
A Productive Programming Environment for Stream Computing

Kimberly Kuo, Rodric M. Rabbah, Saman Amarasinghe
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

{kkuo, rabbah, saman}@csail.mit.edu

Abstract

This paper presents StreamIt and the StreamIt De-
velopment Tool. The development tool is an IDE de-
signed to improve the coding, debugging, and visualiza-
tion of streaming applications by exploiting the ability of
the StreamIt language to naturally represent streaming
codes as structured, hierarchical graphs. The StreamIt
Development Tool aims to emulate the best of tradi-
tional debuggers and IDEs while moving toward hierar-
chical visualization and debugging concepts specialized
for streaming applications. As such, it provides utilities
for stream graph examination, tracking of data flow be-
tween streams, and deterministic execution of parallel
streams. These features are in addition to more conven-
tional tools for creating and editing codes, integrated
compilers, setting breakpoints, watchpoints, and step-
by-step program execution.

A user study evaluating StreamIt and the development
tool was held at MIT during which participants were
given erroneous programs and asked to resolve the pro-
gramming errors. We compared the productivity of the
users when using the StreamIt Development Tool and its
graphical features to those who were restricted to line-
oriented debugging strategies, and we found that the
former produced ten more correct solutions compared
to the latter set of users. Furthermore, our data sug-
gests that the graphical tool chain helped to mitigate
user frustration and encouraged participants to invest
more time tracking and fixing programming errors.

1 Introduction

The last few years have witnessed the rebirth of su-
percomputing as computer scientists and engineers re-
alize that current monolithic architectures and conven-
tional von Neumann programming styles are at their lim-
its in terms of deliverable performance to the end-user.

Thus as architects, compiler engineers, and application
developers look into the future, there is a concerted ef-
fort to develop processors and programming paradigms
that can deliver significantly better performance, and
more so, to deliver high performance more productively.
This is especially important since the complexity of ap-
plications continues to increase, and compilers are more
heavily burdened with the extraction of parallelism and
the efficient mapping of computation to physical sub-
strate. What’s more is that the architectures of the fu-
ture will tend toward distributed resources in an effort to
manage the complexity of centralized architectures with
respect to power and wire delay. Thus, research labs
in industry and academia alike are investigating ideas
and methodologies to address the computing challenges
of the future with an eye toward delivering high perfor-
mance and to do so productively. This goal translates
to (i) relieving application developers from architecture
details and allowing for natural expression of applica-
tions,(ii) lessening the burden for heroic compilers that
extract parallelism,(iii) developing scalable architec-
tures that are powerful yet easier to verify and assemble.

The Computer Architecture Group at MIT has for the
last several years conducted research to address all of
the aforementioned objectives. This paper focuses on
the productivity of application developers. Specifically,
the paper will briefly describe StreamIt [11] a novel lan-
guage for the prevalent application class of stream com-
puting. StreamIt provides high-level stream abstractions
that improve programmer productivity and program ro-
bustness. The language is architecture independent, and
it features several characteristics (such as parameteriza-
tion and modularity) geared toward large scale program
development. Furthermore, this paper will also describe
a unique development environment that leverages the
language features to deliver a tool chain for the rapid
verification and debugging of StreamIt programs.

StreamIt represents a program as a hierarchical graph
of concurrent filters that operate on streams of data and

communicate via FIFO queues. The language exposes
the parallelism and communication patterns that are in-
herent in many streaming programs which include soft-
ware radio, real-time encryption, network processing,
graphics, and multimedia editing consoles. Because of
the abundance of parallelism in such applications, they
are especially challenging to program, and worse, to de-
bug. This is due to the multitude of factors that an ap-
plication developer must consider when implementing a
streaming program, such as for example how to exploit
the parallelism on a target architecture. The marriage of
implementation to a specific processor results in both al-
gorithmic changes and code transformations that make
porting difficult—since the transformations depend on
the architecture details.

By contrast, application developers using StreamIt
focus on specifying the functional behavior of their pro-
grams and verify correctness using high level abstrac-
tions that result in clean and portable implementations.
The task of optimizing the code and efficiently mapping
it to target processors is left to the compiler which can
automate many powerful domain specific optimizations
to deliver high performance [5, 9]. This paper will not
discuss the StreamIt compiler technology; the interested
reader can visit the StreamIt web page [10] for more in-
formation on the topic.

In addition to the language and compiler effort, we
have engineered and developed a programming environ-
ment that graphically represents the hierarchical nature
of streaming codes with an eye toward the productivity
of the application engineer. The StreamIt Development
Tool (SDT) provides an elaborate prototyping and de-
bugging environment that can interpret and visually rep-
resent streaming computation. The key distinguishing
features of the SDT are its ability to track the flow of
data between streams, and the deterministic execution
of parallel streams. The latter leverages an intuitive con-
cept of time in StreamIt that is tied to the flow of data in
distributed programs. A significant portion of this paper
is dedicated to evaluating the SDT and its impact on pro-
grammer productivity. Toward quantifying productivity,
we organized a user study at MIT. The study involved
a number of students who were given a set of “buggy”
applications and asked to fix the codes according to cor-
responding functional specifications. Some of the study
participants were allowed to use the graphical debug-
ger and its distinguishing features, whereas others were
restricted to line-oriented debugging strategies. The re-
sults of our study provide evidence that the SDT was
instrumental in helping the users track down and repair
programming errors. The evidence is particularly strong
in cases where the applications were large, with many
streams and non trivial communication topologies.

As we analyzed the data from the user study, we made
a somewhat surprising observation. First, it was evident
that the SDT did not make users faster. In fact, the mean
time to solution (i.e., a program where all of the bugs
are fixed) was longer for participants using the graphical
debugger. Perhaps this is to be expected since the partic-
ipants did not have prior experience with the language or
the IDE, and indeed our post-study interviews and feed-
back support this theory. Second, the data suggested that
the power of the SDT is in mitigating the frustration fac-
tor of the participants, especially in the later portions of
the study. That is, the participants who were restricted
to line-oriented debugging strategies gave up more of-
ten, and did so sooner, compared to their counterparts
using the graphical debugger. This led us to conclude
that users tend to be more productive when they trust
the tools at their disposal. In other words, one might
believe their probability of success is reasonably high if
they are confident that the tools they are using are ade-
quate, and therefore they are more likely to invest their
time objectively.

In the following Section we describe the StreamIt
programming language, and in Section 3 we describe the
StreamIt development environment. Section 4 describes
our user study and reports our results and analysis. Sec-
tion 5 summarizes related work and Section 6 concludes
the paper.

2 The StreamIt Programming Language

StreamIt is an architecture-independent language for
streaming applications. It adopts the Cyclo-Static
Dataflow [1] model of computation which is a gener-
alization of Synchronous Dataflow [7]. StreamIt pro-
grams are represented as graphs where nodes represent
computation and edges represent FIFO-ordered commu-
nication of data over tapes.

The basic programmable unit in StreamIt is a filter.
Each filter contains a work function that executes atom-
ically, popping (i.e., reading) a fixed number of items
from the filter’s input tape and pushing (i.e., writing) a
fixed number of items to the filter’s output tape. A fil-
ter may also “peek” at a given index on its input tape
without consuming the item; this makes it simple to rep-
resent computation over a “sliding-window”. The push,
pop, and peek rates are declared as part of the work func-
tion, thereby enabling the compiler to construct a static
schedule of filter firings [6].

StreamIt provides three hierarchical structures for
composing filters into larger stream graphs (see Fig-
ure 1). Thepipelineconstruct composes streams in se-
quence, with the output of one connected to the input
of the next. Thesplitjoin construct distributes data to a
set of parallel streams, which are then joined together

stream

stream

stream

stream

splitter

stream stream

joiner

joiner

stream

splitter

stream
float -> float pipeline Main() {

 add Source(); // code for Source not shown

 add FIR();
 add Output(); // code for Output not shown

}

Source

FIR

Output

(a) pipeline (b) splitjoin (c) feedbackloop

Figure 1: Stream structures supported by StreamIt. Figure 2: Example pipeline with FIR filter.

2 Programming Language

StreamIt [?] is an architecture-independent language for streaming applications. StreamIt programs are

represented as graphs where nodes represent computation and edges represent FIFO-ordered communication

of data over tapes.

The basic programmable unit in StreamIt is a filter. Each filter contains a work function which executes

atomically, popping (i.e., reading) a fixed number of items from the filter’s input tape and pushing (i.e.,

writing) a fixed number of items to the filter’s output tape. A filter can also “peek” at a given index on

its input tape without consuming the item; this makes it simple to represent computation over a “sliding-

window”. The push, pop, and peek rates are declared as part of the work function, thereby enabling the

compiler to construct a static schedule of filter firings [?].

Each filter has a distinct address space. A filter can store two types of variables: a field and a local.

Fields are declared in the scope of the filter and are preserved across executions, while locals are declared

inside the work function and are only live within a single execution. There is also an init function which

runs once at the beginning of the program and is used to initialize fields.

StreamIt provides three hierarchical structures for composing filters into larger stream graphs (see Fig-

ure 1). The pipeline construct composes streams in sequence, with the output of one connected to the input

of the next. The splitjoin construct distributes data to a set of parallel streams, which are then joined together

in a roundrobin fashion. The feedback loop provides a mechanism for introducing cycles in the graph. An

example of a pipeline appears in Figure 2. It contains a single FIR (Finite Impulse Response) filter, which

could be implemented as follows:

float->float filter FIR(int N, float[] weights) {

3

Figure 1. StreamIt containers.

stream

stream

stream

stream

splitter

stream stream

joiner

joiner

stream

splitter

stream
float -> float pipeline Main() {

 add Source(); // code for Source not shown

 add FIR();
 add Output(); // code for Output not shown

}

Source

FIR

Output

(a) pipeline (b) splitjoin (c) feedbackloop

Figure 1: Stream structures supported by StreamIt. Figure 2: Example pipeline with FIR filter.

2 Programming Language

StreamIt [?] is an architecture-independent language for streaming applications. StreamIt programs are

represented as graphs where nodes represent computation and edges represent FIFO-ordered communication

of data over tapes.

The basic programmable unit in StreamIt is a filter. Each filter contains a work function which executes

atomically, popping (i.e., reading) a fixed number of items from the filter’s input tape and pushing (i.e.,

writing) a fixed number of items to the filter’s output tape. A filter can also “peek” at a given index on

its input tape without consuming the item; this makes it simple to represent computation over a “sliding-

window”. The push, pop, and peek rates are declared as part of the work function, thereby enabling the

compiler to construct a static schedule of filter firings [?].

Each filter has a distinct address space. A filter can store two types of variables: a field and a local.

Fields are declared in the scope of the filter and are preserved across executions, while locals are declared

inside the work function and are only live within a single execution. There is also an init function which

runs once at the beginning of the program and is used to initialize fields.

StreamIt provides three hierarchical structures for composing filters into larger stream graphs (see Fig-

ure 1). The pipeline construct composes streams in sequence, with the output of one connected to the input

of the next. The splitjoin construct distributes data to a set of parallel streams, which are then joined together

in a roundrobin fashion. The feedback loop provides a mechanism for introducing cycles in the graph. An

example of a pipeline appears in Figure 2. It contains a single FIR (Finite Impulse Response) filter, which

could be implemented as follows:

float->float filter FIR(int N, float[] weights) {

3

Figure 2. Example pipeline with FIR filter.

in a round robin fashion. Thefeedback loopprovides a
mechanism for introducing cycles in the graph. An ex-
ample of a pipeline appears in Figure 2. It contains a
single FIR (Finite Impulse Response) filter which could
be implemented as follows:

float->float filter FIR (int N, float[] weights)
{

work push 1 pop 1 peek N {
float sum = 0;
for (int i = 0; i < N; i++) {

sum += peek(i) * weights[i];
}
pop();
push(sum);

}
}

The filter can now serve as a module that is incor-
porated into stream graphs as necessary, for example as
part of an acoustic beam former. A filter is akin to a class
in object oriented programming with the work function
serving as the main method. A filter may also declare
a constructor function to initialize the filter state before
any other method is invoked. The implementation of the
work function in StreamIt obviates the need for explicit
buffer management. The application developer instead
focuses on the hierarchical assembly of the stream graph
and its communication topology.

3 Development Environment

The StreamIt Development Tool (SDT) features
many aspects of an IDE, including a text editor and a
debugger. For example, the SDT debugger supports line

and method breakpoints, watchpoints, program suspen-
sion, code stepping, variable inspection and value mod-
ification to list a few.

Moreover, the SDT offers features tailored to the
StreamIt language. The SDT graphically represents
StreamIt programs, and preserves hierarchical informa-
tion to allow an application engineer to focus on the
parts of the stream program that are of interest. In addi-
tion, the SDT can track the flow of data between filters,
and most importantly, it provides a deterministic mech-
anism to debug parallel streams.

The SDT is implemented in Java as an Eclipse [3]
plug-in. The Eclipse universal tools platform is an ex-
tensible development environment. We leverage the
built-in user interfaces for editing and viewing files, the
resource management system, the documentation infras-
tructure, and the runtime support of launching, running
and debugging programs.

3.1 Hierarchical Graphs

As seen in Figure 3, a StreamIt program can be visu-
ally depicted as a hierarchical directed graph of streams,
with graph nodes representing streams and graph edges
representing tapes or channels. The containers are ren-
dered according to the code declarations, and the visu-
alization tools in the SDT allow the user to selectively
collapse and expand containers. This is useful in large
streams where the application developers are only inter-
ested in visualizing a particular subset, for example to
verify the interconnect topology of the graph. In Fig-
ure 3(a), we show a screen shot of the SDT for a simple
StreamIt program which consists of a filter that gener-
ates input data (IntSource), a splitjoin (Echo) that
operates on the data produced by the source and whose
data is in turn consumed by anAdder . Lastly, a filter
(IntPrinter) reads and prints the computed values
to the screen. In Figure 3(b), the splitjoin is expanded
to reveal to parallel streams:Original andDelay .
The former is simply an identity filter, whereas the later
shifts its input data one position in time (i.e., at timet it
outputs data consumed at timet + 1. The splitter in this
example is a duplicate splitter, meaning that the input
stream is duplicated to all of its siblings. The joiner is a
roundrobin joiner which collects one data item from the
left stream followed by an item from the right stream.
This particular stream program simulates how echos are
added to sound waves.

3.2 Data Flow

An important distinguishing characteristic of the
SDT is its ability to track the flow of data between

(a) Collapsed pipeline. (b) Expanded splitjoin.
(c) Example pipeline with data in tran-
sit.

Figure 3. Hierarchical stream graph views.

streams. This is illustrated in Figure 3(c) which shows
the data that is live between two filtersSource and
DropBit . This particular program generates a se-
quence of numbers at its source, and theDropBit filter
removes the third element of the sequence with every ex-
ecution of its main function. In the figure, the values 2,
3, and 4 are queued on the input tape toDropBit , and
from the expanded filter node, we can see that the filter
requires four queued data items before the work function
can execute (i.e., the declared pop rate is 4). The ex-
panded filter node also displays other information such
as the input and output types of the stream, as well as
profiling information that is useful for debugging.

The SDT also allows the user to highlight and au-
tomatically track data items as they propagate between
streams. The user can also modify values on a tape,
much like a conventional debugger allows users to mod-
ify variables and registers.

The flow of data is especially helpful in splitjoins
where sequential data streams are distributed to paral-
lel streams, and parallel streams assembled into a sin-
gle stream. The visualization allows the user to readily

verify that splitters and joiners implement the desired
functionality. Also, the visualization allows users to
quickly pinpoint unexpected outputs (e.g., a filter push-
ing NaN’s).

3.3 Debugging Parallel Streams

Perhaps the most important feature of the SDT is its
support for debugging parallel streams. In StreamIt, the
streams in a splitjoin are independent, and can execute
when their corresponding data are queued. Thus, the
SDT can execute parallel streams in a deterministic or-
der using a single program counter and machine state;
this is in contrast to a multi-threaded program where a
user has to cope with multiple program counters and a
scheduling order that may appear non-deterministic and
subject to the host operating system. Furthermore, by
exposing the flow of data and the communication in a
stream graph, StreamIt provides a natural way to reason
about time in a distributed system—thereby greatly sim-
plifying the task of debugging parallel streaming pro-
grams.

The SDT also features a unique capability that al-
lows a user to set instance-breakpoints. This features
is useful in splitjoins with many parallel streams or in
long pipelines which contain multiple instances of a
single filter. As with conventional debuggers, the pro-
gram executes until the designated instance of a filter is
encountered—in which case control is transfered to the
user for further input.

4 Productivity Study

We designed and carried out a user study to assess the
extent the SDT helps in debugging StreamIt programs.
The goals were two fold. First, we aimed to identify dif-
ficulties in using the SDT and toward this end we used
questionnaires and automatic action logging. The sec-
ond goal was to gather data to support the hypothesis
that the SDT can improve a programmer’s ability to de-
bug StreamIt applications.

We provided participants with a set of “buggy”
StreamIt programs, along with verbal descriptions of the
programs. The participants were asked to find and fix
the errors and to record their experience using various
forms and questionnaires. The participants were divided
into different groups, some of which used the SDT and
its graphical debugging features whereas others did not.
Our results and analysis are reported in the following
sections.

4.1 Target Population

We solicited participants for the user study by ad-
vertising it to MIT students majoring in computer sci-
ence. We favored students who specialize in communi-
cations, signal processing, computer systems and archi-
tecture, and who are experienced in popular imperative
languages (e.g., C, C++, Java). The nature of study was
not explicitly divulged in our solicitation; this served to
prevent potential users from learning about StreamIt and
becoming familiar with the SDT prior to the study. The
participants were awarded a small monetary gift upon
completion of the study.

4.2 Methodology

Each participant in the user study was presented with
a set of documents that described the tasks of the study
and which served to record information from the partic-
ipants during the study. The documents were:

1. Pre-Study Questionnaire: This document was de-
signed to gather information on the participant’s

programming background and skill level. Ques-
tions such as year in school, major, degree be-
ing sought, area of computer science concentration,
relevant classes, language proficiency, application
development experience, and background in DSP,
IDE, and the SDT were asked.

2. StreamIt Language Tutorial: This written presenta-
tion was intended to give a cursory introduction to
the StreamIt language. It described and illustrated
the syntax and semantics of the StreamIt language.
Furthermore, example toy applications and tips on
the most common mistakes new StreamIt program-
mers are likely to make were included.

3. SDT Tutorial: Another written presentation, this
document was aimed at informing users of the es-
sential features of the SDT. The first part of the
tutorial described the functionality of the StreamIt
editor and debugger. The second part of the docu-
ment contained step-by-step instructions on how to
compile, run, and debug a sample application.

4. User Tasks: This document instructed users to de-
bug nine StreamIt applications in a specific order.
Each of the nine programs contained one or more
bugs. As the users moved from one program to the
next, they were asked to record their start and end
times, the debugging methods they used (e.g., code
inspection, print statements, graphical debugger),
and a short diagnosis of the program bugs they un-
covered.

5. Description of Applications and Code: This doc-
ument contained a description of each application
(numbered 1 through 9), a code listing, a sample
buggy output, and a sample correct output. The ap-
plications are summarized in Table 1.

6. Post-Study Questionnaire: This document was de-
signed to gather data pertaining to the participant’s
experience, such as the perceived difficulty of each
problem, a general description of how the user de-
bugged each application, user satisfaction, ability
to learn and recall various features of the SDT, etc.

In order to minimize biased effects on a program-
mer’s debugging ability, and to ensure internal validity,
users were grouped into four categories. All users were
asked to debug application 1 without the SDT’s graphi-
cal features. The participants were then asked to debug
application 2 using the SDT and its graphical features.
These “control” experiments served to create a baseline

Table 1. Applications used in the productivity study.
1. Bit Twiddle Removes every third bit from a 96 bit stream.
2. Fib Generates a Fibonacci sequence using a feedback loop.
3. Echo Effect Simulates how echos are introduced into sound waves. Uses a splitjoin with two parallel

streams.
4. Merge Sort Implements a merge sort algorithm using 16 parallel streams.
5. Cornerturn Implements a matrix transpose using a splitjoin to exchange the rows and columns. Stresses

the visual tracking of data.
6. Echo Effect2 Alternate implementation of Echo Effect using a feedback loop.
7. Bubble Sort Implements a bubble sort algorithm. This is a conceptually difficult implementation that

stresses the visualization features of the debugger.
8. Bit Reverse Sorts a sequence of 16 consecutive numbers in bit-reversed order. This is an adaptation of

the bit-reversal stage in FFT.
9. Overflow A synthetic benchmark with a substantial number of hierarchies, filters, and parallel

streams. Stresses the visual tracking of data, and the instance breakpoint capabilities of
the debugger.

reference for meaningful comparison later on1. More-
over, the control applications were designed to bolster
the user’s confidence. Next, half of the users (group A)
were told to debug applications 3, 4, and 5 with the SDT
and 6, 7, and 8 without the SDT (i.e., using the graphical
features of the SDT then without the graphical features).
Meanwhile, the other half (group B) were told to debug
3, 4, and 5 without the SDT and 6, 7, and 8 with the
SDT. Due to this grouping structure, applications 3 and
6, 4 and 7, and 5 and 8 were designed to be of compa-
rable difficulty. For application 9, half of group A (A1)
and half of group B (B1) were asked to debug with the
SDT, while the other halves (A2 and B2) were asked to
debug without the SDT. Cross-sectioning the groups was
aimed at ensuring external validity.

The study was divided into three sessions over a
three-day period. We estimated that each session would
last for two hours (with 45 minutes spent on the tuto-
rials and the rest of the time dedicated to debugging),
but in reality the sessions spanned an average of four
hours. Many users were either unable or did not have
enough time to debug certain applications. Participants
were asked to complete the set of documents at their own
pace, and upon completion, they were individually in-
terviewed and received a $40 gift certificate. During the
study, users were encouraged to ask questions although
particulars relating to the problems and the SDT were
not revealed.

1The control experiments served mainly to filter data. We did not
use data attributed to participants who did not complete the control
experiments.

4.3 Results and Analysis

Even though 25 users were scheduled to participate
(5 people for sessions 1 and 2 and 15 people for session
3), cancellations reduced the participation to 20 users
and led to uneven groupings. There were 6 people in
A1, 5 in A2, 4 in B1, and 5 in B2. Of the 20 partic-
ipants, there were 4 juniors, 2 seniors, 8 masters, and
6 Ph.D. students, all majoring in Electrical Engineer-
ing and Computer Science. None of the users had prior
StreamIt or SDT experience.

Figure 4 summarizes the study in terms of the num-
ber of solutions reported for each of the applications in
the study. In the figure, the bars labeled “solved with
the SDT” represent the number of participants that fully
debugged the corresponding applications using the SDT
and its graphical features. Similarly, the bars labeled
“solved without the SDT” represent the number of par-
ticipants that fully debugged the corresponding applica-
tions without using the graphical debugger. The bars that
are labeled “unsolved” represent the number of partici-
pants whose applications remained buggy. For example,
for the applicationEchoEffect there were two users
who were allowed to used the SDT and were unable to
debug the code properly. There was also one other par-
ticipant who did not debugEchoEffect although this
user was not allowed to use the SDT’s graphical fea-
tures.

Because the groupings are uneven as previously men-
tioned, the numbers seen in the figure are weighted de-
pending on which group is lacking users. The percent-
age above each quadruple of columns represents the per-
centage increase or decrease in debugged applications
due to the SDT (and its graphical features). For example,
the graphical debugger did not particularly help in appli-

0

2

4

6

8

10

12

14

16

18

1. BitTwiddle 2. Fib 3. EchoEffect 4. MergeSort 5. Cornerturn 6. EchoEffect2 7. BubbleSort 8. BitReverse 9. Overflow

U
se

rs
 (a

dj
us

te
d)

Solved with SDT
Unsolved with SDT
Solved without SDT
Unsolved without SDT

-8.64%

-83.33%

-6.94%

+28.41%

+18.18%

+45.45%

+75.00%

Figure 4. Summary of results.

cations 3, 4, and 5, but did help in debugging the others.
On average, 1.56 fewer participants fully debugged ap-
plications 3, 4, and 5 when using the graphical debugger,
and 2.56 more users debugged applications 6, 7, 8, and
9 when using the graphical debugger.

Figure 5 compares the average time spent debug-
ging each application. The percentage above each set
of columns represents the percentage improvement or
deficiency in time caused by using the SDT. On aver-
age, users took 7.78 (36.48%) more minutes to debug
applications 3, 4, 5, 6, 7, and 9 when using the graph-
ical features of the debugger, compared to participants
using more traditional debugging means. Furthermore,
participants who were allowed to use the SDT and its
graphical features spent an average of 16.96 more min-
utes debugging applications 6, 7, and 8, compared to
an average of 10.67 minutes invested by the participants
who could not use the graphical debugger. In both cases
the participants did not fully debug their respective ap-
plications.

Summarizing the results, we found that more partici-
pants were able to successfully debug their applications

when using the SDT and its graphical features. How-
ever, we also observed that the SDT increased the “time
to solution” as users had to navigate through a user in-
terface they were not familiar with. Interestingly, we
can also observe that the SDT may have mitigated user
frustration. As noted earlier, users generally spent much
more than the two hours allotted to complete the study,
and as such, users became frustrated and may have
rushed with the later applications. Correspondingly, this
might have caused users to spend less time and debug
fewer applications as users progressed through the study.
Although this pattern is true for participants who did not
use the SDT, the opposite occurs for participants who
used the SDT: 41.76% more users were able to debug
applications 6, 7, 8, and 9 using the SDT. Furthermore,
users spent 83.35% more time tracking down bugs in
applications 6, 7, and 8 when using the graphical debug-
ger. These results suggest that users are willing to spend
more time and work on more problems when using a tool
that they felt more certain would lead them to a solution.

0

5

10

15

20

25

30

35

1. BitTwiddle 2. Fib 3. EchoEffect 4. MergeSort 5. Cornerturn 6. EchoEffect2 7. BubbleSort 8. BitReverse 9. Overflow

Ti
m

e
(m

in
ut

es
)

Solved with SDT
Unsolved with SDT
Solved without SDT
Unsolved without SDT

+44.44%

+11.73%

+18.52%

+4.55%

+78.75%

+61.04%
-0.44%

Figure 5. Summary of results.

4.4 User Feedback

Comments obtained from the post-study question-
naires were quite helpful toward finding new feature
ideas and problems with functionality, performance, re-
liability, and usability.

Summarizing the most notable feedback, users
largely commented on their difficulties using Eclipse
and navigating the StreamIt code. Ten participants re-
ported that the time alloted to learn how to navigate
Eclipse was too short, and that the many windows,
menus, and options made it difficult to find vital infor-
mation quickly. Five participants noted that they were
uncomfortable or unaccustomed to thinking in terms fil-
ters and streams, while an equal number also found it
overwhelming to remember some of the language syn-
tax and concepts.

In general however, participants rated the SDT a 3.85
on average (on a scale of 1 to 10, from easy to hard),
praising many aspects of the stream graph viewer (e.g.,
hierarchical representation). Those who rated the SDT
as helpful, stressed that it was most useful for graphi-

cally visualizing the flow of data in the programs, espe-
cially when the applications were large.

4.5 Discussion

Many problems and issues arose in running the study
itself. One of the major problems was the time allot-
ted for users to complete the study. As previously men-
tioned, the slowest user spent twice the budgeted amount
of time. The timing negatively impacted users in several
ways, all of which contributed to incomplete or unre-
liable data: Users became frustrated and overwhelmed
by the amount of information presented to them; Users
were unable to complete the study due to time con-
straints; Users did not properly fill out the post-study
questionnaire, etc.

We believe that better screening can help bridge the
gap between between participants, although the biggest
lesson learned centers on the method of compensating
the participants. Specifically, a multi-level pay scale for
compensation may have alleviated some of the above
problems and lead to more conclusive results. A graded

pay scale would allow each participant to judge whether
they can or are willing to complete the study. In other
words, each user is rewarded according to their invest-
ments. Nonetheless, the expertise gap between partici-
pants in a user study is a well-documented issue: Usabil-
ity studies have found that the best users are often ten
times better than the worst users, and the fastest quar-
tile of users are twice as fast as the slowest quartile of
users [2, 8]. However, because increasing the number of
users in a study only narrows the standard deviation of
the mean by the square root of the number of users[2],
the improvement in results and reliability becomes an
expensive and time-consuming task. For example, in or-
der to double accuracy, the number of participants in this
study would have to be quadrupled to 80 users, which
would cost an additional $2400 and 24 man-hours.

5 Related Work

Numerous debuggers and program visualization tools
exist for DSP applications written in C/C++ and as-
sembly. The majority of these tools are targeted at
specific hardware platforms, offering traditional debug-
ging features (i.e., program suspension, breakpoint step-
ping, watchpoints, local variable and output display,
etc.) combined with assembly code, memory register,
and signal plot display.

In recent years, some movement in the streaming do-
main has been made toward OOP languages such as
C++ or Java, which introduce abstractions that improve
the portability and reusability of code. The introduc-
tion of conceptual abstractions empowers the design,
debugging, visualization, and analysis tools created for
OOP based streaming applications to introduce hierar-
chical, modular structures while hiding unnecessary de-
tails from the programmer. On top of the traditional de-
bugging features previously mentioned, all three of the
tools described next use some variation on the theme of
signal processing blocks that are connected, displayed,
and navigated graphically.

Simulink is a modeling, simulation, and analysis tool
for control, signal processing, and communications sys-
tem design. This tool imposes OOP conventions on
Matlab, C, Fortran, and Ada programmers by allowing
its users to insert their code into the methods of pre-
defined blocks or to use application-specific standard
block libraries. Furthermore, hierarchically block nav-
igation at both the design and debugging stages is of-
fered: command-line Simulink Debugger enables break-
point stepping of the currently executing method which
is simultaneously displayed on its associated block. Ad-
ditional information, such as block state, inputs, and out-
puts, are visible in other windows.

Process-Level Debugger (PDG) is designed for a
graphical parallel programming environment for con-
current applications called GRAPE. The PDG models
processes as black boxes that interact with each other.
Like Simulink, programmers build their applications
by creating and connecting black boxes hierarchically
(i.e., each black box may be composed of sub-boxes–
subprocesses–and displayed in a graphical view). As
an application is debugged, the PDG shows the appli-
cation’s behavior in a window and allows a programmer
to zoom down on suspicious process blocks in the hier-
archy. This top-down debugging method can eventually
find the associated erroneous code.

The MULTI Integrated Development Environment
is designed for multiprocessor, distributed systems and
embedded applications using C, C++, Ada, Fortran, and
assembly. Besides standard editing and debugging func-
tionality, this IDE conveys program control flow with
perusable static and dynamic call graphs and class hier-
archies.

Much like other language efforts, StreamIt addresses
many software engineering concerns by embracing con-
cepts such as modularity, parameterization, hierarchi-
cal composition, and portability. Furthermore, the lan-
guage automates several tedious tasks such as circular
buffer management that is common in streaming codes.
StreamIt also facilitates the verification of program via
inductive reasoning since simple components are assem-
bled to create large and complex graphs. Moreover, the
language treats communication and parallelism as “first-
class citizens”, and by naturally exposing the flow of
data in a program, the StreamIt Development Tool can
help application engineers in their debugging and verifi-
cation tasks.

A more thorough treatment of related work is avail-
able [4] for review by the interested reader.

6 Concluding Remarks

This paper presents StreamIt and the StreamIt Devel-
opment Tool. The SDT is an IDE designed to improve
the coding, debugging, and visualization of streaming
applications by exploiting the StreamIt language’s abil-
ity to naturally represent these applications as structured,
hierarchical graphs. Although industry and academia
have devoted much effort to tools for developing and
debugging software, the SDT aims to emulate the best
of traditional debuggers and IDEs while moving toward
hierarchical visualization and debugging concepts spe-
cialized for streaming applications. As such, it provides
utilities for stream graph examination and navigation,
and detailed tracking of data between streams, as well
as deterministic execution of parallel streams. These

features are in addition to program creation and code
editing, program compilation and launch support, and
general debugging and help support.

A user study evaluating the SDT uncovered several
problems and areas of improvement that need to be ad-
dressed before this tool can fully realize its goals. From
the user study however, we have empirical evidence to
suggest that the SDT improved the ability of users to
find and repair programming errors. The user study also
provided key insights that suggest that application devel-
opers and engineers are more likely to invest their time
tracking bugs and enhancing their applications if they
are confident they have adequate tools at their disposal.
In our user study, several subjects using the StreamIt
graphical debugger spent considerable more time debug-
ging applications in the latter parts of the study, com-
pared to subjects who were restricted to line oriented
debugging.

For more information on StreamIt, or to download
the StreamIt compilation and development infrastruc-
ture, please visit the project web page [10].

ACKNOWLEDGMENTS

Special thanks to William Thies who suggested and
wrote many of the applications in the study and supplied
advice on improving and enhancing the SDT and the
study. Both David Maze and William Thies modified the
StreamIt Java library to interface with the SDT. Jasper
Lin, Juan Carlos, Sitij Agarwal, Jeremy Wong, Michael
Gordon, and Michal Karczmarek all participated in in-
house evaluations of the SDT. Finally we thanks the MIT
students who participated in this study, without whom
this paper would not be possible. This work was funded
in part by NSF, IBM under the PERCS project, and
DARPA under contract No. NBCH30390004.

References

[1] G. Bilsen, M. Engels, R. Lauwereins, and J. Peper-
straete. Cyclo-static dataflow.IEEE Transactions on
Signal Processing, pages 397–408, February 1996.

[2] Controlled Experiments.
http://graphics.lcs.mit.edu/classes/6.893/F03/lectures/-
L13.pdf.

[3] The Eclipse Universal Tools Platform.
http://www.eclipse.org/.

[4] K. Kuo. The StreamIt Development Tool: A program-
ming environment for StreamIt. Master’s thesis, Mas-
sachusetts Institute of Technology, June 2004.

[5] A. Lamb. Linear analysis and optimization of stream
programs. Master’s thesis, Massachusetts Institute of
Technology, May 2003.

[6] E. Lee and D. Messershmitt. Static Scheduling of Syn-
chronous Data Flow Programs for Digital Signal Pro-
cessing. IEEE Trans. on Computers, C-36(1):24–35,
January 1987.

[7] E. A. Lee and D. G. Messerschmitt. Static schedul-
ing of synchronous data flow programs for digital signal
processing.IEEE Transactions on Computers, January
1987.

[8] Research Issues. http://pages.cpsc.ucalgary.ca/saul/681-
/1997/jas/issues.html.

[9] A. Solar-Lezama and R. Bodik. Templating transfor-
mations for bitstream programs. InProceedings of the
HPCA Workshop on Productivity and Performance in
High-End Computing (P-PHEC), Madrid, Spain, 2004.

[10] The StreamIt Project. http://cag.csail.mit.edu/streambit/.
[11] W. Thies, M. Karczmarek, and S. Amarasinghe.

StreamIt: A Language for Streaming Applications. In
Proceedings of the International Conference on Com-
piler Construction, Grenoble, France, 2002.

