
Understanding Program Structure and Behavior

by

Sie Hendrata Dharmawan

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2006

c© Massachusetts Institute of Technology 2006. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 26, 2006

Certified by. .
Saman Amarasinghe
Associate Professor

Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Understanding Program Structure and Behavior

by

Sie Hendrata Dharmawan

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2006, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

A large software system usually has structure in it. Several functions work together to
accomplish a certain task, and several tasks are grouped together to perform a bigger
task. In order to understand this division, one has to consult the documentations or
read through the source code. However, the documentations are usually incomplete
and outdated, while code inspection is tedious and impractical. Algorithms have been
proposed that automatically group functions with similar functionality.

In this thesis I will present LogiView, an algorithm that presents an organizational
view of the functions. This view will ease the process of understanding the structures
in the program, identifying functions with related tasks, and separating the functions
into logical groups.

I will also present a methodology of analyzing the function names in the program.
This method leverages the result of the LogiView algorithm and identifies the names
that are most relevant to the functionality of the program. Given a set of programs
that are known to have same functionality, this method extracts the similarity in the
function names and builds a dictionary of the names that are semantically related
to the functionality. The methodology also detects when two programs have similar
functionality and how to measure the similarity between multiple programs.

Lastly, I will show that the result of the LogiView algorithm can be used to explain
program performance. The abrupt change in the program behavior and repetitions
of past behaviors can be explained in terms of function calls, and these functions are
identified by the LogiView algorithm.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor

3

4

Acknowledgments

I would like to thank Saman Amarasinghe as my thesis supervisor, and also Rodric

Rabbah for guiding me and providing me with ideas throughout the experiments and

the writing of this Thesis.

This work was supported in part by NSF award CNS-0305453.

5

6

Contents

1 Introduction 15

1.1 Contributions . 17

1.2 Thesis Roadmap . 19

2 Background and Related Work 21

2.1 Software Oriented Approaches . 21

2.2 Hardware Oriented Approaches . 24

3 LogiView Algorithm 27

3.1 Overview . 27

3.2 Call Graph . 27

3.3 Dominator Tree . 28

3.4 Shared Node . 33

3.5 Pathological Patterns . 36

3.5.1 Chain Pattern . 36

3.5.2 Leafy Pattern . 37

3.6 Finding the Phase-Markers . 37

4 Experiments and Analysis 43

4.1 Experiments and Results . 44

4.1.1 Timberwolf Benchmark . 44

4.1.2 Link Grammar Parser . 51

4.1.3 GNU Zip . 55

7

4.1.4 Versatile Place and Route . 57

5 Function Names Analysis 65

5.1 Overview . 66

5.2 Name Splitting . 67

5.3 Application Profile . 68

5.4 Class Dictionary . 70

5.5 Dictionary Construction . 70

5.6 Punishing Generic Names . 71

5.7 Application Score . 73

5.8 Application Class Analysis . 75

5.8.1 Satisfiability Solver . 75

5.8.2 Support Vector Machines Learning 77

5.8.3 Deterministic Finite Automata Learner 78

5.8.4 Linear Programming Solver 80

5.8.5 Fast Fourier Transform . 82

5.8.6 Punishment Function . 84

5.8.7 Leave-One-Out Test . 84

6 Physical Phase Detection 89

6.1 Results . 92

6.1.1 SVM Light . 92

6.1.2 SPEC Gnu Zip . 98

6.1.3 Timberwolf Benchmark . 101

6.1.4 Grammar Link Parser . 104

6.2 Correlation to Phase Detection Problem 109

7 Discussion and Conclusion 113

7.1 Future Research . 114

8

List of Figures

3-1 An algorithm that outputs the dominators of each node [26] pp. 182. 29

3-2 A section of the call graph from zChaff benchmark. 30

3-3 The dominator tree from zChaff benchmark. 31

3-4 A section of the dominator tree from zChaff benchmark. 31

3-5 The pseudocode of the zChaff benchmark. 32

3-6 A sample program that would cause a shared node of the second kind.

analyze conflicts is shared between init solve and deduce. . . . 34

3-7 A section of the call graph and dominator tree that would result from

Figure 3-6. 34

3-8 A delegation of task that causes a chain pattern in the dominator tree. 36

3-9 The dominator tree formed by the code in Figure 3-8. 36

3-10 An algorithm that finds the phase-markers in the dominator tree. . . 39

3-11 A hypothetical dominator tree. 40

4-1 The pseudocode of the Timberwolf Benchmark. 45

4-2 The simplified view of the Timberwolf code. 46

4-3 A snippet from utemp.c in the Timberwofl Benchmark. 47

4-4 The call graph for the Timberwolf Benchmark. 48

4-5 The dominator tree of the Timberwolf Benchmark. 48

4-6 A snippet from uloop.c, ucxx1.c, and ucxx2.c in the Timberwofl

Benchmark. 50

4-7 The original pseudocode for the Link Grammar Parser. 51

4-8 The call graph for the Link Grammar Parser. 52

9

4-9 The dominator tree of the Link Grammar Parser. 52

4-10 The subtree rooted in read dictionary in the SPEC parser benchmark. 53

4-11 The subtree rooted in build sentence disjuncts in the SPEC parser

benchmark. 53

4-12 The subtree rooted in power prune in the SPEC parser benchmark. . 54

4-13 The call graph of the GNU Zip Benchmark. 55

4-14 The dominator tree of the GNU Zip Benchmark. 56

4-15 The Negotiated Congestion algorithm [23]. 58

4-16 The Dijkstra’s Algorithm to find the shortest path from s to t in a

directed graph G. 59

4-17 The call graph for the VPR. 60

4-18 The dominator tree of the VPR Benchmark. 60

4-19 The subtree dominated by route net in the VPR benchmark. 61

4-20 A partial snippet of the route.c file in the VPR Benchmark, showing

the main steps of the route net function. 61

4-21 The subtree dominated by try route in the VPR benchmark, omitting

the subtree dominated by build rr graph and route net. 62

4-22 A partial snippet of the route.c file in the VPR Benchmark, showing

the main steps of the try route function. 63

5-1 A section of the dominator tree from the zChaff benchmark. 66

5-2 A section of the dominator tree from the zChaff benchmark. 66

6-1 Miss rates plot of a benchmark where there are higher miss rates region

and lower miss rates region. 90

6-2 A section of miss rates plot where a similar behavior is repeated mul-

tiple times. 90

6-3 The entry and exit to optimize to convergence in the SVM Light

Benchmark. 92

6-4 Multiple entries and exits to optimize svm in the SVM Light Benchmark. 93

10

6-5 A zoomed-in view of Figure 6-4, showing the repetition of the pattern

for each call to optimize svm. 93

6-6 A simplified view of the SVM Light code. 94

6-7 A section of the dominator tree under optimize to convergence, only

showing the child optimize svm. 95

6-8 A section of the dominator tree under optimize to convergence, omit-

ting the child optimize svm. 96

6-9 A slightly zoomed-in view of Figure 6-5, with the entries and exits to

update linear component. 97

6-10 A slightly zoomed-in view of Figure 6-5, with the entries and exits to

select next qp subproblem grad. 97

6-11 Entries to and exits from spec compres in the gzip benchmark. . . . 98

6-12 Entries and exits to deflate in the gzip benchmark. 99

6-13 Entries to and exits from flush block in the gzip benchmark. 100

6-14 A zoomed in view of Figure 6-13, showing a repeated pattern between

two consecutive entries or exits from flush block. 101

6-15 Entry and exit from utemp in the Timberwolf Benchmark. 102

6-16 A zoomed in view of Figure 6-15, showing the entry to utemp in the

Timberwolf Benchmark. 102

6-17 Entries and exits from uloop in the Timberwolf Benchmark, showing

two full repetitions. 103

6-18 The entire execution of the Grammar Link Parser. 104

6-19 Entries and exits to read entry in the Grammar Link Parser. 105

6-20 Entry and exit to prepare to parse in the Grammar Link Parser. . . 105

6-21 Entries and exits to power prune in the Grammar Link Parser. . . . 106

6-22 Entries and exits to build sentence disjuncts in the Grammar Link

Parser. 107

6-23 Same plot as in Figure 6-10, but with k = 32768. 110

6-24 Same plot as in Figure 6-21, but with k = 1024. 111

11

12

List of Tables

4.1 The phase-markers from the Timberwolf Benchmark and their parents. 44

4.2 The phase-markers from the Link Grammar Parser Benchmark and

their parents. 51

4.3 The phase-markers from the GNU Zip Benchmark and their parents. 56

4.4 The phase-markers from the VPR Benchmark and their parents. . . . 59

5.1 The dictionary for the SAT application class. 76

5.2 The dictionary for the SVM application class. 77

5.3 The dictionary for DFA application class. 79

5.4 The dictionary for the LP application class. 81

5.5 The dictionary for FFT application class. 82

5.6 The punishment function for the shared tokens. 85

5.7 The similarity scores and the classification classes from the leave-one-

out test. 86

6.1 The phase-markers from the GNU Zip Benchmark and their parents. 98

6.2 The phase-markers and phase-parents in identifying phase change or

repeating pattern. 108

13

14

Chapter 1

Introduction

A large software system usually has structure in it. There are several modules who

are responsible for certain aspects of the system, and within modules there are sev-

eral classes and functions. Usually the best way to understand this structure is by

inspecting the system documentation. But sometimes this straightforward approach

is not possible because:

1. The documentation is not available.

2. The documentation only features the design of the system. The developers may

implement it differently from what the designers intended. As a result, there

are a lot of broken abstractions and violations of modularity, and the program

structure is no longer obvious from the documentation.

3. As the system evolves with many revisions by different developers, the docu-

mentation does not list all the changes to the system. Moreover, the newer

developers may change the design so the documentation no longer provides an

accurate understanding of the program structure.

In the absence of documentation, it is still possible to understand the program

structure by code inspection. But for large systems with hundreds of different func-

tions and many lines of code, this approach is tedious and time-consuming. There

have been some works in the past that attempts to automate the process of program

15

structure understanding to help guide programmers and system engineers as they

navigate through unfamiliar codes. Some of these works even help programmers by

suggesting program components. The components in a program are loosely defined

as a set of codes whose task are closely related compared to the other components.

For example, the components of a big software system may be IO classes, mathe-

matical libraries, tree-traversal functions, etc. Some of the ideas to identify program

components are:

1. As the program executes, its behavior gives a lot of information about program

structure. For example, if the program behavior changes abruptly, it is usually

a good indication that the program is performing a new task than it was be-

fore. By observing which functions are executed at different points and monitor

changes in the program behavior, we can infer which functions are responsible

for different tasks.

2. The relationships between different functions also provide information about

program structure. When two functions are closely related to each other and

responsible for the same task, it is likely that they are called one after another

(i.e. they have strong temporal locality). Conversely, when we see that a call

to function A is always followed by a call to function B, we can speculate that

these two functions are closely related and responsible for the same or similar

task.

Based on these ideas, some works [5, 6, 13, 33, 44] attempted to infer program

structure by measuring its observable physical characteristics. For example, they

attempt to automatically detect when the observed characteristics have changed sig-

nificantly, and signal that the program has entered a new phase. Thus, algorithms

created with this approach are usually called phase detection algorithms. For exam-

ple, the work of Dhodapkar and Smith [5, 6] monitors the last N instructions that are

used in the program (called the instruction working set). If this set changes abruptly

between working set, then the program is executing a different set of instructions

than before. This is a good indication that the program execution has moved to

16

a different component, and this new component’s task is different than that of the

previous component.

One problem with an approach that is based on observable physical characteristics

is that it cannot describe and separate all the different program components. Obser-

vation of these measures can only detect when the program has entered a new phase,

not give the description of the phase and relationships between different phases.

Another problem is that the resulting phases are dictated by their observable

measurements, because the algorithms monitor the program and record the physical

measurements as it executes. But in reality, the phases in the observable measure-

ments are a result of executing the different components in the program, and not vice

versa.

In this thesis, I will show that in order to understand program structure and

behavior, one should analyze not only the execution of the program itself, but also

the source code that generated the program. Specifically, I will propose several novel

methods that ease the process of understanding program structure and behavior from

the software level, and show that these methods subsumes some of the existing phase

detection algorithms. My approach is a mix between the top-down approaches that

only consider the program execution, and the bottom-up approaches that analyze

only the source code.

1.1 Contributions

There are three contributions of this thesis. The first contribution is a new method-

ology that presents an organizational view of the functions and identifies the func-

tions that are responsible for the main steps in the program. The algorithm in the

methodology is called LogiView, which works by examining the record of function

calls that are made during the execution and selecting several functions as phase-

markers. These are functions that mark the high-level structures in the program.

These functions are usually the main entry points to different components in the pro-

gram. Any functions that are called exclusively from a phase-marker are considered

17

to be in the same component and have related tasks.

The LogiView methodology leverages the well-known concept of dominance and

dominator trees to provide a novel methodology for organizing program execution

and understanding program structure.

The features of the LogiView methodology are:

1. Its input is a record of the function calls that are made during the execution.

Specifically, for any pair of functions A and B (not necessarily distinct), the

algorithm monitors how often A calls B and under what context.

2. Its output is a set of functions that are selected as phase-markers. These serve to

organize a logical view of the various tasks in a program. The tasks are organized

hierarchically using a dominator tree. By examining the phase-markers and the

dominator tree, one can easily infer the structure of the program. If the program

is complex enough, there may be multiple levels of structure. Within a phase,

there may be subphases which are divided even further. The phase-markers in

the dominator tree thus hierarchically captures the program structure.

Secondly, I use the LogiView methodology to demonstrate that functional redun-

dancies between different programs can be detected. This result helps to identify the

objective of a program. For example, if program A is known to solve a linear opti-

mization problem and one detects a functional redundancy between program A and

program B, then program B’s objective is also solving a linear optimization problem

or something similar.

This work assumes that programmers don’t name their functions randomly. When

a program with well-chosen function names is executed, the record of function calls

provides semantic information about the program. Furthermore, the technique also

leverages the order in which these functions appear in the dominator tree to extract

additional relevant information.

Finally, I also show that the LogiView technique can be used in the context of the

phase detection problem. I demonstrate that the entries and exits from phase-markers

tend to coincide with significant changes to observable physical characteristics. Thus,

18

if a phase detection algorithm observes the same program execution, it should detect

phase boundaries at or near the entries and exits from phase-markers. Phase change

can be understood as a point where the behavior changes significantly from the be-

havior in the past. For example, a program may access data that are not stored in

the cache (and thus suffer from a burst of cache miss). We will see that the phase

changes in the program can be explained in terms of phase-markers and function

entries and exits. Out of 9 phase-markers that we recognize, 8 indeed exhibit phase

changes (89% accuracy rate), and out of 11 functions that correspond phase changes,

8 are recognized as phase-markers (73% recognition rate).

I will also show that the program behaviors change at the entries and exits of not

only the highest-level phase-markers, but also the lower level ones. That is, I leverage

the hierarchical dominator tree to capture multiple levels of phases in the observable

program characteristics.

1.2 Thesis Roadmap

The remainder of the thesis is organized as follows. First, prior work in understanding

program structure and behavior is examined in Chapter 2. The LogiView methodol-

ogy to generate the dominator tree and select phase-markers is described in Chapter

3. The effectiveness of LogiView is described in Chapter 4. Chapter 5 presents the

technique to leverage this methodology along with function names to detect func-

tional redundancy. Chapter 6 examines the correlation of this technique and phase

detection problem. My findings and results are summarized in Chapter 7.

19

20

Chapter 2

Background and Related Work

In the past, there have been several attempts to automate the process of understand-

ing program structure and behavior. These attempts fall into two main categories:

software oriented and hardware oriented. Software oriented approach only analyzes

the source code of the program and attempts to understand its structure, while hard-

ware oriented approach monitors the observable physical characteristics throughout

the program execution and infers the phase boundaries. My thesis is a combination

between these two approaches; it monitors the program execution and leverages the

information from the source code to produce an logical view of the program structure.

2.1 Software Oriented Approaches

The program source code provides tremendous amount of information about program

structure and behavior. Sherwood et al. [34] assert that the physical characteristics of

a program directly depend on the way the program traverses its source code. Although

the source code is sometimes complex and unwieldy, extracting various information

from the source code can provide further insights in understanding its structure and

behavior.

Larus [19] proposed a method to find phases in the program. He separated the

program into basic blocks (a sequence of instructions without any branching instruc-

tions or branching targets in the middle), and as the program executes, it moves

21

from one basic block to another. Thus, the program forms a trace, a sequence of

basic blocks that are executed by the program. Larus then used Sequitur [29] which

parses the the trace into context-free grammar. The top level tokens in the grammar

corresponds to the high-level phases in the program. This approach is similar to mine

in the sense that this approach concerns the transition from one chunk of code into

another. But monitoring the transition at a basic block level is too fine-grained. The

program may make branching decisions that are not related to its structure. For

example, suppose a variable x is treated differently when it is positive, zero, or neg-

ative. Larus’ approach would not be able to recognize that structurally these steps

structurally similar, because the execution falls into three different basic blocks.

Srinivas and Srinivasan [40] introduced an algorithm to find the hot spots in the

program, a piece of code that are often executed and is responsible for the majority

of program execution. This algorithm also relies on the transition between functions

and their frequency. In the process of finding hot spots, this algorithm classifies all

the functions in the program into clusters. A cluster is a set of functions that interact

with each other frequently. Loosely speaking, these clusters correspond to the high-

level components in the program. Thus, this work introduced the idea that in the

record of function calls and their frequency, there are some information about the

relationship and connectedness between functions. My LogiView algorithm to find

phase-markers in the program is built upon this concept; it relies on the function call

records and their frequencies.

Jakobac et. al [14] proposed an algorithm to classify the classes in a Java system

into regions. They defined clusters as a group of system elemens that are closely

related, or independent of other parts of the system. Their algorithm classified each

class as Processing, Communication, or Data based on the variable and function

names that are found in the class. For example, when a function in a class has

the word socket in it, the class is classified as a Communication class. They used

this classification results, along with other records such as dependency diagram and

function calls, to separate the classes into regions. My methodology of detecting

functionality redundance is closely related to this approach in the sense that the names

22

that the programmers give in the source code may provide semantic information about

the classes. When these semantic information is coupled with the function call records,

one can infer some further information about program structure and behavior.

Haran et al. [11] used machine learning techniques to predict whether a program

will terminate in failure (due to crash or wrong output value) or succeed, given the

number of times each function is called. For example, suppose in the previous execu-

tions where function A is heavily executed, the program always crashed. Then either

function A causes the program to crash, or it is a routine that the program takes

before crashing. Either way, function A is highly correlated with the program failure.

This result indicates that there is a relationship between the function count and the

program behavior. This idea could be expanded to say that, the frequency of each

function’s provides valuable information about the program’s functionality.

Basit et al. [1] proposed a method to recognize two modules with similar function-

ality (clones) in a big software system. The method relies on the similarity between

the sources in order to find clones. For example, if an adversary copies function A into

function B and simply renames the variable names, this method would recognize that

A and B are clones with ease. Even if the adversary changes the order of several lines

without affecting the output, this method would still be able to recognize the clones.

However, if the adversary rewrites the whole function, or writes an implementation

of another algorithm that achieves the same result, the method would not be able to

recognize the clones. My methodology supplements this result by providing a way

to recognize if two programs have the same functionality even if they use different

algorithms.

The work by Zhang et al. [43] used program trace (sequence of instructions that

are executed) to find two programs that match (have very similar behavior). If two

programs are very similar (perhaps they differ by only a few lines in the source code),

the traces of their executions should also be very similar. This result is similar to that

of Basit et al. [1] above. The difference is that the algorithm of Zhang et al. observes

the physical characteristics of the program execution (the trace), while Basit et al.

tries to find similarities in the source. The execution trace is, to some extent, similar

23

to the function call records in a different granularity level. Thus, my methdology uses

the approach in between that of Basit et al. and Zhang et al. My methodology uses

both the function call records and the function names in order to determine that two

programs have the same functionality.

The closest prior work to mine is by Lau et al. [20]. They monitored the entries

to and exits from functions and loops, and they counted how many times each tran-

sition happens (the cost of each transition). By analyzing the relationships between

the costs, their algorithm selects several points in the program that serve as phase

boundaries (similar to my phase-markers). The difference between this work and

my work is that my work focuses only on transition between functions and not loops.

The other difference is that this algorithm only recognizes phase-markers at one level,

whereas LogiView produces the dominator tree that provides structural information

at multiple levels.

2.2 Hardware Oriented Approaches

As the program run, there are several physical characteristics that can be extracted

from its execution. For example, Rabbah et al. [30] introduced five metrics that can

characterize a program’s execution. Predominant data type indicates the type of data

that are mostly used in the program. Temporal locality measures how often data or

instructions that have been accessed are reacessed again within a short period of time,

Spatial locality measures colocation of data addresses in memory. Parallelism char-

acterizes the program’s ability to be executed concurrently. There are other metrics

that one can measure from the program’s execution, such as instruction working sets,

the set of instructions that are used in the last N cycles, and cache miss rates that

measure the frequency of data accesses that are not in the cache.

These characteristics provide some information about program structure and be-

havior. By monitoring these characteristics, one can isolate several intervals where

the characteristics are very different accross intervals but they stay the same within

the interval. These intervals are good candidates of program phases.

24

There have been several works in the past that monitor physical characteristics

during program’s execution and extract regularities and recurrences in the character-

istics. Dhodapkar and Smith [5, 6] use the record of instruction working sets to detect

phases in the program. They asserted that the substantial change in the working sets

indicates that the program is executing a different code, and hence the program is in

a different phase.

Shen et al. [33] measure temporal and spatial locality in the program and argues

that they can be used to detect phases in the program. However, their definition

of phases was an interval where the locality is relatively similar. In other words,

they used the locality to detect phases in locality. This approach may sound self-

fulfilling because the resulting phases may not generalize to other characteristics as

well. However, they also proposed a method to predict future phases given the past

record of locality. The idea that future phases are predictable suggests that program

phases are caused by something more fundamental than the physical characteristics.

In other words, program phases are not derived by its physical characteristics, but

rather, physical characteristics help us to uncover phases.

Similarly, Zhong et al. [44] predict phase changes by measuring data reuse dis-

tance. Reuse distance of a data D is the number of different data that are accessed

between two consecutive accesses to D. Although it is a theoretical and abstract met-

ric, reuse distance has a correlation to cache miss rates. Intuitively, if this distance is

greater than the cache size, then the second access to D would be a cache miss. But

if the distance is less than the cache size, then the second access would be a cache

hit, because D would still be in the cache upon the second access.

Zhong et al. also introduce the idea of hierarchical phase. There may not be only

one level of phase in the program. At the highest-level, a program may be composed

of several phases, but within each of these phases, there may exist subphases. These

subphases may exhibit different behaviors just like different phases behave differently.

But the difference accross subphases in the same phase is small compared to the dif-

ference accross different phases. This idea goes in line with the fact that the program

structure is hierarchical as well. Within a program, there may be several modules, and

25

each modules contains several classes, and each class has several functions. Although

Zhong et al. was not able to correlate the different levels of phases that they detected

with the granularity levels in the program, they showed that it is indeed possible to

uncover many tiers of phases from physical characteristics. Conversely, one can argue

that the physical characteristics in the program contain multiple levels of variations.

Thus, any phase detection algorithm that are based on physical characteristics should

attempt to detect phases at multiple levels.

All of the hardware-oriented phase detection algorithm [5, 6, 33, 44] rely on some

kind of instrumentation tools to help them gather the physical characteristics as

the program executes. There has been several improvements in the instrumentation

techniques. Mysore et al. [27] provided an algorithm to generate program profile

(aggregate result of physical characteristics over the program execution) with minimal

memory requirements. Although the resulting profile is presented as a range (the

lower bound and upper bound of the profile), Mysore et al. proved that the range

can be made arbitarily small and accurate.

Metz et al. [24] also proposed a method of sampling instrumentation. Instead of

monitoring the program execution every instruction, the sampling instrumentation

only take measurements every once in a while, in the places that have been precom-

puted. They proved that their sampling method produced a profile that is quite close

to the actual profile (to produce an exact profile is proven to be NP-hard, and they

gave an approximation algorithm that produces a profile within 50 percent of the

desired profile).

With these sophisticated instrumentation techniques, more improvements are pos-

sible to the existing hardward-based phase detection algorithms. Nevertheless, a

further advance in this field is difficult as long as we only observe the external charac-

teristics. The physical characteristics and program structure are caused by its source

code and not vice versa, [34] thus my work attempts to understand program structure

and behavior from a software point of view.

26

Chapter 3

LogiView Algorithm

3.1 Overview

The LogiView Algorithm is designed to identify several functions as phase-markers,

and to produce a dominator tree that presents an organizational view of the functions

in the program. The phase-markers are intended to mark the high level structures in

the program. Given the dominator tree and the phase-markers, we can easily separate

the program into different components by grouping the functions into logival views

of the program, based on the dominance of the phase-markers.

This rest of this chapter is laid out as follows. First we will describe the necessary

terminologies and theorems to construct a dominator tree. Then we will give an

example of a dominator tree and walk-through an investigation of a subtree in it.

We will describe several undesirable properties of a dominator tree and show some

heuristics to counter these properties. Finally we will introduce a novel algorithm to

select the phase-markers based on the structure of the tree.

3.2 Call Graph

When an application is executed, we build a Call Graph of the execution. The call

graph is a directed graph (V,E) where each node X ∈ V corresponds to one function

fX in the application. There is an edge (A,B) ∈ E if and only if function fA calls

27

function fB. Each edge has a count field that shows how many times the call from

fA to fB occurs.

There is a start node that corresponds to the first function that is executed.

Typically this function is the main method.

If a function fY is never called over the execution of the application, then the node

Y is omitted from the graph. Therefore, our call graph is always connected because

every node X corresponds to a function that has been called. The stack trace during

fX ’s execution shows a path from the start node to X. Thus, for each node X, there

is at least one path from the start node to X.

In order to build the call-graph, we instrument program binaries with PIN (Pro-

gram Instrumentation Tool) [21]. The instrumentation allows us to intercept entries

and exits to each function as the program executes. By keeping track of the func-

tions that are being executed (i.e. functions that the program has entered but not

exited yet) we can infer which function is calling the current function. In other words,

we simulate the program call stack at all times, pushing and popping functions as

signaled by the instrumentation tool.

The call-graph looks like the call trace generated by gprof, a well-known GNU

Profiling Tool [10]. Gprof is a program profiling tool that records the function calls

during the program execution and summarizes them in a table. Gprof also features

exporting this table to a directed graph. The resulting graph is the same graph as

our call-graph.

3.3 Dominator Tree

We say that the node A dominates B if and only if every path from the start node

to B must pass through A. In other words, every time fB is executed, its stack trace

contains fA. We also say that A is a dominator of B.

By definition, every node dominates itself. If A dominates B and A 6= B, we say

that A strictly dominates B. From the definition of dominator, we can prove the

following properties (for a reference to existing proofs, see [26]):

28

procedure FindFominators(N)

1: n0 is the start node
2: Dom(n0) = {n0}
3: for all n ∈ N − {n0} do

4: Dom(n) = N
5: end for

6: while there are changes in any Dom(n) do

7: for all n ∈ N − {n0} do

8: Dom(n) = {n}⋃

(

⋂

p∈pred(n) Dom(p)
)

9: end for

10: end while

Figure 3-1: An algorithm that outputs the dominators of each node [26] pp. 182.

1. If two distinct nodes A and B both dominate C, then either A strictly dominates

B or B strictly dominates A.

2. For each node X, there is a node PX 6= X such that PX dominates X and each

node that dominates X also dominates PX . We call PX an immediate dominator

of X. Each node has one and only one immediate dominator, except the start

node, which has none.

Therefore, one can construct a tree of immediate domination, where each node is

the children of its immediate dominator. We call it the dominator tree. The nodes

in the tree correspond to the nodes in the call graph. We say that node X in the

dominator tree corresponds to node CX in the call graph. The root of the dominator

tree corresponds to the start node, and Q is a child of P if and only if CP is an

immediate dominator of CQ.

The depth of a node is its distance from the start node in the tree. Thus, the start

node has depth 0, and the nodes that are directly dominated by the start node has

distance 1, and so on.

We build the dominator tree with the algorithm from [26] pp. 182, as shown in

Figure 3-1. This algorithm computes the dominators for each node. To build the

tree, we realize that the number of dominators of a node equals its depth. Thus, to

find the immediate dominator of X, we look for a node in X’s dominator list whose

depth is one less that X.

29

Figure 3-2: A section of the call graph from zChaff benchmark.

The nodes in the dominator tree are also annotated by the number of times the

corresponding function is called. We call this the cost of the node. We easily obtain

the cost of node X from the sum of the count of incoming edges to CX .

We run our algorithm on the zChaff benchmark [9]. It is a benchmark that

solves the satisfiability problem by trying to find a satisfying assignment to a boolean

formula in Conjunctive Normal Form. Figure 3-2 shows a section of the call graph

that is formed during the program execution, and Figure 3-3 shows the corresponding

dominator tree. We see that the call graph is very complex and unwieldy. It is hard to

understand the relationships between functions in the graph. On the other hand, the

dominator tree offers an alternative perspective of the call graph, where the functions

are arranged in a hierarchical view. As we shall see, an inspection to this dominator

tree could provide us with some insights about the program structure.

Figure 3-5 shows the pseudocode of the zChaff benchmark [9]. Figure 3-4 is

a section of the dominator tree in Figure 3-3, showing only the subtree that are

dominated in analyze conflicts. Because analyze conflicts dominates all these

nodes, thus the corresponding functions are only called directly or indirectly by

analyze conflicts. Thus, their tasks are most likely related to the task of con-

flict analysis.

30

Figure 3-3: The dominator tree from zChaff benchmark.

Figure 3-4: A section of the dominator tree from zChaff benchmark.

31

procedure SAT ()

1: while true do

2: Decide next branch
3: while true do

4: status = deduce();
5: if status = CONFLICT then

6: blevel = analyze conflict()
7: if blevel = 0 then

8: return Unsatisfiable
9: else

10: backtrack(blevel)
11: end if

12: else if status = SATISFIABLE then

13: return Satisfiable
14: else

15: break
16: end if

17: end while

18: end while

Figure 3-5: The pseudocode of the zChaff benchmark.

Figure 3-5 shows the pseudocode of the zChaff benchmark [9]. From the names

of the functions, we can infer that these functions include line 6 and 10 in Figure 3-5.

We can even speculate that the subtree in Figure 3-4 corresponds to the loop in line

6-11 of Figure 3-5, because the other lines in that interval are trivial instructions.

In the example above, we see that the function analyze conflicts dominates

several functions whose task is related to conflicts analysis. Thus, analyze conflicts

is a candidate for a phase-marker, because it is a main entry to a component that

is responsible for conflicts analysis. All functions in this component are called from

anaylze conflicts, directly or indirectly.

We see that the dominator tree provides an organizational view of the functions in

the program. By examining a subtree and the functions it contains, we can infer some

information about its task and characteristics. Moreover, if we know the algorithm

that is used in the program, we can even correlate some subtrees to specific lines or

loops in the algorithm. The dominator tree provides us with a hierarchy under which

the functions are grouped according to their tasks. The LogiView algorithm helps the

32

investigation of the dominator tree by selecting several functions as phase-markers.

Loosely speaking, phase-markers are the functions are likely to have subtrees that

provide us with the most information about program structure.

3.4 Shared Node

A shared node is a node that is called by two different functions in the program.

A shared node has multiple paths from the start node, and its dominators are the

common nodes in those paths. Very often, a shared node is immediately dominated

by the start node. Thus, the shared node is located high in the tree, not because

the function is within a few calls from main, but because there are two very different

paths from main to this function. This is problematic, because an ideal phase-marker

is also located high in the tree because the phase-marker is likely to be within a few

calls from main.

We observe that in most programs, there are two basic types of shared nodes.

First, a shared node corresponds to a function that is a computational primitive, and

thus is called from various places in the program. Library functions, I/O functions,

or mathematical routines are such examples. These nodes tend to be called from very

different places in program and as a result, they generally have low depth (they are

located near the top of the tree). But these nodes are easy to recognize because they

are so specialized that they usually don’t call other functions, or if they do, they call

only a few other functions. Thus, these shared nodes usually have a small subtree

dominated by them, or they appear as leaves.

Second, a shared node corresponds to a function that is designed to do a specific

task in a particular context, but once in a while it is called to perform the task in a

different context. An example involving a shared node of the second kind is depicted

in the code in Figure 3-6, taken from the simplified snippet of the zChaff benchmark.

Figure 3-7 shows a section of the call graph and dominator tree that would result

from the code in Figure 3-6. In this scenario, analyze conflicts is dominated

directly by solve, along with init solve and deduce. However, from the pseudocode

33

solve() {

init_solve();

for(i = 1 to 500) {

deduce();

}

}

init_solve() {

...

analyze_conflicts();

}

deduce() {

...

analyze_conflicts();

}

Figure 3-6: A sample program that would cause a shared node of the second kind.
analyze conflicts is shared between init solve and deduce.

Figure 3-7: A section of the call graph and dominator tree that would result from
Figure 3-6.

34

in Figure 3-5, it seems that analyze conflicts should instead be dominated by

deduce, because the task of conflicts analysis are a logical “follow-up” of the deduction

process. After one variable is assigned a truth value in deduce, analyze conflicts

ensures that the rest of the assignments are consistent and partially satisfy the boolean

formula. Here we see that analyze conflicts is being called under two different

contexts. The first context, when it is called by init solve, is to check the assignment

for conflicts before the loop begins. The second context, when it is called by deduce, is

to check the assignment for conflicts after one more variable has been assigned a truth

value. This second context is indeed the steady state context, and is more interesting

in terms of understanding program structure than the first context. Indeed, when we

examine the pseudocode in Figure 3-5, we see that the conflicts analysis routine is

structurally a part of the deduction process.

We see that the presence of a shared node of the second kind could eventually

“promote” nodes and subtrees up in the tree. As in the zChaff example, we could

no longer infer that conflicts analysis routine is structurally a part of the deduction

process because analyze conflicts (and everything it dominates) are promoted up.

In order to minimize the effect of a shared node of the second kind, we introduce an

edge-pruning algorithm. When a function is called mostly from one place and rarely

from another place, we prune (delete) the edge that is less frequent.

We prune the edges in the call graph by looking at each node’s incoming edges.

For node X, let m1, . . . ,mk be the count of the incoming edges to X, and let M =

max{m1, . . . ,mk}. We delete the incoming edges with count less than M/C, where

C is a parameter. The value of C should always be greater than 1. A higher C

value would result in a more permissive pruning algorithm where fewer edges are

deleted and more shared nodes are allowed. A lower C value would result in a stricter

pruning algorithm where very few shared nodes are allowed. We found that C = 2

works reasonably well for most programs.

35

X::get_data(args) {

this.y.get_data(args);

}

Y::get_data(args) {

this.z.get_data(args);

}

Z::get_data(args) {

return data;

}

Figure 3-8: A delegation of task that causes a chain pattern in the dominator tree.

Figure 3-9: The dominator tree formed by the code in Figure 3-8.

3.5 Pathological Patterns

In order to find the phase-markers in the program, we have to avoid chain patterns

and leafy patterns.

3.5.1 Chain Pattern

Chain pattern is a series of nodes where one node is dominated by another in a

sequential manner. For example, (A1, A2, · · · , An) is a chain-pattern if Ak immediately

dominates Ak+1 and only Ak+1, k = 1, 2, . . . n − 1.

The chain pattern usually happens from task delegation between objects. The

code is Figure 3-8 would cause a chain pattern of length 3, as shown in Figure 3-9.

As the task delegation is propagated accross more classes, the chain gets longer, and

the topmost node in the chain will seemingly have a large subtree that it dominates.

36

In other words, we see a large number of functions whose task are seemingly related,

because they are all in the same subtree. In this example, all the three functions

appear to have a related task of retrieving the data. However, we should not consider

the function X::get data a phase-marker, because it does not dominate a component

in the program. Structurally, the entire subtree does one task of retrieving the data,

not three related tasks. In other words, the subtree could be replaced by one function

that retrieves the data (although this function may break the program abstraction).

Thus, although chain pattern is an indication of good software engineering principles,

the top node of the chain is not an ideal candidate of a phase-marker.

3.5.2 Leafy Pattern

Another pattern that we want to avoid is the leafy pattern. This pattern is where the

all the nodes in the subtree are immediately dominated by the root of the subtree R.

In other words, all nodes in the subtree except one are leaves. The dominator tree in

Figure 3-7 is an example of leafy pattern of size 3.

The leafy pattern indicates a lack of organization in the code. When node A

is immediately dominated by the root, it is either because A is called directly by

the root, or A is called by two functions that has no other common dominators

than R. Moreover, if A is a leaf, then generally A’s task is simple enough that it

doesn’t dominate another node. Thus, a subtree of with leafy pattern is caused by

a function R that separates its task into other simple tasks and delegates them to

other functions. In Figure 3-7, if analyze conflicts, init solve, and deduce were

leaves, then solve would not be a good candidate of a phase-markers. It would

appear merely as a “wrapper” function that delegates its task onto three different

functions that are quite simple themselves.

3.6 Finding the Phase-Markers

We observe three main characteristics of a phase-marker. First, as we described above,

the subtree dominated by the phase-marker should not be of the chain pattern nor

37

the leafy pattern.

Second, a phase-marker tends to have a large subtree dominated by it. A phase-

marker indicates a distinct phase in the program and it usually calls other functions

exclusively. For example, if the function deduce is a phase-marker, all the functions

that are related to deduction process should be called only from within deduce, di-

rectly or indirectly, causing these functions to be dominated by deduce. If deduce

truly represents the main entry to a non-trivial component in the program, this com-

ponent should have multiple functions in it. Consequently, the subtree that deduce

dominates has multiple functions in it.

A tree of size 3 must be of the chain pattern or a leafy pattern. In fact, 4 is the

size of the smallest tree that is not of the chain pattern nor the leafy pattern. Hence,

we choose a phase-marker only if the subtree it dominates has at least 4 nodes in it.

Third, the frequency of a phase-marker is significantly bigger than that of its

parent. Because a phase-marker encompasses a repeated behavior, the phase-marker

is called multiple times by its parent. As in the example above, the frequency of

deduce is 500 times that of solve. During the execution of solve, there will a

pattern that is repeated 500 times. Each repetition corresponds to one execution

of deduce. Note that deduce may dominate some nodes with a smaller frequencies.

This is because in each execution of deduce, it may make calls to another function

occassionally, but not every time.

Using these three criteria, we introduced the following algorithm.

We classify the nodes in the dominator tree into groups. Node B is in a different

group from its immediate dominator A if and only if the frequency of B is at least

K times the frequency of A. It means that for each call of A, in average, there are

K calls to B. The value of K should always be greater than 1. A higher value of K

would result in an algorithm that finds fewer phase-markers. But if K is too high,

there may be no phase-markers to be found. We found that the values of K = 2 to

K = 5 produce the same phase-markers for most programs, so we arbitrarily choose

K = 5 for our results analysis.

We start from the top of the tree (the start node) and go down one depth at a

38

procedure FindPhaseMarkers()

1: M ← the largest depth in the tree
2: for i = 1 to M do

3: for all n such that n has level i do

4: p ← n.immediate dominator
5: if n.frequency > K × p.frequency then

6: n.group ← a new group
7: else

8: n.group ← p.group
9: end if

10: end for

11: end for

12: for all n such that n.group 6= n.immediate dominator.group do

13: if the subtree n dominates satisfies the subtree sanity condition then

14: print n is a phase-marker
15: end if

16: end for

Figure 3-10: An algorithm that finds the phase-markers in the dominator tree.

time. If a node has a frequency greater than K times the frequency of its parent, it is

allocated to a new group, otherwise it is assigned to the same group as its parent. For

each node n with a different group than its parent, we check the following conditions

(which we shall call the subtree sanity conditions):

1. The subtree n dominates is not of the chain pattern. In other words, ∃x, y, z

such that n dominates x and x immediately dominates y and z.

2. It is not a leaf. In other words, ∃x such that n dominates x

3. The subtree n dominates is not of the leafy pattern. In other words, ∃x, y such

that n dominates x and x dominates y.

4. The subtree n dominates has at least 4 nodes.

If the subtree that n dominates satisfies the subtree sanity conditions, we mark n

as a phase-marker.

The pseudocode for this algorithm is shown in Figure 3-10. Consider a sample

dominator tree in Figure 3-11. We will simulate the algorithm through this tree, with

K = 5.

39

Figure 3-11: A hypothetical dominator tree.

Line 6 will be executed for n = C,D,E, F , and line 8 for all other nodes. So, at

the end of line 11, the formed groups are {A,B}, {C}, {D,G,H,M}, {E, I,N}, and

{F, J,K, L}. Then line 12 is executed for the nodes C,D,E, F . However, E does not

satisfy the subtree sanity conditions because it is of a chain pattern, and F does not

satisfy the subtree sanity conditions because it is of a leafy pattern. On the other

hand, C and D satisfy the subtree sanity conditions. Thus the phase-markers are C

and D.

We see that the phase-markers are not necessarily at the top of the dominator

tree. D is a phase-marker although it is not at the top. This is because A only calls

B a few times, but B calls D many times. One could speculate that the call from A

to B may be a delegation call where A delegates its task to B. Alternatively, the call

from A to B may be an initialization call. Either way, we are not very interested in

the call from A to B because it only happens once. We are instead interested in the

call from B to D because it happens multiple times, and because D has a substational

subtree it dominates.

The phase-markers in this hypothetical tree are C and D. Thus we can expect

that the subtrees dominated by them to form a logical component in the program.

Specifically, we expect that the functions (D,G,H,M) work together to accomplish

a certain task, while the functions (C,E, F, I, J,K, L,N) work together for another

task. Further, given the algorithm or the pseudocode of this program, we expect that

these two sets of functions correspond to significant steps in the pseudocode. In the

40

next chapter, we run LogiView on a number of benchmarks and demonstrate that

the subtrees dominated by phase-markers indeed correspond to the significant steps

in the algorithm.

41

42

Chapter 4

Experiments and Analysis

The LogiView algorithm is designed to identify the functions that mark the high level

structures of the program. One way to measure the effectiveness of the algorithm is by

comparing the phase-markers against the pseudocode describing the input program.

In the ideal case where the phase-markers truly reflect the high level structures of

the program, the subtrees that are dominated by the phase-markers correspond to

the components that are meaningful in understanding the code organization. The

phase-markers would also coincide with the set of functions in the pseudocode.

However, there are some limitations of this approach that make it impractical to

define a closed form metric for evaluation.

1. This approach relies that the program is well-designed and the programmer

divides the work of the program into functions that are meaningful and well-

organized. Some poorly designed programs could contain only one or a few

functions for the entire program and they are not organized in any way. Some

other programs could be divided into functions irrespective of the pseudocode.

That is, one statement / line in the pseudocode corresponds to multiple func-

tions in the program, whereas another block of multiple lines in the pseudocode

corresponds to one function in the program

2. Although the programmer may design the program and divides the task into

functions according to the pseudocode, the names of the function may be dif-

43

Phase-marker Phase-parent

ucxx1 uloop
ucxx2 uloop
uloop utemp
unlap utemp

Table 4.1: The phase-markers from the Timberwolf Benchmark and their parents.

ferent from that of the pseudocode. Programmers may choose to name their

functions according to their functionality and these names may not resemble

anything in the pseudocode. Thus, relying on the pseudocode alone to judge

the components in the program is ineffective.

Based on the limitations above, we do not attempt to define a closed form metric

and apply it to all programs, nor will we judge the effectiveness of LogiView from

the pseudocode alone. Rather, we will examine each program on a case-by-case basis

and show that our phase-markers indeed present a view that helps understanding the

code organization.

When examining the phase-markers in the program, we also need to examine

their immediate dominators, called the phase-parents. The phase-parents provide the

context under which the phase-markers are called, and will help us in understanding

the functionality of the phase-markers.

4.1 Experiments and Results

We apply the LogiView methodology to a number of SPEC benchmarks [39]. The

following describe my findings.

4.1.1 Timberwolf Benchmark

The first benchmark we shall consider is the 300.twolf benchmark [38]. This bench-

mark simulates the global routing package system. Given the required connections

between a group of transistors, it finds the placement and orientation of the transis-

tors that requires the least amount of resources (physical space, power and ground

44

procedure Algorithm Structure(j0, T0)

1: T ← T0

2: X ← j0

3: while cost(j) has not changed for 3 consecutive repetitions do

4: while less than 20 new states per unit generated at each stage do

5: j ← generate(X) { generates a new state j incrementally from the previous
state X by a weighted random selection}

6: if accept(c(j), c(X), T) then

7: X ← j
8: end if

9: end while

10: T ← update(X).
11: end while

procedure accept(c(j), c(i), T)

1: ∆c ← c(j) − c(i)
2: y = f(∆c, T)
3: r ← a random number between 0 and 1 with uniform probability
4: if r < y then

5: return TRUE
6: else

7: return FALSE
8: end if

Figure 4-1: The pseudocode of the Timberwolf Benchmark.

45

1 main() {

2 utemp();

3 }

4

5 utemp() {

6 while ‘‘stopping criterion’’ is not finished {

7 findunlap();

8 uloop();

9 }

10 }

11

12 findunlap() {

13 // computes the cost

14 unlap();

15 }

16

17 unlap() {

18 // sorts and places cells

19 }

20

21 uloop() {

22 ucxx1();

23 ucxx2();

24 }

25

26 ucxx1() {

27 acceptt();

28 }

29

30 ucxx2(){

31 acceptt();

32 }

Figure 4-2: The simplified view of the Timberwolf code.

46

122 for(; ;) {

...

134 uloop();

...

237 if(iteration >= freeze + 3 || stage == 3) {

238 /*

239 * WE ARE FINISHED *

240 */

...

279 break;

...

282 }

283 }

Figure 4-3: A snippet from utemp.c in the Timberwofl Benchmark.

connections, etc). Figure 4-1 shows the pseudocode of this benchmark from [32]

This algorithm belongs to the class of algorithms called probabilistic hill-climbing

algorithms. An algorithm in this class finds the maximum value of an objective

function by starting at one point. At each iteration, the algorithm tries to improve the

objective function by moving in the direction that increases the objective value (hence

the name hill-climbing). This direction is found by randomizing some parameters

in the algorithm, so that for each iteration the direction of the point movement is

not deterministic. The function accept in Figure 4-1 determines if the most recent

movement indeed increases the objective function. If it does not, then the move is

not executed.

Figure 4-4 shows the call graph for this benchmark, and Figure 4-5 shows the

corresponding dominator tree. We see that the call graph is very complex and im-

practical to investigate, while the dominator tree provides a more organized view

of the functions. Table 4.1 shows the phase-markers and the phase-parents for this

benchmark. Figure 4-2 shows a simplified view of the code, using mostly functions

from Table 4.1.

Function findunlap computes the cost of a state, according to the comments in

([38] main.c line 225-229). This function calls unlap that sorts the cells and places

them in a theoretical microchip. Function findunlap performs every calculation of

47

Figure 4-4: The call graph for the Timberwolf Benchmark.

Figure 4-5: The dominator tree of the Timberwolf Benchmark.

48

c(X) and c(j) in the pseudocode. This function indicates how “expensive” it is to

build a physical microchip that is indicated by the state X or j. It depends on a

number of variables such as the space and power requirements. If one needs to design

the algorithm to be biased towards space conservation or power conservation, he only

needs to alter the cost function to reflect the bias. In this benchmark, he only needs

to examine the function findunlap and make the appropriate change.

Figure 4-3 shows a snippet from [38]utemp.c. Line 237 corresponds to line 3

in the main algorithm in Figure 4-1. Line 122 causes a loop that will be repeated

indefinitely until the condition in Figure 4-1 line 3 is satisfied, because the break

statement in line 239 can only be executed if the cost has not changed for 3 consecutive

repetitions. Therefore, lines 123-236 in utemp.c correspond to lines 4-10 in Figure

4-1. The two functions that are called from this region are uloop and savewolf.

Function savewolf is primarily concerned with saving the current state to a file, and

corresponds to line 10 in the pseudocode. Thus, function uloop corresponds to the

loop in Figure 4-1 line 4-9.

The function accept in the pseudocode determines if the new state is worth pre-

serving. It computes the increase in the cost function and tests if the increase is

greater than a random number. In other words, it insists that the movement of the

point increases the cost function by a large enough value. This function roughly cor-

responds to the function acceptt in the code [38]acceptt.c. It takes one parameter

delta cost, which suggests that this function corresponds to line 2-8 in Figure 4-1

accept procedure. The first line, the computation of change in cost itself, is done

outside of acceptt.

Figure 4-6 shows another snippet that demonstrates the relationship between

uloop and acceptt. As the function uloop executes lines 4-9 in the pseudocode,

it makes calls to ucxx1 and ucxx2 depending whether the condition in line 227 is

satisfied or not. Both ucxx1 and ucxx2 call acceptt which executes the function

accept in the pseudocode. The change in cost itself is computed in the argument to

acceptt.

Function uloop calls ucxx1 and ucxx2 at different points, depending on the char-

49

uloop.c

...

227 if(*cellbptr == 0) {

228

229 if(ablckptr->borient == 1) {

230 if(bblckptr->borient == 1) {

231 if(ucxx1(bxcenter, bycenter)){

...

271 } else { /* *cellbptr >= 1 */

...

284 if(ablckptr->borient == 1) {

285 if(bblckptr->borient == 1) {

286 t = ucxx2() ;

...

ucxx1.c

...

65 truth = acceptt(funccost+penalty-cost-newpenal-delta_vert_cost);

...

ucxx2.c

...

111 truth = acceptt(funccost+penalty-cost-newpenal-delta_vert_cost);

...

Figure 4-6: A snippet from uloop.c, ucxx1.c, and ucxx2.c in the Timberwofl Bench-
mark.

50

Phase-marker Phase-parent

power prune prepare to parse
print sentence batch process

read entry read dictionary
restricted expression read entry

Table 4.2: The phase-markers from the Link Grammar Parser Benchmark and their
parents.

1. Word expressions are extracted from the dictionary and pruned.

2. Disjuncts are built.

3. A series of pruning operations is carried out.

4. The linkages having the minimal number of null links are counted.

5. A "parse set" of linkages is built.

6. The linkages are post-processed.

Figure 4-7: The original pseudocode for the Link Grammar Parser.

acteristics of the state. However, both ucxx1 and ucxx2 call acceptt ([38] ucxx1.c

line 64, ucxx2.c line 111). which suggests that these two functions correspond to or

contain line 10-11 in Figure 4-1.

4.1.2 Link Grammar Parser

We will consider the 197.parser benchmark [37]. This benchmark is a syntactic parser

of English sentences, based on a link grammar, an original theory of English syntax.

Given a sentence, the system parses it and assigns to it a syntactic structure consisting

of set of labeled links connecting pairs of words [37].

Figure 4-8 shows the call graph for this benchmark, and Figure 4-9 shows the

corresponding dominator tree. We see that the call graph is very complex and im-

practical to investigate, while the dominator tree provides a more organized view of

the functions. Table 4.2 shows the phase-markers and their parents that we found in

this benchmark. The original pseudocode for the parser is shown in Figure 4-7 [42]

Figure 4-10 contains the subtree rooted in read dictionary and corresponds to

line 1 in Figure 4-7. Both read entry and restricted expression were recognized

as phase-markers. From examining this subtree, we can infer that the process of

51

Figure 4-8: The call graph for the Link Grammar Parser.

Figure 4-9: The dominator tree of the Link Grammar Parser.

52

Figure 4-10: The subtree rooted in read dictionary in the SPEC parser benchmark.

Figure 4-11: The subtree rooted in build sentence disjuncts in the SPEC parser
benchmark.

53

Figure 4-12: The subtree rooted in power prune in the SPEC parser benchmark.

reading the dictionary consists of reading entries, one at a time. The leftmost branch

of read entry contains the functions read word file and get a word, which sug-

gests that the dictionary entries are represented as word files. The function advance

is responsible for advancing to the next word file. The middle subtree contains the

functions that take the expression from the dictionary and builds the internal repre-

sentations of the expression.

Similarly, the subtree that corresponds to line 3 in Figure 4-7 is shown in Fig-

ure 4-12. The function power prune immediately dominates several functions that

are involved in the pruning operation. From the names of these functions, we can

speculate that the pruning operation consists of searching for a match between the

disjuncts, pruning the match, and updating the various pointers and tables.

The subtree in Figure 4-12 shows the subtree dominated by power prune. The

source for function power prune can be found in ([37] prune.c line 1282-1364). This

function makes a back-and-forth passes along the sentence, and each time it deter-

mines if a pruning action is available on the sentence. If so, it performs the required

pruning, which involves rearranging the links and connectors between disjuncts.

Figure 4-11 contains the subtree that corresponds to line 2 in Figure 4-7. Our

algorithm did not consider build sentence disjuncts to be a phase-marker because

54

Figure 4-13: The call graph of the GNU Zip Benchmark.

the subtree underneath it is of the chain pattern. The root of this subtree actually

satisfied all the other requirements to be a phase-marker, i.e, it is called many more

times than its parent, and it contains a node other than itself which is not a leaf. So

if we had relaxed the requirements that a phase-marker must not contain a subtree

that is of the chain pattern, this subtree would have been flagged as a phase-marker.

The reason why we prevented a chain pattern from being a phase-marker is to

prevent long chains of delegations to become a phase-marker. In Figure 4-11 we see an

example of a chain pattern. The function build sentence disjuncts and the func-

tion build disjunct are very similar and the call from the former to the latter has

some delegative aspects in it. However, build disjunct calls extract connectors

and this call is not a delegation. Thus, this subtree exhibits one case where the sub-

tree sanity conditions potentially prevent a good candidate of a phase-marker from

being recognized.

4.1.3 GNU Zip

We will consider the 164.gzip benchmark [36]. Figure 4-13 shows the call graph and

Figure 4-14 shows the corresponding dominator tree. Table 4.3 shows the phase-

55

Figure 4-14: The dominator tree of the GNU Zip Benchmark.

Phase-marker Phase-parent

flush block deflate
spec compress main

Table 4.3: The phase-markers from the GNU Zip Benchmark and their parents.

markers that were found and their parents. This benchmark performs compression

and decompression of a file and hence the pseudocode is very straightforward. Given

a file, the benchmark compresses it and then decompresses it. This pseudocode is

not interesting to us. But what is interesting is the dominator trees and the phase-

markers that are generated by our algorithm. The phase-markers were able to predict

the main steps and the substantial aspects of the program execution.

The highest-level phase-marker is spec compress. This function encompasses

the actual benchmark to be performed. The nodes outside of the subtree rooted

in spec compress are only those functions that are related to SPEC benchmarking

routines, such as debug time, spec init, etc. Thus, we can say that the subtree

under spec compress is where the substantial part of the program execution happens.

The function deflate is recognized as the parent of a phase-marker. This function

is where the actual compression and decompression occurs. Prior to entering deflate,

the program merely prepares the file and sets up the buffer for reading and writing

56

files. The compression and decompression algorithm itself happens from within the

subtree rooted under deflate. Line 7-61 of deflate.c [36] describes the compression

algorithm using a sliding window and the repeated text of the largest length, and the

entire algorithm is dominated under this phase-marker.

Although the pseudocode to GNU Zip benchmark is uninteresting and we only

found only two phase-markers, these phase-markers indeed identify the structural

phases in the program. The first phase-marker predicts the chunk of the program

execution that is unique to GNU Zip benchmark (as opposed to common to all SPEC

benchmarks). The parent of the second phase-marker isolates the interval where the

actual compression and decompression process occur.

4.1.4 Versatile Place and Route

We will consider the 175.vpr benchmark [2].

Versatile Place and Route (VPR) is a placement and routing program that au-

tomatically implements a circuit in a Field-Programmable Gate Array chip. There

are two major phases of VPR, the placing phase and the routing phase. The placing

phase determines which logic block and I/O pad should implement each of the func-

tions in the circuit, while the routing phase determines which programmable switches

should be turned on in order to connect the existing wires to the logic block I/O [2].

The two phases are run by invoking VPR twice with different command-line inputs.

In this thesis we will examine only the routing phase of the program.

In the routing phase, the connections required by the circuit are represented as

a hypergraph and the possible connections are represented by a (different) directed

graph. VPR uses a congestion detection algorithm as shown in Figure 4-15 [23].

The heart of this algorithm is actually a variation of Dijkstra’s algorithm [2]. The

algorithm computes the shortest distance from s to t in a directed graph G. Figure

4-16 shows the pseudocode of Dijkstra’s algorithm. Lines 1− 4 are only initialization

steps, but lines 5−17 are the actual algorithm itself. These lines compute the shortest

distance from s to any node in the graph. Lines 18 − 24 are called the backtracking

steps that actually output the path from s to t.

57

procedure NegotiatedCongestion

1: while shared resources exist do

2: for all signals i do

3: Rip up routing tree RTi

4: RTi ← si

5: while there are new sinks tij to be found do

6: Initialize priority queue PQ to RTi at cost 0
7: repeat

8: Remove lowest cost node m from PQ
9: for all fanouts n of node m do

10: Add n to PQ at cost cn + Pim

11: end for

12: until new tij is found
13: for all n in path tij to si do

14: Update cn

15: Add n to RTi

16: end for

17: end while

18: end for

19: end while

Figure 4-15: The Negotiated Congestion algorithm [23].

We see a resemblance of the Dijkstra’s Algorithm in the Negotiated Congestion

Algorithm. Lines 5−12 in Figure 4-15 correspond to lines 1−17 in Figure 4-16 as the

main Dijkstra’s Algorithm. lines 9−11 in Figure 4-15 also correspond to lines 11−16

in Figure 4-16, as they both expand the list of “known distances” from s. Line 8 in

Figure 4-15 corresponds to line 9 in Figure 4-16. Both lines find the next candidate

to be added to the known distance list by extracting the minimum element from a

priority queue. Lines 13 − 16 in Figure 4-15 are backtracking steps that correspond

to the lines 18 − 24 in Figure 4-16 [23].

Figure 4-8 shows the call graph for this benchmark, and Figure 4-9 shows the

corresponding dominator tree. We see that the call graph is very complex and im-

practical to investigate, while the dominator tree provides a more organized view of

the functions. Table 4.4 shows the phase-markers in the VPR benchmark and their

parents.

Figure 4-19 shows the subtree dominated by route net. Figure 4-20 shows the

58

procedure Dijkstra(G,w, s, t)

1: for all vertex v ∈ V (G) do

2: v.d ← ∞
3: v.previous ← undefined
4: end for

5: s.d ← 0
6: S ← ∅
7: Q ← V (G)
8: while Q 6= ∅ do

9: u ← ExtractMin(Q)
10: S = S

⋃{u}
11: for all (u, v) ∈ E(G) outgoing from u do

12: if u.d + wuv < v.d then

13: v.d ← u.d + wuv

14: v.previous ← u
15: end if

16: end for

17: end while

18: S ′ ← ∅
19: u′ ← t
20: while u.previous is defined do

21: Insert u to the beginning of S ′

22: u ← u.previous
23: end while

24: return S ′

Figure 4-16: The Dijkstra’s Algorithm to find the shortest path from s to t in a
directed graph G.

Phase-marker Phase-parent

build rr xchan alloc and load rr graph
build rr ychan alloc and load rr graph
check adjacent check route

expand neighbours route net
get tok read net

node to heap expand neigbours
route net try route

Table 4.4: The phase-markers from the VPR Benchmark and their parents.

59

Figure 4-17: The call graph for the VPR.

Figure 4-18: The dominator tree of the VPR Benchmark.

60

Figure 4-19: The subtree dominated by route net in the VPR benchmark.

479 static boolean route_net (...) {

...

507 for (i=1;i<net[inet].num_pins;i++) {

508 expand_trace_segment (tptr, remaining_connections_to_sink);

509 current = get_heap_head();

...

519 while (rr_node_route_inf[inode].target_flag == 0) {

...

522 if (pcost > new_pcost) { /* New path is lowest cost. */

...

530 expand_neighbours (inode, new_pcost, inet, bend_cost);

531 }

532 free_heap_data (current);

533 current = get_heap_head ();

...

541 }

...

545 tptr = update_traceback (current, inet);

546 free_heap_data (current);

547 }

...

552 }

Figure 4-20: A partial snippet of the route.c file in the VPR Benchmark, showing
the main steps of the route net function.

61

Figure 4-21: The subtree dominated by try route in the VPR benchmark, omitting
the subtree dominated by build rr graph and route net.

snippet from the source code. This function resembles the Dijkstra’s algorithm, and

thus corresponds to lines 5-12 in Figure 4-15, although the order of the statements

are slightly different because the pseudocode uses a repeat-until loop and the imple-

mentation uses a while loop. Lines 508-509 in the source code initializes the heap

and reads its minimum for the first time, corresponding roughly to lines 6 and 8

in the pseudocode. Line 530 find the neighbors of the nodes with known distance

and adds the neighbors to the heap. This line corresponds to lines 9-11 in the pseu-

docode. Lines 532-533 removes the head (minimum) of the heap and reads the next

one, similar to line 8 in the pseudocode.

Figure 4-22 shows the snippet from the source code. Figure 4-21 shows the sub-

tree dominated by try route. We omit the subtree dominated by net route be-

cause this subtree is shown in Figure 4-19. We also omit the subtree dominated by

build rr graph. This function is primarily concerned with building the graph from

the input description (line 272 in the pseudocode), and thus is not interesting for our

discussion.

Line 300 in the code corresponds to line 1 in the pseudocode, and line 304 in

the code corresponds to line 2 in the pseudocode. Line 307 in the code updates the

62

239 int try_route (...) {

...

272 build_rr_graph(...);

...

300 for (itry=1;itry<=router_opts.max_router_iterations;itry++) {

301

302 pathfinder_update_cost (pres_fac, router_opts.acc_fac);

303

304 for (inet=0;inet<num_nets;inet++) {

305 if (is_global[inet] == 0) { /* Skip global nets. */

306

307 pathfinder_update_one_cost (...);

308 is_routable = route_net (inet, router_opts.bend_cost,

309 router_opts.route_type);

...

321 }

322 }

...

341 }

Figure 4-22: A partial snippet of the route.c file in the VPR Benchmark, showing
the main steps of the try route function.

cost a specific net, and corresponds to line 4 in the pseudocode. As we see in the

discussion above, lines 5-12 in the pseudocode corresponds to the call to route net,

as shown in lines 308-309 in the pseudocode. Lines 3,13-16 do not correspond to any

lines in this function because those steps are mostly rearranging the pointers from

the routing tree and updating the distance. From the internal representation of the

VPR benchmark, these steps are not urgent and could be postponed until the actual

“distance” is needed.

The LogiView methodology produces a dominator tree and a list of phase-markers.

The dominator tree provides an organizational view of the functions in the program,

and the phase-markers identify which functions in the dominator tree mark the high-

level structures. By examining the phase-markers and the dominator tree, one can

infer various informations about the program structure and logically organize the

functions according to their task.

63

64

Chapter 5

Function Names Analysis

The LogiView methodology does not depend on function names in order to generate

the dominator tree and identify the phase-markers. However, in our discussion in the

previous chapter, we rely on the semantic meaning behind these names to speculate

and infer the task of each subtree. Thus, there is an implicit correlation between the

names of the functions, their position in the tree, and the behavior of the subtree.

This chapter provides a methodology to formulate that correlation and automatically

detect such correlation when it exists.

The rest of this chapter is laid out as follows. First we will give an example that

illustrates how function names provide semantic information about their functionality.

Then for each program, we build a profile of the program, that is a list of names that

are most relevant to that program. We also introduce a formula to quantify the

relevance of these names to the program. Then, given several programs that have the

same functionality, we introduce a formula to compare their profiles and extract the

names that are most relevant to the functionality. These names form a dictionary

for the given class of programs. Finally, we provide another formula to measure the

likeliness that a program belongs to a certain class by comparing the program profile

and the class dictionary.

65

Figure 5-1: A section of the dominator tree from the zChaff benchmark.

Figure 5-2: A section of the dominator tree from the zChaff benchmark.

5.1 Overview

Typically programmers do not name their functions randomly, but instead they chose

names that have semantic meaning that suggest the functionality of the program

Figure 5-1 shows a section of the dominator tree fom the zChaff benchmark [9].

It is a benchmark that solves the satisfiability problem by trying to find a satisfying

assignment to a boolean formula in Conjunctive Normal Form. Without examining

the source code, one can guess that this particular subtree is responsible in retrieving

the CPU runtime in order to determine how much time the program spends in a

loop or routine. This guess is only based on the function names and the fact that

ge cpu time dominates cpu runtime.

A more complex example is shown in Figure 5-2. The function add clause is

responsible for adding a clause to the boolean formula, while making sure the addition

66

of the clause is consistent with the current representation in the database. In order to

add a clause, first the database has to find a “free clause id”, that is a clause ID that

is not used by other clauses. Then, the database may expand the required memory if

the current memory usage is insufficient. Again, these guesses can be made without

looking at the source code, and only relying on the names of the functions as well as

the (partial) structure of the tree.

We know from the frequencies in the dominator tree that the function read cnf

is called only once during the execution of the program, and that the other nodes are

called roughly N times each. Then we can make further guesses that the function

read cnf opens the input file that contains the CNF (Conjunctive Normal Form)

formula, that there are roughly N clauses in that formula, and that each clause

invokes a call to add clause. Thus, a knowledge of the frequencies of the nodes yields

additional information about the functionalities of each subtree in the dominator tree.

For our analysis, we leverage the LogiView methodology to find the phase-markers.

LogiView relies on the structure of the dominator tree and the number of calls to

each node (the frequency of the nodes). We shall then combine the result from the

LogiView algorithm with names analysis.

5.2 Name Splitting

First, we split each function name into a collection of tokens. Each token is a word that

the programmer possibly had in mind when he chose to name the function a certain

way. For example, we want to split the name This is MyFunction into (this, is,

my, function). Tokens are always represented in lower-case letters, so tokens my and

My are considered the same, and they both are stored as my.

Names that are separated by lower-case and upper-case letters are separated ac-

cording to the case change, but a token may consist entirely of upper-case letters.

For example, DatabaseSolver becomes (database, solver), and CSolver becomes

(c, solver), but BCP becomes (bcp).

Names that are separated by delimiter characters are separated as the delimiter

67

separates them. For the purpose of this thesis, the only delimiter character is the

underscore (“ ”) For example, optimize svm becomes (optimize, svm).

Characters that are not alphabets are discarded. For example, the name Solver::

add clause3 becomes (solver, add, clause).

If a name is separated by both delimiter characters and letter case difference,

then the name is tokenized according to delimiter characters first, followed by case

differences. In general, we don’t expect programmers to use a mixed method of

naming.

5.3 Application Profile

The LogiView algorithm shown in Figure 3-10 separates the functions into disjoint

groups. For each token, we assign a frequency, that is the number of groups the

name occurs in. A profile of an application is a function that maps each token to

its frequency. Furthermore, each token frequency is normalized by the maximum

token frequency in the application. Formally, the profile of application A is PA :

String→ R, and PA(s) = n
M

if s occurs in exactly n groups and M is chosen such

that maxs PA(s) = 1

The profile identifies the most relevant token to an application. Tokens that

are most related to the application will appear in many functions and groups, and

thus have greater frequency. For example, the token “clause” is ubiquitous in the

zChaff benchmark. The CNF formula is composed of clauses and most approaches

to solving the satisfiability try to resolve one clause at a time. Thus many function

names contain the word “clause”, and we expect that the token clause has frequency

1 or almost 1.

The frequency of each token is proportional to the number of groups it occurs in,

not the number of functions it occurs in, so we don’t over-reward chain patterns and

leafy patterns. When a task is delegated from one function to another, these functions

form a chain pattern and they often have similar names. As in Figure 5-2, the task

of adding a clause is delegated from Solver::add clause to add orig clause to

68

add clause with gid to Database::add clause. While all the nodes in this chain

perform only one task of adding the clause, there are at least four functions with the

word “add” and “clause” in their names. In our current scheme, the word “add” and

“clause” are only counted once in this group instead of four times.

The profile is normalized so that we don’t punish nor reward applications with

many or few groups. An application A may have a few groups but with names that

really suggest its functionalities, Thus the tokens that are most meaningful in this

application occur only a few times at most, because they can occur at most once

in each group. On the other hand, another application B may have many groups

with names that are just as rich semantically. The most meaningful token in A may

occur much less times as the most meaningful token in B simply because B has more

groups. Thus without normalizations, B would seemingly have more correlation with

its function names because the frequencies are high, while A suffers from the opposite

effect. But because we normalize so that both of these tokens have frequency 1, We

neither punish A or reward B for having too few or too many groups.

We also avoided normalizations with regard to the sum. When we normalized

each profile so that the sum of the frequency is 1, we over-punish the applications

which have many distinct names. Consider an application A whose profile prior to

normalization is (100, 50, 10, 2, 1, 1, 1, . . . , 1) where there are 38 ones. The sum of

the frequency is 200. If we normalized such that the sum of the frequency is 1,

the resulting profile would be (0.5, 0.25, 0.05, 0.01, 0.005, . . . , 0.005). Suppose another

application B has profile (100, 1) before normalization. The sum of the frequency is

101, so if we normalized according to the sum, the profile of B would be (0.99, 0.01).

Seemingly, A has less correlation with its names than B because the highest frequency

in B is higher than all frequencies of A. But this disrepancy is not because B has

more meaningful names. Both applications have a token that occurs 100 times. The

tokens that occur once in A could helper functions or generic names (main, malloc,

etc) that are not essential to A’s functionality. Having a few or many tokens with

small frequencies should not affect the highest token’s frequency in the application.

Therefore, we chose our normalization scheme such that the highest frequency is

69

always 1.

5.4 Class Dictionary

A class of applications are a collection of applications that are written for the same

purpose. Often but not always, they have identical input and output format. They

may be different implementations of the same algorithm, or they may use different

algorithms entirely. An example of a class of application is the Satisfiability Solvers

Class, which embodies applications that solve the boolean assignment satisfiability

problem, also known as SAT. zChaff is an example of an application in this class.

Given a class of applications, we wish to build a dictionary that lists the names

that are most related to the task of the applications in the class. For example, we

expect that SAT solver implementations will include tokens such as “solver”, “clause”,

and “literal” with high ranks in their profiles. We want our dictionary to recognize

that these words are indeed related to the task of solving the satisfiability problem.

5.5 Dictionary Construction

Given a class of k programs A1, A2, . . . , Ak , we build a dictionary for this class. A

dictionary is a function that maps each token to a numerical value, such that the

names that are more meaningful and more associated with the class have higher

values. I define the dictionary of the class of application {Ai} is the function D :

String→ R, such that

D(s) =

∑

i6=j

√

PAi
(s)PAj

(s)
1
2
k(k − 1)

For example, if the class has three applications in it, and the word “solver” has

frequency 0.9, 0.8, 0.75 in their profiles respectively, then the value of “solver” in the

dictionary is:

√
0.9 × 0.8 +

√
0.9 × 0.75 +

√
0.8 × 0.75

1
2
× 3 × 2

= 0.8149

70

The value of a name is non-zero only if the name occurs in at least two profiles,

because each term
√

PAi
(s)PAj

(s) requires contribution from two profiles. Thus,

the names that only occur in one application do not contribute to the dictionary.

Usually these are names that are related to or stand for the person or place where

the application is written, such as “haifa” in “HaifaSat”[41] or “jeru” in “JeruSat”

[28] (both are city names where the applications were developed).

Conversely, if a name occurs in at least two applications, the value is immediately

positive. Each term in the summation is non-negative, and when two profiles have

positive value for a name, the product from those two profiles will be positive. More-

over, a name that occurs in more profiles is rewarded quadratically due to the nature

of pairwise summation. If a name occurs in m profiles out of k profiles, then exactly

1
2
m(m − 1) = O(m2) terms in the sum will be positive.

The use of square roots ensures that the contribution from a pair always lies

between the name’s frequency in each profile. If x ≥ y ≥ 0, then x ≥ √
xy ≥ y.

Thus, the contribution from two profiles to the dictionary is the geometric average of

the values of the names in each profile.

The 1
2
k(k − 1) normalization factor ensures that classes with many applications

are not rewarded more than those with few applications. There are exactly 1
2
k(k− 1)

summands in the summation, thus we are in essence taking the arithmetic average of

pairwise geometric average of each of the profiles.

The value of each name will be between 0 and 1 inclusive. In order for a name to

have a value 1, it must have the highest frequency in all the profiles. In other words,

it has to be the most occuring name for all the applications in the class. Based on my

empirical analysis, it is very rare for a name to have a value 1, but it is not impossible.

5.6 Punishing Generic Names

The dictionary often contains names with high values that are not necessarily related

to the functionality of the applications. These are names that are commonly used

by programmers such as “get”, “set”, “create”, etc. The presence of these names

71

overshadows actual important names in the program. One way to recognize these

generic names is by comparing accross multiple dictionaries. Because these names

are commonly used in any programs regardless of their functionalities, we expect

generic names to have high values in multiple dictionaries. We introduce a punishment

function that quantifies how common a name is from comparison accross multiple

dictionaries.

A punishment function is a function that maps each name to a numerical value.

We wish the value to be high when a name is common and it occurs in many dictionar-

ies with high values. If D1,D2, . . . ,Dk is a collection of k dictionaries, the punishment

function T : String → R is defined as

T (s) =
∑

i6=j

√

Di(s)Dj(s)

The punishment function formula resembles the dictionary computation formula.

Thus we infer the following properties of the punishment function.

1. The value of a name is positive if and only if the name is shared by two or more

dictionaries. Names that are specific to one dictionary will have a punishment

value of zero. Thus, tokens that are suggestive of the functionality of a class

(e.g. “sat”) will have punishment value close to of zero because it is unlikely

for that token to occur in other classes.

2. Due to the nature of pairwise summation, the punishment of tokens that are

shared by multiple dictionaries are increased quadratically.

If a name has high value in one dictionary but small values in others, then its

punishment value will be small too. For example, suppose a token has value 0.9 in

one dictionary, and it has values 0.01 and 0.005 in other dictionaries. This scenario

could happen if this token is highly correlated to a particular class, but also weakly

correlated (but not zero) to some other classes. Then its punishment value would be:

√
0.9 × 0.01 +

√
0.9 × 0.005 +

√
0.01 × 0.005 = 0.3741

72

A special case of this property is when the value is positive in one dictionary and zero

in other dictionaries. Then the punishment value would be zero, and it reflects the

fact that this token is not “shared” at all.

The punishment value of each token is between 0 and 1
2
k(k − 1) inclusive. We

don’t normalize by requiring the value to be between 0 and 1 for the reasons that will

become clear in the next section. In the previous sections, we normalize the profiles

and dictionaries because we eventually compare values accross multiple profiles and

dictionaries. But since there is only one punishment function, the presence or lack of

normalization does not matter in our methodology.

5.7 Application Score

An application’s profile indicates which tokens are the most related to the applica-

tion’s functionalities, while a class’ dictionary describes which tokens are the most

related to the task of the applications in that class. Thus, given a candidate appli-

cation A and a class of applications C, we want to know if A belongs to C or not by

comparing A’s profile and C’s dictionary.

One sign that A belongs to C is if PA is similar to C’s dictionary. The tokens

that have high values in one should also have high values in another and vice versa.

But we also want to minimize the effect of the generic names, thus we have to make

use of the punishment function that we developed earlier. We introduce a formula to

compute the similarity between A and the class C.

Given a candidate program A and a class of applications C, the Similarity Score

f(A,DC) measures the closeness of A to C. The higher the score is, the more likely

A belongs to C. If DC is the dictionary of class C, the score is defined as

f(A,DC) =
∑

s

PA(s)DC(s)

eT (s)

where the summation is run over all possible tokens. In practice, we only need to

consider the union of the tokens in A and DC, because other terms will be zero. Each

73

name that is shared between A’s profile and DC contributes one positive term to the

sum. This contribution is high if both PA(s) and DC(s) is high. It means that if a

token occurs frequently in application A, and that token is strongly associated to the

class C, it is a supporting evidence that A belongs to C.

The names that are shared by multiple dictionaries are punished exponentially.

When a token has a punishment value of zero, T (s) = 0 and thus the term doesn’t

suffer punishment at all. But when T (s) is high, the token’s contribution to the sum

decreases exponentially.

When we have a candidate application A, and several classes C1, C2, . . . , Ck, we

compute the similarity score of the application against each class. We choose the

class that has the highest similarity score, and we say that A most likely belongs to

that class.

One way to use this formula is when we have a collection of application classes,

and we have a candidate application. If we know that the candidate must belong to

one of the classes in our collection, we can calculate the similarity score between the

candidate application and each class. The class that has the highest similarity score

is the most likely class where the candidate application belongs, and thus we classify

the candidate application into that class.

There are a number of possible applications of this methodology. For example, a

system can invoke an end-to-end optimization if it knows the application is in a certain

class. Different classes may have different optimization techniques, and by identifying

the class correctly, the system can choose the most appropriate optimization. Another

example is when the system detects that one of its modules belongs to a certain

class. If the system has alternative implementations for the same class, it can suggest

substituting the module with another module with the same functionality. Also, if

the system detects that two of its modules have the same functionality, it can suggest

a refactorization of these two modules.

74

5.8 Application Class Analysis

We evaluate five classes of applications. First, we describe 5 application classes and

their dictionaries. Then we show the generic tokens that occur in multiple classes

with their punishment function values. Finally, we performed a leave-one-out test. In

this test, we remove one application, recompute the dictionaries and the punishment

function, and classify that application into the class that has the highest similarity

score. We do this for each application and show that most applications are classified

into the actual class where they belong.

The application classes that we examine are:

1. Satisfiability Solver (SAT)

2. Support Vector Machine Learning (SVM)

3. Deterministic Finite Automata Learner(DFA)

4. Linear Programming Solver (LP)

5. Fast Fourier Transform Calculator (FFT)

These classes are chosen due to the growing importance in the field of machine

learning, optimization problems and scientific computing.

5.8.1 Satisfiability Solver

A SAT Solver takes as input a boolean formula in Conjunction Normal Form, and

outputs whether there is an assigment of variables that makes the formula true.

This problem is known to be in NP-complete. The applications in this class are

mostly written to compete for the best implementation and performance for the SAT

Competition [31]. We have six applications in this class: zChaff [9], Jerusat v1.2 [28],

Jerusat v1.3 [28], Minisat [7], HaifaSat [41], and MarchDL [12].

The SAT problem itself is NP-complete and several heuristics have been found to

speed up the search. All the benchmarks above use different algorithms and heuristics,

except Jerusat v1.2 and Jerusat v1.3 which are different versions by the same author.

75

Token s Dictionary Value D(s)

get 0.435677
clause 0.40127

lit 0.252596
add 0.231888

solver 0.22264
var 0.209158
io 0.199065

new 0.194051
free 0.158784
to 0.146992
in 0.14346

libc 0.141088
default 0.120695

file 0.119236
int 0.10032

internal 0.0970132
init 0.0961564
sat 0.0936139
read 0.0692947
cl 0.0587285

Table 5.1: The dictionary for the SAT application class.

They use the same algorithm with different parameters. All benchmarks are run with

the same input, the Airport Scheduling Problem ([9] p05.cnf).

Table 5.1 is the resulting dictionary for the SAT class, sorted according to their

values D(s). We only display the top twenty tokens. The topmost token is a generic

token (“get”), but the next five tokens have semantic correlations with SAT (“clause”,

“lit”, “add” “solver”, “var”). “Clause”, “lit”, and “var” are ranked up high because

the CNF form is a conjunction of clauses, each of which is a disjunction of literals.

These literals are variables that must be assigned a true or false value.

“Add” is a mix between generic token and meaningful token. There are function

names such as add binary equivalence and root add constraint resolvent in

MarchDL and add clause in HaifaSat and zChaff that really associate “add” with

SAT. But there are also names such as exchange and add and atomic add in HaifaSat

that are quite general and do not strongly suggest the SAT class.

76

Token s Dictionary Value D(s)

svm 0.564235
kernel 0.287457
cache 0.275783

compute 0.136083
example 0.117851

get 0.096225
solve 0.096225

Table 5.2: The dictionary for the SVM application class.

“Sat” is surprisingly ranked quite low in Table 5.1. The token stands for “satisfia-

bility” and thus we expected that many function names would contain this token. But

in reality, only zChaff, MarchDL, and Minisat have this token. Even then, MarchDL

only has one function with that token (transformTo3SAT). zChaff has “sat” in mul-

tiple functions (SATSolver, SolveSAT, etc), but they all fall into one group, thus the

frequency in the zChaff profile was also low.

5.8.2 Support Vector Machines Learning

The Support Vector Machines (SVM) trainers take as inputs two sets of points in

a multidimensional space and try to find maximum separation of those points. A

separation is a plane such that all points in one set are in one side of the plane and all

points in the other set are in the other side of the plane. The separation is represented

as a plane in a higher dimension. The trainer’s objective is to find the plane such

that the distance from the points to the plane is maximum. If perfect separation is

not possible (if there is no plane such that all points are in their respective side), then

the trainer maps these points into a higher dimension where the separation becomes

possible. The coordinates of the points in the new dimensions are determined by a

kernel function [4], which varies for each algorithm.

Our benchmarks are downloaded from [35]. For our experiments, we used three

applications: SVM Light [15], GiniTrain [3], and SVM Torch [4].

Table 5.2 shows the dictionary for this class. There is a generic token “get”

but it ranks quite low in the dictionary. The top two tokens (“svm” and “ker-

77

nel”) are very specific to SVM. The token “cache” ranks third. Although this token

is not very specific to SVM, it occurs in many functions within the SVM context.

In Gini Train it occurs in kernel insert cache and in SVM Light it occurs in

touch kernel cache and these functions suggest the SVM class. However, “kernel”

also occurs in block evaluate cache which is quite generic and does not suggest the

SVM class.

5.8.3 Deterministic Finite Automata Learner

The applications in the DFA class learns the strings in the language of a Deterministic

Finite Automata, given the known accepted and rejected strings. They are all written

to compete in the Abbadingo Competition [18]. The task of the competition was

to predict whether an unknown DFA would accept or reject the test strings. The

learners are provided with a set of training strings that had been labeled as accepted

or rejected.

In our experiments, we used three applications which are variations of the same

algorithms [16] and all written by the same person: Red Blue Simulator [17], Traxbar

Simulator [17], and RLB Simulator [17].

The algorithm is called Evidence Driven State Merging (EDSM) [16]. It attempts

to “guess” the general structure of the known accepted strings by merging similar

strings together. In order to achieve the maximum probability of correct guesses, this

algorithm uses Augmented Prefix Tree Acceptor (APTA), a tree where each node

corresponds to one symbol in the string. The paths from the root to the nodes

represent the accepted strings, so the number of nodes is equal to the number of the

accepted strings.

The algorithm merges two nodes if they are “similar” enough (if the subtrees of

these two nodes share many labels). The method to calculate the similarity score

between two subtrees differs from one algorithm to another. Although the merged

nodes will have similar subtrees, these subtrees are not exactly the same. Thus after

the nodes are merged, these two subtrees need to be “resolved”. The resolution

method of the subtrees under the merged nodes is also different for each algorithm.

78

Token s Dictionary Value D(s)

itable 0.929618
pqueue 0.822109
make 0.560456
set 0.409254
test 0.409254
my 0.28635

push 0.28635
plist 0.277778

pstack 0.272166
empty 0.227688
pop 0.227688
and 0.225492

augment 0.177272
lookup 0.177272
malloc 0.177272
mbtowc 0.177272
memset 0.177272

tree 0.177272
deallocate 0.175682

Table 5.3: The dictionary for DFA application class.

Once all the similar nodes are merged, the resulting tree represents the most likely

structure that generates the given accepted strings.

Table 5.3 shows the top twenty tokens for the DFA class. We see that two of

the top tokens are very generic (“make” and “set”). However, there are many tokens

that occupy the table suggest stack and queue operations (“itable”, “pqueue”, “push”,

“plist”, “pstack”, “empty”, and “pop”). We also see “augment” and “tree” in the list

although they do not rank very high. This table suggests either that the augmented

prefix tree is implemented with stacks and queues, or the stacks and queues are heavily

used in the tree-related algorithms.

Function make breadth first node list in RLB traverses the tree in a breadth-

first traversal. It uses a queue to store the nodes as the tree is being traversed ([17]

rlb.c line 336-367). Function accept the node in Traxbar detects when a node

cannot be merged anymore and it “accepts” the node to be a state in the string

generator. Because these nodes must be accepted one at a time, the function uses a

79

queue to store the nodes. ([17] traxbar.c line 546-564). In Red-Blue, the function

walk graph fixing depths and backpointers corrects the fields of the nodes that

may be rendered incorrect during the merges. This function also visits the the tree

using a breadth-first traversal and store the nodes in a queue. ([17] traxbar.c line

386-422).

The dictionary for the DFA class is a desirable dictionary. Two highest ranked

tokens have very high D(s) value (0.93 and 0.82 respectively). These tokens are

not generic tokens. Although they do not semantically suggest Deterministic Finite

Automaton or inference learning, they are associated with queues and trees, and

consequently with breadth-first traversal of a tree. This traversal mechanism is used

many times in the EDSM algorithms.

5.8.4 Linear Programming Solver

The applications in the Linear Programming Solver (LP) class perform simplex method

on multidimensional spaces. The input is a set of linear constraints (hyperplanes)

and a linear objective function. The solver outputs whether the problem is feasible,

whether there is a point that satisfies all the constraints. If the problem is feasible,

the solver also outputs the point that maximizes the objective function.

The simplex method chooses any point on the intersection of two constraint hy-

perplanes. At each step, the method chooses the direction that would increase the

objective function the most, and translates the chosen point in that direction. The

distance is determined such that all constraints are still satisfied after the transla-

tion. This step is repeated until the objective function does not increase anymore.

When the constraint coefficients are represented in a matrix, the simplex method is

equivalent to a series of matrix transformations that can be performed very efficiently.

Although many algorithms have been developed to identify stopping condition as

early as possible, this problem is still an open research field. For our experiments, we

used six benchmarks that are downloaded from [25]. They are Soplex [25], QSolver

[25], GLPK [25], CLP [25], LPabo [25], and LPako [25]. We run them with the same

input data consisting of 21 constraints in 53 dimensions ([25] hello.mps).

80

Token s Dictionary Value D(s)

add 0.125966
create 0.0993527
mat 0.0938832
to 0.0890972
set 0.0760733

elem 0.0666667
hash 0.0666667
insert 0.0525783
free 0.051957
calc 0.0333333

hashkey 0.0333333
search 0.0333333

get 0.0267602
init 0.0234215

name 0.0221487
col 0.021171
key 0.019983
int 0.0190665
row 0.0172189
io 0.0168207

Table 5.4: The dictionary for the LP application class.

81

Token s Dictionary Value D(s)

timer 1
doit 0.5
start 0.5
stop 0.5

bench 0.333333
malloc 0.333333

fft 0.1

Table 5.5: The dictionary for FFT application class.

Table 5.4 shows the dictionary for the LP class. The top tokens are very generic

names (“add”, “create”, “to”, and “set”). Although the third-ranked token “mat”

stands for “matrix”, it does not specifically suggest the simplex method either. There

are many matrix-related algorithms that are different from the simplex method. The

next non-generic token is “row” that is ranked quite low in the table. This token

not only stands for matrix rows, but also for the technical term “row” in linear

programming that means an inequality constraint. Each inequality constraint is worth

one row and each equality constraint is worth two rows.

This dictionary is rather undesirable because the tokens that semantically suggest

the simplex method are ranked low (“mat” and “row”). Moreover, the D(s) values

for all tokens in this dictionary are generally low. The highest value is only 0.125

compared to 0.4 in SAT (Table 5.1) and 0.5 in SVM (Table 5.2), and this highest

value is attained by a generic token (“add”). The scarcity of the class-specific tokens

and the low values for all token show that this application class does not have a very

cohesive function names within class. There is no strong naming convention among

the simplex method programmers.

5.8.5 Fast Fourier Transform

The applications in the FFT class performs Fast Fourier Transform to the given

inputs. There are six applications in this class: Arprec [8], Bloodworth [8], FFTE [8],

Cross [8], DFFT [8], and Harm [8].

Table 5.5 shows the dictionary for the FFT class. This dictionary is also undesir-

82

able for different reasons than that of the LP class. The tokens in the dictionary don’t

strongly suggest the task of performing s Fast Fourier Transform, except “fft” which

ranked the lowest in the dictionary. This phenomenon is because each benchmark

implemented the transformation in only one or two functions, and those functions are

named differently for each benchmark.

For example, in Arprec there are several functions that perform the Fourier trans-

formation. But these functions are responsible for different types of inputs (complex or

real, integer or float, power of two or not, etc) and are optimized differently. Thus, for

each execution of the program, only one of these functions appears in the call graph

and in the dominator tree. These functions are named such as mp real::mp init

and mp complex::mp init. In the Bloodworth benchmark, the substantial part of

the transformation is performed in only one function. Like Arprec, although there

are several functions, but these functions are responsible for different types of in-

puts. Moreover, these functions are named very specific to Bloodworth, such as

Bloodworth Q2 FwdFFT and Bloowdwoth Q2 RevFFT.

As a result, the dictionary in Table 5.5 contains only six tokens because it only

shows the names that are not benchmark-specific. The token “fft” surprisingly ranks

the lowest in that table. The highest ranking token is “timer” which has a D(s) value

of 1, which means that this token is the most occuring token in all six benchmarks.

Because these benchmarks are all written for benchmarking purposes (to compare

the performance of different implementations of FFT for different types of inputs)

[8], each benchmark has a timer interface that measures the execution time for each

input.

The undesirable dictionaries for both the LP and FFT class show that not all

application classes have a strong naming convention. Even for a very well-known

algorithms such as the simplex method and the fast fourier transform, programmers

choose to name their functions differently. Although these names may be seman-

tically rich by themselves, the names vary from one program to another. Because

our methodology that relies on the names uniformity within each class, the resulting

dictionaries suffer from the lack of strong naming convention.

83

5.8.6 Punishment Function

From the dictionaries of these 5 classes, we compile the list of shared tokens and

compute the punishment function for each token. Table 5.6 lists the top 20 tokens

in the punishment function. The values of a token’s punishment ranges from 0 to

1
2
k(k − 1). Because we use k = 5, then the greatest possible value for a punishment

function is 10. We see that the top tokens in this list are indeed common words that

programmers often use to name their functions.

The token “solve” is among the top twenty tokens in Table 5.6 because this token

appears in the dictionary for SVM and LP (DSV M(s) = 0.096 and DLP (s) = 0.004).

The token “push” has a punishment value 0.07. This token appears in the dic-

tionary for SAT and DFA (DSAT (s) = 0.021 and DDFA(s) = 0.286). Although the

dictionary value for DFA is quite high, because the dictionary value for SAT is small

then the punishment value is also small as expected. Thus, despite the fact that this

token is shared between SAT and DFA, SAT only uses is lightly while DFA uses it

heavily. As a result, the punishment value is small because this token still suggests

DFA more than it suggests SAT.

5.8.7 Leave-One-Out Test

In order to test that our methodology successfully builds the dictionaries that are

most relevant to each class, we run a test procedure for all the benchmarks, called

the leave-one-out test. For each application A, we delete A from its application class

and rebuild the dictionary for A’s class without using A’s profile. Then we recalculate

the punishment functions with this new dictionary. We also compute the similarity

score of A against all the dictionaries, and we classify A to the class with highest

similarity score. We call the classification of A a “success” if A is classified to the

correct class from which it was deleted, and “failure” otherwise. This procedure

mimics the classification procedure in the sense that, if A had been a candidate

application and we don’t know which class it belongs to, then A would be classified

in the same manner as our leave-one-out test method.

84

Token Punishment Value T (s)

malloc 0.411743
get 0.363472
set 0.316481
free 0.245363
add 0.170909
to 0.11444

and 0.113238
empty 0.104808
push 0.0767548
io 0.0578654

create 0.0530481
init 0.0474565
int 0.0437349

dispose 0.030924
default 0.0296494

libc 0.0289664
file 0.0266288

elem 0.0261876
mpn 0.0218693
solve 0.0210903

Table 5.6: The punishment function for the shared tokens.

85

f(A,D) f(A,D) f(A,D) f(A,D) f(A,D) Clas- Success
Benchmark with with with with with sified or

SAT SVM DFA LP FFT as Failure

SAT
Zchaff 0.7320 0.0452 0.0039 0.0494 0 SAT Success

Jerusat12 1.0051 0.0486 0.0161 0.2327 0 SAT Success
Jerusat13 1.1981 0.0571 0.2279 0.1831 0 SAT Success
Minisat 0.5488 0.0059 0 0.0191 0 SAT Success
HaifaSat 1.0047 0.0199 0.0978 0.0979 0.0244 SAT Success
MarchDL 1.0047 0.0603 0.1495 0.1790 0.0406 SAT Success

SVM
GiniTrain 0 0.5314 0 0.0144 0 SVM Success
SVMLearn 0.1926 0.4629 0.1128 0.0732 0.0552 SVM Success
SVMTorch 0.2292 0.4023 0.0994 0.0639 0 SVM Success

DFA
RedBlue 0.0734 0.0226 2.6786 0.0283 0.0366 DFA Success
Traxbar 0.0721 0 2.6732 0.0477 0.0445 DFA Success

Rlb 0.0257 0 2.4754 0.0196 0.0366 DFA Success

LP
Soplex 0.3579 0.0277 0.1993 0.0585 0.0952 SAT Failure

Qs 0.2927 0.0142 0.0575 0.0364 0.0164 SAT Failure
Glpk 0.0741 0.0237 0.0497 0.0307 0 SAT Failure
Clp 0.0124 0 0.0703 0.0102 0 DFA Failure

Lpabo 0.1985 0 0.0250 0.1192 0 SAT Failure
Lpako 0.1309 0 0 0.1105 0 SAT Failure

FFT
Arprec 0.0029 0 0.0597 0.0092 2.0011 FFT Success

Bloodworth 0 0 0 0 1.775 FFT Success
FFTE 0.0029 0 0.0597 0.0016 2.0261 FFT Success
Cross 0.0266 0 0.0990 0.0089 2.0261 FFT Success
Dfft 0.0029 0 0.0597 0.0016 2.0011 FFT Success

Harm 0.0029 0 0.0597 0.0016 2.0011 FFT Success

Table 5.7: The similarity scores and the classification classes from the leave-one-out
test.

86

Table 5.7 shows the similarity score table for each benchmark against each class.

We achieve a 100% success rate in every class except the LP class, where we achieved

zero success rate. As we discussed above, the dictionary for the LP class is undesirable

due to the lack of cohesive function names among the programs in the class.

However, the programs in the FFT class are all classified successfully despite

its undesirable dictionary. Although the dictionary contains tokens that mostly have

poor semantic meaning, these tokens are not shared with the other classes. Moreover,

the dictionary values for this class are generally high (Table 5.5). In other words,

the dictionary for FFT by itself does not intuitively suggest that the programs in

the class perform Fast Fourier Transform. But when compared against the other

dictionaries, this dictionary distinctively suggests the FFT class compared to the

rest. For example, if we look at several dictionaries at once and we are told that one

of them is the dictionary for the FFT class, we would be able to identify the correct

dictionary for the FFT class. Thus, each program in this class is successfully classified

because there is little or no ambiguity between the FFT and the other classes.

The DFA class has the most disrepancy between its own class against other classes.

The score of a DFA application to its own class is much higher than those to other

classes. This disrepancy may be due to the fact that all three applications are written

by the same person, so they are more likely to share the same naming conventions.

The disrepancy could also be attributed to the desirable dictionary as we discussed

above. The tokens have high dictionary values (Table 5.3), and many of the tokens

are meaningful and suggest the breadth-first tree traversal that is used in the EDSM

algorithms.

All programs in the LP class are classified unsuccessfully but the programs in the

FFT class are classified successfuly, although these two classes both have undesirable

dictionaries. We see that the undesirable dictionaries are a result of the lack of strong

naming convention among programmers in these classes. Because our methodology

relies on the name similarity within each class, the dictionary suffers from such lack

of convention. Furthermore, most applications in LP are classified as SAT, which

suggests that each of these application is closer to SAT than to one another. This

87

phenomenon implies that there are a lot of shared tokens between LP and SAT, but

the degree of sharing within LP is not as strong as between LP and SAT.

One way to address this problem is by punishing each token differently, according

to the desirability of each dictionary. Currently, we have no way to quantify the

desirability of a dictionary, but such measure should depend on the composition of

the D(s) values (whether they are high or low values). It should also depend on

whether the top tokens are generic or not, by comparing multiple dictionaries. Once

we have devised a formula to quantify desirability, we can use it to improve our

punishment function so that the tokens from less desirable dictionary are punished

less.

88

Chapter 6

Physical Phase Detection

Our phase-markers are intended to encompass high-level structures in the program

and mark the boundaries between one logical component to another. These com-

ponents typically perform very different functionalities, and are likely to have very

different physical characteristics throughout their execution. I explore the relation-

ship between the primary data cache miss rates and the phase-markers recognized

by LogiView. Specifically, I demonstrate that these phase-markers are useful in the

context of not only understanding program structure, but also understanding pro-

gram performance. Then I also discuss the relationship between LogiView and the

traditional phase algorithms that only observe these physical characteristics.

In this chapter, we will examine the behavior of primary data cache miss rates

of various benchmarks. We record the miss rates by instrumenting binaries using

Program Instrumentation Tool (PIN) [21]. PIN enables us to record every data

accesses in the program, and consequently enables us to simulate the cache and keep

track the number of cache hits and misses throughout the program execution. After

every k accesses, we compute the ratio of the miss to total accesses and plot the ratio.

We call k the window size of the plot, which can be set arbitrarily. Typically we set

the window size so that the entire execution fits within one graph, and individual

phase behavior is still apparent and visually recognizable. Later we will see how the

choice of the window size affects our results.

Figure 6-1 shows the primary cache data miss rates for an execution of SVM

89

Figure 6-1: Miss rates plot of a benchmark where there are higher miss rates region
and lower miss rates region.

Figure 6-2: A section of miss rates plot where a similar behavior is repeated multiple
times.

90

Light benchmark [15] with window size 2048. The horizontal axis is the “time” of the

execution, where each point corresponds to one window. The vertical axis is the miss

rate. We can see clearly that there are regions with lower miss rates in the beginning

and there are regions with lower miss rates towards the end of the execution. There

is an abrupt change of the miss rates between these two regions, which suggests that

these regions belong to two different components in the program and they perform

different tasks.

Figure 6-2 shows the same plot as in Figure 6-1, but we have zoomed in to one

of the higher miss-rates region. We see that there is a pattern that repeats itself

multiple times. Most likely, this repetition is caused by a loop whose execution span

equals the length of the repeated pattern.

We will show that the phase-markers that we found using LogiView can predict or

delineate this change of behavior. Specifically, we observed the following correlation

between phase-markers and the change of behavior (miss rates):

1. Each call to a phase-marker marks a region with a repeated pattern of execution.

The interval between two consecutive calls to a phase-marker contains a pattern

that repeats over every such interval. Figure 6-2 shows an example of a repeated

pattern, and each repetition corresponds to one call to a phase-marker.

2. The immediate dominator of the phase-marker (called the phase-parent) en-

compasses an interval of distinct behavior. The interval between a call to a

phase-parent until the exit to the caller function exhibits a behavior that is dis-

tinguishable from the interval immediately before and after. Figure 6-1 shows

an example where there may be two phase-parents in the program, in which

case each of the region corresponds to a call to a phase-parent. There may also

be only one phase-parent which corresponds to one of the regions. In this case,

we say that the behavior inside the call to the phase-parent is distinct from the

behavior outside the call.

91

Figure 6-3: The entry and exit to optimize to convergence in the SVM Light
Benchmark.

6.1 Results

We run our instrumentation on a number of benchmarks: SVM Light [15], SPEC GNU

Zip [36], Timberwolf [38] and Grammar Link Parser [37]. For each of this benchmark,

we also use PIN to record every function calls and exits. In each of the plot, the miss

rates are indicated by positive values shown in red, and the entry and exit to a

function are indicated by negative values of value −0.1 and −0.05 respectively. If this

thesis is available in color, then the entry and exit will also appear in green and blue

respectively.

6.1.1 SVM Light

We run LogiView on the SVM Light Benchmark [15], with window size 2048. Lo-

giView only presents one phase-marker optimize svm and the corresponding phase-

parent optimize to convergence. These pair are the computational substance of

SVM.

Figure 6-3 shows the entry and exit to the phase-parent. There is only one call to

this function throughout the entire program execution. The interval between the entry

92

Figure 6-4: Multiple entries and exits to optimize svm in the SVM Light Benchmark.

Figure 6-5: A zoomed-in view of Figure 6-4, showing the repetition of the pattern for
each call to optimize svm.

93

main {

// reading and parsing input files

...

svm_learn_classification();

// writing and printing output

...

}

svm_learn_classification {

// checking data sanity and consistency

...

// initializations

...

optimize_to_convergence();

}

Figure 6-6: A simplified view of the SVM Light code.

to this function until the exit (the interval inside the phase-parent) encompasses the

region of higher miss rates. The intervals before the entry and after the exit (outside

the phase-parent) have a significantly lower miss rates than inside.

Figure 6-6 shows a simplified view of the code. The execution intervals outside of

optimize to convergence consist of input output file operations and some prepara-

tions before starting the actual learning process. Function optimize to convergence

performs the substantial part of the computation. As a result, the miss rates outside

of this function are relatively low compared to inside.

Figure 6-4 shows 470 calls to the phase-marker during the program execution.

All these calls are made within the higher miss rates region, because by definition

the phase-marker is dominated by the phase-parent, and the call to the phase-parent

encompasses the higher miss rates region.

Figure 6-5 shows a zoomed-in view within this higher miss rates region. This figure

is similar to Figure 6-2, except that now the entries and exits to/from optimize svm

94

Figure 6-7: A section of the dominator tree under optimize to convergence, only
showing the child optimize svm.

are annotated in the plot. If we take the interval between two consecutive entries

to the phase-marker and “stamp” it side-by-side multiple times, we get a similar

repeated pattern as is shown in the plot. Likewise, if we take the interval between

two consecutive exits, we get a single pattern that was repeated periodically.

Furthermore, the intervals inside optimize svm have zero miss rates, although

these intervals occur within optimize to convergence. As we see before, the inter-

vals inside optimize to convergence contain much higher miss rates than outside.

Thus we can infer that optimize svm by itself has good cache performance, but its

parent and “siblings” have bad cache performance.

Figure 6-7 shows the section of the dominator tree rooted in the phase-parent

optimize to convergence, but we omit the children other than optimize svm. Fig-

ure 6-8 shows the rest of the tree. We see that the subtree under optimize svm ap-

pears to work only on a limited set of data. The children of optimize hildreth despo

all suggest matrix operation procedures, while the other functions appear to prepare

the matrix to be “transformed.” These names explain why the miss rates inside

optimize svm are lower than outside. As the program only works with matrices, as

long as the matrix entries are already stored in the cache, the program doesn’t need

95

Figure 6-8: A section of the dominator tree under optimize to convergence, omit-
ting the child optimize svm.

much additional data. Most of the accesses are related to reading and writing the ma-

trix elements, which are already in the cache, except the first time they are brought

into the cache. As shown in Figure 6-5, slighly after each entry to optimize svm

the miss rates are non-zero for a short period of time, and subsides to zero until the

program exits from this function. This period is where some of the matrix entries are

being read for the first time and thus the cache suffers occassional miss.

In contrast, Figure 6-8 shows the names of the functions outside of optimize svm.

These names suggest that a new matrix is being loaded and computed. In partic-

ular, the names of the non-leaves functions, such as update linear component and

select next qp subproblem grad/rand, suggest that these routines take the trans-

formed matrix from optimize svm, use it to update the linear components of the

problem, and search the next matrix to be transformed. These names explain why

the miss rates in these functions are significantly higher than inside optimize svm.

By the time optimize svm is called, the cache are primed with the matrix entries

and hence optimize svm exhibits good cache performance.

Figure 6-9 shows a slightly zoomed-in view of Figure 6-5 with entries and exits

to both optimize svm and update linear component. In this figure, the entries are

96

Figure 6-9: A slightly zoomed-in view of Figure 6-5, with the entries and exits to
update linear component.

Figure 6-10: A slightly zoomed-in view of Figure 6-5, with the entries and exits to
select next qp subproblem grad.

97

Figure 6-11: Entries to and exits from spec compres in the gzip benchmark.

Phase-marker Phase-parent

flush block deflate
spec compress main

Table 6.1: The phase-markers from the GNU Zip Benchmark and their parents.

denoted by symbols at height 0.1 and the exits are denoted by symbols at height 0.15

(see the legend). Likewise, Figure 6-10 shows a similar region, but showing entries

and exits to optimize svm and select next qp subproblem grad instead.

We see that these two functions are indeed responsible for the higher miss rates in

each of the repeated pattern. Also, these two functions are siblings of optimize svm

(they both are immediately dominated by optimize to convergence as well). Our

LogiView does not label them as phase-markers because the subtree underneath these

functions are too small. The subtree dominated by update linear component only

contains clear vector n other than itself. Likewise, the subtree that is dominated

by select next qp subproblem grad only contains select top n other than itself.

6.1.2 SPEC Gnu Zip

We run our algorithm for the SPEC 164.gzip Benchmark [36], with window size 8192.

The phase-markers and the corresponding phase-parents are shown in Table 6.1. The

98

Figure 6-12: Entries and exits to deflate in the gzip benchmark.

highest-level phase-marker is spec compress and the corresponding phase-parent is

main. Obviously, there is only one call to main and the call encompasses the entire

program execution. Figure 6-11 shows the miss rate plots annotated with the entries

and exits from/to spec compress. We see that the interval between two consecutive

entries or exits to this function is a pattern that is repeated 5 times in the program.

From examining the dominator tree, as discussed in Chapter 3, we know that each of

these calls to spec compress compresses and decompresses an input file. Each run of

the benchmark tests 5 different files (a large TIFF image, a webserver log, a program

binary, random data, and a source tar file) [36], and the periodic pattern is repeated

five times in the program. This evidence strongly suggests that each period of the

pattern corresponds to compressing and decompressing one input file.

Another phase-marker in the gzip benchmark is flush block, and the correspond-

ing phase-parent is deflate. Figure 6-12 shows the entries and exits from deflate.

This plot is very similar to Figure 6-11, confirming our previous suspicion that the

function deflate is where the actual compression and decompression occurs.

Figure 6-12 also demonstrates that the intervals inside deflate are considerably

different that outside. The intervals inside have a higher miss rates than outside,

and the change from high to low or vice versa is very abrupt. We explain this phe-

99

Figure 6-13: Entries to and exits from flush block in the gzip benchmark.

nomenon by arguing that the compression and decompression process reuse data with

relatively less frquency. The compression procedure continuously feeds on new plain

text data and compresses them. Then the program saves the compressed text back

into the memory. The program then decompresses that text to obtain a plain text and

compares it against the input file. The decompression procedure does a similar task,

which explains why the program experiences a higher miss rates when performing

compression and decompression. The intervals outside of deflate have lower miss

rates because the program does not perform compression and decompression in those

intervals. The functions outside of deflate mostly deal with opening and loading

the input file into the memory. This operation warrants high miss-rates, as we can

see in Figure 6-12 that the miss-rates are quite high too. But the miss-rates inside

deflate are much higher because the operations involve reading the input file and

performing compression and decompression on the data.

Figure 6-13 shows the entries to and exits from the phase-marker flush block.

Because flush block is dominated by deflate, all calls to flush block occur within

the calls to deflate, and as we have seen, these are the regions of higher miss rates.

Figure 6-14 shows a zoomed-in view of Figure 6-13, but this time the entries and

exits are shown in circles and triangles respectively. Surprisingly, within the regions

100

Figure 6-14: A zoomed in view of Figure 6-13, showing a repeated pattern between
two consecutive entries or exits from flush block.

of higher miss rates inside deflate, there are periodic regions of almost zero miss

rates, and these periodic regions occur inside flush block. It also means that the

interval between two consecutive entries or exits contains a pattern that is repeated

periodically.

6.1.3 Timberwolf Benchmark

We run our algorithm for the SPEC 300.twolf Benchmark [38], with window size

32768. Table 4.1 lists the phase-markers and phase-parents found in the program. As

we have discussed in Chapter 4 the significance of these pharse-markers and phase-

parents, we will examine those functions which mark the logical structure of the

program.

First we will examine the phase-marker uloop and its parent utemp. Figure 6-15

shows the execution of the program, and the entry and exit to utemp. We see that

the call to utemp covers almost the entire execution of the program. In the code, the

function main almost immediately delegates its task to utemp, and thus we can regard

utemp as the main execution of the program. The intervals outside of utemp consist

mainly of marshalling the arguments to utemp, and thus we can expect these intervals

101

Figure 6-15: Entry and exit from utemp in the Timberwolf Benchmark.

Figure 6-16: A zoomed in view of Figure 6-15, showing the entry to utemp in the
Timberwolf Benchmark.

102

Figure 6-17: Entries and exits from uloop in the Timberwolf Benchmark, showing
two full repetitions.

to be different that those inside utemp. Indeed, figure 6-16 shows the zoomed in view

where we only see the entry to utemp. The miss rates outside of utemp (before the

entry to utemp) are almost zero where the miss rates inside are considerably higher.

The function uloop is called 120 times in the program. Figure 6-17 shows a

section of the program execution, showing the entries and exits from uloop. Only

two repetitions are shown, and the exit from the n-th call from uloop is immediately

followed by the entry to the (n + 1)-st call. We see that two consecutive entries

or two consecutive exits from the function comprises an interval which is repeated

throughout the program execution. Slightly after an entry, there is a “spike” (short

period of high miss rates), and then the miss rates go back to the stable rate around

0.02 − 0.03. This behavior repeats multiple times throughout the execution of the

program. In our analysis in Chapter 4 we show that uloop represents the “inner loop”

of the pseudocode that is repeated until there are 20 new states generated (Figure

4-1 line 4). As the program repeats this loop, the behavior of the miss rates is also

repeated.

103

Figure 6-18: The entire execution of the Grammar Link Parser.

6.1.4 Grammar Link Parser

We run our algorithm for the SPEC 197.parser Benchmark [37], with window size

32768. Figure 6-18 shows the miss rates over the entire program execution. Table

4.2 lists the phase-markers and phase-parents found in the program. We already

discussed that the correlation between these functions are the pseudocode in Figure

4-7. We will see the correlation between these functions and the miss rate.

Figure 6-19 shows the entries to and exits from the phase-marker read entry. We

only show two repetitions in this figure. The exit from the n-th call is always followed

by te entry to the (n + 1)-st call to this function. We see that the interval between

two consecutive entries or exits contains a pattern that is repeated periodically. In

read dictionary, the program reads and parses the input dictionary file. This input

file is organized in entries [37]. Therefore, the program reads one entry at a time and

creates the necessary objects for the representation of the dictionary entry. As the

program moves to another entry, this process is repeated. Hence we see that the miss

rates behavior is also repeated.

The function prepare to parse is recognized by LogiView as a phase-parent.

Figure 6-20 shows an entry and an exit to this function. The behavior of the miss

104

Figure 6-19: Entries and exits to read entry in the Grammar Link Parser.

Figure 6-20: Entry and exit to prepare to parse in the Grammar Link Parser.

105

Figure 6-21: Entries and exits to power prune in the Grammar Link Parser.

rates after the exit tends to be stable while the behavior inside the function is much

more erratic. The comments in the source code ([37] main.c lines 1104-1115,1129-

1131) describe that this function does all the necessary pruning and building the

grammatical structures. This step takes place after the disjuncts have been generated.

After the pruning operations are done and the grammatical structures are built, the

program makes one last pass through the sentence in order to match the linkages

against the word and output the sentence if necessary. During this one last pass,

there are no more pruning operations that occurs. The program simply reads the list

of linkages and ensures the consistency of each linkage. As a result, the miss rates

are relatively small but nonzero. The rates are also stable because the behavior of

the program tends to be uniform.

The corresponding phase-marker is power prune. Figure 6-21 shows the entries

and exits of this function. This figure does not exhibit any repeated pattern that

is associated with entries and exits to/from power prune. This figure is an example

where the phase-marker generated by LogiView fails to exhibit a periodic pattern.

The behavior of power prune truly depends on the state of the input sentence. When

there are a lot of disjuncts that can be pruned, power prune prunes the disjuncts and

adjusts the necessary linkages. As a result, this function makes a lot of data accesses

106

Figure 6-22: Entries and exits to build sentence disjuncts in the Grammar Link
Parser.

in unpredictable places, depending on the previous end of each linkage. Because of

this unpredictability, the function fails to exhibit any repeated pattern throughout

its multiple calls. In Figure 6-21 we see that there are some resemblances between

the second call and the fourth call to power prune. But in general, this pattern is

not repeated periodically. This similarity could be because the disjuncts that need

to be pruned in those two calls originate from two sentences with similar structures.

But when the disjuncts are very different, the behavior ot power prune is also very

different.

Figure 6-22 shows the entries and exits to/from build sentence disjuncts. In

Chapter 4 we discussed that this function corresponds to an important step in the

program, but it is not recognized by LogiView due to its chain pattern. In Figure

6-22 we see that the function indeed encompasses a repeating pattern, similar to what

we would expect from a phase-marker.

Table 6.2 shows the various phase-markers and phase-parents that we have dis-

cussed. Most of the time, the phase-parents successfuly identify the phase change

and the phase-markers correspond with periodic behaviors. However, there are four

exceptions to this trend. Functions update linear component and select next qp

107

Function Recognized by Identifies phase change
name LogiView as or repeating pattern

From SVM Light:
optimize to convergence phase-parent Yes
optimize svm phase-marker Yes
update linear component – Yes
select next qp subproblem grad – Yes

From GNU Zip:
deflate phase-parent Yes
flush block phase-marker Yes
main phase-parent NA
spec compress phase-marker Yes

From Timberwolf:
utemp phase-parent Yes
uloop phase-marker Yes

From Grammar Link Parser:
read entry phase-marker Yes
prepare to parse phase-parent Yes
power prune phase-marker No
build sentence disjuncts – Yes

Functions with “–” are not recognized as phase-parent nor phase-marker.

Table 6.2: The phase-markers and phase-parents in identifying phase change or re-
peating pattern.

108

subproblem grad in SVM Light encompass repeating patterns although they are not

selected as phase-markers. They do not satisfy the subtree sanity conditions because

the subtrees they dominate are too small, only containing one node other than them-

selves. Similarly, function build sentence disjuncts in Grammar Link Parser is

not recognized as a phase-marker although this function identifies a periodic pattern.

Moreover, in Chapter 4 we see that this function also corresponds to a logical step in

the algorithm and thus should be marked as a phase-marker. Our LogiView method-

ology does not mark it as a phase-marker because the subtree it dominates is of a

chain pattern. On the other hand, power prune does not exhibit any periodic repeti-

tion although it is marked as a phase-marker. Although in Chapter 4 we demonstrate

that this function also corresponds to a logical step in the algorithm, the program

behavior in a particular call is very dependent on the inputs to that call. As a result,

there is no repeated pattern associated with entries and exits to/from power prune.

Thus, in Table 6.2, there are 8 functions that behave as expected, 1 false positive and

3 false negatives. We recognized 8 out of 11 phases (recognition rate of 73%) and

8 out 9 phase-markers and phase-parents exhibit behavior change (accuracy rate of

89%)

6.2 Correlation to Phase Detection Problem

We have seen that most of the time, the phase-markers and phase-parents accompany

a significant behavior change in the program, and the subtree they dominate can

explain this change. Although LogiView is primarily designed to help understanding

program structure and organization, the phase-markers and phase-parents it produces

can also be used for phase detection.

Several works in the past [5, 6, 13] rely on a fixed window size in order to detect

phases. Other works [34, 33, 24] use variable window sizes. In our discussion above

we use a fixed window size to display the miss rates characteristics. The size for

each benchmark is chosen arbitrarily so that the entire execution could fit within one

window, and the behavior of each phase is still apparent. However, if the window size

109

Figure 6-23: Same plot as in Figure 6-10, but with k = 32768.

had been chosen incorrectly, we could lose information about the different functions

which are responsible for each phase change or phase repetition.

We record the miss rates for the SVM Light Benchmark [15] with window size

k = 32768 instead of 2048. Figure 6-23 shows the same region as Figure 6-10. We

see that the plot becomes very coarse and we lose information by choosing too large

a window size. In our discussion in Section 6.1.1, we infer that optimize svm has a

good cache performance while select next qp subproblem grad is responsible for

the higher miss rate intervals. However, with the large window size and plot as in

Figure 6-23, we cannot make such analysis anymore.

Phase detection algorithms that only observe physical behavior need to choose

their algorithm parameters carefully. Suppose an algorithm uses a fixed window size

and it chooses the window size 32768 for SVM Light. While this algorithm may be

able to detect periodicity as shown in Figure 6-10, it may not be able to explain the

cause for the repetition or the functions which are responsible for the different regions

in each period. However, with our methodology, the window size does not matter in

order to recognize the phase-markers. LogiView does not rely on window size when

choosing phase-markers, thus optimize svm will still be recognized as a phase-marker

regardless of the window size we choose for the phase-detection.

110

Figure 6-24: Same plot as in Figure 6-21, but with k = 1024.

We record the miss rates for the Grammar Link Parser, with window size k = 1024

instead of k = 32768. Figure 6-24 shows the same region as in Figure 6-21. Func-

tion power prune is recognized as a phase-marker, although it does not exhibit any

repeating patterns. In our discussion from Chapter 4, we see that power prune is an

important step in the program and it corresponds to one of the main instructions in

the pseudocode. However, the miss rates behavior for this function is rather unpre-

dictable and display little or no similarity from one call to another. Thus, if a phase

detection algorithm only relies on observable physical characteristics, it is unlikely to

detect power prune to be a phase in the program. Statistical and numerical analysis

of the physical behavior alone will not reveal that power prune is an important step

in the algorithm.

111

112

Chapter 7

Discussion and Conclusion

We presented LogiView, an algorithm to choose several functions in the program

as phase-markers. They provide a logical view of the program, and the subtree

dominated a phase-parent indicates an organizational structure in the program. The

tasks of the function in this subtree are related one to another, and together they

constitute a structural part of the program. We demonstrated that this is true for a

number of benchmarks. We showed that by examining a phase-parent and the subtree

it dominates, we could infer the functionality of the subtree, its role in the program

execution and its correlation to the pseudocode.

LogiView separates the functions into disjoint groups, regardless whether they

are recognized as phase-markers or not. We leveraged this grouping and combined

it with function names analysis to build a dictionary containing the tokens that are

most relevant to each application class. We also provided a formula to quantify the

similarity of a program to a class. We showed that this formula works well for most

applications and most classes as long as the programmers who write the class have a

strong naming convention. Therefore, we showed that there are a tremendous amount

of semantic information contained in the function names. When viewed in the context

of dominator tree, this semantic information helps us understand the functionality of

the program.

Lastly, we also showed that our LogiView algorithm can be used as a phase detec-

tion algorithm. From the program performance point of view, the phase-markers and

113

phase-parents accompany the behavior changes and behavior repetitions during the

program execution. Furthermore, when viewed in context of the dominator tree, the

phase-markers can explain the program performance such as high or low miss rates

in certain intervals.

7.1 Future Research

There are several possible improvements to our result.

1. The subtree sanity condition has proven wrong several times. There are several

functions that do not satisfy this condition but otherwise are good candidates

for phase-markers. Further research can formulate this condition better. For

example, when does a chain pattern be prohibited from becoming a phase-

marker.

2. Our algorithm operates in a two-pass fashion. The first pass runs the program

and builds the dominator tree. As the phase-markers are chose, we run the

program the second time and signal a phase change upon entering or exiting

from the phase-markers and phase-parents. It is possible to build the dominator

tree in an on-line fashion. That is, as the program executes, the call graphs are

updated and the tree is recalculated if necessary. However, the phase-markers

and phase-parents also appear and disappear as the tree evolves its structure.

Our difficulty in coming up with an online phase detection primarily concerns

the situation when the program entered a new phase under a phase-marker,

and then the subtree disappears because a lot of nodes in that subtree were

promoted.

3. Our approach for extracting semantic information from function names splits

the function names into tokens. In this approach, we lose information that are

formed when the right sequence of words are joined together. For example,

a function with name solve variable set would appear no different than a

function with name set variable solve. But those two names actually suggest

114

a very different semantic meaning. Future work can consider taking the word

order into account when analyzing function names.

4. When comparing the tokens from function names, we only look for exact match.

So function solve matrix, solve matrices, and matrix solver are all con-

sidered different. In reality, we may want to consider them similar or the same.

Thus, the names analysis ought to be combined with techniques from Natural

Language Understanding such as word root recognition, sentence parsing, etc.

5. In Chapter 6, we explain the high and low miss rates in terms of entries and exits

to/from phase-markers and view them in the dominator tree. We understand

that the miss rates in an interval are high because the function names suggest

so. This analysis could be expanded further to combine our phase detection

mechanism and the function names analysis.

115

116

Bibliography

[1] Hamid Abdul Basit and Stan Jarzabek. Detecting higher-level similarity pat-

terns in programs. In ESEC/FSE-13: Proceedings of the 10th European software

engineering conference held jointly with 13th ACM SIGSOFT international sym-

posium on Foundations of software engineering, pages 156–165, New York, NY,

USA, 2005. ACM Press.

[2] V. Betz and J. Rose. VPR: A New Packing, Placement and Routing Tool

for FPGA Research. Proceedings of the 7th International Workshop on Field-

Programmable Logic and Applications, pages 213–222, 1997.

[3] Shantanu Chakrabartty. Gini-support vector machine, a probabilistic support

vector machine. Website. http://bach.ece.jhu.edu/pub/gert/svm/ginisvm/.

[4] R. Collobert and S. Bengio. SVMTorch: Support Vector Machines for Large-

Scale Regression Problems. Journal of Machine Learning Research, 1(2):143–160,

2001.

[5] Ashutosh S. Dhodapkar and James E. Smith. Managing multi-configuration

hardware via dynamic working setanalysis. Computer Architecture, 2002. Pro-

ceedings. 29th Annual International Symposium on, pages 233–244, 2002.

[6] Ashutosh S. Dhodapkar and James E. Smith. Comparing program phase detec-

tion techniques. Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual

IEEE/ACM International Symposium on, pages 217–227, 2003.

[7] Niklas Een and Niklas Sorensson. An extensible SAT-solver. Proc. SAT, 3, 2003.

117

[8] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3.

Proceedings of the IEEE, 93(2):216–231, 2005. special issue on ”Program Gen-

eration, Optimization, and Platform Adaptation”.

[9] Zhaohui Fu. zchaff. Website. http://www.princeton.edu/c̃haff/zchaff.html.

[10] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: a call

graph execution profiler. In SIGPLAN Symposium on Compiler Construction,

pages 120–126, 1982.

[11] Murali Haran, Alan Karr, Alessandro Orso, Adam Porter, and Ashish Sanil. Ap-

plying classification techniques to remotely-collected program execution data. In

ESEC/FSE-13: Proceedings of the 10th European software engineering confer-

ence held jointly with 13th ACM SIGSOFT international symposium on Founda-

tions of software engineering, pages 146–155, New York, NY, USA, 2005. ACM

Press.

[12] M.J.H. Heule and H. van Maaren. March dl: Adding Adaptive Heuristics and a

New Branching Strategy. Journal on Satisfiability, Boolean Modeling and Com-

putation, 2:47–59, 2006.

[13] Michael J. Hind, Vadakkedathu T. Rajan, and Peter F. Sweeney. Phase shift

detection: A problem classification. Technical Report RC23058, IBM Research,

2003.

[14] Vladimir Jakobac, Alexander Egyed, and Nenad Medvidovic. Improving system

understanding via interactive, tailorable, source code analysis. In Lecture Notes

in Computer Science, volume 3442, pages 253–268. Springer Berlin / Heidelberg,

January 2005.

[15] T. Joachims. Making large-scale svm learning practical. In B. Scholkopf,

C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector

Learning. MIT-Press, 1999.

118

[16] K. Lang. Evidence-Driven State Merging with Search. NEC Research Institute,

1998.

[17] Kevin J. Lang and Barak A. Pearlmutter. Abbadingo one: Dfa learning compe-

tition. Website. http://abbadingo.cs.unm.edu/.

[18] K.J. Lang, B.A. Pearlmutter, and R.A. Price. Results of the Abbadingo one

DFA learning competition and a new evidence-driven state merging algorithm.

Lecture Notes in Computer Science, 1433(1):12, 1998.

[19] James R. Larus. Whole program paths. In PLDI ’99: Proceedings of the ACM

SIGPLAN 1999 conference on Programming language design and implementa-

tion, pages 259–269, New York, NY, USA, 1999. ACM Press.

[20] Jeremy Lau, Erez Perelman, and Brad Calder. Selecting software phase markers

with code structure analysis. In CGO ’06: Proceedings of the International

Symposium on Code Generation and Optimization, pages 135–146, Washington,

DC, USA, 2006. IEEE Computer Society.

[21] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-

off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:

Building customized program analysis tools with dynamic instrumentation. In

Programming Language Design and Implementation, pages 190–200, Chicago,

IL, June 2005.

[22] Bill McCloskey and Eric Brewer. Astec: a new approach to refactoring c. In

ESEC/FSE-13: Proceedings of the 10th European software engineering confer-

ence held jointly with 13th ACM SIGSOFT international symposium on Foun-

dations of software engineering, pages 21–30, New York, NY, USA, 2005. ACM

Press.

[23] L. McMurchie and C. Ebeling. PathFinder: A Negotiation-Based Performance-

Driven Router for FPGAs. Proceedings of the 1995 ACM third international

symposium on Field-programmable gate arrays, pages 111–117, 1995.

119

[24] Edu Metz, Raimondas Lencevicius, and Teofilo F. Gonzalez. Performance data

collection using a hybrid approach. In ESEC/FSE-13: Proceedings of the 10th

European software engineering conference held jointly with 13th ACM SIGSOFT

international symposium on Foundations of software engineering, pages 126–135,

New York, NY, USA, 2005. ACM Press.

[25] H. Mittelmann. Benchmark of free linear programming solvers. Website.

http://plato.asu.edu/ftp/lpfree.html.

[26] Steven Muchnick. Advanced Compiler Design and Implementation. Academic

Press, 1997.

[27] Shashidhar Mysore, Banit Agrawal, Timothy Sherwood, Nisheeth Shrivastava,

and Subhash Suri. Profiling over adaptive ranges. In CGO ’06: Proceedings

of the International Symposium on Code Generation and Optimization, pages

147–158, Washington, DC, USA, 2006. IEEE Computer Society.

[28] Alexander Nadel. Backtrack search algorithms for propositional logic satisfiabil-

ity. Master’s thesis, Tel-Aviv University, 2002.

[29] C. G. Nevill-Manning and I. H. Witten. Compression and explanation using

hierarchical grammars. The Computer Journal, 40(2 and 3):103–116, 1997.

[30] R.M. Rabbah, I. Bratt, K. Asanovic, and A. Agarwal. Versatility and

VersaBench: A New Metric and a Benchmark Suite for Flexible Architectures.

Technical Report 646, Massachusetts Institute of Technology Computer Science

and Artificial Intelligence Laboratory, June 2004.

[31] SATcompetition. Sat competitions. Website. http://www.satcompetition.org/.

[32] C. Sechen and A. Sangiovanni-Vincentelli. The TimberWolf placement and rout-

ing package. Solid-State Circuits, IEEE Journal of, 20(2):510–522, 1985.

[33] Xipeng Shen, Yutao Zhong, and Chen Ding. Locality phase prediction. In

ASPLOS-XI: Proceedings of the 11th international conference on Architectural

120

support for programming languages and operating systems, pages 165–176, New

York, NY, USA, 2004. ACM Press.

[34] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discovering and

exploiting program phases. Micro, IEEE, 23(6):84–93, 2003.

[35] Alex Smola and Bernhard Scholkopf. Kernel machines repository of machine

learning algorithms. Website. http://www.kernel-machines.org/.

[36] SPEC Benchmark. 164.gzip: SPEC CPU2000 benchmark description. Website.

http://www.spec.org/cpu/CINT2000/164.gzip/docs/164.gzip.html.

[37] SPEC Benchmark. 197.parser: SPEC CPU2000 benchmark description. Website.

http://www.spec.org/cpu/CINT2000/197.parser/docs/197.parser.html.

[38] SPEC Benchmark. 300.twolf: SPEC CPU2000 benchmark description. Website.

http://www.spec.org/cpu/CINT2000/300.twolf/docs/300.twolf.html.

[39] SPEC Benchmarks. Standard Performance Evaluation Corporation. Website.

http://www.spec.org/cpu/CINT2000/.

[40] Kavitha Srinivas and Harini Srinivasan. Summarizing application performance

from a components perspective. In ESEC/FSE-13: Proceedings of the 10th Eu-

ropean software engineering conference held jointly with 13th ACM SIGSOFT

international symposium on Foundations of software engineering, pages 136–145,

New York, NY, USA, 2005. ACM Press.

[41] Ofer Strichman and Roman Greshman. Haifasat - a new robust sat solver. Web-

site. http://www.cs.technion.ac.il/ gershman/HaifaSat.htm.

[42] Davy Temperley, Daniel Sleator, and John Lafferty. Link parser api. Website.

http://www.link.cs.cmu.edu/link/api/index.html.

[43] Xiangyu Zhang and Rajiv Gupta. Matching execution histories of program ver-

sions. In ESEC/FSE-13: Proceedings of the 10th European software engineering

conference held jointly with 13th ACM SIGSOFT international symposium on

121

Foundations of software engineering, pages 197–206, New York, NY, USA, 2005.

ACM Press.

[44] Yutao Zhong, Maksim Orlovich, Xipeng Shen, and Chen Ding. Array regrouping

and structure splitting using whole-program reference affinity. In PLDI ’04:

Proceedings of the ACM SIGPLAN 2004 conference on Programming language

design and implementation, pages 255–266, New York, NY, USA, 2004. ACM

Press.

122

