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The Load Balancing Problem

• GPUs: fixed resource 
allocation
– Fixed number of 

functional units per task
– Horizontal load balancing 

achieved via data parallelism
– Vertical load balancing

impossible for many 
applications

• Our goal: flexible allocation
– Both vertical and horizontal
– On a per-rendering pass basis
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Application-specific load balancing

Screenshot from Counterstrike
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Application-specific load balancing

Screenshot from Doom 3
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Our Approach: Hardware

• Use a general-purpose 
multi-core processor
– With a programmable 

communications network
– Map pipeline stages to one 

or more cores
• MIT Raw Processor

– 16 general purpose cores
– Low-latency programmable 

network
Die Photo of 16-tile Raw chip

Diagram of a 4x4 Raw processor



Our Approach: Software

• Specify graphics pipeline in 
software as a stream program
– Easily reconfigurable

• Static load balancing
– Stream graph specifies 

resource allocation
– Tailor stream graph to 

rendering pass

• StreamIt programming 
language
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Benefits of Programmable Approach

• Compile stream program to 
multi-core processor

• Flexible resource allocation
• Fully programmable pipeline

– Pipeline specialization

• Nontraditional configurations
– Image processing
– GPGPU

Stream graph for graphics pipeline

StreamIt

Layout on 8x8 Raw



Related Work

• Scalable Architectures
– Pomegranate [Eldridge et al., 2000]

• Streaming Architectures
– Imagine [Owens et al., 2000]

• Unified Shader Architectures
– ATI Xenos



Outline

• Background
– Raw Architecture
– StreamIt programming language

• Programmer Workflow
– Examples and Results

• Future Work



The Raw Processor

• A scalable computation fabric
– Mesh of identical tiles
– No global signals

• Programmable interconnect
– Integrated into bypass paths
– Register mapped
– Fast neighbor communications
– Essential for flexible resource 

allocation
• Raw tiles

– Compute processor
– Programmable Switch Processor

A 4x4 Raw chip

Computation
Resources

Switch Processor Diagram



The Raw Processor

• Current hardware
– 180nm process
– 16 tiles at 425 MHz
– 6.8 GFLOPS peak
– 47.6 GB/s memory bandwidth

• Simulation results based on 8x8 
configuration
– 64 tiles at 425 MHz
– 27.2 GFLOPS peak
– 108.8 GB/s memory bandwidth (32 ports)

Die photo of 16-tile Raw chip

180nm process, 331 mm2



StreamIt

• High-level stream programming 
language
– Architecture independent

• Structured Stream Model
– Computation organized as filters in a 

stream graph
– FIFO data channels
– No global notion of time
– No global state Example stream graph



StreamIt Graph Constructs

parallel computation

may be any 
StreamIt language 
construct
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Automatic Layout and Scheduling

• StreamIt compiler performs layout, scheduling on Raw
– Simulated annealing layout algorithm
– Generates code for compute processors
– Generates routing schedule for switch processors

Layout on 8x8 Raw
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Outline

• Background
– Raw Architecture
– StreamIt programming language

• Programmer Workflow
– Examples and Results

• Future Work



Programmer Workflow

• For each rendering pass
– Estimate resource 

requirements
– Implement pipeline in 

StreamIt
– Adjust splitjoin widths
– Compile with StreamIt

compiler
– Profile application
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Switching Between Multiple 
Configurations

• Multi-pass rendering algorithms
– Switch configurations between passes
– Pipeline flush required anyway (e.g. shadow volumes)

Configuration  1 Configuration  2



Experimental Setup

• Compare reconfigurable pipeline against fixed 
resource allocation

• Use same inputs on Raw simulator
• Compare throughput and utilization

Manual layout on RawFixed Resource Allocation:
6 vertex units, 15 pixel pipelines
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Example: Phong Shading

• Per-pixel phong-shaded 
polyhedron

• 162 vertices, 1 light
• Covers large area of screen
• Allocate only 1 vertex unit
• Exploit task parallelism

– Devote 2 tiles to pixel shader
– 1 for computing the lighting 

direction and normal
– 1 for shading

• Pipeline specialization
– Eliminate texture coordinate 

interpolation, etc
Output, rendered using the Raw simulator



Phong Shading Stream Graph
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Utilization Plot: Phong Shading

Fixed pipeline

Reconfigurable pipeline



Example: Shadow Volumes

• 4 textured triangles, 1 point light
• Very large shadow volumes cover 

most of the screen
• Rendered in 3 passes

– Initialize depth buffer
– Draw extruded shadow volume 

geometry with Z-fail algorithm
– Draw textured triangles with 

stencil testing
• Different configuration for each 

pass
– Adjust ratio of vertex to pixel 

units
– Eliminate unused operations

Output, rendered using the Raw simulator



Shadow Volumes Stream Graph: 
Passes 1 and 2

Input
Vertex Processor
Triangle Setup

Rasterizer
Frame Buffer



Shadow Volumes Stream Graph: Pass 3

Input
Vertex Processor
Triangle Setup

Rasterizer
Texture Lookup

Frame Buffer
Texture Filtering

Shadow Volumes Pass 3 Stream Graph Automatic Layout on Raw



Utilization Plot: Shadow Volumes

Fixed pipeline
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Limitations

• Software rasterization is extremely slow
– 55 cycles per fragment

• Memory system
– Technique does not optimize for texture access



Future Work

• Augment Raw with special purpose hardware
• Explore memory hierarchy

– Texture prefetching
– Cache performance

• Single-pass rendering algorithms
– Load imbalances may occur within a pass
– Decompose scene into multiple passses
– Tradeoff between throughput gained from better load 

balance and cost of flush
• Dynamic Load Balancing



Summary

• Reconfigurable Architecture
– Application-specific static load balancing
– Increased throughput and utilization

• Ideas:
– General-purpose multi-core processor
– Programmable communications network
– Streaming characterization
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