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Deadlock
• Each deadlocked thread attempts to 

acquire a lock held by another thread
– Can halt entire program execution
– Difficult to expose during testing
– Once exposed, difficult to replicate

• Example:

Thread 1:
a.append(b);

locks a, b

Thread 2:
b.append(a);

locks b, a

a

b

StringBuffer a, b;



Deadlock in Libraries
• Library writers may wish to provide 

guarantees
– JDK’s StringBuffer documentation says class 

is thread-safe
• Goal: find client calls that deadlock library 

or verify that none exist



Analyzing Programs / Libraries

Consider all 
calling patternsFixedMethod 

Calls

UnboundedMight be knownNumber of 
Threads

Consider aliasing 
induced by any 

program
FixedAliasing 

Possibilities

For Libraries:For Programs:



Deadlock from Sun’s JDK
import java.beans.beancontext.*;

BeanContextSupport support = new BeanContextSupport();
Object source = new Object();
PropertyChangeEvent event =

new PropertyChangeEvent(source, "beanContext", ...);
support.add(source);
support.vetoableChange(event);

Thread 1:
support.propertyChange(event);

locks global, field

Thread 2:
support.remove(source);

locks field, global

Also found 13 other deadlocks



Analysis Overview
1. Build lock-order graph representing 

locking behavior of each method in library
2. Combine graphs for all public methods 

into single graph
3. Detect cycles in this graph, which indicate 

deadlock possibilities
• Analysis properties: reports all deadlocks, 

context-sensitive, flow-sensitive



JDK Source (simplified)
interface BeanContext {

public static final Object globalHierarchyLock;
}
class BeanContextSupport {

protected HashMap children;

public boolean remove(Object targetChild) {
synchronized(BeanContext.globalHierarchyLock) {

...
synchronized(children) {

children.remove(targetChild);
}
...

}
...

}

Object

HashMap

Continued...



JDK Source (simplified), cont.

class BeanContextSupport {
protected HashMap children;
public void propertyChange(PropertyChangeEvent pce) {

...
Object source = pce.getSource();
synchronized(children) {

if (...) {
...
remove(source);
...

}
}

}
}

Object

HashMap

public boolean remove(Object targetChild) {
synchronized (BeanContext.globalHierarchyLock) {

...
}

}



Merged Graph
• When merged, graphs indicate possible 

locking orders of all methods
• Cycles indicate possible

deadlock
– Expose cases in which threads

lock set of locks in different
(conflicting) orders

Object

HashMap



Outline
• Introduction
• Deadlock Detection Algorithm
• Results
• Related Work and Conclusions



Synchronization in Java
• Locking is hierarchical, performed using

synchronized statement
– Multiple locks acquired

via nested synchronized
statements

• Synchronizing on previously acquired lock 
always succeeds
– Considered a no-op for our analysis

• Synchronized methods sugar for 
synchronizing on this

synchronized (lock1) {
synchronized (lock2) {

...
}

}



Synchronization in Java
• wait() and notify() methods described in 

paper
• Java 1.5’s non-hierarchical primitives (in 

java.concurrent package) not covered by 
analysis
– Usage rare; recommended only for expert 

programmers



Analysis Overview
1. Build lock-order graph representing 

locking behavior of each method in library
• Callee graphs integrated into caller
• Iterate to fixed point; termination guaranteed

2. Combine graphs for all public methods 
into single graph

3. Detect cycles in this graph, which indicate 
deadlock possibilities



Lock-order Graph
• Directed graph that represents the order in 

which locks are acquired
• Nodes represent may-alias sets

– Allows graphs from different
methods to be combined

• Edges mean the source lock
held while destination lock
acquired

• Cycles indicate possibility of deadlock

set 1

set 3set 2



Example Library
public void deposit(Bank b1,

Client c1) {
synchronized (b1) {

synchronized (c1) {
...

}
}

}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}
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Cycle in Combined Graph

Cycles indicate 
possibility of deadlock, 
and deadlock is 
possible BankClient

Final graph:



Code that Deadlocks Library

Thread 2:
deposit(b, c);

locks b, c

Thread 1:
openAccount(b, c);

locks c, b

Bank b; Client c;

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}



Improving Precision
• We further refine may-alias sets and type 

information in certain cases (see paper)
– Unaliased fields
– Caller / callee type resolution
– Final and effectively-final fields

• These optimizations prove very effective: 
one library went from 909 reports to only 1

• Context-sensitivity (integrating callee
graphs) greatly improved precision



Outline
• Introduction
• Deadlock Detection Algorithm
• Results
• Related Work and Conclusions



Deadlocks Detected
• Analysis is sound: detects all deadlocks in 

library under analysis
• Assumptions:

– Clients assumed to respect lock order of 
library for any shared locks

– Callbacks are not modeled
• The client code may call any public method
• Would introduce many locking orders which are 

unlikely in practice
– Reflection not handled



Deadlock Reports
• Each report: set of variables possibly 

involved in deadlock
• Also provided: set of methods possibly  

deadlocking using those variables
– Sometimes many call sequences per report



Results: Overview
• Analyzed 18 libraries
• 13 libraries verified to be deadlock-free

– Each library analyzed in under 3 minutes
• 5 libraries not verified

– Exhibited 14 distinct deadlocks
– Each library analyzed in under 3 minutes 

employing filtering heuristics
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Deadlock-Free Libraries
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Manually verified 4 reports to be false
positives



Non-verified Libraries
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Filtering Heuristics
• Full analysis can yield too many reports
• Cycle length

– Do not report cycles longer than 2 nodes
• Assume runtime type same as declared type

– Lock declared as Object cannot alias with 
subclasses

• May filter out real deadlocks
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Deadlocks Found

×java.util.logging.Logger
×java.util.SimpleTimeZone

×java.awt.Menu
××java.awt.EventQueue

×java.awt.dnd.DropTarget
×PrintWriter/CharArrayWriter

××synchronized Collections
××StringBuffer

×BeanContextSupport
ClasspathJDK

ProActive: ProxyForGroup, AbstractDataObject



ProActive’s ProxyForGroup
• ProxyForGroup method 

asynchronousCallOnGroup() can be made 
to lock both this and any other 
ProxyForGroup object
– Complicated state required to produce this 

scenario



Cyclic Deadlocks
• java.util.Vector can

be deadlocked by
forming a cycle with
two Vector 
instances

• Similar deadlock in
– All other synchronized Collections
– Combinations of those Collections

• This deadlock only counted once for JDK and 
Classpath
– 5 other deadlocks

Thread 1:
v1.contains(o);

locks v1, v2

Vector v1, v2; Object o;
v1.add(v2);
v2.add(v1);

Thread 2:
v2.contains(o);

locks v2, v1
v1 v2
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Related Work
• Using lock-order graphs:

– Jlint [Artho, Biere 2001]; von Praun 2004
– For programs, do not detect all deadlocks

• RacerX [Engler, Ashcraft 2003]
– Non-hierarchical locking (for C), requires annotations, 

does not detect all deadlocks
• Model Checking:

– Demartini, Iosif, Sisto 1999
– Java Pathfinder: Havelund, Pressburger 2000
– For programs, not scalable

• Ownership Types:
– Boyapati, Lee, Rinard 2002
– Requires annotations, restricts programming model



Conclusions
• Our analysis is effective at

– Verifying libraries to be free from deadlock
– Finding deadlocks

• Analysis of libraries can be effective at 
finding library specific defects





Sources of Imprecision
• Consider infeasible aliasing / sharing 

across threads
– Do not track flow of values through fields

• Consider infeasible paths of control



Resolving Deadlocks
• Two possible solutions:

– Rewrite methods to acquire locks in set order
– Extend Java with synchronization primitive to

atomically acquire multiple locks (can also 
write this as a library method)

• Issue: must know locks
– Can sometimes write helper methods to 

determine locks
– Locks may change while being determined

• Global lock or transactions are alternatives


