Static Deadlock Detection for
Java Libraries

Amy Williams, William

hies, and

Michael D. Ernst

Massachusetts Institute of Technology

Deadlock

* Each deadlocked thread attempts to
acquire a lock held by another thread
— Can halt entire program execution
— Difficult to expose during testing
— Once exposed, difficult to replicate

 Example:
StringBuffer a, b;
Thread 1: Thread 2:
a.append(b); .append(a);
locks a, locks b, a

Deadlock in Libraries

 Library writers may wish to provide
guarantees

— JDK's StringBuffer documentation says class
Is thread-safe

* Goal: find client calls that deadlock library
or verify that none exist

Analyzing Programs / Libraries

For Programs: | For Libraries:

Method . Consider all
Fixed .
Calls calling patterns
.. Consider aliasing
Aliasing Fixed iInduced by an
Possibilities y any
program

Number of

Threads Might be known Unbounded

Deadlock from Sun’s JDK

import java.beans.beancontext.”;

BeanContextSupport support = new BeanContextSupport();
Obiject source = new Object();
PropertyChangeEvent event =

new PropertyChangeEvent(source, "beanContext", ...);
support.add(source);
support.vetoableChange(event);

Thread 1: Thread 2:
support.propertyChange(event); support.remove(source);
locks global, locks , global

Also found 13 other deadlocks

Analysis Overview

. Build lock-order graph representing
locking behavior of each method in library
. Combine graphs for all public methods
into single graph

. Detect cycles in this graph, which indicate
deadlock possibilities

Analysis properties: reports all deadlocks,
context-sensitive, flow-sensitive

JDK Source (simplified)

interface BeanContext {
public static final Object globalHierarchyLock;

}

class BeanContextSupport {

protected ; @
public boolean remove(Object targetChild) {

synchronized(BeanContext.globalHierarchylLock) {

synchronized() {
children.remove(targetChild);
}

} Continued...

JDK Source (simplified), cont.

class BeanContextSupport {
protected
public void propertyChange(PropertyChangeEvent pce) {

Object source = pce.getSource(); @
synchronized() {

if (...) {

remove(source); .
}

} public boolean remove(Object targetChild) {
} synchronized (BeanContext.globalHierarchylLock) {

:

}

Merged Graph

* When merged, graphs indicate possible
locking orders of all methods

» Cycles indicate possible @
deadlock
— Expose cases in which threads —
lock set of locks in different .

(conflicting) orders

Outline

* Deadlock Detection Algorithm
 Results
 Related Work and Conclusions

Synchronization in Java

» Locking is hierarchical, performed using

synchronized statement [synchronized (lock?) {

— Multiple locks acquired synchronized (lock2) {
via nested synchronized
statements } }

* Synchronizing on previously acquired lock
always succeeds

— Considered a no-op for our analysis

* Synchronized methods sugar for
synchronizing on this

Synchronization in Java

 wait() and notify() methods described In
paper

« Java 1.5's non-hierarchical primitives (in
java.concurrent package) not covered by
REWAIS

— Usage rare; recommended only for expert
programmers

Analysis Overview

. Build lock-order graph representing
locking behavior of each method in library

Callee graphs integrated into caller

Iterate to fixed point; termination guaranteed
. Combine graphs for all public methods
into single graph

. Detect cycles in this graph, which indicate
deadlock possibilities

Lock-order Graph

Directed graph that represents the order in
which locks are acquired

Nodes represent may-alias sets
— Allows graphs from different

methods to be combined ‘o’

Edges mean the source lock @l@

held while destination lock
acquired

Cycles indicate possibility of deadlock

Example Library

public void deposit(Bank b1,
Client c1) {
synchronized (b1) {
synchronized (c1) {

-
}

}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

-

synchronized (c2) {
deposit(b2, c2);
}
}

Example Analysis: deposit()

public void deposit(Bank b1, Graph:
Client c1) {
synchronized (b1) {
synchronized (c1) {

-
}

}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

-

synchronized (c2) { .
deposit(b2, c2); Ordered list of locks held:

)
: I

Example Analysis: deposit()

public void deposit(Bank b1, Graph:
Client c1) {
mmm) synchronized (b1) {

synchronized (c1) {

-
}

}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

-

synchronized (c2) { .
deposit(b2, c2); Ordered list of locks held:

}
: I

Example Analysis: deposit()

public void deposit(Bank b1, Graph: No locks held, so
Client ¢1) { node is root

mmm) synchronized (b1) {

synchronized (c1) { 0
}

}

}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

-

synchronized (c2) { .
deposit(b2, c2); Ordered list of locks held:

)
: [b1)

Example Analysis: deposit()

public void deposit(Bank b1, Graph:
Client c1) {
synchronized (b1) {

mmm) synchronized (c1) { °
:

}

}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

-

synchronized (c2) { .
deposit(b2, c2); Ordered list of locks held:

}
} [b1]

Example Analysis: deposit()

public void deposit(Bank b1, Graph:
Client c1) {
synchronized (b1) {

mmm) synchronized (c1) { °
:

}

}
public void openAccount(Bank b2,
Client c2) {

synchronized (b2) {

:
synchronized (c2) { .

deposit(b2, c2); Ordered list of locks held:
} (b1, c1]

}

Example Analysis: deposit()

public void deposit(Bank b1, Graph:
Client c1) {
synchronized (b1) {

synchronized (c1) { 0
:

}

}
public void openAccount(Bank b2,
Client c2) {

synchronized (b2) {

:
synchronized (c2) { .

deposit(b2, c2); Ordered list of locks held:
: b1]

}

Example Analysis: deposit()

public void deposit(Bank b1, Graph:
Client c1) {
synchronized (b1) {

synchronized (c1) { 0
}

))

}
public void openAccount(Bank b2,
Client c2) {

synchronized (b2) {
}

synchronized (c2) { .
deposit(b2, c2); Ordered list of locks held:

}
:]

Lock-order graph for deposit()

public void deposit(Bank b1, Graph:
Client c1) {
synchronized (b1) {

synchronized (c1) { 0
}
}
)
public void openAccount(Bank b2,
Client c2) { °

synchronized (b2) {
}

synchronized (c2) {
deposit(b2, c2);
}
}

Example Analysis: openAccount()

d it h:
public void deposit(Bank b1, Graph: eposit's grap

Client c1) { <D
synchronized (b1) {
synchronized (c1) { 0

-
}

}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

-

synchronized (c2) { .
deposit(b2, c2); Ordered list of locks held:

}
: I

Example Analysis: openAccount()

it h:
public void deposit(Bank b1, Graph: deposits grap
Client c1) { ' (o
synchronized (b1) {
synchronized (c1) { o
}
}
}
public void openAccount(Bank b2,
Client c2) {
mmm) synchronized (b2) {
}
synchronized (c2) { .
deposit(b2, c2); Ordered list of locks held:
} [b2]

}

Example Analysis: openAccount()

it h:
public void deposit(Bank b1, Graph: deposits grap
Client c1) { ' (o
synchronized (b1) {
synchronized (c1) { o
}
}
}
public void openAccount(Bank b2,
Client c2) {
synchronized (b2) {
}
mmm) synchronized (c2) { |
deposit(b2, c2); Ordered list of locks held:
: [c2]

}

Example Analysis: openAccount()

deposit’'s graph:

public void deposit(Bank b1, Graph:
Client c1) { ' (o
synchronized (b1) {
synchronized (c1) { o
}
}
}
public void openAccount(Bank b2,
Client c2) {
synchronized (b2) {
}
synchronized (c2) { .
deposit(b2, c2); Ordered list of locks held:
} [c2]

}

Example Analysis: openAccount()

current graph: |deposit’'s graph:

public void deposit(Bank b1, Graph:
Clent 1) = o

synchronized (b1) {
synchronized (c1) { 0

-
}

}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

-

synchronized (c2) { .
deposit(b2, c2); Ordered list of locks held:

} [c2]

}

Call to deposit(): update copy of
: depOSIt S graph current graph: |deposit’'s graph:

public void deposit(Bank b1, Graph:
Clent) = >

synchronized (b1) {
synchronized (c1) { 0

} (=
}
}
public void openAccount(Bank b2,
Client c2) {
synchronized (b2) {
}
synchronized (c2) {

deposit(b2, c2); Ordered list of locks held:
} [c2]

}

Call to deposit(): update copy of
: depOSIt S graph current graph: |deposit’'s graph:

public void deposit(Bank b1, Graph:
Clent) = >

synchronized (b1) {

synchronized (c1) { o
} (=0
}
}
public void openAccount(Bank b2,
Client c2) {
synchronized (b2) {
} (=0
synchronized (c2) {
deposit(b2, c2); Ordered list of locks held:

}
} [c2]

Call to deposit(): update copy of
: depOSIt S graph current graph: |deposit’'s graph:

public void deposit(Bank b1, Graph:
Clent) = >

synchronized (b1) {

synchronized (c1) { o
} (=0
}
}
public void openAccount(Bank b2,
Client c2) {
synchronized (b2) {
}
synchronized (c2) {
deposit(b2, c2); Ordered list of locks held:

}
} [c2]

Call to deposit(): update copy of
: depOSIt S graph current graph: |deposit’'s graph:

public void deposit(Bank b1, Graph:
Clent) = >

synchronized (b1) {
synchronized (c1) { 0

=
}

}
public void openAccount(Bank b2,

Client c2) {

synchronized (b2) { °
}

synchronized (c2) { .
deposit(b2, c2); Ordered list of locks held:

} [c2]

}

Call to deposit(): insert deposit’'s

g raph deposit’s graph:
public void deposit(Bank b1, Graph: P SR
Client c1) { '
synchronized (b1) { Cot D
synchronized (c1) { Ca D
}
}
}
public void openAccount(Bank b2,
Client c2) {

synchronized (b2) { °
}

synchronized (c2) { .
deposit(b2, c2); Ordered list of locks held:

}
} [c2]

Call to deposit(): insert deposit’'s

g raph deposit’s graph:
public void deposit(Bank b1, Graph: P SR
Client c1) { '
synchronized (b1) { Cot D
synchronized (c1) { Ca D
}
}
}
public void openAccount(Bank b2,

Client c2) {

synchronized (b2) { °
}

synchronized (c2) { .
deposit(b2, c2); Ordered list of locks held:

}
} [c2]

Lock-order graph for

OpenACCOU nt() deposit’s graph:
public void deposit(Bank b1, Graph:
Client c1) { D
synchronized (b1) {
synchronized (c1) { S

} Ca o w

}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

-

synchronized (c2) {
deposit(b2, c2);
}
) }

Analysis Overview

. Build lock-order graph representing
locking behavior of each method in library
Callee graphs integrated into caller
lterate to fixed point; termination guaranteed

. Combine graphs for all public methods
into single graph

. Detect cycles in this graph, which indicate
deadlock possibilities

Combine Graphs

Graph for deposit(): Graph for openAccount():

:

Combine Graphs

Graph for deposit(): Graph for openAccount():

(o>
=

Combine Graphs

Graph for deposit(): Graph for openAccount():
Final graph:

® e

Analysis Overview

. Build lock-order graph representing
locking behavior of each method in library
Callee graphs integrated into caller
lterate to fixed point; termination guaranteed

. Combine graphs for all public methods
into single graph

. Detect cycles in this graph, which indicate
deadlock possibilities

Cycle in Combined Graph

Cycles indicate
possibility of deadlock,

and deadlock Is

Final graph:

Code that Deadlocks Library

public void deposit(Bank b1,

Client c1) { _
synchronized (b1) { Bank b; Client c;
synchronized (c1) { Thread 1: Thread 2:
) openAccount(b, ©); deposit(b, ©);
) locks ¢, b locks b,
}
public void openAccount(Bank b2,
Client c2) {
synchronized (b2) {
}

synchronized (c2) {
deposit(b2, c2);
}
}

Improving Precision

« We further refine may-alias sets and type
information in certain cases (see paper)

— Unaliased fields
— Caller / callee type resolution
— Final and effectively-final fields

* These optimizations prove very effective:
one library went from 909 reports to only 1

» Context-sensitivity (integrating callee
graphs) greatly improved precision

Outline

 Results
 Related Work and Conclusions

Deadlocks Detected

* Analysis is sound: detects all deadlocks in
library under analysis

* Assumptions:

— Clients assumed to respect lock order of
library for any shared locks
— Callbacks are not modeled

* The client code may call any public method

* Would introduce many locking orders which are
unlikely in practice

— Reflection not handled

Deadlock Reports

« Each report: set of variables possibly
involved in deadlock

 Also provided: set of methods possibly
deadlocking using those variables

— Sometimes many call sequences per report

Results: Overview

* Analyzed 18 libraries

* 13 libraries verified to be deadlock-free
— Each library analyzed in under 3 minutes

* 5 libraries not verified
— Exhibited 14 distinct deadlocks

— Each library analyzed in under 3 minutes
employing filtering heuristics

Deadlock-Free Libraries

Library sync kLOC Reports
jeurzez 24 4 1
httpunit 17 23 0
jasperreports 11 67 0
croftsoft 11 14 2
dom4;j 6 41 1
cewolf 6 7 0
jfreechart 5 125 0
htmlparser 3 22 0
jpcap 4 8 0
treemap 4 7 0
PDFBox 2 28 0
UJAC 1 63 0
JOscarLib 1 6 0

Deadlock-Free Libraries

Library sync kLOC Reports
jeurzez 24 4 1
httpunit 17 23 0
jasperreports 11 67 0]
croftsoft 11 14 2
dom4;j 6 41 1
cewolf 6 7 0
jfreechart 3 125 0
htmlparser 3 22 0
jpcap 4 8 0
treemap 4 7 0]
PDFBox 2 28 0
UJAC 1 63 0
JOscarLib 1 6 0

Deadlock-Free Libraries

Library sync kLOC Reports
jeurzez 24 4 1
httpunit 17 23 0
jasperreports 11 67 0
croftsoft 11 14 2
dom4;j 6 41 1
cewolf 6 7 0
jfreeql=-t = A5 o

nmig Manually verified 4 reports to be false
pcap positives

treentap 7 7 U
PDFBox 2 28 0

UJAC 1 63 0
JOscarLib 1 6 0

Non-verified Libraries

: Deadlocks
Library sync |kLOC |Reports Found
JDK 1458 |a19 |Qutof 7

Memory
Classpath 754 295 el 5

Memory
ProActive 199 63 > 196 2
Jess 111 27 > 269 0
sdsu 69 26 > 20,479 0

Deadlocked JVM for all 14 cases

Filtering Heuristics

Full analysis can yield too many reports
Cycle length

— Do not report cycles longer than 2 nodes

Assume runtime type same as declared type

— Lock declared as Object cannot alias with
subclasses

May filter out real deadlocks

Non-verified Libraries

Library sync | kLOC |Reports ;eiﬁ:g?j) Egsgldocks
JDK 1458 | 419 a‘:n?;ry 70 7
Classpath |754 |295 E)/I:tn?;y 32 5
ProActive |199 |63 = 196 3 2

Jess 111 |27 = 269 23 0

sdsu 69 26 220,479 |3 0
Deadlocked JVM for all 14 cases

Non-verified Libraries

Library sync | kLOC |Reports ;?II:Z:::I) ?gsg:jocks
JDK 1458 | 419 a‘:n?;ry 70 7
Classpath |754 |295 E)/I:tn?;y 32 5
ProActive |199 |63 = 196 3 2

Jess 111 |27 = 269 23 0

sdsu 69 26 220,479 |3 0
Deadlocked JVM for all 14 cases

Deadlocks Found

JDK Classpath

BeanContextSupport

StringBuffer

synchronized Collections

PrintWriter/CharArray\Writer

java.awt.dnd.DropTarget

java.awt.EventQueue

java.awt.Menu

java.util.SimpleTimeZone

java.util.logging.Logger

ProActive: ProxyForGroup, AbstractDataObject

ProActive’'s ProxyForGroup

* ProxyForGroup method
asynchronousCallOnGroup() can be made

to lock both this and any other
ProxyForGroup object

— Complicated state required to produce this
scenario

Cyclic Deadlocks

 java.util.Vector can

be deadlocked by e
) : vi.a ;
forming a cycle with .add(v1);
two Vector " Thread 1: Thread 2:
instances v v1.contains(o); .contains(o);
X locks v1, locks v, v1

 Similar deadlock in

— All other synchronized Collections
— Combinations of those Collections

» This deadlock only counted once for JDK and
Classpath

— 5 other deadlocks

Outline

 Related Work and Conclusions

Related Work

Using lock-order graphs:
— Jlint [Artho, Biere 2001]; von Praun 2004
— For programs, do not detect all deadlocks

RacerX [Engler, Ashcraft 2003]

— Non-hierarchical locking (for C), requires annotations,
does not detect all deadlocks

Model Checking:

— Demartini, losif, Sisto 1999

— Java Pathfinder: Havelund, Pressburger 2000

— For programs, not scalable

Ownership Types:

— Boyapati, Lee, Rinard 2002

— Requires annotations, restricts programming model

Conclusions

* Our analysis is effective at
— Verifying libraries to be free from deadlock
— Finding deadlocks

* Analysis of libraries can be effective at
finding library specific defects

Sources of Imprecision

» Consider infeasible aliasing / sharing
across threads

— Do not track flow of values through fields
» Consider infeasible paths of control

Resolving Deadlocks

* Two possible solutions:
— Rewrite methods to acquire locks in set order

— Extend Java with synchronization primitive to
atomically acquire multiple locks (can also
write this as a library method)

e |ssue: must know locks

— Can sometimes write helper methods to
determine locks

— Locks may change while being determined
* Global lock or transactions are alternatives

