
Linear State-Space Analysis and Optimization of

StreamIt Programs

by

Sitij Agrawal

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2004

c© Massachusetts Institute of Technology 2004. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 26, 2004

Certified by. .
Saman Amarasinghe
Associate Professor

Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Linear State-Space Analysis and Optimization of StreamIt

Programs

by

Sitij Agrawal

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2004, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Digital devices and their underlying DSP technology are widespread in modern soci-
ety. Consequently, optimizing DSP applications is necessary to satisfy tight power,
space, and bandwidth constraints. As code length and complexity increases for these
applications, the value of time-intensive, manual expert analysis has decreased. In its
place, robust, compiler-generated optimizations have become necessary.

We target linear state-space sections of applications to analyze and optimize, and
use the programming language StreamIt to implement and test our ideas. StreamIt
enables its users to create filters and connect them in a simple, structured manner. A
linear state-space filter may have a set of state variables that it uses from execution
to execution. Such a filter has the property that its outputs are a linear combination
of its inputs and states, and the states are updated by a linear combination of the
inputs and states. Examples of such filters that use states include IIR filters and
linear difference equations.

We automate the following steps in the StreamIt compiler. We extract the rep-
resentation for each filter that is linear state-space. We combine representations of
filters to form a single linear state-space filter. We remove unnecessary states and
reduce the number of computations needed per filter execution. Lastly, we convert
the optimized filter back to StreamIt code.

We have compiled a number of StreamIt benchmark applications using our analysis
and optimizations. Our data indicates state-space replacement works as well as linear
replacement (a filter is linear if its outputs are an affine combination of its inputs)
for stateless filters, and improves performance by as much as 66% for combinations
of filters with state.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor

3

4

Acknowledgments

First, I would like to thank my family for all their support throughout my college

years. I would like to thank the members of the StreamIt group - in particular

Jasper Lin and David Maze - for patiently answering all my questions and for helping

me understand the StreamIt language and compiler. I would like to thank Andrew

Lamb, whose work on linear analysis of StreamIt programs provided the foundation

for my own work on state-space analysis. His thesis and well-constructed code were

invaluable to me. Rodric Rabbah, another member of our group, gave me excellent

comments about the writing in this thesis. I would like to thank my advisor, Saman

Amarasinghe, for giving me the opportunity to work on the StreamIt project and for

funding my research. Finally, I would like to thank Bill Thies for guiding me through

every step of my project. That I was able to complete this thesis is a testament to

his mentoring ability. I could not have done it without him.

5

6

Contents

1 Introduction 13

1.1 Problem Overview . 13

1.2 DSP Analysis . 14

1.3 Organization . 15

2 Background Information 17

2.1 The StreamIt Programming Language 17

2.2 Block Representations . 24

2.2.1 Linear Representations . 24

2.2.2 State-Space Representations 25

3 State-Space Analysis 27

3.1 Representation . 27

3.2 Extraction . 29

3.2.1 Example Procedure . 31

3.3 Combination . 33

3.3.1 Pipeline . 33

3.3.2 Splitjoin . 36

3.3.3 Feedback Loop . 40

3.4 Representation Changes . 43

3.4.1 Expansion . 43

3.4.2 Increasing the number of Stored Inputs 46

3.5 Replacement . 49

7

4 Optimization 51

4.1 State-Space Transformations . 51

4.2 State Removal . 52

4.3 Putting Inputs into States . 56

4.4 Parameter Reduction . 56

4.5 Staged Execution . 58

5 Results 61

6 Related Work 63

7 Conclusion 65

A Benchmark Source Code 67

8

List of Figures

1-1 A DSP block diagram of the application Beamformer 14

2-1 StreamIt filter . 18

2-2 StreamIt pipeline . 20

2-3 StreamIt splitjoin . 21

2-4 StreamIt feedback loop . 23

3-1 Labelled feedback loop . 42

9

10

List of Tables

5.1 Floating point operations with state-space and linear replacement nor-

malized for no replacement . 62

11

12

Chapter 1

Introduction

1.1 Problem Overview

Digital devices are increasingly common in everyday life. Examples include cell

phones, modems, CD players, and high definition television. These products require

DSP (Digital Signal Processing) applications to operate on their real-time streaming

data. Applications have wide-ranging uses, such as signal compression and decom-

pression, noise reduction, and error correction.

DSP applications often must process massive amounts of data quickly with limited

power consumption. Therefore, it is crucial they are optimized appropriately. Un-

fortunately, DSP optimizations typically defy high level language compiler analysis.

Consequently, DSP applications must be hand-coded or at the very least fine-tuned

at the assembly level. This leads to a host of problems: DSP experts must spend

valuable hours writing optimized low level code; every change in the design of the ap-

plication necessitates rewriting the code; the optimizations are typically architecture

dependent, hence they are not portable or robust. These factors indicate there is a

need to effectively analyze DSP applications, and automate their optimizations in a

compiler.

13

1.2 DSP Analysis

In order to properly analyze DSP applications, we must use an appropriate framework

to model them. This framework should contain a number of simplifications in order

to make our analysis workable, but not too many simplifications that our analysis

fails to be robust.

We start with the top level notion of an application, defined as a large module

that receives inputs, performs computations, and outputs results. This definition,

while correct, does not lend itself to any type of application analysis. The first

simplification we make is to divide an application into blocks, which are abstract

input-output modules. These blocks are interconnected in a certain way to form the

full application. We can think of each block as a mini-application: it takes its own

inputs, performs calculations, and produces outputs.

InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate InputGenerate

duplicate

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamFirFilter

BeamForm BeamForm BeamForm BeamForm

FloatPrinter

BeamFirFilter

Magnitude

Detector

BeamFirFilter

Magnitude

Detector

BeamFirFilter

Magnitude

Detector

BeamFirFilter

Magnitude

Detector

Figure 1-1: A DSP block diagram of the application Beamformer

Blocks can be characterized in various ways. The simplest characterization of

blocks is a linear block, defined as a module that outputs a linear combination of its

inputs plus a constant term. A linear block can be represented by a matrix relating

inputs to outputs and a vector of constants. The next simplest characterization of

14

blocks is linear state-space. Such a block uses a set of state variables. The output

of this block is a linear combination of its inputs and state variables. In addition,

the state variables are updated by a linear combination of themselves and inputs. A

linear state-space block can be represented by four independent matrices.

A linear state-space characterization is more general than a linear characterization

- all linear blocks are also linear state-space blocks, but the converse is not true. The

intuitive reason for this fact is that a linear block is memoryless, meaning the outputs

only depend on current inputs. However, a linear state-space block has memory in

the form of state variables, so the outputs depend on current inputs and past inputs.

We will perform analysis and optimization of DSP applications at the linear state-

space level. We choose this representation because it models a wide class of applica-

tions or parts of applications, and it is simple to work with.

Our work with state-space representations will be done in the context of StreamIt,

a programming language designed for streaming applications [17]. StreamIt allows

users to create their own blocks, but limits the way these blocks can be connected.

We perform the following steps on a StreamIt program:

1. Examine each block and determine whether or not it can be characterized as

linear state-space. If it can, extract the appropriate state-space representation.

2. Combine connected blocks that each have a state-space representation, using

an appropriate set of rules depending on the type of connection.

3. Optimize representations through the use of state-space transformations.

4. Convert the state-space representation(s) back to StreamIt code.

1.3 Organization

The rest of this thesis is organized as follows. In Chapter 2 we provide background

information about StreamIt and formal linear and linear state-space models. Chapter

3 is devoted to state-space analysis of StreamIt programs (Items 1, 2, and 4). Chapter

15

4 describes optimizations (Item 3). In Chapter 5 we discuss our implementation and

results. Chapter 6 details related work. In Chapter 7 we provide our conclusions and

list possible future work.

16

Chapter 2

Background Information

2.1 The StreamIt Programming Language

StreamIt is a programming language specifically tailored to DSP streaming appli-

cations. The user creates a graph composed of four types of StreamIt constructs:

filters, pipelines, splitjoins, and feedback loops. Filters encapsulate the computation

done within an application - they represent the blocks mentioned in the previous chap-

ter. Each filter operates on a one-dimensional ‘tape’ of values (of any type, including

structures and arrays). The other three constructs dictate the type of connections

possible between filters. Every construct explicitly states its input type and output

type, and can be passed parameters as would be to a procedure.

StreamIt uses a buffer between every pair of filters to hold values. When the input

buffer of a construct (equivalent to the output buffer of the previous construct) is ap-

propriately filled, the construct can execute. Execution involves three steps: reading

and removing items from the input buffer (consumption); performing computations;

putting items in the output buffer (production). We will not consider the intricacies

of managing these buffers, and instead refer to the more abstract notion of a tape.

A filter has pre-defined peek, pop, and push rates (StreamIt code examples are

given below). During each execution, the filter accesses a maximum of peek values

from its input tape, consumes exactly pop input values from its input tape, and

produces exactly push values onto its output tape. Since the removal of an input

17

value is technically an access of that input, the peek rate of a filter must be greater

than or equal to the pop rate of that filter. The push or pop rate can be zero -

the former corresponds to a filter that consumes items but does not produce them

(typically the last filter in a sequence) and the latter corresponds to a filter that

produces items but does not consume them (typically the first filter in a sequence).

All the accesses, outputs, and removals, as well as all the computation is done inside

the main body of the filter, known as the work function.

Figure 2-1: StreamIt filter

StreamIt also supports a prework function, which has its own push, pop, and

peek rates. The prework function executes in place of the work function for the first

computation sequence, and is never run again. Additionally, there is an init function

which is run only once upon creation of the filter, and is usually used to initialize

variables. The init and prework functions are both optional.

A filter can store two types of variables - field and local. Field variables are declared

outside of the specific functions (work, prework, init), and can be accessed from

anywhere within the filter. Local variables are declared within a specific function,

and only have scope within that function. For example, a variable declared within the

init function is local, and could not be accessed within the work function. Therefore,

the init function is used to initialize field variables.

Code examples of StreamIt filters are shown below.

// This filter adds the parameter scalar to each input.

// It does not have an init or prework function

float -> float filter scalarAdd(float scalar) {

work push 1 pop 1 peek 1 {

push(scalar + pop());

18

}

}

// This filter outputs a running average of every three consecutive inputs.

// The first time it runs, it ouputs the average of the first two inputs without removing anything from the tape.

// It does not have an init function.

float -> float filter threeWayAverage() {

prework push 1 pop 0 peek 2 {

float temp; // example of a local variable

temp = (peek(0)+peek(1))/2;

push(temp);

}

work push 1 pop 1 peek 3 {

float temp; // example of a local variable

temp = (peek(0) + peek(1) + peek(2))/3

push(temp);

pop()

}

}

// This filter computes an infinite impulse response function.

// It does not have a prework function.

float->float filter IIR() {

float curr; // example of a field variable

init {

curr = 0;

}

work push 1 pop 1 peek 3 {

float temp; \\ example of a local variable

temp = (peek(0) + peek(1) + peek(2))/6;

curr = temp + curr/2;

push(curr);

pop();

}

}

Pipelines, splitjoins, and feedback loops are higher level constructs created from

filters. Each structures the layout of its filters in a certain format. Even though

these three constructs do not directly provide the syntax to perform computations

and work from an input or output tape, they can be thought of as filters in the

following way: the construct recieves inputs which are passed to one or more of the

filters; all the filters perform computations and pass values to one another through

their input and output tapes; the construct outputs values from one or more of its

19

filters. In fact, for every pipeline, splitjoin, and feedback loop there is an equivalent

filter representation. Therefore, these three constructs are not strictly necessary for

writing a StreamIt program. However, they simplify and structure writing a large

application.

The higher level constructs are not limited to combine filters - they can also

combine each other. This follows directly from the fact that a higher level construct

has some equivalent filter. Therefore, if a pipeline can be composed of filters, it can

also be composed of pipelines, splitjoins, and feedback loops, which are all like filters.

We shall refer to all four StreamIt constructs generically as blocks. This corresponds

to the fact that any StreamIt construct behaves as a block: it takes inputs, performs

calculations, and produces outputs.

Pipelines combine a set of blocks in sequential fashion, so that the output of the

first block is the input to the second block, the output of the second block is the input

to the third block, etc. The blocks are placed in order using the add statement.

Figure 2-2: StreamIt pipeline

// This pipeline connects the filters scalarAdd and threeWayAverage.

// The parameter scalar passed to this pipeline is passed to the

// filter scalarAdd.

float -> float pipeline combinedWork(float scalar) {

add scalarAdd(scalar);

add threeWayAverage();

}

A splitjoin arranges blocks in a parallel fashion. The inputs to a splitjoin are sent

to each block in a roundrobin or duplicate manner, and the outputs of each block are

joined in a roundrobin manner. Duplicate splitting means the inputs to the splitjoin

are copied and sent to each block, so that each block receives exactly the same set of

20

inputs. Roundrobin splitting means the inputs to the splitjoin are sent to each block

according to user defined weights. For example, the first block receives two inputs,

the second block receives one input, the third block receives two inputs. Therefore,

each block sees a different set of inputs. Roundrobin joining (the only type of joining

permitted) means the outputs of each block are combined according to user defined

weights, and these represent the outputs of the entire splitjoin. Blocks are listed in

the order which they recieve inputs using add statements. The way inputs are sent

is determined by using the split statement before the block list, and the way outputs

are recieved is determined by using the join statement after the block list.

Figure 2-3: StreamIt splitjoin

// This splitjoin splits its inputs three ways.

// The first two inputs are sent to the first block, the next

// input to the second block, and the next two inputs to the third

// block.

// The outputs are collected in the following manner: three from

//the first block, five from the second block, and four from the

21

// third block.

// For every 2+1+2=5 values inputted, 3+5+4=12 values are

// outputted.

float -> float splitjoin mySplitjoin() {

split roundrobin(2,1,2);

add combinedWork(3.5);

add combinedWork(4.5);

add threeWayAverage();

join roundrobin(3,5,4);

}

A feedback loop uses some of its output as an input. It consists of a body block

and a loop block. The input to the entire feedback loop is combined with the output

of the loop block and sent to the body block, via a roundrobin joiner. The output

of the body block is split two ways in a roundrobin or duplicate manner. The first

set of outputs is used as the output of the entire feedback loop, and the second set

of outputs is used as the input to the loop block. Note that there must be initial

values enqueued on the output tape of the loop block in order for the feedback loop

to begin executing. The first statement in a feedback loop is a join, determining how

inputs are sent to the body block. The body and loop blocks are listed next. The

last statement is a split, determining where outputs are sent from the loop block.

// This is a feedback loop implementation of the IIR filter.

// The body and loop are both anonymous filters.

float -> float feedbackloop IIRFeedback() {

join roundrobin(3,1);

body float->float filter {

work push 1 pop 1 peek 4 {

push((peek(0)+peek(1)+peek(2))/6 + peek(3)/2);

pop();

}

};

loop float->float filter {

work push 1 pop 1 peek 1 {

push(pop());

}

};

split duplicate();

enqueue(0.0);

}

22

Body

Loop

Figure 2-4: StreamIt feedback loop

23

To run a program, the StreamIt compiler finds a steady-state schedule of the

number of times to execute each filter [10]. If such a schedule cannot be found,

the user created block diagram is ill-formed and could not represent a real world

application.

2.2 Block Representations

The execution of a block (StreamIt or otherwise) can by characterized by a single

equation if the block is linear, and a pair of equations if the block is state-space

linear. We describe these terms in detail below.

2.2.1 Linear Representations

A block is termed linear if its outputs are a linear combination of its inputs plus a set of

constants. In mathematical terms, this relationship can be modelled by the equation

~y = D~u + ~b, where ~u is a column vector representing the inputs, D is a matrix

representing the weights applied to each input, ~b is a column vector representing

constants added to the inputs, and ~y is a column vector representing the outputs.

Suppose we have the following linear model:

~y =




1 2

3 4

5 6




~u +




7

8

9




It is exactly described by the following StreamIt filter:

int -> int filter linearFilter() {

work push 3 pop 2 peek 2 {

push(1*peek(0) + 2*peek(1) + 7);

push(3*peek(0) + 4*peek(1) + 8);

push(5*peek(0) + 6*peek(1) + 9);

pop(); pop();

}

}

A process for analyzing and optimizing linear StreamIt filters is described in [11].

24

2.2.2 State-Space Representations

A more general way of representing a block is by a state-space model. A set of

variables captures the ‘state’ of the filter, so that the output is a combination of these

variables (termed state variables) and the inputs. Additionally, the states themselves

change upon every execution of the block. This is represented by the two equations:

~y = g(~x, ~u)

~̇x = f(~x, ~u)

The state vector is denoted by ~x, the inputs by ~u, and the outputs by ~y. ~̇x

represents the new state vector, i.e. the state vector after it is updated. The first

equation is for the outputs, the second equation is for the state updates.

A linear state-space model has the additional property that the state updates and

outputs are linear in the state variables and inputs. We can use a simpler set of

equations:

~y = C~x + D~u

~̇x = A~x + B~u

A, B, C, and D are matrices whose dimensions depend on the number of states,

inputs, and outputs. Not all blocks can be represented by a linear state-space model.

However, a linear state-space model is more general than a linear model, so a wider

class of blocks can be represented. We will not discuss general state-space models any

further in this paper, therefore we will write state-space instead of linear state-space

for conciseness.

Suppose we have the following state-space model:

~y =
[

11 12

]
~x +

[
13 14 15

]
~u

~̇x =




1 2

6 7


~x +




3 4 5

8 9 10


 ~u

25

It is exactly described by the following StreamIt filter:

int -> int filter stateSpaceFilter() {

int x1, x2;

work push 1 pop 3 peek 3 {

int x1_temp, x2_temp;

push(11*x1 + 12*x2 + 13*peek(0) + 14*peek(1) + 15*peek(2));

x1_temp = 1*x1 + 2*x2 + 3*peek(0) + 4*peek(1) + 5*peek(2);

x2_temp = 6*x1 + 7*x2 + 8*peek(0) + 9*peek(1) + 10*peek(2);

x1 = x1_temp;

x2 = x2_temp;

pop(); pop(); pop();

}

}

Note we introduced two extra variables - x1 temp and x2 temp. We do this

because we do not want to overwrite the old values for x1 and x2 until all the new

values are calculated. Also, we have made no provisions for constants as in the linear

model. This issue is resolved in the next chapter.

26

Chapter 3

State-Space Analysis

We analyze StreamIt programs at the filter level. We create a data structure repre-

sentation that fully describes a state-space filter. We parse the code of each StreamIt

filter to determine whether or not it is state-space; if so we initialize a data structure,

fill it with the appropriate values through a process called extraction, and associate

the structure with the filter.

We provide a set of rules to combine state-space representations of filters in higher

StreamIt blocks—pipelines, splitjoins, and feedback loops. Such a process results in a

single state-space representation for the entire block. Some representations may need

to change so that they are properly combined. We detail what the changes are and

when they need to be made. Finally, we describe how to convert a representation

back to StreamIt code for a filter.

3.1 Representation

Our first task is to create a data structure that fully captures the state-space rep-

resentation of a StreamIt filter. We save a filter’s number of states, push rate, and

pop rate in variables which we term s, u, and o, respectively. Our data structure

also contains the matrices A, B, C, and D with dimensions s× s, s× o, u× s, and

u× o, respectively. The inputs to a filter are denoted as ~u (length o), the outputs as

~y (length u), and the states as ~x (length s). Upon every execution of the filter, we

27

can calculate the outputs by the formula ~y = C~x+D~u, and update the state matrix

by the formula ~̇x = A~x + B~u. For convenience, we will calculate the filter outputs

before updating the state matrix. Since the states may have initial values other than

zero, we store these values as the vector
−−−−−→
initVec (length s).

Since we have not included a constant term in our model, we will set one of the

state variables to be the constant 1. This variable will not be updated by any of the

states or inputs, and its initial value will be 1, so it will always remain that value.

Any state or output that depends on a constant term can now refer to a multiple of

the constant state variable instead.

As long as a filter’s peek rate (which we term e) equals its pop rate, the data struc-

ture as currently designed can fully represent the filter. We must include additional

modifications for a filter with a peek rate greater than its pop rate. Note that such a

filter still removes o items from its input tape upon every execution, but it accesses

e− o additional items on its input tape. Therefore, our current data structure would

work as long as there is some way to access these additional items.

We solve the problem of having a peek rate greater than a pop rate by storing e−o

items from the input tape in the state vector ~x. Therefore, when a filter executes,

it can access all e items it needs, o items from its input vector and e− o items from

its state vector. These e− o states must be updated by the inputs and themselves -

the specifics are covered in the next section. We store the number of states used for

inputs as the variable stored. This will be useful when combining representations.

When the filter is executed for the first time, it will have access to the o items in the

input vector, but the e − o states it needs will be uninitialized from the input tape.

Therefore, we need to update the state vector before computing the output/state

update equation pair for every filter execution. We introduce two new matrices, Apre

and Bpre to perform this initialization. Before the filter runs it will perform the

state update ~̇x = Apre~x + Bpre ~upre. The initialization input vector, ~upre, has length

opre = e − o. For now, opre and stored have the same value, but combining filters

might result in opre being greater than stored. Apre is s×s and Bpre is s×opre. Note

that initial assignments of the state variables by
−−−−−→
initVec are done immediately when

28

a filter is created, while initialization by Apre and Bpre is afterwards, when there are

a sufficient number (opre) of items on the input tape.

Putting these pieces together, we find a full representation consists of the push and

pop rates, the number of state variables, the number of stored inputs, the four state

matrices, an initial state vector, and possibly an initial pop rate and two initialization

state matrices. We define a state-space representation R as the tuple 〈u, o, s, stored,

A, B, C, D,
−−−−−→
initVec, Apre, Bpre, opre〉. When we introduce a representation Ri,

each of its values in the ordered set will be denoted with the index i (for example ui,

Ai). For representations of filters that do not need the initialization matrices, we will

write Apre = null, Bpre = null, opre = 0. In this case, the filter will not have any

stored inputs, so stored = 0 as well.

Representations are initially created from StreamIt filters and ultimately con-

verted to StreamIt filters. Between these steps, however, representations of the higher

StreamIt block types can be derived by combining the representations of their parts.

Therefore, from now on we will say that a representation refers to a block rather than

a filter. The exception is in Section 3.2, where we discuss how to create a represen-

tation from a StreamIt filter. Hence we explicitly refer to a filter rather than block

representation in that section.

3.2 Extraction

We write a module that extracts the state-space representation of a filter. We sym-

bolically execute a single iteration of a filter’s work function, maintaining a vector

pair representation for each local variable and filter field variable that is encountered

(combined, these are termed program variables). If the outputs and field variables all

have vector pair representations, then the filter is state-space linear, and the vectors

are used as rows of A, B, C, and D. This type of procedure is termed data flow

analysis. See [11] for a treatment of the linear case.

We attempt to find a vector pair (~v,~w) for each program variable y where y =

~v · ~u + ~w · ~x. ~u is the filter input vector and ~x is the filter state vector. When y is

29

on the left hand side of an assignment statement, terms from the right hand side are

compared with entries from ~u (inputs) and ~x (states). The coefficients from terms

that match are used for to fill the corresponding entries in ~v and ~w, as long as they

are constants. If any coefficient is not a constant, then y is non-linear.

The input vector, ~u, is defined as [peek(e− o) peek(e− o+1) ... peek(o− 1)]. The

state vector, ~x, holds e− o variables from the input tape (peek(0) ... peek(e− o− 1)),

every field variable, and a variable for the constant 1. We do not consider local vari-

ables for the state vector, because their values are not saved across filter executions.

Therefore, their values should be resolved to constants at compile time. A field vari-

able has the initial vector pair (~0,
[

0 ... 1 ... 0

]
), where the 1 corresponds to

the field variable itself.

If the vector pair can be found, then the program variable y can be written as

a linear combination of the inputs and state variables, with the vector pair entries

representing the weights. Then the final assignment to state variable xi by some

program variable yi indicates that the ith rows of A and B should be ~wi and ~vi,

respectively. Similarly, the jth push statement using program variable yj indicates

that the jth rows of C and D should be ~wj and ~vj, respectively. For the constant

state variable 1, the corresponding rows of A and B are all zeros.

We use the same procedure in the init function to find the initial values for each

field variable. However, we do not need a vector ~v for the inputs, since there are no

inputs to the init function. The initial value for each stored inputs is zero, and the

initial value for the variable 1 is one.

Finally, consider the stored input states (call them ~xs). They are updated by the

inputs; however if stored > o, then some of the input states must be updated by

other input states. In particular, the first stored− o input states are updated by the

last stored− o inputs, and the remaining o input states are updated by the o inputs.

The update is described by the equation:

~̇xs =




0 I

0 0


 ~xs +




0

I


 ~u (3.1)

30

We also create initialization matrices to put values from the input tape into the

input states:

~̇xs = 0 ~xs + I ~upre

Stored inputs are always updated as shown in the same manner. Therefore, we

will use As and Bs to describe this update, where the values of these two matrices

are shown in (3.1).

3.2.1 Example Procedure

Consider the IIR filter from Chapter 2:

// This filter computes an infinite impulse response function.

// It does not have a prework function.

float->float filter IIR() {

float curr; // example of a field variable

init {

curr = 0;

}

work push 1 pop 1 peek 3 {

float temp; // example of a local variable

temp = (peek(0) + peek(1) + peek(2))/6;

curr = temp + curr/2;

push(curr);

pop();

}

}

The input vector is
[

peek(2)

]
and the state vector is




peek(0)

peek(1)

curr

1




. The first pro-

gram variable encountered is temp. It is given the vector pair (
[

1/6

]
,
[

1/6 1/6 0 0

]
).

The variable curr, as a state variable, has an initial vector pair: (
[

0

]
,
[

0 0 1 0

]
).

When curr is found in an assignment statement, it is given a new vector pair, con-

structed as 1 times the vector pair for temp plus 1/2 times the old vector pair for

31

curr: (
[

1/6

]
,

[
1/6 1/6 1/2 0

]
). The output is curr, so it is given the same

vector pair. The final pair for curr represents its state update. The stored inputs

peek(0), peek(1) are updated as mentioned in (3.1), and the constant 1 is not updated.

Therefore, we have:

A =




0 1 0 0

0 0 0 0

1/6 1/6 1/2 0

0 0 0 0




B =




0

1

1/6

0




C =
[

1/6 1/6 1/2 0

]

D =
[

1/6

]

−−−−−→
initVec =




0

0

0

1




Apre =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1




Bpre =




1 0

0 1

0 0

0 0




32

The pop and push rates are both one, and we have four states so o = 1, u = 1, s =

4. We have two stored input states, so opre = 2, stored = 2.

3.3 Combination

If all blocks within a pipeline, splitjoin, or feedback loop have state-space represen-

tations, we can combine them into a single representation using the rules developed

in this section. We combine blocks for two reasons. One reason is that it is easier

to optimize a single block than multiple blocks. The second reason is that we may

eliminate redundant computations across blocks.

3.3.1 Pipeline

Consider two blocks connected in a pipeline with representations R1 and R2. Let R

denote the combined representation of the two blocks, which we are trying to derive.

Suppose the output rate of R1 equals the input rate of R2 (u1 = o2). If this is not

the case, we must expand one or both blocks to have their input/output rates match

(u1 new = o2 new = lcm(u1, o2)). Block expansion is covered in Section 3.4.1. Since

the output of R1 (y1) is equivalent to the input of R2 (u2), we can write:

~̇x1 = A1 ~x1 + B1 ~u1

~̇x2 = A2 ~x2 + B2 ~y1

~y1 = C1 ~x1 + D1 ~u1

~y2 = C2 ~x2 + D2 ~y1

Substituting for ~y1 we get:

~̇x2 = A2 ~x2 + B2(C1 ~x1 + D1 ~u1)

~y2 = C2 ~x2 + D2(C1 ~x1 + D1 ~u1)

33

Which simplifies to:

~̇x2 = A2 ~x2 + B2C1 ~x1 + B2D1 ~u1

~y2 = C2 ~x2 + D2C1 ~x1 + D2D1 ~u1

Let ~x =




~x1

~x2


, ~u = ~u1 (the input to the entire pipeline), and ~y = ~y2 (the output

of the entire pipeline). The equations relating ~x, ~u, and ~y are:

~̇x = A~x + B~u

~y = C~x + D~u

A =




A1 0

B2C1 A2




B =




B1

B2D1




C =
[

D2C1 C2

]

D = D2D1

The input to the pipeline is identical to the input to R1, and the output of the

pipeline is identical to the output of R2. Furthermore, the states of the pipeline are

the states of the first block appended to the states of the second block. Therefore,

u = u2, o = o1, s = s1 + s2,
−−−−−→
initVec =



−−−−−→
initV ec1

−−−−−→
initV ec2


.

If both blocks do not have initialization matrices, then the entire pipeline does

not need initialization matrices, so Apre = null, Bpre = null, opre = 0, stored = 0. If

only the first block has initialization matrices, then we want to initialize the states in

the pipeline corresponding to the first block while keeping the states corresponding

34

to the second block unchanged. Therefore:

Apre =




Apre1 0

0 I




Bpre =




Bpre1

0




opre = opre1

stored = stored1

If the second block has initialization matrices, we must run the first block enough

times to provide the necessary inputs to initialize the second block. However, this

might result in the first block providing extra initial inputs to the second block.

In that case, we must change the representation of the second block to increase its

number of stored inputs (the way to do this is covered in Section 3.4.2). Suppose this

is done and the first block must run n times (along with its initialization matrices,

if it has them) to initialize the second block. Denote A1
e, B1

e, C1
e, and D1

e as

the matrices that describe running the first block n times (see Equations (3.6)-(3.9)).

Then the initialization of the entire pipeline is derived by combining these matrices

with Apre2, Bpre2 just as the A, B, C, and D matrices are combined for the two

blocks:

Apre =




A1
e 0

Bpre2C1
e Apre2




Bpre =




B1
e

Bpre2D1
e




opre = opre1 + n ∗ o1

stored = stored1

If there are more than two blocks in a pipeline, we collapse the pipeline in the fol-

lowing manner: combine the first two blocks to get one block representation, combine

this with the third block, etc.

35

3.3.2 Splitjoin

There are two types of splitjoins - those with roundrobin and duplicate splitters.

In order to collapse the branches of a splitjoin to a single representation, we need

the splitjoin to have a duplicate splitter, because then the representation in each

branch accesses the same inputs. Therefore, for roundrobin splitjoins we first detail

a procedure to convert to a duplicate splitjoin. Then we describe how to create a

representation of a duplicate splitjoin.

Conversion from roundrobin to duplicate splitjoin

Suppose the roundrobin splitjoin has k branches and let wi and Mi denote the splitter

weight and state-space representation, respectively, on the ith branch. In each branch

i we add a filter with representation Li that outputs to Mi in a pipeline format. Since

the splitjoin now has a duplicate splitter, Mi receives every input element to the entire

splitjoin. In order to exactly simulate the original roundrobin splitter, Mi should only

see wi elements for every
∑k

j=1 wj input elements to the splitjoin. Therefore, we make

Li input
∑k

j=1 wj elements and output wi elements. In particular, Li ignores the

first
∑i−1

j=1 wj inputs (which correspond to inputs to the previous branches), outputs

the next wi inputs (which correspond to inputs to the ith branch), and ignores the

remaining
∑k

j=i+1 wj inputs1 (which correspond to inputs to the later branches).

The values for Li are o =
∑k

j=1 wj, u = wi, s = 1, A = 0, B = 0, C = 0,

D =
[

0 I 0

]
,
−−−−−→
initVec = ~0, Apre,Bpre = null, opre = 0, stored = 0. We use one

state in the representation, even though none are needed, to make combinations of

representations simpler. Once Li is created, it can be combined with Mi to form a

single representation (call it Ri).

Collapsing duplicate splitjoins

Let R be the representation for the entire splitjoin, Ri be the representation on the ith

branch, k be the number of branches. In order to combine the branch representations,

1In DSP terminology, Li is called a downsampler.

36

we must derive a steady-state execution of the entire splitjoin. Denote the joiner

weight of each branch i as wi (note that we used wi earlier to denote a splitter weight).

Each branch outputs ui items but wi items from that branch are needed to execute

the splitjoin once. Ri can be expanded to output lcm(ui, wi) items, which would

result in lcm(ui,wi)
wi

splitjoin executions. This means we must execute the splitjoin a

multiple of lcm(u1,w1)
w1

times to satisfy the constraints of the first branch, a multiple

of lcm(u2,w2)
w2

times to satisfy the constraints of the second branch, etc. Therefore, we

shall construct R to execute the splitjoin lcm(lcm(u1,w1)
w1

, lcm(u2,w2)
w2

, ..., lcm(uk,wk)
wk

) times.

Call this value E. Each representation Ri must output wi ∗ E elements, so Ri must

be expanded wi∗E
ui

times.

After these expansions, each branch representation should now have the same

input rate oi. If not, the splitjoin is ill-formed and cannot be compiled by StreamIt.

Since these representations will be combined, we need each to have the same number

of stored inputs and the same initial pop rate. To satisfy both constraints, we increase

the number of stored inputs in each representation to the value max(storedi, oprei)

over all i.

Now that the branch representations have been standardized, they can be com-

bined to a single representation. The stored input states in each representation evolve

in the same manner, so only one set of them is needed for the entire splitjoin represen-

tation. Let ~xi =




~xis

~xir


, where ~xis and ~xir are the stored input states and remaining

states of Ri, respectively. For each representation i denote the state-space equation

pair as:




~̇xis

~̇xir


 =




Ais 0

Airs Airr







~xis

~xir


 +




Bis

Bir


 ~u

~y =
[

Cis Cir

]



~xis

~xir


 + D~u

Since the stored input states in each representation are equivalent, we set them to

37

be ~xs, and set their corresponding matrix blocks to be As and Bs. Let ~x =




~xs

~x1r

~x2r

...

~xkr




.

The states ~xir evolve separately, so:

A =




As 0 0 ... 0

A1rs A1rr 0 ... 0

A2rs 0 A2rr ... 0

...

Akrr 0 0 ... Akrs




B =




Bs

B1r

B2r

...

Bkr




Similarly for the initialization matrices we have:

Apre =




0 0 0 ... 0

0 Apre1rr 0 ... 0

0 0 Apre2rr ... 0

...

0 0 0 ... Aprekrr




Bpre =




Bpres

Bpre1r

Bpre2r

...

Bprekr




38

These equations are simpler because Apres = 0 and Apreirs = 0.

In order to simulate the roundrobin nature of the joiner, we must output w1 items

from R1, then w2 items from R2, up to wk items from Rk, and repeat this process E

times (because we are running the splitjoin E times). Let Ci =




Cis1 Cir1

Cis2 Cir2

... ...

Cisexecutions Cirexecutions




,

where
[

Cisj Cirj

]
is wi × si. Let Di =




Di1

Di2

...

Diexecutions




, where Dij is wi × o. Then

we have:

C =




C1s1 C1r1 0 ... 0

C2s1 C2r1 0 ... 0

...

Cks1 0 0 ... Ckr1

...

C1sk C1rk 0 ... 0

C2sk C2rk 0 ... 0

...

Cksk 0 0 ... Ckrk




39

D =




D11

D21

...

Dk1

...

D1k

D2k

...

Dkk




We have derived A, B, C, D, Apre, and Bpre. As mentioned previously, all the

pop rates are equal so o = o1. Additionally, all the initial pop rates and stored inputs

are equal, so opre = opre1 and stored = opre1. The splitjoin runs E times, hence

u = E ∗ ∑k
j=1 wj. The states of the entire representation are the non-stored input

states of each branch representation concatenated along with one set of the stored

input states. Let sir be the number of non-stored input states in representation i and

let
−−−−−−→
initVecir be the initial values of these states. Then s = stored +

∑k
j=1 sjr and

−−−−−→
initVec =




~0
−−−−−−→
initVec1r

−−−−−−→
initVec2r

...
−−−−−−→
initVeckr




.

3.3.3 Feedback Loop

Recall that a feedback loop has a loop block and a body block. Outputs from the

body block and inputs to the entire feedback loop are combined via a joiner to form

the inputs to the loop block. Outputs from the loop block are used as outputs of the

entire feedback loop and inputs of the loop block via a splitter.

Let the loop block have representation R1, the body block have representation R2,

and the entire feedback loop have representation R. If the splitter is a roundrobin

40

one, we convert it to a duplicate one by adding the appropriate downsamplers to the

output branches, as described in Section 3.3.2. The output branches of a feedback

loop splitter lead to the loop block and the output of the entire feedback loop. There-

fore, one downsampler must be placed before the loop block in a pipeline format, and

one downsampler must be placed after the feedback loop in a pipeline format. The

first downsampler and loop block is combined to form a new loop block. The sec-

ond downsampler can be combined with the feedback loop after the feedback loop’s

representation is computed.

As in the case of a splitjoin, we must derive a steady-state execution of the entire

feedback loop in order to combine the loop and body blocks. First we match the

output rate of the body block (o2) with the input rate of the loop block (u1) by

expanding the two representations appropriately. Now consider the roundrobin joiner,

and let w1, w2 be the weights on the branches from the loop block and input to the

body block, respectively. The loop block outputs u1 items, but w1 items are needed

to run the feedback loop once. Therefore, the loop block can be expanded to output

lcm(u1, w1) items, which would result in lcm(u1,w1)
w1

feedback loop executions. Call this

value E. The loop block is expanded to run lcm(u1,w1)
u1

times, and the body block is

expanded by this amount as well, since we still want the output rate of the body

block to equal the input rate of the loop block. Since the feedback loop runs E times,

the body block receives E ∗ (w1 + w2) inputs, which should equal the input rate of

the expanded body block. If not, the feedback loop is ill-formed.

Once the above expansions are implemented, the feedback loop is run by executing

the loop and body blocks alternately. However, the loop block depends on outputs

from the body block, and the body block depends on outputs from the loop block. In

order to begin execution of the entire feedback loop, there must be items enqueued

on the output tape of the loop block. The minimal number of enqueued items is u1,

the output rate of the loop block. However, there can be more enqueued items. We

create a new representation R3 that stores the enqueued values. Upon each execution

R3 inputs u1 items from the loop block and outputs u1 items to the body block. It

41

has one state for each enqueued item. The equations for R3 are:

~̇x3 =




0 I

0 0


 ~x3 +




0

I


 ~u3

~y3 =




I

0


 ~x1

R3 does not have initialization matrices, and
−−−−−−→
initVec3 is assigned the enqueued

values.

Note that the output ~y3 does not depend on the input ~u3. This is the key to

starting the feedback loop: R3 outputs first, the body block uses these outputs along

with inputs to the entire feedback loop to execute and produce outputs, the loop

body uses these outputs to execute and produce outputs, R3 uses these outputs to

execute and produce outputs, etc.

y

u1

y2

y1

u2

y3

u3

u

Loop

Body

Enqueued

States

Figure 3-1: Labelled feedback loop

From figure 3-1 it is apparent that ~u3 = ~y1, ~y = ~y2 = ~u1, and ~u2 is composed of

42

~u and ~u3. We can write the equations for the body block as:

~̇x2 = A2 ~x2 + B2 ~u2 = A2 ~x2 + B2 1~u + B2 2 ~y3 = A2 ~x2 + B2 1~u + B2 2C3 ~x3

~y2 = C2 ~x2 + D2 ~u2 = C2 ~x2 + D2 1~u + D2 2 ~y3 = C2 ~x2 + D2 1~u + D2 2C3 ~x3

Since ~y = ~y2, we have written the output of the feedback loop and the update for

~x2 in terms of the input to the feedback loop and the state vectors. For the updates

to ~x1 and ~x3 we can write:

~̇x1 = A1 ~x1 + B1 ~u1 = A1 ~x1 + B1~y = A1 ~x1 + B1(C2 ~x2 + D2 1~u + D2 2C3 ~x3)

= A1 ~x1 + B1C2 ~x2 + B1D2 1~u + B1D2 2C3 ~x3

~̇x3 = A3 ~x3 + B3 ~u3 = A3 ~x3 + B3 ~y1 = A3 ~x3 + B3(C1 ~x1 + D1 ~u1)

= A3 ~x3 + B3(C1 ~x1 + D1~y) = A3 ~x3 + B3(C1 ~x1 + D1(C2 ~x2 + D2 1~u + D2 2C3 ~x3))

= A3 ~x3 + B3C1 ~x1 + B3D1C2 ~x2 + B3D1D2 1~u + B3D1D2 2C3 ~x3

For the input and output rates we have o = E ∗w2 and u = u2. We use the states

of all three representations, so s = s1 + s2 + s3 and
−−−−−→
initVec =




−−−−−−→
initVec1

−−−−−−→
initVec2

−−−−−−→
initVec3



. For

simplicity, we do not consider a loop or body block with initialization matrices.

3.4 Representation Changes

3.4.1 Expansion

We may want to run a block multiple times in order to properly combine it with other

blocks. For example, suppose block B1 inputs three items and outputs two items, and

block B2 inputs five items and outputs seven items. In order to combine these blocks

in a pipeline, B1 must run five times (in order to output ten items) and B2 must

run two times (in order to input ten items). Therefore, we need to have a method

43

to expand a representation so that it models a block running multiple times, rather

than once.

Consider the state-space equation pair, where ~u1 and ~y1 are the first set of inputs

and outputs, and ~x is the original state vector:

~̇x = A~x + B ~u1

~y1 = C~x + D ~u1

If we run the block again, the equation pair in terms of the original state vector

~x and the next set of inputs and outputs (~u2 and ~y2) is:

~̇x = A(A~x + B ~u1) + B ~u2

~y2 = C(A~x + B ~u1) + D ~u2

Simplifying yields:

~̇x = A2~x + AB ~u1 + B ~u2

~y2 = CA~x + CB ~u1 + D ~u2

Let ~u be the combined input vector (~u =




~u1

~u2


) and ~y be the combined output

vector (~y =




~y1

~y2


). The representation in terms of these two vectors is:

~̇x = A2~x + B2~u

~y = C2~x + D2~u

A2 = A2

B2 =
[

AB B

]

C2 =




C

CA




44

D2 =




D 0

CB D




This new representation corresponds to a block that upon every execution runs

the old block twice. By induction, a general formula for running a block n times is:

An = An (3.2)

Bn =
[

An−1B An−2B ... AB B

]
(3.3)

Cn =




C

CA

...

CAn−2

CAn−1




(3.4)

Dn =




D 0 0 ... 0 0 0

CB D 0 ... 0 0 0

CAB CB D ... 0 0 0

...

CAn−4B CAn−5B CAn−6B ... D 0 0

CAn−3B CAn−4B CAn−5B ... CB D 0

CAn−2B CAn−3B CAn−4B ... CAB CB D




(3.5)

Since initializations are not affected,
−−−−−→
initVec, preA, preB, stored, and opre re-

main unchanged from the initial representation. Since the number of states is not

changed, s remains the same. The new representation runs the old representation n

times, so unew = n ∗ uold, onew = n ∗ oold.

As mentioned in the pipeline combination section, we may need to run a block n

times, in addition to its initialization matrices, for the purpose of initializing the full

pipeline. We denoted the matrices for doing this as Ae, Be, Ce, and De. If the block

being run n times does not need initialization, the calculation for these four matrices

is exactly the same as described in equations (3.2)-(3.5). Otherwise, we must make

45

some slight modifications:

Ae = AnApre (3.6)

Be =
[

AnBpre An−1B An−2B ... B

]
(3.7)

Ce =




CApre

CAApre

...

CAn−1Apre




(3.8)

De =




CBpre D 0 0 ... 0 0

CABpre CB D 0 ... 0 0

CA2Bpre CAB CB D ... 0 0

...

CAn−1Bpre CAn−2B CAn−3B CAn−3B ... CB D




(3.9)

3.4.2 Increasing the number of Stored Inputs

As mentioned in Section 3.3.1, it may be necessary to changed the stored inputs in a

representation in order to combine it with another representation in a pipeline. Sup-

pose we want to change the number of stored inputs from oldStored to newStored.

Consider what happens in the old representation, with oldStored stored input vari-

ables. The filter accesses peek(0), peek(1), ... peek(oldStored−1) from the oldStored

stored input state variables. The o inputs to the filter are peek(oldStored), peek(oldStored+

1), ... peek(oldStored + o− 1). Now we want to add newStored− oldStored stored

input variables, so that the total newStored stored input variables represent peek(0),

peek(1), ... peek(newStored− 1), and the o inputs to the filter are peek(newStored),

peek(newStored + 1), ... peek(newStored + o− 1). Therefore, any references in the

original representation to peek(0), peek(1), ... peek(oldStored− 1) remain the same,

while references to peek(oldStored), peek(oldStored), ... peek(oldStored + o − 1)

must be changed.

46

The old representation was:




~̇x1

~̇x2


 =




A11 A12

A21 A22







~x1

~x2


 +




B11 B12

B21 B22







~u1

~u2




~y =
[

C1 C2

]



~x1

~x2


 +

[
D1 D2

]



~u1

~u2




We have divided the state vector ~x into the non-stored input variables (~x1) and the

stored input variables (~x2), and divided the input vector ~u into the first newStored−
oldStored inputs (~u1) and the remaining inputs (~u2). We will assume newStored−
oldStored <= o (If not we can run this algorithm multiple times). The matrices A,

B, C, and D are put into block-matrix form according to the state and input vector

divisions.

In our new representation, we use ~x3 to denote the added newStored− oldStored

states. As mentioned early, references to the first oldStored stored input states (~x2)

remain the same. Additionally, references to the non-input states (~x1) also remain

the same. Our new representation so far is:




~̇x1

~̇x2

~̇x3




=




A11 A12 ?

A21 A22 ?

? ? ?







~x1

~x2

~x3




+




? ?

? ?

? ?







~u1

~u2




~y =
[

C1 C2 ?

]



~x1

~x2

~x3




+
[

? ?

]



~u1

~u2




The ? indicates yet to be determined entries. In the old representation, the first

newStored−oldStored input elements (u1) were peek(oldStored) ... peek(newStored−
1). In the new representation, these values are stored as states (x3). Therefore, any

matrix block that was previously multiplied by u1 should be multiplied by x2 instead.

47

Now the new representation is:




~̇x1

~̇x2

~̇x3




=




A11 A12 B11

A21 A22 B21

? ? ?







~x1

~x2

~x3




+




? ?

? ?

? ?







~u1

~u2




~y =
[

C1 C2 D1

]



~x1

~x2

~x3




+
[

? ?

]



~u1

~u2




In the old representation, the remaining o − (newStored − oldStored) input ele-

ments (u2) were peek(newStored) ... peek(o + oldStored− 1). In the new represen-

tation, these are the first o − (newStored − oldStored) input elements. We divide

the input vector into the first o − (newStored − oldStored) elements (~u1′) and the

remaining newStored− oldStored elements (~u2′). Any matrix block that was previ-

ously multiplied by ~u2 should be multiplied by ~u1′ instead. Additionally, there is no

dependence on ~u2′ by ~x1, ~x2, or ~y. The new representation is:




~̇x1

~̇x2

~̇x3




=




A11 A12 B11

A21 A22 B21

? ? ?







~x1

~x2

~x3




+




B12 0

B22 0

? ?







~u1′

~u2′




~y =
[

C1 C2 D1

]



~x1

~x2

~x3




+
[

D2 0

]



~u1′

~u2′




The entries for the state update ~̇x3 remain to be determined. Any stored input

variable representing peek(i) must get updated by peek(i + o). ~̇x3 is peek(oldStored)

... peek(newStored− 1), so it must be updated by peek(o + oldStored) ... peek(o +

48

newStored− 1). This is precisely ~u2′ , so the final new representation is:




~̇x1

~̇x2

~̇x3




=




A11 A12 B11

A21 A22 B21

0 0 0







~x1

~x2

~x3




+




B12 0

B22 0

0 I







~u1′

~u2′




~y =
[

C1 C2 D1

]



~x1

~x2

~x3




+
[

D2 0

]



~u1′

~u2′




Similarly, let the original initialization equation be:




~̇x1

~̇x2


 =




Apre11 Apre12

0 0







~x1

~x2


 +




Bpre11 Bpre12

I 0







~upre1

~upre2




Where ~upre1 has length oldStored, and ~upre2 has length opre − oldStored. Now

we simply consider ~upre1 to have length newStored and ~upre2 to have length opre −
newStored. If opre < newStored, we set opre = newStored. Then the initialization

equation is the same as before, except the original stored input states (~x2) are replaced

by the new stored input states (




~x2

~x3


).

We have derived A, B, C, D, Apre, and Bpre for the new representation. Clearly,

stored = newStored and opre = opreold + newStored− oldStored. The input/output

rate remains the same, so o = oold and u = uold. We have added newStored −

oldStored total states, so s = sold+(newStored−oldStored) and
−−−−−→
initVec =




−−−−−−→
initVec1

−−−−−−→
initVec2

−→
0



.

3.5 Replacement

Once we have combined filters to a single representation and performed optimiza-

tions on it (see Chapter 4), we would like to convert it to StreamIt code. Given a

representation R we can create the following StreamIt filter:

49

float -> float filter replacementFilter() {

float x0, ... , x{s-1};

prework push 0 pop preu peek preu {

x0 = preA[0,0]*x0 + ... + preA[0,s-1]*x{s-1} + preB[0,0]*peek(0) + ... + preB[0,preu-1]*peek(preu-1);

x1 = preA[1,0]*x0 + ... + preA[1,s-1]*x{s-1} + preB[1,0]*peek(0) + ... + preB[1,preu-1]*peek(preu-1);

...

x{s-1} = preA[s-1,0]*x0 + ... + preA[s-1,s-1]*x{s-1} + preB[s-1,0]*peek(0) + ... + preB[s-1,preu-1]*peek(preu-1);

}

work push u pop o peek o {

float x0_temp, ... , x{s-1}_temp;

push(C[0,0]*x0 + ... + C[0,s-1]*x{s-1} + D[0,0]*peek(0) + ... + D[0,o-1]*peek(o-1));

push(C[1,0]*x0 + ... + C[1,s-1]*x{s-1} + D[1,0]*peek(0) + ... + D[1,o-1]*peek(o-1));

...

push(C[u,0]*x0 + ... + C[u,s-1]*x{s-1} + D[u,0]*peek(0) + ... + D[u,o-1]*peek(o-1));

x0_temp = A[0,0]*x0 + ... + A[0,s-1]*x{s-1} + B[0,0]*peek(0) + ... + B[0,o-1]*peek(o-1);

x1_temp = A[1,0]*x0 + ... + A[1,s-1]*x{s-1} + B[1,0]*peek(0) + ... + B[1,o-1]*peek(o-1);

...

x{s-1}_temp = A[s-1,0]*x0 + ... + A[s-1,s-1]*x{s-1} + B[s-1,0]*peek(0) + ... + B[s-1,o-1]*peek(o-1);

x0 = x0_temp;

...

x{s-1} = x{s-1}_temp;

pop(); pop(); ... pop(); // o pops

}

}

We make two modifications to this filter. If a matrix entry is zero, any term

involving that matrix entry is not placed in the filter. If a matrix entry is one, the

multiplication of a peek or variable by this matrix entry is removed.

50

Chapter 4

Optimization

There are multiple metrics used to analyze performance of a computer program - speed

(throughput, or outputs per second), space, power consumption, etc. We focus on

speed and attempt to minimize the computation performed to produce each output.

Obviously, this type of optimization has positive effects on the other parameters.

However, we are mainly concerned with speed because it is simple to track, and due

to falling hardware costs, is frequently a program’s bottleneck.

There are two types of optimizations we consider. The first is to remove extraneous

state variables from the linear state-space representation. This reduces the memory

allocation for a program and reduces the number of loads and stores executed, which

are typically time intensive operations. It also eliminates computations that involve

the removed states. The second optimization is to reduce the parametrization of a

state-space representation, by changing the representation to one with more zero and

one entries in its matrices. This directly eliminates computations, since all multipli-

cations by zero or one are not processed by the replacement algorithm.

4.1 State-Space Transformations

For any state-space equation pair, there are an infinite number of transformations to

an equivalent state-space system. These transformations involve a change of basis of

the state vector ~x to T~x, where T is an invertible matrix. Consider the state-update

51

equation ~̇x = A~x + B~u. Multiplying the entire equation by T yields:

T~̇x = TA~x + TB~u

Since T−1T = I, we can write:

T~̇x = TA(T−1T)~x + TB~u = TAT−1(T~x) + TB~u

~y = C(T−1T)~x + D~u = CT−1(T~x) + D~u

Where we have introduced the output equation as well. Let ~z = T~x. ~z is a new

state vector related to the old state vector ~x by the change of basis T. Substituting

into the equations above we get:

~̇z = TAT−1~z + TB~u

~y = CT−1~z + D~u

These is precisely the original state-space equation pair, with A, B, and C trans-

formed to TAT−1, TB, and CT−1, respectively.

For a StreamIt state-space representation R, we must determine how the other

values change. The initialization state update equation is essentially the same as the

regular state update equation, so Apre and Bpre are transformed to TApreT
−1 and

TB respectively. Since the old state vector ~x is multiplied by T, the old initial state

vector is multiplied by T. The number of states, inputs, and outputs is the same, so

s, o, and u are unchanged.

4.2 State Removal

There are two types of states that can be removed from a state-space system without

changing its behavior - unreachable and unobservable states. Informally, unreachable

states are unaffected by inputs and unobservable states have no effect on outputs.

More formally, the set of states in a system can be divided into reachable and un-

52

reachable states where:

1. The unreachable states are not updated by any of the reachable states.

2. The unreachable states are not updated by any inputs.

In terms of the state-space equation pair, this means A[i, j] = 0,B[i, k] = 0 where

i is the row of an unreachable state, j is the column of a reachable state, and k is

any of the inputs. If all the unreachable states are initially zero, they remain zero

because they are not updated by a non-zero value (either a reachable state or an

input). Therefore, all unreachable states that are not initialized can be removed from

a representation, since they do not effect the reachable states or the outputs.

The set of states in a system can also be divided into observable and unobservable

states where:

1. The observable states are not updated by any of the unobservable states.

2. The outputs do not depend on the unobservable states.

In terms of the state-space equation pair, this means C[i, j] = 0,D[k, j] = 0 where

j is the column of an observable state, i is the row of an unobservable state, and k

is any of the outputs. The unobservable states are not used to update the observable

states and are not used to determine the outputs. Therefore, all unobservable states

can be removed from a representation (regardless of their initial values).

A simple algorithm to isolate the unreachable and unobservable states in a sys-

tem by use of transformations is explained in [12]. The algorithm works as follows:

Perform row operations on the augmented matrix
[

A B

]
to put it into a type of

row-echelon form1, and perform the corresponding inverse column operations on A

and C to keep the system equivalent to the original (Performing a row operation on a

matrix is equivalent to left multiplying it by some invertible matrix, and performing a

column operation on a matrix is equivalent to right multiplying it by some invertible

1A matrix is in standard row-echelon form if the first non-zero entry in each row is a 1 (called
the leading 1) and the leading 1 in a higher row is to the left of the leading 1 in a lower row. For
our type of row-echelon form, the last non-zero entry in each row is a 1 (call it the ending 1) and
the ending 1 in a higher row is to the left of the ending 1 in a lower row.

53

matrix). Once the augmented matrix is in the desired form, row i of the combined

matrix represents an unreachable state if there are no non-zero entries past the ith

column. For unobservable states, the combined matrix
[

AT CT

]
is operated on

instead.

Using this algorithm, we can find the entire set of unobservable states and remove

them all. The only exceptions are those unobservable states that affect observable

states in the initialization matrix Apre . If j is the column of an observable state then

we must have Apre[i, j] = 0 for all values of i, where i is the row of an observable

state. Otherwise, the unobservable state j cannot be removed, because it affects at

least one observable state, and therefore may affect the outputs.

More care must be taken when removing unreachable states. If an unreachable

state has a non-zero starting value, or is affected by the initialization matrices, it

cannot be removed. In either of these cases, the unreachable state may attain a non-

zero value, and therefore may have an affect on the reachable states and/or outputs.

Additionally, an unreachable state x1 that is updated by a different unreachable state

x2 that cannot be removed may eventually have a non-zero value, even if it (x1) is

initially zero. Therefore, the unreachable state x1 cannot be removed as well.

The last case may cause problems when trying to remove unreachable states. If

an unreachable state x1 is updated by unreachable states x2 and x3, we must check

if those states can be removed before determining if state x1 can be removed. If

one of those states, say x2, depends on x1, we must determine if x1 can be removed

before determining whether x2 can be removed - resulting in an impossible ‘loop-like’

determination. Clearly, a more robust approach is necessary.

Suppose we have found the set of unreachable states and they form the first k

states of the state vector (we can do both of these steps by isolating the unreachable

states, then moving them to the top of the state vector if necessary). Consider the

sub-matrix A[1 : k; 1 : k] consisting of the first k rows and first k columns of A. This

sub-matrix represents how the unreachable states are updated based on each other.

Suppose this sub-matrix is in upper-triangular form, which means that all entries

below the main diagonal are zero. We can remove states in the following manner:

54

1. Check the states in reverse order, from state k to state 1.

2. For the ith state, check whether the state has an initial value, is updated by

the initialization matrices, or depends on a state with a higher index. If any

of these are true, we cannot remove the state. Otherwise, we can remove the

state.

Since the unreachable state sub-matrix is in upper-triangular form, all unreachable

states can only have dependencies on states with a higher index. Furthermore, since

we are working from the state with highest index first, at each step in the algorithm

we can immediately determine whether or not a given state is removable. Therefore

we have found our robust approach to remove unreachable states. What remains to

be done is transforming the sub-matrix to upper-triangular form.

The QR algorithm, described in [18], is an iterative method of converting any

square matrix P to upper-triangular form. The algorithm is essentially the following

two step procedure, applied as many times as necessary.

1. QR = P (QR factorization of P)

2. P = RQ

The QR factorization of a matrix P factors P into the product of an orthogonal

matrix Q2 and an upper-triangular matrix R. Since R = Q−1P, the QR algorithm

is repeatedly transforming P to Q−1PQ.

Since Q is invertible, we can apply this transformation to the unreachable state

sub-matrix, where the transformation matrix T is Q−1. Since we want to keep the

other states unchanged, the full transformation matrix applied to A, B, C is T =


Q−1 0

0 I




2An orthogonal matrix has the property that its transpose is equal to its inverse

55

4.3 Putting Inputs into States

So far we have considered optimizations that affect A, B, and C. Since the opti-

mizations are entirely the result of state transformations, they do not affect D, which

is independent of the choice of state-space basis. By storing every input as a state,

however, all the entries of D are moved into A and can then be changed by state

optimizations.

We have already discussed how to store inputs as states. When every input is

stored as a state, we find the new state-equation pair is:




~̇x

~̇xinputs


 =




A B

0 0







~x

~xinputs


 +




0

I


 ~u

~y =
[

C D

]



~x

~xinputs


 + 0~u

These states should be added before state-removal is performed. It may seem

counter-intuitive that we first add states, then seek to remove them. However, the

added states represent computations involving D, which were not considered before.

Removing some of these states results in reducing computations involving D.

4.4 Parameter Reduction

After removing as many states as possible, including input states, we want to change

the state-space system to one with the fewest number of non-zero, non-one entries

(termed parameters). If A, B, and C are completely filled, there are s ∗ (s + o + u)

parameters. Ackermann and Bucy [1] show a general form for A and C (B can be

filled with parameters) to have at most s ∗ (o + u) parameters, assuming there are

no unobservable or unreachable states. They derive this form using system impulse

responses. We will achieve this same form using row operations on the augmented

56

matrix
[

AT CT

]
. The form we want is:

AT =




L1 A12 A13 ... A1u

0 L2 A23 ... A2u

0 0 L3 ... A3u

...

0 0 0 ... Lu




CT =




1 0 0 ... 0

0 0 0 ... 0

...

0 1 0 ... 0

0 0 0 0 0

...

0 0 0 ... 1




The matrices Li are rectangular, and the matrices Aij are square, but do not

necessarily have the same dimensions as each other. These matrices have the form:

Li =




0 0 ... 0 ∗
1 0 ... 0 ∗
0 1 ... 0 ∗
...

0 0 ... 1 ∗




Aij =




0 0 ... ∗
...

0 0 ... ∗




The entries marked with a * are the parameters of the system. This is known

as the observable canonical form of the system. In contrast, the reachable canonical

form defines A and B instead of AT and C, and C may be filled with parameters

instead of B.

57

We present a simple algorithm, in pseudocode to attain the form above. We do not

include the necessary inverse column operations that must go with all row operations.

Reduce Parameters {

currRow = 0; colA = 0; colC = 0;

while(currRow < totalRows) {

-find a non-zero entry in column colC at or below row currRow of C{transpose}, and swap it with the

entry in row currRow;

-set C{transpose}[currRow,colC] = 1 by scaling the row appropriately;

make all entries above and below it zero by adding appropriate multiple of row currRow to other rows;

currRow = currRow + 1;

colC = colC + 1;

do {

-find a non-zero entry in column colA at or below row currRow of A{transpose}, and swap it with the

entry in row currRow;

-set A{transpose}[currRow,colA] = 1 by scaling the row appropriately;

make all entries below it zero by adding appropriate multiple of row currRow to other rows;

currRow = currRow + 1;

colA = colA + 1;

} while a non-zero entry in column colA is found

colA = colA + 1;

}

}

It is possible that one type of form has fewer parameters than the other. Therefore,

we perform the above algorithm on
[

AT CT

]
as noted to produce the observable

form, and on
[

A B

]
to produce the reachable form, and check which one has fewer

parameters.

4.5 Staged Execution

Using input state variables corresponds to executing a state-space block in two stages:

1. Put inputs into input state variables.

58

2. Execute the original block, using input states instead of actual inputs.

We can add additional stages by having multiple sets of input states - ~xinputs1,

~xinputs2, etc. The first set gets saved in the second set, the second set gets saved

in the third set, etc. Suppose there are k input sets. We can write our state-space

equation pair as follows:




~̇x

~̇xinputsk

...

~̇xinputs2

~̇xinputs1




=




A B 0 ... 0

0 0 I ... 0

...

0 0 0 ... I

0 0 0 ... 0







~x

~xinputsk

...

~xinputs2

~xinputs1




+




0

0

...

0

I




~u

~y =
[

C D ... 0 0

]




~x

~xinputsk

...

~xinputs2

~xinputs1




+ 0~u

By itself, executing the work of a filter in stages does not result in any gain in

performance. However, minimally parameterizing the resulting system may be more

productive than minimally parameterizing the one or two execution stage system.

The canonical forms of the previous section do not in general minimally parameterize

the system; hence evaluating staged execution remains an area of future research.

59

60

Chapter 5

Results

We have implemented the extraction, combination, and optimization (except multiple

execution stages) procedures within the StreamIt compiler, which uses the KOPI java

compiler infrastructure [8]. We measure performance by counting the number of float-

ing point operations (additions and multiplications) executed in a given benchmark.

The program DynamoRIO [2] is used to count operations.

We have collected the data for the base case (no replacement) and with state-space

and linear replacement [11]. For each benchmark, values are expressed as a ratio of

floating point operations with state-space or linear replacement1 over operations with

no replacement.

For the first 5 applications, which mainly have linear components without state,

linear replacement and state-space replacement are equally effective. There is a huge

performance downgrade for an FFT (Fast Fourier Transform) for both types of re-

placement. This is not surprising, since an FFT performs its computations sparsely

across multiple filters. Combining these filters creates one filter densely packed with

computations. This is exactly a conversion form an FFT to a DFT (Discrete Fourier

Transform). We would need staged execution with minimal parameterization to con-

vert the DFT back to an FFT.

1We do not consider frequency replacement in our comparison

61

Application Statespace Linear
FM Radio 0.1740 0.1692

FIR Program 0.9961 0.9980
Channel Vocoder 0.2601 0.2620

FilterBank 1.000 1.001
FFT (16 pt) 2.938 3.000

Linear Difference Equation 1.005 1.000
IIR 1.005 1.000

IIR + 1/2 Decimator 0.6441 1.000
IIR + 1/16 Decimator 0.3393 1.000

IIR + FIR 0.9413 1.000
FIR + IIR + IIR 0.9214 1.000

Table 5.1: Floating point operations with state-space and linear replacement normal-
ized for no replacement

The remaining applications have filters with state, thus they cannot be analyzed

linearly. Therefore we use the value 1.000 as the ratio in the linear column. For

a simple standalone Linear Difference Equation or IIR (Infinite Impulse Response)

filter, state-space replacement shows a very slight degradation in performance. The

reason for this is that there are a few extra operations performed by the prework

function. In terms of steady-state behavior, state-space replacement is equivalent

to no replacement. There is no gain in performance because the filters are written

optimally.

When we combine state filters with other filters, we notice a performance im-

provement using state-space replacement. For example, combining an IIR filter with

a decimator that leaves 1 out of every 16 values has a 66% improvement. Combining

an IIR filter with an FIR filter has a 6% improvement. In the case of an IIR filter with

a decimator, there are extraneous computations performed by the IIR filter that are

thrown away by the decimator. Combining their respective matrices removes these

computations. In the case of an IIR filter with an FIR filter, the computations in both

filters can be merged to a single set of computations. This indicates that state-space

replacement is more useful when applied to combined filters than when applied to

individual filters.

62

Chapter 6

Related Work

This thesis builds directly on the work done to analyze and optimize linear compo-

nents in StreamIt graphs [11]. We have extended the theoretical framework for linear

analysis to state-space analysis in order to apply our optimizations to a wider class

of applications. We have also changed some parts of the underlying representations.

Previously, constants were handled separately and peeked items beyond the pop rate

were considered inputs. For our current work we have placed both types of items in

states.

Many other groups are researching methods for automated DSP application opti-

mizations. SPIRAL [14] is a system developed to generate libraries of DSP transforms.

These libraries are designed for specific architectures, and can be re-optimized when

hardware is upgraded or replaced. Other such libraries that have been designed in-

clude a package for linear algebra manipulations by the ATLAS project [19] and a set

of optimized FFTs (Fast Fourier Transforms) [5].

Aside from StreamIt, other programming languages have been designed for stream-

ing data. Synchronous languages which target embedded applications include LUS-

TRE [9], Esterel [3], and Signal [7]. Other stream-based languages are Occam [4],

SISAL [6], and StreamC [15]. These are designed to exploit vector and parallel pro-

cessing. However, none of these languages have compilers that run state-space or

linear analysis.

63

64

Chapter 7

Conclusion

We present a methodology for the detection, analysis, combination, and optimization

of linear state-space filters in DSP applications. This work is automatized in the

compiler of a high-level programming language, StreamIt, designed for streaming ap-

plications. This frees the programmer from the burden of writing low-level optimized

code that requires expert DSP analysis. Instead, the programmer can focus on the

top-level design of a DSP application and write modular code in a structured setting.

Due to the infinite number of possible state-space transforms, the optimizations

discussed are not necessarily ideal. Additionally, parts of DSP applications are non-

linear and cannot be analyzed in the state-space domain. Therefore, the work pre-

sented in this thesis does not fully optimize some portions of DSP applications, and

does not apply towards other portions. However, it does represent an additional step

towards the goal of a full analysis and optimization of any application. We outline

some of the future steps that can be taken, both to improve on the work in this thesis

and to expand it to other types of domain-specific analyses and optimizations.

• As mentioned in Chapter 4, minimally parameterize a system, then uses multiple

execution stages.

• Use a balanced representation [13] to quantify the relative impact of each state

of a filter on its execution. Then the states that have impact values below a

certain threshold can be removed, resulting in only a small change in the filter’s

65

execution.

• Formulate loops in traditional programming languages as state-space filters, and

use state-space work developed in this thesis to detect their induction variables

and optimize their execution.

• Create a cost function metric, f(A,B,C,D), that balances the traditional pro-

gram analysis metrics (throughput, power consumption, memory allocation,

etc.) in any manner desired. Then find a general way to minimize this cost

function over all possible state-space transformations T.

• Formulate a methodology to deal with filters whose outputs are a linear com-

bination of their inputs but a non-linear combination of their state variables.

• Use a ‘black box’ method to find the appropriate representation of a filter. In

this approach the filter is given inputs and the output data is collected. The

input/output relations are used to formulate an appropriate state-space model

that may not exactly represent the filter, but does so within a tolerable error

margin (see [16]).

66

Appendix A

Benchmark Source Code

This is the StreamIt source code for the applications used in the Results chapter. All

code is copyrighted to MIT.

Library Files (for use with FMRadio, FIR Program, and Channel Vocoder)

/**

* Simple sink that just prints the data that is fed to it.

**/

float->void filter FloatPrinter {

work pop 1 {

println(pop());

}

}

/**

* Simple FIR low pass filter with gain=g, wc=cutoffFreq(in radians) and N samples.

* Eg:

* ^ H(e^jw)

* |

* ---------------

* | | |

* | | |

* <-------------------------> w

* -wc wc

*

67

* This implementation is a FIR filter is a rectangularly windowed sinc function

* (eg sin(x)/x), which is the optimal FIR low pass filter in

* mean square error terms.

*

* Specifically, h[n] has N samples from n=0 to (N-1)

* such that h[n] = sin(cutoffFreq*pi*(n-N/2))/(pi*(n-N/2)).

* and the field h holds h[-n].

*/

float->float filter LowPassFilter(float g, float cutoffFreq, int

N) {

float[N] h;

/* since the impulse response is symmetric, I don’t worry about reversing h[n]. */

init {

int OFFSET = N/2;

for (int i=0; i<N; i++) {

int idx = i + 1;

// generate real part

if (idx == OFFSET)

/* take care of div by 0 error (lim x->oo of sin(x)/x actually equals 1)*/

h[i] = g * cutoffFreq / pi;

else

h[i] = g * sin(cutoffFreq * (idx-OFFSET)) / (pi*(idx-OFFSET));

}

}

/* implement the FIR filtering operation as the convolution sum. */

work peek N pop 1 push 1 {

float sum = 0;

for (int i=0; i<N; i++) {

sum += h[i]*peek(i);

}

push(sum);

pop();

}

}

/**

* Simple FIR high pass filter with gain=g, stopband ws(in radians) and N samples.

*

* Eg

* ^ H(e^jw)

* |

* -------- | -------

68

* | | | | |

* | | | | |

* <-------------------------> w

* pi-wc pi pi+wc

*

*

* This implementation is a FIR filter is a rectangularly windowed sinc function

* (eg sin(x)/x) multiplied by e^(j*pi*n)=(-1)^n, which is the optimal FIR high pass filter in

* mean square error terms.

*

* Specifically, h[n] has N samples from n=0 to (N-1)

* such that h[n] = (-1)^(n-N/2) * sin(cutoffFreq*pi*(n-N/2))/(pi*(n-N/2)).

* where cutoffFreq is pi-ws

* and the field h holds h[-n].

*/

float->float filter HighPassFilter(float g, float ws, int N) {

float[N] h;

/* since the impulse response is symmetric, I don’t worry about reversing h[n]. */

init {

int OFFSET = N/2;

float cutoffFreq = pi - ws;

for (int i=0; i<N; i++) {

int idx = i + 1;

/* flip signs every other sample (done this way so that it gets array destroyed) */

int sign = ((i%2) == 0) ? 1 : -1;

// generate real part

if (idx == OFFSET)

/* take care of div by 0 error (lim x->oo of sin(x)/x actually equals 1)*/

h[i] = sign * g * cutoffFreq / pi;

else

h[i] = sign * g * sin(cutoffFreq * (idx-OFFSET)) / (pi*(idx-OFFSET));

}

}

/* implement the FIR filtering operation as the convolution sum. */

work peek N pop 1 push 1 {

float sum = 0;

for (int i=0; i<N; i++) {

sum += h[i]*peek(i);

}

push(sum);

pop();

}

69

}

/* This is a bandpass filter with the rather simple implementation

of

* a low pass filter cascaded with a high pass filter. The relevant parameters

* are: end of stopband=ws and end of passband=wp, such that 0<=ws<=wp<=pi

* gain of passband and size of window for both filters. Note that the high

* pass and low pass filters currently use a rectangular window.

**/

float->float pipeline BandPassFilter(float gain, float ws, float

wp, int numSamples) {

add LowPassFilter(1, wp, numSamples);

add HighPassFilter(gain, ws, numSamples);

}

/**

* This filter compresses the signal at its input by a factor M.

* Eg it inputs M samples, and only outputs the first sample.

**/

float->float filter Compressor(int M) {

work peek M pop M push 1 {

push(pop());

for (int i=0; i<(M-1); i++) {

pop();

}

}

}

FM Radio

/*

* Software equalizer. This version uses n+1 low-pass filters directly,

* as opposed to n band-pass filters, each with two low-pass filters.

* The important observation is that we have bands 1-2, 2-4, 4-8, ...

* This means that we should run an LPF for each intermediate frequency,

* rather than two per band. Calculating this in StreamIt isn’t that bad.

* For a four-band equalizer:

*

* |

* DUP

* +---------+---------+

* | | |

70

* | DUP |

* | +----+----+ |

* | | | | |

* 16 8 4 2 1

* | | | | |

* | (dup)(dup)(dup) |

* | | | | |

* | +----+----+ |

* | RR(2) |

* | | |

* +---------+---------+

* WRR(1,2(n-1),1)

* |

* (a-b)

* |

* SUM(n)

* |

*

* It’s straightforward to change the values of 1, 16, and n. Coming out

* of the EqualizerSplitJoin is 16 8 8 4 4 2 2 1; we can subtract and scale

* these as appropriate to equalize.

*/

float->float filter FloatNAdder(int count) {

work push 1 pop count {

float sum = 0.0;

for(int i=0; i<count; i++)

sum += pop();

push(sum);

}

}

float->float filter FloatDiff() {

work push 1 pop 2 {

push(peek(0) - peek(1));

pop();

pop();

71

}

}

float->float filter FloatDup() {

work push 2 pop 1 {

float val = pop();

push(val);

push(val);

}

}

float->float pipeline EqualizerInnerPipeline(float rate, float

freq) {

add FMLowPassFilter(rate,freq,64,0);

add FloatDup();

}

float->float splitjoin EqualizerInnerSplitJoin(float rate, float

low, float high, int bands) {

split duplicate();

for(int i=0; i < bands-1; i++)

add EqualizerInnerPipeline(rate,(float)exp((i+1)*(log(high)-log(low))/bands + log(low)));

join roundrobin(2);

}

float->float splitjoin EqualizerSplitJoin(float rate, float low,

float high, int bands) {

split duplicate();

add FMLowPassFilter(rate,high,64,0);

add EqualizerInnerSplitJoin(rate,low,high,bands);

add FMLowPassFilter(rate,low,64,0);

join roundrobin(1,(bands-1)*2,1);

}

float->float pipeline Equalizer(float rate) {

72

int bands = 10;

float low = 55;

float high = 1760;

add EqualizerSplitJoin(rate,low,high,bands);

add FloatDiff();

add FloatNAdder(bands);

}

float->float filter FMLowPassFilter(float sampleRate, float

cutFreq, int numTaps, int decimation) {

float[numTaps] COEFF; //all frequencies are in hz

float tapTotal;

init {

float m = numTaps -1;

//from Oppenheim and Schafer, m is the order of filter

if(cutFreq == 0.0) {

//Using a Hamming window for filter taps:

tapTotal = 0;

for(int i=0;i<numTaps;i++) {

COEFF[i] = (float)(0.54 - 0.46*cos((2*pi)*(i/m)));

tapTotal = tapTotal + COEFF[i];

}

//normalize all the taps to a sum of 1

for(int i=0;i<numTaps;i++) {

COEFF[i] = COEFF[i]/tapTotal;

}

}

else{

//ideal lowpass filter ==> Hamming window

//has IR h[n] = sin(omega*n)/(n*pi)

//reference: Oppenheim and Schafer

float w = (2*pi) * cutFreq/sampleRate;

for(int i=0;i<numTaps;i++) {

//check for div by zero

73

if(i-m/2 == 0)

COEFF[i] = w/pi;

else

COEFF[i] = (float)(sin(w*(i-m/2)) / pi

/ (i-m/2) * (0.54 - 0.46

* cos((2*pi)*(i/m))));

}

}

}

work push 1 pop decimation+1 peek numTaps {

float sum = 0.0;

for(int i=0; i<numTaps; i++) {

sum += peek(i)*COEFF[i];

}

pop();

for(int i=0; i<decimation; i++)

pop();

push(sum);

}

}

float->float filter FMDemodulator(float sampRate, float max, float

bandwidth) {

float mGain;

init {

mGain = max*(sampRate/(bandwidth*pi));

}

work push 1 pop 1 peek 2 {

float temp = 0;

//may have to switch to complex?

temp = (float)(peek(0) * peek(1));

//if using complex, use atan2

temp = (float)(mGain * atan(temp));

pop();

push(temp);

}

}

74

void->float filter FloatOneSource {

float x;

init {

x = 0;

}

work push 1 pop 0 {

push(x++);

}

}

/*

* Early attempt at an FM Radio... probably junk

*/

float->float pipeline FMRadioCore {

// float samplingRate = 200000; //200khz sampling rate according to jeff at vanu

float samplingRate = 250000000; // 250 MHz sampling rate much more sensible, though

float cutoffFrequency = 108000000; //guess... doesn’t FM freq max at 108 Mhz?

int numberOfTaps = 64;

float maxAmplitude = 27000;

float bandwidth = 10000;

//decimate 4 samples after outputting 1

add FMLowPassFilter(samplingRate, cutoffFrequency, numberOfTaps, 4);

add FMDemodulator(samplingRate, maxAmplitude, bandwidth);

add Equalizer(samplingRate);

}

void->void pipeline FMRadio {

add FloatOneSource();

add FMRadioCore();

add FloatPrinter();

}

FIR Program

75

/**

* This streamit program contains a simple low pass filter

* that filters the data from a source and funnels it directly

* to a sink. This is more of a "kernel" type benchmark because

* FIR filtering is widely used in actual DSP applications.

**/

/**

* Top level program.

**/

void->void pipeline FIRProgram {

add FloatSource();

add LowPassFilter(1, pi/3, 256);

add FloatPrinter();

}

/**

* Simple float source -- puts out a ramp from

* 0 to 15 over and over again. Note that it

* generates its output data in its init function

* and the oly work that occurs in the work function

* is pushing the data on to the tape and doing some

* buffer management.

**/

void->float filter FloatSource {

float[16] inputs;

int idx;

init {

for(int i=0; i<16; i++) {

inputs[i] = i;

}

idx = 0;

}

work push 1 {

push(inputs[idx]);

idx = (idx + 1) % 16;

}

}

Channel Vocoder

/**

* This is a channel vocoder as described in 6.555 Lab 2.

* It’s salient features are a filterbank each of which

76

* contains a decimator after a bandpass filter.

*

* Sampling Rate is 8000 Hz.

* First the signal is conditioned using a lowpass filter with

* cutoff at 5000 Hz. Then the signal is "center clipped" which

* basically means that very high and very low values are removed.

*

* Then, the signal is sent both to a pitch detector and to a

* filter bank with 200 Hz wide windows (18 overall)

*

* Thus, each output is the combination of 18 band envelope values

* from the filter bank and a single pitch detector value. This

* value is either the pitch if the sound was voiced or 0 if the

* sound was unvoiced.

**/

void->void pipeline ChannelVocoder {

add DataSource();

// low pass filter to filter out high freq noise

add LowPassFilter(1, (2*pi*5000)/8000, 64);

add MainSplitjoin();

add FloatPrinter();

}

/** This class is just a wrapper so that we don’t have anonymous

inner classes. **/ float->float splitjoin MainSplitjoin {

int PITCH_WINDOW = 100; // the number of samples to base the pitch detection on

int DECIMATION = 50; // decimation factor

int NUM_FILTERS = 4; //18;

split duplicate;

add PitchDetector(PITCH_WINDOW, DECIMATION);

add VocoderFilterBank(NUM_FILTERS, DECIMATION);

join roundrobin(1,4); // can’t be NUM_FILTERS b/c const prop didn’t work

}

/** a simple data source. **/ void->float filter DataSource() {

int SIZE = 11;

int index;

float[SIZE] x;

init {

index = 0;

x[0] = -0.70867825;

77

x[1] = 0.9750938;

x[2] = -0.009129746;

x[3] = 0.28532153;

x[4] = -0.42127264;

x[5] = -0.95795095;

x[6] = 0.68976873;

x[7] = 0.99901736;

x[8] = -0.8581795;

x[9] = 0.9863592;

x[10] = 0.909825;

}

work push 1 {

push(x[index]);

index = (index+1)%SIZE;

}

}

/**

* Pitch detector.

**/

float->float pipeline PitchDetector(int winsize, int decimation) {

add CenterClip();

add CorrPeak(winsize, decimation);

}

/** The channel vocoder filterbank. **/ float->float splitjoin

VocoderFilterBank(int N, int decimation) {

split duplicate;

for (int i=0; i<N; i++) {

add FilterDecimate(i, decimation);

}

join roundrobin;

}

/**

* A channel of the vocoder filter bank -- has a

* band pass filter centered at i*200 Hz followed

* by a decimator with decimation rate of decimation.

78

**/

float->float pipeline FilterDecimate(int i, int decimation) {

//add VocoderBandPassFilter(i, 64); // 64 tap filter

add BandPassFilter(2, 400*i, 400*(i+1), 64);

add Compressor(decimation);

}

/**

* This filter "center clips" the input value so that it is always

* within the range of -.75 to .75

**/

float->float filter CenterClip {

float MIN = -0.75;

float MAX = 0.75;

work pop 1 push 1 {

float t = pop();

if (t<MIN) {

push(MIN);

} else if (t>MAX) {

push(MAX);

} else {

push(t);

}

}

}

/**

* This filter calculates the autocorrelation of the next winsize elements

* and then chooses the max peak. If the max peak is under a threshold we

* output a zero. If the max peak is above the threshold, we simply output

* its value.

**/

float->float filter CorrPeak(int winsize, int decimation) {

float THRESHOLD = 0.07;

work peek winsize push 1 pop decimation {

float[winsize] autocorr; // auto correlation

for (int i=0; i<winsize; i++) {

float sum = 0;

for (int j=i; j<winsize; j++) {

sum += peek(i)*peek(j);

}

autocorr[i] = sum/winsize;

}

79

// armed with the auto correlation, find the max peak

// in a real vocoder, we would restrict our attention to

// the first few values of the auto corr to catch the initial peak

// due to the fundamental frequency.

float maxpeak = 0;

for (int i=0; i<winsize; i++) {

if (autocorr[i]>maxpeak) {

maxpeak = autocorr[i];

}

}

//println("max peak" + maxpeak);

// output the max peak if it is above the threshold.

// otherwise output zero;

if (maxpeak > THRESHOLD) {

push(maxpeak);

} else {

push(0);

}

for (int i=0; i<decimation; i++) {

pop();

}

}

}

FilterBank

void->void pipeline FilterBankNew {

int N_sim = 1024 * 2;

int N_samp = 8;

int N_ch = N_samp;

int N_col = 32;

float[N_sim] r;

float[N_ch][N_col] H;

float[N_ch][N_col] F;

for (int i = 0; i < N_col; i++)

for (int j = 0; j < N_ch; j++) {

H[j][i] = i*N_col + j*N_ch + j + i + j + 1;

F[j][i] = i*j + j*j + j + i;

}

80

add source();

add FilterBank(N_samp, N_ch, N_col, H, F);

add sink(N_sim);

}

void->float filter source() {

float max = 1000.0;

float current = 0.0;

work push 1 pop 0 {

push(current);

if (current > max) {

current = 0.0;

} else {

current = current+1.0;

}

}

}

float->void filter sink(int N) {

work pop 1 { print(pop()); }

}

float->float pipeline FilterBank(int N_samp, int N_ch, int N_col,

float[N_ch][N_col] H,

float[N_ch][N_col] F)

{

add Branches(N_samp, N_ch, N_col, H, F);

add Combine(N_samp);

}

float->float splitjoin Branches(int N_samp, int N_rows, int N_col,

float[N_rows][N_col] H,

float[N_rows][N_col] F)

{

split duplicate;

for (int i = 0; i < N_rows; i++)

{

float[N_col] H_ch;

float[N_col] F_ch;

for (int j = 0; j < N_col; j++)

{

H_ch[j] = H[i][j];

F_ch[j] = F[i][j];

}

81

add Bank(N_samp, N_col, H_ch, F_ch);

}

join roundrobin;

}

float->float pipeline Bank(int N, int L, float[L] H, float[L] F) {

add Delay_N(L-1);

add FirFilter(L, H);

add DownSamp(N);

add UpSamp(N);

add Delay_N(L-1);

add FirFilter(L, F);

}

float->float filter Delay_N(int N) {

float[N] state;

int place_holder;

init {

for (int i = 0; i < N; i++)

state[i] = 0;

place_holder = 0;

}

work pop 1 push 1 {

push(state[place_holder]);

state[place_holder] = pop();

place_holder++;

if (place_holder == N)

place_holder = 0;

}

}

float->float filter FirFilter(int N, float[N] COEFF) {

work pop 1 peek N push 1 {

float sum = 0;

for (int i = 0; i < N; i++)

sum += peek(i) * COEFF[N-1-i];

pop();

push(sum);

}

}

float->float filter DownSamp(int N) {

work pop N push 1 {

82

push(pop());

for (int i = 0; i < N-1; i++)

pop();

}

}

float->float filter UpSamp(int N) {

work pop 1 push N {

push(pop());

for (int i = 0; i < N-1; i++)

push(0);

}

}

float->float filter Combine(int N) {

work pop N push 1 {

float sum = 0;

for (int i = 0; i < N; i++)

sum += pop();

push(sum);

}

}

FFT

void->void pipeline FFT2() {

add FFTTestSource(16);

add FFTKernel2(16);

add FloatPrinter();

}

float->float filter CombineDFT(int n) {

float wn_r, wn_i;

init {

wn_r = (float)cos(2 * 3.141592654 / n);

wn_i = (float)sin(-2 * 3.141592654 / n);

}

work push 2*n pop 2*n {

int i;

83

float w_r = 1;

float w_i = 0;

float[2*n] results;

for (i = 0; i < n; i += 2)

{

// this is a temporary work-around since there seems to be

// a bug in field prop that does not propagate nWay into the

// array references. --BFT 9/10/02

//int tempN = nWay;

//Fixed --jasperln

// removed nWay, just using n --sitij 9/26/03

float y0_r = peek(i);

float y0_i = peek(i+1);

float y1_r = peek(n + i);

float y1_i = peek(n + i + 1);

float y1w_r = y1_r * w_r - y1_i * w_i;

float y1w_i = y1_r * w_i + y1_i * w_r;

results[i] = y0_r + y1w_r;

results[i + 1] = y0_i + y1w_i;

results[n + i] = y0_r - y1w_r;

results[n + i + 1] = y0_i - y1w_i;

float w_r_next = w_r * wn_r - w_i * wn_i;

float w_i_next = w_r * wn_i + w_i * wn_r;

w_r = w_r_next;

w_i = w_i_next;

}

for (i = 0; i < 2 * n; i++)

{

pop();

push(results[i]);

}

}

}

84

float->float filter FFTReorderSimple(int n) {

int totalData;

init {

totalData = 2*n;

}

work push 2*n pop 2*n {

int i;

for (i = 0; i < totalData; i+=4)

{

push(peek(i));

push(peek(i+1));

}

for (i = 2; i < totalData; i+=4)

{

push(peek(i));

push(peek(i+1));

}

for (i=0;i<n;i++)

{

pop();

pop();

}

}

}

float->float pipeline FFTReorder(int n) {

for(int i=1; i<(n/2); i*= 2)

add FFTReorderSimple(n/i);

}

float->float pipeline FFTKernel1(int n) {

if(n>2) {

add splitjoin {

85

split roundrobin(2);

add FFTKernel1(n/2);

add FFTKernel1(n/2);

join roundrobin(n);

}

}

add CombineDFT(n);

}

float->float splitjoin FFTKernel2(int n) {

split roundrobin(2*n);

for(int i=0; i<2; i++) {

add pipeline {

add FFTReorder(n);

for(int j=2; j<=n; j*=2)

add CombineDFT(j);

}

}

join roundrobin(2*n);

}

void->float filter FFTTestSource(int N) {

work push 2*N pop 0 {

int i;

push(0.0);

push(0.0);

push(1.0);

push(0.0);

for(i=0; i<2*(N-2); i++)

push(0.0);

}

}

float->void filter FloatPrinter {

work push 0 pop 1 {

print(pop());

}

}

86

Linear Difference Equation

void->float filter source() {

float x;

init {

x = 1.0;

}

work push 1 pop 0 {

push(x);

x = 0.0;

}

}

float->void filter sink() {

work push 0 pop 1 {

print(pop());

}

}

void->void pipeline diffEq() {

add source();

add linDiff();

add sink();

}

float->float filter linDiff() {

// these variables save the previous outputs

float x,y,z;

init {

x = 0.0;

y = 0.0;

z = 0.0;

87

}

work push 1 pop 1 peek 3 {

float temp;

temp = 0.2*peek(0) + 0.4*peek(1) - 0.5*peek(2) + 0.3*x - 0.8*y - 0.6*z;

push(temp);

pop();

x = y;

y = z;

z = temp;

}

}

IIR + 1/2 Decimator

void->float filter source() {

float x;

init {

x = 1.0;

}

work push 1 pop 0 {

push(x);

x = 0.0;

}

}

float->void filter sink() {

work push 0 pop 1 {

print(pop());

}

}

void->void pipeline IIR() {

add source();

add IIRFilter();

add decimate();

88

add sink();

}

float->float filter IIRFilter() {

float curr;

init {

curr = 0.0;

}

work push 1 pop 1 peek 3 {

float temp;

temp = peek(0)/4 + peek(1)/8 + peek(2)/6;

curr = curr/2 + temp;

push(curr);

pop();

}

}

float->float filter decimate() {

work push 1 pop 2 {

push(pop());

pop();

}

}

IIR + 1/16 Decimator

void->float filter source() {

float x;

init {

x = 1.0;

}

work push 1 pop 0 {

push(x);

89

x = 0.0;

}

}

float->void filter sink() {

work push 0 pop 1 {

print(pop());

}

}

void->void pipeline IIR() {

add source();

add IIRFilter();

add decimate();

add sink();

}

float->float filter IIRFilter() {

float curr;

init {

curr = 0.0;

}

work push 1 pop 1 peek 3 {

float temp;

temp = peek(0)/4 + peek(1)/8 + peek(2)/6;

curr = curr/2 + temp;

push(curr);

pop();

}

}

float->float filter decimate() {

work push 1 pop 16 {

90

push(peek(0));

for(int i=0; i<16; i++)

pop();

}

}

IIR+FIR

void->float filter source() {

float x;

init {

x = 1.0;

}

work push 1 pop 0 {

push(x);

x = 0.0;

}

}

float->void filter sink() {

work push 0 pop 1 {

print(pop());

}

}

void->void pipeline IIR() {

add source();

add IIRFilter();

add FIR();

add sink();

}

float->float filter IIRFilter() {

float curr;

91

init {

curr = 0.0;

}

work push 1 pop 1 peek 3 {

float temp;

temp = peek(0)/4 + peek(1)/8 + peek(2)/6;

curr = curr/2 + temp;

push(curr);

pop();

}

}

float->float filter FIR() {

work push 1 pop 1 peek 5 {

push(0.45*peek(0) - 0.8*peek(1) - 0.56*peek(2) - 0.8*peek(3) + 0.45*peek(4));

pop();

}

}

FIR+IIR+FIR

void->float filter source() {

float x;

init {

x = 1.0;

}

work push 1 pop 0 {

push(x);

x = 0.0;

}

}

float->void filter sink() {

92

work push 0 pop 1 {

print(pop());

}

}

void->void pipeline IIR() {

add source();

add FIR();

add IIRFilter();

add FIR();

add sink();

}

float->float filter IIRFilter() {

float curr;

init {

curr = 0.0;

}

work push 1 pop 1 peek 3 {

float temp;

temp = peek(0)/4 + peek(1)/8 + peek(2)/6;

curr = curr/2 + temp;

push(curr);

pop();

}

}

float->float filter FIR() {

work push 1 pop 1 peek 5 {

push(0.45*peek(0) - 0.8*peek(1) - 0.56*peek(2) - 0.8*peek(3) + 0.45*peek(4));

pop();

}

}

93

94

Bibliography

[1] J.E. Achermann and R.S. Bucy. Canonical minimal realization of a matrix of

impulse response sequences. Information and Control, pages 224–231, 1971.

[2] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A trans-

parent dynamic optimization system. In Proceedings of the ACM SIG-PLAN

1999 Conference on Programming Language Design and Implementation (PLDI),

1999.

[3] Gerard Berry and Georges Gonthier. The esterel synchronous programming lan-

guage: Design, semantics, implementation. Science of Computer Programming,

19(2), 1992.

[4] Inmos Corporation. Occam 2 Reference Manual. Prentice Hall, 1988.

[5] M. Frigo. A Fast Fourier Transform Compiler. In Proceedings of the ACM SIG-

PLAN 1999 Conference on Programming Language Design and Implementation

(PLDI), 1999.

[6] J. Gaudiot, W. Bohm, T. DeBoni, J. Feo, and P. Mille. The Sisal Model of

Functional Programming and its Implementation. In Proceedings of the 2nd Aizu

International Symposium on Parallel Algorithms/Architecture Synthesis, 1997.

[7] Thierry Gautier, Paul Le Guernic, and Loic Besnard. Signal: A declarative

language for synchronous programming of real-time systems. Springler Verlag

Lecture Notes in Computer Science, 274, 1987.

95

[8] Vincent Gay-Para, Thomas Graf, Andre-Guillaume Lemonnier, and Erhard

Wais. Kopi Reference Manual. http//www.dms.at/kopi/docs/kopi.html, 2001.

[9] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow

language lustre. Proceedings of the IEE, 79(1), 1991.

[10] Michael A. Karczmarek. Constrained and phased scheduling of synchronous data

flow graphs for the streamit language. Master’s thesis, Massachusetts Institute

of Technology, October 2002.

[11] Andrew A. Lamb. Linear analysis and optimization of stream programs. Master’s

thesis, Massachusetts Institute of Technology, May 2003.

[12] D. Q. Mayne. An elementary derivation of rosenbrock’s minimal realization

algorithm. IEE Transactions on Automatic Control, pages 306–307, 1973.

[13] B. C. Moore. Principal component analysis in linear sytems: controllability,

observability, and model reduction. IEE Transactions on Automatic Control,

26(1):17–31, 1981.

[14] M. Püschel, B. Singer, J. Xiong, J. M .F. Moura, J. Johnson, D. Padua, M. M.

Veloso, and R. W. Johnson. Spiral: A generator for platform-adapted libraries

of signal processing algorithms. Journal of High Performance Computing and

Applications, special issue on Automatic Performance Tuning, 18(1):21–45, 2004.

[15] Scott Rixner, William J. Dally, Ujval J. Kapani, Brucek Khailany, Abelardo

Lopez-Lagunas, Peter R. Manson, and John D. Owens. A Bandwidth-Efficient

Architecture for Media Processing. In International Symposium on High Perfor-

mance Computer Architecture, Dallas, TX, 1998.

[16] B. De Schutter. Minimal state-space realization in linear system theory: An

overview. Journal of Computational and Applied Mathematics, 121(1), 2000.

[17] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A Lan-

guage for Streaming Applications. In Proceedings of the International Conference

on Compiler Construction, Grenoble, France, 2002.

96

[18] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. Society for

Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[19] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical

optimizations of software and the atlas project. Parallel Computing, 27(1), 2001.

97

