
Static Deadlock Detection for
Java Libraries

Amy Williams, William Thies, and
Michael D. Ernst

Massachusetts Institute of Technology

Deadlock
• Each deadlocked thread attempts to

acquire a lock held by another thread
– Can halt entire program execution
– Difficult to expose during testing
– Once exposed, difficult to replicate

• Example:

Thread 1:
a.append(b);

locks a, b

Thread 2:
b.append(a);

locks b, a

a

b

StringBuffer a, b;

Deadlock in Libraries
• Library writers may wish to provide

guarantees
– JDK’s StringBuffer documentation says class

is thread-safe
• Goal: find client calls that deadlock library

or verify that none exist

Analyzing Programs / Libraries

Consider all
calling patternsFixedMethod

Calls

UnboundedMight be knownNumber of
Threads

Consider aliasing
induced by any

program
FixedAliasing

Possibilities

For Libraries:For Programs:

Deadlock from Sun’s JDK
import java.beans.beancontext.*;

BeanContextSupport support = new BeanContextSupport();
Object source = new Object();
PropertyChangeEvent event =

new PropertyChangeEvent(source, "beanContext", ...);
support.add(source);
support.vetoableChange(event);

Thread 1:
support.propertyChange(event);

locks global, field

Thread 2:
support.remove(source);

locks field, global

Also found 13 other deadlocks

Analysis Overview
1. Build lock-order graph representing

locking behavior of each method in library
2. Combine graphs for all public methods

into single graph
3. Detect cycles in this graph, which indicate

deadlock possibilities
• Analysis properties: reports all deadlocks,

context-sensitive, flow-sensitive

JDK Source (simplified)
interface BeanContext {

public static final Object globalHierarchyLock;
}
class BeanContextSupport {

protected HashMap children;

public boolean remove(Object targetChild) {
synchronized(BeanContext.globalHierarchyLock) {

...
synchronized(children) {

children.remove(targetChild);
}
...

}
...

}

Object

HashMap

Continued...

JDK Source (simplified), cont.

class BeanContextSupport {
protected HashMap children;
public void propertyChange(PropertyChangeEvent pce) {

...
Object source = pce.getSource();
synchronized(children) {

if (...) {
...
remove(source);
...

}
}

}
}

Object

HashMap

public boolean remove(Object targetChild) {
synchronized (BeanContext.globalHierarchyLock) {

...
}

}

Merged Graph
• When merged, graphs indicate possible

locking orders of all methods
• Cycles indicate possible

deadlock
– Expose cases in which threads

lock set of locks in different
(conflicting) orders

Object

HashMap

Outline
• Introduction
• Deadlock Detection Algorithm
• Results
• Related Work and Conclusions

Synchronization in Java
• Locking is hierarchical, performed using

synchronized statement
– Multiple locks acquired

via nested synchronized
statements

• Synchronizing on previously acquired lock
always succeeds
– Considered a no-op for our analysis

• Synchronized methods sugar for
synchronizing on this

synchronized (lock1) {
synchronized (lock2) {

...
}

}

Synchronization in Java
• wait() and notify() methods described in

paper
• Java 1.5’s non-hierarchical primitives (in

java.concurrent package) not covered by
analysis
– Usage rare; recommended only for expert

programmers

Analysis Overview
1. Build lock-order graph representing

locking behavior of each method in library
• Callee graphs integrated into caller
• Iterate to fixed point; termination guaranteed

2. Combine graphs for all public methods
into single graph

3. Detect cycles in this graph, which indicate
deadlock possibilities

Lock-order Graph
• Directed graph that represents the order in

which locks are acquired
• Nodes represent may-alias sets

– Allows graphs from different
methods to be combined

• Edges mean the source lock
held while destination lock
acquired

• Cycles indicate possibility of deadlock

set 1

set 3set 2

Example Library
public void deposit(Bank b1,

Client c1) {
synchronized (b1) {

synchronized (c1) {
...

}
}

}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

Example Analysis: deposit()
Graph:

Ordered list of locks held:
[]

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

Example Analysis: deposit()
Graph:

Ordered list of locks held:
[]

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

Example Analysis: deposit()
Graph:

Ordered list of locks held:
[b1]

b1

No locks held, so
node is root

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

Example Analysis: deposit()
Graph:

Ordered list of locks held:
[b1]

b1

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

Example Analysis: deposit()
Graph:

Ordered list of locks held:
[b1, c1]

b1

c1

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

Example Analysis: deposit()
Graph:

Ordered list of locks held:
[b1, c1]

b1

c1

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

Example Analysis: deposit()
Graph:

Ordered list of locks held:
[b1]

b1

c1

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

Lock-order graph for deposit()
Graph:

b1

c1

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

Example Analysis: openAccount()
Graph:

Ordered list of locks held:
[]

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

deposit’s graph:

b1

c1

Example Analysis: openAccount()
Graph:

Ordered list of locks held:
[b2]

b2

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

deposit’s graph:

b1

c1

Example Analysis: openAccount()
Graph:

Ordered list of locks held:
[c2]

b2c2

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

deposit’s graph:

b1

c1

Example Analysis: openAccount()
Graph:

Ordered list of locks held:
[c2]

b2c2

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

deposit’s graph:

b1

c1

Example Analysis: openAccount()
Graph:

Ordered list of locks held:
[c2]

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

deposit’s graph:current graph:

b1

c1

b2c2

Graph:

Ordered list of locks held:
[c2]

b1b2

Call to deposit(): update copy of
deposit’s graph ^

c1

b2

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

deposit’s graph:current graph:

b1

c1

b2c2

Graph:

Ordered list of locks held:
[c2]

b2

Call to deposit(): update copy of
deposit’s graph ^

deposit’s graph:current graph:

c1

c2

b1

c1

b2c2

c2

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

Graph:

Ordered list of locks held:
[c2]

b2

Call to deposit(): update copy of
deposit’s graph ^

c2

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

deposit’s graph:current graph:

b1

c1

b2c2

Graph:

Ordered list of locks held:
[c2]

b2

Call to deposit(): update copy of
deposit’s graph ^

b2

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

deposit’s graph:current graph:

b1

c1

b2c2

Graph:

Ordered list of locks held:
[c2]

Call to deposit(): insert deposit’s
graph

b2

b2c2

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

deposit’s graph:

b1

c1

Graph:

Ordered list of locks held:
[c2]

Call to deposit(): insert deposit’s
graph

b2c2

b2

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

deposit’s graph:

b1

c1

Graph:

Lock-order graph for
openAccount()

b2c2

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

deposit’s graph:

b1

c1

Analysis Overview
1. Build lock-order graph representing

locking behavior of each method in library
• Callee graphs integrated into caller
• Iterate to fixed point; termination guaranteed

2. Combine graphs for all public methods
into single graph

3. Detect cycles in this graph, which indicate
deadlock possibilities

Combine Graphs
Graph for deposit(): Graph for openAccount():

b1

c1

b2c2

Combine Graphs
Graph for deposit(): Graph for openAccount():

BankClient

Client

Bank

Combine Graphs
Graph for deposit(): Graph for openAccount():

BankClient

Client

Bank

Final graph:

Analysis Overview
1. Build lock-order graph representing

locking behavior of each method in library
• Callee graphs integrated into caller
• Iterate to fixed point; termination guaranteed

2. Combine graphs for all public methods
into single graph

3. Detect cycles in this graph, which indicate
deadlock possibilities

Cycle in Combined Graph

Cycles indicate
possibility of deadlock,
and deadlock is
possible BankClient

Final graph:

Code that Deadlocks Library

Thread 2:
deposit(b, c);

locks b, c

Thread 1:
openAccount(b, c);

locks c, b

Bank b; Client c;

public void deposit(Bank b1,
Client c1) {

synchronized (b1) {
synchronized (c1) {

...
}

}
}
public void openAccount(Bank b2,

Client c2) {
synchronized (b2) {

...
}
synchronized (c2) {

deposit(b2, c2);
}

}

Improving Precision
• We further refine may-alias sets and type

information in certain cases (see paper)
– Unaliased fields
– Caller / callee type resolution
– Final and effectively-final fields

• These optimizations prove very effective:
one library went from 909 reports to only 1

• Context-sensitivity (integrating callee
graphs) greatly improved precision

Outline
• Introduction
• Deadlock Detection Algorithm
• Results
• Related Work and Conclusions

Deadlocks Detected
• Analysis is sound: detects all deadlocks in

library under analysis
• Assumptions:

– Clients assumed to respect lock order of
library for any shared locks

– Callbacks are not modeled
• The client code may call any public method
• Would introduce many locking orders which are

unlikely in practice
– Reflection not handled

Deadlock Reports
• Each report: set of variables possibly

involved in deadlock
• Also provided: set of methods possibly

deadlocking using those variables
– Sometimes many call sequences per report

Results: Overview
• Analyzed 18 libraries
• 13 libraries verified to be deadlock-free

– Each library analyzed in under 3 minutes
• 5 libraries not verified

– Exhibited 14 distinct deadlocks
– Each library analyzed in under 3 minutes

employing filtering heuristics

Deadlock-Free Libraries

0225htmlparser
084jpcap
074treemap
0282PDFBox
0631UJAC
061JOscarLib

jfreechart
cewolf
dom4j
croftsoft
jasperreports
httpunit
jcurzez
Library

5
6
6
11
11
17
24

sync

125
7
41
14
67
23
4
kLOC

0
0
1
2
0
0
1
Reports

Deadlock-Free Libraries

0225htmlparser
084jpcap
074treemap
0282PDFBox
0631UJAC
061JOscarLib

jfreechart
cewolf
dom4j
croftsoft
jasperreports
httpunit
jcurzez
Library

5
6
6
11
11
17
24

sync

125
7
41
14
67
23
4
kLOC

0
0
1
2
0
0
1
Reports

Deadlock-Free Libraries

0225htmlparser
084jpcap
074treemap
0282PDFBox
0631UJAC
061JOscarLib

jfreechart
cewolf
dom4j
croftsoft
jasperreports
httpunit
jcurzez
Library

5
6
6
11
11
17
24

sync

125
7
41
14
67
23
4
kLOC

0
0
1
2
0
0
1
Reports

Manually verified 4 reports to be false
positives

Non-verified Libraries

≥ 20,479

≥ 269

≥ 196

Out of
Memory

Out of
Memory

Reports

0

0

2

5

7

Deadlocks
Found

2669sdsu

27111Jess

63199ProActive

295754Classpath

4191458JDK

kLOCsyncLibrary

Deadlocked JVM for all 14 cases

Filtering Heuristics
• Full analysis can yield too many reports
• Cycle length

– Do not report cycles longer than 2 nodes
• Assume runtime type same as declared type

– Lock declared as Object cannot alias with
subclasses

• May filter out real deadlocks

Non-verified Libraries

≥ 20,479

≥ 269

≥ 196

Out of
Memory

Out of
Memory

Reports

0

0

2

5

7

Deadlocks
Found

32669sdsu

2327111Jess

363199ProActive

32295754Classpath

704191458JDK

Reports
(Filtered)kLOCsyncLibrary

Deadlocked JVM for all 14 cases

Non-verified Libraries

≥ 20,479

≥ 269

≥ 196

Out of
Memory

Out of
Memory

Reports

0

0

2

5

7

Deadlocks
Found

32669sdsu

2327111Jess

363199ProActive

32295754Classpath

704191458JDK

Reports
(Filtered)kLOCsyncLibrary

Deadlocked JVM for all 14 cases

Deadlocks Found

×java.util.logging.Logger
×java.util.SimpleTimeZone

×java.awt.Menu
××java.awt.EventQueue

×java.awt.dnd.DropTarget
×PrintWriter/CharArrayWriter

××synchronized Collections
××StringBuffer

×BeanContextSupport
ClasspathJDK

ProActive: ProxyForGroup, AbstractDataObject

ProActive’s ProxyForGroup
• ProxyForGroup method

asynchronousCallOnGroup() can be made
to lock both this and any other
ProxyForGroup object
– Complicated state required to produce this

scenario

Cyclic Deadlocks
• java.util.Vector can

be deadlocked by
forming a cycle with
two Vector
instances

• Similar deadlock in
– All other synchronized Collections
– Combinations of those Collections

• This deadlock only counted once for JDK and
Classpath
– 5 other deadlocks

Thread 1:
v1.contains(o);

locks v1, v2

Vector v1, v2; Object o;
v1.add(v2);
v2.add(v1);

Thread 2:
v2.contains(o);

locks v2, v1
v1 v2

Outline
• Introduction
• Deadlock Detection Algorithm
• Results
• Related Work and Conclusions

Related Work
• Using lock-order graphs:

– Jlint [Artho, Biere 2001]; von Praun 2004
– For programs, do not detect all deadlocks

• RacerX [Engler, Ashcraft 2003]
– Non-hierarchical locking (for C), requires annotations,

does not detect all deadlocks
• Model Checking:

– Demartini, Iosif, Sisto 1999
– Java Pathfinder: Havelund, Pressburger 2000
– For programs, not scalable

• Ownership Types:
– Boyapati, Lee, Rinard 2002
– Requires annotations, restricts programming model

Conclusions
• Our analysis is effective at

– Verifying libraries to be free from deadlock
– Finding deadlocks

• Analysis of libraries can be effective at
finding library specific defects

Sources of Imprecision
• Consider infeasible aliasing / sharing

across threads
– Do not track flow of values through fields

• Consider infeasible paths of control

Resolving Deadlocks
• Two possible solutions:

– Rewrite methods to acquire locks in set order
– Extend Java with synchronization primitive to

atomically acquire multiple locks (can also
write this as a library method)

• Issue: must know locks
– Can sometimes write helper methods to

determine locks
– Locks may change while being determined

• Global lock or transactions are alternatives

