Convergent Scheduling

Diego Puppin DIEGO.PUPPIN@QALUM.MIT.EDU
Institute for Information Science and Technologies

via Moruzzi 1,

56100, Pisa, Italy

Mark Stephenson MSTEPHEN@MIT.EDU
Walter Lee WALT@MIT.EDU
Saman Amarasinghe SAMANQCAG.LCS.MIT.EDU

Laboratory for Computer Science, MIT
Technology Square,
Cambridge, MA, 02143 USA

Abstract

Convergent scheduling is a general instruction scheduling framework that simplifies and
facilitates the application of a multitude of arbitrary constraints and scheduling heuristics
required to schedule instructions for modern complex processors. A convergent scheduler is
composed of independent passes, each implementing a heuristic that addresses a particular
problem or constraint. The passes share a simple, common interface that allows the spatial
and temporal preferences associated with each instruction to be queried and modified. With
each heuristic independently applying its scheduling constraint in succession, the final result
is a well formed instruction schedule that is able to satisfy most of the constraints.

We have implemented a set of different passes that addresses scheduling constraints
such as partitioning, load balancing, communication bandwidth, and register pressure. By
applying a hand-selected, fixed ordering of the passes we are able to obtain an average
increase in speedup on a reference 4-cluster VLIW architecture of 28% when compared
to Desoli’s PCC algorithm, 14% when compared to UAS, and a speedup of 21% over the
existing space-time scheduler of the Raw processor.

Then, we applied machine-learning techniques to automatically search for good pass
orderings, when moving to different VLIW architectures. The architecture-specific pass
orderings yield speedups ranging from 12% to 95% over the baseline order. The cross
validation studies we ran show that our automatically generated orderings perform well
beyond the benchmarks on which they were ‘trained’: benchmarks that were not in the
training set are within 6% of the performance they would obtain had they been in the
training set.

1. Introduction

Instruction scheduling on modern microprocessors is becoming increasingly difficult. In
almost all practical instances, it is NP-complete, and it often faces multiple contradictory
constraints, e.g. code sequences that expose more instruction level parallelism (ILP) also
have longer live ranges which induce higher register pressure.

To complicate matters, spatial architectures, such as clustered VLIWs, Raw [1], Grid
processors [2], and ILDPs [3], distribute their computing resources. The extra degree of

(©2004 AT Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

) G R ¢

1: MUL x, a, b ? ? o)
2: MUL x, x, b (? (? 3MUL
3: MUL y, ¢ d T
4: MUL y, y d ? ﬁi %D e
5 MUL 2z e f (? Camor] (? !
6: MUL 1z =z, f b @ |
72 ADD ¢, x, y C? C?
8 ADD t, t, z CP CP ©

(a)® (b)® (c)”

Figure 1: An example of trade-off between parallelism and locality on spatial architectures.
The code on the left is to be scheduled on a clustered architecture. Each cluster
(represented by a different color) has one functional unit, and communication
takes one cycle of latency due to the “receive” instruction. In (a), conservative
partitioning that maximizes locality and minimizes communication leads to an
eight-cycle schedule. In (b), aggressive partitioning has high communication re-
quirements and leads to an eight-cycle schedule. The optimal schedule, in (c),
takes only seven cycles: it is a careful trade-off between locality and parallelism.

scheduling freedom that such architectures introduce complicates the scheduling problem:
communication costs between distant resources, communication resource contention, and
increased register pressure must be taken into account. As shown in Figure 1, an effective
scheduler must find the proper balance between parallelism and locality.

In addition, some instructions on spatial architectures have specific spatial requirements.
These requirements arise from two sources. First, some load and store instructions must
access memory banks on specific clusters, either for correctness or for performance rea-
sons [4, 5]. Second, when a value is live across scheduling regions, its definitions and uses
must be mapped to a consistent cluster [6]. We call instructions with these spatial require-
ments preplaced instructions. A good scheduler must be sensitive to constraints imposed
by preplaced instructions in order to generate a good schedule.

A scheduler also faces difficulties because different heuristics work well for different
types of graphs. Figure 2 depicts two representative data dependence graphs: Graph (a)
is typical of graphs seen in non-numeric programs, while Graph (b) is representative of
graphs coming from applying loop unrolling to numeric programs. For long, narrow graphs,
critical-path based heuristics are likely to work well. For fat, parallel graphs, it is more
important to minimize communication and exploit the coarse-grain parallelism. To perform
well for arbitrary graphs, a scheduler must have multiple heuristics in its arsenal.

Traditional scheduling frameworks handle conflicting constraints and heuristics in an ad
hoc manner. One approach is to direct all efforts toward the most serious problem. For
example, many RISC schedulers focus on finding ILP and ignore register pressure altogether.
Another approach is to address the constraints one at a time in a sequence of passes. This

09 09000 © o0 o
o (Gog Goos| (050

(a)

Figure 2: Example of data dependence graphs. Nodes represent instructions and edges
represent data dependences between instructions.

approach, however, introduces pass ordering problems, as decisions made by the early passes
are based on partial information and can adversely affect the quality of decisions made by
subsequent passes. A third approach is to attempt to address all the problems together.
For example, there have been reasonable attempts to perform instruction scheduling and
register allocation at the same time [7]. However, extending such frameworks to support
preplaced instructions is difficult — no such extension exists today.

This paper presents convergent scheduling, a radical departure from traditional schedul-
ing methods. Convergent scheduling is a general scheduling framework that makes it easy
to specify arbitrary constraints and scheduling heuristics. A convergent scheduler is com-
posed of independent passes. Each pass implements a heuristic that addresses a particular
problem such as ILP or register pressure.

All passes in the convergent scheduler share a common interface. The input or output to
each pass is a collection of spatial and temporal preferences of instructions. A pass operates
by analyzing the current preferences and modifying them. As the scheduler applies the pass
in succession, the preference distribution converges to a final schedule that incorporates the
preferences of all the constraints and heuristics. Preferences are represented as a three-input
function that maps an instruction, space, and time triple to a weight.

Passes can be run multiple times, and in any order. Thus, while mitigating ordering
problems due to hard constraints, a convergent scheduler is presented with a limitless num-
ber of legal pass orders. Initially, we tediously hand-tuned the pass order. Then, we applied
machine learning techniques to automatically find good orderings for a convergent sched-
uler. Because different parallel architectures have unique scheduling needs, the speedups
our system is able to obtain by creating architecture-specific pass orderings is impressive.

Equally impressive is the ease with which it finds effective sequences. In less than
two days, using a modestly sized cluster of workstations, our system is able to discover
architecture-specific sequences that produce speedups ranging from 12% to 95% over our
hand-tuned sequence, and generally outperforms UAS [8] and PCC [9].

The contributions of this paper are:

e a novel interface between scheduling passes based on weighted preferences,

e a novel approach to address the combined problems of cluster assignment, scheduling,
and register pressure,

¢ the formulation of a set of powerful heuristics to address both general constraints and
architecture-specific issues,

e a demonstration of the effectiveness of convergent scheduling compared to traditional
techniques,

e the use of machine learning to adapt convergent scheduling to new architectures in
an effective way.

The rest of this work is organized as follows. Section 2 introduces convergent schedul-
ing and uses an example to illustrates how it works. Section 3 describes the convergent
scheduling interface between passes. Section 4 describes the collection of passes currently
implemented in our framework. Then, Section 5 describes Genetic Programming, the
machine-learning technique we use to explore the pass-order solution space. Sections 6
and 7 present our experimental results, using basic convergent scheduling, and using evo-
lution with Genetic Programming. Section 8 gives an overview of related work. Finally,
Section 9 concludes, summarizing the main achievements of our work.

2. Convergent Scheduling

In the convergent scheduling framework, passes communicate their choices as changes in
the relative preferences of instructions for clusters and time slots. The spatial and tempo-
ral preferences of each instruction are represented as weights in a preference map; a pass
influences the scheduling of an instruction by changing them. When convergent scheduling
completes, the cluster and time slot in the map with the highest weight are designated as
preferred. The instruction is assigned to the preferred cluster, and the preferred time is
used as the instruction priority for list scheduling.

Different heuristics work to improve the schedule in different ways. The critical path
strengthening heuristic (PATH), for example, expresses a preference to keep all the in-
structions in critical paths together in the same cluster. The communication minimization
heuristic (COMM) tries to keep dependent neighboring instructions in the same cluster.
The preplacement heuristic (PLACE) prefers that preplaced instructions and their neigh-
bors are placed on the clusters selected by the preplaced instructions. The load balance
heuristic (LOAD) reduces the preferences on highly loaded clusters and increases them on
the less loaded ones. Other heuristics will be introduced in Section 4.

Figure 3 shows how convergent scheduling operates on a small code sequence from
fpppp. Initially, the weights are evenly distributed, as shown in (b). We apply the noise

® @) (B (B @) (B 2 (D@ (@) I
BV Ot 1}*“19 : }’1,; -

(€Y (€] (B) (3 3
A A AA A &

(d) LF

Figure 3: Convergent scheduling operates on a code sequence from fpppp. Figure (a) shows
the data dependence graph representation of the scheduled code. Nodes represent
instructions; edges represent dependences between instructions. Triangular nodes
are preplaced, with different shades corresponding to different clusters. Figures
(b)-(g) show how the convergent schedule is modified by a series of passes. This
example only illustrates space scheduling, not time scheduling. Each figure in
Figures 3b-g is a cluster preference map. A row represents an instruction. The
row numbers correspond to the instruction numbers in (a). A column represents
a cluster. The color of each entry represents the level of preference an instruction
has for that cluster. The lighter the color, the stronger the preference.

introduction heuristic (NOISE) to break symmetry, resulting in (c). This heuristic helps
increase parallelism by distributing instructions to different clusters. Then, we run critical
path strengthening (PATH), which increases the weight of the instructions in the critical path
(i.e., instructions 23, 25, 26, etc.) in the first cluster (d). Then we run the communication
minimization (COMM) and the load balance (LOAD) heuristics, resulting in (e). These
heuristics lead to several changes: the first few instructions are pushed out of the first
cluster, and groups of instructions start to assemble in specific clusters (e.g., instructions
19, 20, 21, and 22 in cluster 3).

Next, we run PLACE and PLACEPROP, which bias instructions using information from
preplaced nodes. The result is shown in (f). The pass causes a lot of disturbances: preplaced
instructions strongly attract neighbors of preplaced instructions to their clusters. Observe
how the group 19-21 is attracted to cluster 4. Finally we run communication minimization
(COMM) another time. The final schedule is shown in (g).

Convergent scheduling has the following features:

1. Tts scheduling decisions are made cooperatively rather than ezxclusively.

2. The interface allows a pass to express confidence about its decisions. A pass needs
not make a poor and unrecoverable decision just because it has to make a decision.
On the other side, any pass can strongly affect the final choice if needed.

3. Convergent scheduling can naturally recover from a temporary wrong decision made
by one pass. In the example, when we apply noise to (b), most nodes are initially
moved away from the first cluster. Subsequently, however, nodes with strong ties to
cluster one, such as nodes 1-6, are eventually moved back, while nodes without strong
ties, such as node 0, remain away.

4. Most compilers allow only very limited exchange of information among passes. In
contrast, the weight-based interface to convergent scheduling is very expressive.

5. The framework allows a heuristic to be applied multiple times, either independently
or as part of an iterative process. This feature is useful to provide feedback between
passes and to avoid pass ordering problems.

6. The simple interface (preference maps) between passes makes it easy for the compiler
writer to handle new constraints or design new heuristics. Passes for different heuris-
tics are written independently, and the expressive, common interface reduces design
complexity. This offers an easy way to retarget a compiler and to address peculiari-
ties of the underlying architecture. If, for example, an architecture is able to exploit
auto-increment on memory-access with a specific instruction, one pass could try to
keep together memory-accesses and increments, so that the scheduler will find them
together and will be able to exploit the advanced instructions.

3. Convergent Interface

Convergent scheduling operates on individual scheduling units, which may be basic blocks,
traces [10], hyperblocks [11] etc. It stores preferences in a three dimensional matrix W; .+,
where i spans over all instructions in the scheduling unit, ¢ over the clusters in the archi-
tecture, and t over time. We allocate as many time slots as the critical-path length.

Initially, all the weights are distributed evenly. A pass examines the dependence graph
and the weight matrix to determine the characteristics of the preferred schedule so far.
Then, it expresses its preferences by manipulating the preference map. Passes are not
required to perform changes that affect the preferred schedule. If they are indifferent to one
or more choices, they can keep the weights the same.

Let 7 span over instructions, ¢ over clusters, ¢ over time-slots. The following invariants
are maintained:

Vit,c:0< Wige <1
Vi : z Wite=1
t,c

Given an instruction i, we define the following:!

preferred_time(i) = argmax {t : Z Wi,t,c}

preferred_cluster(i) = argmax {c : Z Wi,t,c}

t

N ey Wite
runnerup_ cluster(i) = argmax { ¢ £ preferred_cluster(i) }

> Wit pres i
. ,t,preferred cluster(i
confidence(i) = ¢ = ©

Zt Wi,t,runnerupicluster(i)

The preferred values are those that maximize the sum of the preferences over time
and clusters, while the confidence of an instruction measures how confident the convergent
scheduler is about its current spatial assignment. It is computed as the ratio of the weights
of the top two clusters. The following basic operations are available on weights:

e Any weight W; ;. can be increased/decreased by a constant, or multiplied by a factor.

e The preference matrix of one instruction can be combined to that of another instruc-
tion, with a relative weight w (0 < w < 1). This way we propagate high-confidence
decisions to neighboring instructions. We never perform this full operation because
it is expensive. Instead, we only do this along the space dimension, or only within a
small range along the time dimension.

for each (c,t), Wiy t.c — (L —w)Wiy t.c + WWiy tc

e The system incrementally keeps track of the sums of the weights over both space and
time, so that they can be determined in O(1) time. It also memorizes the preferred
time and preferred cluster of each instruction.

e The preferences can be normalized to guarantee our invariants; the normalization
simply performs:

Wi,t,c

for each (i,¢,t), Wit,e ¢ —=——22—
Zt,c Wi,t,c

1. Given an expression to be maximized within a range, maz returns the maximum value reached by the
expression, while argmaz is the value of the variable that maximizes it. For instance max{z € R : z —2°}
is 1/4, while argmax{z € R : — 2>} is 1/2, because for the value x = 1/2, we reach the maximum 1/4.

4. Collection of Heuristics

This section presents a collection of heuristics we have implemented for convergent schedul-
ing. Each heuristic attempts to address a single constraint and only communicates with
other heuristics via the weight matrix. There are no restrictions on the order or the number
of times each heuristic is applied. In our first experiments, heuristics and their order were
manually tuned, with a tedious trial-and-error process. In Section 5, we describe a more
systematic approach to ordering passes, based on Genetic Programming.

Whenever necessary, we run normalization at the end of every pass to ensure the invari-
ants described in Section 3. This step is implicit in the description below.

Initial Time Assignment (INITTIME). Instructions in the middle of the dependence
graph cannot be scheduled before their predecessors, nor after their successors. So, if CPL
is the length of the critical path and, for any instruction, I, is the length of the longest path
from the top of the graph to it (latency of predecessor chain), and Is is the longest path
from it to any leaf (latency of successor chain), the instruction can be scheduled only in
the time slots between [, and CPL — [;. If an instruction is part of the critical path, only
one time-slot will be feasible. This pass squashes to zero all the weights outside this range.
A pass similar to this one can address the fact that some instructions cannot be scheduled
in all clusters in some architectures, simply by squashing the weights for the unfeasible
clusters.

for each (¢,t <1, Ut > CPL —l,,¢), Witc <0

Noise Introduction (NOISE). This pass introduces a small amount of noise in the
weight distribution. The noise helps break symmetry and spreads instructions around to
facilitate scheduling for parallelism.

for each (i,t,¢), Wit < Wit +rand()/RAND_ MAX

Preplacement (PLACE). This pass increases the weight for preplaced instructions to
be placed in their home cluster. Since this condition is required for correctness, the weight
increase is large. Given preplaced instruction 4, let ¢p(i) be its preplaced cluster. Then,

for each (i € PREPLACED,t),
Wi,t,cp(i) — 100Wi,t,cp(i)

Push to First Cluster (FIRST). In our clustered VLIW infrastructure, an invariant is
that all the data are available in the first cluster at the beginning of every scheduling unit.
For this architecture, we want to give advantage to a schedule utilizing the first cluster more,
where data are already available, versus the other clusters, were copies might be needed.
We express this preference as follows:

for each (4,t), Wit,1 < 1.2W; 11

Critical Path Strengthening (PATH). This pass tries to keep all the instructions on a
critical path (CP) in the same cluster. If instructions in the paths have bias for a particular
cluster, the path is moved to that cluster. Otherwise the least loaded cluster is selected. If
different portions of the paths have strong bias toward different clusters (e.g., when there
are two or more preplaced instructions on the path), the critical path is broken in two or

more pieces and kept locally close to the relevant home clusters. Let cc(i) be the chosen
cluster for the CP.

for each (i € CP,t,c), Wiy cewy < 3Wit,ce(s)

Communication Minimization (COMM). This pass reduces communication load by
increasing the weight for an instruction to be in the same clusters where most of neighbors
(successors and predecessors in the dependence graph) are. This is done by summing the
weights of all the neighbors in a specific cluster, and using that to skew weights in the
correct direction. We have also implemented a variant of this that considers grand-parents
and grand-children, and we usually run it together with COMM.

for each (i,t,¢), Wi t,c < Wit Z Wi t,c
neneighbors of ¢

Assignment Strengthening (BEST). This pass simply boosts the preference for the
preferred slot for every instruction. This is useful as a last pass, but also as a middle pass,
because it solidifies the current preference mappings. Let ¢; and c¢; be the preferred time
and cluster for instruction i:

for each (¢), Wi t;.c; < 2Wit; e,

Preplacement Propagation (PLACEPROP). This pass propagates preplacement in-
formation to all instructions. For each non-preplaced instruction ¢, we divide its weight for
each cluster ¢ by its distance to the closest preplaced instruction in c¢. Let dist(7, c) be this
distance. Then,

for each (¢ ¢ PREPLACED,t,c), Wi ,c + Wiy,o/dist(i,c)

Load Balance (LOAD). This pass performs load balancing across clusters. Each weight
on a cluster is divided by the total load on that cluster, computed as the sum of the
preferences of all instructions:

for each (i,t,c¢), Wi t,c < Wi,c/load(c)

Level Distribute (LEVEL). This pass distributes instructions at the same level across
clusters. Given instruction 4, we define level(i) to be its distance from the furthest root.
Level distribution has two goals. The primary goal is to distribute parallelism across clus-
ters. The second goal is to minimize potential communication. To this end, the pass tries
to distribute instructions that are far apart, while keeping together instructions that are
near each other.

To perform the dual goals of instruction distribution without excessive communication,
instructions on a level are partitioned into bins. Initially, the bin B, for each cluster ¢
contains instructions whose preferred cluster is ¢, and whose confidence is greater than a
threshold (2.0). Then, we perform the following:

LevelDistribute: int 1, int g
I; = Instruction ¢ | level(i) = |
foreach Cluster ¢
Ii=I-B.
I, = {i | i € Ij;distance(s, find_ closest_bin(i)) > g}
while I; # ¢
B = round_robin_next_bin()
iclosest = argmax{i € I, : distance(i, B)}
B = B U icosest
Iy = I} —iciosest
Update I,

The parameter g controls the minimum distance granularity at which we distribute
instructions across bins. The distance between an instruction 7 and a bin B is the minimum
distance between ¢ and any instruction in B.

LEVEL can be applied multiple times to different levels. Currently we apply it every
four levels on Raw. The four levels correspond approximately to the minimum granularity
of parallelism that Raw can profitably exploit given its communication cost.

Path Propagation (PATHPROP). This pass selects high confidence instructions and
propagates their convergent matrices along a path. The confidence threshold ¢ is an input
parameter. Let i, be the selected confident instruction. The following code propagates iy,
along a downward path. A similar function, which visits predecessors, propagates i; along
an upward path.

find i | ¢ € successor(ip); confidence(i) < confidence(ip)
while (7 # nil)
for each (¢, t), Wi t,c < 0.5W ¢+ 0.5W, 1c
find i, | i, € successor(4); confidence(i,) < confidence(ip)
i ip

Emphasize Critical Path Distance (EMPHCP). This pass attempts to help the
convergence of the time information by emphasizing the level of each instruction. The level
of an instruction is a good time approximation because it is when the instruction can be
scheduled if a machine has infinite resources. In detail:

for each (Z) C), Wi,level(i),c — 1-2Wi,level(i),c

5. Genetic Programming

From one generation to the next, architectures in the same processor family may have
extremely different internal organizations, and thus have unique compilation needs. We
have therefore developed a machine-learning tool to automatically customize our convergent
scheduler to any given architecture. The tool generates a sequence of passes from those
described above.

Of the many available machine-learning techniques, we chose to employ Genetic Pro-
gramming (GP) because its attributes fit the needs of our application. Like many other
evolutionary algorithms, it is based on the thesis that a computational version of fitness-
based selection, reproductive inheritance and blind variation acting upon a population will

10

(sexpr) ::= (‘sequence’ (sexpr) (sezpr))
| (‘if’ (variable) (sexpr) (sexpr))

| ({pass))

(variable) ::= #1 - Is imbalanced
| #2-Is fat
| #3 - Is within CPL
| #4 - Is placement bad

(pass) == ‘PATH’ | ‘COMM’ | ‘NOISE’ | ‘INITTIME’
| ‘LOAD’ | ‘LEVEL’ | ‘PATHPROP’ ‘ ‘EMPHCP’
| ‘BEST’ | ‘PLACE’ | ‘PLACEPROP’ | ‘FIRST’
Table 1: Grammar for genome s-expressions.
Variable True if
Is imbalanced the difference in load between the most and the least loaded
cluster is larger than 1/numcluster
Is fat the number of independent critical paths is larger than the
number of tiles
Is within CPL the number of instructions in the block is smaller than the
number of tiles times the critical path length
Is placement bad | the number of unplaced instructions is more than half the
number of instructions in the block

Table 2: Variables used by our system. Their values can change after each pass.

lead the individuals in subsequent generations to adapt toward better performance in their
environment.

GP’s attractive features include its ability to explore high-dimensional spaces, its high
scalability (it can run effectively on a distributed cluster of workstations), and the fact that
its solutions are human-readable, compared with other algorithms (e.g. neural networks)
where the solution is embedded in a very complex state space.

In the general GP framework, individuals are represented as parse trees (or equivalently,
as LISP s-ezpressions). In our case, the parse trees represent a sequence of conditionally
executed passes. Table 1 shows the grammar we use to describe pass orders. The <wvariable>
expression is used to extract pertinent information about the status of the schedule, and the
shape of the block under analysis. This introspection allows the scheduler to run different
passes based on the state of the schedule. Table 2 shows the four variables used by our
system.

The algorithm starts by creating an initial population of 200 random expressions. It
then compiles and runs each of the benchmarks in our training set for each individual
in the population. FEach individual is then assigned a fitness based on how fast each of
the associated programs in the training set executes. In our case, the fitness is simply

11

the average speedup for the benchmarks in the training set, compared to the hand-tuned
sequence used in the previous section. We also reward parsimony by giving preference to
the shorter of two otherwise equivalently fit sequences.

The weakest individuals (20%) are discarded, and replaced with new individuals: half of
them completely randomly, the other half created via the crossover operator from the fittest
individuals. To guard against stagnant populations, GP often uses mutation. One possible
mutation simply replaces a randomly chosen subtree with a new random expression. The
GP algorithm halts when a user-defined number of iterations (40, in our case) has been
reached.

6. Results: Basic (Hand-tuned) Convergent Scheduling

We have implemented convergent scheduling in two systems: the Raw architecture [1] and
the Chorus clustered VLIW infrastructure developed at MIT [12].

Experimental Environment. The Raw machine prototype has 16 tiles in a 4x4 mesh.
Each tile has its own instruction memory, data memory, registers, processor pipeline, and
ALUs. Its instruction set is based on the MIPS R4000. The tiles are connected via point-
to-point, mesh networks. In addition to a traditional, wormhole dynamic network, Raw has
a programmable, compiler-controlled static network that can be used to route scalar values
between the register file/ALUs on different tiles (for details, please refer to [6]). Latency on
the static network is three cycles for two neighboring tiles; each additional hop takes one
extra cycle of latency.

RawCC, the Raw compiler, takes a sequential C or Fortran program and parallelizes
it across Raw tiles. It is built on top of the MachSUIF intermediate representation [13].
RawCC divides each input program into one or more scheduling traces. For each trace,
RawCC constructs the data precedence graph and performs space-time scheduling on each
graph. Then, it applies a traditional register allocator to the code on each tile.

The Chorus clustered VLIW system is a flexible compiler/simulator environment, which
can simulate many different configurations of clustered VLIW machines. The configuration
we used most is a machine with four identical clusters. Each cluster has four functional
units: one integer ALU, one integer ALU/Memory, one floating-point unit, and one transfer
unit. Instruction latencies are based on the MIPS R4000. The transfer unit moves values
between register files on different clusters. It takes one cycle to copy a register value from
one cluster to another. Memory addresses are interleaved across clusters for maximum
parallelism. Memory operations can request remote data, with a penalty of one cycle.

The Chorus compiler shares with RawCC the same high level structure. Like RawCC,
it is implemented on top of MachSUIF. It first performs space-time scheduling, followed
by traditional single-cluster register allocation [14]. Both RawCC and the Chorus compiler
employ congruence transformation and analysis to increase and analyze the predictability of
memory references [5]. This analysis creates preplaced memory reference instructions that
must be placed on specific tiles or clusters. For dense matrix loops, the congruence pass
usually unrolls the loops by the number of clusters or tiles. This unrolling also increases
the size of the scheduling regions, so that no additional unrolling is necessary to expose
parallelism.

12

INITTIME INITTIME
PLACEPROP NOISE

LOAD FIRST
PLACE PATH

PATH COMM
PATHPROP PLACE
LEVEL PLACEPROP
PATHPROP COMM
COMM EMPHCP
PATHPROP

EMPHCP

(a) (b)

Table 3: Hand-tuned sequence of heuristics used by the convergent scheduler for (a) the
Raw machine and (b) clustered VLIW.

In both compilers, when a value is live across multiple scheduling regions, its definitions
and uses must be mapped to a consistent cluster. On RawCC, this cluster is the cluster of
the first definition/use encountered by the compiler; subsequent definitions and uses become
preplaced instructions.? On Chorus, all values that are live across multiple scheduling
regions are mapped to the first cluster.

Architecture-specific Heuristics. Table 3 lists the heuristics used by the convergent
scheduler for Raw and Chorus. These orders were hand-tuned to the architectures, with a
trial-and-error process. The heuristics are run in the order given.

The convergent scheduler interfaces with the existing schedulers as follows. The output
of the convergent scheduler is split into two parts: (1) a map describing the preferred
partition, i.e., an assignment for every instruction to a specific cluster, and (2) the temporal
assignment of each instruction.

Both Chorus and RawCC use the spatial assignments given by the convergent scheduler.
Chorus uses the temporal assignments as priorities for the list scheduler. For RawCC,
however, the temporal assignments are computed independently by its own instruction
scheduler.

Benchmarks. Our sources of benchmarks include the Raw benchmark suite (jacobi,
life) [15], Nasa7 of Spec92 (cholesky, vpenta, and mxm), and Spec95 (tomcatv, fpppp-
kernel). Fpppp-kernel is the inner loop of fpppp that consumes 50% of the run-time. Sha
is an implementation of Secure Hash Algorithm. Fir is a FIR filter. Rbsorf is a Red Black
SOR relaxation. Vvmul is a simple matrix multiplication. Yuv does RGB to YUV color
conversion. Some problem sizes have been changed to cut down on simulation time, but
they do not affect the results qualitatively. For technical limitations of our compilers, some
benchmarks were not available for Chorus or RAW.

Performance Comparisons. We compared our results with the baseline RawCC and
Chorus compilers. Table 4 compares the performance of convergent scheduling to RawCC

2. RawCC does use SSA (Single Static Assignment) renaming to eliminate false dependences, which in turn
reduces these preplacement constraints.

13

Base Convergent
Benchmark/Tiles 2 4 8 16 2 4 8 16
cholesky 1.14 | 2.21 | 3.29 | 433 || 1.44 | 2.75 | 4.94 7.06
tomcatv 1.18 | 1.83 | 2.88 | 3.94 || 1.37 | 2.12 | 3.33 5.15
vpenta 1.86 | 2.85 | 4.58 | 8.03 || 1.96 | 3.23 | 5.82 | 9.71
mxm 1.77 | 240 | 3.78 | 7.09 || 1.89 | 2.54 | 4.04 | T7.77
fpppp 1.54 | 3.09 | 5.13 | 6.76 || 1.42 | 2.04 | 3.87 | 5.39
sha 1.11 | 2.05 | 1.96 | 2.29 || 1.05 | 1.33 | 1.51 1.45
swim 1.40 | 2.04 | 3.62 | 6.23 || 1.63 | 2.69 | 4.24 8.30
jacobi 1.33 | 243 | 413 | 6.39 || 1.40 | 2.74 | 4.92 9.30
life 1.65 | 3.02 | 5.56 | 8.48 || 1.76 | 3.35 | 6.34 | 11.97

Table 4: RawCC speedup. Speedup is relative to performance on one tile.

14
@ Rawcc
12 +—\m Convergent
10
S 81
k=]
[}
& 64
a
4,
2,
0,
NSRS S« SR N> SR S e
Q\Q? @o’b Q(\ é‘+ \‘_‘?}Q 6\$\) 'Z§Jo A
& &S > <
(9 QQ
N

Figure 4: Performance comparisons between RawCC and Convergent scheduling on a 16-tile
Raw machine. Speedup is relative to performance on one tile.

for two to 16 tiles. Figure 4 plots the same data for 16 tiles. Results show that convergent
scheduling consistently outperforms baseline RawCC for all tile configurations for most of
the benchmarks, with an average improvement of 21% for 16 tiles.

Many of our benchmarks are dense matrix code with preplaced memory instructions
from congruence analysis. For these benchmarks, convergent scheduling always outperforms
baseline RawCC. The reason is that convergent scheduling is able to actively take advantage
of preplacement information to guide the placement of other instructions. This information
leads to very good natural assignments of instructions.

For fpppp-kernel and sha, convergent scheduling performs worse than baseline RawCC
because preplaced instructions do not suggest many good assignments. Attaining good
speedups on these benchmarks requires finding and exploiting very fine-grained parallelism.
Our level distribution pass has been less efficient in this regard than the clustering coun-
terpart in RawCC — we expect that integrating a clustering pass to convergent scheduling
will address this problem.

14

Relative number of instructions whose preferred tiles have changed

cholesky
tomcatv
vpenta

4 mxm
0.8 fpppp—kernel
sha

|9
<
0
A
3
D>
:

0.6 —
0.4 —

0.2 —

i S PO e :

PLACEPROP LOAD PLACE PATH PATHPROP LEVEL PATHPROP COMM PATHPROP
Passes

Figure 5: Convergence of spatial assignments on Raw.

Figure 5 shows the relative number of instructions whose preferred tiles are changed by
each convergent pass on Raw. The plots measure static instruction counts, and they exclude
passes that only modify temporal preferences. For benchmarks with useful preplacement
information, the convergent scheduler is able to converge to good solutions quickly, by prop-
agating the preplacement information and using the load balancing heuristic. In contrast,
preplacement provides little useful information for fpppp-kernel and sha. These benchmarks
thus require other critical paths, parallelism, and communication heuristics to converge to
good assignments.

Some pass orderings could take the scheduling to local minima, but this did not happen
in our experiments. Some central passes, i.e. PATHPROP or LEVEL, can move a large
part of instructions in order to reach a better solution. Nonetheless, a final agreement is
reached: in all cases, the last PATHPROP does not change many instructions.

Figure 6 compares the performance of convergent scheduling to two existing assign-
ment/scheduling techniques for clustered VLIW: UAS [8] and PCC [9]. We augment each
existing algorithm with preplacement information. For UAS, we modify the CPSC heuristic
described in the original paper to give the highest priority to the home cluster of preplaced
instructions. For PCC, the algorithm for estimating schedule lengths and communication
costs properly accounts for preplacement information, by modeling the extra costs incurred
by the clustered VLIW machine for a non-local memory access. Convergent scheduling
outperforms UAS and PCC by 14% and 28%, respectively, on a 4-cluster VLIW machine.
Like in Raw, the convergent scheduler is able to use preplacement information to find good
natural partitions for our dense matrix benchmarks. Figure 7 shows the relative number
of static instructions whose preferred tiles are changed by each convergent pass on Chorus.
Passes that only modify temporal preferences are excluded.

Compile-time Scalability. We examined the scalability of convergent scheduling. Scal-
ability is important because there is an increasing need for instruction assignment and
scheduling algorithms to handle larger blocks. In fact, to extract the amount of instruction-
level parallelism needed by modern and future microprocessors, compilers need to work

15

4
@apPCC
35 B UAS u
H Convergent
3 4
25
o
=]
B 2
o
n
1.5 A
14
0.5 —
0 41
vvmul rbsorf yuv tomcatv mxm fir cholesky

Figure 6: Performance comparisons between PCC, UAS, and Convergent scheduling on a
4-cluster VLIW. Speedup is relative to a single-cluster machine.

Relative number of instructions whose preferred clusters have changed

0.8
0.6

04
cholsky
fir

mxm
tomcatv-
vvmul
yuv

0.2

A POCD

I
NOISE FIRST PATH COMM PLACE+PLACEPROP CoOMM
Passes

Figure 7: Convergence of spatial assignments on Chorus.

on more advanced block representations, such as hyperblocks and treegions, with a larger
scheduling scope.

Figure 8 compares the compile-time of convergent scheduling with that of UAS and
PCC on Chorus. Both convergent scheduling and PCC use an independent list scheduler
after instruction assignment — our measurements include time spent in the scheduler. The
figure shows that convergent scheduling and UAS take about the same amount of time.
They both scale considerably better than PCC. We note that PCC is highly sensitive to
the number of components it initially divides the instructions into. Compile-time can be
dramatically reduced if the number of components is kept small. However, we find that for
our benchmarks, reducing the number of components also results in much poorer assignment
quality.

16

1000000

10000 + = "
’m“ []
o L -
S -
8 n "
& 100 . .
- " *
g 1 * R o«
2 ¢
(0]
S
3 = PCC
0.01 UAS =
’ + Convergent
0.0001 ! T T T
0 500 1000 1500 200(

Number of Instructions Scheduled

Figure 8: Comparison of compile-time vs input size for algorithms on Chorus.

7. Results: Genetic Programming

We tested our Genetic Programming framework on our clustered VLIW infrastructure, and
we compared it with PCC [9] and UAS [8]. To verify the way our evolutionary system is able
to learn to exploit new architectures, we run our experiments on three new configurations,
which are modifications of the baseline used in the previous section.

Baseline (4cl). This is the configuration used in the previous experiments. The baseline
architecture is a 4-cluster VLIW with rich interconnectivity. In this configuration, the
clusters are fully connected with a 4x4 crossbar. Thus, the clusters can exchange up to four
words every cycle. The delay for the communication is 1 cycle. Register file, functional
units and L1 cache are split into the clusters — even though every address of the memory
can be accessed by any cluster — with a penalty of 1 cycle for non-local addresses. The cache
takes 6 cycles to access and the register file takes 2 cycles. In addition, memory writes take
1 cycle. Each cluster has 64 general-purpose registers and 64 floating-point registers.

Limited Bus (4cl-comm). This architecture is similar to the baseline architecture, the
only difference being inter-cluster communication capabilities. This architecture only routes
one word of data per cycle on a shared bus, which can be snooped, thus creating a basic
broadcasting capability. Because this model has limited bandwidth, the space-time sched-
uler must be more conservative in splitting computation across clusters.

Limited Bus (2cl-comm). Another experiment uses an architecture that is substantially
weaker than the baseline. It is the same as machine 4cl-comm, except it only has 2 clusters.

Limited Registers (4cl-regs). The final machine configuration on which we test our
system is identical to the baseline architecture, except that each cluster has half the number
of registers (32 general-purpose and 32 floating-point registers).

17

Speed-up

45

35

w

N
3}

N

15

05

Figure 9:

Speed-up

25

15

0.5

Speedup on 4cl-comm

IMJmW

vvmul rbsorf yuv tomcatv m fir cholesky AVG
Benchmark
Model O pcc UAS Conv. B Evolved

Speedup on 4cl-comm compared with 1-cluster convergent scheduling (original
sequence). CONYV is the baseline sequence (hand-tuned in our previous work),
and EVOLVED is the performance of the sequence evolved for this architecture.

Speedup on 2cl-comm

vwvmul rbsorf yuv tomcatv mxm fir cholesky AVG
Benchmark
Model J pcc UAS Conv. B Evolved

Figure 10: Speedup on 2cl-comm.

For each of these four architectures, we evolved an application-independent sequence
of passes: our fitness function reward the pass orderings that performs well on all the
benchmarks.? Results are shown in Figures 9, 10, and 11. The evolved sequence (Evolved

3. As said before, the fitness measures the average speed-up of the benchmarks compiled with a given
sequence.

18

vvmul rbsorf yuv tomcatv mxm fir cholsky AVG
Benchmark
Model O pcc UAS Conv. B Evolved

Figure 11: Speedup on 4cl-regs.

Excluded benchmark
benchmark | cholesky fir yuv tomcatv mxm vvmul rbsorf | full
cholesky 2.18 2.18 2.18 2.18 2.18 2.17 2.18 | 2.18
fir 1.35 1.35 1.35 1.35 1.35 1.35 1.35 | 1.35
yuv 1.53 1.53 1.53 1.53 1.53 1.16 1.53 | 1.53
tomcatv 1.60 1.35 1.35 1.45 1.47 1.55 1.44 | 1.37
mxm 2.03 2.04 2.04 2.04 2.12 2.33 2.04 | 1.96
vvmul 2.18 2.18 2.18 2.18 2.18 2.25 2.18 | 2.18
rbsorf 241 241 241 244 2.36 244 2.41 | 241
average 1.90 1.86 1.86 1.88 1.89 1.89 1.88 | 1.86

Table 5: Results of cross validation (speed-up). The highlighted numbers refer to the bench-
mark excluded in each test.

in the figures) outperformed the initial sequence (Conv. in the figures), which was hand-
tuned for the baseline architecture, of 95%, 12% and 68% in the three architectures.

The evolved convergent scheduler outperforms UAS and PCC, except in the case of lim-
ited registers, where performance is lower by 6% and 2% respectively. We are investigating
new passes that address this aspect. Also, the original hand-tuned sequence is over-tuned
for the baseline architecture, and it is generally outperformed by UAS and PCC in the other
configurations.

Leave-one-out Cross Validation. We also tested the robustness of our system by using
leave-one-out cross validation. The evolution was re-run excluding one of the seven bench-
marks, and the resulting evolved pass ordering was tested again on the excluded benchmark.
The seven cross-validation evolutions reached results very similar (within 6%) to the full
evolution, for the excluded benchmarks too (see Table 5).

19

With these initial experiments, we verified that convergent scheduling is well suited to
a set of different architectures. An improved sequence of passes can be found running our
evolutionary framework on 20 dual Pentium 4 machines, in less than 40 hours. Once found,
it can be used as the core of an architecture-specific application-independent compiler.

8. Related Work

Spatial architectures require cluster assignment, scheduling, and register allocation. We
have provided a general framework that can perform all three tasks together (by adding
preference maps for registers as well), but the focus of this paper is the application of
convergent scheduling to cluster assignment.

Many compilers for spatial architectures address the three problems separately. Much
research has focused on novel ways to do cluster assignment, coupled with traditional list
scheduling and register allocation methods. The pioneering work in cluster assignment is
BUG [4]. BUG uses a two-phase algorithm. First, the algorithm traverses a dependence
graph bottom-up to propagate information about preplaced instructions. Then, it traverses
the graph top-down and greedily maps each instruction to the cluster that can execute
it earliest. The Multiflow compiler uses a variant of BUG [16], without the support for
preplaced instructions.

PCC is an iterative assignment approach based on partial components [9]. It builds
partial components by visiting the data dependence graph bottom-up, critical-path first.
The maximum size of a component is limited by a parameter, ¢;,. It uses simple heuristics
to select a value for ¢y, that balances the trade-off between performance and compile-time,
although the exact method is not discussed in detail in the original paper. The components
are initially assigned to clusters based on simple load balancing and communication criteria.
The assignments are subsequently improved through iterative descent, by checking whether
moving a sub-component to another cluster improves the schedule. RawCC leverages tech-
niques developed for multiprocessor task graph scheduling [6]. Assignment is performed in
three steps: clustering groups instructions that have little parallelism; merging reduces the
number of clusters through merging; placement maps clusters to tiles. During placement,
RawCC also handles constraints from preplaced instructions.

In [17], the solution differs from the above approaches in the ordering of passes. It
performs scheduling before assignment. The assignment pass uses a min-cut algorithm
adapted from circuit partitioning that tries to minimize communication. This algorithm,
however, does not directly attempt to optimize the execution length of input DAGs.

To avoid pass ordering problems, recent works have proposed combined solutions. Le-
upers describes an iterative combined approach, based on simulated annealing, to perform
scheduling and partitioning on a VLIW DSP [18]. UAS performs assignment and scheduling
together by integrating assignment into a cycle-driven list scheduler [8]. CARS performs all
three tasks — assignment, scheduling, and register allocation — in one step, by integrating
both assignment and register allocation into a modified cycle-driven list scheduler [19].

Lerner proposes an interesting interface to different passes based on graph replace-
ment [20]. His approach enables independently designed data-flow passes to be composed
and run together. The composed pass is able to achieve the precision of iterating inde-
pendent passes, but without the compile-time cost of iteration. In all these approaches,

20

however, every decision is irrevocable and final. In contrast, convergent scheduling provides
a general framework that allows decisions to be postponed or reversed.

Pass ordering issues on clustered architectures is a relatively new area; a more classi-
cal pass ordering problem occurs in scalar optimizations. Some approaches in those areas
share similar goals and features with convergent scheduling. Cooper et al. used a Genetic
Algorithm solution to evolve the order of passes [21]. Their approach finds good general
solutions, and it performs even better when the evolution is applied independently on each
benchmark. Our research extends this work in many significant ways. First, our learning
representation allows for conditional execution of passes, while theirs does not. Second, we
simultaneously train on multiple benchmarks to create general-purpose solutions. Finally,
our Genetic Programming representation allows us to search solutions of variable length:
by rewarding parsimony, we can find very compact solutions, when possible, or more com-
plex solutions when simple sequences are not suitable. On the contrary, Cooper’s approach,
based on Genetic Algorithm, is limited to solutions of a fixed size. We believe the con-
vergent scheduling solution space is more interesting than that of an ordinary back-end.
The symmetry and unselfishness of convergent scheduling passes implies an interesting and
immense solution space.

A recent work by Kulkarni et al. [22] describes new techniques to improve the efficiency
of Genetic Algorithms. Their results might reduce the time needed to search our optimized
pass orderings.

9. Conclusions

Time-to-market pressures make it difficult to effectively target next generation processors.
Convergent scheduling’s simple interface alleviates such constraints by facilitating rapid
prototyping of passes. As shown, convergent scheduling simplifies compiler design by pro-
viding a common interface by which independent passes can cooperatively exchange their
beliefs about the space-time schedule. Also, any pass can be run freely before or after any
other, so simplifying the cost of deploying and testing a new compiler. Nonetheless, we
show that our convergent scheduling compiler is still fast and effective.

Our work shows also how machine-learning techniques can be used to automatically
search the pass-order solution space. Our Genetic Programming technique allowed us to
easily re-target new architectures, by discovering more effective sequences. A compiler
can be tuned to a new architecture by running our evolutionary system for convergent
scheduling. Cross validation tests show that performance improvement is not limited to the
benchmarks on which the sequence is trained: the one-time evolution will return a general
purpose compiler tuned to the new architecture. This process can be repeated for any new
machine, adding, if needed, some architecture-specific passes to the framework.

The results shows that convergent scheduling is effective on a variety of architectures,
offers quick compilation (comparable to other modern compilers), adapts to different archi-
tectural configuration. We believe convergent scheduling is a novel, effective approach to
compiling for modern machines.

21

Acknowledgements

This work extends and integrates our results, previously published as [23, 24]. We want to
thank Shane Swenson, Martin Martin, and Una-May O’Reilly for their contribution to this
project.

References

[1]

[10]

[11]

M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, J.-
W. Lee, P. Johnson, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal, “The RAW Microprocessor: A Compu-
tational Fabric for Software Circuits and General Purpose Programs,” IEEE Micro,
pp. 25-35, March/April 2002.

R. Nagarajan, K. Sankaralingam, D. Burger, and S. Keckler, “A Design Space Evalu-
ation of Grid Processor Architectures,” 2001.

H.-S. Kim and J. E. Smith, “An Instruction Set and Microarchitecture for Instruction
Level Distributed Processing,” in Proceedings of the 29th International Symposium on
Computer Architecture, (Anchorage, AL), May 2002.

J. R. Ellis, Bulldog: A Compiler for VLIW Architectures. MIT Press, 1986.

S. Larsen and S. Amarasinghe, “Increasing and Detecting Memory Address Congru-
ence,” in Proceedings of 11th International Conference on Parallel Architectures and
Compilation Techniques (PACT), (Charlottesville, VA), September 2002.

W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. Amarasinghe,
“Space-Time Scheduling of Instruction-Level Parallelism on a RAW Machine,” in Pro-
ceedings of the Eighth ACM Conference on Architectural Support for Programming
Languages and Operating Systems, (San Jose, CA), pp. 46-57, Oct. 1998.

R. Motwani, K. V. Palem, V. Sarkar, and S. Reyen, “Combining Register Allocation
and Instruction Scheduling,” Tech. Rep. CS-TN-95-22, 1995.

E. Ozer, S. Banerjia, and T. M. Conte, “Unified Assign and Schedule: A New Ap-
proach to Scheduling for Clustered Register File Microarchitectures,” in International
Symposium on Microarchitecture, pp. 308-315, 1998.

G. Desoli, “Instruction Assignment for Clustered VLIW DSP Compilers: A New Ap-
proach,” Tech. Rep. HPL-98-13, Hewlett Packard Laboratories, January 1998.

J. A. Fisher, “Trace Scheduling: A Technique for Global Microcode Compaction,”
IEEFE Transactions on Computers, vol. C-30, pp. 478-490, July 1981.

S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, “Effective
Compiler Support for Predicated Execution Using the Hyperblock,” in 25th Annual
International Symposium on Microarchitecture (MICRO), pp. 45-54, 1992.

22

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

D. Maze, “Compilation Infrastructure for VLIW Machines,” Master’s thesis, Mas-
sachusetts Institute of Technology, September 2001.

M. D. Smith, “Machine SUIF.” in National Compiler Infrastructure Tutorial at PLDI
2000, June 2000. http://www.eecs.harvard.edu/hube.

L. George and A. W. Appel, “Iterated Register Coalescing,” in ACM Transactions on
Programming Languages and Systems, vol. 18, 1996.

J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua, M. Taylor, J. Kim, S. Devabhaktuni,
and A. Agarwal, “The RAW Benchmark Suite: Computation Structures for General
Purpose Computing,” in IEEE Symposium on Field-Programmable Custom Computing
Machines, (Napa Valley, CA), April 1997.

P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein, R. Nix, J. O’Donnell, and
J. Ruttenberg, “The Multiflow Trace Scheduling Compiler,” in Journal of Supercom-
puting, pp. 51-142, Jan. 1993.

A. Capitanio, N. Dutt, and A. Nicolau, “Partitioned Register Files for VLIWs: A Pre-
liminary Analysis of Tradeoffs,” in 25th International Symposium on Microarchitecture
(MICRO), pp. 292-300, 1992.

R. Leupers, “Instruction Scheduling for Clustered VLIW DSPs,” in International Con-
ference on Parallel Architecture and Compilation Techniques, (Philadelphia, PA, USA),
Oct. 2000.

K. Kailas, K. Ebcioglu, and A. K. Agrawala, “CARS: A New Code Generation Frame-
work for Clustered ILP Processors,” in 7th International Symposium on High Perfor-
mance Computer Architecture (HPCA), pp. 133-143, 2001.

S. Lerner, D. Grove, and C. Chambers, “Composing Dataflow Analyses and Trans-
formations,” in The 29th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL 2002), (Portland, Oregon), 2002.

K. Cooper, D. Subramanian, and L. Torczon, “Adaptive Optimizing Compilers for the
21st Century,” Journal of Supercomputing, vol. 23, pp. 7-22, August 2002.

P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and D. Jones, “Fast Searches
for Effective Optimization Phase Sequences,” ACM SIGPLAN, vol. 39, pp. 171-182,
May 2004.

W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe, “Convergent Scheduling,” in Pro-
ceedings of 35th International Symposium on Microarchitecture (MICRO), (Istanbul,
Turkey), 2002.

D. Puppin, M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly, “Adapt-
ing Convergent Scheduling Using Machine-Learning,” in Proceedings of the 16th In-
ternational Workshop on Languages and Compilers for Parallel Computing (LCPC),
(College Station, TX), 2003.

23

