
The Looming Software Crisis
due to the Multicore Menace

Saman Amarasinghe
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

2

The “Software Crisis”

“To put it quite bluntly: as long as there were no
machines, programming was no problem at all;
when we had a few weak computers,
programming became a mild problem, and now
we have gigantic computers, programming has
become an equally gigantic problem."

-- E. Dijkstra, 1972 Turing Award Lecture

3

• Time Frame: ’60s and ’70s

• Problem: Assembly Language Programming
– Computers could handle larger more complex programs

• Needed to get Abstraction and Portability without losing
Performance

The First Software Crisis

4

• High-level languages for von-Neumann machines
– FORTRAN and C

• Provided “common machine language” for uniprocessors
– Only the common properties are exposed
– Hidden properties are backed-up by good compiler technology

How Did We Solve the
First Software Crisis?

Single memory image

Single flow of control

Common Properties

ISA

Functional Units

Register File

Differences:
Register Allocation

Instruction Selection
Instruction Scheduling

5

The Second Software Crisis

• Time Frame: ’80s and ’90s

• Problem: Inability to build and maintain complex and
robust applications requiring multi-million lines of code
developed by hundreds of programmers
– Computers could handle larger more complex programs

• Needed to get Composability, Malleability
and Maintainability
– High-performance was not an issue left to Moore’s Law

6

How Did We Solve the
Second Software Crisis?

• Object Oriented Programming
– C++
– Now C# and Java

• Better tools
– Component libraries, Purify

• Better software engineering methodology
– Design patterns, specification,

testing, code reviews

7

Today: Programmers are
Oblivious about the Processors

• Solid boundary between Hardware and Software

• Programmers don’t have to know anything about the processor
– High level languages abstract away the processors

– Ex: Java bytecode is machine independent
– Moore’s law does not require the programmers to know anything about

the processors to get good speedups

• Programs are oblivious to the processor works on all processors
– A program written in ’70 using C still works and is much faster today

• This abstraction provides a lot of freedom for the programmers

8

The Origins of a Third Crisis

• Time Frame: 2010 to ??

• Problem: Sequential performance is left behind by
Moore’s law
– All software developers have abstracted away the processor

assuming that Moore’s law will always provide performance
gains!

9

1

10

100

1000

10000

100000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Pe
rfo

rm
an

ce
 (v

s.
 V

A
X-

11
/7

80
)

25%/year

52%/year

??%/year

8086

286

386

486

Pentium
P2

P3
P4

Itanium
Itanium 2

The March to Multicore:
Moore’s Law

From David Patterson

1,000,000,000

100,000

10,000

1,000,000

10,000,000

100,000,000

From Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, 4th edition, 2006

N
um

ber of Transistors

10

8086

286

386

486

Pentium
P2

P3
P4

Itanium
Itanium 2

1

10

100

1000

10000

100000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

P
er

fo
rm

an
ce

 (v
s.

 V
A

X-
11

/7
80

)

25%/year

52%/year

The March to Multicore:
Uniprocessor Performance (SPECint)

From David Patterson

1,000,000,000

100,000

10,000

1,000,000

10,000,000

100,000,000

From Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, 4th edition, 2006

N
um

ber of Transistors

11

8086

286

386

486

Pentium
P2

P3
P4

Itanium
Itanium 2

1

10

100

1000

10000

100000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Pe
rfo

rm
an

ce
 (v

s.
 V

A
X-

11
/7

80
)

25%/year

52%/year

??%/year

The March to Multicore:
Uniprocessor Performance (SPECint)

• General-purpose unicores have stopped historic performance scaling
– Power consumption
– Wire delays
– DRAM access latency
– Diminishing returns of more instruction-level parallelism

From David Patterson

1,000,000,000

100,000

10,000

1,000,000

10,000,000

100,000,000

From Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, 4th edition, 2006

N
um

ber of Transistors

12

How to program
multicores?

1985 199019801970 1975 1995 2000 2005

Raw

Power4
Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Broadcom 1480

20??

of
cores

1

2

4

8

16

32

64

128
256

512

Opteron 4P
Xeon MP

Ambric
AM2045

The Origins of a Third Crisis

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2Athlon

A Program written in the 70’s not only works today…
but also runs faster (tracking Moore’s law)

13

The Origins of a Third Crisis

• Time Frame: 2010 to ??

• Problem: Sequential performance is left behind by Moore’s law

• Needed continuous and reasonable performance improvements
– to support new features
– to support larger datasets

• While sustaining portability, malleability and maintainability
without unduly increasing complexity faced by the programmer

critical to keep-up with the current rate of evolution in software

14

Why Parallelism is Hard

• A huge increase in complexity and work for the programmer
– Programmer has to think about performance!
– Parallelism has to be designed in at every level

• Humans are sequential beings
– Deconstructing problems into parallel tasks is hard for many of us

• Parallelism is not easy to implement
– Parallelism cannot be abstracted or layered away
– Code and data has to be restructured in very different (non-intuitive) ways

• Parallel programs are very hard to debug
– Combinatorial explosion of possible execution orderings
– Race condition and deadlock bugs are non-deterministic and illusive
– Non-deterministic bugs go away in lab environment and with

instrumentation

15

Outline: Ideas on Solving
the Third Software Crisis

1. Advances in Computer Architecture

2. Novel Programming Models and Languages

3. Aggressive Compilers

4. Tools to support parallelization, debugging and migration

16

Computer Architecture

• Current generation of multicores
– How can we cobble together something with existing

parts/investments?
– Impact of multicores haven’t hit us yet

• The move to multicore will be a disruptive shift
– An inversion of the cost model
– A forced shift in the programming model

• A chance to redesign the microprocessor from scratch.

• What are the innovations that will reduce/eliminate the
extra burden placed on the programmer?

17

Novel Opportunities in Multicores

• Don’t have to contend with uniprocessors
• Not your same old multiprocessor problem

– How does going from Multiprocessors to Multicores impact
programs?

– What changed?
– Where is the Impact?

– Communication Bandwidth
– Communication Latency

18

Communication Bandwidth

• How much data can be communicated
between two cores?

• What changed?
– Number of Wires
– Clock rate
– Multiplexing

• Impact on programming model?
– Massive data exchange is possible
– Data movement is not the bottleneck

processor affinity not that important

32 Giga bits/sec ~300 Tera bits/sec

10,000X

19

Communication Latency

• How long does it take for a round trip
communication?

• What changed?
– Length of wire
– Pipeline stages

• Impact on programming model?
– Ultra-fast synchronization
– Can run real-time apps

on multiple cores

50X

~200 Cycles ~4 cycles

Architectural Innovations

The Raw Experience

Supported by a CISE
Experimental Partnership

The MIT Raw Processor
• Raw project started in 1997

Prototype operational in 2003
• The Problem: How to keep the

Moore’s Law going with
– Increasing processor complexity
– Longer wire delays
– Higher power consumption

• Raw philosophy
– Build a tightly integrated multicore
– Off-load most functions to

compilers and software
• Raw design

– 16 single issue cores
– 4 register-mapped networks
– Huge IO bandwidth

• Raw power
– 16 Flops/ops per cycle
– 16 Memory Accesses per cycle
– 208 Operand Routes per cycle
– 12 IO Operations per cycle

180 nm ASIC (IBM SA-27E)
18.2mm x 18.2mm
~100 million transistors
Designed for 225 MHz
Tested at 425 MHz

Raw’s networks are tightly
coupled into the bypass paths

IF RFD

A TL

M1 M2

F P

E

U

TV

F4 WB

r26

r27

r25

r24

Network
Input
FIFOs

r26

r27

r25

r24

Network
Output
FIFOs

Ex: lb r25, 0x341(r26)

fmul r24, r3, r4

software
controlled
crossbar

software
controlled
crossbar

fadd r5, r3, r24

route P->E route W->P

Raw Networks is Rarely the Bottleneck

• Raw has 4 bidirectional,
point-to-point mesh networks
– Two of them statically routed
– Two of the dynamically routed

• A single issue core may read
from or write to one network in
a given cycle

• The cores cannot saturate the
network!

(225 Gb/s @ 225 Mhz)

MIPS-Style
Pipeline

8 32-bit
buses

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BitonicSort FFT DCT DES TDE Serpent

ave. bandwidth utilization

ave. instruction utilization

24

Outline: Ideas on Solving
the Third Software Crisis

1. Advances in Computer Architecture

2. Novel Programming Models and Languages

3. Aggressive Compilers

4. Tools to support parallelization, debugging and migration

25

Programming Models and
Languages

• Critical to solving the third software crisis

• Novel languages were the central solution in the
last two crises

26

Lessons from the Last Crisis:
The OO Revolution

• Object Oriented revolution did not come out of a vacuum

• Hundreds of small experimental languages

• Rely on lessons learned from lesser-known languages
– C++ grew out of C, Simula, and other languages
– Java grew out of C++, Eiffel, SmallTalk, Objective C, and Cedar/Mesa1

• Depend on results from research community

J. Gosling, H. McGilton, The Java Language Enviornment1

27

Object Oriented Languages

• Ada 95
• BETA
• Boo
• C++
• C#
• ColdFusion
• Common Lisp
• COOL (Object

Oriented COBOL)
• CorbaScript
• Clarion
• Corn
• D
• Dylan
• Eiffel
• F-Script
• Fortran 2003
• Gambas
• Graphtalk
• IDLscript
• incr Tcl
• J
• JADE

• Java
• Lasso
• Lava
• Lexico
• Lingo
• Modula-2
• Modula-3
• Moto
• Nemerle
• Nuva
• NetRexx
• Nuva
• Oberon (Oberon-1)
• Object REXX
• Objective-C
• Objective Caml
• Object Pascal (Delphi)
• Oz
• Perl 5
• PHP
• Pliant
• PRM
• PowerBuilder

• ABCL
• Python
• REALbasic
• Revolution
• Ruby
• Scala
• Simula
• Smalltalk
• Self
• Squeak
• Squirrel
• STOOP (Tcl

extension)
• Superx++
• TADS
• Ubercode
• Visual Basic
• Visual FoxPro
• Visual Prolog
• Tcl
• ZZT-oop

Source: Wikipedia

28

Language Evolution
From FORTRAN to a few present day languages

Source: Eric Levenez

29

Origins of C++

Source: B. Stroustrup, The Design and Evolution of C++

1960

1970

1980

1990

Structural influence
Feature influence

Fortran
Algol 60

CPL

BCPL

C

ANSI C

Simula 67

C with Classes

C++

C++arm

C++std

ML CluAlgol 68

Ada

30

Academic Influence on C++

“Exceptions were considered in the original design of C++, but
were postponed because there wasn't time to do a thorough job of
exploring the design and implementation issues.

In retrospect, the greatest influence on the C++ exception
handling design was the work on fault-tolerant systems started at the
University of Newcastle in England by Brian Randell and his colleagues
and continued in many places since.”

-- B. Stroustrup, A History of C++

…

31

Origins of Java
• Java grew out of C++, Eiffel, SmallTalk, Objective C, and Cedar/Mesa
• Example lessons learned:

– Stumbling blocks of C++ removed (multiple inheritance, preprocessing, operator
overloading, automatic coercion, etc.)

– Pointers removed based on studies of bug injection
– GOTO removed based on studies of usage patterns
– Objects based on Eiffel, SmallTalk
– Java interfaces based on Objective C protocols
– Synchronization follows monitor and condition variable paradigm (introduced by Hoare,

implemented in Cedar/Mesa)
– Bytecode approach validated as early as UCSD P-System (‘70s)

Lesser-known precursors essential to Java’s success

Source: J. Gosling, H. McGilton, The Java Language Enviornment

32

Why New Programming Models
and Languages?

• Paradigm shift in architecture
– From sequential to multicore
– Need a new “common machine language”

• New application domains
– Streaming
– Scripting
– Event-driven (real-time)

• New hardware features
– Transactions
– Introspection
– Scalar Operand Networks or Core-to-core DMA

• New customers
– Mobile devices
– The average programmer!

• Can we achieve parallelism without burdening the programmer?

33

Domain Specific Languages

• There is no single programming domain!
– Many programs don’t fit the OO model (ex: scripting and streaming)

• Need to identify new programming models/domains
– Develop domain specific end-to-end systems
– Develop languages, tools, applications ⇒ a body of knowledge

• Stitching multiple domains together is a hard problem
– A central concept in one domain may not exist in another

– Shared memory is critical for transactions, but not available in streaming
– Need conceptually simple and formally rigorous interfaces
– Need integrated tools
– But critical for many DOD and other applications

34

• Two choices:
• Bend over backwards to support

old languages like C/C++
• Develop parallel architectures

that are hard to program

Programming Languages
and Architectures

Modern
architecture

C von-Neumann
machine

Compiler-Aware
Language Design

The StreamIt Experience

Speaker

FMDemod

LPF1

Scatter

Gather

LPF2 LPF3

Supported by ITR
and NGS Awards

programmability

domain specific
optimizations

enable parallel
execution

simple and effective optimizations for
domain specific abstractions

boost productivity, enable faster development
and rapid prototyping

Is there a win-win situation?

• Some programming models are inherently concurrent
– Coding them using a sequential language is…

• Harder than using the right parallel abstraction
• All information on inherent parallelism is lost

• There are win-win situations
– Increasing the programmer productivity while extracting parallel performance

target tiled architectures, clusters, DSPs,
multicores, graphics processors, …

• Applications
– DES and Serpent [PLDI 05]
– MPEG-2 [IPDPS 06]
– SAR, DSP benchmarks, JPEG, …

• Programmability
– StreamIt Language (CC 02)
– Teleport Messaging (PPOPP 05)
– Programming Environment in Eclipse (P-PHEC 05)

• Domain Specific Optimizations
– Linear Analysis and Optimization (PLDI 03)
– Optimizations for bit streaming (PLDI 05)
– Linear State Space Analysis (CASES 05)

• Architecture Specific Optimizations
– Compiling for Communication-Exposed

Architectures (ASPLOS 02)
– Phased Scheduling (LCTES 03)
– Cache Aware Optimization (LCTES 05)
– Load-Balanced Rendering

(Graphics Hardware 05)
– Task, Data and Pipeline Parallelism (ASPLOS 06)

StreamIt Program

Front-end

Stream-Aware
Optimizations

Uniprocessor
backend

Cluster
backend

Raw
backend

IBM X10
backend

C/C++ C per tile +
msg code

Streaming
X10 runtime

Annotated Java

MPI-like
C/C++

Simulator
(Java Library)

The StreamIt Project

Picture Reorder

joiner

joiner

IDCT

IQuantization

splitter

splitter

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Channel Upsample Channel Upsample

Motion Vector Decode

Y Cb Cr

quantization coefficients

picture type

<QC>

<QC>

reference
picture

Motion Compensation

<PT1> reference
picture

Motion Compensation

<PT1>reference
picture

Motion Compensation

<PT1>

<PT2>

Repeat

Color Space Conversion

<PT1, PT2>

add VLD(QC, PT1, PT2);

add splitjoin {

split roundrobin(N∗B, V);

add pipeline {
add ZigZag(B);
add IQuantization(B) to QC;
add IDCT(B);
add Saturation(B);

}
add pipeline {

add MotionVectorDecode();
add Repeat(V, N);

}

join roundrobin(B, V);
}

add splitjoin {
split roundrobin(4∗(B+V), B+V, B+V);

add MotionCompensation(4∗(B+V)) to PT1;
for (int i = 0; i < 2; i++) {

add pipeline {
add MotionCompensation(B+V) to PT1;
add ChannelUpsample(B);

}
}

join roundrobin(1, 1, 1);
}

add PictureReorder(3∗W∗H) to PT2;

add ColorSpaceConversion(3∗W∗H);

MPEG bit stream

Streaming Application Abstraction

• Structured block level diagram
describes computation and flow
of data

• Conceptually easy to understand
– Clean abstraction of functionality

• Mapping to C (sequentialization)
destroys this simple view

MPEG-2 Decoder

StreamIt Improves Productivity

output to player

Picture Reorder

joiner

joiner

IDCT

IQuantization

splitter

splitter

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Channel Upsample Channel Upsample

Motion Vector Decode

Y Cb Cr

quantization coefficients

picture type

<QC>

<QC>

reference
picture

Motion Compensation

<PT1> reference
picture

Motion Compensation

<PT1>reference
picture

Motion Compensation

<PT1>

<PT2>

Repeat

Color Space Conversion

<PT1, PT2>

add VLD(QC, PT1, PT2);

add splitjoin {
split roundrobin(N∗B, V);

add pipeline {
add ZigZag(B);
add IQuantization(B) to QC;
add IDCT(B);
add Saturation(B);

}
add pipeline {

add MotionVectorDecode();
add Repeat(V, N);

}

join roundrobin(B, V);
}

add splitjoin {
split roundrobin(4∗(B+V), B+V, B+V);

add MotionCompensation(4∗(B+V)) to PT1;
for (int i = 0; i < 2; i++) {

add pipeline {
add MotionCompensation(B+V) to PT1;
add ChannelUpsample(B);

}
}

join roundrobin(1, 1, 1);
}

add PictureReorder(3∗W∗H) to PT2;

add ColorSpaceConversion(3∗W∗H);

MPEG bit stream

Picture Reorder

joiner

joiner

IDCT

IQuantization

splitter

splitter

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Channel Upsample Channel Upsample

Motion Vector Decode

Y Cb Cr

quantization coefficients

picture type

<QC>

<QC>

reference
picture

Motion Compensation

<PT1> reference
picture

Motion Compensation

<PT1>reference
picture

Motion Compensation

<PT1>

<PT2>

Repeat

Color Space Conversion

<PT1, PT2>

add VLD(QC, PT1, PT2);

add splitjoin {

split roundrobin(N∗B, V);

add pipeline {
add ZigZag(B);
add IQuantization(B) to QC;
add IDCT(B);
add Saturation(B);

}
add pipeline {

add MotionVectorDecode();
add Repeat(V, N);

}

join roundrobin(B, V);
}

add splitjoin {
split roundrobin(4∗(B+V), B+V, B+V);

add MotionCompensation(4∗(B+V)) to PT1;
for (int i = 0; i < 2; i++) {

add pipeline {
add MotionCompensation(B+V) to PT1;
add ChannelUpsample(B);

}
}

join roundrobin(1, 1, 1);
}

add PictureReorder(3∗W∗H) to PT2;

add ColorSpaceConversion(3∗W∗H);

MPEG bit stream

StreamIt Compiler
Extracts Parallelism

• Task Parallelism
– Thread (fork/join) parallelism
– Parallelism explicit in algorithm
– Between filters without

producer/consumer relationship

• Data Parallelism
– Data parallel loop (forall)
– Between iterations of a stateless filter
– Can’t parallelize filters with state

• Pipeline Parallelism
– Usually exploited in hardware
– Between producers and consumers
– Stateful filters can be parallelized

MPEG-2 Decoder

StreamIt Compiler
Parallelism Processor Resources

• StreamIt Compilers Finds the Inherent Parallelism
– Graph structure is architecture independent
– Abundance of parallelism in the StreamIt domain

• Too much parallelism is as bad as too little parallelism
– (remember dataflow!)

• Map the parallelism in to the available resources in a given multicore
– Use all available parallelism
– Maximize load-balance
– Minimize communication

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Voc
od

er FFT

FMRad
io

TDE

Bito
nic

Sort
MPEG2D

ec
od

er
Cha

nn
elV

oc
od

er

DES

DCT

Filte
rba

nk

Serp
en

t

Rad
ar

Geo
metr

ic
Mea

n

Benchmarks

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 S
in

gl
e

C
or

e
St

re
am

It
 .

StreamIt Performance on Raw

43

Outline: Ideas on Solving
the Third Software Crisis

1. Advances in Computer Architecture

2. Novel Programming Models and Languages

3. Aggressive Compilers

4. Tools to support parallelization, debugging and migration

44

Compilers

• Compilers are critical in reducing the burden on
programmers
– Identification of data parallel loops can be easily automated, but

many current systems (Brook, PeakStream) require the
programmer to do it.

• Need to revive the push for automatic parallelization
– Best case: totally automated parallelization hidden from the user
– Worst case: simplify the task of the programmer

Parallelizing Compilers

The SUIF Experience

The SUIF Parallelizing Compiler

• The SUIF Project at Stanford in the ’90
– Mainly FORTRAN
– Aggressive transformations to undo “human optimizations”
– Interprocedural analysis framework
– Scalar and array data-flow, reduction recognition and a host of

other analyses and transformations

• SUIF compiler had the Best SPEC results by automatic
parallelization

SPECFP92 performance

• Vector processor Cray C90 540
• Uniprocessor Digital 21164 508
• SUIF on 8 processors Digital 8400 1,016

sp
ic

e
2

g
6

d
o

d
u

c

f p
p

p
p

o
ra

m
d

lj d
p

2

w
a

ve
5

m
d

lj s
p

2

a
lv

in
n

n
a

s a
7

e
a

r

h
yd

ro
2

d

su
2

co
r

to
m

ca
tv

s w
m

2
5

6

0

200

400

600

800

1000

1200

M
F

L
O

P
S

N
u

m
b

e
r

o
f

P
r o

c
e

s
s

o
r s

1

2

3

4

5

6

7

8

Automatic Parallelization
“Almost” Worked

• Why did not this reach mainstream?
– The compilers were not robust
– Clients were impossible (performance at any cost)
– Multiprocessor communication was expensive
– Had to compete with improvements in sequential performance
– The Dogfooding problem

• Today: Programs are even harder to analyze
– Complex data structures
– Complex control flow
– Complex build process
– Aliasing problem (type unsafe languages)

49

Outline: Ideas on Solving
the Third Software Crisis

1. Advances in Computer Architecture

2. Novel Programming Models and Languages

3. Aggressive Compilers

4. Tools to support parallelization, debugging and migration

50

Tools

• A lot of progress in tools to improve programmer
productivity

• Need tools to
– Identify parallelism
– Debug parallel code
– Update and maintain parallel code
– Stitch multiple domains together

• Need an “Eclipse platform for multicores”

51

Migrating the Dusty Deck

• Impossible to bring them to the new era automatically
– Badly mangled, hand-optimized, impossible to analyze code
– Automatic compilation, even with a heroic effort, cannot do anything

• Help rewrite the huge stack of dusty deck
– Application in use
– Source code available
– Programmer long gone

• Getting the new program to have the same behavior is hard
– “Word pagination problem”

• Can take advantage of many recent advances
– Creating test cases
– Extracting invariants
– Failure oblivious computing

52

Facilitate Evaluation and
Feedback for Rapid Evolution

Language/Compiler/Tools
Idea

Implementation

Evaluation

Evaluation

Develop a
Program

Functional
Debugging

Performance
DebuggingEvaluate

53

Rapid Evaluation

• Extremely hard to get
– Real users have no interest in flaky tools
– Hard to quantify
– Superficial users vs. Deep users will give different feedback

– Fatal flaws as well as amazing uses may not come out immediately

• Need a huge, sophisticated (and expensive) infrastructure
– How to get a lot of application experts to use the system?
– How do you get them to become an expert?
– How do you get them to use it for a long time?
– How do you scientifically evaluate?
– How go you get actionable feedback?

• A “Center for Evaluating Multicore Programming Environments”??

54

Build and Mobilize
the Community

• Bring the High Performance Languages/Compilers/Tools folks out of the
woodwork!
– Then: A few customers with the goal of performance at any cost.
– Then: Had to compete with Moore’s law
– Now: Reasonable performance improvements for the masses

• Bring the folks who won the second crisis
– Then: the focus is improving programmer productivity
– Now: how to maintain performance in a multicore world
– Now: If not solved, all the productivity gains will be lost!

• Get architects to listen to language/compiler people
– Then: We don’t need you, we can do everything in hardware
– Then: Or here is a cool hardware feature, you figure out how to use it.
– Now: Superscalars crashed and burned; cannot keep the status quo!
– Now: Need to create a useable programming model

55

Conclusions
• Programming language research is a critical long-term investment

– In the 1950s, the early background for the Simula language was funded by
the Norwegian Defense Research Establishment

– In 2002, the designers received the ACM Turing Award “for ideas
fundamental to the emergence of object oriented programming.”

• Compilers and Tools are also essential components

• Computer Architecture is at a cross roads
– Once in a lifetime opportunity to redesign from scratch
– How to use the Moore’s law gains to improve the programmability?

• Switching to multicores without losing the gains in programmer
productivity may be the Grandest of the Grand Challenges
– Half a century of work ⇒ still no winning solution
– Will affect everyone!

• Need a Grand Partnership between the Government, Industry and
Academia to solve this crisis!

