The StreamlIt Development Tool:
A Programming Environment for StreamlIt
by
Kimberly S. Kuo

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science
and
Master of Engineering in Elecrical Engineering and Computer Science
at the Massachusetts Institute of Technology
May 20, 2004
(© 2004 M.L.T. All rights reserved.

Author ..o
Department of Electrical Engineering and Computer Science
May 20, 2004

Certified Dy
Saman Amarasinghe

Associate Professor

Thesis Supervisor

Accepted by ...
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

The StreamlIt Development Tool:
A Programming Environment for Streamlt
by
Kimberly S. Kuo

Submitted to the
Department of Electrical Engineering and Computer Science

May 20, 2004

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Engineering and Computer Science
and
Master of Engineering in Elecrical Engineering and Computer Science

ABSTRACT

Streamlt [28] is a high-level programming language intended for the development of
large-scale and high-performance streaming applications that are characterized by the
processing of data streams by modular structures. The Streamlt Development Tool
(SDT) [25] is designed to aid the coding and simultaneous code- and graph-based
debugging and visualizing of programs written in Streamlt. The goal is to provide
a graphical programming environment that simply and intuitively conveys the hier-
archical and structured nature of the Streamlt language by visually interpreting the
dynamic behavior and graph representation of a Streamlt application. Consequently,
the SDT provides utilities for program creation and code editing, compilation and
launch support, breakpoints and code stepping, general debugging infrastructure,
help support, stream graph examination and navigation, and stream data display,
modification, and tracking. A user study evaluating the SDT uncovered several prob-
lems and areas of improvement that need to be addressed before this tool can approach
its goals. Assessment of the SDT’s efficacy in its current state is inconclusive—the
SDT demonstrates both the ability to improve and hinder a user’s debugging ability.
Facilitating effective coding and debugging techniques and developing for scalability
are critical elements in improving the SDT’s effectiveness.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor

Acknowledgments

I would like to thank my thesis advisor, Saman Amarasinghe, for his guidance and
support throughout the development of this thesis. I am also thankful to the Streamlt
group at MIT, from whom I have learned so much about Streamlt and Eclipse: Ro-
dric Rabbah coordinated and assisted in the design of the user study and provided
invaluable feedback for the SDT’s functionality and this thesis. William Thies sug-
gested and/or wrote many of the applications in the user study and supplied advice
on improving and enhancing the SDT and the user study. Both David Maze and
Bill Thies modified the Streamlt Java library to interface with the SDT. Jasper Lin,
Juan Carlos, Sitij Agarwal, Jeremy Wong, Michael Gordon, and Michal Karczmarek
all participated in in-house evaluations of the SDT.

Finally, I would like to thank my parents, Kuonan and Sue, and my brother,
Raymond. I am eternally grateful for their support and encouragement in both my
academic and personal endeavors. I could not have made through MIT or this thesis

without them.

Contents

1 Introduction

1.1 Overview o

1.2 Organization

2 Related Work

2.1 High-Level Language Debuggers and Program Visualization Tools . .

2.2 OOP Debuggers and Program Visualization Tools

3 Background
3.1 The StreamlIt Language

3.1.1 Channels. s,

3.1.2 Filters

3.1.3 Pipelines

3.1.4 Split-joinso

3.1.5 Feedback-loops

3.1.6 Hierarchical Graph Representation

3.1.7 Execution Model

3.2 Eclipse

3.21 Plug-ins

3.2.2 Workbench,

3.2.3 Launching, Running, and Debugging Infrastructure

4 SDT Common Coding and Debugging Features

7

17
17
19

21
21
26

29
29
29
30
30
31
32
33
34
34
36
36
38

41

4.1 Code Editing 41

4.2 Breakpoints 46
4.2.1 Line Breakpoints L 46
4.2.2 Method Breakpoints and Watchpoints 48
4.2.3 Breakpoint Property Specification 50

4.3 Program Compilation and Launch Support o1

4.4 General Debugging Supporto 54
4.4.1 Features in the Debug View 61
4.4.2 Variable Value Modification 61

4.5 Help Support 64

SDT Stream Graph-Specific Features 67

5.1 Stream Graph Examination and Hierarchical Navigation 67
5.1.1 Streams in the Stream Graph View 70
5.1.2 Stream Graph Debugging Behavior 71
5.1.3 Stream Graph Navigation 73
5.1.4 Stream Statistics oo 75

5.2 Stream Data Display, Modification, and Tracking 78

Results 83

6.1 Target Population 84

6.2 Procedure 84

6.3 In-House Evaluation 87

6.4 During the Studyo oo 89

6.5 Quantitative Results 90

6.6 Qualitative Results oo 95
6.6.1 Problems with the SDT 95
6.6.2 Usability of the SDT 97
6.6.3 Improvements and New Functionality 98

6.7 Lessons Learned L 99

7 Conclusion 101

7.1 Future Work 101
7.2 SUMMATY . . . o o o v e e 102
A User Study Documents 103
A.1 Pre-Study Questionnaire 104
A2 SDT Tutorial 106
A3 User Tasks 108
A.4 Description of Applications and Code 110
A.4.1 Application 1: BitTwiddle 110
A.4.2 Application 2: Fibonacci 112
A.4.3 Application 3: EchoEffect 113
A.4.4 Application 4: MergeSort 114
A.4.5 Application 5: Cornerturn 116
A.4.6 Application 6: EchoEffect2 118
A.4.7 Application 7: BubbleSort L. 119
A.4.8 Application 8: BitReverse L. 121
A.4.9 Application 9: Overflow 123

A.5 Post-Study Questionnaire Lo 124

10

List of Tables

6.1 User groupings describing whether the SDT was or was not used for

each application.

11

12

List of Figures

3-3

3-4
3-5

3-7
3-8

4-1

Screenshot of the VisualDSP++™ [42). 22
Screenshot of the Embedded Workbench [32]. 23
Screenshot of the Rapid Development System [37]. 23
Screenshot of the BoxView [6]. 24
Screenshot of the Momentics®) [33]. 24
Screenshot of the Debugger RTOS [4]. 25
Graphical view of an application created with the PDG [8]. 27
The PDG’s hierarchical graphical representation. 27

Screenshot of the MULTI®) Integrated Development Environment [20]. 28

The code (a) and conceptual representation (b) of an Averager filter. 31
The code (a) and conceptual representation (b) of a Movi ngAver age
pipeline with three children. 31
The code (a) and conceptual representation (b) of a BPFCor e splitjoin
with two children. oo 32
The code (a) and conceptual representation (b) of an Echo feedbackloop. 33
A static stream graph generated by the Streamlt compiler. 35
An Eclipse Workbench window in the Resource perspective, containing
a text editor and the Navigator, Outline, and Tasks views. 37
A Launch Configurations dialog. 39
An Eclipse Workbench window in the Debug perspective, containing a

text editor and the Debug, Variables, Console, and Properties views. . . . 40

A Streamlt project wizard. 42

4-2

4-4

4-5
4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

A Streamlt project wizard (continued).
A Streamit Editor with an associated Outline view.
Icons used by the Outline view for Streamlt files: a plus box (a), a minus
box (b), a state variable (c), a method (d), a filter (e), a pipeline (f),
a split-join (g), and a feedback-loop (h).
A preference page for adding and deleting Streamlt keywords.

A Streamlt Editor’s left gutter showing line breakpoints, method break-
points, and watchpoints that have been added (a). A pop-up menu
allows users to add line breakpoints. The Streamlt drop-down menu
found in the Workbench’s main menu bar also allows users to add line
breakpoints (b).
Breakpoint icons used in the Streamlt Editor and Streamlt drop-down
menu for line breakpoints (a), method breakpoints (b), and watch-
points (C).

A pop-up menu allows users to remove line breakpoints (a). The

StreamlIt drop-down menu allows users to remove line breakpoints (b).

The Streamlt drop-down menu allows the user to add method break-
points (a) and watchpoints (b). o000
The StreamlIt drop-down menu allows the user to remove method
breakpoints (a) and watchpoints (b).
Disabled watchpoint, method breakpoint, and line breakpoints (a). A
pop-up menu allows users to disable or enable breakpoints or watch-
point (b).
Disabled selections in the Streamit Editor’s pop-up menu (a) and Streamlt
drop-down menu (b).
The Streamlt drop-down menu allows the user to compile the file cur-
rently being displayed in the Streamlt Editor.
Errors and warnings are displayed in the Tasks view, Package Explorer

view, and Streamlt Editor.

45

47

47

48

49

49

20

ol

52

4-15 The Run drop-down menu (a) and the toolbar’s run (b) and debug (c)

icons allow users to launch Streamlt applications. 55
4-16 Launch configuration management wizard for running. 56
4-17 Launch configuration management wizard for debugging. 57

4-18 The arguments tabs allows user to specify iterations or secondary
Streamlt files to include in a launch. 58
4-19 A Streamlt program suspended at a breakpoint in the Debug perspective. 60
4-20 Icons from the Debug view’s toolbar and pop-up menu for resuming
(a), terminating (b), and stepping over (¢). 61
4-21 The Debug view logs all launches, which allows them to be re-launched. 62

4-22 The Variables view’s pop-up menu (a) and the “Set Variable Value”
dialog (b). 63

4-23 The Streamlt Development User Guide. 65

5-1 The Stream Graph view displaying a stream graph during program sus-

PENSION. o e 68
5-2 The Overview of Stream Graph view displaying a stream graph during

program SUSPENSioON.o 69
5-3 The Stream Graph view displays channels (a), filters (b), pipelines (c),

split-joins (d), and feedback-loops (e). 70
5-4 The Stream Graph view displays the children of pipelines (a), split-joins

(b), and feedback-loops (¢). oL 72
5-5 Stream Graph view icons for duplicate splitters (a), weighted splitters

and joiners (b), data flow (c) (d), and “Hide Lines” (e). 73
5-6 The Stream Graph view allows users to add (a) and remove (b) filter

instance breakpoints.o 73

5-7 The Stream Graph view’s icons for navigation: a plus box (a), a minus

box (b), “Collapse All” (c), and “Expand All” (d). 74
5-8 A large(r) Streamlt graph. 76
5-9 An expanded filter with statistics displayed. 7

15

5-10
5-11

5-12

5-13
5-14

6-1

6-2

6-3

6-4

The Properties view displaying the statistics for an entire stream graph.

The Stream Graph view displays data in channels and grays out peeked
at data. Some channels are expanded and some are collapsed.

The Stream Graph view enables users to show, change, highlight, and
un-highlight data (a). These features are disabled when not applicable
for a particular channel or datum (b).
A dialog box for showing all of the data within a channel.
A dialog box for modifying all of the data within a channel.

Graph comparing the number of users who solved and did not solve
each application with and without the SDT.
Graph comparing the average time it took users to solve or not solve
each application with and without the SDT.
Graph comparing the average normalized time it took users to solve
applications 3 through 9 with and without the SDT..
The Stream Graph view displaying a portion of Application 4’s stream

graph.

16

7

78

79

80
81

91

93

94

Chapter 1

Introduction

1.1 Overview

Streaming applications encompass a set of programs characterized by large data
streams, independent modular transforms called filters that can execute on these
streams concurrently, a predictable pattern of applying certain transforms, some dy-
namic change in the pattern of transform application, some inter-filter communi-
cation, and high-performance [40]. Streaming applications are prevalent in desktop
applications such as streaming media, software radio, real-time encryption, and graph-
ics packages; hand-held computers, cell phones, and DSPs in the embedded domain;
and high-performance systems such as internet routers, cell phone base stations, and
multimedia editing consoles [29] [30] [31] [40].

Streamlt [28] is a high-level programming language intended for large-scale and
high-performance streaming application development. This language introduces ab-
stractions, such as hierarchically structured streams that are designed to facilitate
modularity, programmer productivity, and robustness [29]. Streamlt aims to allow
programmers to easily and naturally express their design of streaming applications.
The Streamlt compiler generates a representation of a streaming program, called a
stream graph, which is a directed graph of filters connected by streams. A streaming
application developer can analyze these graphs separately from program execution

27].

17

In partnership with creation and design, the debugging, incremental building,
and performance optimization of large streaming applications necessitates utilities for
stream graph visualization, data tracking, and filter execution order. The Streamlt
Development Tool (SDT) [25] is designed to aid the coding and simultaneous code-
and graph-based debugging and visualizing of programs written in Streamlt. The
SDT’s goal is to provide a graphical programming environment that simply and in-
tuitively conveys the hierarchical and structured nature of the Streamlt language by
interpreting and visually representing the stream graph and the dynamic behavior
of a Streamlt program. To address this goal, the SDT needs to provide common
code editing and debugging functionality analogous to the functionality available in
traditional application development environments. As such, the SDT supplies the

following features:
e A Streamlt file editor with customizable syntax highlighting
e Utilities for creating and managing Streamlt applications

e Line breakpoint, method breakpoint, and watchpoint addition to executable

code

e Breakpoint property specification, such as enabling, disabling, conditional break-

ing, etc.

e Program launching and compilation support with syntax error detection and

reporting
e Program suspension and code stepping
e Variable inspection and value modification

e Help manual with tutorial

Moreover, the SDT offers features tailored to the Streamlt language’s syntax and se-
mantics and targeted at debugging the salient quality of streaming applications—the
ability to easily represent a streaming program graphically, structurally, and hierar-

chically:

18

e Stream graph examination and hierarchical navigation
e Stream statistical information display

e Data inspection and modification

e Dataflow tracking

Built in a visual, integrated development environment (IDE) with a human-computer
interface, the SDT is composed of the following modules: an IDE-integrated debug-
ger, graphical text editor, a runtime stream graph view, and a corresponding graph

overview. The SDT is implemented in Java as an Eclipse [23] plug-in.

1.2 Organization

The rest of this thesis is organized as follows. Related work is presented in chapter 2:
debugging and visualizing tools for high-level (2.1) and object-oriented programming
(OOP) languages (2.2). In chapter 3, appropriate background material on StreamlIt
(3.1) and Eclipse (3.2) is provided. Chapter 4 describes common coding and debug-
ging features of the SDT: program creation and code editing (4.1), breakpoints (4.2),
program compilation and launch support (4.3), and general debugging (4.4) and help
(4.5) support. In chapter 5, the SDT’s Streamlt- and stream graph-specific features
are given: stream graph examination and navigation (5.1) and stream data display,
modification, and tracking (5.2). Chapter 6 presents a user study of the SDT: analy-
sis of the target user population (6.1), procedures (6.2), an in-house evaluation (6.3),
what occurred during the study (6.4), quantitative results (6.5), qualitative results
(6.6), and lessons learned (6.7). Future research opportunities are discussed (7.1) and

this thesis is concluded with (7.2).

19

20

Chapter 2

Related Work

In this chapter, related work is presented on tools for debugging and visualizing high-

level (2.1) and object-oriented programming (OOP) languages (2.2).

2.1 High-Level Language Debuggers and Program

Visualization Tools

Although the theory of streaming applications dates back to the 1960s [34], the major-
ity of streaming applications are traditionally written in various assembly languages
[30]. However, as these applications increase in size, functionality, and complexity,
high-level languages such as C are being used to increase programmer productivity,
improve program reliability and readability, and decrease development and debug-
ging time [30]. In conjunction, technical computing tools like Matlab [2] are often
employed for algorithm development and verification [18].

Numerous debuggers and program visualization tools exist for streaming applica-
tions written in high-level languages. The majority of these tools are C debuggers
targeted at specific hardware or platforms, offering traditional debugging features
(i.e. program suspension, breakpoint stepping, watchpoints, local variable and out-
put display, etc.) combined with assembly code, memory register, and signal plot

display. Indeed, screenshots of those described below reveal this similarity, as seen in

21

Figure 2-1: Screenshot of the VisualDSP++™™ [42].

Figures 2-1 through 2-6.

VisualDSP++™ [42] is an IDE and debugger developed by Analog Devices, Inc.
[10] for building and debugging DSP applications written in C/C++ and assembly
(Figure 2-1). It produces executables that can run on simulators and emulators.
IAR Systems’ [35] Embedded Workbench [44] is another IDE intended for C/C++
embedded applications (Figure 2-2). Created by Cradle Technologies, Inc. [38], Rapid
Development System (RDS) [7] is a software development kit (SDK) for developing
and debugging DSP applications in C (Figure 2-3). After compilation, the RDS can
debug using simulators or proprietary hardware. BoxView [6] and Debug-56K [9]
are two debuggers built by Domain Technologies, Inc. [39] for DSP-targeted C and
assembly applications (Figure 2-4). Both typically interface with emulators, which in
turn interact with third-party DSPs. QNX Software Systems’ [36] Momentics® [19]
is an Eclipse-integrated IDE for real-time operating systems (RTOS) and embedded
applications in C, C++, and Java (Figure 2-5). Unlike RDS, Momentics’ source
code debugger functions separately from target hardware interaction. Finally, the
Debugger RTOS [4] is a RTOS built-in module aimed at embedded software (Figure 2-
6).

22

[T =g T E=—————.
#5
ol fuiE_Fib] wwid |
!

whard © o= Ot

ERacfd] = meeefa] = id

WE | Buf | GCERE_FIN § i+
enuc[i] = e _Eimiil + gpc_Bibja-dja

] el] el i 1D FilCEsdon mlEbEs CEET.
Aol B OO AL a0
Bxia I D J e L ST T
AaFFFFHFERS X il
Al A IPFFE
ATl FwiT A0
Lars
E1L lp]

BFCEDE. | RESE{EE-1E 1)

CTCLECD

& gmf 4550 S ardumet

sl

ERREEEEE
=aduEk|

Figure 2-3: Screenshot of the Rapid Development System [37].

23

o () o0 o (@] (2] (R

2 SINE_SIZE: J ##10
Lt = F Lz F
o Latedil =|.||'- outlls[u

return @y

*nt multiply (sEruct sine #ualuel
int Trapp

Figure 2-4: Screenshot of the BoxView [6].

L e s SN T
i RS e

Pl _ ot Lkl DL i b B
o g— v ——rr

Figure 2-5: Screenshot of the Momentics®) [33].

24

Fidz dnd
M= Os0
Ba: dsd
FEd:z dud
Fiz Oad

Oz Ou3ZLa
FLr Oamiedn
T T
Fiz dnwlT

BSE: DocEiod
i Oemlsleiad

EL1:
EL3:
ELi
Eid:
EL31
WLEi
BT
Fi®:
ELE:
L& 1el]
Foa

SEFO: Oeldeid
Lz Ond3d3c

Curranc chreaa I O

Dol
T3
oA

EXSEEREE

i mcmck
THieal ALATRS
Tacesd § | Yaiticeg
Throad [1 Wit
Tareas § | Wand g
Tareas 4 Rasdpf

Figure 2-6: Screenshot of the Debugger RTOS [4].

B2
Bl
(=2 1]
Fifz
Eléx
R
==
o
-]
ER1i

SEEL:
TAE 1 Delf0c

| Freor oocurred tn progoem ok osddrezsr O] 5810
FWiol Cipsd DiVEES TF BEiG

TIEETqERLE

[P

2.2 OOP Debuggers and Program Visualization

Tools

In recent years, some movement in the streaming domain has been made towards
OOP languages such as C++4 or Java, which introduce abstractions that improve the
portability and reusability of code [30]. The introduction of conceptual abstractions
empowers the design, debugging, visualization, and analysis tools created for OOP-
based streaming applications to introduce hierarchical, modular structures while hid-
ing unnecessary details from the programmer. On top of the traditional debugging
features previously mentioned, all three of the tools described next use some variation
on the theme of signal processing blocks that are connected, displayed, and navigated
graphically.

Simulink [1] is a modeling, simulation, and analysis tool for control, signal pro-
cessing, and communications system design. This tool imposes OOP conventions on
Matlab, C, Fortran, and Ada programmers by allowing its users to insert their code
into the methods of pre-defined blocks or to use application-specific standard block
libraries. Furthermore, hierarchically block navigation at both the design and debug-
ging stages is offered: command-line Simulink Debugger enables breakpoint stepping
of the currently executing method which is simultaneously displayed on its associated
block. Additional information, such as block state, inputs, and outputs, are visible
in other windows.

Process-Level Debugger (PDG) [8] is designed for a graphical parallel program-
ming environment for concurrent applications called GRAPE. The PDG models
processes as black boxes that interact with each other, as illustrated in Figure 2-
7. Like Simulink, programmers build their applications by creating and connecting
black boxes hierarchically (i.e., each black box may be composed of sub-boxes—sub-
processes—and displayed in a graphical view). As an application is debugged, the
PDG shows the application’s behavior on this view and allows a programmer to zoom
down on suspicious process blocks in the hierarchy. This top-down debugging method

can eventually find the associated erroneous code, as seen in Figure 2-8.

26

—E#}SOB_X #)tEﬁ)Squm 1
o o ™
g SOB Y [Tl%;s:;uare :9

Om &ty

v

Figure 2-7: Graphical view of an application created with the PDG [8§].

Figure 2-8: The PDG’s hierarchical graphical representation of an application showing
successively lower levels of the hierarchy from left to right [8].

27

B Clazr Browssr - rool clizgey

Descendents of Root Node
Hoot Made

I _,.——

Figure 2-9: Screenshot of the MULTI®) Integrated Development Environment [20].

The MULTI®) Integrated Development Environment [12] produced by Green Hills
Software, Inc. is designed for multiprocessor, distributed systems and embedded
applications using C, C++, Ada, Fortran, and assembly. Besides standard editing
and debugging functionality, this IDE conveys program control flow with perusable

static and dynamic call graphs and class hierarchies, as seen in Figure 2-9.

28

Chapter 3

Background

Unlike the programming languages described in the previous chapter, Streamlt is
specifically designed for streaming applications. This chapter formally introduces the
Streamlt language (3.1). This thesis contributes the first IDE for StreamlIt and does
so as a plug-in to Eclipse, a universal tool platform from IBM. Relevant background

on the infrastructure and functionality of Eclipse is given (3.2).

3.1 The Streamlt Language

Since the language-specific features of StreamlIt determine much of the SDT’s features
and functionality, this section provides an overview of the syntax and semantics of
Streamlt version 2.0 [26, 40]. Streamlt programs are composed of computational units
that process large streams of data. These units, called filters, can be hierarchically
composed into pipelines, split-joins, and feedback-loops. A stream is defined to be
a filter, pipeline, split-join or feedback-loop. Channels provide the means by which

data is communicated between streams.

3.1.1 Channels

Channels are one-way FIFO queues that pass data of a specific type from one stream

to another. Each stream has one input channel from which it can read data, and one

29

output channel to which it can write data. A channel’s source stream writes data
to it, while a channel’s sink stream reads data from it. The data type of a channel
can be one of the following: boolean, int, float, one-bit integer, complex number.
Furthermore, a channel’s type can also be fixed-length arrays of any of the data types

previously mentioned.

3.1.2 Filters

The fundamental computational unit in Streamlt is the filter, depicted in Figure 3-1.
A filter’s behavior is defined by its i nit , prewor k, and wor k functions, which contain
C-style code. The init function executes only once at the start of a program, the
prewor k runs in place of the work function the first time the work function should
execute, and the work function runs repeatedly thereafter. The code within each
function can call helper functions and access and modify state variables, which are
the non-local variables of stream. However, only the prewor k and wor k functions can
call the three special functions that read from or write to the I/O channels: push(x)
pushes a datum with value x onto the output channel’s queue, pop() pops and returns
the last datum from the input channel’s queue, and peek(n) returns the value of the
datum at the n-th index on the input channel’s queue. For example, peek(0) returns
the value of the next datum that could be popped. The prewor k and wor k functions
must declare their push, pop, and peek! rates—the number of data they push, pop,

and peek during each execution.

3.1.3 Pipelines

A pipeline, seen in Figure 3-2, is a simple container structure composed of one or more
child streams connected sequentially. Within a pipeline, each stream’s output channel
is chained to the stream’s input channel. The first child’s input channel is linked to the
pipeline’s input channel, while the last child’s output channel is linked to the pipeline’s

output channel. Children are specified with add statements. Although a pipeline does

LA prewor k and wor k function’s peek rate is the maximum index at which the function peeks

30

int--Ant Hlter Lwverageri(imt n) {

wmwrkpop 1 push 1 peek 1 {
int sum = 0;

for (int i = 0; i < n; itH i
=um += peaki(i);
pushi=sum m) ;
iy Averager

; & '
(a) (b)

Figure 3-1: The code (a) and conceptual representation (b) of an Averager filter.

MovingAverage
IntSource
Averager
roid-=-wvwid pipeline Movinghwverage | l‘
add ImtSource(); .
add Averager(l0); IntPrinter
add ThtPrinter();
}

(a) (b)

Figure 3-2: The code (a) and conceptual representation (b) of a Movi ngAver age
pipeline with three children.

not have formal i ni t , prewor k, or wor k functions, and its declaration effectively acts
as an i ni t function, which can contain code that parameterizes its composition. The
execution of a pipeline (like that of a split-join or feedback-loop described next) can

be thought of as the composition of all its children’s work functions.

3.1.4 Split-joins

A split-join, depicted in Figure 3-3, models parallel computation by linking its input
channel to a splitter, which redistributes data to input channels of the child streams,
and linking its output channel to a joiner, which recombines data from the children’s

output channels. A split-join has two or more children. Splitters are created with

31

float-+-flpat pipelime BandPassFilter|

float rate, float low, BandPassFilter i

float high, int taps) |

add EPFFCoreirate, low, BPFCore l
high, taps); DU

add Subtracter();
} /—/_,./\
float->float splitjoin EPFCored

float rate, float low,
St e O LowPass LowPass

split duplicate;
add LowlPassi(rate, low, taps, 0)1; W

add LowPass(rate, high, taps, 0); ﬁR

Join roundrobin;

}
float-+-flpat Hlter Subtracter |
work pop £ push 1 |

h kil) - k(0 ;
ﬁ iEE:cpH; e Subtracter
}
} |
(a) (b)

Figure 3-3: The code (a) and conceptual representation (b) of a BPFCore splitjoin
with two children.

split statements and are either duplicate or roundrobin(xy, x3, ... x,)—the
former distributes a copy of each datum to each child, while the latter distributes
data to the first child, x5 data to the second child, etc. Joiners are created with j oi n
statements and are only of type roundrobin(xy, xs, ..., x,)—takes x; data from
the first child, x5 data from the second child, etc. Children are specified with add
statements, with the i -th add statement corresponding to a split-join’s i -th child. As
in Figure 3-3, the children are usually drawn left to right, first to last. Furthermore,
like a pipeline, a split-join does not have formal i nit, prework, or work functions,

but its declaration in effect is an i ni t function.

3.1.5 Feedback-loops

In order to models cycle, a feedback-loop, seen in Figure 3-4, is composed of a joiner, a
splitter, and two child streams. The first child acts as the body of the cycle while the
second child acts as the loop. The joiner combines data from the loop’s output channel

and the feedback-loop’s input channel and sends it to the body’s input channel.

32

float->float feedbackloop Echoiint n,
float f£) {
join roundrabin(l, 1);
body FloacidderBypass () ;
loop float-+float Hlter |
wworkpop 1 push 1 {
pushipop () * f);

}
}i

split roundrobin;
for (int i = 0; i < n; it4) Echo l" 1
enguewe [0 ; RR
} T
float-+float Hlter FloatidderBypass{

k Zpush 2 {
e pic'lilpeekm:l + peekil)); Addaypass Scale

PRS0l -
}
} ¢

(a) (b)

Figure 3-4: The code (a) and conceptual representation (b) of an Echo feedbackloop.

The splitter, which is linked to the body’s output channel, distributes data to the
loop’s input channel and the feedback-loop’s output channel. Splitters and joiners
are created in the same way and have the same types as in split-joins. The first
child is specified with a body statement, the second with a | oop statement. As in
Figure 3-4, the children are usually drawn left to right, first to last. Furthermore, like
a pipeline, a feedback-loop does not have formal i ni t, pr ewor k, or wor k functions, but
its declaration is really an i nit function. This code is also the place where enqueue
statements can be used to push data onto the loop’s output channel at the start of a

program.

3.1.6 Hierarchical Graph Representation

As seen in Figures 3-1 through 3-4, a Streamlt program can be visually depicted as
a hierarchical directed graph of streams, with graph nodes representing streams and
graph edges representing channels. The unique root of a stream graph is defined to
be a top-level pipeline—a pipeline with no input or output channels. Because the

Streamlt language allows its programmers the ability to define a stream element once

33

but use it many times throughout the code, a one-to-many correspondence exists
between the code and graph representations of a StreamlIt program. Accordingly, the
code of a stream shall be called a declaration, while the graph node of a stream shall

be called an instance.

3.1.7 Execution Model

When a Streamlt application is initially executed, the i nit function of each stream
is executed in a depth first search order starting at the top-level pipeline of the
hierarchical stream graph. Because the init functions contain the code to specify
child streams, these functions build the stream graph when executed. Once all the
i ni t functions are finished, all channels are created and connected. Afterwards, the
prewor k and wor k functions are executed until program completion.

In order to generate an executable program, the Streamlt compiler is responsible
for deriving a schedule of filter execution—the order in which the work function of
each filter in the stream graph can be executed (“fired”) so that each filter’s peek, pop,
and push rates are satisfied. The number of times that a filter fires during program
execution is also dependent on the programmer-specified number of iterations of the
top-level pipeline.

The Streamlt compiler also generates a file containing a static stream graph that

programmers can analyze separate from its execution (Figure 3-5).

3.2 Eclipse

The Eclipse Platform [24] was chosen as the SDT’s implementation toolkit because it
is designed for building integrated development environments (IDEs) that can be used
to create a diverse array of applications on Eclipse. As such, the SDT makes heavy
use of a user interface (UI) for editing files and viewing file and program metrics, a
resource management model and help system, GUI and UI libraries, and language-

independent launching, running, and debugging infrastructure provided by Eclipse.

34

BitReverss_1

It Sowrca_28
pushd=1
pragHd =0

Spl Lt joinReordar_ 28

I

SplitjoinReorder _30

MWE IGHTED _HOUMD_RMEIN{1. 10

HE IGHTED_ROUND_ROBINGZ, 2) :::) W DGHTED. ROUND_ROBINGZ. 2) ::)

™

IGHTED_ROAMD_ROGIN{4. 4}

InitPr invias _3E

paush0=0
=1

okl =1

Figure 3-5: A static stream graph generated by the Streamlt compiler.

35

Furthermore, Eclipse’s ability to run on many platforms? was also considered because
of the desire to make the SDT widely deployable. Accordingly, because much of
the Eclipse-provided infrastructure and functionality influences the SDT’s features,
design, and implementation, this section provides a brief overview of Eclipse version

2.1.1 [22].

3.2.1 Plug-ins

The SDT is implemented as a plug-in for the Eclipse Platform. A plug-in is a module
encapsulating the IDE (in this case, the SDT) to be added to the existing Eclipse
Platform. Plug-ins operate on the IDE-specific files and add IDE-specific Ul to the
existing Eclipse UI. Plug-in usability and quality is contingent upon successful inte-
gration with the Eclipse Platform and upon how well different features of the plug-in

work with each other [16].

3.2.2 Workbench

Depicted in Figure 3-6, Eclipse’s general desktop environment is called the Workbench.
Each Workbench window contains one or more perspectives, which in turn contain
editors and views. A perspective defines the menus, toolbars, and views that appear
within a Workbench window at a given time. Their purpose is to logically group
menus, toolbars, and views related to specific user tasks. For instance, the Resource
perspective seen in Figure 3-6 is intended for resource management, while the Debug
perspective combines views related to debugging programs.

Perspectives generally dedicate an area to editors. Eclipse provides a primitive
text editor seen in Figure 3-6. The Workbench window also contains a main menu
bar and toolbar which contain items relevant to the current perspective and currently
opened file. The Workbench provides a Preferences dialog for setting user preferences

and a help system for browsing and searching documentation.

Windows 98/ME/2000/XP, Red Hat Linux Version 7.1 (x86/Motif and x86/GTK), SuSE Linux
7.1 (x86/Motif and x86/GTK), Solaris 8 (SPARC/Motif), QNX (x86/Photon), AIX (PPC/Motif),
HP-UX (HP9000/Motif), and Mac OSX (Mac/Carbon)

36

Resource - Example.txt - Eclipse Platform
Fun Window Help

File Edit Mavigate Search Project
[F-Baa%- |2 AIA[- -

Bl Examplei el |

ﬁ '?5. Mavigakar v M

B¢ > & | &S

=1z Example
f= .projeckt
~|E] Example.kxk

5= outline *
AN outline is not awvailable.

¥od v x

27 Tasks (0 items)
| Resource | In Falder

_l JI ! | Description

!'-.-'-.-'rital:-le iInsert

Figure 3-6: An Eclipse Workbench window in the Resource perspective, containing a
text editor and the Navigator, Outline, and Tasks views.

37

Views display alternative presentations of files opened in editors and provide ways
of navigating the information in your Workbench. Unlike editors, they have their own
menus and toolbars. In Figure 3-6, there are three views of interest: The Navigator,
Outline, and Tasks views. The Navigator view displays a hierarchical representation of
the resources within the Workbench and allows users to perform various operations
on files (e.g. add, remove, open, etc). Eclipse uses a resource management system
consisting of projects, which contain files and folders. The Outline view displays an
editor-specific outline of a file that is currently open. The Tasks view displays prob-

lems, errors, or warning related to Workbench resources.

3.2.3 Launching, Running, and Debugging Infrastructure

Eclipse enables users to manage how programs are launched for running or debugging
with the Launch Configurations dialog depicted in Figure 3-7. Launch configurations
can be created to configure how a program is launched, such as its arguments or the
particular file within a project to be used.

A Debug perspective, depicted in Figure 3-8, is provided for users to run and debug
their programs. There are three views of interest in Figure 3-8: the Debug, Variables,
Console, and Properties views. The Debug view displays the processes, threads, and
stack frames of the programs being run or debugged. The Variables view displays in-
formation, such as variable type or value, about variables in the stack frame currently
being selected in the Debug view. The Console view displays the standard output,
error, and input of processes that have been run or debugged. The Properties view
displays properties of the view or editor that has focus (i.e., is selected) in the Work-
bench. Properties are displayed in a tabular format with one column for property
names and another column for property values. The toolbar of the Properties view
allows users to decide the sorting order of the properties, such as by category, with
filters, default order, etc.

Finally, Eclipse comes pre-packed with Java Development Tooling (JDT) [41]. The

JDT is a set of plug-ins that create an extensive IDE for Java application development.

38

Create, manage, and run configurations

Configurations: Mame: | Example
- Java Applet
--ZJ Java Application
o S Example
- Ju JUnit
@ Run-time Waorkbe Project:

@ Main 1M= .ﬁ.rguments] il re 1 Tl Classpath] Source] ﬁi Cammon]

] Exarmple Browse, ..

Main class:

[Include external jars when searching For a main class

[stopin main

] Exarple Search...

T Dele anply ‘

|

Run Close

Figure 3-7: A Launch Configurations dialog.

39

Debug - Example.txt - Eclipse Platform

File Edit Mavigate Search Project Run Window Help
[S-HRa[% % % |6 s[AFF][% - -
@ ﬁi Diebug w» ¢ || = Yariables b |:- - W
Il 0= | F3 ..
B Example. GENEe i 5= Outline ¥
an outline is not available,
o= : -+l : B 1
/| Tasks (0 ikems) w1 = ow % || E] Properties E.ﬁ* B v x
| -fi ! I Descripkion ! Reso... I Inf | Property I Yalue
£ i} >
Console !Tasks | £ i [
Writable iInsert il g

Figure 3-8: An Eclipse Workbench window in the Debug perspective, containing a
text editor and the Debug, Variables, Console, and Properties views.

40

Chapter 4

SDT Common Coding and
Debugging Features

The time spent debugging software can take up to 50% of total development time
[3] [14]. The SDT seeks to reduce this time through the features described in this
chapter. First, program creation and code editing facilities are described (4.1). Then,
breakpoint functionality is presented (4.2), followed by program launching and com-
pilation support (4.3). Finally, general debugging (4.4) and help (4.5) support are
detailed.

4.1 Code Editing

The SDT adopts Eclipse’s resource management system of projects and files by as-
sociating each Streamlt application with its own Streamlt project. A project wiz-
ard automatically links each newly created project with the SteamlIt compiler, while
Streamlt source files are created in the same way as text files (Figures 4-1 and 4-2).
Users can perform operations on these projects and their files in the Navigator view
like any other project in Eclipse.

The Streamlt perspective groups menus, toolbars, and views related to develop-
ment of Streamlt applications: the StreamIt menu and the menu items for Streamlt

launching (described below). The Streamlt Editor is a graphical text editor that provides

41

£ New Project |E|

Select e

&
Create a Streamlt project ﬂ

< Jlava ﬂ} Streamlt Project
Plug-in Development

: ~ Simple
: - Skreamlk
[+ Examples

8 = L
£ New Streamlt Project [£|
StreamIt Project —

Create a new Streamlt project, -

Praject name: | Mirimall

~ Project contents - i
v Use default

I e e e | et S e A 2=l Pt Pl i ', T -~
Dirackory J 21\ Progicam Filesiedipseiruntims -wiorkspacetMinimal

< Back Mexk = ‘ | Finish] Cancel

Figure 4-1: A Streamlt project wizard.

42

= New Streamlt Project

StreamlIt Settings —

Define the Streamlt build setkings. r

(8 source lﬁ' Frojects 1 I, Lbraries] Tl order and Export
Source Folders on build path:

+-1a Mirimal Add Folder. . ‘

Edit. .. ‘

Femove

[T allow output folders For source folders,

Default oukput Folder:

]Minimal Browse, ., |
= Back | | Finish ‘ Zancel ‘

Figure 4-2: A Streamlt project wizard (continued).

default syntax highlighting and basic code indenting, in addition to the functionality
provided by Eclipse’s text editor (Figure 4-3). When a Streamlt file is open, the
Outline view also displays a code-based, hierarchical outline of the file. Each stream
declaration is represented as a parent node, with its child nodes being state vari-
ables or relevant functions (e.g., i nit, work, etc). Parent nodes can be expanded
and collapsed by clicking on plus and minus boxes to respectively reveal and hide
information as the user chooses (Figures 4-4(a) and 4-4(b)). Each node shows the
name and type (if applicable) of its stream, state variable, or function. Furthermore,
each node displays an icon from Figure 4-4 depending on what it is representing. In
order to maintain look-and-feel and icon-idea association, state variable and method
icons are leveraged from icons for package-visible fields and public methods created
by Eclipse’s JDT. However, because no analogous concept in Java exists, the icons for
streams are selected from Eclipse based on shape or lettering, as seen in Figure 4-4.

A downward pointing triangle indicates a filter, a long rectangle a pipeline, a circle

43

[Example.str
vold->int filter FPusher { bk
int x; F Lo a xink
init { f @ oinit
WOy f e work
H +- = Popper : Filer
work push 4 == OnePusher : Filker
pushix++] ; = S @ ini
push (x++) : C e work
pushix++) : == OnePopper : Filter
pushix++) : f el inik
b b e work
H i I TestPipeline : Pipeline
- B Testsplitdoin : Splitdain
int-»woid filter Popper { e[TestLoop : FeedbackLoop
int ¥: e I Example : Pipeline
init {
v o= 0;
b
work pop 4 peek 4 {
print (pop(l); B

Figure 4-3: A Streamlt Editor with an associated Outline view.

a feedback-loop, and an S a split-join. The Outline view and the Streamlt Editor are
linked together such that clicking on a node in the former causes the editor to scroll
to the corresponding code and scrolling through the latter results in the Outline view
highlighting a node associated with the currently displayed code.

A preference page is available for customizing the syntax highlighting for the
Streamlt language (Figure 4-5). Keywords are grouped into categories which define

the particular highlight color, and can be added and deleted as desired.

Figure 4-4: Icons used by the Outline view for Streamlt files: a plus box (a), a minus
box (b), a state variable (c¢), a method (d), a filter (e), a pipeline (f), a split-join (g),
and a feedback-loop (h).

44

Preferences

[+

.._|.'.

Impork. ..

|- \Warkbench

Ank
-Build Order
Debug
~Help
Install/Update
~Java
- Plug-In Development
Readme Example
- Streamlt Editor
Tearm

Export.

' Streamit Editor

Cateqory(s)

SkreamIt Keyword
Twpe

Caonskant

SkrearnIt Commartiard

Member(s)

abstract P4
break, =
Case
catch
class
consk
continue
defaulk
do

else
extends

Fim =l -

—

Restare Defaulks] apply]

Delete Member{s) ‘

add Member J

=]

Cancel 1

Figure 4-5: A preference page for adding and deleting StreamlIt keywords.

45

4.2 Breakpoints

Breakpoints and watchpoints are the means by which Streamlt programmers can
pause an executing Streamlt application at a particular place in code. This cor-
responds to pausing execution when certain parts of the stream graph and code
are reached. Many functionality decisions related to performing operations, such as
adding, removing, enabling, etc, on breakpoints and watchpoints were influenced by
mirroring Eclipse JDT conventions for Java breakpoints and being externally consis-

tent.

4.2.1 Line Breakpoints

The left gutter of a Streamit Editor containing Streamlt code (Figure 4-6(a)) is used
to add and remove line breakpoints, method breakpoints, and watchpoints. Line
breakpoints—breakpoints that cause an application to pause right before a certain line
of the code is executed—are the most general purpose of the three. Line breakpoints

can be added in four ways:

(1) double-clicking on the left gutter at a location horizontal to a line of code,

(2) right-clicking on the left gutter and selecting “Add Breakpoint” from the pop-up

menu that appears under the mouse (Figure 4-6(a)),

(3) holding the keyboard’s Ctrl and Shift keys and then pressing the B key when

the Streamit Editor’s cursor is at a line of code, or

(4) selecting “Add Breakpoint” from the Streamlt drop-down menu found in the
Workbench’s main menu bar (Figure 4-6(b)) when the Streamit Editor’s cursor is

at a line of code of interest.

These four options are the same as those available for Java line breakpoints, as is the
icon chosen for line breakpoints (Figure 4-7).

Likewise, four corresponding ways are available for removing line breakpoints:
(1) double-clicking on the left gutter where a line breakpoint is,

46

Example. SERNEES .

wold->int filter Pushe
“}E-E int =x:
init {
¥ = 0:
}
@ work push 4 EM'I Fun ‘Window Help
@ ush (x++) i |
i i i] " @ Add Breakpoint Ctel+shift+6 F
#dd Breakpoink B & Add Method Breakpoint E
add Bookmark. .. 5 Compile Changes
Add Task. .. '
_— pe a 80— Turn OFF Graph Editor
[P e plecosy —BRT I
(a) (b)

Figure 4-6: A Streamit Editor’s left gutter showing line breakpoints, method break-
points, and watchpoints that have been added (a). A pop-up menu allows users to
add line breakpoints. The Streamlt drop-down menu found in the Workbench’s main
menu bar also allows users to add line breakpoints (b).

@ i g
(a) (b) (c)

Figure 4-7: Breakpoint icons used in the Streamit Editor and StreamlIt drop-down menu
for line breakpoints (a), method breakpoints (b), and watchpoints (c).

47

Remove Breakpoint
Dizable Breakpoink
Breakpoint Properties., ..

Add Bookmark, ..
Add Task. ..

wvoid->int filter Pus

] int x:
init {
¥ = 0;
¥
@ work push 4 {
lr. amaamle dar 11

hom

(a)

Figure 4-8: A pop-up menu allows users to remove line breakpoints (a). The Streamlt
drop-down menu allows users to remove line breakpoints (b).

(2) right-clicking on the left gutter and selecting “Remove Breakpoint” from the

MI Run Window Help

@ Remove Breakpoink

P

@ Compile Changes

d 80— Turn OFF Graph Editar

Ctrl+Shift-+E

(=8 T

(b)

pop-up menu that appears under the mouse (Figure 4-8(a)),

(3) holding the keyboard’s Ctrl and Shift keys and then pressing the B key when

the Streamit Editor’s cursor is at a line of code that has a line breakpoint, and

(4) selecting “Remove Breakpoint” from the StreamlIt drop-down menu (Figure 4-

8(b)) when the Streamit Editor’s cursor is at a line of code that has a line break-

point.

These four ways are the same ways that Java line breakpoints can be removed.

4.2.2 Method Breakpoints and Watchpoints

Method breakpoints cause an application to pause right before or after a certain
method is executed and watchpoints cause an application to pause when a variable
is modified or accessed. Because both are specialized versions of line breakpoints
and are therefore less used, only one way is provided for adding method breakpoints

and watchpoint—selecting “Add Method Breakpoint” or “Add Watchpoint” from the

48

MI Fun window Help

@ Add Breakpoint
7 @ Add Method Ereakpoint

165 4

@ Compile Changes
d 80— Turn OFF Graph Edikar

Ctrl+Shifk+B

)

== o £

(a)

1 %% add Wakchpaint

5 Compile Changes
J 80— Turn Off Graph Editor

MRUH Window Help

= oo ki

(b)

Figure 4-9: The StreamlIt drop-down menu allows the user to add method breakpoints

(a) and watchpoints (b).

MI Fun Window Help

mmn Window Help

@ Remove Breakpoink Ckrl+3hift+-6 .l @ |
| & Remove Method Breakpaint I 1 & Add Method Breakpoint I
158 add Watchpoint © 7 %% pemove Watchpoint 1
@ Compile Changes @ Compile Changes
. %} Turn OfF Graph Editor J 8}:} Turn OFF Graph Editor
(a) (b)

Figure 4-10: The StreamlIt drop-down menu allows the user to remove method break-
points (a) and watchpoints (b).

StreamIt drop-down menu (Figure 4-9). Method breakpoints can be removed in three
ways, which correspond to (2), (3), and (4) for removing a line breakpoint (Figure 4-
10). Watchpoints can be removed in two ways, which correspond to (2) and (4) for
removing a line breakpoint (Figure 4-10). Again, this functionality mirrors the way
that Java method breakpoints and watchpoints are added and removed, as are the

icons chosen (Figure 4-7).

49

& Eﬁmﬂal' x

void->int filter Pus

‘Fﬁ int x:

init {

b
@ work push 4 {

Example,s

wold->int £ili

(n 8 B . T L T
-?EE M Remove Breakpoint
init { Enable Erealpoint
¥ =0, Breakpoint Properties.. .
5 }| L 1 &dd Bookmark..
: e Add Task...
pushi:

(a) (b)

Figure 4-11: Disabled watchpoint, method breakpoint, and line breakpoints (a). A
pop-up menu allows users to disable or enable breakpoints or watchpoint (b).

4.2.3 Breakpoint Property Specification

Disabling a breakpoint or watchpoint means that an application being debugged
behaves as if that particular breakpoint or watchpoint does not exist. Instead of
frequently adding and removing the same breakpoint, disabling allows a programmer
to remember that a breakpoint was added at a particular location and rendered
inactive until later. Breakpoints and watchpoints are enabled and disabled by right-
clicking on the left gutter and selecting “Disable Breakpoint” or “Enable Breakpoint”
from the pop-up menu that appears under the mouse (Figure 4-11).

Streamlt breakpoints and watchpoints also inherit conditional breaking function-
ality from Java breakpoints. That is, Streamlt line breakpoints can be configured
to suspend programs only when an expression is true or when its value changes,
while method breakpoints and watchpoints can be configured to suspend on either
entry or exit and either access or modification, respectively. For more information on
configuring breakpoint properties, see [11].

In general, line breakpoints cannot be added when the associated line contains no

executable code (such as a line with only an ending bracket), while method break-

20

B Exam P , b4

vold->int filter Pus
‘gﬁ int x;
Sies i =iy Window Help
®x = 0: @ Add Ereakpain }
| s _] L
) el &5 “tchneint 1
]
AT Fotkenaiic B Compile Changes
add Task, .. { 80— Turn QOFf Graph Editar
k)

(a) (b)

Figure 4-12: Disabled selections in the Streamlt Editor’s pop-up menu (a) and StreamIt
drop-down menu (b).

points and watchpoints cannot be added on non-methods or non-variables. Users
are prevented from adding breakpoints or watchpoints at such invalid lines of code
by disabling the selections in the Streamlt drop-down menu and the Streamit Editor’s
pop-up menu (Figure 4-12). Furthermore, hot key codes and double-clicking are not

responsive at invalid lines.

4.3 Program Compilation and Launch Support

Streamlt applications need to be compiled whenever the user would like to add break-
points or discover syntactic errors. Compiling the file currently being displayed in
the Streamit Editor can be done by selecting “Compile Changes” from the Streamlt
drop-down menu (Figure 4-13).

Syntax errors and compilation warnings and errors from the Streamlt compiler

are reported in several ways, as depicted in Figure 4-14:

e In the Tasks view, the warnings and errors are listed by a short textual descrip-
tion of the problem, an icon indicating severity (i.e. warning or error), the name

of the associated file and project, and its line number.

o1

SR Window Help

@ Add Breakpoint Crrl+5hift+6
5 : I

| 3 Compile Changes
{ CD,O- Turn OFF Graph Edikar

¥

Figure 4-13: The Streamlt drop-down menu allows the user to compile the file cur-
rently being displayed in the Streamit Editor.

e In the Package Explorer view, severity icons appear on the affected Streamlt file.

e In the Streamit Editor’s left gutter and on its tab, severity icons are displayed near

the affected line.

e Squiggly lines appear under the text that might be causing the problem.

The problem description also appears when the mouse is hovered over the severity
icon in the left gutter. In the Tasks view, right clicking on a problem and selecting
“Go To” from the pop-up menu that appears under the mouse opens the associated
file at the location of the problem.

The SDT also assumes Eclipse’s conventions for launching programs and config-
uring the parameters of launches. Programs are launched in several ways, depending

on whether the user wishes to run or debug his or her application (Figure 4-15):

e selecting “Run As” or “Debug As” and then “Streamlt Application” from
the Run drop-down menu found in the Workbench’s main menu bar when a

Streamlt file is open or selected in the Package Explorer view,

e clicking on the run or debug icons from the Workbench’s main toolbar and
selecting “Run As” or “Debug As” and then “Streamlt Application” from the
drop-down menu that appears when a Streamlt file is open or selected in the

Package Explorer view,

o2

Streamlit - Example.str - Eclipse Platform

File Edit Mavigate Search Project Run SkreamIt Window Help

(S-HEa %% %- e |® | |AAM
| % &=~
= Package Explorer - X Examphe st i o= outline x "
I%} & i:E': =§= Did—.:-int filter Pusher { el
o= int @
ﬁ i:!--ﬁ‘J Example o SadLy = “
|| @ (default package) i TS =
E] ik, IRE Swstem Library 5 E LY
+" ﬁgstreamit.jar-c:'l,F‘rc @ WOER HEeE &
. @A Example.str Wpush(x++] .
o U ;
[+ T M I
[+ g Minima sl
push (x++] :
push (x++] :
H
H
int->wvoid filter Fopper { “
int w:
init
1_;l;r = |:|; z:
{ 111} | }
57 Tasks (4 items) BE 0 T ow X
I 1"_1 !] Descripkion I Resource l In#
x] unexpected token: inik Example. sty E: i
L TR -4 Il expecting ECF, Found ‘work! Example.str Ex .
Package Explorer !Hierarchy £ | > ;__

| {iritable EInsert I 1:1

Figure 4-14: Errors and warnings are displayed in the Tasks view, Package Explorer
view, and Streamlt Editor.

23

e selecting “Run History” or “Debug History” and then a previously launched

application from the Run drop-down menu,

e clicking on the main toolbar’s run or debug icons and then selecting a previously

launched application from the drop-down menu that appears,

e selecting “Run Last Launched” or “Debug Last Launched” from the Run drop-

down menu,

Y

e selecting “Run ” or “Debug ” from the Run drop-down menu, or

e clicking on the main toolbar’s run or debug icons and then selecting “Run ” or

“Debug ” from the drop-down menu that appears.

For the first two methods, an application is run or debugged with a default con-
figuration. For the last two methods, a launch configuration management wizard
appears that enables programmers to create and configure several different launches
for a particular application (Figures 4-16 and 4-17). Launches can be configured for
the number of iterations of the top-level pipeline or secondary Streamlt files to include
in a launch (Figure 4-18). Secondary files are useful when large amounts of code are

split among several files in a modular way.

4.4 General Debugging Support

When Streamlt program is launched, the Debug perspective displays code in the
Streamlt Editor and five views of interest to the user: the Debug, Variables, Console,
Stream Graph, and Overview of Stream Graph views (Figure 4-19). The Console view
prints anything written to standard-out or standard-error and sends anything to be
read to standard-in. The Stream Graph and Overview of Stream Graph views are described
in chapter 5. In the Debug view, each launch is registered as a parent node with its
children as sub-processes or sub-threads, which in turn have child stack frames. In
general, the main thread with its two stack frames is the only thread of interest to

a Streamlt programmer. One stack frame corresponds to the stream whose i nit

o4

M Streamlt Window Help

%Run Last Launched Chrl+F11 J .ﬂ a a I S s
| 3E Debug Last Launched F11

Run Histary P .

Run As 4 80— 1 StreamIt Application

Run... '

Debug Hiskory »

Debug As »

Debug... E
ﬂ External Tools r

(a)

*-%- 0S5 -|os[d B-%-%-[FEPS-o 9

; %} 1 Example E % | ig{)— 1 Example @ » |
4
i
i

] Run As 4 8?3— 1 StreamIt Application Debug As 4 %} 1 Skreamlt &pplication f
| | L
F Run.. it | % Debug.. [~ inic {
T L L
(b) (c)

Figure 4-15: The Run drop-down menu (a) and the toolbar’s run (b) and debug (c)
icons allow users to launch Streamlt applications.

95

Create, manage, and run configurations

Configurations; Mame: i Example

- Java Applet
L3 Java Application = ;
gy Junit @ Main 1M= .ﬂ.rguments] Mk JREi Tl Classpathl Source] ﬁ Cl,]_’._i
& Run-time Warkbenck
—3‘0- Streamlt Application Project:
i Example

] Example Browse, .,

Main class:

] Example Search. ..
M Delete AP] e J
Run Close ‘
(a)

Figure 4-16: Launch configuration management wizard for running.

o6

& Dehug

Create, manage, and run configurations

Canfigurations: rlame: i Example

-2 Java Applet
JIJ_T j;:,i Appleation © main 1M= Argurients] il re 1 Tl Classpath] Source] ﬁi A "i
b ff_i Remaote Java Applics
ﬁ Run-time Warkbench Project:
=l 30- Streamlt Application
i Examnple

] Exarmple Browse, ..

Main class:

Il

] Exarmple Search...

Mesa Delete] REFETL ‘

Cebug | Close I

(a)

Figure 4-17: Launch configuration management wizard for debugging.

57

Create, manage, and run configurations

Configurations; Mame: i Example

- Java Applet

i-EJ Java Application :
gy Junit @ main 9= arguments | g, e | T4 Classpath | B source | 3% o[0]
& Run-time Workbenct

= 30' Streamlt Application Secondary class files:
i Example

Program arguments:

-i 10

VM arguments:

Mew Dielete APRlY] J

Figure 4-18: The arguments tabs allows user to specify iterations or secondary
Streamlt files to include in a launch.

o8

or wor k function is currently executing, while the other frame corresponds to the
top-level pipeline. When either stack frame is selected, the Variables view displays a
stream as a parent node whose child nodes are either state variables or child streams.
Stream nodes show a name and instance id number, while state variable nodes display
a name, type, and value. Like nodes in the Outline view, nodes here can be expanded
and collapsed by clicking on plus and minus boxes to reflect the hierarchical nature

of stream programs.

In addition to the Variables view, user selection of a stack frame in the Debug
view propagate to the Stream Editor, highlighting the associated stream declaration,
and the Stream Graph and Overview of Stream Graph views, highlighting the associated
stream in the graph. This feature is intended to (1) show what is currently being
executing, (2) convey the correspondence between the views and editor, and (3) offer
another way for the user to navigate a stream graph. Representing highlights as a
blue background with white letters is externally consistent with other editors and
views in the Eclipse platform. Furthermore, because all launches are registered with
the Debug view, user selections of different launches will result in the Stream Graph
and Overview of Stream Graph views changing to show the stream graph associated with

currently selected launch.

A Streamlt application runs until a breakpoint or watchpoint is reached, at which
time execution is suspended. The editor and views (except for the Console view)
highlight their representation of the currently executing part of the program, as seen
in Figure 4-19. For the Streamit Editor, the line of code about to be executed is auto-
matically opened, scrolled to, and highlighted if applicable. As previously mentioned,
the Debug view highlights the stack frame whose stream’s i nit or work function is
executing, while the Variables view displays the stream, its child streams, and its state
variables. The Stream Graph and Overview of Stream Graph views also highlight and scroll

to the stream (as described in chapter 5).

29

Debug - Example.sir - Eclipse Platform

File Edit Mawigate Search Project Run Skreamlt Window Help
HF-BEa| % -% -%-||® ¢||JJH||% - -
B i%% Debug i w 3 || =)= Yariables £ |. Fe B
Dol 01 B ¥ = | 3D .2 - & this=Pusher (id=36)
I{h‘- E!-%-Example [Streamlt Application] ”
K =
Sl = &2 Example at localhost: 6186 II
P By Systemn Thread [Finalizer] (Running -
@ System Thread [Reference Handler| il
=18y Thread [main] {Suspended (breakpc
T — W Fusher
P = Examplef) v
£ 1il | > Yariables |Ereakpu:uints |Expressions | Display
Example.str 3¢ | Owervie,,, Graph X 8&'} Stream Graph [0 I W X
void-sint filter Pus+#a = o
int x;) ' =#
S ¢ ? z & Pusher {id
x = 0; -
} _I
work push 4 {
pushi=x++)
push (x++) ! =line (id=38)
push(=x++) ;
push (=x++) ;
b CnePopper (id=73)
; &
int->wvoid f£ilter FPop
int ¥: bl | |
init { F | % —
b A 1] — T T ==
£ M [> Outlime | Skream Graph |
1] |
%7 Tasks (2 items) A T S
I d’i ! I Descripkion I Resource i In Folder I Loc
A The import skreamit.library.io is never ... Example.java Example line +
£ If | >
Console éTasks | l

Figure 4-19: A Streamlt program suspended at a breakpoint in the Debug perspective.

60

1 2 | Lt
(a) (b) (c)

Figure 4-20: Icons from the Debug view’s toolbar and pop-up menu for resuming (a),
terminating (b), and stepping over (c).

4.4.1 Features in the pebug View

The Debug view enables Streamlt programmers to resume, terminate, and perform
breakpoint stepping of an application. Clicking the resume icon in the Debug view’s
toolbar, pressing the F8 key, or right-clicking on a suspended thread and selecting
“Resume” from the pop-up menu that appears allows a program to run until the next
breakpoint or watchpoint is encountered or until completion. Clicking the terminate
icon or right-clicking on a suspended thread and selecting “Terminate” from the pop-
up menu that appears terminates a program. Clicking the step over icon or pressing
the F6 key resumes execution at the line of code originally highlighted when the
program was suspended (Figure 4-20). The application is suspended on the next

executable line. Stepping can continue until program completion.

Finally, re-launching a Streamlt application is done by right-clicking on a launch

and selecting “Relaunch” from the pop-up menu that appears (Figure 4-21).

4.4.2 Variable Value Modification

In the Variables view, the values of state variables can be changed by right-clicking
on the variable and selecting “Change Variable Value” from the pop-up menu that
appears (Figure 4-22). A “Set Variable Value” dialog provides a text box for entering

a new value and detects invalid variable values.

61

o> 00 M &7 = | 3 3. & 2w x || e variables

Tk fonlicabinn s

T Step with Filers
3 Step Inko

—| & Step Owver
B Syl Skep Return

$ | [l Fesume

Example.skr | 01 Suspend

vold->int | [l Terminate

int x:
T & Disconnect
init
x :
W Femove All Terminated
} O
work § Em Terminate and Remawve

L % Relaunch
p

1
‘ Terminate Al

T
2] ZJ Examplestreamit. eclipse.debugger.launching. localStreamItapplication. ..

E.-'-r Tasks (1 ikem Properties
I ..I'l 1 I | R s LB vy T ERTA=T ™

Figure 4-21: The Debug view logs all launches, which allows them to be re-launched.

62

BB Yarisbles

=+ s this= Pusher (id=36)

s

i Copy Variables
3& Change Yariable Yalue

0 Add/Remove Watchpoink

|
. | 58Y watch .
Variables | Breakpoi

| Q Inspect

S s i i e

(a)

X

& Sat Variable Value

Enter a new value Far x;

K I Cancel

(b)

Figure 4-22: The Variables view’s pop-up menu (a) and the “Set Variable Value”
dialog (b).

63

4.5 Help Support

The SDT adds “The Streamlt Development User Guide” to Eclipse’s help system.
The SDT guide consists of instructions for installing Eclipse and the SDT, a basic
tutorial on using the SDT, conceptual descriptions of the SDT’s features, a sec-
tion devoted to tasks the user can perform, reference material, and sample Streamlt
programs. This guide is accessible in the same way that all Eclipse help manuals

are—through the Help menu of the Workbench’s main menu bar.

64

Help - Eclipse Platform

Search: | Search scope: All bopics
Contents & | StreamIt Development User Guide s 2 5
' @ StreamIt Development Us 4 | Running your programs A
=1 B2 Getting Started
B Installation instructions In this section, you will learm more about running
= B3 Basic tutorial streamlt programs in the warkbench.
B Preparing the workt
1 Creating your first ¢ 1. Inthe Package Explorer view, find Minimal str and
g R Eh R double-click it to open it in an editor. Ut
B ;:dnen;?;g;i;';‘?zgzl 2. Usging the drop-down Run button in the toolhar,
SR zelect Streamlt Appl_i{:atiun from the cascading
Bl Biebiinging Vot Al Run As menu. Th|f3 will !aunu::h the Streamit
B Miwitia 5 Stréami g pragrarm in the active editar, or the sele_u::ted
= 08 Concepts atreamlt file in the .F'atfl{age Explorer view, as a
2 08 Tacks local Streamlt application.

Creating Streamlt elem:

= s * e
@ IJsing the StreamIt edik 1 Streamit

Run...
(3 compiling w 71 2 Java Appl
15} Running and debugging Debug Histary ¥ oo 3 ava Apple
YWiewing and navigating
L3 Modifying and tracking « 3. As the program runs, only print statements in
=l 03 Reference the source code that are executed generate

B References autput in the Console view.

B Guide map
=!=] Samples . s
Console [<terminated> Ciij2sdkl . 4.2_03\binljavanexal
ElSampIe Files condi, -

B FFT2 5

B FrT3 "

B FFT4 3

B FFTS 5 a
£ il | 5 = — — — —
— P Tasks Error Loa | Console 2

|

B | v Z @ |z | >

Figure 4-23: The Streamlt Development User Guide.

65

66

Chapter 5

SDT Stream Graph-Specific

Features

This chapter is divided into two sections directed at Streamlt-specific debugging and
visualization: stream graph examination and hierarchical navigation (5.1) and data

display, modification, and tracking (5.2).

5.1 Stream Graph Examination and Hierarchical

Navigation

When a Streamlt program is suspended at a breakpoint or watchpoint, the program’s
stream graph representation is displayed in the Stream Graph (Figure 5-1) and Overview
of Stream Graph (Figure 5-2) views. The Stream Graph view is the primary, interactive
way for a programmer to examine and navigate through the stream graph. In contrast,
the Overview of Stream Graph view reflects the contents of the Stream Graph view scaled
down 75%. When a program is initially suspended, the entire the stream graph is

shown.

67

Stream Graph j;c :g: w0

=l Example {id=1&) i
Pusher {id=38)

[=] TestPipeling (id=38)

&
CnePopper (id=73)
&
OnePusher (id=74)
3

[=] TestSplitJoin (id=40)
+ = =

OnePopper (id=29) (E OnePopper (id=100)
i 3

© ©

[£

4 | 2

Cutline | Streamn Graph !

Figure 5-1: The Stream Graph view displaying a stream graph during program suspen-
sion.

68

Crveryvie of SEresm

Figure 5-2: The Overview of Stream Graph view displaying a stream graph during
program suspension.

69

o

Pusher {id=38) | |# TestPipeline {id=38) Test3plitJain {id=40) [# TestLoop {id=42)
_ 3 1 1 g
OnePisher fid=7: T T

(a) (b) (c) (d) (e)

Figure 5-3: The Stream Graph view displays channels (a), filters (b), pipelines (c),
split-joins (d), and feedback-loops (e).

5.1.1 Streams in the Stream Graph View

Channels and streams are depicted with different shapes to suggest their meaning.
As seen in Figure 5-3, channels are drawn as elongated rectangles to convey that data
is only passing through them. In contrast, streams are wider figures to suggest data
manipulation: Filters are meant to look like funnels, while pipelines are depicted as
wide rectangles, indicating that they can contain more than just data. A split-join
is drawn as a blunted diamond, intended to imply that the data within channels are
split, operated on, and then joined together, while a feedback-loop is an ellipse to

suggest a loop.

A child stream is rendered depending on whether its parent is a pipeline, split-
join, or feedback-loop (Figure 5-4). The children of a pipeline are drawn in a column
starting from its parent’s input channel and ending at its parent’s output channel. As
a result, the input channels of the pipeline and its first child are connected, and the
output channels of the pipeline and its last child are connected. In contrast, a split-
join’s children are drawn left to right in a row, with its splitter and joiner depicted
as T-shaped channels. The splitter is drawn from the parent’s input channel to each
child’s input channel, while the joiner is drawn from the parent’s output channel to
each child’s output channel. The body and loop children of a feedback-loop are also
drawn left to right in a row, but the loop child is drawn in the reverse direction of
the body child. In contrast to a split-join, the joiner is drawn from the parent’s input

channel to each child’s input channel, while the joiner is drawn from the parent’s

70

output channel to each child’s output channel. The I1/O types of all splitters and
joiners are indicated with an icon or circle at a location above or below each child’s
input or output channel, respectively, yet still within the splitter or joiner (Figure 5-
4). Duplicate splitters are designated by a duplicate icon, while roundrobin splitters
and joiners are specified by a circle containing a number representing the weight given
to the child stream above or below it (Figures 5-5(a) and 5-5(b)).

Streams within the Stream Graph view are also portrayed with their name, instance
id, and an icon of a yellow arrow (Figures 5-1, 5-5(c), and 5-5(d)). The instance id
next to a stream’s name corresponds to a unique number in the Variables view. Ids are
useful for programs that use the same streams multiple times, as these streams are
indistinguishable otherwise. Furthermore, yellow arrow icons are displayed in every
stream to indicate which channel is the input or output channel and to convey the
direction that data flows within the stream (i.e., the arrow points from input channel
to output channel).

Although the lines of a stream demarcate it from other streams, these lines may
become confusing when viewing the graphs of very large Streamlt applications. There-
fore, the Stream Graph view provides a “Hide Lines” button within its toolbar (Fig-
ures 5-1 and 5-5(e)). Pressing this button hides the lines of any non-filter stream,
while depressing this button restores those lines. Therefore, a stream graph with its

non-filter lines hidden is only showing a graph of filters connected together.

5.1.2 Stream Graph Debugging Behavior

When a Streamlt application is suspended at a breakpoint or watchpoint, the Stream
Graph view highlights and scrolls to the stream whose i nit or wor k function is cur-
rently being executed. As previously mentioned, because it mirrors the contents
of the Stream Graph view, the Overview of Stream Graph view also shows the stream
highlighted. Because i nit function build the stream graph, suspending the program
during an init function means that only the portion of the stream graph that has
been created so far is displayed by the Stream Graph view. After a Streamlt program

runs to completion, both views continue to display stream graphs so that a program-

71

(=] TestsplitJoin (id=40)
=l TestPipeline (id=38) 4L - =

&
[# OnePopper (id=73)
&
[F OnePusher (id=74)
&

[# OnePopper (id=99) || OnePopper {id=100)
& &

© ©

(a) A pipeline’s children. (b) A split-join’s children.

[= TestLoop (id=42)

¥ |® ©

1

[+ OnePusher (id=130) 1F
1 [+ OnePopper (id=140)

© ©

(¢) A feedback-loop’s children.

Figure 5-4: The Stream Graph view displays the children of pipelines (a), split-joins
(b), and feedback-loops (c).

72

- (1) 1 &]
(a) (b) (c) (d) (e)

Figure 5-5: Stream Graph view icons for duplicate splitters (a), weighted splitters and
joiners (b), data flow (c) (d), and “Hide Lines” (e).

[Pusher (id=386) | [+ Pusher (id=36) |
5 o3
@ Add Filker Instance Breakpoint | @ Remove Filker Instance Breakpaint
T - e .

(a) (b)

Figure 5-6: The Stream Graph view allows users to add (a) and remove (b) filter
instance breakpoints.

mer can reference the stream graph when making any improvements to their code
(hopefully based on information learned from the debugging session).

Filter instance breakpoints cause an application to pause right before the wor k
function of a particular filter instance is executed. Adding and removing these break-
points is done by right-clicking on a filter instance within the stream graph and
selecting “Add Filter Instance Breakpoint” or “Remove Filter Instance Breakpoint”
(depending on the state of the filter instance) from the pop-up menu that appears
(Figure 5-6). The same icon used for line breakpoints is used for filter instance break-
points, as method breakpoints imply that a program suspends on every wor k function
of a filter declaration. “Add Filter Instance Breakpoint” and “Remove Filter Instance

Breakpoint” are disabled when the program has run to completion.

5.1.3 Stream Graph Navigation

The Stream Graph view offers several ways for a programmer to examine and navigate
through various parts of a stream graph, all based on the ability to expand and

collapse hierarchical streams (i.e. pipelines, split-joins, and feedback loops).

73

=) = o
(a) (b) (c) (d)

Figure 5-7: The Stream Graph view’s icons for navigation: a plus box (a), a minus box
(b), “Collapse All" (c), and “Expand All" (d).

Clicking on a plus icon (Figure 5-7(a)) expands a hierarchical stream so that

its children are visible (Figure 5-4).

e Clicking on a minus icon (Figure 5-7(b)) collapses a hierarchical stream so that

its children are hidden (Figure 5-3).

e Double-clicking on a hierarchical stream toggles its expanded and collapsed

state.

e Pressing the “Collapse All” button (Figure 5-7(c)) in the Stream Graph view’s

toolbar collapses all streams.

e Pressing the “Expand All” button (Figure 5-7(d)) in the Stream Graph view’s

toolbar expands all streams.

The expanded or collapsed state of the children of an expanded or collapsed hi-
erarchical streams depends on the state the user left them in. For example, take a
pipeline P with two child split-joins S and J. Initially, a user expands P and then
S, but leaves J collapsed. Next, the user collapses and then expands P. When this
happens, S is expanded as well, but J is left collapsed. The state of streams is main-
tained across program suspensions, although the graph is always expanded to show
the currently being executed stream for any suspension. Since large graphs make
navigation more difficult, the various ways to navigate the graph are provided for
scalability, flexibility, and efficiency.

As a miniaturized version of the Stream Graph view, the Overview of Stream Graph view
reflects the contents of the Stream Graph scaled down by 75%, such that everything

but size is the same for the sake of consistency. Clicking on a location in the Overview

74

of Stream Graph view causes the corresponding location in the Stream Graph view to be
scrolled to and shown, facilitating faster navigation of large streaming applications.
For example, in Figure 5-8, the graph window is too small to show anything of interest.
Instead of repeatedly scrolling to the bottom of the graph, the user can make one
click to get there. A blue rectangle in the Overview of Stream Graph view indicates
what is currently being displayed in the Stream Graph view. The Overview of Stream
Graph view is a separate view that can be optionally closed, which may be desirable

for small graphs.

5.1.4 Stream Statistics

During program suspension and after program completion, statistics on streams can
be found in the Stream Graph and Properties views. In the former view, when filters are
expanded using the plus icon previously mentioned (Figure 5-7), programmers can

examine (Figure 5-9):

(1) a filter’s input and output channels’ data types,

(2) a filter’s push, pop, and peek rates,

(3) the amount of data pushed and popped so far within a filter’s wor k function,

(4) the maximum index of data peeked so far within a filter’s wor k function, and

(5) the number of times the i nit, prework, or wor k functions have been executed.

In the Properties view, streams are displayed as parent nodes whose child nodes
are either properties or child streams (Figure 5-10). All stream nodes have properties
corresponding to filter statistics (1) through (4) in the Stream Graph view and a prop-
erty describing the type of stream, while filter nodes also have (5). Like nodes in the
Variables and Outline views, nodes here can be expanded and collapsed by clicking on

plus and minus boxes (Figure 5-7).

I6)

Skream Graph

[0 = 5 x
= Mergesort (id=16) -~
+

[l Saorter (id=371
&

=] SplitjoinSorter {id=67)

[=] Sorter (id=79)
&

=l Splitjninsorter {id=21)

[=] Sarter (id=1011 [=] Sart
&

£

[%

[

Outling | Stream Graph |

Figure 5-8: A large(r) Streamlt graph.

76

=l Pusher {id=36)

Init Reps:
Steady Reps:
Drata Popped:
[ndex Peeked:
Data Pushed:
Pop Rate:
Peek Rate:
Push Rate:
Inpuk Type:
Oukpuk Type:
Skreamn Type:
Work Executions;

0= O

-1

]
{JIfS
YA
4
void
ink
Filker
]

g

Figure 5-9: An expanded filter with statistics displayed.

& Properties B = 3:;, v x
Property I Yalue
—| pipeline
=l Example (id=18)
Input Type wiid
Cutput Type woid
Push Rate {1
Pop Rate 1
Peek Rate MG
Data Popped 1]
Index Peeked -1
Data Pushed 1]
o PUsher (id=36]
Input Type woid
Output Type ink
Push Rate 4
Pop Rate {1
Peek Rate 1
Data Popped]
Index Peeked -1
Data Pushed 1]
Stream Type Filker
Init Repetitions 0
Steady Repetitions 1
Work, Executions n
[+ TestPipeling (id=35)
[F| TestsplitInin (id=40)
¥ TestLoop (id=42)
|+ Popper (id=43)
£ ¥

Figure 5-10: The Properties view displaying the statistics for an entire stream graph.

7

(=] Pass (id=37)
4 =y L
[+ =9
5 10| g
7
&
5
4
3
2
1
1]
sl |H Pass1 (id=68)
4
i

Figure 5-11: The Stream Graph view displays data in channels and grays out peeked
at data. Some channels are expanded and some are collapsed.

5.2 Stream Data Display, Modification, and Track-
ing

During program suspension, the data within channels are drawn in a column, from
the source to sink stream (Figure 5-11). By default, the size of all channels in the
graph is set to only display three data at a time because the number of data can often
grow to un-manageable sizes. Furthermore, data that is within the maximum index
peeked in a wor k function is grayed out (data is normally in black text).

The Stream Graph view offers several ways for a programmer to examine data within

a stream graph.

e Clicking on a plus icon (Figure 5-7) to the left of a channel expands it length-

wise to reveal all data within it (Figure 5-11).

e Clicking on a minus icon (Figure 5-7) collapses the channel to show only three

78

[+ Pass1 (id=67) ||[# Pass1 (id=68)

e [+ IntSource (id=35)
= 4
3
2
1 | ¥y Change Channel Values
0| 2 Highlight Datum | @
{0 85 Show Channel values (id=37)| &
- 1 I T ' oh = | |

(a) (b)

Figure 5-12: The Stream Graph view enables users to show, change, highlight, and un-
highlight data (a). These features are disabled when not applicable for a particular
channel or datum (b).

data within it (Figure 5-11).

e Pressing the “Collapse All” button (Figure 5-7) in the Stream Graph view’s tool-

bar collapses all channels.

e Pressing the “Expand All” button (Figure 5-7) in the Stream Graph view’s toolbar

expands all channels.

e Right-clicking on a channel and selecting “Show Channel Values” from the pop-

up menu appears under the mouse (Figure 5-12).

The number directly below the plus or minus icon to the left of a channel indicates
the number of data within the channel. A channel with three or less data cannot be
expanded or collapsed and therefore will not have a plus or minus box next to it.
Channels are treated like streams in that their expanded or collapsed state is main-
tained across program suspensions and the state the user left them in, as described
in section 5.1.3.

When a programmer selects “Show Channel Values” from a channel’s pop-up
menu, a dialog appears displaying all the data within the channel (Figure 5-13). This
feature is useful when the width of the data exceeds the width of the channel. Within

the dialog, each datum is presented on a new line of a read-only text box, mirroring

79

& Channel Values

Yalues of channel:

L S O B T R

Figure 5-13: A dialog box for showing all of the data within a channel.

the column format of the Stream Graph view. Using a read-only text box prevents
the user from trying the change data values, which must be done with the “Change
Channel Values” (described below).

Selecting “Change Channel Values” from a channel’s pop-up menu (Figure 5-12)
lets users change data within channels, much like state variables can be changed in
the Variables view. The dialog that appears displays the data within a channel in the
same manner as the “Show Channel Values” dialog except that the text box is not
read-only (Figure 5-14). Programmers can modify all of the data within a channel
at the same time. Entering in invalid data or the wrong amount of data is prevented
and causes an “Invalid value(s)” to appear directly below the text box.

While stepping through a work function, data can be tracked with highlighting by
right-clicking on an un-highlighted datum and selecting “Highlight Datum” from the
pop-up menu that appears or double-clicking on an un-highlighted datum (Figure 5-
12). Data can be un-highlighted in an analogous way.

“Show Channel Values,” “Change Channel Values,” “Highlight Datum,” and “Un-
highlight Datum” are disabled when no data exists within the channel or at a partic-

ular location within the channel.

30

Change Channel Values

Enter values for channel;

Lo Rl N P Lo

K l Cancel

Figure 5-14: A dialog box for modifying all of the data within a channel.

81

82

Chapter 6

Results

A user study was designed and executed to assess the efficacy of the SDT. The goals
of the user study were two-fold. The first goal was to discover problems with the
SDT and to generate feature suggestions. In addition to generic bugs and glitches
within the SDT itself, difficulties with functionality, performance, reliability, and
usability (efficiency, subjective satisfaction, and ability to learn, remember, and avoid
making errors) were specifically targeted. As seen in section 6.2, addressing these goals
was done mainly through questionnaires and programmatic logging of user actions.
The second goal was to gather data and qualitative findings that might be used
to draw conclusions suggesting that the SDT improved a programmer’s ability to
debug Streamlt applications. The SDT’s impact on improvement was quantified by
the time required for a user to successfully debug an application. In addition, the
design decisions of the study’s setup were influenced by the need to minimize as much
as possible threats to the internal validity (ordering and selection effects), external
validity (population sampling, training relevancy, and task relevancy), and reliability

(user differences and measurement error) of the study.

This chapter discusses the target user population (6.1), procedures used in the
study (6.2), a pre-study in-house evaluation (6.3), salient details that occurred during
the study (6.4), quantitative results (6.5), qualitative results (6.6), and lessons learned
(6.7) from the user study.

83

6.1 Target Population

In the long term, the target population of the Streamlt language and SDT is stream-
ing application programmers who habitually code in assembly, C, C++, etc. Unfor-
tunately, as a relatively new language [43] still under development, Streamlt is used
mainly in research academia at major universities, such as MIT, Stanford [5] [15], and
Berkeley [21], with low usage in professional settings. Consequently, the target pop-
ulation of this user study is potential streaming application programmers: computer
science students experienced in general-purpose languages such as C, C++4, Java, etc.
who specialize in fields such as communications, signal processing, computer systems
and architecture, and systems, decision, and control. Since these fields require knowl-
edge of more advanced computer science topics, target users are probably graduates
and experienced undergraduates. In terms of general tool experience, users probably
have intermediate to advanced knowledge of program visualization tools, debuggers,
and programming in a UNIX or Windows development environments.

Users were found for this study through solicitations to computer science graduate
and undergraduate MIT mailing lists. The nature of the programming language and
development tool were not divulged to avoid potential users studying Streamlt or the
SDT before the day of the study. Moreover, in order to screen participants for the
qualities detailed above, these solicitations asked the potential users for a description

of their programming experience and their year in school.

6.2 Procedure

The study’s setup was to present each user with an ordered set of documents describ-

ing tasks to complete using the SDT"

(1) Pre-Study Questionnaire: This document was designed to gather information
on the participant’s programming background and skill level. Questions such as
year in school, major, degree being sought, area of computer science concentra-

tion, relevant classes, language proficiency, application development experience,

84

and background in DSP, IDE, and the SDT are asked (appendix A.1).

StreamlIt Language Tutorial: This written presentation was intended to give
a baseline knowledge of the Streamlt language to all users. It describes and
illustrates the syntax and semantics of the Streamlt language, covering all of
the topics discussed in section 3.1. Furthermore, example toy applications and
tips on the most common mistakes new Streamlt programmers are likely to

make were included.

SDT Tutorial: Another written presentation, this document was aimed at in-
forming users of the essential features of the SDT. The first part of the tutorial
describe and illustrate the functionality of each view and editor in the Streamit
and Debug perspectives (appendix A.2). For the second portion of the docu-
ment, the tutorial of the help manual described in section 4.5 was adapted by
condensing its length and breadth of features. The resulting tutorial contains
step-by-step instructions on how to compile, run, and debug a sample applica-

tion.

User Tasks: This document (appendix A.3) instructs users to debug nine Streamlt
applications, each containing one or more bugs (see appendix refsec:appscode
for code listings and descriptions). These programs were to be debugged sequen-
tially, some with and some without the SDT. As each application is debugging,
users are asked to record their start and end times, the debugging methods they

used, and a short diagnosis of each bug.

Description of Applications and Code: This document contains a description
of each application (numbered 1 through 9), a code listing, a sample of buggy

output, and a sample of correct output (appendix A.4).

Post-Study Questionnaire: This document was designed to gather data on the
participant’s experience debugging with and without the SDT. Furthermore,
questions pertaining to the perceived difficulty of each problem and a general

description of how the user debugged each application are asked, in addition to

85

questions concerning bugs, satisfaction, ability to learn and remember, speed
after learning, ease of use, functionality, comments, and improvements related

to the SDT (appendix A.5).

(7) Post-Study Interview: Instead of completing a document, users participated in
an interview concerning their overall experience with the SDT. General ques-
tions about their satisfaction, debugging difficulties, suggested improvements,

etc. with the SDT were asked.

Both Streamlt and SDT tutorials were written, rather than oral, presentations
because learning by reading informational material is more akin to how program-
mers normally learn new languages. Furthermore, written material also maintained
consistency across the three sessions of the study and across users for reliability.

In this study, debugging without using the SDT is defined as using only Eclipse’s
default text editor, the SDT’s ability to launch applications in run mode, and the
Console view. Since switching between debugging with and without the SDT might
have been confusing to some users, preventative measures against inappropriately
using the SDT were taken by programming the SDT to check a permissions file in
the user’s workbench.

In order to control against the SDT’s effect on a programmer’s debugging ability
and ensure internal validity, users were grouped into four categories, which were
based on which applications were to be debugged with and without the SDT (as seen
in Table 6.1). All users were asked to debug application 1 without the SDT and
application 2 with the SDT to assess starting ability and create a baseline reference
for later comparison. Moreover, the simplicity of their purpose and bugs was aimed
at bolstering the user’s confidence with easy warm-ups. Then, half of the users
(group A) were told to debug applications 3, 4, and 5 with the SDT and 6, 7, and 8
without the SDT. Meanwhile, the other half (group B) were told to debug 3, 4, and
5 without the SDT and 6, 7, and 8 with the SDT to avoid ordering effects. Due to
this grouping structure, applications 3 and 6, 4 and 7, and 5 and 8 were written to

be of comparable difficulty. For application 9, half of group A (A1) and half of group

36

Application Group A Group B
Al A2 El B2
1. ButTwiddle Without Without Without TWith ot
2. Fih With With With With
3. EchoEffect | With Wnth Tthout TAthout
4. MergeSort With With Without TWithout
5. Cornerturn With With Without TWith ot
fi. EchoEffect? | Without Without TWith TWith
7. BubbleSort | Without Whthout TWith TAth
5. BitReverse Without Without With TWith
9 Owerflow With Without With TWith ot

Table 6.1: User groupings describing whether the SD'T was or was not used for each
application.

B (B1) were asked to debug with the SDT, while the other halves (A2 and B2) were
asked to debug without the SDT. Cross-sectioning the groups was aimed at ensuring
external validity.

The entire study was intended to take two hours, with roughly 45 minutes spent
on the tutorials and the rest of the time spent on debugging. Participants were asked
to complete the set of documents at their own pace. All of the material and software
involved in the study was made available on pre-configured, pre-installed computers.
Although users were allowed to ask questions throughout the study, answers related
solving a particular bug or performing a particular SD'T operation were not given.

Upon completion of the study, participants received a $40 gift certificate.

6.3 In-House Evaluation

An in-house evaluation was held as a pilot test several days before the study. The
goal of the in-house evaluation was to fix confusing material (e.g. questionnaires, in-
structions, tutorials, tasks, etc), streamline the test procedures, and refine the study’s
applications. Three designers of the Streamlt language and compiler participated in
the dry run of the study, which uncovered several problems with the study (beyond

small bugs) as it was then. This section describes the salient issues below.

87

e Most of the documents had either too little or too much information. The ques-
tionnaires and tasks files did not have detailed enough instructions, causing the
in-house evaluators to waste time on figuring out what to do, rather than doing
it. The applications and code listings did not provide high-level descriptions
and the code contained little comments and used complicated variables names.
In contrast, the SDT tutorial contained too much depth and breadth of fea-
tures, as the original idea was to ask users to read the entire tutorial of the help

manual.

e The applications themselves were considered much too difficult, especially given
that some were taken from real benchmark applications. One evaluator gave
up after 15 minutes because he could not figure out what the application was
trying to do. He expressed concern that users would complete a few problems
and then give up. The evaluators recommended smaller, synthetic examples
that test basic knowledge of Streamlt and suggested new applications, which
resulted in applications 1, 3, 6, and 8 to replace the more difficult examples.
Furthermore, one of the sorting applications had an unrealistic bug, as it lacked

any comparison code.

e Debugging the applications also yielded new feature suggestions from the evalu-
ators: The display of roundrobin weights within the Stream Graph view for both
splitters and joiners, maintaining a view of the stream graph after a program
had run to completion, the ability to debug multiple launches simultaneously,
and stepping through the execution of the splitter or joiner. These features were
all added to the SDT except for the last suggestion, due to time constraints.

This suggestion is a candidate for future work, as discussed in section 7.1.

After making the recommended changes to the study materials, another iteration
of the in-house evaluation was done. However, most of the problems uncovered were

minor bugs.

38

6.4 During the Study

The study was divided into three sessions over a three-day period, and a cluster of
Windows XP machines was used. Although each session was intended to last around
two hours, the sessions on average took four hours for the last user to finish. Many
users were either unable or did not have enough time to debug certain applications.

Even though 25 users were scheduled to participate (5 people for sessions 1 and 2
and 15 people for session 3), cancellations reduced the participation to 20 users and
led to uneven groupings: There were 6 people in A1, 5in A2, 4 in B1, and 5 in B2. Of
the 20 participants, there were 4 juniors, 2 seniors, 8 masters, and 6 Ph.D. students,
all majoring in Electrical Engineering and Computer Science. Although none had
used the SDT in the past, 6 users had experience with DSP.

During the study (as well as in the user tasks and post-study questionnaire), the

majority of questions asked by participants centered around a core set of issues:
(1) Debugging without the SDT (see section 6.2).

(2) The execution model and the effect of suspending within i nit functions (see

section 3.1.7).

(3) The number of iterations of the top-level pipeline in comparison to the number

of executions of a filter’s wor k function (see section 3.1.7).

(4) The meaning of peek as a maximum index rather than amount of data peeked

(see section 3.1.2).
(5) Changing between the Debug and Streamlt perspectives.
(6) Confirming that a user could not use the SDT for application 9.

Although questions 1 through 4 were explained in the tutorials provided, a likely
reason for this pattern is that not enough time was budgeted for learning the StreamIt
language and tutorial, as indicated by the actual length of the sessions. Issue (5)

was a clear bug in the study, as the tutorial did not include information on how

39

to change between different perspectives. As a result, users wasted time trying to
change perspectives rather than debug applications, which impacts the reliability of
the study’s results. For issue (6), application 9’s size and ordering probably frustrated
users who were not allowed to use the SDT for application 9, resulting in those users

questioning whether their directions were correct.

6.5 Quantitative Results

In general, the quantitative data gathered from the study concerning the SDT’s abil-
ity to improve a programmer’s productivity in debugging Streamlt applications is
inconclusive—the SDT helped productivity only in some cases. Attempts to find
patterns in the data by normalizing against the control applications (1 and 2) were
mostly futile.

Figure 6-1 compares the number of users who solved (and did not solve) each
of the applications with (and without) the SDT. Because the groupings are uneven
as previously mentioned, the numbers seen in Figure 6-1 are weighted depending
on which group is lacking users. The percentage above each quadruple of columns
represents the percentage increase or decrease in solving each application caused by
using the SDT. On average, 1.56 (32.97%) less users solved applications 3, 4, and 5
when using the SDT compared to participants not using the SDT, while 2.56 (41.76%)
more users solved applications 6, 7, 8, and 9 when using the SDT compared to
participants not using the SDT.

Figure 6-2 compares the average time spent on each application. The percentage
above each pair of columns represents the percentage improvement or deficiency in
time caused by using the SDT. On average, users took 7.78 (36.48%) more minutes
to solve applications 3, 4, 5, 6, 7, and 9 with the SDT compared to participants not
using the SDT, while users took 0.44 (5.19%) less minutes to solve application 8 with
the SDT compared to participants not using the SDT. Furthermore, users could not
solve a problem spent an average of 16.96 (83.35%) more minutes on applications 6, 7,

and 8 with the SDT and 10.67 (-293.9%) less minutes with the SDT for applications

90

W Solued with SOT
" O Unsalved with 50T [
O Solwed without 5OT
B Unsolved without SOT
14
12
10 s +28 415
" +75.00%
] _
=3 ' +45 4R
2 =
r [eiex]
B 1
4 I
) im0
1] . . - —‘ .
1. BitTuiddle 2. Fib % EchoEffect . MorqeSart 5. Carnerkurn . EchoEffect2 7. BubbleSart %, EitFewerre 9. Ouwsrflou

Applications

Figure 6-1: Graph comparing the number of users who solved and did not solve each
application with and without the SDT.

91

3,4, 5, and 9.

A salient trend that emerges from Figures 6-1 and 6-2 is that the SDT may have
mitigated user frustration. As previously mentioned, because users generally took
much more than the two hours allotted to complete the study, users often became
frustrated or rushed with the later applications. Correspondingly, this might cause
users to spend less time and solve fewer applications as users progressed through
the applications. Although this pattern is true for participants who did not use the
SDT, the opposite occurs for participants who used the SDT: Even though 32.97%
fewer users were able to solve applications 3, 4, and 5 using the SDT compared to
participants not using the SDT, 41.76% more users were able to solve applications
6, 7, 8, and 9 using the SDT compared to participants not using the SDT. Likewise,
although users spent -191.93% less time when unable to solve applications 3, 4, and 5
using the SDT compared to participants not using the SDT, users spent 83.35% more
time when unable to solve applications 6, 7, and 8. These results suggest that users

are willing to spend more time and work on more problems when using the SDT.

Figure 6-3 compares the average normalized time it took user to solve each appli-
cation with and without the SDT. Since 6 users were not able to solve both application
1 and 2, their times were excluded from this chart. The percentage above each pair
of columns represents the percentage improvement or deficiency caused by using the
SDT. For applications 3, 6, 8, and 9, the SDT increased debugging time by an average
of 241.02% and a median of 37.02%, while the SDT decreased debugging time by an

average of 33.4% and a median of 29.0% for applications 4, 5, and 7.

Therefore, although more people were able to successfully debug more applications
using the SDT than not using the SDT, the SDT also increases the amount of time it
takes to debug some of these applications. However, the SDT is able to decrease the
amount of time it takes to debug some applications solved by more users without the
SDT. Moreover, if an application’s difficulty is measured by the amount of time to
solve it, then there seems to be no apparent correspondence between using and not

using the SDT and an application’s difficulty.

92

35,00 -

B Solved with S0OT
@ Unsolved with 5OT
an0n 1—|0 Salved without SOT ==
O Unsolved withour SOT
26.00
7l 044z
E 20,00
F]
£ =
g
E A5
= 15.00
0,00 =
A.00
0.on —I . —‘ . .
1. BitTuiddle 2. Fib % EchoEFfect 4. MorqeSart 5 Cornerkurn 6. EchoEffectz 7. BubbleSort % BitRewerre 9. Owerflou

Application

Figure 6-2: Graph comparing the average time it took users to solve or not solve each
application with and without the SDT.

93

45 -

B Solved with SOT -18.66%:
O Solved without 5OT

15

28

23042

B2 B4

Normalized Time [minfmin)

0.5 4

0 4 T T T T T
3. EchoEffect 4. MergeSort 5 Cornerturn B EchoEffect2 7. BubbleSore 8. BitFeverse 4. Overflaw

Applications

Figure 6-3: Graph comparing the average normalized time it took users to solve
applications 3 through 9 with and without the SDT.

94

6.6 Qualitative Results

In contrast to the previous section, qualitative data obtained from the post-study
questionnaire was more productive toward finding new feature ideas and problems

with functionality, performance, reliability, and usability.

6.6.1 Problems with the SDT

A major problem that many users found was that the SDT does not display large
stream graphs well and does not allow users to view the entire stream graph easily.
Specifically, the SDT rendering stream graphs were considered too large and intimi-
dating in comparison to the amount of space available in the Eclipse workbench, as
even participants who used Eclipse’s functionality for expanding a view to encompass
the entire workbench still could not see the entire graph without scrolling. Fur-
thermore, when applications contained streams with many descendants, the stream
graph became confusing due to the narrow spacing of the boundaries between parent
and child streams. As a result, many users expressed difficulty in distinguishing the
various hierarchical levels of large graphs (see Figure 6-4 for an example).

A few users found that using the Overview of Stream Graph view to navigate the
Stream Graph view was inconvenient and confusing. On one user’s computer, the
rectangle in the Overview of Stream Graph view was the same color as the stream graph,
which made distinguishing it from complicated stream graphs impossible.

Using breakpoints was another major problem because users spent too much time
trying to figure out where to add breakpoints so that they could view the stream
graph. As previously mentioned, users would add breakpoints within i ni t functions
and expect to view the entire stream graph even though at that point it was not fully
built. Within wor k functions, users had difficultly stepping through the code, as users
would try other stepping functionality (only the step over button is supported by the
SDT) or try to step beyond the end of a wor k function (only stepping within a wor k
function is supported).

Although the post-study questionnaire was focused on gathering problems with

95

Skream Graph

i e G e

[=1 Sorter (id=100)

=l SplitjoinSorter {d=20)

4

=1 SplitjoinSarter (id=112)

(=] Sarker (id=1C
&

£

Merger l{id=11ﬂ

P ——
[=1 SplitioinSorke
B @ %
=l Sorter {id=122) =l Sorter {id=123) [=I Sorter {id=z
4 a7 & 426 &
oG [
Merger (id=141) Merger (idﬂ E__
&
S03
a7
@ @
S

[£

Outline | Stream Graph

|

Figure 6-4: The Stream Graph view displaying a portion of Application 4’s stream

graph.

96

the SDT, several users commented on their difficulty using Eclipse and the Streamlt
language and how they interfered with debugging stream applications. For Eclipse,
10 participants commented that, in general, Eclipse is difficult to get used to and
that, specifically, switching between perspectives was confusing and non-intuitive.
For the Streamlt language, 5 participants mentioned that they were uncomfortable
or unaccustomed to thinking in terms filters and streams, while an equal number also
found it difficult or overwhelming to remember concepts such as roundrobin, enqueue,

and general syntax.

6.6.2 Usability of the SDT

In general, users found the SDT somewhat easy to use: From a scale of 1 to 10 (1
being very easy and 10 being very hard), participants on average gave the SDT a
3.85. Many cited various aspects of the Stream Graph view, such as visualizing the
stream graph easily, expanding and collapsing graph, simultaneously being able to
view the code and graph, and viewing data flow. Furthermore, 14 users said they
would use the SDT for debugging Streamlt applications, while 5 said they would not
and felt more comfortable debugging “by hand”—just with pen and paper or looking
at the code (one user would not use Streamlt). Those who said they would use the
SDT stressed that it was most useful for graphically seeing what was going on in a
Streamlt program, such as program flow, the entire stream graph, data values, etc.
Furthermore, this visualization is more important when code inspection or stepping
through code is inappropriate or impractical, as in the case of large-scale applications.

Users found it somewhat easy to learn how to use the SDT: From a scale of 1
to 10 (1 being very easy to learn and 10 being very hard to learn), participants on
average gave the SDT a 3.55. Many cited the tutorial as a good reference and easy to
follow and said that the GUI layout was either intuitive for a beginner to find basic
functionality or similar to other IDE that they have used. In general, when a user
did not have experience using IDEs, he said that the amount of information, in the
form of views, menus, and buttons, was overwhelming to a beginner. Several users

commented that there were too many windows and options from which to choose,

97

while one person said that the Stream Graph view contained so much information that

finding vital information immediately was slow.

Users said it was fairly easy to remember how to use the SDT: From a scale of 1
to 10, participants on average gave the SDT a 2.95. Many users wrote that the SDT
only had a few concepts to remember. Participants also stated that GUI had simple

repeatable actions and was intuitive enough that remembering was not difficult.

Users remarked that the SDT was marginally fast to use: From a scale of 1 to 10
(1 being very slow and 10 being very fast), participants on average gave the SDT a
5.75. Several users observed that the SDT was fast, especially in comparison to other
programming environments, because (1) information displayed was easy to find and
viewable simultaneously with other information and (2) breakpoints enabled users
to narrow in on relevant code. However, for large-scale stream graphs, many users
thought that the SDT was too slow in drawing complex structures. Furthermore,
when navigating through the stream graph or stepping through the code, the SDT’s

redrawing capability was frustratingly slow for many users.

6.6.3 Improvements and New Functionality

Users suggested new features and improvements directly related to problems they
found with the SDT in section 6.6.1. For the stream graphs, participants suggested
a button to expand all streams except filters, clearer markings of input and output
channels, being able to view the entire stream graph with using a breakpoint, a history
of data that had passed through channels and filters, and customized expansion and
collapse of stream graphs that can be saved for a given applications. Although most
users wanted improved drawing of large-scale graphs and better zooming, none men-
tioned specific functionality for this purpose. Another common request was for better
code-based debugging support, such as putting breakpoints on pipelines, split-joins,
and feedback-loops, better ability to print debug statements, the capacity to step

backwards through code, and the ability to step through code across work functions.

98

6.7 Lessons Learned

Many problems and issues arose in running the study itself. One of the major prob-
lems was the time allotted for users to complete the study. As previously mentioned,
on average it took the slowest user double the budgeted amount of time. This lack
of time negatively impacted users in several ways, all of which contributed to incom-
plete or unreliable data: users became frustrated and overwhelmed by the amount of
information presented to them, users were unable to complete the study due to time
constraints, users did not properly fill out the post-study questionnaire, rushed users

put down bogus answers, etc.

Better participant screening for DSP-related and general programming experience
should also have been done. In the post-study questionnaire, several users commented
that they were unaccustomed to thinking in terms of streaming applications, while
some users made remarks that suggested they never truly understood how streaming
applications work. In general, the more inexperienced users either focused their at-
tentions on Eclipse-related and Streamlt language problems, indicating a lack of IDE
and language-learning experience, or relied almost exclusively on breakpoint function-
ality and print statements. Because several of the applications were designed to test
the effectiveness of the Stream Graph view, these applications were purposely written

to be too large and complicated for these traditional debugging techniques.

Having a graduated pay scale for compensation may have alleviated some of the
above problems, as it would allow the participants to judge whether they could or were
willing to complete all of the applications in the study. Nonetheless, the variation in
each participant’s experience and skill within a user study is a well-documented issue.
Usability studies have found that the best users are often 10 times better than the
worst users and the fastest quartile of users are twice as fast as the slowest quartile
of users [13] [17]. However, because increasing the number of users within a study
only narrows the standard deviation of the mean by the square root of the number of
users [13], improving reliability of results is an expensive and time-consuming task.

For example, in order to double accuracy, the number of participants in this study

99

would have to be quadrupled to 80 users, which would cost an additional $2400 and

24 man-hours.

100

Chapter 7

Conclusion

In this chapter, future work is first described, followed by a summary of this thesis.

7.1 Future Work

Future work on the SDT can naturally progress from the improvements, problems,
and new functionality discussed throughout chapter 6. Perhaps the most important
are improvements aimed at handling large stream graphs. In addition to displaying
the entire stream graph, the Stream Graph view could be altered to only show the
graph below a certain node specified by the user—in effect “hanging” the hierarchical
tree by a non-root node. This change, in combination with allowing a user to specify
whether the Stream Graph view would respond to changes in the Debug view, could
focus a user’s attention on a specific part of the graph that may be causing an error.

Stream graph navigation might be enhanced by providing a way for users to ex-
pand all non-filter streams and making the SDT remember the collapsed and ex-
panded state of stream graph across debugging sessions. For data display, enabling
users to specific channel width would make viewing larger, multi-digit data easier,
while retaining a record of data that had passed through channels and streams might
improve 1/O-related debugging. Moreover, although feasible, support for tracking—
the relationship between data popped and pushed by a filter—has yet to be developed

or investigated. Possible functionality might include (1) data coloring depending on

101

the particular filter(s) through which they are produced or modified and (2) program
suspension conditional on data of a certain color passing through another filter.
Breakpoint stepping can also be improved by allowing users to step through code
across wor k functions, to view the stepping through a splitter or joiner’s execution,
and to automatically suspend a program on every push, pop, or peek call within one or
more wor k functions. Furthermore, unsupported stepping functionality, such as step
into, step return, and step with filters, should also be disabled. Filter instance break-
points can be expanded to enable manipulation across debugging sessions. Moreover,
these breakpoints could be allowed for non-filter streams, which would suspend a

program on the wor k function of the first filter fired within the stream.

7.2 Summary

This thesis presents the Streamlt Development Tool, an IDE designed to improve
the coding, debugging, and visualization of streaming applications by exploiting the
Streamlt language’s ability to intuitively represent these applications as structured,
hierarchical graphs. Although industry and academia have devoted much effort to
tools for developing and debugging software, the SDT aims to emulate the best of
traditional debuggers and IDEs while moving toward hierarchical visualization and de-
bugging concepts specialized for streaming applications. As such, utilities for stream
graph examination and navigation and stream data display, modification, and track-
ing are provided, in addition to program creation and code editing, breakpoints,
program compilation and launch support, and general debugging and help support.
A user study evaluating the SDT uncovered several problems and areas of improve-
ment that need to be addressed before this tool can approach its goals. Assessment
of the SDT’s efficacy in its current state is inconclusive—the SDT demonstrates both
the ability to improve and hinder a user’s debugging ability. Facilitating effective
coding and debugging techniques and developing for scalability are critical elements

in improving the SDT’s effectiveness.

102

Appendix A

User Study Documents

This appendix contains documents pertaining to the user study.

103

Al

Pre-Study Questionnaire

Flease complete the below questionnaire,

s Check or uncheck a box O by clicking on it.

o Select from a drop-down box 1 (hovice] by clicking on it and selecting from the
drop-down list box that appears. The default selection is™ [novice)."

¢ Type into atext field by clicking an the field and typing. The text field
expands as you type. You can type multiple lines of text by pressing enter.

When you are finished, please save the file as

CAProgram FilesheclipsetwoarkspaceiPre-Study Cluestionnaire. doc

by going to the File menu and clicking Save As ... (notice that the file currently ends in
dot).

1a.

2a.
2h.

2c.

Flease check ane:

O Freshman [0 Sophomore O Junior O Senior O Graduate
Are you course 57 O ves [Mo

If yes, please check: [6-1 [6-2 O 6-3 O MEng. O Ph.D.

If you are a graduate student in course B, please check your area(s) of

concentration:

O Communications [Electromagnetic Energy, Fields, and Waves
[Systems, Decision and Control [Theoretical Camputer Science

[Signal Processing L1 Computer Systems and Architecture

[Bioelectrical Engineering [Artificial Intelligence

[Circuit Design [Computer MNetworks

[Devices and Materials [Computer Graphics

3. Please check any of the following courses that you may have taken:

Oeom [Oes0ont [Oe03s Oesos0d Oe61s [Oe470 [O6B29

O&6341 [O6821 [OEBY3 (Ul Design & Implementation)] HST. 582

104

4. Please list the languages you have programmed in, the number of years you have
programmed in each language, and your proficiency in each language. |f you have ever
uzed Matlab or programmed in Streamlt, please include it in the table below.

Languagqge

Years

Proficiency
{1is novice, 10 is
expert)

5. Faorthe 4 largest programs that you have written, please list the language you wrote
each in, a short description of each program, and the approximate lines of codes for
gach program.

Problem

Language

Description

Approximate Lines of Code

1

2
3
a

Ba. Do you have any background in digital signal processing (DSPY? O Yes [Mo

Bb. If yes, please describe the nature of this background (i.e. work experience, research,

etc):

7a. Have you ever used an |DE (e.q. Visual Studio, Eclipse) befare today?

O Yes O Mo

7b. If yes, please list the IDE= you have used, the number of years you have used them,

and your proficiency in using them.

IDE

Years

Proficiency
(1is novice, 10 is
expert)

ga. Have you ever used the Streamlt Development Tool (20T) before today ¥

O ves O Mo

Bb. If yes, how many month have you used the SDT and how proficient you are in using

the S0OT?

Maonths:

105

Fraoficiency: 1 (novice)

A.2 SDT Tutorial
The Streamlt Perspective

Below i ascreenshot of Bclipse's destop environment, called the wodienck, when t i inthe
Streamk perspective. The Streamt perepactive defines a group of windows, called wie s,
relatedto editing Streamit files.

The Package Edplorer wew
displaysthe projects

v ailable towou and allows
wouto open Streamibt files

T Rirmarsi] - Eerieal wb [ilipee Plaiorm
B [Mevgele Seprh Poid Seenlt Ban Window (D

SrHRL (DX | BeDF-D T : Ery double-clicking them,

T 1 medage [aplow - u Each &reamt file i
o -- aszociged with a project of
o ¢ e Bt the same nane. Youcan

reveal the contents of a
project by edpanding the
"plus"icon nextto k.

& T Dsprirareer

The Outline “ew dsplys
an ouline ofthe curmenthy
opened freamk file.

iou can edt Streamilt files
in this area.

Ta resize ary ofthe wviews
or ediars, put yourcursor
abiowe @ window border and
drag.

o Tk il B

411 | Cemsgin

The Tasks hew displays

i » infommation about the
Pachage [l Hewchy curmerthe opened Streank
- - file, such as wamings or
it Treprt (S |
ETOrE.

106

The Debug Perspective

Below i ascreenshot ofthe workbench inthe Debug perspective. The Debug
perspedtive defines the views relaedto nnning Sream b files.

P L feeges lags Bosd o el

Resume pogram.

Terminae program.

Stepto mext line of
execuEble code.

=i Gk - >
Tt ey - o . A A e .i:-n—..-.. e
T e St docwter| g ™| & thee itmaes e
b W eal @ ales | 00D &
!.a' ke | [F1Frig

r e | fRTEg
apwraind (te bt of e 1| 5t smnms])

HE BT
By Testem Thovws | gl Cadcter] iarvemg ,.l
i B | el Sl | s (v

L Y e o Bre armt | O Strees Grmhi 15 =

I

||| o e s

The Debug view displays
the processes threads, and
stack frames of the
Stream b progam being
debugged.

The “ariabkes wizw
dizplays pmgram wvarables.
Onby the varables inthe
stackfrane seletted inthe
Diebug view am visble,

[e e e 1]

The Stream Gaphwiem
displaysthe stream graph
of the Streamk program
curmerthy being debugged.

The Cwerview of Stream
Graph view displays a
zoamed-ou wersion ofthe
Streamn Graphwiew.

The Properties wview
displays program metrics.

107

The Consok view displys
program outpLt.

A.3 User Tasks

Table 1 below lists nine Streamlt applications you will find in your Eclipse workspace.
Each application contains one or more bugs. A description of each application, its
currently incorrect output, its code, and correct sample output are provided in the next
handaut,

Please debug these applications in number order (1-9) and one at a time. Ywe would like
you to debug some of these applications using the 30T and some without™ using the
=0T, The third column of Table 1 indicates whether you should use the S0OT for each
application. Please save any changes you make to the code in your workspace.

In Table 1's fourth and fith columns, please record your start and end times (in hours
and minutes) for each application. Please leave these columns blank if you are unable
to start or finish any application.

o Check or uncheck a box [by clicking on it.

o Type into a text field by clicking on the field and typing. The text field
expands as you type. You can type multiple lines of text by pressing enter,

After you debug each application, please fill out the information in Table 2 (found after
Tahle 1. The second column of Table 2 is for a one sentence diagnosis of what is
wrang with each application. The third column of Table 2 is for checking any of the
debugging methods that you used for each application.

It is very important for the sake of this study that you atternpt all of these applications.
We expect that you will probably spend a little aver an hour on all of these problems.
While debugging a certain application, if you find that you may not be able to finish the
rest of the applications, move ontothe next one. If you have extra time at the end, you
can return to any unfinished applications.

YWhen you are finished, please save the file as
CAProgram Filesheclipselworkspacetlser Tasks. doc

by going to the File menu and clicking Save As ... (notice that the file currently ends in
dot).

*Flease use Eclipse's Text Editor and Run functionality: Streamlt files can be opened
with the Text Editar by right-clicking on the file in the Package Explorer view and
selecting Open With = Text Editor. Streamlt applications can be run by clicking on Run
= Run As = Streamlt Application. Please do not use Debug History, Debug As, or
Debug ... for the applications to be debugged without the SOT.

108

Table 1

Application

Project
Folder

Debug with
SOT

Start Time
{hr:min}

End Time
{hr:min}

BitTwiddle

Mo

Fib

Yes

EchoEffect

hWergeSor

Cornerturn

EchoEffect?

BubhleSort

BitFeverse

OO0 | O | LD D —

Crve rfl o

Table 2

Application

One-Sentence Bug Diagnosis

Debugqging Method
(check all that

apply)

code inspect
print statements
s0T

code inspect
print staternents
=0T

code inspect
print staternents
sDT

code inspect
print staternents
s0T

code inspect
print statements
S0OT

code inspect
print statements
S0T

code inspect
print staternents
=0T

code inspect
print staternents
sDT

code inspect
print staternents
sDT

I o

109

A.4 Description of Applications and Code

A.4.1 Application 1: BitTwiddle

The purposze of the code on the next page Instead, the code iz producing the
15 to drop ewery third bit of a 96 bit following output:
streatn.

The correct output for 1 tteration 15

M =-]lndbE0mmne@OoOn-1mdb 00O
W -1 omn LB = 1030 - b WD D] im0 -1k e O

110

vwold-=int filter Source (int N, int
drop, int set) |
inc x;
indt {
x = 0;
}
work push set |
for {imk i = 0; i < sek; it++) {

pushixtt) ;
if (x == 10 || x == N*drop!)
x = 0;

}

inmt—=woid filter IncPrintcer |
imit {

work pop 1
principop(l);

}
}
int-rint filter DropBit (int drop, inc
set) |
init {
}

work pop set push drop |
for (imc i = 1; i <= set; it+)1{
if (i == draop) {
pop ()
I else {
pushipop (1) ;
}

}

vwold-=void pipeline Bit Twiddle |
S o=et dis the amount of data that
FF DropBit will consider
inc N = 3E;
int drop = 3;
int set = 4;
add Scurce(M, drop, set);
add DropBit (drop, =set);
add IntPrinter();

111

A.4.2 Application 2: Fibonacci

The purpose of thiz code 15 to generate Vﬂid‘;d"c‘l?iﬁhfipehine Haed
: - : a ibLoop i) ;
Fibonacct numbers, .Whllih form a i T DrinesE o
sequence defined recurstvely by b
_ wold-rint feedbackloop FibLoop {
f(o) = 0 join roundrokbingd, 1) ;
= e i N L O body Peekddd();
fin) = £in - 2) + £in - 1) loop Passid:
split duplicate;
- : . engues 07
The correct output for 10 iterations 15 enmueue 1;
engueas 1;

}

1

2 inc-rint filter DPeckidd |

3 work push 1 pop 1 pesk 2
c int larger = peski(l):
. int smaller = popi);

int resalt = smaller + larger;
13 pushiresult);
21 }
34 }
55

int-Fwoid filter IncPrinter {
g9 work pop 1
primcipopill;

Instead, the code 15 producing the } d

following output:
int—=ink filter Pass {
work push 1 pop 1 pesk 1 {
pushipop (1) ;
}

[l i S I 3 RY ~ RN o S
my b

112

A.4.3 Application 3: EchoEffect

The purpose of this code 18 to simulate vold-rint filter IntSource {
inkt x;
how echos are added to sound waves, e
which can be represented as digital data x = 0:
T i }
Eu:hu:us_ai_’e added to digital data by ad_dmg o s]
the original sequence of data to a time- pushix+t) ;
shifted wversion of the original sequence. i +
In the case of EchoEffect, the code iz
trving to add data at #to the data at ¢ + 7. int-rwoid filter ImtPrimter {
For the sake of simplicity, the mput i3 a :]'L'm’; {
sequence of consecutive numbers “0, 1, 2, A
3. ...7 where the first value 1z att =0 printipopi));

}
: : : }
The correct output for 10 terations 1s:
ink-=int filter Original |
init {

2 }
3 work push 1 pop 1
= imkt x = pop i) ;
= puashix);
}
4 }
11
13 int-rint filter Delayed |
ig imit {
17 :

work push 1 pop 1 peek 3
BE= pop) ;
pushipesk(ll) ;

Instead, the code 15 producing the }

following output:
int-sint splitjoin Echoi) {
split duplicate;

2 add Originali);

4 add Delayedi) ;

£ Join roundrobing

5 }

10 int-rint filter Adder {

12 indit {

14 }

16 work push 1 pop £
int x = pop i) ;

15 imt ¥ = pop i) ;

Z0 pushix + vl;

}

wold-=void pipeline EchoEffect ()
add IntSoarce();
add Echoi):
add adder();
add IntPrinter():

113

A.4.4 Application 4: MergeSort

The purpose of the code on the next page Instead, the code 15 producing the
iz to mmplement a mergesort algorithm, following output:
sotting a sequence of 16 numbers
recursively. In general tergesort 87
operates by decomposing the mput 61
sequence into two halves. Each half 1z e
sorted by involving the mergesort ig:
algorithm recursively. Then, the two sme
sorted halves are merged mto a sorted 503
SEQUENCE. 512
612
The correct output for 1 iteration is: 653
509

&1 T3

a7 6T

154 Ta5

170 203

275 g7

426

503

509

51z

612

653

677

703

7e5

597

Q05

114

wold->void pipeline Mergelort |
int BIEZE = 1l&;
add Intiouarce (R3TIZE);
add Sorter (3IZE) ;
add InmtPrinter();

}

SF An ingnd of SIEE random numbers to
Sort.

vwold-=int filter IncSourcelint SIZE) |

int [2TIZ2E]ldatar
ink index = 0;

init {
datal0] = 503; datall] = 087;
datalZ] = 512; datal3] = 061;
datal4] = 905; datalS5] = 170;
datal6] = 897; datal?] = 275;
datal&] = 653; datald] = 426;
datall0] = 154; data[ll] = 50%;
datall?] = 612; data[l3] = 677;
datall4] = 765; data[lE] = 703;

}
work push 1
pushidatalindext+])
if {index == SBIZE) {
index = 0;
;

;
-I,l'**

* The merger compohnent of the merge
* Combines two sorted streams into

* ahiother sorted stream, producing a

* wotal of <M= elements.
g
int—=int filter Merger fintc M) {
init {
}
work push N pop N |
SF dnditialize indices
ink indexl = 0;
int indexz = 1;

FF merge walues
while {indexl-<N &8 indexz-=IN)
int wall = peekiindexl) ;
int walf = peckiindexE) ;
if fwall <= walZ) {
pushiwall);
indexl += E;
1 else {
pushiwalz) ;
indexZz += Z;

i

S merge remainder if one
A stream dries out
int leftower = indexl = N 7
indexl @ indexZ;
for (int i=leftower; i=N;it+=2){
pushipeslki(i)) 7
}

FF pop all the impacs

for f(imc i=0; i<M; it++) {
papil;

}

}

imk—Fint splitjoin SplitjoinSorter|intc
Hy
split rowdrobiniZ, 217
add Sorter (N/Z);
add Sorter(NsZ);
Join roundrobin{Z, Z);
}

£ Borts a stream of integers.
int—rint pipeline Sorter {int M) {
FF4 1f we have more than two items,
FF then sort in parallel
if (M=2y |
add SplitjoinSorter (N,
add Merger (M) ;-
1 =else {
add Merger(Z):

}

}

ivk—=woid filter IncPrinterd) |
imdit {
}

work pop 1 {
principopll)
}

A.4.5 Application 5: Cornerturn

The purpoze of the code on the next page The correct output for 1 iteration is:
s to implement a cormerturr, which s
essenfially a transpose algorithim
(exchanging a matrisr’ s rows and columns
so that M-row by MN-column matriz would
become an M-row by M-column matrizx).
The cornerturn algorithm takes as mput a
stream whose first N elements are the first
row of the mput matriz, whose N + 1 to - -

2M elements are the second row of the laseRt s COie b ueiEthe
input matriz, ., whose N¥(M - 10+ 1 to
M*M elements are the Mth row of the

e e w0
200080

following output:

o.o
iput tatriz. The cornerturn algorithm 2.0
should output a stream whose first I 4.0
elements are the first column of the mput il
tnatrizz, whase M + 1 to 21 elements are 3.0
5.0

the second column of the input matrsz,
whoze M*(MN — 1) + 1 to M*N elements
are the Mth column of the input matns
Visually, this can be expressed as:

|.._|! -

116

vwold-=void pipeline Cornerturn
it M = E;
ine W = 3;
add Source(M, M ;
add Transpose= (M, N,
add Sink (M, MN):
}

float->float filter Pass {
work push 1 peek 1 pop 1 {
pushipap ()] :
}
}

vwold-=float filter Soarce(int M, int M
{ .
imk x;
imdit {
X = 0;
}
work push M*N {
for (int i = 0; i = M*M; it++) |
puashixtt) ;
}

}

float-rfloat splitjoin Transpose(int M,
ik M) {
split rowmdrobin() ;
for finmt i = 0; 1 < M; it++) {
add Passi);
}
join roundrcohin(M) ;
}

float-=woid filter Sink (int M, int M) |
work pesk M*W pop M*N |
for (imt i = 0; i < M*N; it+) |
primcipopill;
}

117

A.4.6 Application 6: EchoEffect2

This code 15 also trying to add an echo to
digital data. Howewer, i this case the
code 12 trying to add data at ¢ to the data at
t- 1. Forthe sake of simplicity, the mput
12 a sequence of consecutive mumbers “O0,
1, 2,3, ... where the first value 1z att = 00
atd the value 15 assumed to be O for ¢ = 40

The correct output for 10 sterations 15

Instead, the code 15 producing the
following output:

(=~ S R

1z
14
la

vwoid-=int filter IntSouarce |
it x:
imit {
x = 0;
}
work push 1 {
pushiz+t);
}
}

imt—-=woid filter IntPrinter {
indt {
}
work pop 1 |
priotipopll);
}
}

int—=int filter Original {
imit {
}
work push 1 pop 1 {
pushipop (1) :
}
}

int—-=ink filter Delagyed {
irdes {
}
work push 1 pop 2 {
pushipop (1) :
pop

}

int-—=int feedbackloop Echol)
join roundrobingl, 1) ;
body Original i),
loop Delayedl);
split duplicate;

enouene(0) ;
enouens(0) ;
}

irt—wire filter Adder {
init {

int b
pushia + by ;

}

vold-=woid pipeline EchoEffect
add Intiource();
add Echol);
add Adderi) ;
add IntPrinter();

A.4.7 Application 7: BubbleSort

The purpose of the code on the next page Instead, the code 15 producing the
15 to implement a hubblesort algorithin, followring output:
sotting a sequence of 16 numbers
tteratively. In general bubblesort 503
operates by advancmg through the 87
sequence 5, swapping adjacent values S[1] sl
and 8[i +1] if 8[i] < 8[i+ 1]. In the worst Al
: 503
case, 16 passes through a sequence of size 170
16 needs to he done. =03
275
The correct output for 16 iterations i3 503
426
61 154
a7 EO3
154 503
170 O3
275 O3
3z 6 503
503
502
51z
61z
653
677
703
TEE
297
aoa

119

vwold-=void pipeline Bubblelort |
int SIZE = 1&;
int [BIZE] datas

datal0]
datalZ]
datal4]
datal&]
datald]

datal[l0]
datallZ]
datal[l4]

503; datalll
E1Z; datalz]
203 ; datals]
297; datal?]
653; datal?]

154; datal[ll]
ElZ; datal[lz]
765; datal[lb]

037 ;

nmouwononn
—
-1
=]
-

dr6;

add Intiource (3IZE, daca) ;
add BubbleSortPipe (2IZE);
add IntPrinter();

}

505 ;
&77;
asicH

S An inpac of STEE random rmmbers to

fSFosort.

vwold-=int filter IntSourceiint 3IEZE,
int [S3IZE] data)
int index = 0;

init {

}

waork push 1 {
pushidatalindext++]) ;

if {index == SIZE)
index = 0;
}

}

{

int-=int pipeline BubbleSortPipedint

STZE) |
foriint i = 0; i < SIZE; it4)

add Bubble(2IZE) ;

}

i

120

int-=int filter Bubble(int ZIZE)

ink max;
ik inde:x;
indit {

}

work push 1 pop 1 peek 2

}

index = 0;

if fdndex == 0} {
max = pes=k(i0);

}

if {index == SIZE - 1)

pushimax) ;
I else |

int current = peekil);

if (max =

Ccur rent)

pushicurrent) ;

I else |
rash fm,
may =

}

4

index = {index+l) % SIZE;

pop (-

ax);
Ccurrers ;

ink-=woid filter IntPrinkter()
indit {

}

work pop 1 {

}

priocipoplll;

{

{

{

{

A.4.8 Application 8: BitReverse

The purpose of the code on the next page Instead, the code 15 producing the
is to sort a sequence of 16 consecutive followaring outpt:
mumnbers in bit-reversed order. A

sequence of numbers 13 in hit-reversed
order when reversing the bits of each
number results m a sequence of
consecutive numbers. For example, the
SEQUENCE

ooo, 100, 010, 110, 001,
101, 011, 111

is in hit-reversed order hecause reversing
the bhits of each mumber results m a
sequence of consecuttve numbers:

R IS B Ry R e o B s O 5 T S - o Y O o

ooo, 001, 010, 011, 100,
101, 110, 111

Motice m the code on the next page that
the numhers are represented as mtegers
and the output iz i dectmal format (hot

hinaty).

The correct output for 1 iteration is:

et IS oy I e VR S Y =

121

vwold-=void pipeline BitRewerse |
it N = 8;
add IntSoarce (M) ;
add Reorder (N);
add IntPrinter() ;
}

int-Fint splitjoin SplitjoinBeorder (int
My
split rowmdrobin;
add Beorder (N/2) ;
add Reorder (Mi/2) ;
join roundrohin(M) ;
}

int—=int pipeline Beorder (int M) {
if (N = 21 {
add SplitjoinPeocrder (M) ;
} else {
add Pass (M) ;

}

}

int—+int filter Passi{int M) {
imdit
}

work push ¥ pop N {
for (int i = 0; i = N; it++) {
pushipaop (1) ;
}

}

vwold-=int filter IntSource(inc N} {

inme x;
imit {

x = 0;
}
work push 1

pushixt+) ;

if f{x == M) {

x = 0;

}
}

int-=woid filter InkPrinter {
imit {
}
work pop 1
primcipopill;
}

122

A.4.9 Application 9: Overflow

The code for this application (which can
he found i your workspace) 15 a
nonsensical program that is generating a
Mall in the first tteration:

125.545594
l1Z6.05129
115.058561
117.43733
lle.096664
115.05576a
114.013054
11:2.93948
111.55541
110.75725
110.742065
110.72697
110.69963
110. 85515
110.8757%
110.686373
110.65177
110.6329736
110.82775
110.6155
Nall

el

el

wal stands for "not a number" and can be
ohtained, for example, by drvding 0/0.
Instead of debugmng the entire
application, yvour task 15 to comment out
exactly one line that gives the first Man, so
that the program will not output a Man for
at least the first 1000 iterations.

123

A.5 Post-Study Questionnaire

Flease complete the below questionnaire,

s Check or uncheck a box O by clicking on it.

o Delect from a drop-down box 1 (easy) by clicking on it and selecting from the
drop-down list box that appears. The default selection is™1 [easy)"

¢ Type into atext field by clicking an the field and typing. The text field
expands as you type. You can type multiple lines of text by pressing enter.

When you are finished, please save the file as
CAProgram Files\eclipsetworkspacetFPost-Study Questionnaire.doc

by going to the File menu and clicking Save As ... (notice that the file currently ends in
dotl.

1. Foreach application, please rate the difficulty of debugging the application and give
a general description of how you went about debugging each application.

Application Difficulty Description
{1is easy,
10 is hard)

O 20 | 0| | = D] B —
) [P [[Ty i) ety ialag ey Lty

2a. Forthe applications in which you used the 50T, did you find any bugs in the SDT
itself?

[Yes O Ma

2b. [fyes, please list them below.

3. Forthe applications inwhich you used the SOT, please list any problems you had
with using the SDT.

124

da.

4h.

Ga.

a8

Ga.

Bhb.

7a.

7b.

da.

gh.

10.

1

Did you find the 0T easy or hard to leam? 1 (easy)

Why did you find the SOT easy ar hard to leamn?

Did you find the SOT slow or fast to use after you had learned it? 1 [slow)

Why did you find the SOT slow or fast to use after you had learned it?

Was it easy or hard to remember what you had learned? 1 (easy)

Why was it easy or hard to remember what you had learned?

Would you use this SOT for debugging Streamlt applications? [Yes O Mo

Why would you or would you not use this 20T for debugging Streamlt applications?

Did you find the 0T easy or hard to use? 1 (easy)

Please list any functionality of the 30T that made debugging easy or hard.

Was there any functionality you wish the 30T had?

Please write any comments you have related to the S0OT.

Please suggest any improvements you have to the 50T

125

126

Bibliography

1]
2]
3]

[9]

[10]

Simulink 5.1.1. http://www.mathworks.com/products/simulink.
Matlab 6.5.1. http://www.mathworks.com/products/matlab.

H. Agrawal, R.A. DeMillo, and E.H. Spafford. Efficient Debugging with Slicing
and Backtracking. Software Practice and Experience, pages 589-616, June 1993.

T. Akgul, P. Kuacharoen, V.J. Mooney, and V.K. Madisetti. A Debugger RTOS
for Embedded Systems. Technical report, Georgia Institute of Technology, School

of Electrical and Computer Engineering, Atlanta, Georgia.

Advanced Computer Organization: Stream Processor Architecture.

http://cva.stanford.edu/eed82s.

BoxView. http://www.domaintec.com/BoxView.html.

RDS Software Development Kit (SDK) Product Brief.
http://www.cradle.com/products/tools/development_tools-

software.shtm.

C. Caerts, R. Lauwereins, and J.A. Peperstraete. PDG: A Process-Level
Debugger for Concurrent Programs in the GRAPE Parallel Programming
Environment. Technical report, Katholieke Universiteit Leuven, E.S.A.T. Labo-

ratory, Heverlee, Belgium.
Debug-56K. http://www.domaintec.com/Debugb6K.html.

Analog Devices, Inc. http://www.analog. com.

127

[11] Eclipse 2.1 Documentation. http://help.eclipse.org/help21/index. jsp.

[12] The MULTI® Integrated Development Environment. http://www.ghs.com/
products/MULTI_IDE.html.

[13] Controlled Experiments. http://graphics.lcs.mit.edu/classes/6.893/F03/
lectures/L13.pdf.

[14] B. Hailpern and P. Santhanam. Software Debugging, Testing, and Verification.
IBM Systems Journal, 41(1):5-8, November 2002.

[15] Advanced Topics in Computer Architecture: Chip Multiprocessors & Polymor-

phic Processors. http://www.stanford.edu/class/ee392c.

[16] Object Technology International, Inc. Eclipse Platform Technical Overview.
Technical report, IBM Corporation, February 2003.

[17] Research Issues. http://pages.cpsc.ucalgary.ca/saul/681/1997/jas/

issues.html.
[18] G. Jongren. How to Learn DSP Programming. March 2004.

[19] Momentics®). http://www.qnx.com/products/development/momentics_

glance.html.

[20] Screenshot of the MULTI® Integrated Development Environment.

http://www.ghs.com/products/images/MULTI browser big.gif.

[21] CS 252 Spring 2002 Project on Streams. http://www.cs.berkeley.edu/

nmani/courses/cs252/proposal.html.

[22] Eclipse 2.1.1 Download Page. http://download2.eclipse.org/downloads/
drops/R-2.1.1-200306271545/index . php.

(23] Eclipse Home Page. http://www.eclipse.org.

[24] Eclipse Platform Subproject Page. http://www.eclipse.org/platform/

index.html.

128

[25]

[20]

[27]

[28]

[29]

[38]

[39]

Streamlt Development Tool Page. http://catfish.csail.mit.edu/streamit/

html/eclipse-plugin.html.

StreamIt Documentation Page. http://catfish.csail.mit.edu/streamit/

html/documentation.html.

StreamlIt Download Page. http://catfish.csail.mit.edu/streamit/html/

download.html.
StreamlIt Home Page. http://catfish.csail.mit.edu/streanmit.

StreamlIt Research Page. http://catfish.csail.mit.edu/streamit/html/

research.html.

R.J. Ridder. Programming Digital Signal Processors with High-Level Languages.
DSP Engineering, 2000.

S. Saba. Embedded Digital Technology Defines the Next Generation of Medical

Electronics. In Medical Electronics Manufacturing, 1999.

Embedded Workbench™ Screenshot. http://www.iar.com/FilesPublic/EW/
000319/gen3ide. gif.

Momentics® Screenshot. http://www.qnx.com/popups/imageview.html?

group=screenshot&key=src_debugger.

R. Stephens. A Survey of Stream Processing. Acta Informatica, 34(7), 1997.
IAR Systems. http://www.iar.com.

QNX Software Systems. http://www.qgnx.com.

Cradle Technologies, Inc. RDS Software Development Kit (SDK) Product Brief.

Technical report.
Cradle Technologies, Inc. http://www.cradle.com.

Domain Technologies, Inc. http://www.domaintec.com.

129

[40] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamlt: A Language for
Streaming Applications. In Proceedings of the International Conference on Com-

piler Construction (CC), 2002.
[41] Java Development Tooling. http://www.eclipse.org/jdt/index.html.

[42] VisualDSP++. http://www.analog.com/Analog Root/static/technology/

dsp/beginnersGuide/quickguide2.html.

[43] E.L. Waingold. SIFt: A Compiler for Streaming Applications. Master’s thesis,
Massachusetts Institute of Technology, June 2000.

44] Embedded Workbench™. http://www.iar.com/Products/EW.
P

130

