direct call at 0x0804836c

continuing in callee at 0x08048324

[eval() @ bench1.c:0]

0x08048324 55 push %ebp %esp -> %esp (%esp)

0x08048325 89 e5 mov %esp -> %ebp

0x08048327 83 ec 08 sub $0x08 %esp -> %esp

[eval() @ bench1.c:97] POI(1,&pc,0);

0x0804832a e8 bd 2a 01 00 call $0x805adec <pre_poi>

direct call at 0x0804832a

NOT inlining call to 0x0805adec

0x0804832f 83 c4 fc add $0xfc %esp -> %esp

0x08048332 6a 00 push $0x00 %esp -> %esp (%esp)

0x08048334 8d 45 08 lea 0x8(%ebp) -> %eax

0x08048337 50 push %eax %esp -> %esp (%esp)

0x08048338 6a 01 push $0x01 %esp -> %esp (%esp)

0x0804833a e8 25 27 01 00 call $0x805aa64 <point_of_interest>

RIOEXT: Found poi call at 0x0804833a, so ending block

exit pc = 0x0804833f

END ORIGINAL CODE

Size = 81

Body:

-------- indirect branch target entry: --------

0x40064004 a1 c0 14 00 40 mov 0x400014c0 -> %eax

-------- prefix entry: --------

0x40064009 8b 0d c8 14 00 40 mov 0x400014c8 -> %ecx

-------- normal entry: --------

0x4006400f c7 c1 d0 12 12 08 mov $0x081212d0 -> %ecx

0x40064015 83 c4 04 add $0x04 %esp -> %esp

0x40064018 c7 c2 01 00 00 00 mov $0x00000001 -> %edx

0x4006401e c7 c0 02 00 00 00 mov $0x00000002 -> %eax

0x40064024 68 02 00 00 00 push $0x00000002 %esp -> %esp (%esp)

0x40064029 68 71 83 04 08 push $0x08048371 %esp -> %esp (%esp)

0x4006402e 55 push %ebp %esp -> %esp (%esp)

0x4006402f 89 e5 mov %esp -> %ebp

0x40064031 83 ec 08 sub $0x08 %esp -> %esp

0x40064034 e9 56 00 00 00 jmp $0x4006408f <trace 185>

-------- exit stub 0: -------- <target: 0x0804833f>

Exit stub has following optimization context:

Optimization_Context (tag = 0x0804833f, frame = 1)

# of stack_based params = 3

stack param 0: 8(%ebp[0]) := 00

stack param 1: 4(%ebp[1]) := 0x08048371

stack param 2: 8(%ebp[1]) := 02

# of globally addressed params = 0

0x40064039 83 c4 fc add $0xfc %esp -> %esp

0x4006403c 6a 00 push $0x00 %esp -> %esp (%esp)

0x4006403e 8d 45 08 lea 0x8(%ebp) -> %eax

0x40064041 50 push %eax %esp -> %esp (%esp)

0x40064042 6a 01 push $0x01 %esp -> %esp (%esp)

0x40064044 68 3f 83 04 08 push $0x0804833f %esp -> %esp (%esp)

0x40064049 55 push %ebp %esp -> %esp (%esp)

0x4006404a 68 f0 39 08 40 push $0x400839f0 %esp -> %esp (%esp)
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0x4006404f e8 10 6a ff c7 call $0x805aa64 <point_of_interest>

0x40064054 83 c4 0c add $0x0c %esp -> %esp

0x40064057 a3 c0 14 00 40 mov %eax -> 0x400014c0

0x4006405c b8 f0 39 08 40 mov $0x400839f0 -> %eax

0x40064061 e9 4f 02 fd ff jmp $0x400342c0 <fcache_return>

END TRACE 2
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[1] Erik R. Altman, Kemal Ebcioğlu, Michael Gschwind, and Sathaye Sumedh. Ad-

vances and future challenges in binary translation and optimization. Proceedings

of the IEEE, November 2001.

[2] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F.

Sweeney. Adaptive optimization in the Jalapeño JVM. ACM SIGPLAN Con-

ference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA ’00), 35(10):47–65, October 2000.

[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transpar-

ent runtime optimization system. In Proceedings of the ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation (PLDI ’00), June

2000.

[4] Iris Baron. Dynamic optimization of interpreters using DynamoRIO. Master’s

thesis, M.I.T., 2003.

[5] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive

dynamic optimization. In 1st International Symposium on Code Generation and

Optimization (CGO-03), March 2003.

[6] Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. Design and im-

plementation of a dynamic optimization framework for Windows. In 4th ACM

Workshop on Feedback-Directed and Dynamic Optimization (FDDO-4), Decem-

ber 2001.

97



[7] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. Disco:

running commodity operating systems on scalable multiprocessors. ACM Trans.

Comput. Syst., 15(4):412–447, 1997.

[8] C. Chambers and D Ungar. Making pure object-oriented languages practical.

Proceedings OOPSLA ’91, pages 1–15, November 1991.

[9] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David Gillies. Mojo: A dy-

namic optimization system. 3rd ACM Workshop on Feedback-Directed and Dy-

namic Optimization (FDDO-3), December 2000.

[10] C. Consel, L. Hornof, J. Lawall, R. Marlet, G. Muller, J. Noyé, S. Thibault, and
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