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The “Software Crisis”

“To put it quite bluntly: as long as there were no 
machines, programming was no problem at all; 
when we had a few weak computers, 
programming became a mild problem, and now 
we have gigantic computers, programming has 
become an equally gigantic problem."

-- E. Dijkstra, 1972 Turing Award Lecture
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• Time Frame: ’60s and ’70s

• Problem:  Assembly Language Programming
– Computers could handle larger more complex programs

• Needed to get Abstraction and Portability without losing 
Performance

The First Software Crisis
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• High-level languages for von-Neumann machines
– FORTRAN and C

• Provided “common machine language” for uniprocessors
– Only the common properties are exposed
– Hidden properties are backed-up by good compiler technology 

How Did We Solve the 
First Software Crisis?

Single memory image

Single flow of control

Common Properties

ISA

Functional Units

Register File

Differences:
Register Allocation

Instruction Selection
Instruction Scheduling
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The Second Software Crisis

• Time Frame: ’80s and ’90s

• Problem:  Inability to build and maintain complex and 
robust applications requiring multi-million lines of code 
developed by hundreds of programmers
– Computers could handle larger more complex programs

• Needed to get Composability, Malleability 
and Maintainability
– High-performance was not an issue left to Moore’s Law 
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How Did We Solve the 
Second Software Crisis?

• Object Oriented Programming
– C++ 
– Now C# and Java

• Better tools
– Component libraries, Purify 

• Better software engineering methodology 
– Design patterns, specification, 

testing, code reviews
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Today: Programmers are 
Oblivious about the Processors

• Solid boundary between Hardware and Software

• Programmers don’t have to know anything about the processor
– High level languages abstract away the processors

– Ex: Java bytecode is machine independent 
– Moore’s law does not require the programmers to know anything about 

the processors to get good speedups

• Programs are oblivious to the processor works on all processors
– A program written in ’70 using C still works and is much faster today

• This abstraction provides a lot of freedom for the programmers
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The Origins of a Third Crisis

• Time Frame: 2010 to ??

• Problem:  Sequential performance is left behind by 
Moore’s law
– All software developers have abstracted away the processor 

assuming that Moore’s law will always provide performance 
gains!
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How to program
multicores?
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The Origins of a Third Crisis

• Time Frame: 2010 to ??

• Problem:  Sequential performance is left behind by Moore’s law

• Needed continuous and reasonable performance improvements 
– to support new features
– to support larger datasets

• While sustaining portability, malleability and maintainability 
without unduly increasing complexity faced by the programmer

critical to keep-up with the current rate of evolution in software
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Why Parallelism is Hard

• A huge increase in complexity and work for the programmer
– Programmer has to think about performance! 
– Parallelism has to be designed in at every level

• Humans are sequential beings 
– Deconstructing problems into parallel tasks is hard for many of us

• Parallelism is not easy to implement
– Parallelism cannot be abstracted or layered away
– Code and data has to be restructured in very different (non-intuitive) ways

• Parallel programs are very hard to debug
– Combinatorial explosion of possible execution orderings 
– Race condition and deadlock bugs are non-deterministic and illusive 
– Non-deterministic bugs go away in lab environment and with 

instrumentation
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Outline: Ideas on Solving
the Third Software Crisis

1. Advances in Computer Architecture

2. Novel Programming Models and Languages

3. Aggressive Compilers

4. Tools to support parallelization, debugging and migration   
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Computer Architecture

• Current generation of multicores
– How can we cobble together something with existing 

parts/investments? 
– Impact of multicores haven’t hit us yet

• The move to multicore will be a disruptive shift 
– An inversion of the cost model 
– A forced shift in the programming model

• A chance to redesign the microprocessor from scratch. 

• What are the innovations that will reduce/eliminate the 
extra burden placed on the programmer?
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Novel Opportunities in Multicores

• Don’t have to contend with uniprocessors
• Not your same old multiprocessor problem

– How does going from Multiprocessors to Multicores impact 
programs?

– What changed?
– Where is the Impact?

– Communication Bandwidth
– Communication Latency
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Communication Bandwidth

• How much data can be communicated 
between two cores?

• What changed?
– Number of Wires
– Clock rate
– Multiplexing 

• Impact on programming model?
– Massive data exchange is possible
– Data movement is not the bottleneck 

processor affinity not that important

32 Giga bits/sec ~300 Tera bits/sec

10,000X
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Communication Latency

• How long does it take for a round trip 
communication?

• What changed?
– Length of wire
– Pipeline stages

• Impact on programming model?
– Ultra-fast synchronization
– Can run real-time apps 

on multiple cores 

50X

~200 Cycles ~4 cycles



Architectural Innovations 

The Raw Experience

Supported by a CISE 
Experimental Partnership



The MIT Raw Processor
• Raw  project  started  in 1997

Prototype operational in 2003
• The Problem: How to keep the 

Moore’s Law going with
– Increasing processor complexity
– Longer wire delays
– Higher power consumption

• Raw philosophy 
– Build a tightly integrated multicore
– Off-load most functions to 

compilers and software
• Raw design

– 16 single issue cores
– 4 register-mapped networks
– Huge IO bandwidth

• Raw power
– 16 Flops/ops per cycle
– 16 Memory Accesses per cycle
– 208 Operand Routes per cycle
– 12 IO Operations per cycle

180 nm ASIC (IBM SA-27E)
18.2mm x 18.2mm
~100 million transistors
Designed for 225 MHz
Tested at     425 MHz



Raw’s networks are tightly 
coupled into the bypass paths
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Raw Networks is Rarely the Bottleneck

• Raw has 4 bidirectional, 
point-to-point mesh networks
– Two of them statically routed
– Two of the dynamically routed

• A single issue core may read 
from or write to one network in 
a given cycle

• The cores cannot saturate the 
network! 

(225 Gb/s @ 225 Mhz)
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Outline: Ideas on Solving
the Third Software Crisis

1. Advances in Computer Architecture

2. Novel Programming Models and Languages

3. Aggressive Compilers

4. Tools to support parallelization, debugging and migration   



25

Programming Models and 
Languages

• Critical to solving the third software crisis

• Novel languages were the central solution in the 
last two crises  
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Lessons from the Last Crisis:
The OO Revolution

• Object Oriented revolution did not come out of a vacuum

• Hundreds of small experimental languages 

• Rely on lessons learned from lesser-known languages
– C++ grew out of C, Simula, and other languages
– Java grew out of C++, Eiffel, SmallTalk, Objective C, and Cedar/Mesa1

• Depend on results from research community

J. Gosling, H. McGilton, The Java Language Enviornment1
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Object Oriented Languages

• Ada 95
• BETA
• Boo
• C++
• C#
• ColdFusion
• Common Lisp
• COOL (Object 

Oriented COBOL)
• CorbaScript
• Clarion
• Corn
• D
• Dylan
• Eiffel
• F-Script
• Fortran 2003
• Gambas
• Graphtalk
• IDLscript
• incr Tcl
• J
• JADE

• Java
• Lasso
• Lava
• Lexico
• Lingo
• Modula-2
• Modula-3
• Moto
• Nemerle
• Nuva
• NetRexx
• Nuva
• Oberon (Oberon-1)
• Object REXX
• Objective-C
• Objective Caml
• Object Pascal (Delphi)
• Oz
• Perl 5
• PHP
• Pliant
• PRM
• PowerBuilder

• ABCL
• Python
• REALbasic
• Revolution
• Ruby
• Scala
• Simula
• Smalltalk
• Self
• Squeak
• Squirrel
• STOOP (Tcl

extension)
• Superx++
• TADS
• Ubercode
• Visual Basic
• Visual FoxPro
• Visual Prolog
• Tcl
• ZZT-oop

Source: Wikipedia
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Language Evolution
From FORTRAN to a few present day languages

Source: Eric Levenez
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Origins of C++

Source: B. Stroustrup, The Design and Evolution of C++

1960

1970

1980

1990

Structural influence
Feature influence

Fortran
Algol 60

CPL

BCPL

C

ANSI C

Simula 67

C with Classes

C++

C++arm

C++std

ML CluAlgol 68

Ada
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Academic Influence on C++

“Exceptions were considered in the original design of C++, but
were postponed because there wasn't time to do a thorough job of
exploring the design and implementation issues.

In retrospect, the greatest influence on the C++ exception
handling design was the work on fault-tolerant systems started at the 
University of Newcastle in England by Brian Randell and his colleagues 
and continued in many places since.”

-- B. Stroustrup, A History of C++

…
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Origins of Java
• Java grew out of C++, Eiffel, SmallTalk, Objective C, and Cedar/Mesa
• Example lessons learned:

– Stumbling blocks of C++ removed (multiple inheritance, preprocessing, operator 
overloading, automatic coercion, etc.)

– Pointers removed based on studies of bug injection
– GOTO removed based on studies of usage patterns
– Objects based on Eiffel, SmallTalk
– Java interfaces based on Objective C protocols
– Synchronization follows monitor and condition variable paradigm (introduced by Hoare, 

implemented in Cedar/Mesa)
– Bytecode approach validated as early as UCSD P-System (‘70s)

Lesser-known precursors essential to Java’s success

Source: J. Gosling, H. McGilton, The Java Language Enviornment
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Why New Programming Models 
and Languages?

• Paradigm shift in architecture
– From sequential to multicore
– Need a new “common machine language”

• New application domains
– Streaming
– Scripting
– Event-driven (real-time)

• New hardware features
– Transactions 
– Introspection
– Scalar Operand Networks or Core-to-core DMA

• New customers
– Mobile devices
– The average programmer!

• Can we achieve parallelism without burdening the programmer?
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Domain Specific Languages

• There is no single programming domain!
– Many programs don’t fit the OO model (ex: scripting and streaming)

• Need to identify new programming models/domains
– Develop domain specific end-to-end systems
– Develop languages, tools, applications ⇒ a body of knowledge

• Stitching multiple domains together is a hard problem
– A central concept in one domain may not exist in another

– Shared memory is critical for transactions, but not available in streaming 
– Need conceptually simple and formally rigorous interfaces 
– Need integrated tools
– But critical for many DOD and other applications
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• Two choices:
• Bend over backwards to support

old languages like C/C++
• Develop parallel architectures 

that are hard to program

Programming Languages 
and Architectures

Modern
architecture

C von-Neumann
machine



Compiler-Aware 
Language Design

The StreamIt Experience

Speaker

FMDemod

LPF1

Scatter

Gather

LPF2 LPF3

Supported by ITR 
and NGS Awards



programmability

domain specific
optimizations

enable parallel
execution

simple and effective optimizations for 
domain specific abstractions

boost productivity, enable faster development 
and rapid prototyping

Is there a win-win situation?

• Some programming models are inherently concurrent
– Coding them using a sequential  language is…

• Harder than using the right parallel abstraction 
• All information on inherent parallelism is lost

• There are win-win situations 
– Increasing the programmer productivity while extracting parallel performance

target tiled architectures, clusters, DSPs, 
multicores, graphics processors, …



• Applications
– DES and Serpent [PLDI 05]
– MPEG-2 [IPDPS 06]
– SAR, DSP benchmarks, JPEG, …

• Programmability
– StreamIt Language (CC 02) 
– Teleport Messaging (PPOPP 05)
– Programming Environment in Eclipse (P-PHEC 05)

• Domain Specific Optimizations
– Linear Analysis and Optimization (PLDI 03)
– Optimizations for bit streaming (PLDI 05)
– Linear State Space Analysis (CASES 05)

• Architecture Specific Optimizations
– Compiling for Communication-Exposed 

Architectures (ASPLOS 02)
– Phased Scheduling (LCTES 03)
– Cache Aware Optimization (LCTES 05)
– Load-Balanced Rendering 

(Graphics Hardware 05)
– Task, Data and Pipeline Parallelism (ASPLOS 06)

StreamIt Program

Front-end

Stream-Aware
Optimizations

Uniprocessor
backend

Cluster
backend

Raw
backend

IBM X10
backend

C/C++ C per tile +
msg code

Streaming
X10 runtime

Annotated Java

MPI-like
C/C++

Simulator
(Java Library)

The StreamIt Project 
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Streaming Application Abstraction

• Structured block level diagram 
describes computation and flow 
of data

• Conceptually easy to understand
– Clean abstraction of functionality

• Mapping to C (sequentialization) 
destroys this simple view 

MPEG-2 Decoder



StreamIt Improves Productivity
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StreamIt Compiler 
Extracts Parallelism

• Task Parallelism
– Thread (fork/join) parallelism
– Parallelism explicit in algorithm
– Between filters without

producer/consumer relationship

• Data Parallelism
– Data parallel loop (forall)
– Between iterations of a stateless filter 
– Can’t parallelize filters with state

• Pipeline Parallelism
– Usually exploited in hardware
– Between producers and consumers
– Stateful filters can be parallelized

MPEG-2 Decoder



StreamIt Compiler 
Parallelism Processor Resources

• StreamIt Compilers Finds the Inherent Parallelism
– Graph structure is architecture independent
– Abundance of parallelism in the StreamIt domain

• Too much parallelism is as bad as too little parallelism
– (remember dataflow!)

• Map the parallelism in to the available resources in a given multicore
– Use all available parallelism
– Maximize load-balance
– Minimize communication
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Outline: Ideas on Solving
the Third Software Crisis

1. Advances in Computer Architecture

2. Novel Programming Models and Languages

3. Aggressive Compilers

4. Tools to support parallelization, debugging and migration   
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Compilers

• Compilers are critical in reducing the burden on 
programmers
– Identification of data parallel loops can be easily automated, but 

many current systems (Brook, PeakStream) require the 
programmer to do it.

• Need to revive the push for automatic parallelization
– Best case: totally automated parallelization hidden from the user
– Worst case: simplify the task of the programmer 



Parallelizing Compilers

The SUIF Experience



The SUIF Parallelizing Compiler 

• The SUIF Project at Stanford in the ’90
– Mainly FORTRAN
– Aggressive transformations to undo “human optimizations”
– Interprocedural analysis framework
– Scalar and array data-flow, reduction recognition and a host of 

other analyses and transformations

• SUIF compiler had the Best SPEC results by automatic 
parallelization



SPECFP92 performance

• Vector processor Cray C90 540
• Uniprocessor Digital 21164 508
• SUIF on 8 processors Digital 8400 1,016
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Automatic Parallelization 
“Almost” Worked

• Why did not this reach mainstream?
– The compilers were not robust
– Clients were impossible (performance at any cost)
– Multiprocessor communication was expensive 
– Had to compete with improvements in sequential performance
– The Dogfooding problem

• Today: Programs are even harder to analyze
– Complex data structures
– Complex control flow
– Complex build process  
– Aliasing problem (type unsafe languages)
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Outline: Ideas on Solving
the Third Software Crisis

1. Advances in Computer Architecture

2. Novel Programming Models and Languages

3. Aggressive Compilers

4. Tools to support parallelization, debugging and migration   
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Tools

• A lot of progress in tools to improve programmer 
productivity

• Need tools to
– Identify parallelism
– Debug parallel code
– Update and maintain parallel code
– Stitch multiple domains together

• Need an “Eclipse platform for multicores”
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Migrating the Dusty Deck

• Impossible to bring them to the new era automatically 
– Badly mangled, hand-optimized, impossible to analyze code
– Automatic compilation, even with a heroic effort, cannot do anything

• Help rewrite the huge stack of dusty deck
– Application in use
– Source code available
– Programmer long gone

• Getting the new program to have the same behavior is hard
– “Word pagination problem”

• Can take advantage of many recent advances
– Creating test cases
– Extracting invariants 
– Failure oblivious computing
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Facilitate Evaluation and 
Feedback for Rapid Evolution

Language/Compiler/Tools
Idea

Implementation

Evaluation

Evaluation

Develop a
Program

Functional
Debugging

Performance
DebuggingEvaluate
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Rapid Evaluation

• Extremely hard to get
– Real users have no interest in flaky tools
– Hard to quantify 
– Superficial users vs. Deep users will give different feedback

– Fatal flaws as well as amazing uses may not come out immediately

• Need a huge, sophisticated (and expensive) infrastructure 
– How to get a lot of application experts to use the system? 
– How do you get them to become an expert?
– How do you get them to use it for a long time?
– How do you scientifically evaluate?
– How go you get actionable feedback? 

• A “Center for Evaluating Multicore Programming Environments”?? 
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Build and Mobilize 
the Community

• Bring the High Performance Languages/Compilers/Tools folks out of the 
woodwork!
– Then: A few customers with the goal of performance at any cost.
– Then: Had to compete with Moore’s law
– Now: Reasonable performance improvements for the masses 

• Bring the folks who won the second crisis
– Then: the focus is improving programmer productivity
– Now: how to maintain performance in a multicore world
– Now: If not solved, all the productivity gains will be lost!

• Get architects to listen to language/compiler people
– Then: We don’t need you, we can do everything in hardware
– Then: Or here is a cool hardware feature, you figure out how to use it.
– Now: Superscalars crashed and burned; cannot keep the status quo!
– Now: Need to create a useable programming model
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Conclusions
• Programming language research is a critical long-term investment

– In the 1950s, the early background for the Simula language was funded by 
the Norwegian Defense Research Establishment

– In 2002, the designers received the ACM Turing Award “for ideas 
fundamental to the emergence of object oriented programming.”

• Compilers and Tools are also essential components 

• Computer Architecture is at a cross roads
– Once in a lifetime opportunity to redesign from scratch 
– How to use the Moore’s law gains to improve the programmability?

• Switching to multicores without losing the gains in programmer 
productivity may be the Grandest of the Grand Challenges
– Half a century of work ⇒ still no winning solution
– Will affect everyone! 

• Need a Grand Partnership between the Government, Industry and 
Academia to solve this crisis!


