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ABSTRACT

In this paper, we develop a new language construct to ad-
dress one of the pitfalls of parallel programming: precise
handling of events across parallel components. The con-
struct, termed teleport messaging, uses data dependences
between components to provide a common notion of time
in a parallel system. Our work is done in the context of
the Synchronous Dataflow (SDF) model, in which compu-
tation is expressed as a graph of independent components
(or actors) that communicate in regular patterns over data
channels. We leverage the static properties of SDF to com-
pute a stream dependence function, SDEP, that compactly
describes the ordering constraints between actor executions.

Teleport messaging utilizes SDEP to provide powerful and
precise event handling. For example, an actor A can specify
that an event should be processed by a downstream actor B
as soon as B sees the “effects” of the current execution of A.
We argue that teleport messaging improves readability and
robustness over existing practices. We have implemented
messaging as part of the StreamlIt compiler, with a backend
for a cluster of workstations. As teleport messaging exposes
optimization opportunities to the compiler, it also results in
a 49% performance improvement for a software radio bench-
mark.
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1. INTRODUCTION

Algorithms that operate on streams of data are becom-
ing increasingly pervasive across a broad range of applica-
tions, and there is evidence that streaming media applica-
tions already consume a substantial fraction of the com-
putation cycles on consumer machines [6, 7, 18, 23]. Ex-
amples of streaming workloads can be found in embedded
systems (e.g., sensor nets and mobile phones), as well as
in desktop machines (e.g., networking and multimedia) and
high-performance servers (e.g., HDTV editing consoles and
hyper-spectral imaging).

As high performance remains a critical factor for many
streaming applications, programmers are often forced to sac-
rifice readability, robustness, and maintainability of their
code for the sake of optimization. Omne notoriously diffi-
cult aspect of stream programming, from both a perfor-
mance and programmability standpoint, is reconciling regu-
lar streaming dataflow with irregular control messages. While
the high-bandwidth flow of data is very predictable, realistic
applications also include unpredictable, low-bandwidth con-
trol messages for adjusting system parameters (e.g., filtering
coefficients, frame size, compression ratio, network protocol,
etc.). Control messages often have strict timing constraints
that are difficult to reason about on parallel systems.

For example, consider a frequency hopping radio (FHR),
which mirrors how CDMA-based cell phone technology works.
In FHR, a transmitter and a receiver switch between a set
of known radio frequencies, and they do so in synchrony
with respect to a stream boundary. That is, a receiver must
switch its frequency at an exact point in the stream (as in-
dicated by the transmitter) in order to follow the incoming
signal. Such a receiver is challenging to implement in a dis-
tributed environment because different processors might be
responsible for the radio frontend and the frequency hop de-
tection. When a hop is detected, the detector must send a
message to the frontend that is timed precisely with respect
to the data stream, even though the two components are
running on different processors with independent clocks.

Other instances of control messaging have a similar flavor.
A component in a communications frontend might detect an
invalid checksum for a packet, and send a precisely-timed
message downstream to invalidate the effects of what has
been processed. Or, a downstream component might de-
tect a high signal-to-noise ratio and send a message to the
frontend to increase the amplification. In an adaptive beam-
former, a set of filtering coefficients is periodically updated
to focus the amplification in the direction of a moving target.
Additional examples include: periodic channel characteriza-

TThis is a revised version of the paper, released in September
2006. Compared to the conference version, it simplifies the timing
of upstream messages. Changes are limited to Section 4.



tion; initiating a handoff (e.g., to a new network protocol);
marking the end of a large data segment; and responding to
user inputs, environmental stimuli, or runtime exceptions.

There are two common implementation strategies for con-
trol messages using today’s languages and compilers. First,
the message can be embedded in the high-bandwidth data
stream, perhaps as an extra field in a data structure. Ap-
plication components check for the presence of messages on
every iteration, processing any that are found. This scheme
offers precise timing across distributed components, as the
control message has a well-defined position with respect to
the data stream. However, the timing is inflexible: it is
impossible for the sender to synchronize the message deliv-
ery with a data item that has already been sent, or to send
messages upstream, against the flow of data. In addition,
this approach adds complexity and runtime overhead to the
steady-state data processing, and it requires a direct high-
bandwidth connection between sender and receiver.

A second implementation strategy is to perform control
messaging “out-of-band”, via a new low-bandwidth connec-
tion or a remote procedure call. While this avoids the com-
plexity of embedding messages in a high-bandwidth data
stream, it falls short in terms of timing guarantees. In a dis-
tributed environment, each processor has its own clock and
is making independent progress on its part of the applica-
tion. The only common notion of time between processors
is the data stream itself. Though extra synchronization can
be imposed to keep processors in check, such synchroniza-
tion is costly and can needlessly suppress parallelism. Also,
the presence of dynamic messaging can invalidate other op-
timizations which rely on static communication patterns.

This paper presents a new language construct and sup-
porting compiler analysis that allows the programmer to
declaratively specify control messages. Termed “teleport
messaging”, this feature offers the simplicity of a method
call while maintaining the precision of embedding messages
in the data stream. The idea is to treat control messages as
an asynchronous method call with no return value. When
the sender calls the method, it has the semantics of em-
bedding a placeholder in the sender’s output stream. The
method is invoked in the receiver when the receiver would
have processed the placeholder. We generalize this concept
to allow messages both upstream and downstream, and with
variable latency. By exposing the true communication pat-
tern to the compiler, the message can be delivered using
whatever mechanism is appropriate for a given architecture.
The declarative mechanism also enables the compiler to par-
allelize and reorder application components so long as it de-
livers messages on time.

Our formulation of teleport messaging relies on a restricted
model of computation known as Synchronous Dataflow, or
SDF [20]. As described in Section 1.1, SDF expresses com-
putation as a graph of communicating components, or ac-
tors. A critical property of SDF is that the input and out-
put rate of each actor is known at compile time. Using this
property, we can compute the dependences between actors
and automatically calculate when a message should be de-
livered. We develop a stream dependence function, SDEP,
that provides an exact, complete, and compact representa-
tion of this dependence information; we use SDEP to specify
the semantics of teleport messaging.

Teleport messaging is implemented as part of the StreamIt
compiler infrastructure [25]. The implementation computes

SDEP information and automatically targets a cluster of work-
stations. Based on a case study of a frequency hopping ra-
dio, we demonstrate a 49% performance improvement due to
communication benefits of teleport messaging. As described
in Section 4, our implementation limits certain sender-receiver
pairs to be in distinct portions of the stream graph; if over-
lapping messages are sent with conflicting latencies, it may
be impossible to schedule the delivery. This constrained
scheduling problem is an interesting topic for future work.
This paper is organized as follows. In the rest of this
section, we describe our model of computation and give a
concrete example of teleport messaging. Section 2 defines
the stream dependence function, and Section 3 shows how to
calculate it efficiently. Section 4 gives the semantics for tele-
port messaging, and Section 5 describes our case study and
implementation results. Related work appears in Section 6,
while conclusions and future work appear in Section 7.

1.1 Mode of Computation

Our model of computation is Cyclo-Static Dataflow (CSDF),
a generalization [3] of Synchronous Dataflow, or SDF [20].
SDF and its variants are well suited for signal processing
applications. Computation is represented as a graph of ac-
tors connected by FIFO communication channels. In CSDF,
each actor follows a set of execution steps, or phases. Each
phase consumes a fixed number of items from each input
channel and produces a fixed number of items onto each out-
put channel. The number and ordering of phases is known
at compile time, and their execution is cyclic (that is, after
executing the last phase, the first phase is executed again).
If each actor has only one phase, then CSDF is equivalent
to SDF. These models are appealing because the fixed input
and output rates make the stream graph amenable to static
scheduling and optimization [20].

In this paper, we use the Streamlt programming lan-
guage [25] to describe the connectivity of the dataflow graph
as well as the internal functions of each actor. Our tech-
nique is general and should apply equally well to other lan-
guages and systems based on Synchronous or Cyclo-Static
Dataflow. In Streamlt, each actor (called a filter in the
language) has one input channel and one output channel.
An execution step consists of a call to the “work function”,
which contains general-purpose code. During each invoca-
tion, an actor consumes (pops) a fixed number of items from
the input channel and produces (pushes) a fixed number of
items on the output channel. It can also peek at input items
without consuming them from the channel.

Actors are assembled into single-input, single-output stream
graphs (or streams) using three hierarchical primitives. A
pipeline arranges a set of streams in sequence, with the out-
put of one stream connected to the input of the next. A
splitjoin arranges streams in parallel; incoming data can
either be duplicated to all streams, or distributed using
a round-robin splitter. Likewise, outputs of the parallel
streams are serialized using a round-robin joiner. Round-
robin splitters (resp. joiners) execute in multiple phases:
the ith phase pushes (resp. pops) a known number of items
ki to (resp. from) the ith stream in the splitjoin. Finally, a
feedbackloop can be used to introduce cycles in the graph.

1.2 [Illustrating Example

Figure 1 illustrates a Streamlt version of an FIR (Finite
Impulse Response) filter. A common component of digital



1 struct Packet {

2 float sum;

3 float val;

4 1

5

6 void->void pipeline FIR {

7 int N = 64;

8

9 add Ssource(N);

10 for (int i=0; i<N; i++)

11 add Multiply(i);

12 add printer(Q);

13 3

14

15 void->Packet filter Source(int N) {
16 work push 1 {

17 Packet p;

18 p.sum = 0;

19 p.val = readNewbData(Q);

20 push(p);

21

22 3

23

24 packet->Packet filter multiply(int i,
25 int N) {
26 float w = initweight(i, N);

27 Packet last;

28

29 work pop 1 push 1 {

30 packet in = popQ);

31 Tast.sum = in.sum + Tast.val * w;
32 push(last);

33 Tlast = in;

34 }

35 }

36

37 Packet->void filter Printer {

38 work pop 1 { print(pop().sum); }
39

Figure 1: FIR code.

Execution time

1 struct Packet<N> {

2 * boolean newweights;

3 * float[N] weights;

4 float sum;

5 float val;

6 1}

7

8 void->void pipeline FIR {

9 int N = 64;

10

11 add source(N);

12 for (int i=0; i<N; i++)

13 add Multiply(i, N);

14 add printer();

15 3}

16

17 void->Packet<N> filter Source(int N) {
18 work push 1 {

19 Packet p;

20 p.sum = 0;

21 p.val = readNewbata(Q);

22

23 if (newConditions()) {

24 * p.newweights = true;

25 * p.weights = calcweightsQ;
26 * } else {

27 * p.newweights = false;

28 *

29

30 push(p);

31 }

32}

33

34 pPacket<N>->

35 packet<N> filter Multiply(int i, int N) {
36 float w = initweight(i, N);

37 Packet<N> last;

38

39 work pop 1 push 1 {

40 Packet<N> in = pop(Q);

41 * if (in.newweights) {

42 * W = in.weights[i];

43 * }

44 last.sum = in.sum + Tast.val * w;
45 push(last);

46 last = in;

47 }

48 }

49

50 Packet<N>->void filter Printer {
51 work pop 1 { print(pop().sum); }
52}

Figure 2:
event handling.
are marked with an asterisk.
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Execution snapshots illustrating
manual embedding of control messages in
FIR. Channels are annotated with data items

present on one possible execution; items are
numbered in order of production. (a) Source
initiates change of weights, (b) weights are
attached to data item #5 and embedded in
stream, (c)-(e), actors check each input item,
adjusting their own weight when they find a

tagged item.

FIR code with manual
Modified lines

1 struct Packet {

2 float sum;

3 float val;

4 1

5

6 void->void pipeline FIR {

7 int N = 64;

8 * portal<multiply> teleport;

9

10 * add source(N, teleport);

11 for (int i=0; i<N; i++)

12 * add Multiply(i, N) to teleport;
13 add printer();

14 3}

15

16  void->packet filter

17 Source(int N, portal<multiply> teleport) {
18 work push 1 {

19 pPacket p;

20 p.sum = 0;

21 p.val = readNewbData(Q);

22 push(p);

23

24 * if (newConditions())

25 * teleport.setweights(calcweights());
26 *

27}

28

29 pPacket->Packet filter multiply(int i, int N) {
30 float w = initweight(i, N);

31 pPacket last;

32

33 work pop 1 push 1 {

34 pPacket in = popQ;

35 Tast.sum = in.sum + Tast.val * w;
36 push(last);

37 last = 1in;

38 }

39

40 * handler setweights(float[N] weights) {
41 * W = weights[i]

42 *

43}

44

45 packet->void filter Printer {

46 work pop 1 { print(pop().sum); }
47

Figure 3: FIR code with tele-
port messaging. Modified lines
are marked with an asterisk.

Execution time [ new weights [ old weights i\\?message

Figure 6: Execution snapshots illustrating
teleport messaging in FIR. Channels are an-
notated with data items present on one pos-
sible execution; items are numbered in order

of production. (a) Source calls a message
handler, passing new weights as argument,
(b) message boundary is maintained by com-
piler, (c)-(e), message handler is automati-
cally invoked in actors immediately before
the arrival of affected items.



signal processing applications, FIR filters represent sliding
window computations in which a set of coefficients is con-
volved with the input data. This FIR implementation is
very fine-grained; as depicted in Figure 4, the stream graph
consists of a single pipeline with a Source, a Printer, and 64
Multiply stages—each of which contains a single coefficient
(or weight) of the FIR filter. Each Multiply actor inputs a
Packet consisting of an input item and a partial sum; the
actor increments the sum by the product of a weight and
the previous input to the actor. Delaying the inputs by one
step ensures that each actor adds a different input to the
sum. While we typically advocate a more coarse-grained
implementation of FIR filters, this formulation is simple to
parallelize (each actor is mapped to a separate processor)
and provides a simple illustration of our analysis.

The problem addressed by this paper is as follows. Sup-
pose that the actors in FIR are running in parallel and the
Source detects that the weights should be adjusted (e.g., to
suite the current operating conditions). Further, to guaran-
tee stability, every output from the system must be obtained
using either the old weights or the new ones, but not a mix-
ture of the two. This constraint precludes updating all of the
weights at the same instant, as the partial sums within the
pipeline would retain evidence of the old weights. Rather,
the weights must be changed one actor at a time, mirroring
the flow of data through the pipeline. What is a simple and
efficient way to implement this behavior?

One way to implement this functionality is by manually
tagging each data item with a flag, indicating whether or
not it marks the transition to a new set of weights. If it
does, then the new set of weights is included with the item
itself. While this strategy (shown in Figures 2 and 5) is
functional, it complicates the Packet structure with two ad-
ditional fields—a newWeights flag and a weights array—the
latter of which is meaningful only when newWeights is true.
This scheme muddles steady-state dataflow with event han-
dling by checking the flag on every invocation of Multiply
(line 41 of Figure 2). It is also very inefficient in Streamlt
because arrays are passed by value; though it might be pos-
sible to compress each Packet when the weights field is un-
used, this would require an aggressive compiler analysis and
would also jeopardize other optimizations by introducing an
unanalyzable communication rate in the stream graph.

This paper proposes an alternate solution: teleport mes-
saging. The idea behind teleport messaging is for the Source
to change the weights via an asynchronous method call,
where method invocations in the target actors are timed
relative to the flow of data in the stream. As shown in Fig-
ure 3, the Multiply actor declares a message handler that
adjusts its own weight (lines 40-42). The Source actor calls
this handler through a portal (line 25), which provides a
clean interface for messaging (see Section 4). As depicted
in Figure 6, teleport messaging gives the same result as the
manual version, but without corrupting the data structures
or control flow used in the steady-state. It also exposes the
true information flow, allowing the compiler to deliver the
message in the most efficient way for a given architecture.
Finally, teleport messaging offers powerful control over tim-
ing and latency beyond what is utilized in this example.

2. STREAM DEPENDENCE FUNCTION

This section defines a stream dependence function, SDEP,
that describes how one actor depends on the execution of

another actor in the stream graph. SDEP is meaningful only
for pairs of actors that are connected by a directed path in
the stream graph. We say that the upstream actor is at the
start of the path, while the downstream actor is at the end.
Dependences between parallel actors (e.g., parallel branches
of a splitjoin) currently fall outside the scope of this model
but could be addressed in future work (see Section 7).

An execution ¢ of a dataflow graph is an ordered sequence
of actor firings. Each firing represents the execution of a
single phase of the actor. Let ¢[i] denote the ith actor ap-
pearing in execution ¢, and let |¢ A A| denote the number
of times that actor A appears in ¢. An execution is legal
if the dataflow requirements are respected; that is, for all
1, the sequential firing of actors ¢[0] through ¢[i — 1] leaves
enough items on the communication channels for ¢[i] to fire
its next phase atomically. Let ® denote the set of legal ex-
ecutions. Note that while ® is an infinite set, each ¢ € ® is
a finite sequence.

Informally, SDEP 4. g(n) represents the minimum number
of times that actor A must execute to make it possible for
actor B to execute n times. This dependence is meaningful
only if A is upstream of B; otherwise, SDEP assumes a value
of zero. Because the I/O rates of each actor are known at
compile time, SDEP is a static mapping.

A formal definition of SDEP using the notations introduced
above is as follows:

DEFINITION 1. (SDEP)

SDEPA—pB(n) = min |[¢pA A|
pEP,
|6AB|=n

This equation reads: over all legal executions in which B
fires n times, SDEP4 g(n) is the minimum number of times
that A fires. Figure 7 illustrates an example of SDEP for the
stream graph in Figure 8.

3. CALCULATING SDEP

It is straightforward to calculate SDEP4 p(n) via a fine-
grained simulation of the stream graph. Our approach is to
construct an execution ¢ that provides the minimum value
of |¢ A A| that is selected in Definition 1. We construct ¢ by
simulating the stream graph’s execution of a “pull schedule”
with respect to actor B (see Algorithm 1).

Intuitively, a pull schedule for X is one that executes other
nodes as few times as possible for each firing of X. This
is achieved by calculating the demand for data items on
the input channels of X, and then propagating the demand
back through the stream graph via pull scheduling of the
actors connected to X. Pull scheduling results in a fine-
grained interleaving of actor firings. Some stream graphs
admit multiple pull schedules, as actors might be connected
to multiple inputs that can be scheduled in any order; how-
ever, the set of actor executions remains constant even as
the order changes. The following theorem allows us to use
a pull schedule to calculate the SDEP function.

THEOREM 1.

SDEP4.pg(n) = |pullSchedule(B,n) A A|

PROOF. By construction, pullSchedule(B,n) executes
each node in the graph as few times as possible for B to fire
n times. Thus, there is no execution containing n executions
of B where A executes fewer times. The theorem follows
from the definition of spEP. [
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Figure 7: Example SDEP calculation for stream graph in Figure 8. The stream graphs illustrate a steady state cycle of

“pull schedule”; execution proceeds from left to right, and channels are annotated with the number of items present.
The second line lists the actors that fire in a pull schedule for EF. The third line counts the number of times that A
executes in the pull schedule, and the fourth line illustrates the computation of SDEPs. g(n): the number of times
that A executes before the nth execution of E. The last two lines illustrate the computation of SDEPp. g.

ALGORITHM 1. (Pull scheduling)

// Returns a pull schedule for n executions of X
pullSchedule(X, n) {
¢ ={}
fori=1ton{
// execute predecessors of X until X can execute
for all input channels ¢; of X
while X needs more items on ¢; in order to fire
// extend schedule (o denotes concatenation)
¢ = ¢ o pullSchedule(source(c;), 1)
// add X to schedule
b=6 o0 X
// update number of items on I/O channels of X
simulateExecution(X)

}

return ¢

}

Some example SDEP calculations appear in Figure 7. The
results are summarized in the following table.

[ n | sDEP4_g(n) [ sSDEPg_g(n) |
1 5 0
2 5 2
3 5 2
4 6 3

Note that SDEP is non-linear due to mis-matching I/O rates
in the stream graph. However, for longer execution traces,
there is a pattern in the marginal growth of SDEP (i.e., in
SDEP(n) — SDEP(n — 1)); this quantity follows a cyclic pat-
tern and has the same periodicity as the steady state of the
stream graph. A steady state S € ® is an execution that
does not change the buffering in the channels—that is, the
number of items on each channel after the execution is the
same as it was before the execution. Calculating a steady
state is well-understood [20]. The execution simulated in

Figure 8: Example stream graph. Nodes are annotated
with their I/O rates. For example, node C consumes 3
items and produces 2 items on each execution. Node A is
a round-robin splitter that produces one item on its left
channel during the first phase, and one item on its right
channel during the second phase (similarly for Node E).

Figure 7 is a steady state, meaning that additional entries
of the pull schedule will repeat the pattern given in the fig-
ure. Thus, SDEP will also grow in the same pattern, and we
can calculate SDEP4—g(n) for n > 4 as follows':

SDEPA—g(n) = p(n) * |S A A| + (1)
SDEPA—g(n — p(n) * |S A E|)
p(n) = Lrs2r) @

where S is a steady state and p(n) represents the number
of steady states that E has completed by iteration n. The
first term of Equation 1 gives the total number of times that
A has fired in previous steady states, while the second term
counts firings of A in the current steady state.

While Equation 1 works for actors A and FE, it fails for
certain corner cases in stream graphs. For example, for

'Note that for any two actors X and Y, SDEPy _ x (0) = 0.



SDEPA—c(3) it detects exactly 3 steady state executions
(p(3) = 3) and concludes that each requires 6 executions
of A (]S A A| = 6). However, as shown in Figure 7, the last
firing of C requires only 5 executions of A. C' is unusual in
that it finishes its steady state before the upstream actor A.

To handle the general case, we simulate two executions of
the steady state (rather than one) for the base case of SDEP:

SDEPy —x(n) = (3)
|pullSchedule(X,n) AY| ifn <2x|SAX|

g(n) * |SAY|+ otherwise
SDEPy —x (n — g(n) * |S A X|)
a(n) = Lisizy) =1 (4)

This formulation increases the size of the base SDEP table by
one steady state, and also sets ¢(n) to be one unit smaller
than p(n). The result is that the last complete steady state
is counted as part of the “current” iteration rather than a
“completed” iteration. For example, Equation 3 evaluates
SDEP 4 (3) using ¢(3) = 2, yielding SDEP4¢(3) =2%6+
SDEPA—c(3 — 2% 1) = 17 as desired. Moreover, in complex
cases?, the last steady state adds important context to the
SDEP lookup for a given execution.

Thus, to calculate SDEPy . x(n), it is not necessary to
simulate a pull schedule for n iterations of X as described in
Algorithm 1. Instead, one can simulate 2 |S A X| iterations
as a pre-processing step and answer all future SDEP queries
in constant time, using Equation 3. In addition, the pull
schedule for X can be reused to calculate SDEP from X to
any other actor (e.g., SDEPw.—x in addition to SDEPy —x).

However, note that the pull schedule for X can not be
used to calculate SDEP from any actor other than X (e.g.,
SDEPw v ). The guarantee provided by pullSchedule(X, n)
is only with respect to the base actor X. For other pairs of
actors in the graph, one actor might execute more than nec-
essary for n executions of the other. For example, consider
what happens if one calculates SDEP 4. p using the schedule
in Figure 7 (which is a pull schedule for E). In the schedule,
A executes 5 times before the first firing of B, so one would
conclude that SDEP4 (1) = 5. However, this is incorrect;
since B could have fired after only 2 executions of A, the cor-
rect value is SDEP4 (1) = 2. Thus, to calculate SDEPy —x,
it is essential to calculate pullSchedule(X,|S A X|), that
is, a steady state cycle of a pull schedule with respect to X.

It is also possible to calculate SDEP using a compositional
approach. For example, SDEP4— g from Figure 7 can be
expressed as follows:

SDEPA— B(SDEPB—E(n))

SDEP4—£(n) = max{ SDEP A ¢ (SDEPc—E(n))

That is, to determine the minimum number of times that
A must execute to enable n executions of F, first calculate
the minimum number of times each of A’s successors in the
stream graph must execute for n executions of E. Then
A must execute enough to enable all of these children to
complete the given number of executions, which translates
to the max operation shown above. Our implementation
exploits this compositional property to tabulate SDEP in a
hierarchical manner, rather than simulating a pull schedule.

2For example, if within each steady state, the first firing of X
does not depend on the first firing of Y, and the last firing of X
does not depend on the last firing of Y.

4. TELEPORT MESSAGING

Teleport messaging is a language construct that makes
use of SDEP to achieve precise timing of control messages. It
is included as part of the Streamlt language [25]. Teleport
messaging represents out-of-band communication between
two actors, distinct from the high-bandwidth dataflow in the
stream graph. Messages are currently supported between
any pair of actors with a meaningful SDEP relationship, i.e.,
wherever there is a directed path in the stream graph from
one actor to the other. We say that a downstream message
travels in the same direction as the steady-state data flow,
whereas an upstream message travels against it.

Syntax. In order for actor A to send a message to actor B,
the following steps need to be taken:

e B declares a message handler that is invoked when a
message arrives. For example:

handler increaseGain(float amount) {
this.gain += amount;

}

Message handlers are akin to normal functions, except
that they cannot access the input/output channels and
they do not return values.

For another example, see line 40 of Figure 3.

e A parent stream containing A and B declares a vari-
able of type portal<7p> that can forward messages to
one or more actors of type Ts. The parent adds B to
the portal and passes the portal to A during initializa-
tion.

For example, see lines 8, 10 and 12 of Figure 3.

e To send a message, A invokes the handler method on
the portal from within its steady-state work function.
The handler invocation includes a range of latencies
[min:max] specifying when the message should be de-
livered; if no latency is specified, then a default latency
of [0:0] is used. The following illustrates an example.

work pop 1 {
float val = popQ);
if (val < THRESHOLD) {
portalToB.increaseGain(0.1) [2:3];
}
}

This code sends an increaseGain message to portalToB
with minimum latency 2 and maximum latency 3.

For another example, see line 25 of Figure 3.

Informal Semantics. The most interesting aspect of tele-
port messaging is the semantics for the message latency.
Because there are many legal orderings of actor executions,
there does not exist a notion of “global time” in a stream
graph. The only common frame of reference between con-
currently executing actors is the series of data items that is
passed between them.

Intuitively, the message semantics can be thought of in
terms of attaching tags to data items. If A sends a message
to downstream actor B with a latency k, then this could be



implemented by tagging the items that A outputs k itera-
tions later. These tags propagate through the stream graph;
whenever an actor inputs an item that is tagged, all of its
subsequent outputs are tagged. Then, the message handler
of B is invoked immediately before the first invocation of B
that inputs a tagged item. In this sense, the message has the
semantics of traveling “with the data” through the stream
graph, even though it is not necessarily implemented this
way.

The intuition for upstream messages is similar. Consider
that B is sending a message with latency k to upstream actor
A in the stream graph. This means that A will receive the
message immediately after its last invocation that produces
an item affecting the output of B’s kth firing, counting the
current firing as 0. As before, we can also think of this in
terms of A tagging items and B observing the tags. In this
case, the latency constraint says that B must input a tagged
item before it finishes & additional executions. The message
is delivered immediately after the latest firing in A during
which tagging could start without violating this constraint.

Formal Semantics. The SDEP function captures the data
dependences in the graph and provides a natural means of
defining a rendezvous point between two actors. The fol-
lowing definition leverages SDEP to give a precise meaning
to message timing.

DEFINITION 2. (Message delivery) Consider that S sends
a message to recetver R with latency range [k1 : k2] and that
the message is sent during the nth execution of S. There are

two cases®:

1. If R is downstream of S, then the message handler
must be invoked in R immediately before its mth exe-
cution, where m is constrained as follows:

n+ k1 < SDEPs—gr(m) < n+ ko

2. If R is upstream of S, then the message handler must
be invoked in R immediately after its mth execution,
where m is constrained as follows:

SDEPR_s(n + k1) < m < SDEPr_g(n + k2)

For example, consider the FIR code in Figure 3. On line
25, the Source sends a message to the Multiply actors with
zero latency (k1 = k2 = 0). Consider that, as illustrated
in Figure 6, a message is sent during the fifth execution of
Source (n = 5). Because each Multiply is downstream of
Source, the following equation constrains the iteration m at
which the message should be delivered to a given Multiply:

n 4 k1 < SDEPSourcee Multiply (M) < 1 4 ko
5 < SDEPSource— Multiply (M) < 5
5<m<5
m=2>5

To calculate SDEPsource—Multiply, Observe that Source pro-
duces one item per iteration, while each Multiply produces
one item and consumes one item. Thus, the Source must fire
m times before any given Multiply can execute m times, and
SDEP Source— Multiply (M) = m. Substituting into the above

3In a feedback path, both cases might apply. In this event, we
assume the message is being sent upstream.

Latency <0 Latency 2 0
Message buffering and latency
travels illegal in schedule must
upstream not be too large
Message buffering and latency
travels in schedule must no constraint
downstream not be too small

Figure 9: Scheduling constraints imposed by messages.

equation yields m = 5. That is, the message is delivered to
each Multiply immediately before its fifth execution. This
is illustrated in Figures 6(c) and 6(d) for the first and second
Multiply in the pipeline, respectively. The message arrives
immediately before the fifth data item (which corresponds
to the fifth execution).

Constraints on the Schedule. 1t is important to recog-
nize that messaging can place constraints on the execution
schedule. The different categories of constraints are illus-
trated in Figure 9. A negative-latency downstream message
has the effect of synchronizing the arrival of the message
with some data that was previously output by the sender
(e.g., for the checksum example mentioned in the introduc-
tion). The latency requires the downstream receiver not to
execute too far ahead (i.e., too close to the sender), or else
it might process the data before the message arrives. This
translates to a constraint on the minimum allowable latency
between the sender and receiver actors in the schedule for
the program. Intuitively, it also constrains the buffering of
data: the data buffers must not grow too small, as otherwise
the receiver would be too far ahead.

Similarly, a non-negative-latency upstream message places
a constraint on the maximum allowable latency between the
sender and receiver. This time the upstream actor must be
throttled so that it does not get too far ahead before the
message arrives. Intuitively, the amount of data buffered
between the actors must not grow too large.

For upstream messages with negative latency, there al-
ways exist iterations of the sender during which any mes-
sages sent are impossible to deliver. Consider an iteration
of the sender that is the first to depend on data propagating
from the nth execution of the receiver. A negative-latency
message would be delivered immediately after a previous
iteration of the receiver, but since iteration n has already
fired, the message is impossible to deliver. Conversely, a
downstream message with positive or zero latency imposes
no constraint on the schedule, as the sender has not yet
produced the data that is synchronized with the message.

Unsatisfiable Constraints. Messaging constraints can be
unsatisfiable—that is, assuming a message is sent on every
iteration of the sender’s work function, there does not exist a
schedule that delivers all of the messages within the desired
latency range. Such constraints should result in a compile-
time error.

Figure 10 illustrates an example of unsatisfiable constraints.
Though each messaging constraint is feasible in isolation,
the set of constraints together is unsatisfiable. The unsat-
isfiability is caused by conflicting demands on the buffering
between B and C. The message from B to C constrains this
buffer to contain at least 10 items, while the message from D



Figure 10: Example of unsatisfiable message con-
straints. Each node is annotated with its input and out-
put rate. Messages are shown by dotted arrows, drawn
from sender to receiver with a given latency. The con-
straints are satisfiable in isolation, but unsatisfiable in
combination.

roundrobin
62,1,1,128,1,1,62

62,1,1,128,1,1,62
roundrobin
256

Output

Figure 11: Stream graph of frequency hopping radio
with teleport messaging. A portal delivers point-to-point
latency-constrained messages from the detectors to the
RFtolIF stage.

to A constrains it to be empty. We say that these two con-
straints overlap because the paths from sender to receiver
intersect a common actor in the stream graph.

Finding a Schedule. In the presence of overlapping con-
straints, we leave to future work the problem of finding a
legal execution schedule (if one exists). Because overlap-
ping constraints can be detected statically, a given compiler
may choose to prohibit overlapping constraints altogether.
For the case of non-overlapping constraints, a simple mod-
ification to pull scheduling will always result in a legal sched-
ule (if one exists). First, note that a pull schedule always
satisfies constraints imposed by upstream messages; because
upstream (receiving) actors execute as little as possible per
execution of the downstream (sending) actor, a message
can be forwarded to the receiver immediately after send-
ing. The receiver can then store the message and process
it at the appropriate iteration. For downstream messages,
the pull scheduler is modified to always execute one itera-
tion of the upstream (sending) actor before any execution
of the downstream (receiving) actor that would exceed the
latency range. If the upstream actor needs more inputs to

1 float->float filter RFtoIF(int N, float START_FREQ) {
2 float[N] weights;

3 int size, count;

4

5 init { setFrequency(START_FREQ); }

6

7 work pop 1 push 1 {

8 push(pop() * weights[count++]);

9 count = count % size;
10 }
11
12 handler setFrequency(float freq) {
13 count = 0;
14 size = (int) (N * START_FREQ / freq);
15 for (int i = 0; i < size; i++)
16 weights[i] = sin(i * pi / size);
17
18 3}
19
20 float->float splitjoin CheckFreqHop(int N,
21 float START_FREQ,
22 portal<RFtoIF> port) {

23 split roundrobin(N/4-2, 1, 1, N/2, 1, 1, N/4-2);
24 for (int i=1; i<=7; i++) {

25 if Gi==1 || i==4 || i==7) {

26 add Identity<float>;

27 } else {

28 add float->float filter { // detector filter
29 work pop 1 push 1 {

30 float val = pop(Q);

31 push(val);

32 if (val > Constants.HOP_THRESHOLD)

33 port.setFrequency (START_FREQ +

34 i/7*Constants.BANDWIDTH) [6:6];
35 }

36 }

37 }

38 }

39 join roundrobin(N/4-2, 1, 1, N/2, 1, 1, N/4-2);
40 }

41

42 void->void pipeline FreqHoppingRadio {

43 int N = 256;

44 float START_FREQ = 2402000000;

45 portal <RFtoIF> port; <

46 «

47 add AtoD(N);

48 add RFtoIF(N, START_FREQ) to port;

49 add FFT(N);

50 add Magnitude(Q);

51 add checkFreqHop(N, START_FREQ, port);

52 add output()

53 }

Figure 12: Frequency hopping radio with teleport mes-
saging. Arrows depict the path of messages from the
sender to the receiver, via a portal declared in the top-

level stream.

fire, then they can always be generated by actors that are
further upstream (via a recursive call to the pull scheduling
algorithm).

As described in Section 5.2, our compiler uses a simple im-
plementation of messaging in which each sender or receiver
executes in its own thread and waits for possible messages
at appropriate iterations. This approach does not depend
on producing a serial ordering of the actors at compile time.

5. CASE STUDY

To illustrate the pros and cons of teleport messaging,
we implemented a spread-spectrum frequency hopping radio
frontend [12] as shown in Figure 11. A frequency hopping
radio is one in which the receiver switches between a set of
known frequencies whenever it detects certain tones from
the transmitter. The frequency hopping is a good match for
control messages because the hopping interval is dynamic
(based on data in the stream); it spans a large section of the
stream graph (there is a Fast Fourier Transform (FFT) with
15 child actors, not shown, between the demodulator and
the hop detector); and it requires precise message delivery.
The delivery must be precise both to meet real-time require-
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Figure 13: Stream graph of frequency hopping radio
with control messages implemented manually. A feed-
back loop connects the detectors with the RFtolF stage,
and an item is sent on every invocation to indicate
whether or not a message is present. The latency and
periodicity of message delivery are governed by the data
rates and the number of items on the feedback path.

ments (as the transmitter will leave the current frequency
soon), and to ensure that the message falls at a logical frame
boundary; if the frequency change is out of sync with the
FFT, then the FFT will muddle the spectrum of the old and
new frequency bands.

A Streamlt version of the radio frontend with teleport
messaging appears in Figure 12. The FreqHoppingRadio
pipeline creates a portal and adds the RFtolF actor as a
receiver (lines 45 and 48 respectively). The portal is passed
to the CheckFreqHop stage, where four parallel detectors
send messages into the portal if they detect a hop in the
frequency they are monitoring (lines 32-35). The messages
are sent with a latency of 6 to ensure a timely transition.
To make sense of the latency, note that SDEPrptorr—p(n) =
512 % n for each of the detector actors D. This comes about
because the FFT stage consumes and produces 512 items?;
each detector fires once per set of outputs from the FFT,
but RFtolF fires 512 times to fill the FFT input. Because
of this SDEP relationship, messages sent from the detectors
to RFtolF are guaranteed to arrive only at iterations that
are a multiple of 512. This satisfies the design criterion
that a given FFT stage will not operate on data that were
demodulated at two separate frequencies.

Another version of the frequency hopping radio appears in
Figures 13 and 14. This version is functionally equivalent to
the first, except that the control messages are implemented
manually by embedding them in the data stream and in-

4Though the FFT is 256-way, the real and imaginary parts are
interleaved on the tape, leading to an I/O rate of 512.

1 float->float filter RFtoIF(int N, float START_FREQ) {
2 float[N] weights;
3 int size, count;
4
5 init { setFrequency(START_FREQ); }
6
7 work pop 3*N push 2*N {
8 // manual loop to 2*N. Factor of N because messages
9 * // for given time slice come in groups of N; factor
10 * // of 2 for data-rate conversion of Magnitude filter
11 = for (int i=0; i<2*N; i++) {
12 = push(pop() * weights[count++]);
13 = count = count % size;
14 = }
15 * // manually check for messages;
16 = // special value of 0 encodes no message
17 = for (int i=0; i<N; i++) {
18 = float freqHop = popQ);
19 * if (freqHop!=0)
20 * setFrequency (freqHop) ;
21+ }
22 %}
23
24 handler setFrequency(float freq) {
25 count = 0;
26 size = (int) (N * START_FREQ / freq);
27 for (int i = 0; 1 < size; i++)
28 weights[i] = sin(i * pi / size);
29 }
30}
31
32 float->float splitjoin CheckFregHop(int N,
33 float START_FREQ) {
34 split roundrobin(N/4-2, 1, 1, N/2, 1, 1, N/4-2);
35 for (int i=1; i<=7; i++) {
36 if (Gi==1 || i==4 || i==7) {
37 add float->float filter {
38 * work pop 1 push 2 {
39 push(pop());
40 * push(0);
41 }
42 }
43 } else {
44 add float->float filter { // detector filter
45 * work pop 1 push 2 {
46 float val = popQ);
47 push(val);
48 = if (val > Constants.HOP_THRESHOLD) {
49 * push(START_FREQ + i/7*Constants.BANDWIDTH) ;
50 * } else {
51 * push(0);
52 % }
53 }
54 }
55 }
56 }
57 * join roundrobin(2*(N/4-2), 2, 2, 2*(N/2), 2, 2, 2*(N/4-2));
58 }
59
60 void->void pipeline FregHoppingRadio {
61 int N = 256;
62 float START_FREQ = 2402000000;
63
64 add AtoD(N);
65 * add float->float feedbackloop {
66 * // adjust joiner rates to match data rates in loop

67 * join roundrobin(2*N,N);
68 * body pipeline {

69 * add RFtoIF(N, START_FREQ);

70 add FFT(N);

71 * add Magnitude(Q);

72 add checkFreqHop(N, START_FREQ);
73 *

74 % split roundrobin();

75 % // number of items on Tloop path = latency * N
76 * for (int i=0; i<6*N; i++)

77 % enqueue(0);
78 * }

79 add output()

80 }

Figure 14: Frequency hopping radio with manual feed-
back loop for event handling. Lines that differ from Fig-
ure 12 are marked with an asterisk.



troducing a feedback loop. Because the number of items
transfered around the loop must be constant from one iter-
ation to the next, a data item is sent whether or not there
is a message as part of the algorithm. The RFtolF filter
checks the values from the loop on every iteration; if the
value is non-zero, it is treated as a message (the new fre-
quency), while a value of zero is ignored (no message). The
I/0O rate of the RFtolF filter has been scaled up to ensure
that the messaging information is received at intervals of
512 iterations (as in the version with portals). To achieve
the desired messaging latency of 6 frames, 6 *x 256 = 1536
items are enqueued on the feedback path prior to execution.

5.1 Discussion

Teleport messaging offers several benefits compared to a
manual implementation of equivalent functionality. While
embedding messages in the data stream is equally precise,
it involves several tedious and error-prone changes, not only
to the stream graph but also to the steady-state execution
code within the actors. In particular, the manual derivation
of the loop delay, adjustment of the actor I/O rates, and
implicit interleaving of data items with control messages has
a negative impact on the readability and maintainability of
the code. Teleport messaging provides the same level of
precision, but with the simplicity of a method call.

Teleport messaging also has advantages from a compiler
standpoint. By separating the data-intensive code from the
control-oriented code, the common case of steady-state ex-
ecution is not sacrificed for the uncommon case of message
processing. There are no “dummy items” serving as place-
holders in the static-rate channels. In addition, by exposing
the message latency as part of the language, the compiler
can infer the true dependences between actor firings and re-
order the execution so long as the message constraints are
respected. The actual message delivery can be implemented
in the most efficient way for a given architecture.

A final benefit of teleport messaging is the clean interface
provided by the portals. Since a portal can have multiple
receivers, it is straightforward to send a message that is de-
livered synchronously to two actors in parallel streams. For
example, consider a vocoder (an encoder for voice signals)
that is separately manipulating the magnitude and phase
components of a signal. If something triggers an adjust-
ment to the speech transformation (e.g., the speaker re-
quests a change of pitch) then the mask needs to be updated
at the same time relative to data in both parallel streams.
A portal that contains both components seamlessly provides
this functionality. Finally, portals are useful as an external
programming interface; an application can export a portal
based on an interface type without exposing the underlying
actor implementation.

One aspect of teleport messaging might be considered un-
usual: the granularity of message delivery can be affected by
changes in granularity elsewhere in the stream graph. This
is evident in the frequency hopping radio, as the I/O rate of
512 on the FFT implies that the RFTolF stage will receive
messages from CheckFreqHop at most once every 512 iter-
ations. (If the FFT were coarsened to 1024-way, the gran-
ularity of messages in RFTolF would increase accordingly.)
In this case the behavior is desirable, as messages should not
interrupt frame boundaries. It seems that in many cases, the
1/0 rates are meaningful aspects of the program and their
influence on message granularity is appropriate. Nonethe-

less, this non-local influence might come as a surprise to
programmers. If the FFT granularity is scaled up for a dif-
ferent reason (e.g., caching behavior), the effects on message
granularity might be unwanted.

This suggests that it might be worthwhile, in future work,
to investigate additional mechanisms for programmers to
specify the messaging contract independently of the declared
1/0 rates. For example, a parent stream could override the
I/0O rates of a child for the sake of a given SDEP calculation.
The scheduler would deliver messages according to the par-
ent’s expectation of SDEP, or report an error if such delivery
is incompatible with the actual I/O rates.

5.2 Experimental Evaluation

We have implemented teleport messaging in the StreamlIt
compiler infrastructure [10], with a backend that targets a
cluster of workstations. A Streamlt program is compiled to
a set of parallel threads; if two threads are allocated to dif-
ferent machines, they communicate via dedicated TCP/IP
connections. Messages are supported via auxiliary commu-
nication channels that transmit two kinds of signals from
senders to receivers: 1) the contents of a control message,
or 2) a credit that indicates the receiver can execute some
number of iterations before checking for a message again.

Each actor alternates between normal execution and check-
ing for the exchange of credits. This serves to throttle the
message receiver in accordance with the constraints (Sec-
tion 4), as an actor will block waiting for credits until the
sender has reached a given point in its execution. The com-
piler calculates the SDEP information and schedules the ex-
change of credits to make sure that the timing constraints
are respected. When a message is sent, it is tagged with the
iteration number during which the receiver should process
it; this is also calculated using SDEP in the compiler.

We chose a cluster-based evaluation for two reasons. First,
many streaming applications run on the server side (e.g.,
cell phone base stations, radar processing, HDTV editing)
and require large computational resources. Second, clus-
ters provide a simple abstraction for distributed and paral-
lel computing—multiple program counters, and distributed
memories—which is at the heart of emerging multi-core ar-
chitectures for embedded, desktop, and server computing.

The teleport implementation of the frequency hopping
radio was compiled into 29 threads whereas the alternate
version using a feedback loop results in 33 threads. Each
thread corresponds to a single actor (there are more threads
than appear in Figures 11 and 13 because the FFT stage
is a pipeline composed of several actors). The thread map-
ping is done using a dynamic programming algorithm that
aims to reduce the overall bottleneck, thereby maximizing
throughput (outputs per unit time). Threads are assigned to
one of sixteen 750Mhz Pentium IIT workstations, each with
a 256Kb cache. The machines are interconnected using a
fully switched 100Mb network.

Figure 15 shows the measured throughput (y-axis) for var-
ious cluster sizes. Note that due to the limited parallelism
in the two implementations of the frequency hopper, clus-
ter configurations with more than five workstations lead to
negligible performance gains. From the data, we can ob-
serve that teleport messaging achieves a maximal through-
put that is 49% better than its counterpart. We attribute
this speedup primarily to reduced communication overhead.
A detailed analysis of the results indicates that teleport mes-
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Figure 15: Throughput as a function of the number of
workstations in the cluster.

saging reduces the number of items communicated by 35%.
While the feedback loop version sends a message placeholder
on every iteration, teleport messaging uses credits to allow
the receiver to execute several iterations at a time without
checking for messages. The amount of communications sav-
ings is dictated by the message latency, as larger latencies
allow for a less frequent exchange of credits.

6. RELATED WORK

The work most closely related to ours comes from the

fields of heterogeneous modeling, program slicing, and domain-

specific languages.

The models of computation in our system are closely re-
lated to those explored in the Ptolemy project for hetero-
geneous design [19]. As part of this effort, Lee et al. have
established the Synchronous Dataflow (SDF) paradigm [20]
and have developed hybrid models that incorporate Dy-
namic Dataflow (DDF, in which the I/O rates of actors are
fully dynamic). Boolean Dataflow (BDF) [11] is a compro-
mise between these two extremes; it computes a parameter-
ized schedule of the graph at compile time, and substitutes
runtime conditions to decide which paths are taken. The
performance is nearly that of SDF while keeping some flex-
ibility of DDF.

Teleport messaging shares the motivation of BDF, but is
different in its approach. We believe that control messages
represent a distinct and well-behaved class of dynamic com-
munication in which a parameter is “pushed” into the re-
ceiving actor in an asynchronous way. Because the message
handlers do not access the I/O channels of the receiving ac-
tor, their irregular invocations do not interfere with a given
static schedule. Instead, the schedule is constrained only
by the latency of control messages; if a message does not
show up in the allotted window, then the receiving actor
can go ahead with its high-bandwidth schedule. This is the
distinction in the computational model. In addition, the sta-
tic/dynamic integration offered by our system is integrated
with language features that support the model.

Program slicing identifies the set of statements in a pro-
gram that a given statement might depend on. There is
a rich history of work in program slicing; see Tip [26] for
a comprehensive review. Many program slicing techniques
rely on the Program Dependence Graph as described by
Horwitz et al. [13]. Program slicing has been applied for de-
bugging, testing, and program analysis. In many respects,

SDEP analysis can be thought of as a slicing technique for
Synchronous Dataflow graphs. Because the input domain is
restricted (in particular, because of the absence of control
flow and recursion), the SDEP calculation can make stronger
guarantees than slicing analyses for general procedural lan-
guages; SDEP is decidable, exact, and admits a compact rep-
resentation in terms of the steady state schedule.

Pugh and Rosser present an iteration-based slicing algo-
rithm [22] to identify the dynamic instances of statements
(in terms of their loop iteration) that effect a given value.
This bears some similarity to stream dependence analysis,
as SDEP 4. p(n) represents the last iteration of actor A that
affected the nth iteration of actor B. However, [22] focuses
on the problem of computing the transitive closure of depen-
dences in loops, in which some iterations do not depend on
others. We are not interested in this question, as we assume
that all actor invocations depend on their previous invoca-
tions; SDEP addresses the question of finding only the most
recent invocation that is relevant. Moreover, our motivation
differs from the slicing community, as we apply SDEP to en-
rich the semantics of language features. To the best of our
knowledge, slicing has not been applied in this way before.

There are many domain-specific stream languages in ad-
dition to Streamlt. Streams have a long history in the
programming languages community, with influences from
dataflow, CSP, synchronous and functional languages; see
Stephens [24] for a review. Languages of recent interest in-
clude Brook [4], Cg [21], StreamC/KernelC [16], Spidle [5],
Occam [14], Sisal [9], and Parallel Haskell [1]. The prin-
ciple differences between Streamlt and these languages are
(7) StreamlIt adopts the SDF model of computation, which
narrows the application class but enables powerful optimiza-
tions, (it) StreamlIt’s support for a “peek” construct that in-
spects an item without consuming it from the channel, (7i7)
the single-input, single-output hierarchical structure that
Streamlt imposes on the stream graph, and (iv) teleport
messaging as described in this paper.

7. CONCLUSIONSAND FUTURE WORK

This paper makes two contributions. First, it introduces
teleport messaging: a powerful language construct enabling
precise message delivery between nodes of a distributed stream
program. In comparison with other methods to implement
messaging functionality in a Synchronous Dataflow model,
teleport messaging is arguably more readable, more robust,
and easier to maintain. In addition, our implementation
of teleport messaging in the Streamlt compiler results in
a 49% performance improvement for a frequency hopping
radio running on a cluster of workstations. Like several
other declarative language constructs, teleport messaging
improves performance by exposing the true dependences to
the compiler and allowing it to optimize the communication.

Second, this paper formulates SDEP, a natural and useful
dependence representation for the streaming domain. While
this paper applies SDEP to a new language construct, we en-
vision other applications as well. For example, SDEP could
be used in a debugger to identify which iterations of one ac-
tor are affecting a given iteration of another. In a software-
based speculation system [8], SDEP could be applied to trace
the effects of a failed prediction and to roll back the appro-
priate actor executions. Analogous to representations such
as dependence levels [2], direction vectors [27], and depen-
dence polyhedra [15] for scientific programs, SDEP provides



dependence information that could be used to test or verify
program transformations. Also, SDEP offers a new method
for measuring latency in a stream graph.

There are some limitations in the current study that are
fertile grounds for future research. First, our formulation of
SDEP requires a directed path in the stream graph between
the actors in question. We are generalizing SDEP to actors
that run in parallel by leveraging their data dependences
with common predecessors (upstream) or successors (down-
stream). Second, as detailed in Section 4, we do not solve
the general scheduling problem that incorporates overlap-
ping constraints from teleport messaging; even determining
whether or not a set of constraints is feasible (especially
during the initialization schedule [17]) seems to be an inter-
esting question. Third, in the current model only actors can
send and receive messages. We are extending this into a hi-
erarchical model where stream containers (such as pipelines)
can also receive events and dispatch them precisely to other
streams. Finally, our approach relies on the static commu-
nication rates present in SDF. It is interesting to consider
teleport messaging in a more dynamic context; for example,
downstream non-negative latency messages could be sup-
ported by embedding messages in data items, while other
messages might require speculative delivery or modified tim-
ing contracts.

Our work can be viewed as integrating dynamic behavior
into a static dataflow language. Our insight is that there is
a class of control messages that only adjust parameters in
the target actor; they do not otherwise affect the input or
output channels upon delivery. This model enables a hybrid
scheduling scheme in which the steady-state dataflow is ex-
actly orchestrated at compile time, but there are windows
in which a message could adjust an internal field of an actor
between its execution steps. We consider this to be a promis-
ing avenue for creating a unified development environment
that captures all aspects of stream application development
without sacrificing either performance or programmability.
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