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Streaming Application Domain  °
@

 Based on a stream of data
— Radar tracking, microphone arrays, CDGQ@
HDTYV editing, cell phone base stations e

duplicate

— Graphics, multimedia, software radio

* Properties of stream programs
— Regular and repeating computation

— Parallel, independent actors
with explicit communication

n@n@ 00

— Data items have short lifetimes roundrobin
. {
B Amenable to aggressive e
compiler optimization @“2@
o

[ASPLOS '02, PLDI 03, LCTES'03, LCTES ’'05] )
C Transmit )
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Control Messages 3
e Occasionally, low-bandwidth control @

messages are sent between actors Decode
o Often demands precise timing >

duplicate

— Communications: adjust protocol,

o
- . . ®
amplification, compression

— Network router: cancel invalid packet
— Adaptive beamformer: track a target

— Respond to user input, runtime errors -
— Frequency hopping radio = roundrobin
® What is the right .

programming model?
B How to implement efficiently?

n@n@ 00

C Transmit )
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Supporting Control Messages 4

* Option 1: Synchronous method call
PRO: - delivery transparent to user T
CON: -timing is unclear ) AL s
- limits parallelism

 Option 2: Embed message In stream
PRO: - message arrives with data
CON: - complicates filter code
- complicates stream graph
- runtime overhead




Teleport Messaging

 Looks like method call, but timed
relative to data in the stream

TargetFilter x;

if newProtocol(p) {
x.setProtocol(p) @ 2;

}

void setProtocol(int p) {

reconfig(p);
 PRO: }

— simple and precise for user
» adjustable latency
e can send upstream or downstream

— exposes dependences to compiler

>
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Outline °
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e Teleport Messaging

e Case Study

e Related Work and Conclusion
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Model of Computation 8

* Synchronous Dataflow [Lee 92] D
— Graph of autonomous filters |
— Communicate via FIFO channels Band Pass
— Static I/O rates |
[Duplicate]
 Compiler decides on an order {\
of execution (Schedu|e) Detect| |Detect| |Detect| |Detect

— Many legal schedules
LED LED LED LED
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Example Streamlt Filter 9

float->float filter (int N, float[N] weights) {

work peek N push 1 pop 1 {
float = 0; O
for (int i=0; i<weights.length; i++) { O
result += weights[i] * peek(i); 8
Ny o
X

b
push(result);

pop();
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Example Streamlt Filter N

float->float filter (int N, float[N] weights) {

work peek N push 1 pop 1 {
float = 0;
for (int iI=0; i<weights.length; i++) {
result += weights[i] * peek(i); N{

b
push(result);

pop(); '
} .
filter
handler setWeights(float[N] _weights) { o
weights = weights;

X00000

¥
¥
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Example Streamlt Filter .

float->float filter (int N, float[N] weights, Frontend f|) {
work peek N push 1 pop 1 {

float = 0; O

for (int i=0; i<weights.length; i++) { O
result += weights[i] * peek(i); N+ ©

} 5

if (result ==0) { X
f.increaseGain() @ [2:5]; v

) fitter |
push(result);
Pop(); O

}

handler setWeights(float[N] _weights) {
weights = _weights;
¥
¥
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Streamlt Language Overview  *

« Streamlt is a novel filter -}~

language for streamin
guag J pipeline

— EXposes parallelism and C may be
communication +D—’D—’D‘]" any Streamit
. i language construct
— Architecture independent
— Modular and composable splitjoin o~ parallel computation

e Simple structures composed 4 A
to creates complex graphs
— Malleable —*l splitter joiner F+
« Change program behavior
with small modifications \ y
feedback loop
( N
~—1{ joiner |—>D———>| splitter |
I I<
X — y
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Outline 2

o Streamlt

e Teleport Messaging

e Case Study

e Related Work and Conclusion
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Providing a Common Timeframe *

« Control messages need precise
timing with respect to data stream

 However, there is no global
clock in distributed systems

— Filters execute independently,
whenever input is available

* |ldea: define message timing
with respect to data dependences -
— Must be robust to multiple datarates >
— Must be robust to splitting, joining
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Stream Dependence Function (SDEP)

* Describes data dependences between filters



Stream Dependence Function (SDEP) o

* Describes data dependences between filters
A

B

SDEP, (g(Nn): minimum number of times
that A must execute to make It possible
for B to execute n times
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* Describes data dependences between filters
puﬁﬁ 2 N | SDEP,¢g(N)
0
1
pop 3
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* Describes data dependences between filters
puﬁr\12 x 1 N | SDEP,¢g(N)
- 0 0
1
pop 3
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SDEP, (g(Nn): minimum number of times
that A must execute to make It possible
for B to execute n times




Stream Dependence Function (SDEP) e

* Describes data dependences between filters
puﬁf\12 X 2 N | SDEP,¢g(N)
- 0 0
o 1
pop 3
B 2

SDEP, (g(Nn): minimum number of times
that A must execute to make It possible
for B to execute n times
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* Describes data dependences between filters
puﬁr\12 X 2 N | SDEP,¢g(N)
0 0 0
1
ponS % 1 2

SDEP, (g(Nn): minimum number of times
that A must execute to make It possible
for B to execute n times




Stream Dependence Function (SDEP) 2

* Describes data dependences between filters
puﬁﬁ 2| X2 N | SDEP,¢g(N)
0 0 0
1 2
ponS % 1 2

SDEP, (g(Nn): minimum number of times
that A must execute to make It possible
for B to execute n times
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* Describes data dependences between filters
pu?ﬁ o X3 N | SDEP,¢g(N)
0 0 0
@
° 1 2
ponS % 1 2

SDEP, (g(Nn): minimum number of times
that A must execute to make It possible
for B to execute n times




Stream Dependence Function (SDEP) 2

* Describes data dependences between filters
puﬁﬁ o X3 N | SDEP,¢g(N)
0 0
1 2
ponS % 2 2

SDEP, (g(Nn): minimum number of times
that A must execute to make It possible
for B to execute n times




Stream Dependence Function (SDEP) s

* Describes data dependences between filters
puﬁﬁ o X3 N | SDEP,¢g(N)
0 0
1 2
ponS % 2 2 3

SDEP, (g(Nn): minimum number of times
that A must execute to make It possible
for B to execute n times




Stream Dependence Function (SDEP) 2

* Describes data dependences between filters
pué o) X3 | N | SDEP,¢p(n) [= |7n’;3_|
0 0
1 2
ponS % 2 2 3

SDEP, (g(Nn): minimum number of times
that A must execute to make It possible
for B to execute n times




CCCCCC

SDEP,c(n) =
max [SDEP, g (SDEPg; (N))]

| € [1,m]

‘ ®» SDEP is compositional

SDEP, (g(Nn): minimum number of times
that A must execute to make It possible
for B to execute n times




Teleport Messaging using SDEP =

 SDEP provides precise
semantics for message timing

r S
If S sends message to R:
e on the nth execution of S
 with latency range [k, K]

X
Then message Is delivered to R:

n+k, < SDEPgr(Mm) < n+k,

e ONn any iteration m such that k
R
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Teleport Messaging using SDEP
 SDEP provides precise

semantics for message timing g | x2
If S sends message to R: r bush £
e on the nth execution of S e
« with latency range [k,, k] p‘;‘zl
Then message is delivered to R: push 1
e ONn any iteration m such that
n+k, < SDEPcr(M) < n+k, k pop 1
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Teleport Messaging using SDEP =

Receiverr;
r.increaseGain() @ [0:0]

S x 4

If S sends message to R: pUSh‘l
e on the nth execution of S

« with latency range [k,, k] p‘;‘zl 3
Then message is delivered to R: p“Sh’l
e On any iteration m such that ¢
n+k, < SDEPcr(M) < n+k, k pop 1

R x 1



Teleport Messaging using SDEP =

Receiverr;

r.increaseGain() @ [0:0]

If S sends message to R:
e on the 4th execution of S
 with latency range [k, K]

Then message Is delivered to R:

e ONn any iteration m such that
n+k, < SDEPgr(Mm) < n+k,

——

S x 4
push 1
@
opl

p)lz X 3
push 1
[




Teleport Messaging using SDEP =

Receiverr;

r.increaseGain() @ [0:0]

If S sends message to R:
e on the 4th execution of S
e with latency range [0, O]

Then message Is delivered to R:

e ONn any iteration m such that
n+k, < SDEPgr(Mm) < n+k,

——

S x 4
push 1
@
op1l

p)lz X 3
push 1
[
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Receiverr;
r.increaseGain() @ [0:0]

S x 4

If S sends message to R: pUSh‘l
e on the 4th execution of S

« with latency range [0, O] p‘;‘zl 3
Then message is delivered to R: p“Sh’l
« on any iteration m such that ¢
4+0 < SDEPgg(m) < 4+0 k pop 1

R x 1
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Receiverr;
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S x 4
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Receiverr;
r.increaseGain() @ [0:0]
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Receiverr;
r.increaseGain() @ [0:0]

S x 4
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Teleport Messaging using SDEP

Receiverr;
r.increaseGain() @ [0:0]

S x 4
If S sends message to R: [pu‘c’h‘l ______
e on the 4th execution of S
« with latency range [0, O] p‘;‘zl 3
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Receiverr;
r.increaseGain() @ [0:0]

r S X 4
If S sends message to R: bush 1

e on the 4th execution of S
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Then message Is delivered to R:
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Teleport Messaging using SDEP

Receiverr;
r.increaseGain() @ [0:0]

S x 4
If S sends message to R: r bush 1
e on the 4th execution of S
« with latency range [0, O] p‘;‘zl « 4
Then message is delivered to R: push 1
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Teleport Messaging using SDEP

Receiverr;
r.increaseGain() @ [0:0]

S x 4
If S sends message to R: r bush 1
e on the 4th execution of S
« with latency range [0, O] p°>'21 « 4
Then message is delivered to R: push 1
e ONn any iteration m such that \.
4+0 < SDEPg¢gr(M) < 4+0 pop 1
R x 4

SDEPg¢r(mM) =4
m=4
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Sending Messages Upstream

 If embedding messages in stream,
. . R |x4
must send in direction of dataflow oush 1

e Teleport messaging provides

provides a unified abstraction on
e Intuition: [::] x 4

_ push 1
— If S sends to R with latency k
— Then R receives message after producing

item that S sees in k of its own time steps k pob 1
| S |>< 4
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 If embedding messages in stream,
T . R |x8
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Sending Messages Upstream  *

 If embedding messages in stream,
. . R [x7
must send in direction of dataflow oush 1

» Teleport messaging provides | | &
provides a unified abstraction op 1
e Intuition: FXWX 6
push 1
— If S sends to R with latency k
— Then R receives message after producing

item that S sees in k of its own time steps

Receiver r;
r.decimate() @ [3:3]
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Sending Messages Upstream  *

 If embedding messages in stream,
. . R [x7
must send in direction of dataflow oush 1

» Teleport messaging provides | | &
provides a unified abstraction op 1
e Intuition: FXWX 6
push 1
— If S sends to R with latency k
— Then R receives message after producing

item that S sees In k of its own time steps k
m R receives message after iteration 7

Receiver r;
r.decimate() @ [3:3]
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Constraints Imposed on Schedule

latency <0 latency >0

Must not buffer
too much data

Message travels
upstream

Message travels | Must not buffer
downstream too little data

NoO constraint
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Finding a Schedule o

 Non-overlapping messages:
greedy scheduling algorithm C

e Overlapping messages: /»
future work
— Overlapping constraints ]
can be feasible in isolation, 9

but infeasible in combination
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Outline G2

o Streamlt

e Teleport Messaging

e Case Study

e Related Work and Conclusion
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Frequency Hopping Radio *

 Transmitter and receiver AoD
switch between set of 1
known frequencies o

. Transmitter indicates [ i \
timing and target of agude
nop using freq. pulse  c.uceqon

» Receiver detects ]
:)ulse downstream, ideawtity det%otor deté:ctor ide&ﬂity dete%ctor det%ctor ideamty
adjusts RFtolF RN
with exact timing:
— Switch at same time as transmitter Oupu

— Switch at FFT frame boundary



Frequency Hopping Radio:

Manual Feedback
AtoD

Introduce feedback loop v
with dummy items to teecbaci loop B
indicate presence or | (3
absence of message RFtolF enqueued
To add latency, enqueue FET
1536 initial items on loop !

Magqitude
Extra changes needed CheckFraaHop =
along path of message o et
— Interleave messages, data N | | X ; i

R i ; | filter | detector| detector|| filter @ detector| detector

— Route messages to loop . . . T .
— Adjust I/O rates “roundrobin
To respect FFT frames, roundrobin

change RFtolF granularity

1
Output

:
filter
2

CSAIL



v Frequency Hopping Radio: .
Teleport Messaging

 Use message latency of 6 AtoD
* Modify only RFtolF, detector -
e FFT frame boundaries
automatically respected: i
SDEPRrreger(N) = 512*0 .-
‘ Tele oort CheckFreqHop 256
messaging | AR |
|mprOveS ide;ltity dete10tor dett%ctor idealtity det%ctor det%ctor idealtity

programmabillity : :

62,1,1,128,1 1_,62
roundrobin
256

1
Output
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II R ilaln]
(((((

. . o
Preliminary Results

45
4 |
35

-

_—

o

E 25

_—

|_
2 | |

—&— Teleport Messaging
151 ' —#- Manual Feedback
Y T2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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o Streamlt

e Teleport Messaging

e Case Study

 Related Work and Conclusion
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Related Work o8

 Heterogeneous systems modeling
— Ptolemy project (Lee et al.); scheduling (Bhattacharyya, ...)
— Boolean dataflow: parameterized data rates
— Teleport messaging allows complete static scheduling

 Program slicing
— Many researchers; see Tip’95 for survey

— Like SDEP, find set of dependent operations
— SDEP Is more specialized; can calculate exactly

e Streaming languages

— Brook, Cg, StreamC/KernelC, Spidle, Occam, Sisal,
Parallel Haskell, Lustre, Esterel, Lucid Synchrone

— Our goal: adding restricted dynamism to static language
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Conclusion 60

< Language Features -

Static T : - . Dynamic
Powerful optimizations . :Expressive behavior
§ -~ J .
Static-rate streaming Control messages

(Synchronous dataflow)

l | Teleport messaging

Streamlt Language

e Teleport messaging provides precise and flexible
event handling while allowing static optimizations
— Data dependences (SDEP) is natural timing mechanism
— Messaging exposes true communication to compiler
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Extra Slides



CCCCCC

Calculating SDEP In Practice "

e Direct SDEP formulation:

SDEP, (n) = n*oc — k|,

max [max(0, {max(o, uor [ 0% k_l),

B Ua

— n*oc — ki, -

max(0, max(0, ™ )*0b2 — K ).
Ua

'max(0, |?]*Oljt; k_')*Obs — k|
Ua

max(0,

® Direct calculation could grow unwieldy
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Calculating SDEP In Practice &

init 1 steady,, steady, : steady,

SDEP;¢c(n)

f

0 n € init
SDEP(n) =1 lookup_table[n] n € steady,
k*S, + SDEP(n —k*Sc)  n € steady,

= Build small SDEP table statically, use for all n



If S sends upstream message to R:
 with latency range [k, K]
e on the nth execution of S

Then message Is delivered to R:

o after any iteration m such that
SDEPgs(n+k;) < m < SDEPgs(N+k5)

Sending Messages Upstream 2

/’ R
push 1

pop 1

push 1

\[re




If S sends upstream message to R:
 with latency range [k, K]
e on the nth execution of S

Then message Is delivered to R:

o after any iteration m such that
SDEPgs(n+k;) < m < SDEPgs(N+k5)

Sending Messages Upstream )

R x4
[pushl

pop 1l
X |[x4

push 1

k pop 1
S |x4

Receiverr;
r.decimate() @ [3:3]



If S sends upstream message to R:
e With latency range [3, 3]
e on the nth execution of S

Then message Is delivered to R:

o after any iteration m such that
SDEPgs(n+k;) < m < SDEPgs(N+k5)

Sending Messages Upstream 2

R x4
[pushl

pop 1l
X |[x4

push 1

k pop 1
S |x4

Receiverr;
r.decimate() @ [3:3]



If S sends upstream message to R:
e With latency range [3, 3]
e on the 4th execution of S

Then message Is delivered to R:

o after any iteration m such that
SDEPgs(n+k;) < m < SDEPgs(N+k5)

Sending Messages Upstream 2

R x4
[pushl

pop 1

push 1

k pop 1
S |x4

Receiverr;
r.decimate() @ [3:3]



If S sends upstream message to R:
e With latency range [3, 3]
e on the 4th execution of S

Then message Is delivered to R:

e after any iteration m such that
SDEPRs(4+3) < m < SDEPg ¢(4+3)

Sending Messages Upstream 2

R x4
[pushl

pop 1

push 1

k pop 1
S |x4

Receiverr;
r.decimate() @ [3:3]



If S sends upstream message to R:
e With latency range [3, 3]
e on the 4th execution of S

Then message Is delivered to R:
e after any iteration m such that
SDEPRs(4+3) < m < SDEPg ¢(4+3)
M = SDEPq¢(7)
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push 1
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pop 1
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If S sends upstream message to R:
e With latency range [3, 3]
e on the 4th execution of S

Then message Is delivered to R:

e after any iteration m such that
SDEPRs(4+3) < m < SDEPg ¢(4+3)
M = SDEPg(7)
m=7/

[

_

Sending Messages Upstream 2

R x4
push 1

pop 1

push 1

pop 1
S |x4

Receiverr;
r.decimate() @ [3:3]



CCCCCC

Constraints Imposed on Schedule *

e |f S sends on iteration n, then
R recelves on iteration n+3 [ puﬁ 1

— Thus, If S is on iteration n, then

R must not execute past n+3 !
. . pop 1
— Otherwise, R could miss message | X I

B Messages constrain the schedule push 1
o If latency Is -1 instead of 3, then [
no schedule satisfies constraint pop 1

B Some latencies are infeasible

Receiver r;
r.decimate() @ [3:3]




CSAIL

Implementation o

e Teleport messaging implemented in
cluster backend of Streamit compiler

— SDEP calculated at compile-time, stored in table

 Message delivery uses “credit system”

— Sender sends two types of packets to receiver:
1. Credit: “execute n times before checking again.”
2. Message: “deliver this message at iteration m.”

— Frequency of credits depends on SDEP, latency range
— Credits expose parallelism, reduce communication



CSAIL

Evaluation o2

e Evaluation platform:
— Cluster of 16 Pentium IlI's (750 Mhz)
— Fully-switched 100 Mb network

o Streamlt cluster backend
— Compile to set of parallel threads, expressed in C
— Threads communicate via TCP/IP
— Partitioning algorithm creates load-balanced threads



