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ABSTRACT
Digital Signal Processing (DSP) is becoming increasingly
widespread in portable devices. Due to harsh constraints on
power, latency, and throughput in embedded environments,
developers often appeal to signal processing experts to hand-
optimize algorithmic aspects of the application. However,
such DSP optimizations are tedious, error-prone, and ex-
pensive, as they require sophisticated domain-specific knowl-
edge.

We present a general model for automatically represent-
ing and optimizing a large class of signal processing appli-
cations. The model is based on linear state space systems.
A program is viewed as a set of filters, each of which has
an input stream, an output stream, and a set of internal
states. At each time step, the filter produces some outputs
that are a linear combination of the inputs and the state
values; the state values are also updated in a linear fashion.
Examples of linear state space filters include IIR filters and
linear difference equations.

Using the state space representation, we describe a novel
set of program transformations, including combination of
adjacent filters, elimination of redundant states and reduc-
tion of the number of system parameters. We have im-
plemented the optimizations in the StreamIt compiler and
demonstrate improved generality over previous techniques.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Optimiza-

tion; compilers; code generation; D.2.2 [Software Engi-
neering]: Software Architectures—Domain-specific archi-

tectures; D.3.2 [Programming Languages]: Language Clas-
sifications—Data-flow languages

General Terms
Languages, Design, Algorithms, Performance

Keywords
Stream Programing, StreamIt, Synchronous Dataflow, Lin-
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1. INTRODUCTION
Digital devices are increasingly common in everyday life.

Examples include cell phones, modems, CD players, and
high definition televisions. These products utilize Digital
Signal Processing (DSP) for a variety of applications, includ-
ing signal compression and decompression, noise reduction,
and error correction. Because such programs often run in
embedded environments with limited power and strict real-
time requirements, this is a domain where optimization is
still very important.

Due to the emphasis on performance, DSP programs are
typically implemented in two phases. First, the functional-
ity of the algorithm is specified at a high level of abstraction
by applications designers. Then, a set of DSP experts ex-
amine the global flow of data and perform specialized trans-
formations to efficiently map the algorithm to C and as-
sembly code. This process is tedious and costly, as every
change in the high-level design necessitates new optimiza-
tions and re-implementation of the code; in addition, the
optimizations are typically architecture-dependent, thereby
sacrificing portability and robustness. In an ideal world, the
compiler would provide a unified framework for optimizing
high-level DSP algorithms, thereby providing an automatic
path from the functional specification to an efficient imple-
mentation.

As a small step towards this vision, this paper introduces a
new framework for analyzing and optimizing a large class of
DSP applications. The framework, which we call linear state
space analysis, applies a large body of work on linear state
space systems to the domain of programming languages and
compilers. A state space system is one in which a computa-
tional element produces and consumes some values on each
execution. In addition, some internal data may be preserved
between executions; we refer to these values as states.

A state space system is linear if it satisfies two criteria.
First, each output must be a linear combination of the inputs
and the current state values. Second, on each execution, the
state values must be updated as a linear combination of the
inputs and the previous state values. Linear state space sys-
tems can model a large class of DSP operations, including
FIR filters, IIR filters, DCTs, upsamplers / downsamplers
and linear difference equations. They are a generalization
of linear systems, in which a linear input-output relation-
ship holds but there is no state retained between executions.
There is a strong theoretical foundation for reasoning about
linear state space systems; it has been shown, for example,
how to minimize the number of states [26] as well as the
number of parameters in the system [1, 25, 31].



Our technique leverages domain-specific knowledge of lin-
ear state space systems to perform novel optimizations on
stream programs. Our framework applies to languages based
on the synchronous dataflow model of computation. In this
model, a program is a set of autonomous filters that com-
municate over FIFO channels. On each execution, a filter
consumes some items from its input channels and produces
some items on its output channels; it may also retain states
between executions. A filter can be modeled as a linear
state space system if it satisfies the criteria described previ-
ously. In this paper, we use StreamIt as the input language;
StreamIt is a high-level language and compiler infrastruc-
ture for DSP applications.

This paper makes the following contributions:

• An extraction algorithm that examines each filter and,
where possible, builds a linear state space representa-
tion to describe its behavior.

• Rules for combining adjacent linear state space blocks
into a single representation, thereby eliminating redun-
dant computations and enabling further optimizations.
Each possible configuration of blocks (sequential, par-
allel, and cyclic) is handled.

• A state removal optimization that detects and elimi-
nates redundant states within a block.

• A parameter reduction optimization that adjusts the
coefficients of the state update and output calculation
in order to decrease the number of operations used.

While the principle contribution of this paper is in the
elegance and generality of its theoretical formulation, we
also demonstrate that state space analysis is tractable by
implementing it in the StreamIt compiler. We evaluate state
space analysis over a small set of micro-benchmarks and
illustrate that it is more general than linear optimizations
alone.

In the rest of this section, we give an overview of StreamIt
and illustrating examples of state space analysis1. Section 2
gives the details of our state space representation, including
extraction and combination rules, while Section 3 describes
the optimizations. Section 4 discusses our implementation,
Section 5 details related work, and Section 6 concludes.

1.1 The StreamIt Language
StreamIt [33] is an architecture-independent language for

signal processing applications. The model of computation
in StreamIt is Synchronous Dataflow [23], in which inde-
pendent filters communicate at fixed rates over FIFO chan-
nels. StreamIt aims to expose the abundant parallelism and
regular communication patterns in stream programs for the
benefit of the compiler. The optimizations described in this
paper would be infeasible in a general-purpose language such
as C. As detailed elsewhere [33], C obscures the high-level
structure of a streaming application due to possible aliasing
between autonomous filters, complex modulo expressions on
circular buffers, and interleaving of atomic execution steps
with global control flow. In addition, StreamIt offers im-
proved programmer productivity over C due to its parame-
terizable and composable stream constructs.

1
As the rest of this paper is devoted to linear state space analysis,

we often say only “state space analysis” for brevity.

float->float filter MovingAverage(int N) {
float[N] weights; // a filter field

// init function initializes the weights
init {
for (int i=0; i<N; i++)

weights[i] = 1/N;
}

// work function declares push, pop, peek rates
work push 1 pop 1 peek N {
float result = 0; // a local variable
for (int i=0; i<N; i++) {

result += weights[i] * peek(i);
}
push(result);
pop();

}
}

Figure 1: Example of a StreamIt filter.

The basic programmable unit in StreamIt is a filter, which
executes a user-defined work function as its atomic execution
step; for example, see the MovingAverage filter in Figure 1.
Filters communicate with each other using FIFO channels.
On each execution, a filter consumes (pops) a fixed number
of items from its input channel and produces (pushes) a fixed
number of items to its output channel. A filter can also peek

at a given index on its input channel without consuming the
item; this makes it simple to write sliding-window applica-
tions such as the MovingAverage. The push, pop, and peek
rates are declared on the same line as the work function,
thereby enabling the compiler to construct a static schedule
of filter firings [23].

Each filter has a distinct address space. A filter can store
two types of variables: a field and a local. Fields are declared
in the scope of the filter and are preserved across executions,
while locals are declared inside the work function and are
only live within a single execution. There is also an init
function, run once at the beginning of the program, that
can be used to initialize fields.

StreamIt provides three hierarchical structures for com-
posing filters into larger stream graphs (see Figure 2). The
pipeline construct composes streams in sequence, with the
output of one connected to the input of the next. The
splitjoin construct distributes data to a set of parallel streams,
which are then joined together in a roundrobin fashion. The
feedback loop provides a mechanism for introducing cycles in
the graph. An example of a pipeline appears in Figure 3.
It contains a single Infinite Impulse Response (IIR) filter,
which could be implemented as shown at the top of Fig-
ure 4.

1.2 State Space Example
As described previously, a linear state space model de-

scribes a stream in which both the outputs and the state
values are updated as a linear combination of the inputs
and the previous states. We use the following notation to
describe such systems:

~̇x = A~x + B~u

~y = C~x + D~u

In these equations, the state vector is denoted by ~x, the
inputs by ~u, and the outputs by ~y. ~̇x represents the new



stream

stream

stream

stream

splitter

stream stream

joiner

joiner

stream

splitter

stream
float -> float pipeline Main() {

  add Source();  // code for Source not shown

  add IIR();

  add Output();  // code for Output not shown

}

Source

IIR

Output

(a) A pipeline. (b) A splitjoin. (c) A feedbackloop.

Figure 2: Stream structures supported by StreamIt. Figure 3: Example pipeline with IIR filter.

float->float filter IIR_1 {

  float x1, x2;

  work push 2 pop 3 {

    float u1 = pop();

    float u2 = pop();

    float u3 = pop();

    push(2∗x1 + 2∗x2 + 3∗u1);

    push(4∗u3 - 5∗x1 - 5∗x2);

    float x1_temp = (x1 + x2 + u1) ∗ 0.5;

    float x2_temp = (x1 + x2 + u2) ∗ 0.25;

    x1 = x1_temp;

    x2 = x2_temp;

  }

}

float->float filter IIR_2 {

  float x;

  work push 2 pop 3 {

    float u1 = pop();

    float u2 = pop();

    float u3 = pop();

    push(2∗x + 3∗u1);

    push(4∗u3 - 5∗x);

    x = 0.75∗x + 0.5∗u1 + 0.25∗u2;

  }

}

float->float filter IIR_3 {

  float x;

  work push 2 pop 3 {

    float u1 = pop();

    float u2 = pop();

    float u3 = pop();

    push(x + 3∗u1);

    push(4∗u3 - 2.5∗x);

    x = 0.75∗x + u1 + 0.5*u2;

  }

}

State Removal

Parameter Reduction

Number of multiplications: 8
Number of additions: 8
State space representation:

~̇x =

�
0.5 0.5
0.25 0.25 � ~x +

�
0.5 0 0
0 0.25 0 � ~u

~y =

�
2 2
−5 −5 � ~x +

�
3 0 0
0 0 4 � ~u

Number of multiplications: 7
Number of additions: 4
State space representation:

~̇x = � 0.75 � ~x + � 0.5 0.25 0 � ~u

~y =

�
2
−5 � ~x +

�
3 0 0
0 0 4 � ~u

Number of multiplications: 5
Number of additions: 4
State space representation:

~̇x = � 0.75 � ~x + � 1 0.5 0 � ~u

~y =

�
1

−2.5 � ~x +

�
3 0 0
0 0 4 � ~u

Figure 4: Example optimization of an IIR filter using linear state space analysis. The top segment shows
the original code. The middle segment depicts the action of state removal, in which the quantity x1 + x2 is
replaced by a single variable x. The bottom segment illustrates parameter reduction, in which the coefficients
are refactored so as to eliminate two multiplications (two coefficients assume a value of 1).



state vector, i.e., the state vector after it is updated. The
first equation is for the state updates, while the second equa-
tion is for the outputs. A, B, C, and D are matrices whose
dimensions depend on the number of states, inputs, and out-
puts.

Figure 4 illustrates an optimization sequence for an IIR
filter. Three versions of the filter are shown: original, fol-
lowing state removal, and following parameter reduction.
In each case, the state space representation for the filter is
shown on the right, along with the number of multiplica-
tions and additions needed per execution of the work func-
tion.

The state removal optimization identifies that the states
x1 and x2 are always used as part of the expression x1 +
x2. Thus, one of the states can be eliminated in favor
of a single variable, x, that tracks the value of the sum.
While relatively simple in this example, such a transforma-
tion can be quite subtle when applied to a large represen-
tation (e.g., the result of combining many filters together.)
State removal can reduce storage requirements as well as
eliminate arithmetic operations (in this example, 1 multipli-
cation and 4 additions). As described in Section 3.2, state
removal is formulated as a general sequence of matrix oper-
ations.

The parameter reduction optimization refactors the coef-
ficients that operate on the state variables in order to reduce
the number of operations needed. Following the transforma-
tion, x assumes a value that is twice as large as the original
(at any given point of execution). However, this change does
not affect the output of the filter, as the coefficients in A are
compensated accordingly. The transformation enables two
coefficients in B and C to change to a value of 1, thereby
eliminating two multiplication operations. As described in
Section 3.3, this transformation is also formulated as a gen-
eral series of matrix operations.

2. STATE SPACE ANALYSIS
Our analysis operates on a symbolic representation of lin-

ear state space filters. We analyze the code of each StreamIt
filter to determine whether or not it is state space; if so we
initialize a data structure, fill it with the appropriate values
through a process called extraction, and associate the struc-
ture with the filter. We provide a set of rules to combine
state space representations of filters in hierarchical StreamIt
blocks—pipelines, splitjoins, and feedback loops. Such a
process results in a single state space representation for the
entire block. We also describe how to expand a representa-
tion so that it can be combined with blocks of mis-matching
dimensions.

2.1 Representation
Our first task is to create a data structure that fully cap-

tures the state space representation of a StreamIt filter. We
save a filter’s number of states, push rate, and pop rate in
variables termed s, u, and o, respectively. Our data struc-
ture also contains the matrices A, B, C, and D with di-
mensions s × s, s × o, u × s, and u × o, respectively. The
inputs to a filter are denoted by ~u (length o), the outputs
by ~y (length u), and the states by ~x (length s). Upon every
execution of the filter, we can update the state vector by
the formula ~̇x = A~x + B~u and calculate the outputs by
the formula ~y = C~x + D~u. For convenience, we calculate
the filter outputs before updating the state vector. Since

the states may have initial values other than zero, we store

these values as the vector
−−−−−→
initVec (length s).

Since we have not included a constant term in our model,
we always set one of the state variables to be the constant
1. This variable is not updated by any of the inputs or
states (besides itself), and its initial value is 1, so it always
remains that value. Any state or output that depends on a
constant term can now refer to a multiple of the constant
state variable instead.

As long as a filter’s peek rate (denoted by e) equals its
pop rate, the data structure as currently described can fully
represent the filter. We must make additional modifications
for a filter with a peek rate greater than its pop rate. Note
that such a filter still removes o items from its input tape
upon every execution, but it accesses e− o additional items
on its input tape. Therefore, our current data structure
would work as long as there is some way to access these
additional items.

We solve the problem of having a peek rate greater than
a pop rate by storing e− o items from the input tape in the
state vector ~x. Thus, when a filter executes, it can access all
e items it needs: o items from its input vector and e−o items
from its state vector. These e−o states must be updated by
the inputs and themselves—the specifics are covered in the
next section. We store the number of states used for inputs
as the variable stored. This will be useful when combining
representations.

When a filter is executed for the first time, it has access to
the o items in the input vector, but the e− o states it needs
have yet to be copied from the input. Therefore, we need to
initialize the state vector before iteratively computing the
output and state update equations. We introduce a new
matrix Bpre to perform this initialization. Before the filter

runs, it performs the state update ~̇x =
−−−−−→
initVec+Bpre~upre.

The initialization input vector ~upre has length opre = e− o.
For now, opre and stored have the same value, but combining
filters might result in opre being greater than stored.

Putting these pieces together, a full representation con-
sists of the push and pop rates, the number of state vari-
ables, the number of stored inputs, the four state matrices,
an initial state vector, and possibly an initialization state
matrix and an initial pop rate. We define a state space rep-
resentation R as the tuple 〈u, o, s, stored, A, B, C, D,
−−−−−→
initVec, Bpre, opre〉. When we introduce a representation
Ri, each of its values in the ordered set will be denoted
with the index i (for example ui, Ai). For representations
of filters that do not need the initialization matrix, we write
Bpre = null and opre = 0. In this case, the filter does not
have any stored inputs, so stored = 0 as well.

Representations are initially created from StreamIt fil-
ters and ultimately converted back to StreamIt filters. Be-
tween these steps, however, representations of hierarchical
StreamIt blocks can be derived by combining the represen-
tations of their parts. Thus, from now on we will say that
a representation refers to a block rather than a filter. The
exception is in the following section, where we discuss how
to create a representation from a StreamIt filter.

2.2 Extraction
We use a simple dataflow analysis to extract a state space

representation from the imperative code in a filter’s work
function. While an alternate approach would be to allow



the user to specify the representation explicitly (as part of
the program), StreamIt aims to provide a unified develop-
ment environment in which diverse filters are implemented
using a small set of primitives. State space filters are sim-
ple to implement using imperative StreamIt constructs, and
in this form they are immediately readable by programmers
unfamiliar with the state space formalism.

Our dataflow analysis symbolically executes a single iter-
ation of a filter’s work function, maintaining a vector pair
representation for each local variable and filter field that is
encountered (together, these are termed program variables).
If the outputs and fields (i.e., states) all have vector pair
representations, then the filter is linear state space, and the
vectors are used as rows of A, B, C, and D. Of course,
many filters do not fit the state space model; the optimiza-
tions developed in this paper are selectively applied to the
portions of the stream graph that contain state space fil-
ters.

We attempt to find a vector pair (~v,~w) for each program
variable p such that p = ~v · ~x + ~w · ~u, where ~x is the fil-
ter’s state vector and ~u is the filter’s input vector . When
p is on the left hand side of an assignment statement, terms
from the right hand side are identified as states (correspond-
ing to entries of ~x) and inputs (corresponding to entries of
~u). The coefficients from terms that match are used to fill
the corresponding entries in ~v and ~w, as long as they are
constants. If any coefficient is not a constant, then p is
non-linear.

The input vector ~u is defined as [peek(e − o) peek(e −
o + 1) ... peek(o − 1)]. The state vector ~x holds e − o vari-
ables from the input tape (peek(0) ... peek(e− o− 1)), every
filter field, and a variable for the constant 1. We do not
consider local variables for the state vector, because their
values are not saved across filter executions. A filter field
has the initial vector pair ( � 0 ... 1 ... 0 �, ~0), where
the 1 corresponds to the field itself.

If a vector pair is found for a given program variable p,
then p can be written as a linear combination of the inputs
and state variables, with the vector pair entries representing
the weights. The final assignment to state variable xi by
some program variable pk indicates that the ith rows of A
and B should be ~vk and ~wk, respectively. Similarly, if the
ith push statement uses program variable pk, then the ith
rows of C and D should be ~vk and ~wk, respectively.

We use the same procedure in the init function to find the
initial values for each filter field. However, we do not need
a vector ~w for the inputs, since there are no inputs to the
init function. The initial value for each stored input is zero,
and the initial value for the constant state is 1.

Finally, consider the stored input states (call them ~xs).
They are updated by the inputs; however, if stored > o,
then some of the input states must be updated by other
input states. In particular, the first stored − o input states
are updated by the last stored − o input states, and the
remaining o input states are updated by the o inputs. The
update is described by the equation:

~̇xs =

�
0 I
0 0 � ~xs +

�
0
I � ~u (1)

We also create an initialization matrix to put values from
the input tape into the input states:

~̇xs = 0 + I~upre

2.2.1 Extraction Example
Consider another IIR filter. Unlike the example in Sec-

tion 1.1, this filter uses peeking to read elements from the
tape without consuming them.

float->float filter IIR() {
float curr; // example of a filter field
work push 1 pop 1 peek 3 {

float temp; // example of a local variable
temp = (peek(0) + peek(1) + peek(2))/6;
curr = temp + curr/2;
push(curr);
pop();

}
}

The state vector is ����peek(0)peek(1)
curr

1

���� ; the input vector is �peek(2) �.
The first program variable encountered is temp. It is given
the vector pair ( � 1/6 1/6 0 0 �, � 1/6 �). The vari-
able curr, as a state variable, has an initial vector pair:
( � 0 0 1 0 �, � 0 �). When curr is found in an assign-
ment statement, it is given a new vector pair, constructed
as the vector pair for temp plus 1/2 times the old vector pair
for curr: ( � 1/6 1/6 1/2 0 �, � 1/6 �). The output is
curr, so it is given the same vector pair. The final pair for
curr represents its state update. The stored inputs peek(0)
and peek(1) are updated as in Equation 1, and the constant
1 updated to itself. Therefore, we have:

A = ���� 0 1 0 0
0 0 0 0

1/6 1/6 1/2 0
0 0 0 1

���� B = ���� 0
1

1/6
0

����
C = � 1/6 1/6 1/2 0 � D = � 1/6 �
−−−−−→
initVec = ���� 0

0
0
1

���� Bpre = ���� 1 0
0 1
0 0
0 0

����
The pop and push rates are both 1, and there are four

states, so o = 1, u = 1, and s = 4. There are two stored
input states, so opre = 2 and stored = 2.

2.3 Combination
If all blocks within a given pipeline, splitjoin, or feedback

loop have state space representations, they can be combined
into a single representation using the rules developed in this
section. There are two benefits to combining blocks. First,
combination can eliminate redundant computations across
blocks. Second, combination exposes optimization opportu-
nities, as intra-block optimizations (described in Section 3)
can effectively be applied across blocks by combining the
blocks first.

2.3.1 Pipeline
Consider two blocks connected in a pipeline with represen-

tations R1 and R2. We will derive the combined represen-
tation of the two blocks, denoted by R. Suppose the output
rate of R1 equals the input rate of R2 (u1 = o2). If this is
not the case, we must expand one or both blocks to have
their input/output rates match (u′

1 = o′2 = lcm(u1, o2)).
Block expansion is covered in Section 2.4. Since the output



of R1 (i.e., ~y1) is equivalent to the input of R2 (i.e., ~u2),
we can write:

~̇x1 = A1~x1 + B1~u1

~̇x2 = A2~x2 + B2 ~y1

~y1 = C1~x1 + D1~u1

~y2 = C2~x2 + D2~y1

Substituting for ~y1 yields:

~̇x2 = A2~x2 + B2(C1~x1 + D1~u1

~y2 = C2~x2 + D2(C1~x1 + D1~u1)

Which simplifies to:

~̇x2 = A2~x2 + B2C1~x1 + B2D1~u1

~y2 = C2~x2 + D2C1~x1 + D2D1~u1

Let ~x =

�
~x1

~x2 �, ~u = ~u1 (the input to the entire pipeline),

and ~y = ~y2 (the output of the entire pipeline). The equa-
tions relating ~x, ~u, and ~y are:

~̇x = A~x + B~u

~y = C~x + D~u

A =

�
A1 0

B2C1 A2 � B =

�
B1

B2D1 �
C = � D2C1 C2 � D = D2D1

The input to the pipeline is identical to the input to
R1, and the output of the pipeline is identical to the out-
put of R2. Furthermore, the states of the pipeline are
the states of the first block appended to the states of the
second block. Thus, u = u2, o = o1, s = s1 + s2, and

−−−−−→
initVec = � −−−−−−→

initVec1
−−−−−−→
initVec2 �.

If neither block has an initialization matrix, then the en-
tire pipeline does not need an initialization matrix, so Bpre =
null, opre = 0, and stored = 0. If only the first block has
an initialization matrix, then we initialize the states in the
pipeline corresponding to the first block while keeping the
states corresponding to the second block unchanged:

Bpre =

�
Bpre1

0 � opre = opre1 stored = stored1

If the second block has an initialization matrix, the first
block must run enough times to provide the necessary inputs
to initialize the second block. However, this might result in
the first block providing extra initial inputs to the second
block. In that case, we must change the representation of
the second block to increase its number of stored inputs. A
full description of this case appears in [2, pp. 46-49].

If there are more than two blocks in a pipeline, they can
be collapsed in the following manner: first combine the first
two blocks to get one block representation, then combine
this representation with the third block, and so on.

2.3.2 Splitjoin and Feedback Loop
The combination rules for splitjoins and feedback loops

are somewhat involved, and we omit them due to space con-
siderations. An important benefit of a linear state space
representation over a linear representation is that feedback

loops can be collapsed; the items on the feedback path be-
come states in the combined block. A thorough treatment
of these cases appears in [2, pp. 36-43].

2.4 Expansion
Sometimes it is necessary to simulate multiple executions

of a block in order to combine it properly with other blocks.
For example, suppose block B1 outputs two items and block
B2 inputs five items. In order to combine these blocks in
a pipeline, B1 must run five times (in order to output ten
items) and B2 must run two times (in order to input ten
items). Therefore, a method is needed to expand a repre-
sentation so that it models a block running multiple times,
rather than once.

Consider the state space equation pair, where ~u1 and ~y1

are the first set of inputs and outputs, and ~x is the original
state vector:

~̇x = A~x + B~u1

~y1 = C~x + D~u1

If we run the block again, the equation pair in terms of
the original state vector ~x and the next set of inputs and
outputs (~u2 and ~y2) is:

~̇x = A(A~x + B~u1) + B~u2

~y2 = C(A~x + B~u1) + D~u2

Simplifying yields:

~̇x = A2~x + AB~u1 + B~u2

~y2 = CA~x + CB~u1 + D~u2

Let ~u denote the combined input vector (~u =

�
~u1

~u2 �)

and ~y denote the combined output vector (~y =

�
~y1

~y2 �).
The representation in terms of these two vectors is:

~̇x = A2~x + B2~u

~y = C2~x + D2~u

A2 = A2 B2 = � AB B �
C2 =

�
C

CA � D2 =

�
D 0
CB D �

This new representation corresponds to a block that, upon
every execution, runs the old block twice. By induction, a
general formula for running a block n times is:

An = An Bn = � An−1B An−2B ... AB B �
Cn = �����

C
CA
...

CAn−2

CAn−1

�����

Dn =
�������

D 0 0 ... 0 0
CB D 0 ... 0 0

CAB CB D ... 0 0
... ... ... ... ... ...

CAn−3B CAn−4B CAn−5B ... D 0
CAn−2B CAn−3B CAn−4B ... CB D

�������
Since initializations are not affected,

−−−−−→
initVec, Bpre, stored,

and opre remain unchanged from the initial representation.



Since the number of states is not changed, s remains the
same. The new representation runs the old representation
n times, so unew = n ∗ uold and onew = n ∗ oold.

As mentioned in Section 2.3.1, it is sometimes necessary
to simulate the initialization stage of a block (in addition
to simulating n executions) for the purpose of initializing a
full pipeline. In this case, the equations are very similar to
above, but also include terms for Bpre. Full details appear
in [2, pp. 45-46].

3. OPTIMIZATIONS
We consider two types of optimizations. The first is to re-

move redundant state variables from the linear state space
representation. This reduces the memory allocation for a
program as well as the number of loads and stores, which
are typically slow and power-hungry operations. It also elim-
inates computations that involve the removed states. The
second optimization is to reduce the parametrization of a
state space representation by refactoring the matrices to
contain more zero and one entries. This directly eliminates
computations, as the compiler statically evaluates 0 · x = 0
and 1 · x = x rather than performing the multiplications
at runtime. Both the state removal optimization and para-
meter reduction optimization are formulated as a series of
general transformations on the underlying state space rep-
resentation.

3.1 State Space Transformations
For any state space equation pair, there are an infinite

number of transformations to an equivalent state space sys-
tem. These transformations involve a change of basis of the
state vector ~x to T~x, where T is an invertible matrix. Con-
sider the state update equation ~̇x = A~x + B~u. Multiplying
the entire equation by T yields:

T~̇x = TA~x + TB~u

Since T−1T = I, we can write:

T~̇x = TA(T−1T)~x + TB~u = TAT−1(T~x) + TB~u

~y = C(T−1T)~x + D~u = CT−1(T~x) + D~u

where we have introduced the output equation as well. Let
~z = T~x. ~z is a new state vector related to the old state
vector ~x by the change of basis T. Substituting into the
above equations yields:

~̇z = TAT−1~z + TB~u

~y = CT−1~z + D~u

This is precisely the original state space equation pair,
with A, B, and C transformed to TAT−1, TB, and CT−1,
respectively.

For a StreamIt state space representation R, we must de-
termine how the other values change. Since the old state
vector ~x is multiplied by T, the old initial state vector is mul-
tiplied by T. The initialization update equation is analogous
to the standard update equation, so Bpre is transformed to
TBpre. The number of states, inputs, and outputs is the
same, so s, o, and u are unchanged.

3.2 State Removal
There are two types of states that can be removed from a

state space system without changing its behavior: unreach-
able and unobservable states. Informally, unreachable states

are unaffected by inputs and unobservable states have no ef-
fect on outputs. If there are two redundant states in a filter,
then both may reachable and observable as the program is
written. However, following a series of transformations, one
of the redundant states can be converted to an unreachable
or unobservable state, allowing it to be removed.

More formally, the ith state is reachable if and only if at
least one of the following is true:

1. The state is initialized to a non-zero value.
That is, the ith entry of

−−−−−→
initVec is non-zero or

∃j s.t. Bpre[i, j] 6= 0.

2. The state directly depends on an input. That is,
∃j s.t. B[i, j] 6= 0.

3. The state directly depends on another reachable
state. That is, ∃j 6= i s.t. A[i, j] 6= 0 and j is a
reachable state.

All states in the system are either reachable or unreachable.
Unreachable states always have a value of zero, as they are
initialized to zero and are never updated by a non-zero value
(i.e., by a reachable state or an input). Therefore, unreach-
able states can be removed from the state space representa-
tion, since they have no effect on any other states or output
values.

The ith state is observable if and only if at least one of
the following is true:

1. An output directly depends on the state. That is,
∃j s.t. C[j, i] 6= 0.

2. Another observable state directly depends on the
state. That is, ∃j 6= i s.t. A[j, i] 6= 0 and j is an
observable state.

All states in the system are either observable or unobserv-
able. The unobservable states are not used to update the
observable states and are not used to determine the outputs.
Therefore, all unobservable states can be removed from a
representation (regardless of their initial values).

There is a simple algorithm to refactor the states of a sys-
tem and expose the unreachable and unobservable states [25].
For unreachable states, the algorithm assumes that there is

no initialization stage, i.e., that
−−−−−→
initVec and Bpre are zero.

We first describe the basic algorithm and then extend it to
handle the initialization stage.

To detect unreachable states, the algorithm performs row
operations2 on the augmented matrix � A B �. To main-
tain the proper input/output relationship of the system, cor-
responding inverse column operations are performed on A
and C. The row operations achieve a special type of row-
echelon form. In this form, the last non-zero entry in each
row is a 1 (called the ending 1) and the ending 1 in a given
row is to the left of the ending 1 in lower rows. Once the
augmented matrix is in the desired form, row i represents an
unreachable state if there are no non-zero entries past the
ith column. This naturally expresses the constraint that the
ith state does not depend on any input (columns of B) or
on any possibly reachable state (later columns of A). In
the absence of an initialization stage, all unreachable states
identified in this way can be removed from the system.

2
Performing a row operation operation on a matrix is equivalent to

left-multiplying it by some invertible matrix, while performing a col-
umn operation is equivalent to right-multiplying by some invertible

matrix.



For unobservable states, the same procedure is applied to
the augmented matrix � AT CT �. In the echelon form,
row i represents an unobservable state if there are no non-
zero entries past the ith column. Intuitively, the rows of
the transposed matrices represent how a given state is used,
rather than how it is calculated. The identified states are
unobservable because they are used neither in the calcula-
tion of an output (columns of CT ) nor in possibly observ-
able states (later columns of AT ). All of these unobservable
states can be safely removed from the system (even if they
are assigned an initial value).

To handle the initialization stage for unreachable states, a
minor extension is needed. If a state is assigned a non-zero
value during initialization, either as a constant (a non-zero

entry in
−−−−−→
initVec) or from the input (a non-zero entry in

Bpre), the state must be considered reachable. Further, any
dependent states must also be considered reachable. This
classification can easily be performed as a post-processing
step on the set of candidate unreachable states identified
by the algorithm above. If any candidate is initialized to a
non-zero value or directly depends (via the A matrix) on a
state outside the set, then the candidate is removed from
the set. When no further candidate can be removed from
the set, the set contains nothing but genuine unreachable
states.

3.2.1 Expanding the Scope
So far we have considered optimizations that affect A, B,

and C. Since the optimizations are entirely the result of
state transformations, they do not affect D, which is inde-
pendent of the choice of state space basis. However, if all
of the inputs are stored as states, then all of the entries
of D are moved into A and can then be changed by state
optimizations.

We have already discussed how to store inputs as states.
When every input is stored as a state, the new state-equation
pair is: �

~̇x
~̇xin � =

�
A B
0 0 � �

~x
~xin � +

�
0
I � ~u

~y = � C D � �
~x

~xin � + 0~u

These states should be added before state removal is per-

formed. It may seem counter-intuitive that we first add
states, then seek to remove them. However, the added states
represent computations involving D which were not consid-
ered before. Removing some of these states can result in
reducing computations involving D.

3.3 Parameter Reduction
After removing as many states as possible, additional com-

putations can be eliminated by transforming the state space
system to one with fewer non-zero, non-one entries (termed
parameters). If A, B, and C are completely filled, there are
s ∗ (s + o + u) parameters. Ackermann and Bucy [1] show a
general form in which A and C have at most s∗(o+u) para-
meters (B may contain any number of parameters), assum-
ing there are no unobservable or unreachable states. They
derive this form using system impulse responses. We achieve
the same form using row operations on the augmented ma-
trix � AT CT �. The desired form is:

AT = �����
L1 A12 A13 ... A1u

0 L2 A23 ... A2u

0 0 L3 ... A3u

... ... ... ... ...
0 0 0 ... Lu

�����

CT =

���������
1 0 0 ... 0
0 0 0 ... 0
... ... ... ... ...
0 1 0 ... 0
0 0 0 0 0
... ... ... ... ...
0 0 0 ... 1

���������
The matrices Aij are rectangular, and the matrices Li are

square, but do not necessarily have the same dimensions as
each other. These matrices have the form:

Aij = �� 0 0 ... ∗
... ... ... ...
0 0 ... ∗

�� Li = �����
0 0 ... 0 ∗
1 0 ... 0 ∗
0 1 ... 0 ∗
... ... ... ... ...
0 0 ... 1 ∗

�����
The entries marked with a * are the parameters of the

system. This is known as the observable canonical form of
the system. In contrast, the reachable canonical form defines
A and B instead of AT and CT (there may be any number
of parameters in C rather than B).

Figure 5 gives pseudocode for a simple algorithm to at-
tain the form above. The pseudocode does not include the
corresponding inverse column operations that must go with
all row operations.

It is possible that one type of form has fewer parameters
than the other. Thus, we perform the above algorithm on� AT CT � as noted to produce the observable form, as

well as on � A B � to produce the reachable form. We
compare the forms and use the one with fewest parameters.

3.3.1 Staged Execution
Using input state variables corresponds to executing a

state space block in two stages:

1. Put inputs into input state variables.

2. Execute the original block, using input states instead
of actual inputs.

We can add additional stages by having multiple sets of
input states—~xin1, ~xin2, etc. After each execution, the first
set is moved to the second set, the second set is moved to
the third set, and so on. Suppose there are k input sets. We
can write the state space equation pair as follows:

������
~̇x

~̇xink

...
~̇xin2

~̇xin1

������ = �����
A B 0 ... 0
0 0 I ... 0
... ... ... ... ...
0 0 0 ... I
0 0 0 ... 0

����� �����
~x

~xink

...
~xin2

~xin1

����� + �����
0
0
...
0
I

����� ~u

~y = � C D ... 0 0 � �����
~x

~xink

...
~xin2

~xin1

����� + 0~u



Reduce Parameters(A, C) {

- currRow = 0;

- colA = 0;

- colC = 0;

while (currRow < totalRows) {
- Find a non-zero entry in column colC at or below
row currRow of CT , and swap it with the entry in
row currRow

- Set CT [currRow, colC] = 1 by scaling the row ap-
propriately; make all entries above and below it zero
by adding appropriate multiple of row currRow to
other rows

- currRow = currRow + 1

- colC = colC + 1

do {

- Find a non-zero entry in column colA at or below
row currRow of AT , and swap it with the entry in
row currRow

- Set AT [currRow, colA] = 1 by scaling the row
appropriately; make all entries below it zero by
adding appropriate multiple of row currRow to
other rows

- currRow = currRow + 1

- colA = colA + 1

} while a non-zero entry in column colA is found

- colA = colA + 1

}

}

Figure 5: Algorithm for parameter reduction.

By itself, executing the work of a filter in stages does not
result in any gain in performance. However, minimally pa-
rameterizing the resulting system may be more productive
than minimally parameterizing the one- or two-stage system.
The canonical forms of the previous section do not in gen-
eral minimally parameterize the system; hence, evaluating
staged execution remains an area of future research.

4. IMPLEMENTATION
We have implemented the extraction, combination, and

optimization (except multiple execution stages) procedures
within the StreamIt compiler, which uses the Kopi Java
Compiler infrastructure [17]. A small set of micro-benchmarks
is used to demonstrate the functionality of the technique;
complete code for the benchmarks appears in [2, pp. 67-93].
We measure performance by counting the number of floating
point operations (additions and multiplications) executed in
a given benchmark. The DynamoRIO [5, 7] system is em-
ployed to count operations.

We compare linear state space optimizations to linear op-
timizations [22]. For the state space numbers, all linear state
space blocks are combined and then optimizations are ap-
plied. For applications this small, it is primarily the combi-
nation that yields a performance boost; we have not charac-

Application
Linear

State Space
Linear

Linear Difference Equation 1.00 1.00

IIR 1.00 1.00

IIR + 1/2 Decimator 0.64 1.00

IIR + 1/16 Decimator 0.34 1.00

IIR + FIR 0.94 1.00

FIR + IIR + IIR 0.92 1.00

FM Radio 0.17 0.17

FIR Program 1.00 1.00

Channel Vocoder 0.26 0.26

FilterBank2 1.00 1.00

FFT (16 pt) 2.94 3.00

Table 1: Floating point operations with state space
and linear optimizations, normalized to no optimiza-
tions.

terized the individual contributions of state removal and pa-
rameter reduction. For the linear numbers, all linear blocks
are combined. We do not enable the “frequency transla-
tion” optimization [22] because it has no counterpart in the
state space domain. A hybrid optimizer could apply fre-
quency translation where appropriate and linear state space
optimizations elsewhere.

Results appear in Table 1. The first six applications have
filters with state. Thus, they are not handled by linear
analysis, and there is a normalized performance of 1.00 in
the linear column. The first two programs (Linear Differ-
ence Equation, IIR) do not benefit from linear state space
analysis, as there are no opportunities for combination, state
removal, or parameter reduction. For the next four pro-
grams (IIR in combination with various filters), state space
transformations offer performance improvements due to the
combination of stateful filters.

For example, combining an IIR filter with a decimator
that leaves 1 out of every 16 values yields a 194% improve-
ment. Combining an IIR filter with an FIR filter offers a
6% improvement. In the case of an IIR filter with a deci-
mator, there are extraneous computations performed by the
IIR filter that are thrown away by the decimator. Combin-
ing their respective matrices removes these computations. In
the case of an IIR filter with an FIR filter, the computations
in both filters can be merged to a single set of computations.
This indicates that state space optimizations are more use-
ful when applied to combined filters than when applied to
individual filters.

For the last five applications, which mainly have linear
components without state, linear optimizations and state
space optimizations are equally effective. Compared to the
baseline, there is an improvement of 5.9X for FM Radio and
3.8X for Channel Vocoder.

There is a large performance degradation for the Fast
Fourier Transform (FFT) using either linear or state space
transformations. This is not surprising, since an FFT per-
forms its computations sparsely across multiple filters. Com-
bining these filters creates one filter densely packed with
computations. This is exactly a conversion from an FFT
to a DFT (Discrete Fourier Transform). We would need
staged execution with minimal parameterization to convert
the DFT back to an FFT. However, note that it is straight-
forward for the compiler to detect that the operations count
has increased and refrain from combining the filters when



performance degrades. A simple algorithm for such judicious
application of the transformations has been implemented for
the linear case [22] and applies directly to this work. The
results in Table 1 illustrate only the performance impact of
blindly combining as many filters as possible. This degra-
dation would not occur in practice.

In summary, the results show that linear state space analy-
sis is more general than linear analysis. While the experi-
ments consider only a small set of micro-benchmarks, they
also demonstrate that a relatively elaborate mathematical
framework is manageable within the compiler. It remains
an important topic of future work to evaluate linear state
space analysis using realistic applications, and to measure
actual execution times on an embedded architecture.

5. RELATED WORK
This paper builds directly on the work done to analyze

and optimize linear components in StreamIt graphs [22].
We extend the theoretical framework for linear analysis to
state space analysis in order to apply our optimizations to a
wider class of applications. Specifically, state space analysis
applies to filters with persistent state, and feedback loops
can be combined into a single state space representation;
neither of these cases is handled by linear analysis. The ex-
tension from linear analysis to state space analysis required
a fundamental change to the underlying representation, as
well as a complete reformulation of the rules for combination
and expansion. Moreover, this paper introduces novel op-
timizations of state removal and parameter reduction, both
of which operate on the state space representation.

Potkonjak and Rabaey describe optimized hardware syn-
thesis for linear and “feedback linear” computations [28].
Linear state space systems correspond to “constant feedback
linear computations” in the authors’ terminology. For linear
and linear feedback systems, their technique offers 1) a max-
imally fast implementation under latency constraints, 2) an
arbitrarily fast implementation, and 3) an implementation
reducing the number of arithmetic operations. In reducing
arithmetic operations, they perform common subexpression
elimination (CSE) in a manner that resembles our state re-
moval optimization.

However, the benefits of state removal cannot be achieved
by CSE alone (or by the Potkonjak and Rabaey algorithm).
For example, in Figure 4, state removal replaces references
to x1 + x2 by a single variable x. While CSE can also
perform this substitution, it cannot independently maintain
the value of x across iterations of the filter. That is, state
removal replaces the assignments to x1, x2, x1 temp, and
x2 temp with a single assignment to x. This transforma-
tion decreases the number of arithmetic operations due to
algebraic simplification in the update of x. Further, state
removal completely removes the variables x1, x2, x1 temp,
and x2 temp from the program. We are unaware of any se-
quence of traditional compiler optimizations that achieves
the same effect as state removal (and likewise for parameter
reduction).

Several other groups have developed automated frame-
works for optimizing linear signal processing kernels. The
SPIRAL project [30] uses a formal mathematical language to
describe linear DSP operations. Using search and machine
learning techniques, SPIRAL evaluates alternate versions of
a formula on a given platform and optimized code is gener-
ated. The FFTW system [14] generates platform-optimized

FFT libraries using a dynamic programming algorithm and
profile feedback to match the recursive FFT formulation to a
given memory hierarchy. ATLAS [35, 13] produces platform-
specific linear algebra routines by searching over blocking
strategies and other parameters; Sparsity [13, 19] applies a
similar approach to sparse matrices.

While these approaches offer a rich set of optimizations,
they are limited to linear systems. The transformations de-
scribed in this paper apply not only to linear systems, but
also to linear systems with state. In particular, the state re-
moval and parameter reduction optimizations apply specifi-
cally to linear state space systems. In addition, our focus is
on the application of linear state space optimizations in the
context of a general-purpose stream language, optimizing
across application components rather than within a single
library function.

A variety of tools have been developed for specifying and
deriving DSP algorithms [27]. The SMART project aims
to develop an algebraic theory of signal processing, provid-
ing a unified framework for deriving, explaining, and clas-
sifying fast transform algorithms [29]. ADE (A Design En-
vironment) provides a predefined set of composable signal
transforms, as well as a rule-based system that searches for
improved algorithms using extensible rewriting rules [12].
Janssen et al. automatically derive low-cost hardware im-
plementations of signal flow graphs using algebraic transfor-
mations and hill-climbing search [20]. Our work shares the
vision of automatically deriving optimized algorithms from
a high-level description, though we start from a general-
purpose, imperative stream language rather than a mathe-
matical formalism.

The streaming abstraction has been an integral part of
many programming languages, including dataflow, CSP, syn-
chronous and functional languages; see Stephens [32] for a
review. Synchronous languages which target embedded ap-
plications include Lustre [18], Esterel [6], Signal [16], Lu-
cid [4], and Lucid Synchrone [9]. Other languages of recent
interest are Brook [8], Spidle [10], Cg [24], Occam[11], Sisal
[15], StreamC/KernelC [21], and Parallel Haskell [3]. The
principle differences between StreamIt and these languages
are (i) StreamIt adopts the Synchronous Dataflow [23] model
of computation, which narrows the application class but
enables aggressive optimizations such as linear state space
analysis, (ii) StreamIt’s support for a “peek” construct that
inspects an item without consuming it from the channel,
(iii) the single-input, single-output hierarchical structure
that StreamIt imposes on the stream graph, and (iv) a “tele-
port messaging” feature for out-of-band communication [34].

6. CONCLUSIONS
As embedded applications come to support more and more

functionality, the software will inevitably become more com-
plex, and it will soon be unmanageable to satisfy tight re-
source constraints via manual tuning of low-level DSP code.
In order to replace the signal processing expert in the design
flow, compilers need to incorporate domain-specific knowl-
edge and have a clean, unified framework for representing
and optimizing the application. This paper presents one
such framework, which is based on linear state space sys-
tems. Our framework provides for general extraction, ex-
pansion, and combination of state space representations.

Using state space analysis, we develop two novel opti-
mizations for stream programs: state removal and para-



meter reduction. These transformations radically alter the
internal data space of the program while maintaining the
proper input/output relationship. Such transformations are
generally infeasible in languages such as C due to aliasing
and global variables. We implement the optimizations as
part of StreamIt, a high-level stream language based on the
synchronous dataflow model. Our implementation demon-
strates increased generality over plain linear optimizations.
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