
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2006-034 May 5, 2006

Abstraction Layers for Scalable 
Microfluidic Biocomputers (Extended Version)
William Thies, John Paul Urbanski, Todd Thorsen, 
and Saman Amarasinghe



Abstraction Layers for Scalable Microfluidic Biocomputers
(Extended Version∗)

William Thies†, John Paul Urbanski§, Todd Thorsen§, and Saman Amarasinghe†
†MIT Computer Science and Artificial Intelligence Laboratory §MIT Hatsopoulos Microfluids Laboratory

{thies, urbanski, thorsen, saman}@mit.edu

Abstract

Microfluidic devices are emerging as an attractive technology for automatically orchestrating the
reactions needed in a biological computer. Thousands of microfluidic primitives have already been
integrated on a single chip, and recent trends indicate that the hardware complexity is increasing at
rates comparable to Moore’s Law. As in the case of silicon, it will be critical to develop abstraction
layers—such as programming languages and Instruction Set Architectures (ISAs)—that decouple
software development from changes in the underlying device technology.

Towards this end, this paper presents BioStream, a portable language for describing biology
protocols, and the Fluidic ISA, a stable interface for microfluidic chip designers. A novel algo-
rithm translates microfluidic mixing operations from the BioStream layer to the Fluidic ISA. To
demonstrate the benefits of these abstraction layers, we build two microfluidic chips that can both
execute BioStream code despite significant differences at the device level. We consider this to be an
important step towards building scalable biocomputers.

1 Introduction

One of the challenges in biological computing is that the laboratory protocols needed to carry out a
computation can be very time consuming. For example, a 20-variable 3-SAT problem required 96 hours to
complete [1], not counting the considerable time needed for setup and evaluation. To automate and opti-
mize this process, researchers have turned to microfluidic devices [2–10]. Microfluidics offers the promise
of a “lab on a chip” system that can individually control picoliter-scale quantities of fluids, with integrated
support for operations such as mixing, storage, PCR, heating/cooling, cell lysis, electrophoresis, and oth-
ers [11–13]. Apart from being amenable to computer control, microfluidics drastically reduces the volumes
of samples, thereby reducing costs and improving capture kinetics. Using microfluidics, DNA hybridization
times can be reduced from 24 hours to 4 minutes [10] and the number of bases needed to encode information
can be decreased from 15 bases per bit to 1 base per bit [1, 8].

Thus has emerged a vision for creating a hybrid DNA computer: one that uses microfluidics for the
plumbing (the control paths) and biological primitives for the computations (the ALUs). On the hardware
side, this vision is becoming scalable: microfluidic chips have integrated up to 3,574 valves with 1,000
individually-addressable storage chambers [14]. Moreover, recent trends indicate that microfluidics is fol-
lowing a path similar to Moore’s law, with the number of soft-lithography valves per unit area doubling
every 4.5 months [15].

On the software side, however, the microfluidic realm is lagging far behind its silicon counterpart. For
silicon computers, the complexity and scale of the underlying hardware is masked by a set of well-defined
abstraction layers. For example, transistors are organized into gates, which combine to form functional units,
which together can implement an Instruction Set Architecture (ISA). The user operates at an even higher
level of abstraction (e.g., C++), which is automatically translated into the ISA. These abstraction layers have
proven critical for managing complexity. Without them, the computing field would have stagnated as every
researcher tried to gain a transistor-level understanding of his machine.

Unfortunately, the current practice in experimental microfluidics is to expose all of the hardware re-
sources directly to the experimentalist. Using a graphical system such as Labview, the user orchestrates the

∗This is an extended version of a paper [16] that appeared in the 12th International Meeting on DNA Computing, June, 2006.

1



Computational problem

Biology expert

Microfluidics expert

SAT formula

Max-clique graph

Biology protocol

DNA library, oligo generation

Concentrations of DNA, buffer, etc.

Selection and isolation steps

Microfluidic chip operations

Connectivity and control logic

Locations of inputs, fluids, beads, etc.  

Calibration and timing

chip 1
2

3

Figure 1: Abstraction layers for DNA computing.

individual behavior of each valve in the microfluidic device. While this practice is merely tedious for to-
day’s devices, it will soon become completely intractable—akin to programming a modern microprocessor
by directly toggling each of a million gates.

In this paper, we present a system and methodology that uses new abstraction layers for scalable bi-
ological computing. As illustrated in Figure 1, our system consists of three layers. At the highest level,
the programmer indicates the abstract computation to be performed—for example, in the form of a SAT
formula. With some expertise in DNA computing and experimental biology, the computation can be trans-
formed to the next layer: a portable biological protocol for performing the computation. The protocol is
portable in that it does not depend on the physical implementation of the protocol; for example, it specifies
fluid concentrations but not fluid volumes. Finally, the bottom layer specifies the operations needed to ex-
ecute the protocol on a specific microfluidic chip. Each microfluidic chip designer provides a library that
translates an abstract protocol into the specific sequence of valve actuations needed to execute that protocol
on a specific chip.

These abstraction layers provide many benefits. Primarily, by using an architecture-independent de-
scription of the biological protocol (the middle layer), the application development can be decoupled from
advances in the underlying device technology. Thus, as microfluidic devices come to support additional
inputs, mixers, storage cells, etc., the existing suite of protocols can run without modification (much as C
programs run without modification on successive generations of microprocessors). In addition, the protocol
layer serves as a division of labor. Rather than requiring a heroic and brittle translation from a SAT formula
directly to a microfluidic chip, a biologist provides a mapping to the abstract protocol while a microfluidics
expert maps the protocol to the underlying device. The abstract protocol is also perfectly suited to simula-
tion, thereby allowing the logical operations to be verified without relying on any physical implementation.
Further, a portable protocol description could serve the role of pseudocode in technical publications, pro-
viding a precise account of the experimental methods used. Third-party protocols could be downloaded and
executed (or called as sub-routines) on one’s own microfluidic device.

In the long term, the protocol description language will support all of the operations needed for biolog-
ical computing. However, as there does not yet exist a single microfluidic device that can encompass all
the functionality (preparation of DNA libraries, selection, readout, etc.), this paper focuses on three fun-

2



                   BioStream Library

Fluid mix(Fluid[] f, double[] c);
void setPrecision(double precision);
void waitFor(long seconds);

[native functions with Fluid arguments]

                   Microfluidic Device Microfluidic Simulator

Library Generator

Generate a BioStream
Library for an 
architecture.

 Simulator Generator

Generate a simulated
backend for an
architecture.

  Fluidic Instruction Set Architecture (ISA)

void mixAndStore(Mixer mixer, Location[] 
                 src, Location[] dest);
Mixer[] getMixers();
Store[] getStores();

[native functions with Location arguments] 

                    Protocol Code 

Portable between microfluidic chips
supporting architecture description.

          Architecture Requirements

Declares native functions such as
I/O, sensors, agitators. For example:

       Fluid input(Integer i);
       Double camera(Fluid i);

Implemented by 
Hardware Developers

Implemented by 
    BioStream

Implemented by 
Protocol Developers

Figure 2: Abstraction layers in the BioStream system.

damental primitives: fluid mixing, fluid transport, and fluid storage. We describe a programming system
called BioStream (Section 2) that provides an architecture-independent interface for these operations. To
show that BioStream is portable, we execute BioStream code on two fundamentally different microfluidic
architectures (Section 3). We also present a novel algorithm for mixing fluids to a given concentration using
the minimal number of simple on-chip mixing steps (Section 4). Our system represents a fully-functional,
end-to-end demonstration of portable software on microfluidic hardware.

2 BioStream Protocol Language

We have developed a software system called BioStream for portable microfluidics protocols. BioStream
is a Java library that virtualizes many aspects of the underlying hardware resources. While BioStream can be
targeted by a compiler (for example, a DNA computing compiler that converts a mathematical problem into
a biological protocol), it is also suitable for direct programming and experimentation by biologists. As such,
the language provides several high-level abstractions to improve readability and programmer productivity.

2.1 Providing Portability

As shown in Figure 2, BioStream offers two levels of abstraction underneath the protocol developer.
The first abstraction layer is the BioStream library, which provides first-class Fluid objects that are not
associated with a given hardware location. The library also supports a general mix operation for combining
Fluids in arbitrary proportions and with adjustable precision. The second abstraction layer, the Fluidic
Instruction Set Architecture (ISA), interfaces with the underlying architecture. The fundamental operation is
mixAndStore, which mixes the contents of several locations on chip and stores the result in a destination
location. The Fluidic ISA exports the properties of the mixers and stores available on chip so that the library
can properly interface with it.

In addition to the abstractions for mixing, there are some architecture-specific features that need to be
made available to the programmer. These “native functions” include I/O devices, sensors, and agitators
that might not be supported by every chip, but are needed to execute the program; for example, special
input lines, cameras, or heaters. As shown in Figure 2, BioStream supports this functionality by having the
programmer declare a set of architecture requirements. BioStream uses the requirements to generate a library
which contains the same functionality; it also checks that the architecture target supports all of the required

3



functions. Finally, BioStream includes a generic simulator that inputs a set of architecture requirements
and outputs a virtual machine that emulates the architecture. This allows full protocol development and
validation even without hardware resources.

The BioStream system is fully implemented. The reflection capabilities of Java are utilized to automat-
ically generate the library and the simulator from the architecture requirements. As described in Section 3,
we also execute the Fluidic ISA on two real microfluidic chips.

2.2 Example Protocol

An example of a BioStream protocol appears in Figure 3. This is a general program that seeks to find
the ratio of two reagents that leads to the highest activity in the presence of a given indicator. Experiments
of this sort are common in biology. For example, the program could be applied to investigate the roles of
cytochrome-c and caspase 8 in activating apoptosis (cell death); cell lysate would serve as the indicator in
this experiment [17,18]. The protocol uses feedback from a luminescence detector to guide the search for the
highest activity. After sampling some concentrations in the given range, it descends recursively and narrows
the range for the next round of sampling. Using self-directed mixing, a high precision can be obtained after
only a few rounds.

The recursive descent program declares a SimpleLibrary interface (see bottom of Figure 3) de-
scribing the functionality required on the target architecture. In this case, a camera is needed to detect
luminescence. While we have not mounted a camera on our current device, it would be straightforward to
do so.

2.3 Improving Programmer Productivity

A key abstraction provided by BioStream is the use of Fluids as first-class objects in the programming
language. The challenge in implementing this functionality is that physical fluids can be used only once, as
they are consumed in mixtures and reactions. However, the programmer might reference a Fluid variable
multiple times (e.g., variables A and B in the recursive descent example). BioStream supports this behavior
by keeping track of how each Fluid was generated and regenerating Fluids that are reused.

The regeneration mechanism works by associating each Fluid object with the name and arguments of
the function that created it. The creating function must be a mix operation or a native function, both of
which are visible to BioStream (the Fluid constructor is not exposed). BioStream maintains a valid bit for
each Fluid, which indicates whether or not the Fluid is stored in a storage chamber on the chip. By default,
the bit is true when the Fluid is first created, and it is invalidated when the Fluid is used as an argument
to a BioStream function. If a BioStream function is called with an invalid Fluid, that Fluid is regenerated
using its history. Note that this regeneration mechanism is fully dynamic (no analysis of the source code is
needed) and is accurate even in the presence of pointers and aliasing.

The computation history created for Fluids can be viewed as a dependence tree with several interesting
applications. For example, the library can execute a program in a demand-driven fashion by initializing each
Fluid to an invalid state and only generating it when it is used by a native function. This lazy evaluation
affords the library more flexibility in scheduling the mixing operations when the Fluids are needed. For
example, operations could be reordered to minimize storage requirements or to issue parallel operations
with vector control. Just-in-time optimizations such as these are especially promising for microfluidic chips,
as silicon computers operate much faster than their microfluidic counterparts and have cycles to spare at
runtime.

A final abstraction offered by the BioStream interface is the mix operation, which combines a set of fluids
in arbitrary proportions. This offers significant gains for programmer productivity, as otherwise mixtures
need to be synthesized one step at a time using low-level primitives. Section 4 describes how this abstraction
can be supported efficiently by the runtime system.

4



import biostream.library.*; 

// Requires following external setup in laboratory: 
//
//  - input(0) -- fluid A 
//  - input(1) -- fluid B 
//  - input(2) -- luminescent activity indicator 
//
// This program will recursively zoom in on the mixture 
// of A and B that has the highest activity. 
public class RecursiveDescent { 

    public static void main(String[] args) { 
         // args[0]:  the backend to use 
        SimpleLibrary library = (SimpleLibrary) 
              LibraryFactory.buildLibrary("SimpleLibrary", args[0]); 
        run(library); 
    } 

    private static void run(SimpleLibrary library) { 
        // number of rounds and samples per round 
        int ROUNDS = 10; int SAMPLES = 5; 

        // input fluids 
        Fluid A = library.input(new Integer(0)); 
        Fluid B = library.input(new Integer(1)); 
        Fluid indicator = library.input(new Integer(2)); 

        // trial samples and best activity 
        Fluid [] samp = new Fluid[SAMPLES]; 
        double bestActivity = -1; 
        // center and radius of current concentration range 
        double center = 0.5, radius = 0.5; 

        for (int i=0; i<ROUNDS; i++) { 
            // set absolute mixing precision to 10X more 
            // than the difference in the samples 
            library.setPrecision(0.1*(2*radius)/SAMPLES); 
            // mix new array of A, B, indicator 
            for (int j=1; j<SAMPLES; j++) { 
                double target = center+radius*(1-2*(double)j/SAMPLES); 
                Fluid mixture = library.mix(A, target, B, 1-target); 
                samp[j] = library.mix(indicator, 0.9, mixture, 0.1); 
            } 

            // wait 30 minutes for indicator to show activity 
            library.waitFor(30*60); 

            // find maximum activity 
            bestActivity = -1; 
            int bestIndex = -1; 
            for (int j=1; j<SAMPLES; j++) { 
                double act = library.luminescence(samp[j]).doubleValue(); 
                if (act > bestActivity) 
                    bestActivity = act; bestIndex = j; 
            } 

            // zoom window by factor of 2 around best activity 
            center = center+radius*(1-2*(double)bestIndex/SAMPLES); 
            radius = radius / 2; 
            // move center away from edges 
            if (center < radius) center = radius; 
            if (center > 1-radius) center = 1-radius; 
          } 

          // print value and location of highest activity 
          System.out.println("Found activity " + bestActivity + 
                                         " at " + center + " +/- " + radius); 
      } 
}

// Declares devices needed by RecursiveDescent. 
interface SimpleLibrary extends FluidLibrary { 
    Fluid input(Integer i);                 // require array of fluid inputs
    Double luminescence(Fluid f);  // require luminescence camera
}

Figure 3: Recursive descent search in BioStream.

Control Layer

Input 1

Input 2

Oil

Mixer

WasteWaste

Flow Layer 5 mm

Storage Cells

Inputs

Mixer
Waste Waste

Storage Cells

Figure 4: Layout and photo of Chip 1 (driven by oil).

Waste

Air

Inputs

Water

Vent

Storage Cells

Metering

Inputs Metering Waste

Storage Cells

Figure 5: Layout and photo of Chip 2 (driven by air).

5



Driving Wash Mixing Sample Inputs Storage Valves Control Advantages
fluid fluid size cells lines

Chip 1 oil N/A rotary mixer half of mixer 2 8 46 26 better sample isolation and retention
Chip 2 air water during transport full mixer 4 32 140 21 faster and simpler chip operation

Table 1: Comparison of the key differences between the microfluidic chips developed.

3 Microfluidic Implementation

To demonstrate an end-to-end system, we have designed and fabricated two microfluidic chips using
a standard multi-layer soft lithography process [13]. While there are fundamental differences between the
chips (see Table 1), both provide support for programmable mixing, storage, and transport of fluid samples.
More specifically, both chips implement the mixAndStore operation in the Fluidic ISA: they can load two
samples from storage, mix them together, and store the result. Thus, despite their differences, code written
in BioStream will be portable between the chips.

The first chip (see Figure 4) isolates fluid samples by suspending them in oil [19]. To implement
mixAndStore, each input sample is transported from a storage bin to one side of the mixer. The mixer
uses rotary flow, driven by peristaltic pumps, to mix the samples to uniformity [20]. Following mixing, one
half of the mixer is drained and stored in the target location. While the second half could also be stored, it
is currently discarded, as the basic mixAndStore abstraction produces only one unit of output.

The second chip (see Figure 5) isolates fluid samples using air instead of oil. Because fluid transport is
very rapid in the absence of oil, a dedicated mixing element is not needed. Instead, the input samples are
loaded from storage and aligned in a metering element; when the element is drained, the samples are mixed
during transport to storage. Because the samples are in direct contact with the walls of the flow channels, a
small fraction of the sample is lost during transport. This introduces the need for a wash phase, to clean the
channel walls between operations. Also, to maintain sample volumes, the entire result of mixing is stored.
Any excess volume is discarded in future mixing operations, as the metering element has fixed capacity.

To demonstrate BioStream’s portability between these two chips, consider the following code, which
generates a gradient of concentrations:

Fluid blue = input(1);
Fluid yellow = input(2);
Fluid[] gradient = new Fluid[5];
for (int i=0; i<=4; i++) {

gradient[i] = mix(blue, yellow, i/4.0, 1-i/4.0);
}

This code was used to generate the gradient pictured in Figure 4 and produces an identical result on both
microfluidic devices. (The gradient shown in Figure 5 is different and was generated by a different program.)

4 Mixing Algorithms

The mixing and dilution of fluids plays a fundamental role in almost all bioanalytical procedures. Mix-
ing is used to prepare input samples for analysis, to dilute concentrated substances, and to control reagent
volumes. In DNA computing, mixing is needed for reagent preparation (e.g., DNA libraries, PCR buffers,
detection assays) and, in some techniques, for restriction digests [21, 22] or fine-grained concentration con-
trol [23]. It is critical to provide integrated support for mixing on microfluidic devices, as otherwise the
samples would have to leave the system every time a mixture is needed.

As described in the previous sections, a microfluidic chip supports the mixAndStore instruction from
the Fluidic ISA. This operation simply mixes two fluids in equal proportions. However, the mix command
in BioStream allows the programmer to specify complex mixtures involving multiple fluids in various con-
centrations. To bridge the gap between these abstractions, this section describes how to obtain a complex
mixture using a series of simple steps. We describe an abstract model for mixing, an algorithm for minimiz-
ing the number of steps required, how to deal with error tolerances, and directions for future work.

6



reagentbuffer

2

1
reagent,,

2

1
buffer,buffer

4

1
reagent,,

4

3
buffer,

Figure 6: Mixing tree yielding 3/4 buffer and 1/4
reagent.

y,B...y,B x,A... x,A

yx
2

1
zwhere

...,z,C...,

kk11kk11

CBs.t.j

j

CAs.t.j

ji

ii

ijij

Figure 7: Calculation of a parent mixture from
child mixtures using a 1-to-1 mixer. For each sub-
stance, the resulting concentration is the average
of the concentrations in the children.

4.1 A Model of Mixing

The following definition gives our notation for mixtures.

Definition 1. A mixture M is a set of substances Si at given concentrations ci:

M = {〈S1, c1〉 . . . 〈Sk, ck〉}∑k
i=1 ci = 1

For example, a mixture of 3/4 buffer and 1/4 reagent is denoted as {〈buffer, 3/4〉, 〈reagent, 1/4〉}. We
further define a sample to be a mixture with only one substance (|M| = 1). For example, a sample of buffer
is denoted {〈buffer, 1〉}, or just 〈buffer〉.

To obtain a given mixture on a microfluidic chip, one performs a series of mixes using an on-chip mixing
primitive. While the capabilities of this mixer might vary from one chip to another, a simple 1-to-1 mixing
model can be implemented on both continuous flow and droplet-based architectures [20, 24]. In this model,
all fluids are stored in uniform chambers of unit volume. The mix operation combines two fluids in equal
proportions, producing two units of the mixture. However, since there may be some amount of fluid loss
with every operation, the result of the mixture might not be able to completely fill the contents of two storage
cells. Thus, the result is stored in only one storage cell, and the extra mixture is discarded.

The 1-to-1 mixing process can be visualized using a “mixing tree”. As depicted in Figure 6, each leaf
node of a mixing tree represents a sample, while each internal node represents the mixture resulting from
the combination of its children. Figure 7 illustrates that the mixture at an internal node can be calculated as
the arithmetic mean of the components in child mixtures. In the 1-to-1 model, mixing trees are binary trees
because each mix operation has two inputs. Evaluation of the tree proceeds from the leaf nodes upwards;
the mixture for a given node can be produced once the child mixtures are available. The overall result of the
operation is the mixture specified at the root node.

The following theorem is useful for reasoning about mixing trees. It describes the concentration of a
substance in the overall mixture based on the depths of leaf nodes containing samples of the substance. The
depth of a node n in a binary tree is the length of the path from the root node to n.

Theorem 1. Consider a mixing tree and a substance S. Let md denote the number of leaf nodes with sample
〈S〉 appearing at depth d of the tree. Then the concentration of S contained in the root mixture is given by∑

d md ∗ 2−d.

Proof. A sample at depth d is diluted d times in the mixing process, each time by a factor of two. Thus it
contributes 2−d to the root mixture. Since each mix operation sums the concentrations from child nodes, the
overall contribution is the sum across the leaf nodes at all depths

∑
d md ∗ 2−d.

7



The following theorem describes the set of mixtures that can be obtained using a 1-to-1 mixer. Infor-
mally, it states that a mixture is reachable if and only if the concentration of each substance can be written
as an integral fraction k/2d.

Theorem 2. (1-to-1 Mixing Reachability) Consider a finite set of substances {S1 . . . Sk} with an unlimited
supply of samples 〈Si〉. Let R denote the set of mixtures that can be obtained via any sequence of 1-to-1
mixes. Then:

R =

⎧⎨
⎩

{〈S1, c1〉 . . . 〈Sk, ck〉} s.t. ∃ pi, qi, d ∈ Z :

LCM(q1 . . . qk) = 2d ∧ ∀i ∈ [1, k] : ci =
pi

qi

⎫⎬
⎭

Proof. The equality in the theorem can be shown via bi-directional inclusion of R and the right hand side
(RHS).

R ⊆ RHS: Given a mixing tree for the mixture, construct pi, qi, and d as follows to satisfy the RHS.
Select d as the maximum depth of the tree (i.e., the maximum path length from the root node to a leaf node)
and set all qi = 2d, thereby satisfying the LCM condition. Then, for leaf nodes at a depth less than d, replace
the node with an internal node whose children are leaves with the same sample as the original. This preserves
the identity of the mixture but increases the depth of some nodes. Iterate until all leaf nodes are at depth d.
By Theorem 1, if a substance has concentration ci in the mixture then it must have ci ∗ 2d leaf nodes in this
tree. Thus, setting pi to the number of leaf nodes with sample 〈Si〉, we have that pi/qi = ci ∗ 2d/2d = ci as
required.

R ⊇ RHS: Given a mixture satisfying the RHS and values of pi, qi, and d satisfying the conjuncts, con-
struct a mixing tree that can be used to obtain the given mixture. The tree has d levels and 2d leaves. Assign
sample 〈Si〉 to any pi ∗ 2d/qi of the leaves (this is an integral quantity because 2d is a common multiple of
the qi). By the definition of mixture,

∑
i(pi/qi) =

∑
i ci = 1 and there is a one-to-one mapping between

leaves and samples. By Theorem 1, the resulting mixture has a concentration of k/2d for a substance with
k samples at the leaves. Thus the concentration for Si in the assignment is (pi ∗ 2d/qi)/2d = pi/qi = ci as
desired.

It is natural to suggest a number of optimization problems for mixing. Of particular interest are the
number of mixes and the number of samples consumed, as these directly impact the running time and
resource requirements of a laboratory experiment. The following theorem shows that (under the 1-to-1
model) these two optimization problems are equivalent.

Theorem 3. In any 1-to-1 mixing sequence, the number of samples consumed is exactly one greater than
the number of mixes.

Proof. By induction on the number of nodes, there is always exactly one more leaf node than internal node
in a binary tree. The mixing tree is a binary tree in which each internal node represents a mix and each leaf
node represents a sample. Thus there is always exactly one more sample consumed than there are mixes.

Note that this theorem only holds under the 1-to-1 mixing model, in which two units of volume are
mixed but only one unit of the mixture is retained. For microfluidic chips that attempt to retain both units
of mixture (such as droplet-based architectures or our oil-driven chip), it might be possible to decrease the
number of samples consumed by increasing the number of mix operations.

4.2 Algorithm for Optimal Mixing

In this section, we give an efficient algorithm for finding a mixing tree that requires the minimal number
of mixes to obtain a given concentration. For clarity, we frame the problem as follows:

8



node buildMixingTree
(mixture { 〈S1, p1 / n〉,                                                        ...,                                                        〈Sk, pk / n〉 } ) { 

    depth = lg(n) 
    bins = new stack[depth+1] 
    // pre-processing: build a stack of the 
    // bitwise components of each concentration 
    for i = 1 to k 
        mask = 1 
        for j = 0 to depth-1 
            if (mask & pi ≠≠ 0) then 
                bins[j].push(Si)
            endif 
            mask = mask << 1 
        endfor 
    endfor 
    return buildMixingHelper(bins, depth) 
}

node buildMixingHelper(stack[] bins, int pow) { 
    if bins[pow].empty() then
        node child1 = buildMixingHelper(bins, pow-1) 
        node child2 = buildMixingHelper(bins, pow-1) 
        return 〈child1, child2〉 as internal node 
    else 
        return bins[pow].pop() as leaf node 
    endif 
}

Figure 8: MIN-MIX algorithm.

 
bin 2bin  5A 4B 7C 
4 16 
3 8 
2 4 A B C 
1 2   C 
0 1 A  C 
 

 
  

C 

C B A 

C A 

4-C 

3-A 2-B 1-C

5-C 6-A 

(a)

(b) (c)

Figure 9: Example operation of MIN-MIX for the
mixture {〈A, 5/16〉, 〈B, 4/16〉, 〈C, 7/16〉}. Part (a)
illustrates the algorithm’s allocation of substances to
bins. The bin layout directly translates to a valid mix-
ing tree, which appears in (b) with numbers indicat-
ing the order in which nodes are added to the tree.
The mixing tree is redrawn in (c) for clarity.

Problem 1. (Minimal Mixing) Consider a finite set of substances {S1 . . . Sk} with an unlimited supply
of samples 〈Si〉. Given a reachable mixture {〈S1, p1/n〉 . . . 〈Sk, pk/n〉}, what is the mixing tree with the
minimal number of leaves?

Our algorithm runs in O(k lg n) time1 and produces an optimal mixing tree (with respect to this metric).
The tree produced has no more than k lg n internal nodes.

The idea behind the algorithm, which we refer to as MIN-MIX, is to place a leaf node with sample 〈S〉
at depth d in the mixing tree if and only if the target concentration for S has a 1 in bit lg n − d of its binary
representation. Theorem 1 then ensures that all substances have the desired concentrations, while fewer than
lg n samples are used for each one.

Psuedocode for MIN-MIX appears in Figure 8. We illustrate its operation for the example mixture of
{〈A, 5/16〉, 〈B, 4/16〉, 〈C, 7/16〉}. As shown in Figure 9, the algorithm begins with a pre-processing stage
that allocates substances to bins according to the binary representation of the target concentrations. It then
builds the mixing tree via calls to buildMixingHelper, which descends through the bins. When a bin
is empty, an internal node is created in the graph and the procedure recurses into the next bin. When a bin
has a substance identifier in it, the substance is removed from the bin and a corresponding sample is added
as a leaf node to the graph. Figure 9 labels the order in which the nodes in the final mixing tree are created
by the algorithm.

The following lemma is key to proving the correctness of MIN-MIX. We denote the nth least significant
bit of x by LSB(x, n). That is, LSB(x, n) ≡ (x � n) & 1.

1lg n denotes log2n.

9



Lemma 1. Consider the mixing tree t produced by MIN-MIX({〈S1 , p1/n〉 . . . 〈Sk, pk/n〉}). A substance
Si appears at a depth d in t if and only if LSB(pi, lg n− d) = 1.

Proof. If: It suffices to show that there is a substance added to the mixing tree for each LSB of 1 drawn
from the pi (that the substance appears at depth d is given by the only if direction.) Further, since bins[j]
is constructed to contain all substances i for which LSB(pi, j) = 1, it suffices to show that a) all bins are
empty at the end of the procedure, and b) the procedure does not try to pop from an empty bin. To show (a),
use the invariant that each call to buildMixingHelper adds a total of 2−d to the mixing tree, where d is
the current depth; either a leaf node is added (which contributes 2−d by Theorem 1) or two child nodes are
added, contributing 2∗2−(d+1) = 2−d. But since the initial depth is 0, the external call results in 20 = 1 unit
of mixture being generated. Since the bins represent exactly one unit of mixture (i.e.,

∑
j bins[j]∗2−j = 1),

all bins will be used. To show (b), observe that buildMixingTree references the bins in order, testing if
each is empty before proceeding. Thus no empty bin will ever be dereferenced.

Only if: When a substance is added to the tree from bins[j], it appears at depth lg n − j in the tree.
This is evident from the recursive call in buildMixingHelper: it initially draws from bins[lg n] and
then works down when the upper bins are empty. By construction, bins[j] contains only substances Si with
LSB(pi, j) = 1. Thus, if Si appears at depth d in the mixing tree, it was added from bins[lg n − d] which
has LSB(pi, lg n− d) = 1.

The following theorem asserts the correctness of MIN-MIX.

Theorem 4. The mixing tree given by MIN-MIX gives the correct concentration for each substance in the
target mixture.

Proof. Consider a component 〈S, p/n〉 of the mixture passed to MIN-MIX. Let md denote the number of
leaf nodes with sample S at depth d of the resulting mixing tree. By Lemma 1, md = LSB(p, lg(n) − d).
Using Theorem 1, this implies that the concentration for S in the root mixture is given by:

c =
∑

d LSB(p, lg(n)− d) ∗ 2−d

=
∑

x LSB(p, x) ∗ 2−(lg(n)−x)

=
∑

x LSB(p, x) ∗ 2x/n

= p/n

Thus the concentration in the root node of the mixing tree is the same as that passed to MIN-MIX.

The following theorem asserts the optimality of the mixing trees produced by MIN-MIX.

Theorem 5. Consider the mixing tree t produced by MIN-MIX({〈S1 , p1/n〉 . . . 〈Sk, pk/n〉}). The number
of leaf nodes L(t) is given by:

L(t) =
k∑

i=1

lg n∑
j=0

LSB(pi, j)

There does not exist a mixing tree that yields the given mixture with fewer leaf nodes than L(t).

Proof. That MIN-MIX produces a tree t with L(t) leaf nodes follows directly from Lemma 1, as there
is a one-to-one correspondence between leaf nodes and input samples. To prove optimality, Theorem 1
gives that pi/n =

∑
d md ∗ 2−d. Thus pi =

∑
d md ∗ 2lg n−d =

∑
d

∑md
i=1 2lg n−d. That is, pi is a

sum of powers of two, and the number of leaf nodes determines the number of summands. The minimal
number of summands is the number of non-zero bits in the binary representation for pi; this quantity is∑lg n

j=0 LSB(pi, j). Thus it is impossible to obtain a concentration of pi for all k substances in the tree with

fewer than
∑k

i=1

∑lg n
j=0 LSB(pi, j) leaf nodes.

10



p1 p2 Region Must be present?

ad bd ad + bd = 0 yes

. .

. . ai + bi = 1 no
Bits . .

. . ai + bi = 2 yes

. .

. . a0 + b0 = 0 no

a0 b0

Figure 10: Arrangement of bits for any p1+p2 = 2d.

p1 = 14 p2 = 18 Mixing Sequence

25 0 0

24 0 1 4. Add S2, mix

23 1 0 3. Add S1, mix

Bits 22 1 0 2. Add S1, mix

21 1 1 1. Add S2, mix

20 0 0      (ignore)

0. Start with S1

Figure 11: Example of mixing 14/32 and 18/32 us-
ing twoWayMix.

twoWayMix(mixture { S1, p1/n , S2, p2/n  } ) { 
   // start with S2
   fluid = S2

   // ignore where both are zero 
   int start = 0 

while (LSB(p1, start) = 0) 
      start = start + 1 

endwhile 

   // keep running mixture, based on bits of p1:
   //   bit is 0 - mix with S2
   //   bit is 1 - mix with S1

for i = start to lg(n)-1 
      fluid = mix (fluid, S2-LSB(p1, i) )

endfor

return fluid 
}

Figure 12: Algorithm for mixing two substances.

The following theorem describes the running time of MIN-MIX.

Theorem 6. MIN-MIX({〈S1 , p1/n〉 . . . 〈Sk, pk/n〉}) runs in O(k lg n) time.

Proof. The pre-processing stage in buildMixingTree executes k lg n iterations with constant cost per
iteration. By Theorem 5, the recursive procedure returns a tree with

∑k
i=1

∑lg(n)
j=0 LSB(pi, j) = O(k lg n)

leaf nodes, and by Theorem 3 this implies that there are O(k lg n) total nodes in the tree. Since there is
constant cost at each node, the overall complexity is O(k lg n).

4.3 Special Case: Mixing Two Substances

The minimal mixing tree admits a particularly compact representation when only two substances 〈s1, p1/n〉
and 〈s2, p2/n〉 are being mixed. Because the two target concentrations must sum to a power of two (in order
to be reachable with a 1-to-1 mixer), there is a special pattern in the bitwise representation of p1 and p2 (see
Figure 10). The least significant bits might be zero in both concentrations, but then some bit must be one
in each of them. The higher-order bits must be one in exactly one of the concentrations (to carry a value
upwards) and the most significant bit is zero (as we assume p1, p2 < n).

Algorithm twoWayMix, shown in Figure 12, exploits this pattern to directly execute the mix sequence
without building a mixing tree. The sequence of mixes is completely encoded in the binary representation
of either concentration. As illustrated by the example in Figure 11, the algorithm starts with a unit of S2
and then skips over all the low-order zero bits (these result from a fraction p1/n that is not in lowest terms).
When it gets to a high bit, it maintains a running mixture–requiring no temporary storage–in which either
S1 or S2 is added to the mix depending on the next most significant bit of p1. It can be shown that this
procedure is equivalent to building a mixing tree. However, it is attractive from hardware design standpoint
due to its simplicity and the fact that it directly performs a mixture based on the binary representation of the
desired concentration.

11



4.4 Supporting Error Tolerances

Thus far the presentation has been in terms of mixtures that can be obtained exactly with a 1-to-1 mixer,
i.e., those with target concentrations in the form of k/2d. However, the programmer should not be concerned
with the reachability of a given mixture. In the BioStream system, the programmer specifies a concentration
range [cmin, cmax] and the system ensures that the mixture produced will fall within the given range2. Such
error tolerances are already a natural aspect of scientific experiments, as all measuring equipment has a finite
precision that is carefully noted as part of the procedure.

Given a concentration range, the system increases the internal precision d until some concentration
k/2d (which can be obtained exactly) falls within the range. When performing a mixture with concentration
ranges {〈S1, [c1,min, c1,max]〉 . . . 〈Sk, [ck,min, ck,max]〉} the system needs to choose concrete concentrations
ci and a precision d that satisfies the following conditions:

1. ∀i : ∃ki s.t. ci = ki/2d

2. ∀i : ci,min ≤ ci ≤ ci,max

3.
∑

i ci = 1

The first condition guarantees that the mixture can be obtained using a 1-to-1 mixer. The second condi-
tion states that the concrete concentrations ci are within the range specified by the programmer. The third
condition ensures that the ci form a valid mixture, i.e., that they sum to one.

The BioStream system uses a simple greedy algorithm to choose ci and d satisfying these conditions. It
increases d until there exists a ci satisfying (1) and (2) for all i. If multiple candidates for a given ci exist, it
selects the smallest possible. Then it checks condition (3). If the sum exceeds one, it increases d and starts
over. If the sum is less than one, it increases by 1/2d some ci for which ci ≤ ci,max − 1/2d. If no such ci

exists, it increases d and starts over. Otherwise the algorithm continues until the conditions are satisfied.
One can imagine other selection schemes that select ci and d to optimize some criterion, such as the

number of mixes required by the resulting mixture. This would be straightforward to implement via an
exhaustive search at a given precision level, but it could be costly depending on the size of the error margins.
It will be a fruitful area of future research to optimize the selection of target concentrations while respecting
the error bounds.

4.5 Open Problems

We suggest three avenues for future research in mixing algorithms.
N-to-M mixing. It is simple to build a rotary mixer that combines fluids in a ratio other than 1-to-1; for

example, 1-to-2, 1-to-3, or even a ternary mixer such as 1-to-2-to-3. Judging by exhaustive experiments, it
appears that a 1-to-2 mixer can obtain any concentration k/3n. However, we are unaware of a closed form
for the mixtures that can be obtained with a general N-to-M mixer. Likewise, we consider it to be an open
problem to formulate an efficient algorithm for determining the minimal mix sequence using an N-to-M
mixer (i.e., one that does not resort to an exhaustive lookup table.) A solution to this problem could reduce
mixing time and reagent consumption while increasing precision.

Minimizing storage requirements. Given a mixing tree, it is straightforward to find an evaluation
order that minimizes the number of temporaries; one can apply the classical node labeling algorithm that
minimizes register usage for trees [25, p. 561]. However, we are unaware of an efficient algorithm for finding
the mixing tree that minimizes the number of temporaries needed to obtain a given mixture. This could be an
important optimization, as experiments often demand as many parallel samples as can be supported by the
architecture. Also, storage chambers on microfluidic chips are relatively limited and expensive compared to
storage on today’s computers.

2Alternately, BioStream supports a global error tolerance ε that applies to all concentrations.

12



Heterogeneous inputs. Our presentation treats each input sample as a black box. However, in practice,
the user is able to prepare large quantities of reagents as inputs to the chip. For an application that produces
an array of concentrations, what inputs should the user prepare to minimize the number of mixes required?
And if some inputs are related (e.g., a sample of 10% acid and 20% acid) how can that be incorporated into
the mixing algorithm? Like the previous items, these are interesting algorithmic questions that can have a
practical impact.

5 Related Work

Several researchers have pursued the goal of automating the control systems for microfluidic chips.
Gascoyne et al. describe a graphical user interface for controlling chips that manipulate droplets over a
two-dimensional grid [26]. By varying parameters in the interface, the software can target grids with vary-
ing dimensions, speeds, etc. However, portability is limited to grid-based droplet processors. While the
BioStream protocol language could target their chips, their software is not suitable for targeting ours.

Su et al. represent protocols as acyclic sequence graphs and map them to droplet-based processors using
automatic scheduling [27] and module placement [28]. While the sequence graph is portable, it lacks the
expressiveness of a programming language and cannot represent feedback loops (as in our recursive descent
example).

Livstone et al. compile an abstract SAT problem into a sequence of DNA-computing steps [5]. The
output of their system would be a good match for BioStream and the abstraction layers proposed in this
paper. King et al. demonstrate a “robot scientist” that directs laboratory experiments using a high-level
programming language [29], but lacks the abstraction layers needed to target other devices. Gu et al. have
controlled microfluidic chips using a programmable Braille display [30], though this approach also lacks
portability.

There are other microfluidic chips that support flexible gradient generation [31–33] and programmable
mixing on a droplet array [34]. To the best of our knowledge, our chips are the only ones that provide
arbitrary mixing of discrete samples in a soft lithography medium. A more detailed comparison of the
devices is published elsewhere [19].

Fair et al. also suggest a mixing algorithm for diluting a single reagent by a given factor [35]. It seems
that their algorithm performs a binary search for the target concentration, progressively approximating the
target by a factor of two. However, since intermediate reagents must be regenerated in the search, this
algorithm requires O(n) mixes to obtain a concentration k/n. In contrast, our algorithm needs O(lg n) to
mix two fluids.

6 Conclusions

Microfluidic devices are an exciting substrate for biological computing because they allow precise and
automatic control of the underlying biological protocols. However, as the complexity of microfluidic hard-
ware comes to rival that of silicon-based computers, it will be critical to develop effective abstraction layers
that decouple application development from low-level hardware details.

This paper presents two new abstraction layers for microfluidic biocomputers: the BioStream proto-
col language and the Fluidic ISA. Protocols expressed in BioStream are portable across all devices im-
plementing a given Fluidic ISA. We demonstrate this portability by building two fundamentally different
microfluidic devices that support execution of the same BioStream code. We also present a new and optimal
algorithm for obtaining a given concentration of fluids using a simple on-chip mixing device. This algorithm
is essential for efficiently supporting the mix abstraction in the BioStream language.

It remains an interesting area of future work to leverage DNA computing technology to target the
BioStream language from a high-level description of the computation. This will create an end-to-end plat-
form for biological computing that is seamlessly portable across future generations of microfluidic chips.

13



7 Acknowledgements

We are grateful to David Wentzlaff and Mats Cooper for early contributions to this research. We also
thank John Albeck for helpful discussions about experimental protocols. This work was partially supported
by National Science Foundation grant #CNS-0305453. J.P.U. was funded in part by the National Science
and Engineering Research Council of Canada (PGSM Scholarship).

References
[1] R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, and L. Adleman. Solution of a 20-variable 3-SAT problem on a DNA computer.

Science, 296, 2002.
[2] J. Farfel and D. Stefanovic. Towards practical biomolecular computers using microfluidic deoxyribozyme logic gate networks. In DNA 11,

2005.
[3] A. Gehani and J. Reif. Micro flow bio-molecular computation. Biosystems, 52, 1999.
[4] W. H. Grover and R. A. Mathies. An integrated microfluidic processor for single nucleotide polymorphism-based DNA computing. Lab on a

Chip, 5, 2005.
[5] M. S. Livstone, R. Weiss, and L. F. Landweber. Automated design and programming of a microfluidic DNA computer. Natural Computing,

2006.
[6] J. S. McCaskill. Optically programming DNA computing in microflow reactors. BioSystems, 59, 2001.
[7] K. Somei, S. Kaneda, T. Fujii, and S. Murata. A microfluidic device for DNA tile self-assembly. In DNA 11, 2005.
[8] D. van Noort. A programmable molecular computer in microreactors. In DNA 11, 2005.
[9] D. van Noort, F.-U. Gast, and J. S. McCaskill. DNA computing in microreactors. In DNA 8, 2002.

[10] D. van Noort and B.-T. Zhang. PDMS valves in DNA computers. In SPIE International Symposium on Smart Materials, Nano-, and Micro-
Smart Systems, 2004.

[11] D. N. Breslauer, P. J. Lee, and L. P. Lee. Microfluidics-based systems biology. Molecular BioSystems, 2, 2006.
[12] D. Erickson and D. Li. Integrated microfluidic devices. Analytica Chimica Acta, 507, 2004.
[13] S. K. Sia and G. M. Whitesides. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis, 24, 2003.
[14] T. Thorsen, S. Maerkl, and S. Quake. Microfluidic large scale integration. Science, 298, 2002.
[15] J. W. Hong and S. R. Quake. Integrated nanoliter systems. Nature BioTechnology, 21(10), 2003.
[16] W. Thies, J. P. Urbanski, T. Thorsen, and S. Amarasinghe. Abstraction layers for scalable microfluidic biocomputers. In DNA 12, 2006.
[17] H. Ellerby, S. Martin, L. Ellerby, S. Naiem, S. Rabizadeh, G. Salvesen, C. Casiano, N. Cashman, D. Green, and D. Bredesen. Establishment

of a cell-free system of neuronal apoptosis: Comparison of premitochondrial, mitochondrial, and postmitochondrial phases. Neuroscience,
17, 1997.

[18] L. Allan, N. Morrice, S. Brady, G. Magee, S. Pathak, and P. Clarke. Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK
MAPK. Nature Cell Biology, 5, 2003.

[19] J. P. Urbanski, W. Thies, C. Rhodes, S. Amarasinghe, and T. Thorsen. Digital microfluidics using soft lithography. Lab on a Chip, 6, 2006.
[20] H. Chou, M. Unger, and S. Quake. A microfabricated rotary pump. Biomedical Microdevices, 3, 2001.
[21] D. Faulhammer, A. R. Cukras, R. J. Lipton, and L. F. Landweber. Molecular computation: RNA solutions to chess problems. PNAS, 97(4),

2000.
[22] Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libchaber. DNA solution of the maximal clique problem. Science, 278, 1997.
[23] M. Yamamoto, N. Matsuura, T. Shiba, Y. Kawazoe, and A. Ohuchi. Solutions of shortest path problems by concentration control. In DNA 7,

2002.
[24] P. Paik, V. Pamula, and R. Fair. Rapid droplet mixers for digitial microfluidic systems. Lab on a Chip, 3, 2003.
[25] R. S. Alfred V. Aho and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-Wesley Publishing Company, second edition,

1988.
[26] P. R. C. Gascoyne, J. V. Vykoukal, J. A. Schwartz, T. J. Anderson, D. M. Vykoukal, K. W. Current, C. McConaghy, F. F. Becker, and

C. Andrews. Dielectrophoresis-based programmable fluidic processors. Lab on a Chip, 4, 2004.
[27] F. Su and K. Chakrabarty. Architectural-level synthesis of digital microfluidics-based biochips. In ICCAD, 2004.
[28] F. Su and K. Chakrabarty. Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips. In DAC, 2005.
[29] R. D. King, K. E. Whelan, F. M. Jones, P. G. K. Reiser, C. H. Bryant, S. H. Muggleton, D. B. Kell, and S. G. Oliver. Functional genomic

hypothesis generation and experimentation by a robot scientist. Nature, 427, 2004.
[30] W. Gu, X. Zhu, N. Futai, B. S. Cho, and S. Takayama. Computerized microfluidic cell culture using elastomeric channels and Braille displays.

PNAS, 101(45), 2004.
[31] S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides. Generation of gradients having complex shapes using microfluidic networks.

Anal. Chem., 73, 2001.
[32] C. Neils, Z. Tyree, B. Finlayson, and A. Folch. Combinatorial mixing of microfluidic streams. Lab on a Chip, 4, 2004.
[33] F. Lin, W. Saadi, S. W. Rhee, S.-J. Wang, S. Mittalb, and N. L. Jeon. Generation of dynamic temporal and spatial concentration gradients

using microfluidic devices. Lab on a Chip, 4, 2004.
[34] M. Pollack, R. Fair, and A. Shenderov. Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied Physics

Letters, 77(11), 2000.
[35] H. Ren, V. Srinivasan, and R. Fair. Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip

chemical dilution. Transducers, 2003.

14




