
A Reconfigurable Architecture
for

Load-Balanced Rendering

Graphics Hardware July 31, 2005, Los Angeles, CA

Jiawen Chen
Michael I. Gordon
William Thies
Matthias Zwicker
Kari Pulli
Frédo Durand

The Load Balancing Problem

• GPUs: fixed resource
allocation
– Fixed number of

functional units per task
– Horizontal load balancing

achieved via data parallelism
– Vertical load balancing

impossible for many
applications

• Our goal: flexible allocation
– Both vertical and horizontal
– On a per-rendering pass basis

V

R

T

F

D

V

R

T

F

D

V

R

T

F

D

V

R

T

F

D

task
parallel

data parallel

Parallelism in multiple
graphics pipelines

Application-specific load balancing

Screenshot from Counterstrike

Input

Vertex Vertex

Sync

Triangle Setup

Pixel Pixel

V

P

Simplified graphics pipeline

Application-specific load balancing

Screenshot from Doom 3

Input

Vertex Vertex

Sync

Triangle Setup

V

R

Simplified graphics pipeline

Rest of
Pixel Pipeline

Rest of
Pixel Pipeline

Rasterizer Rasterizer

Our Approach: Hardware

• Use a general-purpose
multi-core processor
– With a programmable

communications network
– Map pipeline stages to one

or more cores
• MIT Raw Processor

– 16 general purpose cores
– Low-latency programmable

network
Die Photo of 16-tile Raw chip

Diagram of a 4x4 Raw processor

Our Approach: Software

• Specify graphics pipeline in
software as a stream program
– Easily reconfigurable

• Static load balancing
– Stream graph specifies

resource allocation
– Tailor stream graph to

rendering pass

• StreamIt programming
language

Input

Vertex Vertex

join

split

Triangle Setup

split

Pixel Pixel

V

P

Sort-middle graphics pipeline stream graph

Benefits of Programmable Approach

• Compile stream program to
multi-core processor

• Flexible resource allocation
• Fully programmable pipeline

– Pipeline specialization

• Nontraditional configurations
– Image processing
– GPGPU

Stream graph for graphics pipeline

StreamIt

Layout on 8x8 Raw

Related Work

• Scalable Architectures
– Pomegranate [Eldridge et al., 2000]

• Streaming Architectures
– Imagine [Owens et al., 2000]

• Unified Shader Architectures
– ATI Xenos

Outline

• Background
– Raw Architecture
– StreamIt programming language

• Programmer Workflow
– Examples and Results

• Future Work

The Raw Processor

• A scalable computation fabric
– Mesh of identical tiles
– No global signals

• Programmable interconnect
– Integrated into bypass paths
– Register mapped
– Fast neighbor communications
– Essential for flexible resource

allocation
• Raw tiles

– Compute processor
– Programmable Switch Processor

A 4x4 Raw chip

Computation
Resources

Switch Processor Diagram

The Raw Processor

• Current hardware
– 180nm process
– 16 tiles at 425 MHz
– 6.8 GFLOPS peak
– 47.6 GB/s memory bandwidth

• Simulation results based on 8x8
configuration
– 64 tiles at 425 MHz
– 27.2 GFLOPS peak
– 108.8 GB/s memory bandwidth (32 ports)

Die photo of 16-tile Raw chip

180nm process, 331 mm2

StreamIt

• High-level stream programming
language
– Architecture independent

• Structured Stream Model
– Computation organized as filters in a

stream graph
– FIFO data channels
– No global notion of time
– No global state Example stream graph

StreamIt Graph Constructs

parallel computation

may be any
StreamIt language
construct

joinersplitter

pipeline

feedback loop

joiner splitter

splitjoin

filter

Graphics pipeline stream graph

Automatic Layout and Scheduling

• StreamIt compiler performs layout, scheduling on Raw
– Simulated annealing layout algorithm
– Generates code for compute processors
– Generates routing schedule for switch processors

Layout on 8x8 Raw

Input
Vertex Processor
Sync
Triangle Setup

Rasterizer
Pixel Processor
Frame Buffer

StreamIt
Compiler

Stream graph

Outline

• Background
– Raw Architecture
– StreamIt programming language

• Programmer Workflow
– Examples and Results

• Future Work

Programmer Workflow

• For each rendering pass
– Estimate resource

requirements
– Implement pipeline in

StreamIt
– Adjust splitjoin widths
– Compile with StreamIt

compiler
– Profile application

Input

Vertex Vertex

join

split

Triangle Setup

split

Pixel Pixel

V

P

Sort-middle Stream Graph

Switching Between Multiple
Configurations

• Multi-pass rendering algorithms
– Switch configurations between passes
– Pipeline flush required anyway (e.g. shadow volumes)

Configuration 1 Configuration 2

Experimental Setup

• Compare reconfigurable pipeline against fixed
resource allocation

• Use same inputs on Raw simulator
• Compare throughput and utilization

Manual layout on RawFixed Resource Allocation:
6 vertex units, 15 pixel pipelines

Input
Vertex Processor
Sync
Triangle Setup

Rasterizer
Pixel Processor
Frame Buffer

Example: Phong Shading

• Per-pixel phong-shaded
polyhedron

• 162 vertices, 1 light
• Covers large area of screen
• Allocate only 1 vertex unit
• Exploit task parallelism

– Devote 2 tiles to pixel shader
– 1 for computing the lighting

direction and normal
– 1 for shading

• Pipeline specialization
– Eliminate texture coordinate

interpolation, etc
Output, rendered using the Raw simulator

Phong Shading Stream Graph

Input
Vertex Processor
Triangle Setup

Rasterizer
Pixel Processor A

Frame Buffer
Pixel Processor B

Phong Shading Stream Graph Automatic Layout on Raw

Utilization Plot: Phong Shading

Fixed pipeline

Reconfigurable pipeline

Example: Shadow Volumes

• 4 textured triangles, 1 point light
• Very large shadow volumes cover

most of the screen
• Rendered in 3 passes

– Initialize depth buffer
– Draw extruded shadow volume

geometry with Z-fail algorithm
– Draw textured triangles with

stencil testing
• Different configuration for each

pass
– Adjust ratio of vertex to pixel

units
– Eliminate unused operations

Output, rendered using the Raw simulator

Shadow Volumes Stream Graph:
Passes 1 and 2

Input
Vertex Processor
Triangle Setup

Rasterizer
Frame Buffer

Shadow Volumes Stream Graph: Pass 3

Input
Vertex Processor
Triangle Setup

Rasterizer
Texture Lookup

Frame Buffer
Texture Filtering

Shadow Volumes Pass 3 Stream Graph Automatic Layout on Raw

Utilization Plot: Shadow Volumes

Fixed pipeline

Reconfigurable pipeline

Pass 1 Pass 2 Pass 3

Pass 1 Pass 2 Pass 3

Limitations

• Software rasterization is extremely slow
– 55 cycles per fragment

• Memory system
– Technique does not optimize for texture access

Future Work

• Augment Raw with special purpose hardware
• Explore memory hierarchy

– Texture prefetching
– Cache performance

• Single-pass rendering algorithms
– Load imbalances may occur within a pass
– Decompose scene into multiple passses
– Tradeoff between throughput gained from better load

balance and cost of flush
• Dynamic Load Balancing

Summary

• Reconfigurable Architecture
– Application-specific static load balancing
– Increased throughput and utilization

• Ideas:
– General-purpose multi-core processor
– Programmable communications network
– Streaming characterization

Acknowledgements

• Mike Doggett, Eric Chan
• David Wentzlaff, Patrick Griffin, Rodric

Rabbah, and Jasper Lin
• John Owens
• Saman Amarasinghe
• Raw group at MIT
• DARPA, NSF, MIT Oxygen Alliance

	A Reconfigurable Architecture�for� Load-Balanced Rendering
	Application-specific load balancing
	Application-specific load balancing
	Our Approach: Hardware
	Our Approach: Software
	Benefits of Programmable Approach
	Related Work
	Outline
	The Raw Processor
	The Raw Processor
	StreamIt
	StreamIt Graph Constructs
	Automatic Layout and Scheduling
	Outline
	Programmer Workflow
	Switching Between Multiple Configurations
	Experimental Setup
	Example: Phong Shading
	Phong Shading Stream Graph
	Utilization Plot: Phong Shading
	Example: Shadow Volumes
	Shadow Volumes Stream Graph: Passes 1 and 2
	Shadow Volumes Stream Graph: Pass 3
	Utilization Plot: Shadow Volumes
	Limitations
	Future Work
	Summary
	Acknowledgements

