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Abstract

Multimedia extensions are nearly ubiquitous in today’s general-purpose processors. These
extensions consist primarily of a set of short-vector instructions that apply the same opcode
to a vector of operands. This design introduces a data-parallel component to processors that
exploit instruction-level parallelism, and presents an opportunity for increased performance.
In fact, ignoring a processor’s vector opcodes can leave a significant portion of the available
resources unused. In order for software developers to find short-vector instructions generally
useful, the compiler must target these extensions with complete transparency and consistent
performance.

This thesis develops compiler techniques to target short-vector instructions automati-
cally and efficiently. One important aspect of compilation is the effective management of
memory alignment. As with scalar loads and stores, vector references are typically more
efficient when accessing aligned regions. In many cases, the compiler can glean no alignment
information and must emit conservative code sequences. In response, I introduce a range
of compiler techniques for detecting and enforcing aligned references. In my benchmark
suite, the most practical method ensures alignment for roughly 75% of dynamic memory
references.

This thesis also introduces selective vectorization, a technique for balancing computation
across a processor’s scalar and vector resources. Current approaches for targeting short-
vector instructions directly adopt vectorizing technology first developed for supercomputers.
Traditional vectorization, however, can lead to a performance degradation since it fails to
account for a processor’s scalar execution resources. I formulate selective vectorization
in the context of software pipelining. My approach creates software pipelines with shorter
initiation intervals, and therefore, higher performance. In contrast to conventional methods,
selective vectorization operates on a low-level intermediate representation. This technique
allows the algorithm to accurately measure the performance trade-offs of code selection
alternatives.

A key aspect of selective vectorization is its ability to manage communication of operands
between vector and scalar instructions. Even when operand transfer is expensive, the tech-
nique is sufficiently sophisticated to achieve significant performance gains. I evaluate selec-
tive vectorization on a set of SPEC FP benchmarks. On a realistic VLIW processor model,
the approach achieves whole-program speedups of up to 1.35× over existing approaches.
For individual loops, it provides speedups of up to 1.75×.

Thesis Supervisor: Saman P. Amarasinghe
Title: Associate Professor
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Chapter 1

Introduction

Multimedia extensions represent one of the biggest advances in processor architecture in

the past decade. Today, they are prevalent in embedded designs and nearly ubiquitous in

general-purpose designs. Examples of multimedia extensions include VIS [90], MAX-2 [58],

MMX [69], 3DNow! [68], SSE [72, 89], SSE2 [34], and VMX/AltiVec [20]. Multimedia ex-

tensions are one method by which processor architects have employed a wealth of available

transistors. If used efficiently, they present an opportunity for large performance gains. Be-

fore multimedia extensions become generally useful to the computing community, however,

they must be completely invisible to the high-level programmer.

This thesis develops compiler techniques that automatically target the primary compo-

nent in multimedia extensions: short-vector instructions. Short-vector instructions apply

the same opcode to vectors of operands, usually in parallel. This model of execution closely

matches the structure of multimedia applications which often contain compute-intensive

kernels that operate on streams of independent data. Vector instructions first appeared in

vector supercomputers such as the Cray-1 [79], and more recently in vector microprocessors

such as T0 [7] and VIRAM [49, 50]. In contrast to these designs, multimedia extensions

provide vector instructions that operate on relatively short vectors of packed data. A

short-vector design more readily integrates in existing general-purpose pipelines since the

processor can operate on all elements simultaneously. By comparison, the long vectors

implemented by vector supercomputers typically require iterative execution.

Compared to superscalar or VLIW execution, short-vector instructions offer three pri-

mary advantages. First, they provide a means for parallel execution which they realize with
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moderate architectural complexity and cost. For example, vector instructions require fewer

register-file ports to accommodate an equivalent number of functional units. Similarly, vec-

tor units do not require an intra-element bypassing network. Second, vector instructions

lessen the burden on the instruction-fetch unit and instruction cache since they specify mul-

tiple independent operations using a compact instruction encoding. Finally, vector memory

instructions are particularly powerful since they exploit a wide memory interface to transfer

multiple operands simultaneously.

Early multimedia extensions provided a modest set of short-vector instructions. Initial

designs supported only a handful of integer arithmetic instructions that operated on short-

width data of 8 or 16 bits. Over time, multimedia extensions have grown increasingly

complex. Contemporary designs offer extensive vector instruction sets, including support

for floating-point computation. As such, short-vector instructions now provide a potential

performance improvement for a broader class of applications.

If short-vector instructions are to be widely used, they must be accessible through

high-level languages. An early solution required the programmer to use inline assembly

or processor-specific macro instructions. This approach provides a marginal advantage

over pure assembly-level programming; it is tedious, error-prone, and not portable among

different platforms. The use of inline assembly also necessitates an in-depth knowledge of

the target processor’s vector instruction set. Still worse, the programmer must manually

identify opportunities for employing vector opcodes. As a result, early use of multimedia

extensions was limited to hand-coded libraries and the inner loops of a few performance-

critical kernels.

A better solution for employing short-vector instructions is to use compiler technology

to target them automatically. This approach completely hides the processor’s instruction

set from the programmer and makes short-vector operations universally available. Auto-

matic compilation faces two major challenges: identifying vector parallelism in sequential

descriptions, and using this information to employ short-vector instructions efficiently. For

the former, we can leverage decades of innovation devoted to compilation for vector super-

computers. In terms of performance, however, multimedia extensions offer new obstacles

that the compiler must address. Two of the most important issues are address alignment

of vector memory references and vector code selection. This thesis addresses both of these

topics.

10



Alignment Boundary

load

merge

Memory

Registers

Figure 1-1: A misaligned vector load handled explicitly in software. The highlighted region repre-
sents the accessed data.

1.1 Address Alignment

One issue relating to performance is the alignment of short-vector memory instructions.

As with loads and stores of basic data types, vector references are more efficient when

accessing aligned regions. A memory operation is aligned if its address is a multiple of the

data width. Most designs restrict memory references to aligned segments. For example,

the VMX extension ignores the low-order bits of a vector memory address [37]. In order to

access misaligned data, the compiler must explicitly merge values in two aligned regions.

Figure 1-1 illustrates this process for a vector load. Misaligned vector stores are even more

troublesome since the compiler must splice vector operands with existing values in memory.

Intelligent code generation can eliminate much of this overhead in vector loops by reusing

data produced in the previous iteration. This optimization removes the additional memory

operations typically required by a misaligned access. The overhead of explicit merging is

unavoidable, however, unless the compiler can guarantee alignment.

Some architectures, such as Intel’s IA-32, support misaligned references directly in hard-

ware [42]. IA-32 implementations experience a performance degradation when accessing

misaligned regions, particularly if the data cross a cache-line boundary. The most recent

IA-32 ISA provides both aligned and unaligned vector opcodes. The aligned versions pro-

vide higher performance [41], but are valid only when the compiler can guarantee alignment.

Intel does not reveal the performance details of its misaligned opcodes, but one can assume

they use a series of micro-operations to perform a function similar to that illustrated in

Figure 1-1. For a simple loop that copies one array to another, my experiments revealed

that a version utilizing aligned opcodes executes roughly 2× faster on a Pentium 4 than a

version using unaligned opcodes.
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void add(float* a, float* b, float* c) {

...

for (i=0; i<N; i++) {

a[i] = b[i] + c[i];

}

}

int main() {

float a[N+1], b[N+1], c[N+1];

...

add(a, b, c);

add(a+1, b+1, c+1);

add(a+1, b+1, c+2);

}

Figure 1-2: Pointer arguments complicate alignment detection.

Whether misaligned references are supported in hardware or software, the compiler

can improve performance by generating aligned vector memory references. Unfortunately,

ensuring the safety of aligned opcodes is a difficult task. In most cases, the compiler has no

information about the runtime alignment of a memory operation and must conservatively

assume it is misaligned.

One of the biggest impediments to ensuring alignment is the use of pointer arguments,

as shown in Figure 1-2. In order to determine whether vectorization of the loop in add

will result in aligned references, the compiler must have information about the values of

the procedure’s pointer parameters. Since languages like C allow the programmer to pass

pointers to arbitrary locations in memory, the alignments of the references in the loop

depend on the calling context. Complicating the issue is the fact that different call sites

may pass different offsets, as in the calls from main in Figure 1-2. This thesis introduces

compiler techniques that both detect and enforce aligned accesses. The most effective

approach combines loop-peeling with runtime profiling. For a set of SPEC FP benchmarks,

the technique is able to ensure alignment for roughly 75% of dynamic references.

1.2 Code Selection and Resource Allocation

When targeting general-purpose architectures, the most important performance considera-

tion is the overall code generation scheme. When compiling data-parallel loops, a popular

approach is to directly adopt technology developed for vector supercomputers. Traditional

vectorization, however, is not well-suited for compilation to multimedia extensions, and can

12



for (i=0; i<N; i++) {

s = s + a[i] * b[i];

}

load load

mult

add
…

load

load

Slot 2

mult2

load1

Slot 3Slot 1Cycle

mult4

addload3

………

(a) (b) (c)

Figure 1-3: (a) Dot product kernel. (b) Its data-dependence graph. (c) A valid modulo schedule.

actually lead to a performance degradation. The primary cause for poor performance is

the compiler’s failure to account for a processor’s scalar processing capabilities. General-

purpose processors exploit instruction-level parallelism, or ILP. When loops contain a mix

of vectorizable and non-vectorizable operations, the conventional approach distributes a loop

into vector and scalar portions, destroying ILP and stifling the processor’s ability to provide

high performance. A traditional vectorizing compiler also vectorizes as many operations as

possible. This approach is problematic for general-purpose processors which, in contrast to

vector supercomputers, do not devote the vast majority of resources to vector execution.

On today’s general-purpose designs, full vectorization may leave a significant fraction of the

processor’s execution units underutilized.

As an example of the problems created by traditional vectorization, consider the dot

product kernel in Figure 1-3 (a). Part (b) shows the kernel’s data-dependence graph. For

simplicity, the figure omits address calculations and loop control instructions. When com-

piling this loop for a general-purpose processor, one approach is to employ an ILP technique

such as software pipelining to exploit the processor’s scalar resources. Suppose we intend

to execute the dot product on an architecture that exports three issue slots as the only

compiler-visible resources, and single-cycle latency for all operations. Part (c) shows a low-

level schedule for the operations in part (b). The schedule constitutes a software pipeline,

and in particular, a modulo schedule. Chapter 3 provides a review of software pipelining.

For this example, it is sufficient to focus on the schedule length of the kernel, highlighted in

cycles 3 and 4. After the pipeline fills in the first two cycles, the kernel executes repeatedly,

and is therefore the primary factor in overall loop performance. In modulo scheduling, the

schedule length of the kernel is termed the initiation interval, or II. The schedule in part

(c) has an initiation interval of 2 cycles.
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for (i=0; i<N; i++) {

t[i] = a[i] * b[i];

}

for (i=0; i<N; i++) {

s = s + t[i];

}
…

Slot 2

vload2

vload1

Slot 3Slot 1Cycle

vstore4

vmult3

……… …

add

Slot 2

load2

load1

Slot 3Slot 1Cycle

………

(a) (b) (c)

Figure 1-4: (a) Vectorization of a dot product using loop distribution. (b) Modulo schedule for
the vector loop. (c) Modulo schedule for the scalar loop.

If the target architecture supports short-vector instructions, the dot product in Fig-

ure 1-3 (a) is also a candidate for vectorization. The cyclic dependence, however, prevents

vectorization off the add operation1. When faced with a partially-vectorizable loop, a tradi-

tional scheme distributes the loop into vectorizable and non-vectorizable portions, as shown

in Figure 1-4 (a). Scalar expansion introduces a temporary array to communicate inter-

mediate values between the loops. While this approach may be appropriate for vector

supercomputers, it is not the best solution for a general-purpose design. In addition to

the increased loop overhead, distribution eliminates parallelism among the operations in

different loops.

Assume that the example architecture supports execution of one vector instruction each

cycle, and that vector instructions operate on two elements. After vectorization of the

code segment in Figure 1-4 (a), it is reasonable to apply software pipelining to both loops

in order to gain as much performance as possible. Since the processor can execute only

one vector instruction per cycle, software pipelining cannot discover additional parallelism

in the vector loop. The four vector operations require four cycles to execute, as shown in

Figure 1-4 (b). This schedule has an average initiation interval of 2 cycles since one iteration

of the vector loop completes 2 iterations of the original loop. Part (c) shows a schedule for

the scalar loop. Here, software pipelining achieves an initiation interval of 1 cycle. Overall,

the vectorized dot product requires an average of 2 + 1 = 3 cycles per iteration, which is

inferior to software pipelining alone. Some of the performance degradation is due to the

extra memory operations introduced by scalar expansion. Even if we ignore this overhead,

however, vectorization does not outperform baseline modulo scheduling in this example.

1In some cases, the compiler can vectorize reductions using multiple partial summations. Since the scheme
reorders the addition operations, it is not always legal (e.g., when using floating-point data.)
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for (i=0; i<N; i+=2) {

T = a[i:i+1] * b[i:i+1];

s = s + T(0);

s = s + T(1);

} addvload5

addvload4

…

Slot 2

vload2

vload1

Slot 3Slot 1Cycle

vmult6

vmult3

………

(a) (b)

Figure 1-5: (a) Vectorized dot product without distribution. (b) Its modulo schedule.

As an alternative to loop distribution, a short vector length allows us to unroll the scalar

operations within the vector loop. This approach, illustrated in Figure 1-5, allows vector

and scalar instructions to execute concurrently. Part (a) shows the vectorized loop with the

add operation unrolled by a factor of 2 to match the work output of the vector instructions.

The corresponding modulo schedule in part (b) achieves an average initiation interval of 1.5

cycles since the kernel completes two iterations every three cycles.

The schedule in Figure 1-5 (b) provides a performance improvement over baseline modulo

scheduling, but it does not make the most efficient use of available machine resources. In

particular, the schedule overcommits vector resources and leaves several scalar issue slots

unused. We can achieve better resource utilization by selectively vectorizing a subset of

the candidate operations. For example, the dot product executes more efficiently on the

example architecture if we do not vectorize the multiply operation. Figure 1-6 illustrates

this approach. The modulo schedule in part (b) utilizes all issue slots in the kernel and

executes a maximum of one vector operation each cycle.

for (i=0; i<N; i+=2) {

T = a[i:i+1];

V = b[i:i+1];

s = s + T(0) * V(0);

s = s + T(1) * V(1);

}
addmultvload5

addmultvload4

…

mult

mult

Slot 2

vload2

vload1

Slot 3Slot 1Cycle

addvload6

vload3

………

(a) (b)

Figure 1-6: (a) Selectively vectorized dot product. (b) Its modulo schedule.
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Technique Average II

Software pipelining 2

Traditional vectorization 3

Vectorization without distribution 1.5

Selective vectorization 1

Figure 1-7: Initiation intervals for competing compilation techniques.

Figure 1-7 summarizes the initiation intervals achieved with each technique. By ac-

counting for scalar and vector processing capabilities, selective vectorization produces an

average initiation interval of 1 cycle and outperforms the other methods.

1.3 Selective Vectorization

The previous section illustrates the potential of balancing computation across scalar and

vector resources. The example overlooks a crucial detail, however. Namely, the software

pipeline in Figure 1-6 (b) does not account for explicit operand communication between

vector and scalar instructions. The schedule assumes that operands retrieved via vector

loads are immediately available to scalar multiplications. Modern multimedia extensions

implement separate scalar and vector register files; transferring operands between them

requires explicit instructions. Some designs, such as VMX, offer no specialized support and

require the compiler to transfer operands through memory using a series of load and store

instructions. If the compiler does not account for this overhead, communication costs could

negate the benefits of selective vectorization. As I will demonstrate, judicious code selection

can still produce large performance gains.

As an example of selective vectorization for a realistic architecture, I now target a

hypothetical VLIW processor, which I term the L-machine. The model is representative of

contemporary designs and has a resource set similar to IBM’s PowerPC 970 [36] and Intel’s

Processor Parameter Value

Issue width 6
Integer units 4
Floating-point units 2
Memory units (scalar & vector) 2
Vector floating-point units 1
Vector length (64-bit elements) 2

Figure 1-8: Details of the L-machine, a hypothetical VLIW architecture supporting short-vector
extensions.
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DO 60 J = 2,N-1

DO 50 I = 2,N-1

XX = X(I+1,J)-X(I-1,J)

YX = Y(I+1,J)-Y(I-1,J)

XY = X(I,J+1)-X(I,J-1)

YY = Y(I,J+1)-Y(I,J-1)

A = 0.25D0 * (XY*XY+YY*YY)

B = 0.25D0 * (XX*XX+YX*YX)

C = 0.125D0 * (XX*XY+YX*YY)

AA(I,J) = -B

DD(I,J) = B+B+A*REL

PXX = X(I+1,J)-2.D0*X(I,J)+X(I-1,J)

QXX = Y(I+1,J)-2.D0*Y(I,J)+Y(I-1,J)

PYY = X(I,J+1)-2.D0*X(I,J)+X(I,J-1)

QYY = Y(I,J+1)-2.D0*Y(I,J)+Y(I,J-1)

PXY = X(I+1,J+1)-X(I+1,J-1)-X(I-1,J+1)+X(I-1,J-1)

QXY = Y(I+1,J+1)-Y(I+1,J-1)-Y(I-1,J+1)+Y(I-1,J-1)

RX(I,J) = A*PXX+B*PYY-C*PXY

RY(I,J) = A*QXX+B*QYY-C*QXY

50 CONTINUE

60 CONTINUE

Figure 1-9: Primary loop in tomcatv.

Itanium 2 [62]. Chapter 6 performs an extensive evaluation of selective vectorization using

the L-machine. Figure 1-8 lists the high-level processor details that are pertinent to the

immediate discussion.

Consider the code fragment in Figure 1-9. The inner loop accounts for roughly 50%

of the total execution time of tomcatv, an application from the SPEC CFP95 benchmark

suite [85]. Figure 1-10 shows the loop’s low-level data dependence graph after optimization.

For clarity, the figure omits address calculations and loop control operations. Suppose

we wish to compile this code segment for execution on the L-machine. The inner loop

contains no cyclic dependences, which makes it a prime candidate for software pipelining.

In general, an absence of dependence cycles allows a software pipeline to hide operation

latency, and the target processor’s available resources dictate performance. For this loop, the

L-machine’s floating-point units constitute the performance bottleneck. Assuming single-

cycle throughput for all operations, each loop iteration requires 23 cycles to execute the 46

floating-point operations.

As an alternative to a strictly ILP-based approach, we might choose to vectorize the loop.

An absence of dependence cycles also means the loop is fully vectorizable. A traditional

vectorizing compiler would replace all operations in Figure 1-10 with the corresponding

vector instructions. We could then software pipeline the vector loop to hide vector operation
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Figure 1-10: Data-dependence graph for the primary loop in tomcatv. Highlighted nodes are
those chosen for vectorization using the selective vectorization algorithm described in this thesis.
Highlighted edges indicate dataflow between vector and scalar operations.

latency. The L-machine’s single vector unit requires 46 cycles to execute the 46 floating-

point operations. For a vector length of 2, one iteration of the vector loop executes two

iterations of the original loop. As a result, traditional vectorization combined with software

pipelining achieves an average initiation interval of 23 cycles, matching the performance of

software pipelining alone.

Figure 1-10 also shows the results of selective vectorization using the algorithm described

in this thesis. Shaded nodes represent those chosen for vectorization; the remainder exe-

cute on scalar resources. Figure 1-11 summarizes the workload of the relevant processor

resources resulting from the competing compilation techniques. The operation allocation

of Figure 1-10 requires 26 cycles to execute each vector iteration, reduced from 46 cycles.

This improvement in schedule length represents a speedup of 1.77× over the conventional

techniques.

Technique MEM FPU VEC II

Software pipelining 11 23 0 23

Traditional vectorization 13 0 46 23

Selective vectorization 26 20 26 13

Figure 1-11: Resource usage and resulting initiation interval of competing compilation techniques.
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In Figure 1-10, highlighted edges indicate dataflow between vector and scalar operations.

Since the L-machine does not provide a specialized network for transferring operands, this

dataflow requires that we transmit operands through memory2. Despite the high cost,

selective vectorization achieves a significant performance improvement. One reason for this

success is that vectorization of memory operations reduces the workload of the memory

units, freeing them for operand communication. In addition, software pipelining hides the

latency of transmitting operands through memory.

To produce an efficient schedule, selective vectorization faces two major difficulties: ac-

curately predicting the performance impact of different vectorization strategies, and using

this information to compute an efficient schedule and resource allocation. The technique

presented in this thesis overcomes these obstacles using two approaches. First, I formulate

selective vectorization in the context of software pipelining. Software pipelining provides

a framework for exploiting a processor’s vector and ILP capabilities simultaneously. Addi-

tionally, it allows the selective vectorization algorithm to ignore the latency of vectorizable

operations and focus on overall resource requirements. Second, selective vectorization op-

erates on a low-level intermediate representation. This approach, which contrasts with

traditional vectorization, allows the algorithm to accurately predict performance on a spe-

cific target architecture.

1.4 Contributions

The objective of this thesis is to develop compiler technology that targets short-vector

instructions automatically and efficiently. Automatic compilation allows for increased per-

formance while hiding the details of the target architecture from the high-level programmer.

Toward this end, I have made contributions in two major areas. The first addresses align-

ment of vector memory references. I am one of the first researchers to employ compiler

techniques that reduce the overhead of misaligned references. Within this area,

• I am the first to propose and devise a static analysis to extract alignment information

at compile-time. I formulate the analysis as a dataflow problem. When available,

static alignment information allows the compiler to select more efficient, aligned vector

memory opcodes.

2Note that an operation with more than one consumer requires a maximum of one communication se-
quence since transferred operands are available to all consumers.

19



• I am the first to use profiling to guide transformations that enforce aligned references

at runtime. The technique is essential in eliminating unnecessary code expansion. I

show that profiling is practical for the alignment problem since alignment character-

istics vary little between data sets. On a set of SPEC FP benchmarks, my methods

are able to enforce alignment for roughly 75% of dyanmic memory references.

• I present a comprehensive description of the breadth of alignment research.

My second major contribution addresses performance from the perspective of vector

code selection. In this field,

• I am the first to suggest that automatic compilation should specifically target a pro-

cessor’s scalar and vector resources simultaneously in order to obtain top performance.

• I have formulated selective vectorization, a technique that leverages software pipelining

to provide a balanced resource allocation. An important aspect of selective vectoriza-

tion is its ability to manage operand transfer between scalar and vector operations.

Even when this communication is expensive, the technique is sufficiently sophisticated

to achieve large performance gains.

• I have developed and implemented a practical selective vectorization algorithm by

adapting a two-cluster partitioning heuristic. The approach is applicable to any ar-

chitecture that provides a combination of ILP and short-vector hardware.

• I have devised modulo scalar expansion, a code generation technique which leads

to efficient software pipelines on architectures that provide no hardware support for

communicating operands between vector and scalar operations.

• I am the first to advocate vectorization on a low-level intermediate representation.

This method contrasts with traditional vectorization which operates on source-level

representations. A back-end approach is crucial for predicting performance on a spe-

cific target architecture.

• I have evaluated selective vectorization using a realistic architectural model. For a set

of SPEC FP benchmarks, the technique achieves whole-program speedups of up to

1.35× over existing approaches. For individual loops, selective vectorization provides

speedups of up to 1.75×.
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1.5 Thesis Outline

The inspiration for this thesis is the untapped potential of short-vector instructions prevalent

in general-purpose and embedded processors. Chapter 2 overviews modern multimedia

instruction sets and traces their development. It also identifies the major challenges in

targeting multimedia instructions automatically in the compiler.

Chapter 3 reviews two established compilation techniques for extracting fine-grain par-

allelism: traditional vectorization and modulo scheduling. These methods are important

for the discussion of selective vectorization since the approach leverages prior research in

both areas. Traditional vectorization provides a framework for identifying data parallelism,

and modulo scheduling creates the low-level schedules of selectively vectorized loops.

Chapter 4 describes the specific algorithm I have developed to perform selective vec-

torization. It also discusses the complications of vectorizing a low-level IR, and describes

the methods by which my implementation overcomes these issues. A key component of

selective vectorization is its efficient handling of operand transfer between vector and scalar

operations. This ability is especially important for architectures that do not provide di-

rect support for operand communication. Chapter 4 develops a code generation technique

that is crucial for minimizing the overhead of transferring operands through memory. The

conclusion of Chapter 4 discusses prior research that is related to selective vectorization.

Chapter 5 describes the alignment restriction placed on vector memory operations, and

develops a suite of static and dynamic techniques that reduce misalignment overhead. In

addition to my own contributions, Chapter 5 integrates the work of others in order to

provide a comprehensive overview of alignment research.

Chapter 6 evaluates selective vectorization on a realistic VLIW architecture with short-

vector extensions. It also examines the performance impact of hardware support for mis-

aligned references and operand communication. Finally, Chapter 7 identifies limitations in

my approaches and outlines areas for future work.
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Chapter 2

Multimedia Extensions

This chapter describes the multimedia extensions available in today’s general-purpose pro-

cessors. Section 2.1 provides an overview of the broad features that comprise modern

extensions. Section 2.2 describes the development of multimedia instructions through their

introduction in popular commodity processors. Section 2.3 identifies the major challenges

multimedia extensions present to the compiler writer and reviews the predominant compi-

lation techniques currently available.

2.1 Overview

Most of today’s general-purpose processors implement a set of short-vector instructions.

Initially, designers introduced these extensions to improve performance in multimedia ap-

plications such as image processing, audio and video encoding, 2D and 3D graphics, speech

processing, and digital signal processing. These codes generally contain compute-intensive

kernels that process long streams of data. To match this structure, multimedia architectures

adopt a single instruction multiple data (SIMD) paradigm, which applies the same opcode

to a vector of operands. Figure 2-1 shows an example of SIMD execution.

Vector instructions provide a means for parallel execution without the costs associated

with a conventional ILP design. For example, vector instructions require no bypassing

within a vector operand since all elements are independent. In addition, vector operations

require fewer register file read and write ports to supply an equivalent number of functional

units. The simplicity of this design is significant because the complexity and size of the

register file and bypassing network grow quadratically with the number of functional units.
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opcode

Figure 2-1: SIMD execution of packed data.

Vector instructions also offer a more compact instruction encoding which improves instruc-

tion fetch efficiency. Vector memory operations are particularly powerful since they transfer

multiple operands with a single instruction.

Vector execution is typically associated with supercomputers [26, 33]. Contemporary

multimedia extensions differ from traditional vector processors in three major areas. First,

multimedia extensions implement relatively short vector lengths. Current designs pack

operands in existing datapaths, meaning that the datapath width and element type de-

termine the effective vector length. For example, a 64-bit word could contain two 32-bit

elements, four 16-bit elements, or eight 8-bit elements. This short vector length allows for

a design that computes all elements in parallel. In contrast, the long vectors provided by

vector supercomputers typically require iterative execution. Second, multimedia extensions

usually enforce aligned vector memory references. In other words, n-byte loads and stores

must access data on n-byte boundaries. In most designs, direct access to misaligned regions

is illegal and it is the compiler’s responsibility to merge data in two aligned regions. Pro-

cessors that support misaligned references directly operate more efficiently when accessing

aligned segments [41]. Finally, today’s multimedia extensions do not offer complete vector

instruction sets. Noticeably absent are strided and scatter/gather memory operations for

accessing non-contiguous data.

The multimedia instructions available in contemporary general-purpose processors fall

into the following categories:

• Memory operations, which transfer vectors of data or individual vector elements.

Designs that disallow misaligned accesses typically provide specialized instructions

to facilitate merging of two aligned regions. Some extensions also provide memory

prefetch and non-caching store instructions to facilitate access of regular data streams.
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• Data rearrangement operations, which combine elements from two vectors or rearrange

elements within a vector register. A common operation interleaves elements from

two sources. Some multimedia extensions provide the ability to arbitrarily permute

elements within a vector register.

• ALU operations, which execute vector versions of familiar scalar operations such as

addition, multiplication, shift, and compare. Some extensions also provide operations

to convert between integer and floating-point data types.

• Kernel-specific operations, which accelerate particular code sequences. For example,

some multimedia extensions provide a sum of absolute difference operation, which is

useful in MPEG encoding.

The composition of a multimedia instruction set varies among implementations. Early

designs were modest in terms of the number and type of instructions they provided. Over

time, multimedia extensions have evolved to offer fairly rich vector instruction sets. The

latest designs support wide integer and floating-point data types, making them suitable for

more general-purpose computation.

2.2 Historical Perspective

In this section, I trace the evolution of multimedia extensions through their introduction

in commodity processors. To my knowledge, the first design to provide SIMD instructions

operating on packed data was the Lincoln Labs TX-2 [3], completed in 1958. This processor

implemented instructions to operate on a single 36-bit data word, two 18-bit values, or four

9-bit values. The ISA also provided an extensive set of permutation operations. The first

modern microprocessor offering short-vector instructions was the Intel i860, introduced in

1989 [48]. The i860’s instructions facilitated shading and hidden-surface removal for 3D

graphics. Compared to more recent instruction sets, the i860’s graphics operations were

heavily specialized. This chapter focuses on extensions that are more applicable to general-

purpose computation.

Figure 2-2 provides the high-level details of some representative multimedia extensions.

Other designs worth noting include the MVI extension in the Alpha architecture [14] and

the MDMX extension in MIPS [63]. The processors represented in Figure 2-2 are super-
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Motorola
Vendor HP Sun Intel AMD + IBM Intel
Extension MAX-1/2 VIS MMX 3DNow! VMX SSE/2/3
Year introduced 1994/’96 1995 1996 1998 1999 1999
Vector length (bits) 32/64 64 64 64 128 128
Element width (bits) 16 16/32 8/16/32 32 8/16/32 8/16/32/64
Vector register file GP FP FP FP Separate Separate
Misaligned accesses Software Software Hardware Software Software Hardware
ALU ops Limited Yes Yes n/a Yes Yes
Saturating arithmetic Yes No Yes n/a Yes Yes
Compare ops No Yes Yes Yes Yes Yes
Pack/unpack ops No Yes Yes n/a Yes Yes
Rearrangement ops I+P I I No I+P I
Floating-point ops No No No Yes Yes Yes

Figure 2-2: Relevant features of popular multimedia extensions. I=interleave, P=permute,
GP=general-purpose register file, FP=floating-point register file.

scalar designs, but short-vector instructions are also present in many VLIW architectures.

For example, Intel’s IA-64 instruction set contains a set of short-vector operations [40].

Multimedia instructions also appear in many embedded processors. Examples include the

TI TigerSHARC [28], the Microunity Mediaprocessor [32], Chromatic’s Mpact 1 [44] and

Mpact 2 [71], Philips Trimedia [92], and the MAP1000A Mediaprocessor [8].

MAX-1 and MAX-2

In 1994, HP introduced the MAX-1 extension in the PA-7100LC [47]. MAX-1 implements

five vector instructions, all operating on 16-bit elements: add, subtract, shift-left-and-add,

shift-right-and-add, and arithmetic mean. The shift-and-add operations allow for limited

vector multiplication (i.e., multiplication by a constant). In addition to standard modulo

arithmetic, the instruction set provides saturating add and subtract opcodes, which image

processing kernels often use for clipping.

In 1996, HP introduced the MAX-2 instructions in the PA-8000 [58]. At 64 bits, the

PA-8000 datapath is twice the width of its predecessor and supports vectors of four 16-bit

elements. In addition to the MAX-1 instructions, MAX-2 provides two data rearrangement

operations. The mix instruction interleaves elements from two registers, and the permute

instruction arbitrarily permutes the elements in one register.

In the MAX designs, vector instructions operate on data packed in integer registers.

By reusing an existing register file, designers avoided the need to upgrade the operating

system to save and restore additional processor state. By using the integer registers, several
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vector operations are available in existing opcodes, including loads, stores, cache prefetch,

and bitwise logical operations. Also, since all memory operations are subject to alignment

constraints, the PA-RISC instruction set provides a concatenate-and-shift instruction to

facilitate access of misaligned data.

VIS

In 1995, Sun introduced the VIS instruction set in the UltraSparc I [90]. Other than the

lack of saturating arithmetic, VIS implements a more extensive set of vector operations

than MAX-2. For example, the extension provides a full 16-bit multiplication. VIS also

includes a set of vector compare instructions which generate vector masks. These masks

can be used to control the elements written to memory on a vector store, thereby providing

a mechanism for vectorizing instructions in control flow.

Like MAX-2, VIS implements a total vector length of 64 bits. In addition to 16-bit

vector instructions, VIS also provides several instructions that operate on 32-bit elements.

32-bit multiplication is absent, however. VIS also provides pack and unpack operations for

converting between 8- and 16-bit data.

In order to avoid modification of the integer pipeline, Sun chose to implement VIS in the

floating-point pipeline, with vector instructions accessing floating-point registers. Designers

felt this strategy would free the integer pipeline for address arithmetic and branching [90].

The disadvantage is that VIS required a new set of opcodes to support vector logic opera-

tions. In addition, mixed floating-point and vector computation is potentially less efficient

since these groups compete for resources.

MMX

Intel introduced the MMX extension to IA-32 in 1996 [69]. MMX is slightly more extensive

than VIS. For example, MMX provides instructions for operating directly on vectors of 8-bit

elements rather than requiring conversion to 16 bits. Additionally, MMX implements a set

of saturating arithmetic operations.

Compared to RISC architectures, the IA-32 design exhibits some complexities that

propagate to its multimedia instructions. For example, IA-32 implements a two-operand

destructive instruction encoding. Also, IA-32 ALU operations can reference memory loca-

tions directly. In this case, the ISA requires that addresses are 64-bit aligned. Explicit load
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and store instructions can access misaligned data, but incur a performance penalty when

doing so. Like VIS, MMX uses the floating-point register file to store vector operands. The

wider floating-point registers allow for a 64-bit extension on a 32-bit architecture.

3DNow!

AMD introduced the 3DNow! extension in the K6-2 processor in 1998 [68]. 3DNow! is

a floating-point extension primarily intended to improve performance for 3D graphics ap-

plications. The extension reuses the IA-32 floating-point registers to store vectors of two

32-bit single-precision values. Vector floating-point instructions consist of comparison, con-

version, and standard arithmetic operations. To reduce complexity, the divide and square

root operations use reciprocal approximation. The ISA implements additional instructions

to perform explicit Newton-Raphson iteration for higher precision.

3DNow! floating-point operations do not fully comply with the IEEE 754 standard. For

example, vector instructions do not cause exceptions, do not support NaNs or infinities, and

implement only one rounding mode. Nevertheless, the introduction of vector floating-point

operations provides new opportunities for program acceleration.

AltiVec/VMX

In the late ’90s, Motorola, IBM, and Apple jointly developed a short-vector extension to

the PowerPC [20]. The extension is termed AltiVec by Motorola, Velocity Engine by Apple,

and VMX by IBM. AltiVec first appeared in the Motorola MPC 7400 in 1999. IBM provides

VMX in the PowerPC 970 [36] and the PowerPC core of the CELL processor [23].

VMX represents a major advance in short-vector instruction sets. In the design of ear-

lier extensions, architects cite size and complexity as primary considerations. For example,

VIS represents a 3% increase in the die area of the UltraSparc I [90], and MAX-2 accounts

for less than 0.1% of the PA-8000 [58]. Overall, the PA-8000 required only 3.8 million tran-

sistors [53], compared to 58 million in the PowerPC 970 [78]. Rapidly increasing transistor

counts allowed designers to commit a larger portion of the chip to vector resources. There-

fore, VMX is the first extension to introduce a separate vector register file. It also extends

the vector length to a total of 128 bits.

VMX provides an extensive vector instruction set with vector versions of most integer

and floating-point operations. With a four-operand instruction format, it also supports
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operations such as multiply-add. Integer division and 32-bit integer multiplication are ab-

sent, however, and VMX does not support 64-bit vector elements. As with 3DNow!, VMX

implements floating-point division and square root with reciprocal approximation. The ex-

tension’s floating-point operations are compatible with the Java subset [29] of IEEE 754 [39].

VMX also supports a non-Java mode which provides lower latency execution.

VMX supplies extremely flexible data rearrangement functionality with the vperm in-

struction, which can combine elements of two source registers in any permutation. The

instruction also facilitates explicit software realignment for misaligned memory references.

For vectorization of operations in control flow, VMX offers an extensive set of vector com-

pare operations. In VMX, vector compare instructions produce control operands for the

select instruction, which copies elements from one of two source operands.

SSE

Intel introduced the Streaming SIMD Extensions (SSE) to the Pentium III in 1999 [72].

Like 3DNow!, SSE is primarily a floating-point extension. SSE introduces a separate vector

register file and implements a vector length to 128 bits. In 2001, Intel added SSE2 to the

Pentium 4 [34]. This extension provides a more powerful alternative to MMX with vector

integer instructions which operate on the 128-bit SSE registers.

SSE and SSE2 combine to form an extensive vector instruction set. In contrast to

VMX, they implement vector instructions that operate on 64-bit elements, including sup-

port for double-precision floating-point data. SSE2 is fully compliant with the IEEE 754

standard [39]. IA-32 implementations mitigate this complexity by executing 64-bit calcu-

lations as two sequential operations. On the Pentium 4, vector and scalar floating-point

instructions use the same execution resources.

SSE and SSE2 provide aligned and unaligned versions of vector memory operations.

The aligned versions are more efficient, but are only valid when the compiler can guarantee

alignment. My experiments reveal that a simple loop copying one array to another executes

roughly 2× faster on a Pentium 4 when using aligned versus unaligned opcodes. Unaligned

vector memory accesses are particularly expensive if data cross a cache line boundary. In

this case, a series of short-width accesses are more efficient [10]. Designers removed this

anomaly in 2004 with the introduction of SSE3 and a more efficient 128-bit vector load.

SSE3 also provides horizontal operations to sum the elements within a vector register.
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2.3 Compilation for Multimedia Extensions

In order to gain widespread use, multimedia extensions must be available to high-level pro-

grammers. Initially, access to multimedia instructions was limited to inline assembly, macro

calls, or specialized library routines. These approaches are tedious and error-prone, require

in-depth knowledge of the underlying architecture, and are not portable. The ideal solution

leverages compiler technology to target multimedia extensions automatically. This section

identifies the major challenges faced by the compiler and overviews current approaches.

Identifying Data Parallelism

In order to utilize vector instructions, data parallelism must exist in the target application.

When present, the compiler must identify it. The accurate characterization of memory

dependences is the most difficult component of this process. Fortunately, dependence anal-

ysis is a key step in any parallelization technique and is backed by an extensive literature.

Chapter 3 gives an overview of data-dependence theory.

Vectorizing technology originally targeted Fortran, the language of choice for scien-

tific applications. Today, most programmers prefer C or C++ for developing multimedia

applications. Since these languages allow pointer aliasing, the compiler must employ sophis-

ticated methods to acquire accurate dependence information. A popular solution extends

the language with directives that allow the user to convey dependence information (e.g.,

the restrict keyword in C99 [43]). The disadvantage of this approach is that it imposes

an extra burden on the programmer. An alternative is to employ an interprocedural alias

analysis. Unfortunately, whole-program analyses are not practical for large applications

and cannot extract information from libraries whose source code is unavailable. Perhaps

the most practical solution is the use of runtime dependence checks. The Intel compiler

takes this approach when targeting the MMX and SSE extensions [10].

Code Selection

Most of today’s multimedia extensions do not have complete vector instruction sets. The

absence of vector opcodes complicates code selection and code generation since the compiler

must emit scalar operations instead. Particularly troublesome is the absence of strided

and scatter/gather memory operations. IA-32 provides opcodes to move 64-bit elements
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Figure 2-3: Strided load using interleaving operations.

between memory and vector registers. These instructions make imitation of scatter/gather

operations fairly simple for 64-bit data. The architecture does not provide the same support

for all data types, however. Figure 2-3 illustrates the software emulation of a strided load

of a 4-element vector using four scalar loads and three interleaving operations. The scheme

assumes the ability to load scalar values into the low-order element of a vector register.

Unfortunately, not all designs provide this functionality. VMX provides no specialized

support for loading scalar values into specific vector elements. In order to use non-contiguous

data in vector calculations, the compiler must rearrange values in memory or use a complex

sequence of permute operations.

Another factor complicating code selection is the availability of computation-specific

instructions, such as saturating arithmetic. For example, consider the following code se-

quence:

unsigned char a[N], b[N], c[N];

unsigned short tmp;

...

for (i=0; i<N; i++) {

tmp = b[i] + c[i];

if (tmp > 0xFF)

tmp = 0xFF;

a[i] = tmp;

}

When vectorizing this loop, the compiler could employ a saturating vector add opcode,

eliminating the explicit overflow test. Discovering these opportunities typically involves

matching specific patterns and replacing the computation with an optimized code sequence.

Unfortunately, this process is inherently unsystematic and difficult to make robust. Bik [10]

describes a number of idiom recognition optimizations in the Intel compiler.
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Profitability of Vectorization

An effective compiler should provide consistent and efficient performance on the target

architecture. Compilation for multimedia extensions is complicated by the fact that vec-

torization can actually lead to a performance loss. This phenomenon has three primary

causes. The first is a lack of an appropriate vector opcode. In this case, scalar emulation

of a vector instruction may have an overhead that negates the benefit of vectorization. An

important example is the absence of scatter/gather operations and the cost of assembling

vector operands from non-contiguous memory.

Second, partially vectorizable loops often require communication between vector and

scalar instructions. Current multimedia extensions implement separate scalar and vector

register files. In these designs, transmission of operands between register files requires

explicit instructions. Intel’s IA-32 extensions provide support for moving data between

scalar and vector registers. Unfortunately, accessing individual elements typically requires

shift or permute operations. VMX provides no underlying support and the compiler must

transfer data through memory using a series of memory instructions.

Finally, blind vectorization fails to account for a processor’s scalar resources. On targets

that provide a wealth of scalar units, some loops may execute more efficiently in scalar form.

In order to make this determination, the compiler must have an accurate model of the target

architecture’s overall processing capabilities. Traditional approaches operate in the front-

end on a source-level intermediate representation. With this method, the compiler must

predict how its decisions will affect performance after the code is lowered and optimized.

The selective vectorization algorithm presented in Chapter 4 operates in the compiler back-

end, where it can more accurately measure the performance of vectorization alternatives.

Current Approaches

Most approaches for automatic compilation employ techniques developed for vector su-

percomputers [10, 15, 19, 24, 65, 66, 86, 98]. Commercial products targeting multimedia

extensions include the Intel compiler [10], the IBM XL compiler [38], the VAST/AltiVec

compiler [93], and VectorC [94]. At a high level, these approaches directly adopt the tradi-

tional vectorization strategy I review in Chapter 3. The idiosyncrasies of modern multimedia

instruction sets require special attention, however. One important issue is the alignment
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of vector memory operations, which has received considerable attention in the literature.

Chapter 5 discusses the alignment problem in detail. Bik [10] gives an excellent account of

an industrial multimedia compiler in his description of the Intel compiler.

In some cases, straightline code can exhibit sufficient parallelism to warrant the use of

short-vector opcodes. In [55], I proposed a method to automatically extract data parallelism

from basic blocks. The scheme exposes loop-level parallelism by unrolling. Shin et al. [84, 83]

extended these ideas to reduce memory references and to target instruction sequences with

control flow. Kudriavtsev et al. [52] also targeted parallelism within a basic block with

an emphasis on minimizing data reshuffling operations. Recently, Wu, Eichenberger, and

their colleagues [98] developed a framework for exploiting data parallelism both within

straight-line code and across loop iterations.
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Chapter 3

Background

This chapter reviews two classic techniques for extracting fine-grain parallelism: vectoriza-

tion and software pipelining. These topics are important for developing the selective vector-

ization algorithm in Chapter 4. Researchers first developed vectorizing technology [6, 96]

for vector supercomputers such as the Cray-1 [79]. More recently, compiler engineers have

adopted it for compilation to multimedia extensions [10, 15, 19, 24, 65, 66, 86, 98]. Vector-

ization identifies and extracts data parallelism, which implies the ability to safely execute

the same operation on multiple data elements concurrently. Sections 3.1 and 3.2 discuss

automatic vectorization.

Section 3.3 overviews software pipelining, a method for exploiting instruction-level par-

allelism (ILP), or parallelism among machine instructions. This thesis focuses on modulo

scheduling, which is a popular approach to software pipelining. In fact, Rau’s iterative

modulo scheduling heuristic [74] appears to be the basis of most existing software pipelin-

ing implementations. Iterative modulo scheduling was developed for one of the first VLIW

machines, the Cydra 5 [18, 76]. Today, it is widely used for obtaining high performance on

ILP processors.

Despite some similarities, the compiler community generally views vectorization and

modulo scheduling as alternatives for extracting fine-grain parallelism. In the past, the

target architecture determined the appropriate technique (e.g., vector versus VLIW or su-

perscalar). This distinction, however, is not appropriate for today’s processors since they

dedicate similar resources to both instruction-level and data-parallel hardware. While vec-

tor supercomputers also provide ILP resources, the processing power of the vector unit

35



greatly outweighs that of the scalar hardware. For these machines, large-scale vectorization

is the primary goal. The selective vectorization algorithm described in Chapter 4 extends

aspects of vectorization and modulo scheduling to derive highly efficient schedules.

3.1 Vectorization

Vectorization converts a sequential loop into a parallel version that utilizes a processor’s

vector instruction set. This transformation involves a substantial reordering of operations;

semantically, a vector instruction computes multiple values before committing any of the

results. Vectorization is only legal if it preserves dependences in the original loop. As a

result, it relies heavily on the ability to accurately characterize dependences among opera-

tions. A straightforward reaching-definitions dataflow analysis [1, 64] uncovers dependences

between scalar variables. The primary difficulty, therefore, is the accurate identification of

dependences among memory operations. A simple approach that conservatively assumes

dependence between any load and store almost always prevents vectorization. Fortunately,

memory dependence analysis is backed by an extensive literature. The texts by Allen and

Kennedy [6] and Wolfe [96] provide overviews of established techniques.

Data dependence theory categorizes dependences as follows:

• Flow dependences occur between two operations op1 and op2 when op1 writes a value

which is read by op2.

• Antidependences occur between two operations op1 and op2 when op1 reads a location

which op2 subsequently overwrites.

• Output dependences occur between two operations op1 and op2 when op1 writes a value

which op2 subsequently overwrites.

Dependence theory further classifies dependences in a loop as loop-carried or loop-

independent, depending on whether they occur between operations in different iterations

or the same iteration, respectively. For loop-carried dependences, the dependence distance

specifies the number of loop iterations separating the dependent operations. For depen-

dences in loop nests, it is often useful to associate a distance with each loop, giving rise to

a distance vector. For example, the following loop nest contains a loop-carried flow depen-

dence from the store to the load with the distance vector (1, 0, 3), indicating a dependence
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distance of 1 for the outer loop, a distance of 0 for the middle loop, and a distance of 3 for

the inner loop:

for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

a[i+1][j][k+3] = a[i][j][k];

Many loop transformations characterize dependences with direction vectors, which we

derive from the distance vectors. Given a distance di associated with the loop at nesting

level i, we define the direction Di as

Di =























’<’ if di > 0

’=’ if di = 0

’>’ if di < 0

The loop above has a direction vector (<,=, <). Since selective vectorization targets inner

loops, it can safely ignore dependences that are not of the form (=,=, ..., <) or (=,=, ...,=).

The former represent dependences carried by the inner loop, and the latter represent loop-

independent dependences. The vector (=,=, ..., >) is impossible since it implies executing

the sink before the source.

Memory dependence analysis is most successful when analyzing a source-level represen-

tation where it can readily characterize loop bounds and array index functions. Traditional

vectorization also operates at this level. In Chapter 4, I show that low-level vectorization

is also possible as long as the compiler computes dependences early and preserves the in-

formation in the back-end. High-level memory dependence information is also extremely

valuable in software pipelining [74].

After identifying dependences, the basic steps for vectorizing an inner loop are as fol-

lows [6, 96]:

1. Create a data-dependence graph for the loop body. Nodes in the graph represent

statements in the inner loop and edges denote dependences between statements.

2. Identify cycles in the dependence graph using Tarjan’s algorithm for strongly con-

nected components [88]. Statements involved in a dependence cycle must execute

sequentially. The rest are vectorizable.
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3. Partition the graph into piblocks [6], where every piblock corresponds to a strongly

connected component, and remove edges contained within piblocks. The resulting

graph is acyclic.

4. Perform a topological sort of the graph to determine a valid piblock ordering.

5. For each vectorizable node, emit a vectorized statement. Otherwise, construct a

sequential loop to execute the operations in the piblock in original program order.

As an example, consider the following loop:

for (i=0; i<N; i++) {

(1) a[i] = b[i] + c[i];

(2) b[i+1] = a[i] + d[i];

(3) c[i+1] = e[i] + f[i];

}

The data-dependence graph is

1

2

3

Statements (1) and (2) form a strongly connected component and must execute sequentially.

Statement (3) is vectorizable. Applying steps 2–4 yields

1,2

3

and step 5 produces

c[1:N+1] = e[0:N] + f[0:N];

for (i=0; i<N; i++) {

a[i] = b[i] + c[i];

b[i+1] = a[i] + d[i];

}
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Notice that the vector operations execute first, even though the originating scalar statement

appears later in the source loop. This reordering results from the topological sort and is

necessary to preserve the dependence from statement (3) to statement (1).

In order to execute a vectorized statement on actual hardware, the compiler must strip-

mine vector operations to match the vector length. For example, stripmining the loop above

for a vector length of 4 produces

for (i=0; i<N-3; i+=4) {

c[i+1:i+4] = e[i:i+3] + f[i:i+3];

}

// Execute remaining iterations

for (; i<N; i++) {

c[i+1] = e[i] + f[i];

}

for (i=0; i<N; i++) {

a[i] = b[i] + c[i];

b[i+1] = a[i] + d[i];

}

The traditional vectorization algorithm isolates vector and scalar computation in sepa-

rate loops. In some cases, this process creates a large number of distinct loops. To reduce

the resulting overhead as much as possible, the compiler can perform loop fusion [6, 17, 45]

to merge loops of the same type wherever dependences permit.

A particularly important issue in vectorization is the compiler’s handling of scalar as-

signments. Consider the following loop:

for (i=0; i<N; i++) {

(1) s = a[i];

(2) b[i] = s;

}

The scalar s induces a flow dependence from statement (1) to statement (2), and a loop-

carried antidependence from statement (2) to statement (1). The resulting cycle prevents

vectorization even though the statements appear to be completely parallel. The flow de-

pendence represents true dataflow between the statements. The antidependence, however,

results from the reuse of s in every iteration. Vectorization can ignore the antidependence

if it allocates a private copy of s to each iteration. Practically, the compiler should assign s

to a vector register. This optimization is termed scalar privatization, and is legal whenever

a scalar use is reached only by definitions in the same iteration [6].
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In the loop above, scalar privatization enables full vectorization. When a scalar spans

distributed loops, however, the optimization is not applicable, as the following example

illustrates:

for (i=0; i<N; i++) {

(1) s = a[i] + b[i];

(2) c[i+1] = c[i] + s;

}

Even if we ignore the dependence cycle induced by s, the dependence from statement (2)

to itself necessitates loop distribution. In this case, vectorization should employ scalar

expansion [6] to communicate operands between the vector and scalar portions:

t[0:N] = a[0:N] + b[0:N];

for (i=0; i<N; i++) {

c[i+1] = c[i] + t[i];

}

The disadvantage of scalar expansion is that it requires additional storage and address

arithmetic. We can reduce the memory overhead by performing scalar expansion after

stripmining:

for (i=0; i<N; i+=4) {

t[0:3] = a[i:i+3] + b[i:i+3];

for (j=0; j<3; j++) {

c[i+1+j] = c[i+j] + t[j];

}

}

Here, the temporary array requires only vector length elements. Furthermore, the short

iteration count allows us to unroll the scalar loop completely, yielding the following:

for (i=0; i<N; i+=3) {

t[0:3] = a[i:i+3] + b[i:i+3];

c[i+1] = c[i+0] + t[0];

c[i+2] = c[i+1] + t[1];

c[i+3] = c[i+2] + t[2];

c[i+4] = c[i+3] + t[3];

}

Since the size of t matches the vector length, it may be possible to replace the array with

a vector register. Recall, however, that we first introduced the temporary array in order
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to communicate intermediate operands between scalar and vector operations. As discussed

in Chapter 2, many multimedia architectures do not provide specialized hardware support

for transferring data between vector and scalar registers. In this case, the communication

overhead is unavoidable.

An important characteristic of the loop form above is that it preserves ILP since scalar

and vector computation occupy the same loop body. The selective vectorization algorithm

described in Chapter 4 also takes this approach. In contrast to traditional vectorization,

however, selective vectorization generates the optimized loop directly in the back-end, rather

than through a series of high-level transformations.

3.2 Superword-Level Parallelism

Vector supercomputers are most efficient when operating on long vectors. Practically, large-

scale parallelism is available across loop iterations. The short vectors supported by contem-

porary multimedia architectures, however, make it profitable to search for data parallelism

in other regions, namely, within basic blocks. To differentiate data parallelism inside a basic

block from that exploited by vector supercomputers, I proposed superword-level parallelism,

or SLP in [55]. This research introduced an algorithm which, for the first time, made it

possible to identify and exploit vector parallelism in code segments other than loop nests.

SLP may result from programmer unrolling of data-parallel loops. Often, it is present in

multimedia codes that perform the same operation on the red, green and blue components

of a pixel, as in alpha blending:

for (i=0; i<N; i++) {

blend[i].r = a * fore[i].r + (1-a) * back[i].r;

blend[i].g = a * fore[i].g + (1-a) * back[i].g;

blend[i].b = a * fore[i].b + (1-a) * back[i].b;

}

In cases where data parallelism is available across loop iterations, unrolling converts loop-

level parallelism to superword-level parallelism. Consider the following:

for (i=0; i<N; i++) {

a[i] = b[i] + c[i];

}
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Unrolling this loop by a factor of 2 creates vector parallelism within the loop body:

for (i=0; i<N; i+=2) {

a[i+0] = b[i+0] + c[i+0];

a[i+1] = b[i+1] + c[i+1];

}

Loop unrolling allows a single technique to extract parallelism at either level. When

data parallelism exists in straight-line code, Bik [10] advocates the reverse approach of

forming a loop before employing traditional vectorization. Recently, Wu, Eichenberger

and colleagues [23, 98] developed a framework which extracts data parallelism from both

dimensions.

To exploit SLP, I proposed a simple greedy heuristic [55]. The algorithm locates groups

of isomorphic expressions and replaces them with vector opcodes. Isomorphic operations

are vectorizable when they are independent. Therefore, the first step of the algorithm

identifies dependences. Data dependence analysis is potentially simpler for SLP than for

traditional vectorization since the former can ignore loop-carried dependences. Practically,

the implementation reported in [55] employed a traditional analysis.

Independence of a group of isomorphic statements does not allow vectorization in all

cases. Consider the following loop:

for (i=0; i<N; i++) {

a[i+1] = b[i];

b[i+1] = a[i];

}

Assume that we target an architecture with a vector length of 2. Unrolling by a factor of 2

produces:

for (i=0; i<N; i+=2) {

(1) a[i+1] = b[i];

(2) b[i+1] = a[i];

(3) a[i+2] = b[i+1];

(4) b[i+2] = a[i+1];

}

Since there is no chain of dependences from statement (1) to statement (3), a single vector

statement can execute both. The same is true for statements (2) and (4). Combining both

pairs results in the following:
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for (i=0; i<N; i+=2) {

a[i+1:i+2] = b[i:i+1];

b[i+1:i+2] = a[i:i+1];

}

Unfortunately, the dependence cycle in the original loop means that full vectorization is

invalid. The algorithm presented in [55] arbitrarily unvectorizes operations to remove cycles,

leading to partial vectorization not seen in traditional approaches. For example, the SLP

heuristic might produce the following:

for (i=0; i<N; i+=2) {

b[i+1] = a[i];

a[i+1:i+2] = b[i:i+1];

b[i+2] = a[i+1];

}

To determine when vectorization is profitable, superword-level parallelization employs

an unsophisticated cost metric. Simply, the algorithm calculates the number of instructions

needed to execute a group of operations in scalar versus vector form. The heuristic considers

each group in isolation, and prefers vector opcodes whenever they decrease the instruction

count. As the algorithm combines operations, it reduces the cost of communicating vector

operands to successors, creating additional opportunities for vectorization. In order to

initiate the process, the algorithm assumes that it is always profitable to vectorize unit-stride

memory operations. This may not be the case, however, as the following loop illustrates:

for (i=0; i<N; i++) {

a[i+1] = a[i] + b[i];

}

The load from b is vectorizable, but the loop-carried dependence forces the remaining

operations to execute sequentially. If we vectorize the load, the data must be transferred

directly to a scalar addition. In architectures that require communication of these operands

through memory, the vector load is useless overhead. Although it is possible to identify

these situations, the cost model presented in [55] has a more fundamental inefficiency in

that it does not accurately measure the performance impact of its decisions. A more effective

approach is the topic of Chapter 4.
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Figure 3-1: (a) Blocks of operations with data dependences between them. (b) Concurrent execu-
tion using software pipelining.

3.3 Software Pipelining

Software pipelining is a static scheduling technique for overlapping iterations of a loop. The

technique takes advantage of ILP hardware to execute operations from multiple iterations

concurrently. The term software pipelining derives from the observation that a transformed

loop consists of a number of stages with computation flowing between stages akin to a

hardware pipeline.

Figure 3-1 shows an illustration of software pipelining. The blocks in part (a) repre-

sent the computation in an inner loop with each block containing one or more machine

instructions. Edges between blocks represent data dependences. If we schedule the loop in

a traditional manner (e.g., using list scheduling), the blocks must execute sequentially in

order to satisfy dependences. Part (b) illustrates parallel execution with a software pipeline,

with time progressing from top to bottom. The schedule preserves dependences between

blocks since each stage operates on a different iteration. The kernel executes repeatedly

and forms the steady-state of the software pipeline. The prolog and epilog fill and drain the

pipeline, respectively.

Most existing software pipelining algorithms actually generate modulo schedules. A

modulo schedule is an ordering for the operations in an inner loop such that repetition of

the kernel at a regular interval results in no dependence violations or resource conflicts. The

initiation interval, or II, is the schedule length of the kernel. In general, a lower II results

in higher performance1.

1A lower initiation interval tends to increase the length of the prolog and epilog. For loops with low
iteration counts, the epilog and prolog can dominate execution time and actually degrade performance.
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A loop’s minimum initiation interval is limited by available machine resources and re-

currences in the dependence graph. Resources limit the II in an obvious way. For example,

executing a loop with 6 add operations on a machine with 2 ALUs requires at least 3 cycles.

Recurrences limit the II because an operation cannot issue until its dependences from pre-

vious iterations are satisfied. In a loop with a dependence cycle from an operation to itself

d cycles later, the total latency of the cycle must be less than or equal to II×d in order to

ensure correct operation [74].

Rau’s iterative modulo scheduling heuristic [73, 74] forms the basis of many software

pipelining implementations, and is used in the evaluation in Chapter 6. Iterative modulo

scheduling attempts to find a valid schedule at a given II. The high-level steps of the

algorithm are as follows:

1. Calculate the theoretical minimum initiation interval.

2. Select an operation for scheduling.

3. Locate a valid time slot and resource binding.

4. Eject conflicting operations from the partial schedule.

5. Iterate until all operations are scheduled.

6. If scheduling fails, increase the II and start over.

To avoid scheduling at infeasible initiation intervals, the first step calculates the minimum

II. Rau describes methods for computing the minimum II due to resources (ResMII) and

recurrences (RecMII). The theoretical minimum II is the maximum of these two values.

With this as a starting point, the algorithm iteratively selects unscheduled operations from

a worklist according to a priority function. Many cost functions appear in the literature.

Usually, they give precedence to operations on the critical path or operations in a depen-

dence cycle.

Iterative modulo scheduling attempts to schedule each operation at the earliest possible

time slot. A time slot is valid if it is late enough to satisfy dependences with scheduled pre-

decessors, and contains sufficient resources to execute the operation. A modulo reservation

table, or MRT [54] tracks resource usage. The MRT is a two dimensional table with time

slots 0 to II−1 on one dimension and a list of machine resources on the other. Figure 3-2
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Figure 3-2: Example modulo reservation table.

shows an example. Resources in the table represent everything the compiler must consider

for correct and efficient execution. For some machines, this could consist simply of issue

slots. At a minimum, however, it is usually necessary to track functional-unit usage. The

MRT in Figure 3-2 tracks the usage of four resources. For some architectures, the com-

piler may be responsible for managing low-level details such as register ports and operand

networks.

Starting at the earliest time required by dependences with scheduled predecessors, the

algorithm searches consecutive time slots for an allocation that does not conflict with ex-

isting reservations. On some machines, operations can execute on one of several units. In

this case, the algorithm considers each alternative before moving to the next time slot.

When the heuristic finally schedules an operation at time t, it records the resource usage

in the MRT at t mod II. For example, an add operation assigned to the second ALU at

cycle 5 occupies the highlighted slot in Figure 3-2. This placement captures the fact that

operations in a modulo schedule initiate at regular intervals of II cycles. During scheduling,

the algorithm must consider a maximum of II−1 consecutive time slots since the available

resources at time n are the same as those at time n+II.

After scheduling an operation, the algorithm checks the issue time of any scheduled suc-

cessors. It removes any operations that are scheduled too early to preserve dependences and

reinserts them into the worklist. If an open slot is not available, the algorithm backtracks

by ejecting one or more scheduled operations. Rau’s formulation inserts the operation un-

der consideration in the earliest time slot that preserves dependences with predecessors.

The heuristic then removes any operations with resource conflicts and returns them to the

worklist. This process continues for a predetermined number of steps. If the process fails

to locate a valid schedule, the algorithm increases the II and repeats. After computing

a valid schedule, the compiler generates the prolog and epilog [75], and performs register

allocation [77].
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Hardware Support for Modulo Scheduling

Modulo scheduling is applicable to any architecture providing ILP hardware. When avail-

able, however, it benefits from rotating registers and predication [18, 76]. Rotating registers

provide a mechanism to queue multiple writes to the same nominal register. If they are

unavailable in the target architecture, the compiler can employ unrolling and scalar re-

naming [54]. Predication provides a means for modulo scheduling loops with control flow.

Combined with rotating registers, it also allows the same code to execute the kernel, epi-

log and prolog, thereby reducing code expansion. The Cydra 5 [18, 76] first introduced

hardware assistance for modulo scheduling. Intel’s IA-64 [62, 82] is a modern design which

employs both predication and rotating registers.

Notable Extensions

Modulo scheduling is an extensive field of study. A complete overview of research in this

area is beyond the scope of this thesis. There are several significant contributions worth

mentioning, however. Lam introduced modulo variable expansion, a method for generat-

ing valid pipelines without rotating registers [54]. She also pioneered a method for modulo

scheduling loops with control flow. Lavery and Hwu show how superblocks and hyperblocks

facilitate scheduling of loops with control flow [57]. Several researchers have proposed meth-

ods to reduce register pressure in modulo scheduled loops [21, 35, 59]. This optimization is

particularly important since excessive register pressure usually causes spilling and results in

higher initiation intervals. Modulo scheduling is an NP-complete problem that requires a

heuristic solution. Some researchers have investigated optimal methods [22, 30, 80]. While

not realistic for a production compiler, such proposals provide a benchmark for the effec-

tiveness of practical algorithms.
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Chapter 4

Selective Vectorization

This chapter introduces selective vectorization, a compilation technique for targeting short-

vector instructions in general-purpose architectures. The technique achieves higher perfor-

mance than conventional approaches by utilizing a processor’s vector and scalar resources

as efficiently as possible. Selective vectorization also naturally uncovers those situations

where full vectorization or no vectorization is most profitable.

Selective vectorization relies on the ability to accurately measure performance for a

specific target architecture. To achieve this goal, the algorithm operates on a low-level

intermediate representation, or IR. This approach contrasts to traditional vectorization

which operates on a source-level representation. Section 4.1 discusses the complications

introduced by a low-level IR, and the methods by which the compiler overcomes them.

Section 4.2 describes the specific algorithm I have implemented to perform selective

vectorization. I adapt a min-cut partitioning heuristic described by Fiduccia and Matthey-

ses [27]. Section 4.3 gives a detailed example of the approach. The algorithm is applicable

to architectures that export a simple interface to the compiler. Section 4.4 extends the

method to support designs with arbitrary instruction set semantics.

When selective vectorization opts to employ vector opcodes, the compiler must generate

a vectorized code sequence. A crucial aspect of code generation is the management of com-

munication between vector and scalar instructions. Section 4.5 develops an efficient method

for transferring data on architectures that do not provide a specialized communication net-

work. Section 4.6 describes the overall code generation algorithm. Finally, Section 4.7

discusses prior research that is related to selective vectorization.
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4.1 Intermediate Representation

Before describing the selective vectorization algorithm, it is important to discuss its in-

put. Selective vectorization operates on a low-level intermediate representation (IR) which

matches the target machine’s ISA. This approach contrasts with the traditional method

which operates on a source-level IR. Vectorizing a low-level IR has three primary advantages:

• The bulk of the compiler’s existing optimizations and transformations do not require

modification. With any vectorization scheme, compilation phases that execute after

vectorization must be cognizant of vector opcodes. In a back-end approach, these

phases include only the final few steps of compilation (e.g., register allocation).

• The compiler can naturally identify opportunities for parallelizing subexpressions of

partially vectorizable statements. Front-end approaches typically vectorize whole

statements, relying on transformations such as node splitting [6] to extract vector-

izable subexpressions.

• Selective vectorization can more accurately compare code selection alternatives. The

algorithm in Section 4.2 operates on machine-level instructions and employs a detailed

model of the target architecture. A front-end approach must estimate performance

without knowledge of the operations that will populate the loop after optimization.

Compared to a front-end approach, vectorizing a low-level representation introduces

four minor challenges:

• The compiler must identify loops in the control-flow graph. In contrast, high-level

representations typically represent countable loops explicitly. Practically, software

pipelining already requires a loop identification analysis which we can leverage for

selective vectorization.

• Low-level representations typically employ a three-operand format (i.e., two source

operands and one destination operand). To produce a three-operand representation,

the compiler introduces temporary registers to hold the intermediate values of source-

level expressions. In a näıve system, these temporaries create loop-carried depen-

dences that prevent vectorization. As discussed in Chapter 3, however, there is no

impediment to privatizing scalar temporaries to remove false dependences.
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• Memory dependence analysis is more effective for high-level representations. My in-

frastructure performs the analysis early and annotates memory operations with de-

pendence information so that it is available in the back-end.

• Address calculations are explicit and optimized. In a high-level representation, address

arithmetic is often embedded in array references.

The final point offers the only real difficulty. An effective optimizing compiler performs

induction-variable recognition and strength reduction [64] in order to reduce the overhead

of address arithmetic. As an example, consider the following loop:

for (i=0; i<N; i++) {

a[i] = b[i];

}

Induction variable optimization produces

pa = a;

pb = b;

for (i=0; i<N; i++) {

*pa = *pb;

pa++;

pb++;

}

For strided memory operations, this transformation reduces address calculations to one

addition for each load or store. Without it, array references require several arithmetic oper-

ations. Induction variable optimization is actually advantageous when targeting multimedia

extensions since it provides a straightforward mechanism for identifying unit-stride memory

operations. When vectorizing load and store instructions, the only complication is ensuring

the compiler updates the associated address arithmetic appropriately. For the loop above,

vectorization should produce

pa = a;

pb = b;

for (i=0; i<N-1; i+=2) {

pa[0:1] = pb[0:1];

pa += 2;

pb += 2;

}
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4.2 Algorithm Description

This section describes the specific algorithm I have implemented to perform selective vec-

torization. Before discussing the details, however, it is important to re-emphasize that the

compiler performs software pipelining, in the form of modulo scheduling [74], directly fol-

lowing selective vectorization. The use of software pipelining has strong implications for

the design of the selective vectorization algorithm. When an operation does not lie on a

dependence cycle, a software pipeline can hide its latency. Vectorizable operations rarely

lie on dependence cycles. An exception is the case where a dependence distance equals or

exceeds the vector length. For example, a loop statement a[i+4] = a[i] has a dependence

cycle, but is vectorizable for vector lengths of 4 or less. In practice, these situations are

uncommon and a dependence cycle typically prevents vectorization altogether. The conse-

quence is that software pipelining allows selective vectorization to ignore operation latency

and focus solely on resource usage.

To perform selective vectorization, I adapt a mincut partitioning heuristic due to Fiduc-

cia and Mattheyses [27], who credit their minimization technique to Kernighan and Lin [46].

Figures 4-1 and 4-2 list the pseudocode. The high-level objective of the algorithm is to move

operations between a vector and scalar partition, searching for a division that minimizes a

cost function. The cost function for selective vectorization, described shortly, measures the

configuration’s overall resource usage. My implementation initially places all operations in

the scalar partition (lines 1–2). A completely vectorized starting configuration is equally

viable, however.

The partitioning heuristic is iterative. In Figure 4-1, lines 6–17 constitute a complete

iteration. Within each iteration, the algorithm repartitions each vectorizable operation

exactly once. At each step, the heuristic selects one operation to move to the opposing

partition. Among the alternatives, it selects the operation that produces the configuration

with the lowest overall cost (lines 19–28). Note that in many cases, the algorithm may

actually cause cost increases as it transitions from one configuration to another. It is this

strategy that allows the heuristic to climb out of local minima.

After each step, the algorithm locks the selected operation and removes it from consider-

ation until the next iteration (line 12). It then computes the cost of the new configuration,

noting the minimum encountered so far (lines 13–16). After repositioning all vectorizable
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// Assign each operation to a vector or scalar partition
PARTITION-OPS ()
01 foreach op ∈ ops

02 currPartition[op] ← scalar

03 bestPartition ← currPartition
04 minCost ← Calculate-Cost (currPartition)
05 lastCost ← 〈∞, ∞〉
06 while lastCost 6= minCost
07 lastCost ← minCost
08 locked ← ∅
09 foreach vectorizable op
10 bestOp ← Find-Op-To-Switch (currPartition, locked)
11 currPartition[bestOp] ← ¬ currPartition[bestOp]
12 locked ← locked ∪ bestOp
13 cost ← Calculate-Cost (currPartition)
14 if Compare-Cost (cost, minCost)
15 minCost ← cost
16 bestPartition ← currPartition
17 currPartition ← bestPartition
18 return bestPartition

// Select an unlocked operation to move to the opposing
// partition. Choose the alternative that produces the
// lowest overall cost.
FIND-OP-TO-SWITCH (currPartition, locked)
19 minCost ← 〈∞, ∞〉
20 foreach op ∈ ops

21 if op is vectorizable ∧ op /∈ locked
22 currPartition[bestOp] ← ¬ currPartition[bestOp]
23 cost ← Calculate-Cost (currPartition)
24 currPartition[bestOp] ← ¬ currPartition[bestOp]
25 if Compare-Cost (cost, minCost)
26 minCost ← cost
27 bestOp ← op
28 return bestOp

Figure 4-1: Partitioner pseudocode, part 1.

operations, the heuristic initiates a new iteration using the lowest cost configuration as the

starting point (line 17). This process repeats until an iteration fails to improve on its initial

configuration. In the end, the operations remaining in the vector partition constitute the

portion the compiler will vectorize.

As mentioned, the algorithm compares configurations according to their resource usage.

Since the goal of selective vectorization is to produce more efficient software pipelines, a

sensible cost function is a configuration’s ResMII, or minimum initiation interval implied

by resource usage. Rau observed that modulo scheduling is successful in achieving the

theoretical minimum II in the vast majority of cases. In his experiments, modulo schedul-

ing discovered the minimum II for 96% of loops [73, 74]. Based on this result, we can
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// Calculate the cost of a configuration. Return a tuple
// containing the maximum weight of any resource (ResMII),
// and the sum of squares of the resource weights.
CALCULATE-COST (currPartition)
29 high ← 0
30 sum ← 0
31 usage ← Get-Usage (currPartition)
32 foreach r ∈ resources

33 cycles ← dusage[r] / num-units (r)e
34 high ← max (high, cycles)
35 sum ← sum + cycles2

36 return 〈high, sum〉

// Calculate the weight (in processor cycles) of each set of
// resources. Account for the fact that scalar ops will be
// unrolled by the vector length. Also account for any
// explicit communication ops implied by the configuration.
GET-USAGE (currPartition)
37 foreach r ∈ resources

38 usage[r] ← 0
39 foreach op ∈ ops

40 if currPartition[op] = scalar

41 for i ← 1 to vector-length

42 usage ← Add-Usage (scalar-opcode (op), usage)
43 else

44 usage ← Add-Usage (vector-opcode (op), usage)
45 if Communication-Needed (op, currPartition)
46 foreach c ∈ Communication-Ops (op, currPartition)
47 usage ← Add-Usage (c, usage)
48 return usage

// Add the resource requirements of “opcode” to the
// running total.
ADD-USAGE (opcode, usage)
49 foreach r ∈ resources-required (opcode)
50 usage[r] ← usage[r] + occupancy (opcode, r)
51 return usage

// Compare the cost of two configurations. Return true if
// the first is “better” than the second
COMPARE-COST (cost1, cost2)
52 〈high1, sum1〉 ← cost1
53 〈high2, sum2〉 ← cost2
54 if (high1 < high2) ∨ (high1 = high2 ∧ sum1 < sum2)
55 return true

56 return false

Figure 4-2: Partitioner pseudocode, part 2.

assume that a reduction in ResMII will almost certainly lead to improved performance for

resource-constrained loops. For recurrence-constrained loops, selective vectorization has no

opportunity to improve performance.

For many architectures, computing a configuration’s ResMII is straightforward. Most

general-purpose processors provide sets of homogeneous functional units that operate on
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Source % exec. 1) ResMII 1) ResMII
benchmark time

∑

w2
∑

w3 ResMII 2)
∑

w2 2)
∑

w3

101.tomcatv 51% 42 37 27 26 26

101.tomcatv 12% 11 11 10 9 9

101.tomcatv 9% 9 9 7 7 7

103.su2cor 13% 28 28 16 16 16

103.su2cor 7% 9 9 9 9 9

103.su2cor 5% 28 28 18 18 18

171.swim 33% 26 26 19 19 19

171.swim 32% 25 25 15 15 15

171.swim 20% 16 16 14 14 14

172.mgrid 52% 31 23 23 23 23

172.mgrid 27% 31 23 23 23 23

172.mgrid 3% 30 30 30 30 30

Figure 4-3: Initiation intervals achieved with selective vectorization using various cost functions.

strict subsets of the opcode space. In this case, the ResMII is simply the maximum weight

across all resources. Given a set of resources R that executes instructions of type I, the

weight of R is

⌈

Number of operations of type I × Occupancy of I

Number of units in R

⌉

(4.1)

For now, I assume that partitioning can compute the ResMII using this method. Section 4.4

describes a scheme for extending the cost function to accommodate more complex interfaces.

In Figure 4-2, lines 37–48 compute usage in processor cycles for each set of resources. The

calculation includes two subtleties. First, the cost function must account for the fact that

selective vectorization unrolls scalar operations by the vector length (lines 40–42). Second,

the algorithm must consider the overhead of communicating data between operations in

different partitions (lines 45–47).

In some cases, a group of alternative configurations may have the same ResMII. To

better differentiate among them, I make one refinement to the cost function: given two

configurations with equal ResMII, the partitioning heuristic prefers the alternative with a

lower value for the sum of squares of the resource weights. This approach tends to favor

configurations with lower overall resource usage. In the pseudocode, lines 29–36 compute

the ResMII and sum of squares for a particular configuration. Lines 52–56 compare the

cost of two configurations.

To justify the partitioner cost function, Figure 4-3 compares its performance to several

similar methods. The figure lists initiation intervals produced by selective vectorization

55



when targeting the L-machine from Chapter 1. I show performance for several loops drawn

from SPEC FP benchmarks. In the evaluation of Chapter 6, these loops represent the cases

for which selective vectorization is particularly important in providing whole-program per-

formance improvements. Column 3 shows results when the partitioning algorithm compares

configurations by the sum of squares of resource weights. Column 4 shows results for a sum

of cubes calculation. Both methods drastically underperform a ResMII comparison, shown

in column 5. The results in column 6 use the cost function in the pseudocode of Figure 4-2,

and the results in column 7 show results for a similar cost function which uses a sum of

cubes calculation for the secondary comparison. Both methods perform identically, and

provide an improvement for two loops in tomcatv.

4.3 Partitioning Example

To better describe the selective vectorization algorithm, I now present a simple example

which details the key steps. In this section, I target the architectural model in Figure 4-4,

with compiler-visible resources consisting of 3 memory units, 2 scalar units, and a sin-

gle vector unit which operates on vectors of 2 elements. All operations have single-cycle

throughput. I assume the target architecture requires explicit instructions to communi-

cate operands between scalar and vector instructions. Rather than requiring transmission

through memory, however, the target processor provides a direct network between the vec-

tor and scalar register files. Transmitting a vector operand requires two explicit transfer

operations which execute on the scalar arithmetic unit.

I use the data dependence graph in Figure 4-5 as the target loop body. The graph con-

tains no cycles, which means that all operations are candidates for vectorization. The figure

shows the 12 steps of the first iteration of the partitioning heuristic. For each configuration,

highlighted operations designate those currently in the vector partition. Adjacent to each

configuration, I show the weight of each resource. The ResMII is the maximum among the

Processor Parameter Value

Memory units 3
Scalar arithmetic units 2
Vector arithmetic units 1
Vector length 2

Figure 4-4: Architectural model for the partitioning example in Figures 4-5 and 4-6.
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Figure 4-5: Example of two-cluster partitioning for selective vectorization. This figure shows the
12 steps in the first iteration of the algorithm. Highlighted nodes designate operations currently
in the vector partition. Highlighted edges indicate dataflow between scalar and vector operations.
For each configuration, M, S, and V show the weights for the memory, scalar, and vector units,
respectively. SS is the sum of squares of resource weights.
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Figure 4-6: Second iteration for the example of Figure 4-5.

memory, scalar, and vector units. I also show the sum of squares of the weights. Initially,

the algorithm places all operations in the scalar partition, as shown in the upper left. The

associated usage table shows resource weights assuming all scalar operations are unrolled

by a factor of 2. In other words, 3 memory units require 4 cycles to execute 2 × 6 memory

operations, and 2 scalar arithmetic units require 5 cycles to execute 2 × 5 ALU operations.

Even though the completely scalar partition in step 1 would not require unrolling, this as-

sumption simplifies our comparison to the other configurations. For the first step, the sum

of squares value is 41 (42 + 52).

In step 2, the algorithm selects one operation to repartition. The heuristic attempts

to locate the option that produces the lowest cost configuration. In this case, however, all

memory operations are equivalent. For illustration, I arbitrarily select the store operation

for repartitioning. As it turns out, this is a poor choice since the optimal configuration

executes the store in scalar form. As we will see, the heuristic is able to amend this

decision in a second iteration.

For each configuration, the associated resource weights include any explicit communica-

tion operations implied by the partition. For example, the weight of the scalar unit in step

2 includes two explicit transfer operations. These transfer operations increase the configu-

ration’s ResMII to 6 cycles. The algorithm tolerates this increase in the hope that it will

later discover a better configuration. In Figure 4-5, step 5 rediscovers a ResMII of 5 cycles

and step 6 locates a configuration requiring only 4 cycles.

The algorithm continues in this fashion until it repartitions every operation exactly

once. At this point, it selects the lowest cost configuration as the starting point for another

iteration. Since the configurations in steps 6–10 all exhibit a ResMII of 4 cycles, the heuristic
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Figure 4-7: Modulo schedule for the optimal partition in Figure 4-6. Numbers in parentheses
indicate the pipeline stage for each operation.

selects the alternative with the lower sum of squares value. In this case, the configuration

in step 9 is the best choice. Figure 4-6 shows the initial steps for a second iteration of

the heuristic. After two steps, the algorithm locates a configuration with a ResMII of 3

cycles. For this example, the configuration in step 3 is optimal and the algorithm uncovers

no further improvements in the remaining steps (not shown). The progress in the second

iteration would induce a third iteration, after which the algorithm would terminate.

Figure 4-7 shows a valid modulo schedule for the final partition in Figure 4-6. The

pipeline stages, shown in parentheses, assume all operations have single-cycle latency. The

schedule fully utilizes all machine resources, including the vector unit, and achieves an

initiation interval of 3 cycles.

4.4 Cost Calculation for Complex Interfaces

Many architectures provide simple interfaces that lead to a closed-form solution for calcu-

lating resource weights. This section describes a method for accommodating architectures

with complex interfaces in which a straightforward solution is not available. Calculating

a resource’s minimum usage is simple when the architecture provides sets of homogeneous

resources that operate on strict subsets of the opcode space. Most general-purpose proces-

sors export this interface. Nevertheless, there are many examples of architectures for which

Equation 4.1 does not apply.

Historically, VLIW designs export a low-level interface with heterogeneous functional

units and operations that reserve multiple resources at specific intervals. For these architec-

tures, the compiler must carefully orchestrate resource usage to ensure that conflicts do not

occur. Pioneers of modulo scheduling developed their approach for VLIW architectures with

complex interfaces [18, 73, 74, 76]. If selective vectorization is to be generally applicable

to current and future designs, it is important that it be able to target any general-purpose

architecture.
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To perform cost analysis for complex architectural interfaces, I leverage the ResMII

calculation advocated by Rau in his description of iterative modulo scheduling [73, 74]. Rau

used a heuristic bin-packing algorithm to compute resource weights. Bin-packing associates

a bin with each compiler-visible resource, and iteratively assigns operations to the bins

they require for execution. The standard formulation visits operations in order of their

scheduling alternatives such that those with little freedom are binned first. Given a choice

of bins, the heuristic selects the option that minimizes a cost function. Iterative modulo

scheduling uses the current ResMII, or maximum resource weight, to differentiate among

alternatives. For selective vectorization, it makes sense to adopt the slightly modified cost

function of Figure 4-2 so that a configuration’s cost calculation and cost comparison use

the same formula.

Figures 4-8 and 4-9 show the selective vectorization algorithm extended with a bin-

packing cost function. Lines 45–49 show the top-level bin-packing routine and lines 59–69

provide the bin-selection functionality. Lines 34–39 compute the cost of a configuration

using bin weights. As in Section 4.2, a configuration’s cost includes the ResMII and the

sum of squares of the resource weights.

The selective vectorization heuristic selects operations for repartitioning based on their

effect on the total cost. Ideally, we would perform a complete bin-packing phase for each un-

locked operation in order to determine the best alternative. Unfortunately, my experiments

reveal many cases where this approach is too costly for a practical compilation system. To

improve running time, I refine the cost analysis as follows: to compute the cost of reparti-

tioning an operation, the algorithm checkpoints the current state of the bins, releases the

resources for the operation under consideration, and reserves the set of resources required

in the other partition. The algorithm then notes the cost of the configuration and discards

the changes. In Figure 4-8, lines 30–33 provide this functionality. This process repeats for

each unlocked operation (lines 22–29). Only after selecting and repartitioning an operation

does the algorithm perform a fresh bin-packing (line 14).

A potential disadvantage of this optimization is that it could lead to a loss of accuracy

during cost analysis. As it turns out, the modified cost function alleviates this concern. To

see this, consider the example in Figure 4-10, which illustrates bin-packing for an archi-

tecture with 2 FPU and 2 ALU resources. Suppose that bin-packing reaches the state in

part (a), and the next operation to be binned can execute on either ALU. In its original
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// Assign each operation to a vector or scalar partition
PARTITION-OPS ()
01 foreach op ∈ ops

02 currPartition[op] ← scalar

03 bestPartition ← currPartition
04 bins ← Bin-Pack (currPartition)
05 minCost ← Calculate-Cost (bins)
06 lastCost ← 〈∞, ∞〉
07 while lastCost 6= minCost
08 lastCost ← minCost
09 locked ← ∅
10 foreach vectorizable op
11 bestOp ← Find-Op-To-Switch (bins, currPartition, locked)
12 currPartition[bestOp] ← ¬ currPartition[bestOp]
13 locked ← locked ∪ bestOp
14 bins ← Bin-Pack (currPartition)
15 cost ← Calculate-Cost (bins)
16 if Compare-Cost (cost, minCost)
17 minCost ← cost
18 bestPartition ← currPartition
19 currPartition ← bestPartition
20 bins ← Bin-Pack (currPartition)
21 return bestPartition

// Select an unlocked operation to move to the opposing
// partition. Choose the alternative that produces the
// lowest overall cost.
FIND-OP-TO-SWITCH (bins, currPartition, locked)
22 minCost ← 〈∞, ∞〉
23 foreach op ∈ ops

24 if op is vectorizable ∧ op /∈ locked
25 cost ← Test-Repartition (op, bins, currPartition)
26 if Compare-Cost (cost, minCost)
27 minCost ← cost
28 bestOp ← op
29 return bestOp

// Compute the cost resulting from a repartitioning of “op”.
// Release the resources used in the current partition and
// reserve the appropriate resources in the opposing partition.
TEST-REPARTITION (op, bins, currPartition)
30 bins ← Release-Resources (op, bins, currPartition)
31 currPartition[op] ← ¬ currPartition[op]
32 bins ← Reserve-Resources (op, bins, currPartition)
33 return Calculate-Cost (bins)

// Calculate the cost of a configuration. Return a tuple
// containing the maximum weight of any resource (ResMII),
// and the sum of squares of the resource weights.
CALCULATE-COST (bins)
34 high ← 0
35 sum ← 0
36 foreach r ∈ resources

37 high ← max (high, bins[r])
38 sum ← sum + bins[r]2

39 return 〈high, sum〉

Figure 4-8: Revised partitioner pseudocode, part 1.
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// Compare the cost of two configurations. Return true if
// the first is “better” than the second
COMPARE-COST (cost1, cost2)
40 〈high1, sum1〉 ← cost1
41 〈high2, sum2〉 ← cost2
42 if (high1 < high2) ∨ (high1 = high2 ∧ sum1 < sum2)
43 return true

44 return false

// Compute weights for all resources using a bin-packing
// heuristic. Assume operations are sorted according to their
// scheduling alternatives such that those with little freedom
// are binned first.
BIN-PACK (currPartition)
45 foreach r ∈ resources

46 bins[r] ← 0
47 foreach op ∈ ops

48 bins ← Reserve-Resources (op, bins, currPartition)
49 return bins

// Increment the bin weights of resources reserved by “op”.
// Account for the fact that scalar ops will be unrolled by the
// vector length. Also account for any explicit communication
// ops implied by the configuration.
RESERVE-RESOURCES (op, bins, currPartition)
50 if currPartition[op] = scalar

51 for i ← 1 to vector-length

52 bins ← Reserve-Least-Used (scalar-opcode (op), bins)
53 else

54 bins ← Reserve-Least-Used (vector-opcode (op), bins)
55 if Communication-Needed (op, currPartition)
56 foreach c ∈ Communication-Ops (op, currPartition)
57 bins ← Reserve-Least-Used (c, bins)
58 return bins

// Add the resource requirements of “opcode” to the current
// bin weights. Given a choice between multiple resources,
// select the alternative that minimizes the cost function.
RESERVE-LEAST-USED (opcode, bins)
59 foreach r ∈ resources-required (opcode)
60 minCost ← 〈∞, ∞〉
61 foreach a ∈ alternatives (r)
62 temp ← bins
63 temp[a] ← temp[a] + occupancy (opcode, a)
64 cost ← Calculate-Cost (temp)
65 if Compare-Cost (cost, minCost)
66 minCost ← cost
67 best ← a
68 bins[best] ← bins[best] + occupancy (opcode, best)
69 return bins

Figure 4-9: Revised partitioner pseudocode, part 2.
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Figure 4-10: Bin-packing example.

description, the bin-packing heuristic does not prefer one alternative to the other since nei-

ther placement affects the maximum bin weight. Assume the heuristic arbitrarily chooses

the first ALU, as shown in part (b). Now suppose that cost analysis removes two floating-

point operations, as in part (c). Since ALU usage is unbalanced, the partitioner computes

an inaccurate cost. We avoid this situation by balancing operations across resources even

when they do not immediately contribute to the maximum weight. The cost function in

Figure 4-8 provides this functionality.

The overall result is that the bin-packing cost analysis in Figures 4-8 and 4-9 is ex-

tremely effective in maintaining accuracy. Chapter 6 evaluates selective vectorization for

a set of 8 SPEC FP benchmarks. Combined, these benchmarks contain over 300 loops

that are candidates for selective vectorization (i.e., they are resource-constrained and con-

tain vectorizable operations). For every loop, the revised selective vectorization algorithm

achieves the same initiation interval as the initial description in Section 4.2. The heuristic

is also efficient. Compared to an approach that performs a full bin-packing at every step,

the revised algorithm executes roughly 12× faster. In my infrastructure, the algorithm’s

running time is comparable to modulo scheduling.

In the worst case, the selective vectorization algorithm in Figures 4-8 and 4-9 is an

O(n3) algorithm. Each iteration of the partitioning phase repositions every operation once

and bin-packs each new configuration. Since bin-packing requires O(n) steps for a loop

containing n operations, each iteration has complexity O(n2). The maximum bin weight

is proportional to n, and the algorithm terminates unless an iteration produces a lower-

cost configuration. Therefore, the maximum number of iterations is proportional to n. In

practice, however, the heuristic produces a final solution very quickly. In my benchmark

suite, 85% of loops reach a solution within two iterations. Across all loops, I observe a

maximum of 5 iterations.
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4.5 Modulo Scalar Expansion

When the target architecture requires communication of operands through memory, intelli-

gent code generation greatly improves loop performance. To see this, consider the following:

for (i=0; i<N; i++) {

s = s + a[i] + b[i];

p = p + c[i] + d[i];

}

Suppose we fully vectorize the loop for a vector length of two, using a single temporary

array to transfer operands:

for (i=0; i<N; i+=2) {

t[0:1] = a[i:i+1] + b[i:i+1];

s = s + t[0];

s = s + t[1];

t[0:1] = c[i:i+1] + d[i:i+1];

p = p + t[0];

p = p + t[1];

}

This solution is efficient in terms of memory usage, but severely limits ILP. Since every

communication sequence uses the same memory location, the compiler must completely

sequentialize the corresponding load and store operations. A better approach uses a distinct

location for each transfer:

for (i=0; i<N; i+=2) {

t[0:1] = a[i:i+1] + b[i:i+1];

s = s + t[0];

s = s + t[1];

v[0:1] = c[i:i+1] + d[i:i+1];

p = p + v[0];

p = p + v[1];

}

This method exposes more parallelism in the loop since the first three statements are

fully independent of the last three. While this approach allows the compiler to reorder

operations within a loop, however, it prevents overlap among iterations. This restriction

results from the fact that a particular transfer sequence uses the same location in every

dynamic iteration. Therefore, a new iteration cannot initiate until values produced in the

previous iteration are consumed.
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To provide complete flexibility to the software pipeliner, another approach is to perform

full scalar expansion, albeit without loop distribution:

for (i=0; i<N; i+=2) {

t[i:i+1] = a[i:i+1] + b[i:i+1];

s = s + t[i];

s = s + t[i+1];

v[i:i+1] = c[i:i+1] + d[i:i+1];

p = p + v[i];

p = p + v[i+1];

}

Scalar expansion allows for maximum overlap among iterations since every dynamic

transfer sequence utilizes a unique set of memory locations. This approach has two draw-

backs, however. First, the additional memory overhead is potentially large since temporary

arrays must be long enough to accommodate all iterations. Second, each expanded array

introduces additional address arithmetic, which could degrade loop performance if those

operations use critical resources.

In fact, we can achieve the scheduling flexibility afforded by scalar expansion without

the large memory and operation overhead:

t = &SCRATCH_PAD;

j = 0;

for (i=0; i<N; i+=2) {

t[0:1] = a[i:i+1] + b[i:i+1];

s = s + t[0];

s = s + t[1];

t[2:3] = c[i:i+1] + d[i:i+1];

p = p + t[2];

p = p + t[3];

j = j + 4;

j = j % SCRATCH_SIZE;

t = j + &SCRATCH_PAD;

}

I term this technique modulo scalar expansion, due to its similarity to both scalar expan-

sion [6] and modulo variable expansion [54]. The technique uses a circular scratch pad

buffer to support all operand transfers. Within an iteration, each communication sequence

accesses a unique location in memory. Furthermore, the pointer increment at the end of the

loop provides fresh locations for each iteration. Once the consumers of a communication

sequence receive their data, it is safe to reuse those buffer locations. In order to ensure that

65



it does not overwrite any values too early, the compiler must simply ensure that a given

loop has a buffer length of

t ∗ V ∗ (s + 1)

where t is the number of transfers in the loop body, V is the vector length in bytes, and s is

the maximum number of pipeline stages separating a communication sink from its source.

Modulo scalar expansion is very efficient in terms of operation overhead. Rounding the

buffer length to the nearest power of 2 allows the compiler to replace the mod operation

with a bitwise and. Also, as long as the target architecture provides base+offset addressing,

buffer accesses do not require additional address arithmetic. Overall, operation overhead

amounts to 3 ALU instructions1. With its low cost and the scheduling flexibility it provides,

modulo scalar expansion is essential for absorbing the high cost of communicating through

memory.

4.6 Code Generation

When selective vectorization opts to vectorize operations, the next step is to transform the

loop. This section details the procedure. Figure 4-11 outlines the important high-level

steps. The top-level function, codegen, creates a series of basic blocks which replace the

sequential loop. On line 2, the procedure first inserts a test to ensure there are sufficient

iterations to enter the vector loop. In loops with fewer than vector length iterations, control

transfers directly to a cleanup loop. Line 3 inserts an initialization block to reset the scratch

pad pointer (for modulo scalar expansion) and create vectors for loop invariants.

Lines 7–18 of the pseudocode construct the vector loop. The algorithm assumes strongly

connected components, or piblocks, are available from a traditional analysis, as described

in Chapter 3. It further assumes that piblocks are in topological sort order. A topological

sort is necessary to preserve dependences between piblocks and is analogous to the loop

distribution phase in traditional vectorization. Piblocks selected for vectorization contain

a single operation. Line 11 replaces the operation with the appropriate vector opcode.

Lines 12–14 emit scalar operations V times, where V is the vector length. To honor depen-

1As with modulo variable expansion [54], we could unroll the modulo-scheduled loop and avoid any
computation overhead associated with buffer management. As long as ALU operations are not a performance
bottleneck, however, it is best to avoid unrolling since it puts undue stress on the instruction cache.
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CODEGEN ()
01 R ← ∅

// Test for iterations less than the vector length
02 R ← Insert-Vector-Test (R)

// Initialize scratch pad pointer and loop invariants
03 R ← Insert-Vector-Init (R)

// Construct the vectorized loop
04 R ← Insert-Vector-Loop (R)

// Loop to execute any remaining iterations
05 R ← Insert-Post-Loop (R)
06 return R

INSERT-VECTOR-LOOP (R)
// Piblocks are in topological sort order

07 foreach p ∈ piblocks

// Insert induction ops once, with strides updated
08 if op ∈ p is induction op
09 R ← Insert-Strided-Op (R, op)
10 elsif op ∈ p selected for vectorization
11 R ← Insert-Vector-Op (R, op)
12 else for i ← 1 to vector length

// ops in p are in original program order
13 foreach op ∈ p
14 R ← Insert-Scalar-Op (R, op, i)
15 if loop requires communication
16 R ← Insert-Scratchpad-Update (R)
17 R ← Insert-Test-And-Branch (R)
18 return R

INSERT-VECTOR-OP (R, op)
19 R ← R • vector-op (op)
20 if has-scalar-flow-deps (op)
21 R ← R • vector-scalar-transfer (op)
22 return R

INSERT-SCALAR-OP (R, op, i)
23 newOp ← copy-op (op)

// Use base+offset addressing for scalar memops
24 if op is strided memop
25 newOp ← add-offset (newOp, i)
26 R ← R • newOp
27 if i = vector length ∧ has-vector-flow-deps (op)
28 R ← R • scalar-vector-transfer (op)
29 return R

Figure 4-11: Code generation pseudocode.

dences among scalar operations, the procedure emits operations within a piblock in original

program order.

The code generation algorithm pays special attention to induction variable increments

(lines 8–9). In contrast to other scalar operations, it inserts these instructions only once and

updates their strides to reflect the unroll factor. For simplicity, the pseudocode assumes

that the main induction variable appears only in the loop’s branch test. This restriction is
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not fundamental, however, and can be removed with more meticulous code generation. For

strided scalar memory operations, the compiler can insert a single address increment for

all unrolled versions of the instruction as long as the target processor provides base+offset

addressing (lines 24–25).

Whenever a loop requires communication between vector and scalar operations, code

generation emits the appropriate transfer instructions (lines 20–21 and 27–28). Operand

communication requires that the compiler rename privatizable scalars so that transfer op-

erations can reference a distinct register for each unrolled version of a scalar operation.

Although it is not explicit in Figure 4-11, the pseudocode assumes appropriate renaming

for newly created instructions. Scalar renaming is generally useful since it removes false

dependences and allows greater flexibility in scheduling.

At the end of the vector loop, the pseudocode inserts instructions to update the scratch

pad pointer (line 20), and to perform the loop test and branch (line 23). Finally, the top-

level code generation routine inserts a scalar loop to execute any iterations not performed

in the vector loop (line 5).

4.7 Related Work

Automatic extraction of parallelism is an enormous field of research. This section discusses

work that is closely related to selective vectorization. To my knowledge, software pipelin-

ing of vector loops was first proposed by Tang, Davidson, and Tong [87] and Eisenbeis,

Jalby, and Lichnewsky [25]. These researchers advocate software pipelining as a method

for achieving higher performance on the Cray-2 vector supercomputer. The Cray-2 does

not support chaining, and incurs a long latency between dependent vector operations. Soft-

ware pipelining hides this latency in the same way it hides latency between scalar opera-

tions. Mangione-Smith et al. [60, 61] extended this work to show that software pipelining

lessens the need for long vector registers. Since software pipelining tends to increase regis-

ter lifetimes, vector designs more readily benefit from a large number of shorter registers.

Compared to selective vectorization, existing research on software pipelining for vector com-

puters does not propose to balance computation across scalar and vector resources. Such

mixed-mode operation may provide little improvement for supercomputers which dedicate

the vast majority of processor resources to vector execution.
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Software pipelining for clustered VLIWs [2, 16, 67, 81, 99] is closely related to selective

vectorization. A clustered design consists of a number of processing clusters, each containing

its own functional units and register file. Typically, these designs require explicit transfer

instructions to communicate data among clusters. As in selective vectorization, balancing

operations across all functional units can result in better resource utilization and lead to

software pipelines with lower initiation intervals. In clustered architectures, the compiler is

usually responsible for managing communication between clusters.

In some aspects, selective vectorization is simpler than partitioning for clustered ma-

chines. I have shown that selective vectorization is free to concentrate on resource usage

alone since operations utilizing vector functional units rarely lie on dependence cycles. In

contrast, proposals that target clustered architectures typically emphasize partition assign-

ment for operations in dependence cycles.

Selective vectorization is more difficult than compilation for clustered architectures for

two reasons. First, operand communication may introduce load and store operations that

compete for resources with existing operations. By comparison, a clustered architecture

usually employs an operand network with dedicated resources for communicating among

clusters. A specialized communication network simplifies partitioning since communication

operations compete for resources only among themselves. Second, selective vectorization

must perform instruction selection and resource allocation simultaneously. Specifically,

vectorizing an operation introduces a new opcode that may have entirely different resource

requirements than its scalar version. Selective vectorization monitors these requirements

closely in order to accurately gauge the trade-offs of scalar versus vector execution.

The partitioning phase of selective vectorization distributes operations between two

clusters. The two-cluster partitioning heuristic [27, 46] described in this chapter provides

an intuitive match for the problem. Nonetheless, it is possible that other partitioning

approaches are suitable. Regardless of the algorithm used, this thesis shows that an effective

technique must track resource usage carefully in order to gain top performance.
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Chapter 5

Address Alignment

In contemporary general-purpose architectures, the alignment of vector memory operations

affects code generation and performance. A memory operation is aligned if its address is

a multiple of the vector length. Some architectures restrict memory references to aligned

regions only. In this case, it is the compiler’s responsibility to explicitly merge data in

two aligned regions, leading to an overhead which can diminish performance in vectorized

code sequences. If the processor supports misaligned references directly, these accesses still

require extra latency, resource usage, or both.

This chapter presents a number of compiler techniques that reduce misalignment over-

head. Section 5.1 describes the alignment issue in greater detail and outlines methods for

coping with it in the compiler. Sections 5.2 and 5.3 introduce a dataflow analysis that

extracts alignment information at compile-time. While the approach is effective at un-

covering aligned references where they exist, misalignment is usually pervasive unless the

compiler takes a more proactive approach. Section 5.4 describes a memory layout transfor-

mation that can improve the effectiveness of alignment analysis in loop nests that reference

multidimensional arrays.

As an alternative to static analysis, Sections 5.5 through 5.8 describe code transforma-

tions that detect alignment at runtime. The central scheme, dynamic loop peeling, can

enforce alignment for a portion of a loop’s memory references. In order to be practical,

however, the technique relies on the profiling method described in Section 5.7. For a set

of SPEC FP benchmarks, the profile-based transformation enforces alignment for roughly

75% of dynamic references.

71



While innovative approaches can reduce the number of misaligned references, some

degree of misalignment is unavoidable. In these situations, the compiler can reduce overhead

through intelligent code generation. Section 5.9 demonstrates a technique similar to scalar

replacement which reduces the cost of misalignment in vector loops.

Much of the technology described in this chapter originally appeared in [56]. Other

researchers [9, 10, 11, 12, 24, 51, 97] have made significant contributions both concurrently

and subsequently. Rather than separating the work of others from my own, this chapter

presents the breadth of alignment research in a cohesive discussion. Section 5.10 gives a

historical perspective on developments in the field. Finally, Section 5.11 discusses alignment

issues in the context of selective vectorization.

5.1 Background

Formally, an address A is aligned if A mod W = 0, where W is the width in bytes of the

accessed data. Some literature terms this property natural or size alignment. When a

memory reference is misaligned, the value A mod W specifies the offset from alignment.

The alignment restriction is not peculiar to vector memory references. Most modern RISC

processors require alignment for basic data types as well. Even Intel’s IA-32, which supports

misaligned references directly, is more efficient when accessing aligned regions.

Alignment issues result from the fact that a misaligned reference accesses two aligned

segments in memory. To support misaligned operations in hardware, the processor must

implement a rotation or merge network between memory and registers, potentially increas-

ing the latency of a vector load. Vector supercomputers tolerate this latency with longer

vectors [7]. Cache-based systems have the added complexity that a misaligned access might

require two tag checks and two TLB lookups, depending on whether the data cross a cache-

line or page boundary, respectively.

Because of the complexity of supporting misaligned references directly, designers of the

VMX/AltiVec extension [37] opted to relegate the responsibility to software. The VMX ISA

ignores the low-order bits of a vector memory address, enforcing access to aligned regions.

The compiler performs misaligned accesses by merging data from aligned regions. Figure 5-1

illustrates this process. The misaligned load in part (a) requires two aligned loads followed

by an explicit merge operation. The store in part (b) is even more troublesome since the
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Figure 5-1: (a) A misaligned vector load handled explicitly in software. (b) A misaligned vector
store. Highlighted regions represent data loaded or stored.

compiler must splice data with existing values in memory. Chapter 5.9 shows how careful

code generation can remove much of this overhead in vector loops.

In contrast to VMX, Intel’s IA-32 extensions provide direct hardware support for access-

ing misaligned data. Memory references are more efficient when accessing aligned regions,

however, particularly if the data cross a cache-line boundary [41]. Recent extensions to

IA-32 provide aligned and unaligned memory opcodes. The aligned versions are more effi-

cient, but are valid only when the compiler can guarantee alignment. For a simple loop that

copies one array to another, my experiments reveal that a version utilizing aligned opcodes

executes roughly 2× faster on a Pentium 4 than a version using unaligned opcodes.

VMX and SSE represent two points in the design space of multimedia memory systems.

In either model, it is advantageous to reduce the overhead of misalignment as much as

possible. The compiler can achieve this reduction using the following methods:

• Static detection of aligned references. Compile-time alignment information

is particularly important for architectures like VMX, which suffers a performance

penalty whenever the compiler is unable to guarantee alignment. Static information

is also useful for IA-32, where the compiler can employ more efficient opcodes when

it is safe.

• Code transformations that enforce alignment. Such techniques are useful for

both models since aligned references are more efficient than unaligned references,

regardless of the underlying hardware support.
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• Intelligent code generation. In many cases, enforcing alignment for all memory

operations is impossible. Judicious code generation can reduce the overhead of the

references that are misaligned.

In the following sections, most of my discussion assumes that the compiler enforces

base alignment for arrays, meaning that the first element of an array is aligned to the

vector length. Current compilers already enforce alignment at smaller boundaries since

most systems require standard data types to be aligned. To support base alignment at

larger boundaries, we simply need to modify existing conventions. Enforcing alignment for

global arrays is trivial. For stack-allocated data, the compiler is responsible for layout within

a stack frame, and can guarantee base alignment as long it allocates frames in multiples of

the vector length. For heap-allocated data, enforcing base alignment is possible if we modify

memory allocation routines (e.g., malloc) to return aligned pointers. Recent multimedia

extensions support vectors totaling 16 bytes. Unless otherwise noted, the examples in

this chapter assume that vector memory operations must be 16-byte aligned, and that the

compiler can guarantee 16-byte base alignment for local and global arrays.

5.2 Alignment Analysis

This section describes a dataflow analysis I developed [56] to extract alignment information

from programs. The goal of alignment analysis is to identify static memory references

that are aligned on all dynamic executions. In a conventional setting, the compiler would

likely perform alignment analysis after vectorization as part of the code generation phase.

My infrastructure applies the analysis early so that selective vectorization can account for

misalignment overhead during partitioning. In this case, the objective is to identify memory

references having an offset of zero on entry to a loop. Consider the following example:

int main() {

float a[N], b[N];

float *pa = &a[4];

float *pb = &b[1];

...

for (i=0; i<N-4; i++) {

*pa = *pb;

}

}
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// Compute alignment information within a procedure
// using a standard dataflow analysis.
ANALYZE-PROC (proc)

// initialize data for each variable to >
01 foreach b ∈ basic blocks in proc
02 worklist ← worklist ∪ b
03 foreach v ∈ variables in proc
04 data[b][v] ← >

// iterate until a fixed point is reached
05 while worklist 6= ∅
06 b ← block in worklist
07 worklist ← worklist − b
08 old ← data[b]
09 data[b] ← Analyze-Block (b, proc, data)
10 if data[b] 6= old
11 foreach s ∈ successors of b
12 worklist ← worklist ∪ s
13 return data

// Compute dataflow values within a basic block using
// the transfer functions in Figure 5-3.
ANALYZE-BLOCK (b, proc, data)

// first merge data from predecessor blocks
14 foreach v ∈ variables in proc
15 curr[v] ← >
16 foreach p ∈ predecessors of b
17 curr[v] ← curr[v] u data[p][v]

// visit instructions in program order
18 foreach op ∈ operations in b
19 if op is add
20 curr[op.dest] ← curr[op.src1] + curr[op.src2]
21 elsif op is sub
22 curr[op.dest] ← curr[op.src1] − curr[op.src2]
23 elsif op is mult
24 curr[op.dest] ← curr[op.src1] ∗ curr[op.src2]
25 elsif op is load constant
26 curr[op.dest] = 〈V, op.src mod V〉
27 if op is array base
28 curr[op.dest] = 〈V, 0〉
29 elsif op has dest
30 curr[op.dest] ← 〈1, 0〉
31 return curr

Figure 5-2: Alignment analysis pseudocode.

On the first iteration of the loop, pa falls on a 16-byte boundary, but pb has an offset of 4

bytes. If we vectorize the loop for a vector length of 4 (i.e., 16 bytes), the store to pa will

be aligned, but the load from pb will not.

To extract alignment information from arbitrary control-flow, I developed a static data-

flow analysis similar to constant propagation. The algorithm characterizes pointer variables

with a stride and offset, 〈s, o〉, which indicate that the variable only sees values from the

subset sn+ o, where n is a non-negative integer. After vectorization, a memory reference is
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meet 〈s1, o1〉 u 〈s2, o2〉 = 〈gcd(s1, s2, |o1 − o2|), o1 mod s1〉

addition 〈s1, o1〉 + 〈s2, o2〉 = 〈gcd(s1, s2), (o1 + o2) mod s1〉

subtraction 〈s1, o1〉 − 〈s2, o2〉 = 〈gcd(s1, s2), (o1 − o2) mod s1〉

multiplication 〈s1, o1〉 ∗ 〈s2, o2〉 = 〈gcd(s1s2, s1o2, s2o1, V ), o1o2 mod s1〉

Figure 5-3: Transfer functions for alignment analysis. V is the vector length in bytes.

guaranteed to be aligned if the analysis can prove its address has the value 〈V, 0〉 on entry

to a loop. If s = V , and o 6= 0, then o specifies the offset from alignment. Two references

with values 〈s1, o1〉 and 〈s2, o2〉 are relatively aligned if s1 = s2 = V and o1 = o2.

Alignment analysis uses a standard worklist algorithm, as shown in the pseudocode of

Figure 5-2. At every point in a procedure, the analysis associates a stride and offset with

any variable involved in an address calculation. Initially, all variables are assigned the value

>, indicating they have yet to be analyzed (lines 1–4). The algorithm then places all basic

blocks in a worklist (lines 1–2), and removes them iteratively for analysis. Whenever analysis

of a basic block modifies its dataflow information, the algorithm reinserts all successors into

the worklist (lines 10–12). The process terminates when the worklist empties.

Within a basic block, alignment analysis propagates dataflow values using the transfer

functions listed in Figure 5-3. As with any forward dataflow analysis, the first step merges

the values of variables from all predecessor blocks using the meet operator (lines 14–17).

The algorithm then visits operations within a basic block in original program order. Lines

19–24 compute dataflow values using the transfer functions for addition, subtraction, and

multiplication, which are the primary operations in address arithmetic. For all transfer

functions, combining an element 〈s, o〉 with > results in 〈s, o〉. Otherwise, the analysis

computes new dataflow values using the vector length, V , and the current values of the

operation’s two sources. Any operation not listed in Figure 5-3 results in the value 〈1, 0〉

(lines 29–30), indicating an absence of information. For an integer constant, C, the analysis

assigns the value 〈V,C mod V 〉 (lines 25–26). Approximating a constant value with a stride

and offset leads to no loss of precision and allows us to use one set of transfer functions.

Finally, the algorithm assumes base alignment for local and global arrays (lines 27–28).
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‹8,0› ‹8,4› ‹8,2› ‹8,6› ‹8,1› ‹8,5› ‹8,3› ‹8,7›

‹4,0› ‹4,2 ‹4,1› ‹4,3›

‹2,0› ‹2,1›

‹1,0›

T

Figure 5-4: Alignment lattice for an 8-byte vector length.

Dataflow theory [1, 64] often represents the function of the meet operator with a lattice,

which depicts a partial order on the set of possible dataflow values. Figure 5-4 shows the

lattice for an 8-byte alignment analysis. Elements appearing higher in the lattice offer

more precise information. For example, the set of values 〈8, 0〉 is more specific than the

set of values 〈4, 0〉. The ⊥ element familiar in dataflow analysis is equivalent to 〈1, 0〉, and

represents the case where the analysis has no information about a variable’s value.

Graphically, the meet operator merges dataflow values by locating the common root in

the lattice. Figure 5-5 helps to illustrate this point. Assuming an alignment boundary of 8

bytes, the pointer variable pa in part (a) has the value 〈8, 1〉 in one branch of control, and

the value 〈8, 3〉 in the other. When these paths meet, the analysis must assume the variable

can access either set of locations. The union of 〈8, 1〉 and 〈8, 3〉 is best approximated with

the value 〈2, 1〉, as illustrated in part (b). In Figure 5-4, 〈2, 1〉 is the common root of 〈8, 1〉

and 〈8, 3〉.

char a[N];

char* pa;

if (...) {

pa = &a[1];

}

else {

pa = &a[3];

}

...

0 1 2 3 4 5 6 7 8 9 10 11…

8n+1

8n+3

� 2n+1

(a) (b)

Figure 5-5: Illustration of the meet operator. (a) pa has a value of 〈8, 1〉 in one branch of control
and a value of 〈8, 3〉 in the other. (b) The meet of these locations is best approximated with 〈2, 1〉.
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‹6,0› ‹6,3› ‹6,4› ‹6,1› ‹6,2› ‹6,5›

‹2,0› ‹2,1›

‹3,0› ‹3,2›

‹1,0›

T

‹3,1›

Figure 5-6: Alignment lattice for a 6-byte vector length.

The lattice’s height and structure depend on the largest value relative to which we need

to uncover alignment information. Recent multimedia extensions operate on vectors of 16

bytes, and require a 16-byte lattice with the same structure as the 8-byte lattice. The

transfer functions in Figure 5-3 are valid for any integral value. For example, Figure 5-6

shows the lattice for a width of 6 bytes. Given the structure of modern memory systems, it

is difficult to imagine a realistic design that requires alignment to boundaries that are not

a power of two. In this case, Bik [10] shows how to simplify the transfer functions.

5.3 Interprocedural Alignment Analysis

The analysis described in Section 5.2 operates at the procedure level. Unfortunately, many

vector loops access arrays passed as pointers to the enclosing function. This practice com-

plicates alignment analysis since languages like C and Fortran allow the programmer to

alias arbitrary elements in an array. In this case, alignment depends on the calling context.

Figure 5-7 shows an example. Here, a procedure-level analysis cannot uncover alignment

information in copy since it has no information about the base alignment of x or y. If

an application’s entire source code is available at compile-time, one solution for obtaining

alignment information is to employ a whole-program analysis.

Extending alignment analysis to the program level is straightforward in the absence

of recursive function calls. After analyzing a calling procedure f , we simply propagate

dataflow values computed in f to the formal parameters of a called procedure, g. When

a program contains multiple calls to a procedure, a whole-program analysis must merge

the different calling contexts using the meet operator. As an example, consider the calls
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void copy(float* x, float* y) {

int i;

for (i=0; i<N; i++) {

x[i] = y[i];

}

}

int main() {

float a[N], b[N+4];

copy(a, b+1);

copy(a, b+4);

}

Figure 5-7: Alignment of the memory references in copy depends on the calling context in main.

from main in Figure 5-7. On the first call, parameters x and y have the values 〈16, 0〉 and

〈16, 4〉, respectively. On the second call, both parameters have the value 〈16, 0〉. Merging

the two calling contexts produces 〈16, 0〉 for x and 〈4, 0〉 for y. Therefore, the compiler can

guarantee 16-byte alignment for the store to x, but rightly assumes misalignment for the

load from y.

In order to ensure correct dataflow information, the compiler must analyze all callers

to a procedure before analyzing the procedure itself. This constraint precludes analysis of

recursive functions. To support recursive calls, Bik [10] proposes an extension to interpro-

cedural constant propagation [13]. The approach uses an iterative worklist algorithm to

compute alignment information for pointer parameters. The algorithm initiates by placing

all functions in a worklist. At each step, it removes a function f and computes values for

passed arguments using jump functions, which are represented in terms of the function’s

formal parameters. The algorithm updates values for the parameters of a called function,

g, by merging their current dataflow values with those produced by the jump functions. If

any values change, the algorithm reinserts g into the worklist. The process terminates when

dataflow values reach a fixed point and the worklist empties. At this point, the compiler

can perform a procedure-level alignment analysis using dataflow information gained for the

formal parameters.

In interprocedural constant propagation, the accuracy and runtime of the algorithm

depend on the complexity of the jump functions [31]. In the extreme case, a jump function

could involve a full symbolic interpretation of the procedure. For alignment analysis, Bik

advocates the following jump functions as sufficient to capture most cases that occur in

practice:
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For a call to g at call site s in function f , the jump function Js(yj) for formal parameter

yj is given as follows:

1. If argument aj in f , corresponding to parameter yj in g evaluates to

(a) an address with a statically known value 〈s, o〉, then set Js(yj) = 〈s, o〉.

(b) an integer constant C, then set Js(yj) = 〈V,C mod V 〉.

2. If aj = xi + C for a constant C and xi is a formal parameter of f with no other

definitions of xi reaching s, then set

Js(yj) =























> if value of xi = >

〈s, (o + C) mod V 〉 if value of xi = 〈s, o〉

⊥ if value of xi = ⊥

3. Otherwise, set Js(yj) = ⊥.

These jump functions uncover alignment information for pass-through parameters with

constant offsets. For example,

void f(float* x) {

g(x, x+1, x+2);

}

They fail to locate alignment when definitions within a procedure reach its call sites, as in

void f(float* x) {

float* p = x;

g(p, p+1, p+2);

}

I tested the effectiveness of whole-program alignment analysis for the SPEC FP bench-

marks I use in the evaluation of Chapter 6. Since these benchmarks have no recursion, I

perform a full analysis of a procedure before propagating dataflow information to callees.

Figure 5-8 shows the percentage of dynamic memory references for which the analysis can

guarantee alignment. The figure accounts for unit-stride memory operations in inner loops

since they are the only candidates for vectorization. I show results for three alignment
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Benchmark V = 16 V = 32 V = 64

093.nasa7 16.70% 16.70% 16.51%
101.tomcatv 0.01% 0.00% 0.00%
103.su2cor 67.52% 52.64% 41.33%
125.turb3d 25.33% 12.99% 12.99%
146.wave5 10.84% 10.88% 10.88%
171.swim 0.02% 0.02% 0.02%
172.mgrid 0.00% 0.00% 0.00%
301.apsi 0.04% 0.04% 0.04%

Figure 5-8: Percentage of dynamically aligned memory references detected by whole-program
alignment analysis.

boundaries: 16, 32, and 64 bytes. 32 and 64-byte boundaries do not appear in contempo-

rary machines, but provide a better measure of the effectiveness of alignment analysis. The

benchmarks in Figure 5-8 operate on 64-bit floating-point data, which are otherwise aligned

to 8 bytes. For a 16-byte boundary, vector memory operations have two possible offsets: 0

and 8. The 32- and 64-byte boundaries allow 4 and 8 possible offsets, respectively.

Although whole-program analysis is able to detect a degree of alignment in these bench-

marks, its ability is limited. A major impediment is that a particular reference must be

aligned in all contexts in order for the analysis to guarantee alignment. For the bench-

marks in Figure 5-8, this property is rare. To make matters worse, whole-program analysis

is limited if the entire code base is not available. In later sections, I show that a local

transformation combined with profiling can both detect and enforce aligned references.

5.4 Array Padding

One source of misalignment derives from the use of multidimensional arrays. Misaligned

references occur for multidimensional accesses when the size of the low-order dimension is

not a multiple of the vector length. Figure 5-9 shows an example. In part (a), the offset

of a[i][j] depends on the outer loop iteration. For instance, reference a[0][0] is 16-byte

aligned, but reference a[1][0] has an offset of 12 bytes. Part (b) shows the array’s layout in

memory. In some cases, the compiler can fix an array’s offset to its low-order dimension by

padding [56]. Adding an extra element to the low-order dimension of the array in Figure 5-9

(a) produces the layout in part (c), where all accesses a[i][0] are aligned.

The complication in array padding is ensuring the transformation is safe. Languages

like C and Fortran allow the programmer to access an array using dimensions different from
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float a[32][31];

for (i=0; i<32; i++) {

for (j=0; j<31; j++) {

a[i][j] = 0.0;

}

}

16-byte Boundary

a[0][30]a[0][1]a[0][0] a[1][0] a[1][1]

(a) (b)

a[0][30]a[0][1]a[0][0] a[1][0]

pa = &a;

for (i=0; i<32*31; i++) {

pa[i] = 0.0;

}

(c) (d)

Figure 5-9: (a) Loop nest accessing a two-dimensional array with 31 4-byte elements in the low-
order dimension. (b) Data layout of the array. Without padding, reference a[0][0] is aligned to a
16-byte boundary, but reference a[1][0] is not. (c) After padding, all references a[i][0] are aligned
to a 16-byte boundary. (d) Padding is illegal if the array is accessed with dimensions different from
its declaration.

its declaration. In C, for example, it is legal to access array a linearly, as in Figure 5-9 (d).

In this case, padding would cause the loop to access the array incorrectly. To determine

when the transformation is safe, the compiler must identify all potential references to an

array and ensure they are consistent with its declaration. If the array is visible in other

procedures, the compiler must perform a whole-program dataflow analysis.

To test the benefits of multidimensional array padding, I implemented a whole-program

analysis and padding transformation. Since padding alone does not provide any data,

I extracted alignment information using the alignment analysis described in Section 5.3.

Figure 5-10 shows the number of dynamic references for which the analysis can guarantee

alignment after padding. Compared to the results in Figure 5-8, tomcatv and su2cor see

a minor improvement with array padding.

Benchmark V = 16 V = 32 V = 64

093.nasa7 16.70% 16.70% 16.51%
101.tomcatv 24.50% 12.25% 12.25%
103.su2cor 76.45% 66.04% 59.10%
125.turb3d 25.33% 12.99% 12.99%
146.wave5 10.84% 10.88% 10.88%
171.swim 0.02% 0.02% 0.02%
172.mgrid 0.00% 0.00% 0.00%
301.apsi 0.04% 0.04% 0.04%

Figure 5-10: Percentage of dynamically aligned memory references detected by whole-program
alignment analysis after array padding.
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void copy(double* x, double* y) {

...

// Offset of x and y relative to 16 bytes

unsigned offx = (unsigned)x & 15;

unsigned offy = (unsigned)y & 15;

if (offx == 0 && offy == 0) {

// Both x and y aligned

for (i=0; i<N; i++) { x[i] = y[i]; }

}

else if (offx == 0 && offy == 8) {

// x aligned, y misaligned

for (i=0; i<N; i++) { x[i] = y[i]; }

}

else if (offx == 8 && offy == 0) {

// x misaligned, y aligned

for (i=0; i<N; i++) { x[i] = y[i]; }

}

else {

// x and y misaligned

for (i=0; i<N; i++) { x[i] = y[i]; }

}

}

Figure 5-11: Multi-versioning to detect alignment at runtime.

5.5 Multi-Versioning

As an alternative to static analysis, another approach for uncovering alignment information

is to use runtime tests to identify aligned references dynamically [10, 51]. Figure 5-11

illustrates this approach. Within each test, the compiler can vectorize the loop for a specific

set of conditions. In some cases, the exact offset of a misaligned reference is unimportant,

and it is sufficient to determine which references are aligned. In VMX, for example, the

instruction sequence for accessing misaligned data does not depend on the offset. For IA-32

processors, offset information is useful. When data cross a cache line, Bik [10] shows that

accessing a vector in memory is more efficient with a series of short-width operations. He

describes a cache line split optimization, in which he unrolls loops by a factor of C/V , where

C is the cache line size. Among the unrolled versions of a misaligned memory operation,

he replaces the one crossing a cache line boundary with a code sequence optimized for a

specific offset.

Figure 5-12 shows the percentage of dynamic references for which multi-versioning can

detect alignment in my benchmark suite. Compared to static analysis, multi-versioning

detects a much larger number of aligned references. Unfortunately, the technique is only
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Benchmark V = 16 V = 32 V = 64

093.nasa7 75.51% 69.20% 65.76%
101.tomcatv 50.04% 25.02% 12.49%
103.su2cor 67.80% 52.93% 50.48%
125.turb3d 100.00% 100.00% 95.23%
146.wave5 95.94% 95.04% 95.04%
171.swim 50.01% 25.03% 12.52%
172.mgrid 61.10% 30.55% 15.28%
301.apsi 65.26% 57.01% 55.01%

Figure 5-12: Percentage of dynamically aligned memory references detected with exhaustive multi-
versioning.

feasible for loops that reference a small number of pointer variables. A loop containing n

variables, each having m possible offsets, requires mn loop versions to capture all possi-

bilities. If we ignore specific offsets and test simply for alignment, we still require 2n loop

versions to account for all cases. The results in Figure 5-12 overlook this complication and

assume exhaustive testing.

Figure 5-13 illustrates the impracticality of exhaustive multi-versioning. For each bench-

mark, the center column shows the number of inner loops that contain unit-stride memory

references. The rightmost column shows the number of additional loop versions required

to support exhaustive runtime testing. Even if we disregard the execution overhead of dy-

namic testing, the exponential increase in code size is far too great to consider for a practical

system.

Another shortcoming of multi-versioning is that it is simply a technique for detecting

which references are aligned at runtime. It is not difficult to envision situations where all

references are misaligned. As I will show in the following section, a loop peeling scheme can

often enforce aligned references when they do not exist.

# original w/ exhaustive
Benchmark inner loops multi-versioning

093.nasa7 23 6.77× 107

101.tomcatv 7 4.20× 106

103.su2cor 39 4.40× 1012

125.turb3d 19 1.35× 103

146.wave5 47 1.10× 1012

171.swim 10 1.10× 106

172.mgrid 17 1.07× 109

301.apsi 35 1.72× 104

Figure 5-13: Number of inner loops with unit-stride memory operations, and additional loop
versions required for exhaustive multi-versioning.
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void add(float* a, float* b, float* c, int n) {

int i;

for (i=0; i<n; i++)

a[i] = b[i] + c[i];

}

int main() {

float a[N], b[N], c[N];

...

add(a+1, b+1, c+1, 25);

add(a+2, b+2, c+2, 50);

add(a+3, b+3, c+1, 100);

}

(a)

void add(float* a, float* b, float* c, int n) {

...

// Pre-loop to align a[i] to 16-byte boundary

unsigned offa = (unsigned)&a[0] & 15;

peel = offa ? (16 - offa) / sizeof(float) : 0;

for (i=0; i < min(n, peel); i++) {

a[i] = b[i] + c[i];

}

// a[i] guaranteed to have offset 0

for (; i<n; i++) {

a[i] = b[i] + c[i];

}

}

(b)

Figure 5-14: Dynamic loop peeling to enforce runtime alignment. (a) Original loop and its calling
context. (b) A pre-loop to enforce alignment for a[i].

5.6 Dynamic Loop Peeling

To enforce aligned references in vector loops, the compiler can employ dynamic loop peel-

ing [10, 12, 56]. Figure 5-14 illustrates this approach. Given the calls from main in part (a),

the parameters of add are never aligned to 16-byte boundaries. Moreover, the offsets of the

arguments vary among the different calls. Part (b) introduces a pre-loop, which executes

enough iterations to align a[i] to a 16-byte boundary1. With the pre-loop in place, the

compiler can vectorize the subsequent loop assuming alignment for the store to a[i].

In essence, the pre-loop shifts the iterations executed in parallel in a vector loop. For

example, in the first call from main in Figure 5-14 (a), parameter a has an offset of 4 bytes.

1The code in Figure 5-14 assumes basic data types are aligned to their data width.
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void add(float* a, float* b, float* c, int n) {

...

// Pre-loop to align a[i] to 16-byte boundary

unsigned offa = (unsigned)&a[0] & 15;

peel = offa ? (16 - offa) / sizeof(float) : 0;

for (i=0; i < min(n, peel); i++) {

a[i] = b[i] + c[i];

}

// Check b[i] and c[i] for alignment

if (((unsigned)&b[i] & 15) == 0 &&

((unsigned)&c[i] & 15) == 0) {

// All memops guaranteed to have offset 0

for (; i<n; i++) {

a[i] = b[i] + c[i];

}

}

// Default case: only a[i] is aligned

else {

// a[i] guaranteed to have offset 0

for (; i<n; i++) {

a[i] = b[i] + c[i];

}

}

}

Figure 5-15: Dynamic loop peeling combined with a runtime check.

At runtime, the pre-loop in part (b) would peel three iterations. For a vector length of 4, the

first iteration of the subsequent vector loop would then execute iterations 4–7 in parallel,

in which a[i] is properly aligned to a 16-byte boundary.

The pre-loop in Figure 5-14 guarantees alignment for one pointer variable. Notice,

however, that enforcing alignment for a also enforces alignment for any references that are

relatively aligned to a. The compiler can exploit relative alignment by adding a runtime

test, as shown in Figure 5-15. In this example, the test allows the compiler to vectorize the

subsequent loop assuming alignment for all memory references. In the case that a, b, and

c are not relatively aligned at runtime, control transfers to a default loop in which only the

store to a[i] has known alignment.

This transformation is essentially a combination of dynamic loop peeling and multi-

versioning. In this example, however, the runtime test captures only one of several scenarios:

the case where all references are relatively aligned. Given the third call in main, an optimal

approach (from an alignment perspective) would also include a separate test for the relative

alignment of a and b alone. For some loops, it is possible to include a test for all possibilities.

Bik [10] proposes to enable or disable multi-versioning based on the degree of code expansion
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Vector
Iterations iterations a mod 16 b mod 16 c mod 16

25 6 4 4 4
50 12 8 8 8
100 25 12 12 4

Figure 5-16: Alignment profile for the code in Figure 5-14. Vector iterations assumes the compiler
will vectorize the loop for a vector length of 4.

it entails. Combining peeling with multi-versioning is clearly superior to multi-versioning

alone. Unfortunately, the number of possible loop versions is still prohibitive for loops with

more than a few pointer variables. Ideally, we would test only those conditions that occur

frequently at runtime. This is the topic of the next section.

5.7 Alignment Profiling

I propose runtime profiling as a means to guide pre-loop construction. Given a profile, my

goal is to maximize the number of dynamic references with an initial offset of zero. With full

vectorization, this strategy creates the greatest number of aligned references. The approach

may be suboptimal for selective vectorization, however, since that algorithm may elect to

leave some references in scalar form. Section 5.11 discusses this issue in more detail.

To obtain profiling information, I instrument an application with code to record the

initial offset of all memory references in an inner loop. I limit profiling to unit-stride memory

operations since they are the only candidates for vectorization. The profiling phase also

records the iteration count associated with each set of offsets. Figure 5-16 shows a profile

for the example in Figure 5-14. For ease of discussion, I refer to a set of offsets and the

associated iteration count as a stripe. The profile in Figure 5-16 has 3 stripes.

After acquiring an alignment profile, the next step is to derive a set of runtime tests.

In order to limit code expansion, I advocate single-version peeling, which combines loop

peeling with a single runtime test. Figure 5-15 exemplifies the approach. That example tests

alignment for all references. Assuming vectorization for a length of 4, this strategy enforces

79 aligned references: 6×3 in the first call, 12×3 in the second call, and 25×1 in the third

call. The best solution omits c from the runtime test, leading to 6×2+12×2+25×2 = 86

aligned references. Ideally, the compiler would examine all possible tests in order to uncover

the optimal solution. Unfortunately, an exhaustive search proves too costly for many loops.

Therefore, I have developed a greedy variable-selection heuristic.
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// Select the pointer variables to include in the
// runtime test.
SELECT-VARIABLES (loop)

// sort stripes in descending number of iterations
01 stripes ← sort(loop.stripes)
02 foreach v ∈ loop.vars
03 curr ← curr ∪ v
04 best ← 0
05 foreach s ∈ stripes
06 temp ← Largest-Subset (s, curr)
07 count ← Num-Dynamic-Refs (loop, temp)
08 if count > best
09 curr ← temp
10 best ← count
11 return curr

// Return the largest subset of variables in the set
// “curr” that are relatively aligned in “stripe”.
LARGEST-SUBSET (stripe, curr)
12 most ← 0
13 best ← ∅
14 found ← ∅
15 foreach v ∈ curr
16 if v /∈ found

// get offset of v in this stripe
17 ov ← offset (v, stripe)
18 temp ← {v}
19 found ← found ∪ v
20 foreach w ∈ curr
21 if w /∈ found ∧ ov = offset (w, stripe)
22 found ← found ∪ w
23 temp ← temp ∪ w
24 if |temp| > most
25 most ← |temp|
26 best ← temp
27 return best

// Compute the number of dynamic references
// enforced in the profile data set if the variables
// in “curr” form the runtime test.
NUM-DYNAMIC-REFS (loop, curr)
28 count ← 0
29 foreach s ∈ loop.stripes
30 if Stripe-Matches (s, curr)
31 count ← count + (s.iters × |curr|)
32 return count

// Return true if the variables in the set “curr”
// are relatively aligned in “stripe”.
STRIPE-MATCHES (stripe, curr)
33 ov ← offset (v, stripe) where v ∈ curr
34 foreach w ∈ curr
35 if ov 6= offset (w, stripe)
36 return false
37 return true

Figure 5-17: Greedy variable selection algorithm.
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V = 16 V = 32 V = 64
Benchmark zero offset % max zero offset % max zero offset % max

093.nasa7 95.29% n/a 95.28% n/a 93.80% n/a
101.tomcatv 71.44% 100.0% 63.27% 100.0% 63.27% 100.0%
103.su2cor 67.80% 100.0% 52.93% 100.0% 48.10% 100.0%
125.turb3d 100.0% 100.0% 100.0% 100.0% 90.46% 100.0%
146.wave5 97.69% 100.0% 97.61% 100.0% 97.61% 100.0%
171.swim 71.42% 100.0% 63.25% 100.0% 63.25% 100.0%
172.mgrid 62.51% 100.0% 31.94% 100.0% 18.11% 100.0%
301.apsi 28.15% 40.86% 26.75% 39.82% 25.68% 38.85%

Figure 5-18: Percentage of dynamically aligned memory references detected with single-version
peeling.

Figure 5-17 shows the pseudocode for the algorithm. The heuristic first sorts the stripes

in descending order of their iteration counts (line 1). Starting with the first stripe, it then

computes the largest subset of variables that are relatively aligned (lines 12–27). This subset

has an associated cost, which I define to be the number of dynamically aligned memory

references the subset would enforce if it were to form the runtime test. The algorithm

computes this cost by summing the iteration counts of all stripes in which the variables in

the subset are relatively aligned, and multiplying by the size of the subset (lines 28–37).

From the initial subset, the heuristic iteratively removes variables as it deems profitable

(lines 5–10). It considers each stripe in sort order. From the working subset, the algorithm

extracts the largest subset of variables that are relatively aligned in the stripe. It then

computes the cost of the resulting subset, replacing the current group with the smaller

subset whenever the latter produces a better overall cost (lines 8–10).

I examined the effectiveness of this heuristic for the SPEC FP benchmarks studied

earlier in this chapter. For all benchmarks, I compared the runtime tests generated by

the heuristic to those created by an exhaustive search2. In all cases, the greedy heuristic

obtained the same solution.

I next evaluate the overall effectiveness of the profile-based transformation. In general,

profiling is only useful when optimizations guided by the profile perform well on other data

sets. To test the viability of the technique, I generated runtime tests using the SPEC training

data and gathered results using the reference data. Figure 5-18 shows the percentage of

dynamic references for which single-version peeling can guarantee alignment. The table also

reports these numbers as a percentage of the maximum achievable with a perfect profile. I do

2Profiles for these benchmarks were sufficiently small to allow a comparison of every possible test. The
runtime of the exhaustive search, however, was not practical for a real system.
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Benchmark Single-Version Multi-Version Increase

V = 16
093.nasa7 95.29% 97.08% 1.88%
101.tomcatv 71.44% 71.44% 0.00%
103.su2cor 67.80% 67.80% 0.00%
125.turb3d 100.0% 100.0% 0.00%
146.wave5 97.69% 97.69% 0.00%
171.swim 71.42% 71.42% 0.00%
172.mgrid 62.51% 62.51% 0.00%
301.apsi 28.15% 79.15% 181.2%

V = 32
093.nasa7 95.28% 95.63% 0.37%
101.tomcatv 63.27% 63.27% 0.00%
103.su2cor 52.93% 52.93% 0.00%
125.turb3d 100.0% 100.0% 0.00%
146.wave5 97.61% 97.61% 0.00%
171.swim 63.25% 63.25% 0.00%
172.mgrid 31.94% 31.94% 0.00%
301.apsi 26.75% 76.36% 185.5%

V = 64
093.nasa7 93.80% 94.57% 0.82%
101.tomcatv 63.27% 63.27% 0.00%
103.su2cor 48.10% 51.15% 6.34%
125.turb3d 90.46% 97.62% 7.92%
146.wave5 97.61% 97.61% 0.00%
171.swim 63.25% 63.25% 0.00%
172.mgrid 18.11% 18.11% 0.00%
301.apsi 25.68% 75.75% 195.0%

Figure 5-19: Percentage of dynamically aligned memory references detected with single-version
peeling and peeling combined with exhaustive multi-versioning.

not show results for nasa7 since that benchmark does not have a training data set. In almost

every other case, the profiling scheme obtains the best solution. The poor performance in

apsi is due to variation between the benchmark’s two data sets. Overall however, the results

suggest that profiling offers a practical solution for constructing a runtime test. Across all

benchmarks, single-version peeling enforces alignment for an average of 74%, 66%, and 62%

of dynamic references for 16-, 32-, and 64-bit boundaries, respectively.

I next explore the potential of combining peeling with full multi-versioning. Whereas

multi-versioning alone detects only those references that are aligned at runtime, supple-

menting the technique with dynamic peeling can enforce alignment for a subset of relatively

aligned references. The best approach detects the largest subset that are relatively aligned.

While multi-version peeling is still impractical in terms of code expansion, it provides a

means of gauging the effectiveness of the single-version method. Figure 5-19 compares the
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Figure 5-20: Percentage of dynamically aligned memory references detected by alignment analysis
with and without padding, single-version peeling, and multi-version peeling for a 64-byte boundary.

two approaches. In columns 2 and 3, I show the number of dynamic memory references for

which each technique enforces alignment. Column 4 shows the improvement of exhaustive

testing over a single profile-generated test. In most cases, the methods produce identical

results. The only benchmark benefiting substantially from multi-version peeling is apsi.

Figure 5-20 compares single-version and multi-version peeling to the techniques discussed

earlier in this chapter for a 64-byte boundary. For most benchmarks, single-version peeling

is among the top performers. Furthermore, the technique is the most practical of those listed

in the figure since it does not require whole-program analysis and limits code expansion to

an acceptable level.

5.8 Per-statement Peeling

In loops that contain multiple statements, a further reduction in misaligned references is

possible using per-statement peeling. Figure 5-21 shows an example. Suppose we wish to

vectorize the loop in part (a). Here, a pre-loop can enforce alignment for only half of the
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void func() {

float a[N], b[N], c[N], d[N];

...

for (i=0; i<N; i++) {

a[i+1] = b[i+1];

c[i+2] = d[i+2];

}

...

}

(a)

void func() {

float a[N], b[N], c[N], d[N];

...

for (i=0; i<N; i++) {

a[i+1] = b[i+1];

}

for (i=0; i<N; i++) {

c[i+2] = d[i+2];

}

...

}

(b)

void func() {

float a[N], b[N], c[N], d[N];

...

// Separate pre-loop for each statement

for (j=0; j < min(3, N); j++) {

a[j+1] = b[j+1];

}

for (k=0; k < min(2, N); k++) {

c[k+2] = d[k+2];

}

// All memops guaranteed aligned

for (i=max(2,3); i<N; i++, j++, k++) {

a[j+1] = b[j+1];

c[k+2] = d[k+2];

}

// Separate post-loops

for (; j<N; j++) {

a[j+1] = b[j+1];

}

for (; k<N; k++) {

c[k+2] = d[k+2];

}

...

}

(c)

Figure 5-21: (a) A loop with relative alignment within each statement. (b) Loop distribution
facilitates per-statement peeling. (c) Per-statement peeling without loop distribution.
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references. Since the two statements are independent, however, they can be distributed and

peeled separately, as shown in part (b). Bik [10] takes this approach in the Intel compiler. In

this example, distribution and peeling ensure alignment for all references. The disadvantage

is that loop distribution eliminates ILP between the statements.

In fact, Eichenberger, Wu, and their colleagues [24, 97] show how to peel each statement

separately while keeping the main loop body intact. Figure 5-21 (c) illustrates this approach

for the example loop. Here, we peel each statement individually using separate pre-loops,

but execute the statements together in the main loop. The technique also requires separate

post-loops for cases where the pre-loops peel a different number of iterations.

A potential optimization would combine per-statement peeling with runtime testing. In

the example of Figure 5-21 (c), the compiler assumes the memory operations within each

statement are relatively aligned. If these instructions were to reference pointer arguments,

this assumption may not be possible. As with single-version peeling, a dynamic test can

verify the necessary conditions at runtime. Profiling is certainly beneficial for this scheme

as well, but I leave an examination of the approach to future work.

5.9 Code Generation

The analyses and transformations discussed in this chapter offer several methods for in-

creasing the number of aligned references. When a statement contains memory references

that are relatively misaligned, some overhead is unavoidable. If the processor does not

support misaligned references directly, the compiler is responsible for generating the proper

realignment code. In this case, an approach similar to scalar replacement [6] can remove

much of the misalignment overhead in vectorized loops [24, 97]. The technique reuses data

produced in the previous iteration to eliminate the extra memory operations otherwise re-

quired. This approach reduces the overhead of a misaligned memory reference to a merge

and copy. Figure 5-22 shows an example for a vector add, in which the compiler assumes

all memory operations are misaligned. The merge and shift left and merge and shift right

pseudo operations provide data merging functionality. The merge and shift left operation

computes the high-order portion of shifting left the concatenation of its first two arguments,

and the merge and shift right operation delivers the low-order portion of shifting right. For

both operations, the third argument determines the shift amount.
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void add(float* a, float* b, float* c, int n) {

...

i = 0;

if (0 + 3 < n) {

// Enforce access to 16-byte regions

pa = (float*)((unsigned)&a[0] & ~15);

pb = (float*)((unsigned)&b[0] & ~15);

pc = (float*)((unsigned)&c[0] & ~15);

// First store may need splice data with existing values

a0 = vec_ld(pa);

a0 = merge_and_shift_left(a0, a0, a);

b0 = vec_ld(pb);

c0 = vec_ld(pc);

pb += 4;

pc += 4;

// Vector loop (vector length = 4)

for (; i < n-3; i+=4) {

// Load and merge with data from last iteration

b1 = vec_load(pb);

b2 = merge_and_shift_left(b0, b1, b);

b0 = b1;

c1 = vec_load(pc;

c2 = merge_and_shift_left(c0, c1, c);

c0 = c1;

a1 = vec_add(b2, c2);

// Merge before storing

a2 = merge_and_shift_right(a0, a1, a);

vec_store(a2, pa);

a0 = a1;

pa += 4;

pb += 4;

pc += 4;

}

// If necessary, splice remaining values with existing data

if (((unsigned)&a[0] & 15) != 0) {

a1 = vec_load(pa);

a1 = merge_and_shift_left(a1, a1, a);

a2 = merge_and_shift_right(a0, a1, a);

vec_store(a2, pa);

}

}

// Execute remaining iterations

for (; i<n; i++) {

a[i] = b[i] + c[i];

}

}

Figure 5-22: Scalar replacement to reduce misalignment overhead.
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void func() {

float a[N], b[N], c[N], d[N];

...

for (i=0; i<N; i++) {

a[i] = b[i] + c[i+1] * d[i+1]

}

...

}

(a)

void func() {

float a[N], b[N], c[N], d[N];

...

i = 0;

if (0 + 3 < N) {

// Perform first multiply

c0 = vec_ld(c[0]);

c1 = vec_ld(d[0]);

m0 = vec_mult(c0, d0);

// Vectorized loop (vector length = 4)

for (; i < N-3; i+=4) {

// Load, multiply and merge with data

// computed on last iteration

c0 = vec_load(c[i+4]);

d0 = vec_load(d[i+4]);

m1 = vec_mult(c0, d0);

m2 = merge_and_shift_left(m0, m1, 4);

m0 = m1;

b0 = vec_load(b[i]);

a0 = vec_add(b0, m2);

vec_store(a[i], a0);

}

}

// Execute remaining iterations

for (; i<N; i++) {

a[i] = b[i] + c[i+1] * d[i+1];

}

...

}

(b)

Figure 5-23: Reducing misalignment overhead with delayed realignment.

A further reduction in misalignment overhead is possible for subexpressions that have

relatively aligned memory references. Consider the loop in Figure 5-23 (a). Here, a[i] and

b[i] are aligned, but c[i+1] and d[i+1] require explicit realignment. Since c[i+1] and

d[i+1] are relatively aligned, however, merging can take place after the multiplication, as

shown in part (b). For this example, the scheme reduces misalignment overhead to one
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merge and copy operation per loop iteration. Eichenberger, Wu, and their colleagues [24,

97] were the first to describe this optimization. They develop a framework called a data

reorganization graph that allows the compiler to optimize the amount of explicit realignment.

Eichenberger and Wu examine several heuristics for doing so; I refer the reader to their

publications for details.

In order to exploit relative alignment, the compiler must be able to detect it. Eichen-

berger and Wu do not discuss methods for identifying relative alignment among memory

references. Since the task is nearly identical to extracting natural alignment, the techniques

described in this chapter offer a range of possible solutions.

5.10 Historical Perspective

To my knowledge, the first description of compiler techniques that address the alignment

of vector memory references is due to Krall and Lelait [51]. These researchers introduced

the multi-versioning transformation described in Section 5.5 as part of a framework for

targeting the VIS [90] extension.

Bik [9, 10, 11, 12] was the first to advocate loop peeling as a method to enforce aligned

references at runtime. He proposed static peeling for situations in which the compiler can

determine offsets at compile-time, and also introduced dynamic peeling for cases in which

the compiler has no information. Bik’s description of loop peeling is very similar to the

discussion in Section 5.6. By itself, dynamic loop peeling guarantees alignment for one

pointer variable. Bik combined multi-versioning with loop peeling as a method to extract

additional alignment information at runtime. In his description, the compiler uses a simple

heuristic to determine when multi-versioning leads to unacceptable code expansion.

I was the first to advocate profiling as a method to capture alignment information while

limiting code expansion. In [56], I combined profiling with loop peeling and runtime testing.

The goal of this research was to detect the exact offset of pointer variables. In Section 5.7,

I specialize the technique for enforcement of aligned vector memory references.

I was also the first to develop a static analysis to compute alignment information. I first

utilized an alignment analysis in conjunction with superword level parallelization [55], and

formalized the approach in [56]. Bik later described a similar analysis [10], and extended

the technique to operate at the program level. He also optimized the transfer functions for
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power-of-two vector lengths. Pryanishnikov, Krall, and Horspool [70] developed a similar

interprocedural alignment analysis based on pointer analysis.

Eichenberger, Wu, and their colleagues [24, 97] pioneered the per-statement peeling ap-

proach discussed in Section 5.8. They also described the code generation technique outlined

in Section 5.9, which is crucial for reducing the overhead of explicit software realignment.

5.11 Alignment and Selective Vectorization

Wherever alignment information is available, the selective vectorization algorithm described

in Chapter 4 incorporates it naturally. Simply, the cost analysis accounts for any additional

resources required by misaligned vector memory operations. The approach described in

this thesis performs alignment transformations before selective vectorization. If selective

vectorization elects to skip vectorization for a particular memory operation, there is no

advantage to including its address in the runtime test. One solution to this problem is to

refine the test after selective vectorization. A more extensive solution would perform the

loop transformation directly in the back-end. I leave this study to future work.
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Chapter 6

Evaluation

This chapter evaluates the selective vectorization algorithm presented in Chapter 4. Sec-

tion 6.1 describes my compilation and simulation infrastructure. Section 6.2 compares the

performance of selective vectorization to traditional vectorization and software pipelining.

On a realistic architectural model, selective vectorization achieves whole-program speedups

of up to 1.35× over the conventional approaches. Section 6.3 examines performance for

individual loops. I demonstrate that selective vectorization subsumes existing approaches

by naturally identifying those situations where a traditional strategy provides the best

performance. More importantly, selective vectorization uncovers ample opportunities for

distributing computation across scalar and vector resources. In some cases, the technique

achieves speedups of 1.75×, which approaches the theoretical maximum of 2×.

The bulk of my evaluation targets the L-machine, the hypothetical machine model in-

troduced in Chapter 1. In Section 6.4, I study the performance of selective vectorization

for an architecture that supports direct transmission of operands between vector and scalar

register files. A specialized operand network provides further opportunities for performance

improvements. Compared to the baseline L-machine, however, the speedups presented in

Section 6.4 are modest. This phenomenon is due to the capacity of selective vectorization

to provide high performance without specialized hardware support. Software pipelining is

also instrumental in hiding the long latency of communication sequences.

Section 6.5 examines the performance impact of alignment information. Using the single-

version peeling scheme presented in Chapter 5, selective vectorization provides an additional

speedup of up to 1.10×. Finally, Section 6.6 examines the performance effect of increased
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Figure 6-1: Compiler toolchain. Highlighted modules represent the compilation phases I imple-
mented for this thesis.

vector processing power. I show that additional vector operation throughput diminishes the

advantage of utilizing both scalar and vector resources. This result is not unexpected, as

selective vectorization realizes the largest performance gains for architectures that provide

similar scalar and vector operation throughput. Nonetheless, selective vectorization remains

an effective method for targeting short-vector instructions.

6.1 Methodology

Figure 6-1 shows the major components of my toolchain. I used SUIF [95] as the compiler

front-end. SUIF includes a dependence-analysis package which is crucial for identifying

data parallelism. Additionally, it provides a suite of existing dataflow optimizations. For

the compiler back-end and simulation system, I used Trimaran, a compilation and simula-

tion infrastructure for VLIW architectures [91]. Trimaran is one of a few publicly available

infrastructures that provide a high-quality modulo scheduler. Additionally, its machine

description facility allowed me to evaluate various architectural design points. With Tri-

maran, my evaluation focuses on statically scheduled machines. Since superscalar processors

also benefit from automatic vectorization and instruction scheduling, however, I expect my

techniques will be applicable to these designs as well.

For all benchmarks, I applied a suite of standard optimizations before vectorization,

including induction-variable recognition, register promotion, common subexpression elimi-

nation, copy propagation, constant propagation, dead code elimination, and loop-invariant

code motion [64]. Among these transformations, induction variable optimization is particu-
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Processor Parameter Value

Issue width 6
Branch units 1
Integer units 4
Floating-point units 2
Memory units (scalar & vector) 2
Vector floating-point units 1
Vector merge units 1
Vector length (64-bit elements) 2
Scalar integer registers 128
Scalar floating-point registers 128
Vector registers 64
Predicate registers 64

Op Type Latency Op Type Latency

Int ALU 1 FP Add/Sub 4
Int Multiply 3 FP Multiply 4
Int Divide 36 FP Divide 32
Load 3 Branch 1

Figure 6-2: Configuration of the L-machine.

larly important. This optimization replaces address arithmetic with an induction variable,

greatly reducing address calculations in array-based code. In my infrastructure, it also

provides the mechanism for identifying unit-stride memory operations. Recall from Chap-

ter 2 that contemporary multimedia extensions only support vector references that access

contiguous data.

The compilation toolchain applies selective vectorization and modulo scheduling to

countable loops (i.e., do loops) without control flow or function calls. In general, these

are the code sequences to which both software pipelining and vectorization are most appli-

cable. I identify vectorizable operations using the classic approach described by Allen and

Kennedy [6] and Wolfe [96]. As discussed in Chapter 4, however, my implementation oper-

ates on a low-level IR. The primary difficulty of this approach is obtaining accurate memory

dependence information. My infrastructure analyzes dependences at the source-level and

preserves the information for the back-end using annotations.

Figure 6-2 shows the details of the simulated architecture, the L-machine. The processor

is representative of modern designs and contains a resource set similar to Intel’s Itanium

2 [62] and IBM’s PowerPC 970 [36]. The L-machine provides vector opcodes for all standard

computational instructions. In addition, vector instructions have the same latency as their

scalar counterparts. The architecture provides one vector unit for vector floating-point com-
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Benchmark Source Description

093.nasa7 CFP92 7 kernels used in NASA applications
101.tomcatv CFP95 Vectorized mesh generation
103.su2cor CFP95 Monte-Carlo method
125.turb3d CFP95 Turbulence modeling
146.wave5 CFP95 Maxwell’s equations
171.swim CFP2000 Shallow water modeling
172.mgrid CFP2000 Multi-grid solver: 3D potential field
301.apsi CFP2000 Meteorology: pollutant distribution

Figure 6-3: Evaluated benchmarks.

putation. Since this chapter evaluates performance on a set of floating-point benchmarks,

a vector integer unit is unnecessary.

As with VMX, the L-machine does not provide specialized support for transferring

operands between scalar and vector register files. The compiler must communicate data

through memory using a series of load and store instructions. The L-machine also restricts

vector memory operations to aligned regions. To access misaligned data, the compiler must

merge data from adjacent, aligned segments. The merge unit in Figure 6-2 is analogous to

the vector permute unit in VMX and provides the necessary merging functionality.

Trimaran’s modulo scheduler assumes a target architecture with rotating registers and

predicated execution. Therefore, I extended the infrastructure with rotating vector registers

and predicated vector operations. For designs that do not provide rotating registers, the

compiler can employ modulo variable expansion [54] to generate valid schedules. Predication

enables the compiler to use the same static instructions for the kernel, prolog, and epilog [18].

It also provides a mechanism for modulo scheduling loops with control flow, but these loops

are not targeted in my infrastructure.

Figure 6-3 summarizes the benchmarks evaluated in this chapter. They consist of eight

scientific applications gathered from the SPEC 92, 95, and 2000 floating-point suites. These

benchmarks represent the subset of SPEC benchmarks for which the compiler was able

to detect some amount of data parallelism. In order to keep simulation times practical,

I evaluate performance using the SPEC training data sets. Some of the benchmarks in

Figure 6-3 have large memory footprints which can negatively impact performance in cache-

based systems. Without techniques such as prefetching or loop blocking, load latency can

become a performance bottleneck. Since my compilation and simulation infrastructures do

not support these techniques, however, I disregard cache performance in my simulations.
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In keeping with contemporary processors, the L-machine’s vector operands comprise

a total of 128 bits. The benchmarks in Figure 6-3 operate on 64-bit data, leading to a

vector length of 2. For this vector length, the L-machine provides equivalent floating-point

operation throughput on vector and scalar resources. Barring secondary effects such as

register pressure, selective vectorization can achieve a maximum speedup of 2× for any

loop in this study.

6.2 Selective Vectorization vs. Traditional Approaches

In this section, I compare selective vectorization to conventional compilation strategies.

First, I implemented a traditional vectorizer in SUIF based on the scheme described by Allen

and Kennedy [6]. The transformation operates on a high-level intermediate representation.

To ensure highly optimized code, I have extended all back-end optimizations to support

vector opcodes. When loops contain a mix of vectorizable and non-vectorizable operations,

the traditional vectorizer employs loop distribution and scalar expansion. As described

in Chapter 3, a straightforward approach tends to create a series of distributed loops.

Therefore, I perform loop fusion [17, 45] after vectorization to reduce overhead as much

as possible. Aside from scalar expansion, I did not employ any optimizations specifically

designed to expose data parallelism. Transformations such as loop interchange [4] and

reduction recognition would create further opportunities for vectorization. The focus of

this thesis is not the identification of data parallelism, but how to exploit it to create highly

efficient schedules. It is worth noting that selective vectorization would also benefit from

transformations that expose data parallelism since they would allow greater flexibility in

code selection.

To study the effect of loop distribution, I also implemented a second vectorizer in the

back-end. In the results that follow, I refer to this technique as full vectorization. As in

the traditional vectorizer, the approach vectorizes all data parallel operations. In order

to exploit ILP among vector and scalar operations, however, full vectorization does not

perform loop distribution. Instead, the approach unrolls scalar operations inside the vector

loop. While the traditional vectorizer uses scalar expansion to communicate operands, the

full vectorizer uses modulo scalar expansion, described in Section 4.5. For both vectorizers,

I perform modulo scheduling after vectorization.
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Given the heavy cost of communication between vector and scalar register files, I make

one improvement to the baseline vectorizers: neither technique vectorizes an operation

unless it has at least one vectorizable predecessor or successor. Doing otherwise is almost

certainly unprofitable as the system must transmit all source and destination operands

through memory just to execute a single vector instruction. Selective vectorization avoids

this scenario automatically.

In this section, I do not utilize any alignment transformations or analyses. For all

vectorization schemes, the compiler assumes every vector memory operation is misaligned.

I remove much of the resulting overhead using the code generation technique described

in Section 5.9. With this optimization, the overhead of a misaligned memory operation

consists of the cost of explicit merging. Section 6.5 explores the performance advantage of

compiler-enforced alignment.

I present all speedups relative to iterative modulo scheduling [74]. For this baseline,

I unroll countable loops V times (for vector length V ) in order to match the reduced

address arithmetic of vector loops. Vector memory operations benefit from fewer address

calculations since a single address references multiple locations. The same reduction in

instructions is available in scalar loops for processors that provide base+offset addressing

by unrolling and folding the pointer increments into memory operations.

Figure 6-4 shows the speedup of each vectorization technique over modulo scheduling.

In the graph, the leftmost bar for each benchmark shows the performance of traditional

vectorization. For swim and tomcatv, the majority of targeted loops are fully vectorizable,

and traditional vectorization is able to closely match the performance of modulo scheduling.

This result is expected since fully vectorizable loops do not induce distribution and require

no communication between vector and scalar operations. In contrast, many of the loops

in the other benchmarks are only partially vectorizable. For these applications, traditional

vectorization underperforms the baseline by a wide margin. For example, nasa7 sees a

slowdown of almost 2×.

One reason for this loss in performance is the high cost of communicating operands

between scalar and vector register files. The traditional vectorizer transfers operands using

scalar expansion. We see this overhead in Figure 6-5, which lists the dynamic instruction

counts resulting from each technique. We would expect vectorization to decrease total

memory operations (scalar + vector) since vector accesses transfer two operations per in-
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Benchmark Traditional Full Selective

093.nasa7 0.52 0.66 1.03
125.turb3d 0.68 0.81 1.01
301.apsi 0.64 0.94 1.02
146.wave5 0.94 0.98 1.02
103.su2cor 0.93 0.97 1.13
172.mgrid 0.90 0.97 1.26
171.swim 1.00 1.00 1.32
101.tomcatv 0.95 0.99 1.35
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Figure 6-4: Speedup of vectorization techniques compared to modulo scheduling.

struction. As the table shows, traditional vectorization actually increases the number of

memory operations in the first four benchmarks. The additional memory operations also

increase address arithmetic. For nasa7, traditional vectorization uses nearly 3× as many

ALU instructions as modulo scheduling. While the other vectorization schemes also commu-

nicate operands through memory, modulo scalar expansion does not significantly increase

the number of ALU operations.

The center bars in the graph of Figure 6-4 show speedups for full vectorization. The im-

provement over traditional vectorization results from the abandonment of loop distribution.

For many loops, non-unit-stride memory operations are the primary cause for loop distribu-
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Benchmark Mode Scalar Scalar Vector Scalar Vector
ALU FPU FPU Mem Mem Total IPC

093.nasa7 swp 17.87 20.91 0.00 23.62 0.00 64.74 3.69
trad 52.47 1.43 10.38 29.39 12.87 127.08 3.78
full 21.50 2.49 9.09 30.00 10.44 79.41 2.99
sel 18.85 17.11 1.98 20.06 2.54 65.07 3.83

125.turb3d swp 47.91 26.66 0.00 34.81 0.00 114.09 2.54
trad 80.46 0.81 16.77 32.66 15.73 171.99 2.62
full 59.62 0.83 18.60 42.55 16.39 151.63 2.75
sel 48.16 25.64 0.54 33.44 1.34 114.86 2.59

301.apsi swp 65.94 47.66 0.00 52.22 0.00 171.32 1.56
trad 161.53 21.12 22.18 75.89 25.80 348.48 2.02
full 68.68 14.15 16.37 55.67 14.32 180.83 1.54
sel 68.80 37.49 5.43 48.95 5.72 175.97 1.63

146.wave5 swp 6.34 4.21 0.00 5.06 0.00 16.57 1.32
trad 8.51 1.45 1.43 4.12 1.48 19.75 1.48
full 6.50 1.34 1.44 4.00 1.36 16.55 1.29
sel 6.47 3.08 0.57 4.12 0.81 16.68 1.36

103.su2cor swp 26.28 28.88 0.00 25.13 0.00 83.24 2.41
trad 32.10 2.95 12.98 12.67 9.06 82.81 2.23
full 27.96 3.04 12.92 12.94 9.01 76.40 2.15
sel 26.91 16.15 6.38 19.58 5.64 82.91 2.72

172.mgrid swp 58.11 98.76 0.00 96.29 0.00 255.55 4.46
trad 69.22 0.13 48.62 11.66 46.27 226.55 3.58
full 58.98 0.13 48.59 12.13 46.23 212.19 3.58
sel 63.53 31.93 33.60 38.66 32.38 233.16 5.12

171.swim swp 15.21 37.56 0.00 27.55 0.00 81.41 3.98
trad 16.21 3.23 17.19 1.63 12.97 65.56 3.29
full 15.23 3.24 17.19 1.67 12.96 64.34 3.15
sel 16.86 15.43 11.13 13.33 10.34 77.46 5.01

101.tomcatv swp 9.31 21.69 0.00 17.46 0.00 49.32 3.38
trad 11.09 1.03 10.52 2.29 8.43 43.01 2.79
full 10.37 1.07 10.40 2.69 8.43 41.75 2.84
sel 10.90 8.64 6.62 10.61 6.14 48.60 4.53

Figure 6-5: Dynamic instruction counts × 100 million instructions and overall IPC. An instruction
refers to individual operations as opposed to VLIW instructions. Total instruction count includes
operations not listed, such as branches. For each benchmark, swp = baseline modulo scheduling.
trad = traditional vectorization, full = full vectorization, select = selective vectorization.

tion. Since scatter/gather and strided memory operations are unavailable, the traditional

vectorizer creates scalar loops to shuffle these operands in memory. A potential optimiza-

tion would omit loop distribution and implement these memory operations with scalar code

sequences. Performance would not exceed that of the full vectorization scheme, however,

which never distributes loops. The swim benchmark is the only case for which traditional

vectorization performs no loop distribution. For all other benchmarks, full vectorization

provides an improvement over traditional vectorization. Nevertheless, performance does
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not match baseline modulo scheduling. This fact is due entirely to the overhead of operand

communication. In fact, full vectorization matches the baseline in all cases if the simulator

ignores this overhead. In other words, blind vectorization of all data parallel operations can

saturate communication resources and degrade performance.

The rightmost bars in the graph of Figure 6-4 show the performance obtained with

selective vectorization. For all benchmarks, the technique yields the best performance. By

carefully monitoring resource usage, selective vectorization avoids unnecessary resource sat-

uration and the resulting loss in performance. Better yet, there are several benchmarks for

which selective vectorization produces a substantial performance improvement by utilizing

both scalar and vector resources. In the best case, tomcatv achieves a speedup of 1.35×

over modulo scheduling alone.

The dynamic instruction counts in Figure 6-5 offer two insights into the advantage of

selective vectorization. First, notice that the approach tends to utilize the same num-

ber of overall memory instructions as baseline modulo scheduling. For nasa7, turb3d,

and apsi, selective vectorization avoids unduly burdening the memory units with exces-

sive communication. In contrast, the traditional and full vectorizers greatly increase the

number of memory operations utilized by these benchmarks. For su2cor, mgrid, swim,

and tomcatv, selective vectorization employs more memory operations than the other vec-

torization schemes. For these benchmarks, the technique takes advantage of underutilized

memory units to distribute computation across vector and scalar resources. This leads us

to the second insight, which is the operation balance across the scalar and vector floating-

point units. In Figure 6-5, selective vectorization provides better resource utilization than

the other techniques. The last four benchmarks see the most balanced usage and hence,

the biggest performance gains. It is interesting to note that selective vectorization actually

increases the total operation count in these benchmarks. The approach offsets this increase

with a much improved instruction per cycle ratio (IPC), leading to an overall performance

improvement.

Three primary factors explain the cases for which selective vectorization fails to pro-

vide a significant performance improvement. The first is dependence cycles. Loop-carried

dependences limit selective vectorization because operations on a recurrence must execute

on scalar hardware. Even more problematic is that these operations must execute sequen-

tially. If a long dependence cycle constrains a loop’s initiation interval, intelligent resource
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allocation cannot improve loop performance. Dependence cycles are the primary cause for

the limited performance gain in apsi.

Another factor is the existence of non-unit-stride memory operations, which place a dou-

ble burden on the memory units. Non-unit-stride memory operations cannot take advantage

of more efficient vector opcodes. Even worse, the compiler must shuffle these operands be-

tween register files in order to use them in vector computation. This overhead means that

loops containing a large number of non-vectorizable memory operations are better executed

without vector opcodes. Several critical loops in nasa7 and wave5 contain non-unit-stride

memory operations.

Finally, selective vectorization and modulo scheduling do not target several important

code sequences in the benchmark suite. The most common examples are loops contain-

ing function calls or internal control flow. Several of these loops populate wave5. This

benchmark also contains an important function that lacks loops of any kind.

An interesting benchmark is turb3d, for which selective vectorization does produce

improved schedules for several key loops. Unfortunately, these loops tend to have low

iteration counts and do not benefit from software pipelining. In general, a lower initiation

interval increases the number of stages in a software pipeline, and hence, the schedule length

of the prolog and epilog. With short iteration counts, the prolog and epilog can dominate

execution time and actually diminish performance. In the case of turb3d, the slowdown in

the prolog and epilog offset the performance gained with selective vectorization.

6.3 Opportunities for Selective Vectorization

Selective vectorization is adept at uncovering those cases in which full vectorization or

no vectorization provide the best performance. It is possible that the performance gains

presented in Section 6.2 are the result of selecting between these two alternatives on a per-

loop basis. Such an approach would provide an advantage over a technique that applies

the same method to every loop. Figure 6-6 verifies that there are ample opportunities for

utilizing scalar and vector resources in the same loop. For each benchmark in the figure, I

list the number of loops for which selective vectorization finds a schedule better than, equal

to, or worse than the competing methods (i.e., modulo scheduling, traditional vectorization,

and full vectorization). The figure only considers loops that are resource-limited; that is,
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Number ResMII
Benchmark of Loops Better Equal Worse

093.nasa7 29 7 (24.1%) 22 (75.9%) 0 (0.0%)
101.tomcatv 6 4 (66.7%) 2 (33.3%) 0 (0.0%)
103.su2cor 33 25 (75.8%) 8 (24.2%) 0 (0.0%)
125.turb3d 13 6 (46.2%) 7 (53.8%) 0 (0.0%)
146.wave5 128 55 (43.0%) 73 (57.0%) 0 (0.0%)
171.swim 10 5 (50.0%) 5 (50.0%) 0 (0.0%)
172.mgrid 14 5 (35.7%) 9 (64.3%) 0 (0.0%)
301.apsi 77 18 (23.4%) 59 (76.6%) 0 (0.0%)

Number II
Benchmark of Loops Better Equal Worse

093.nasa7 29 4 (13.8%) 25 (86.2%) 0 (0.0%)
101.tomcatv 6 4 (66.7%) 2 (33.3%) 0 (0.0%)
103.su2cor 33 25 (75.8%) 8 (24.2%) 0 (0.0%)
125.turb3d 13 6 (46.2%) 7 (53.8%) 0 (0.0%)
146.wave5 128 51 (39.8%) 73 (57.0%) 4 (3.1%)
171.swim 10 5 (50.0%) 5 (50.0%) 0 (0.0%)
172.mgrid 14 5 (35.7%) 9 (64.3%) 0 (0.0%)
301.apsi 77 18 (23.4%) 59 (76.6%) 0 (0.0%)

Figure 6-6: Number of loops for which selective vectorization finds an II better, equal to, or worse
than competing techniques.

loops for which the ResMII is larger than the RecMII. No vectorization technique can

improve performance in recurrence-constrained loops.

Figure 6-6 separates results into the resource-constrained II (ResMII), as computed by

the modulo scheduler, and the final II obtained after scheduling. As the table shows, there

are a significant number of loops for which selective vectorization provides an advantage.

Furthermore, there are no loops for which it produces a ResMII higher than competing

techniques. Modulo scheduling does produce inferior schedules in four loops from wave5.

This aberration is due to the fact that iterative modulo scheduling is a heuristic. Improving

resource utilization does not guarantee that the algorithm will produce a better schedule.

Interestingly, these four loops contain long dependence cycles and heavy resource require-

ments. It appears that Trimaran’s modulo scheduler is struggling in this situation. Some

extensions to iterative modulo scheduling (e.g., [35]) place special emphasis on dependence

cycles. It is likely that a more sophisticated algorithm could overcome the slight inefficiency

seen here.

Figure 6-7 shows the speedup of full vectorization and selective vectorization for indi-

vidual loops. The loops in the figure originate from the four benchmarks that benefit most
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Figure 6-7: Speedup of individual loops using selective vectorization.

from selective vectorization: su2cor, mgrid, swim, and tomcatv. For each benchmark, I

show results for the four targeted loops that contribute most to the benchmark’s total exe-

cution time. The x-axis of Figure 6-7 shows each loop’s contribution using baseline modulo

scheduling. The results here reaffirm that selective vectorization offers a significant per-

formance advantage for individual loops. In the best case, the algorithm achieves a 1.75×

speedup out of a maximum of 2×.

6.4 Hardware Support for Operand Transfer

Sections 6.2 and 6.3 evaluate performance on a machine model that provides no specialized

support for operand communication. This section considers two variations of the L-machine

that do not require communication through memory. The first, Lc, provides two functional

units which transfer single elements between the vector and scalar register files. The second,

L0, assumes no overhead for communication. In all other aspects, Lc and L0 are identical

to the baseline architecture. L0 is a hypothetical design which provides an upper bound on
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Figure 6-8: Speedup of selective vectorization for different communication models.

the performance potential of hardware communication. A practical implementation that

might approach this ideal is one that overlaps the vector and scalar registers so that scalar

operations can address vector elements directly. The disadvantage of this design is that it

requires more register file ports to satisfy the processor’s functional units.

Figure 6-8 shows the speedup of selective vectorization for the three architectural mod-

els. For consistency with previous sections, I report speedups relative to baseline modulo

scheduling. The leftmost bar for each benchmark shows results for the baseline L-machine.

The center and rightmost bars show speedups for the Lc and L0 models, respectively. In

the best case, Lc achieves a 1.07× speedup over the baseline architecture; L0 achieves a

maximum speedup of 1.11×.

Figure 6-9 compares individual loop performance for the different communication mod-

els. The loops shown here are the same as those in Figure 6-7. The leftmost bars show

the speedup of selective vectorization for the L-machine. The center and rightmost bars

show speedup for Lc and L0, respectively. Relative to the L-machine, both models see a

maximum per-loop speedup of 1.2×.
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Figure 6-9: Speedup of individual loops for different communication models.

As these experiments show, a specialized communication network does not provide large

performance gains for these benchmarks. A primary reason for the lack of improvement

is that software pipelining hides the L-machine’s long latency communication sequences.

The primary benefit of a communication network, therefore, is a reduction in memory unit

pressure. In many cases, however, the L-machine’s two memory units suffice to carry out its

communication requirements, particularly when the compiler employs more efficient vector

memory operations.

Specialized communication support is more critical for an architecture with fewer mem-

ory units. For example, Figure 6-10 shows the speedup gained from selective vectorization

when the L-machine supports only one memory unit. For this model, the addition of a com-

munication network has a more drastic effect on overall performance. In the best case, Lc

(with one memory unit) provides a maximum speedup of 1.23× over a design that requires

communication through memory.

Another factor limiting performance is issue slot pressure. In Figure 6-9, two loops

achieve the maximum speedup of 2×. In most cases, however, performance falls short of
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Figure 6-10: Speedup of selective vectorization for different communication models using an L-
machine with one memory unit.

this ideal. With no communication overhead, we might expect L0 to achieve the maximum

speedup in more cases. Most of the loops in Figure 6-9 are limited by available issue

slots. Since vector and scalar instructions share issue slots, selective vectorization has

no opportunity to balance computation across separate scalar and vector versions. Since

vector instructions specify multiple independent operations, issue slots achieve the highest

utilization with vector opcodes. As demonstrated in Section 6.2, however, full vectorization

can underutilize scalar execution resources. If issue slots are heavily-used, they can become

saturated before selective vectorization can fully balance computation across the processor’s

other resources.

Figure 6-11 examines the performance impact of issue slots. The figure presents speedups

of selective vectorization over modulo scheduling using a processor model with no commu-

nication overhead and no issue slot restriction. With this design, most of the loops achieve

optimal or near-optimal speedup. For the remaining loops, a lack of vectorizable operations

precludes maximum speedup. In several cases, dependence cycles inhibit selective vectoriza-
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Figure 6-11: Speedup of individual loops with zero-overhead communication and unrestricted issue
slot usage.

tion. For example, a long dependence cycle constrains the initiation interval for the second

loop in tomcatv. Two loops in Figure 6-11 contain non-unit-stride memory references which

the compiler must execute with scalar instructions. An interesting anomaly occurs for one

loop in swim, which achieves a speedup above the maximum of 2×. This seeming impossi-

bility is due to the modulo scheduling heuristic, which produces a suboptimal schedule for

the baseline.

6.5 Performance Impact of Alignment Information

This section examines the effect of memory alignment on the speedups attained with se-

lective vectorization. In the previous sections, the compiler assumed all vector memory

references were misaligned. In this section, I report speedups for selective vectorization

when the compiler enforces alignment with code transformation. To gain alignment infor-

mation, I use the single-version peeling scheme developed in Chapter 5. In order to measure

an upper bound on performance, I also introduce a new machine model, La, which incurs no
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Figure 6-12: Speedup of selective vectorization without alignment information, with profiling, and
with zero-overhead realignment.

overhead when executing misaligned memory references. As described in Chapter 5, single-

version peeling relies on profiling to generate pre-loops. Since I use the SPEC training data

sets for simulation, I gather profile information using the reference data. As demonstrated

in Chapter 5, the choice of data sets is not a major concern since the training and reference

data sets produce nearly identical alignment profiles. The only benchmark with a signifi-

cant deviation between data sets is apsi, but this application does not achieve a significant

performance gain from selective vectorization.

Figure 6-12 plots the speedup of selective vectorization over modulo scheduling for the

different systems. For each benchmark, the leftmost bar shows speedup for the L-machine

when the compiler assumes all references are misaligned. The center bars show performance

using single-version peeling. Note that these results account for the overhead of dynamic

peeling and runtime testing. The rightmost bars show performance for La. In the best case,

peeling achieves an additional 1.10× speedup for swim, nearly matching the upper bound

performance of La.
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Figure 6-13: Speedup of individual loops without alignment information, with profiling, and with
zero-overhead realignment.

Figure 6-13 shows individual loop performance for the different alignment systems. The

loops represented here are the same as those first presented in Figure 6-7. In most cases,

aligned memory references do not cause a significant performance increase. There are a

few loops in tomcatv and swim, however, that see a substantial improvement. In the best

case, single-version peeling produces a 1.40× speedup over an approach that assumes total

misalignment.

6.6 Vector vs. Scalar Operation Throughput

This section examines the effect of vector processing power on performance. For this study,

I introduce a new processor model, L4. The design is identical to the L-machine except

that it operates on vectors of four 64-bit elements. As with the L-machine, I assume the

vector unit provides single-cycle throughput.

Figure 6-14 shows the speedup over modulo scheduling of traditional, full, and selective

vectorization using L4. Comparing these result to those gained for the L-machine in Fig-
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Figure 6-14: Speedup of several vectorization techniques compared to modulo scheduling for a
vector length of 4.

ure 6-4, I make two observations. First, increasing the effective operation throughput of

the vector unit provides further opportunities for performance improvements. In the best

case, swim achieves a whole-program speedup of almost 2×. By comparison, the baseline

L-machine reaches a maximum speedup of 1.35×. In addition, traditional and full vec-

torization become more attractive as we increase the processing power of the vector unit.

Compared to the L-machine, fewer benchmarks experience a slowdown, and four bench-

marks achieve a significant speedups.

The second observation is that the relative advantage of selective vectorization dimin-

ishes as we increase the ratio of vector to scalar operation throughput. Figure 6-15 illustrates

this phenomenon more clearly. Here, I show the speedup of selective vectorization over full

vectorization for the L-machine and L4. For all benchmarks, the performance differential is

less for L4. This result is not unexpected, since increasing the operation throughput of the

vector unit compared to the scalar units decreases the relative advantage of utilizing both

sets of resources.
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Figure 6-15: Speedup of selective vectorization over full vectorization for the L-machine and L4.

Figure 6-16 shows the maximum achievable speedup of selective vectorization over full

vectorization for various vector lengths. The figure assumes one vector operation and two

scalar operations can execute each cycle. At a vector length of 2, scalar and vector operation

throughput are equal, allowing a maximum speedup of 2×. As vector length increases, the

attainable speedup diminishes.

Although designers have steadily increased the capabilities of short-vector extensions,

there is a practical limit to the number of elements an architecture can process in paral-

lel. Future designs are unlikely to see much increase in vector operation throughput, if

they see any increase at all. For example, the Pentium 4 already executes double-precision

vector operations as consecutive 64-bit computations. It is likely, therefore, that selec-

tive vectorization will remain an important compilation technique for targeting tomorrow’s

general-purpose designs.

Despite its diminished potential at longer vector lengths, selective vectorization still

proves to be an effective method for targeting general-purpose processors with short-vector

instructions. In Figure 6-14, selective vectorization is the top-performing technique in all
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Figure 6-16: Maximum speedup of selective vectorization over full vectorization as vector length
increases. Speedups assume a maximum of one vector operation and two scalar operations can
execute each cycle.

cases. For benchmarks that do not benefit from vectorization, the approach avoids unnec-

essary resource saturation. For the remaining benchmarks, selective vectorization provides

a respectable performance advantage.
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Chapter 7

Conclusion

This chapter concludes the thesis by identifying limitations in my approaches and outlining

areas for improvement. Section 7.1 describes the conditions for which selective vectorization

is most applicable. In short, the technique is most effective when compiling fully vectorizable

loops for architectures that provide equivalent operation throughput on scalar and vector

resources. Section 7.2 suggests methods to increase the effectiveness of my compilation

toolchain by extending the class of loops it targets. Finally, Section 7.3 summarizes the

major results and contributions of the thesis.

7.1 Limitations

Selective vectorization is an effective method for improving performance in loops with data

parallelism. Even when vectorizable operations exist, however, the presence of a dependence

cycle can diminish opportunities for speedup. Selective vectorization boosts performance

by balancing computation across vector and scalar resources. Intelligent resource allocation

cannot reduce execution time if a dependence cycle constrains a loop’s initiation interval.

Long latency operations exacerbate the problem since the II must equal or exceed the sum

of latencies on the cycle. Of course, these difficulties are not peculiar to vectorization and

software pipelining, as dependence cycles fundamentally limit parallelism.

Resource sharing between vector and scalar instructions also limits selective vectoriza-

tion since the approach has no opportunity to balance computation across different sets of

resources. In contemporary designs, examples of shared resources include issue slots and

memory units. When a shared resource limits performance, full vectorization tends to be
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most beneficial since vector instructions typically employ these resources more efficiently.

In this sense, selective vectorization does not hold the same advantage over a conventional

approach. It is important to point out, however, that selective vectorization subsumes tra-

ditional vectorization since it naturally uncovers those situations where full vectorization is

most profitable.

As demonstrated in Chapter 6, selective vectorization produces the largest improvements

for designs that provide equivalent vector and scalar processing power. If the operation

throughput of one set of resources overwhelms the other, there is less advantage to utiliz-

ing both sets. Even when vector resources offer relatively higher throughput than scalar

resources, full vectorization does not provide the best solution in all cases. For example, if

appropriate vector opcodes are not available, the overheard of assembling and disassembling

vector operands can eliminate the advantage of vectorization. In many cases, the trade-offs

of a vector versus scalar execution are unclear. The framework described in this thesis pro-

vides a straightforward and accurate mechanism for predicting the performance of different

code generation strategies.

7.2 Future Work

Loops containing few operations often present little opportunity to balance computation

across vector and scalar resources. In these situations, loop unrolling can increase the

prospects for selective vectorization. Consider the dot product kernel, which occurs fre-

quently in multimedia and DSP applications:

for (i=0; i<N; i++) {

s = s + a[i] * b[i];

}

A common optimization performs multiple partial summations and combines the results

when the loop completes. This approach allows for full vectorization:

t[0:1] = 0;

for (i=0; i<N; i+=2) {

t[0:1] = t[0:1] + a[i:i+1] * b[i:i+1];

}

s = s + t[0] + t[1];
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Unrolling the vectorized loop by a factor of 2 yields

t[0:3] = 0;

for (i=0; i<N; i+=4) {

t[0:1] = t[0:1] + a[i+0:i+1] * b[i+0:i+1];

t[2:3] = t[2:3] + a[i+2:i+3] * b[i+2:i+3];

}

s = s + t[0] + t[1] + t[2] + t[3];

This transformation exposes additional computation in the loop body and provides

greater flexibility for selective vectorization. In the absence of loop-carried dependences,

the unrolled versions of a statement are independent. In this case, one approach to code

selection might assign entire statements to one set of resources. Furthermore, the unroll

factor need not be a multiple of the vector length. With an unroll factor of 3, for example,

operations in iterations 3i and 3i +1 could execute on vector resources, while operations in

iterations 3i + 2 could execute on scalar resources. There are at least two difficulties with

the approach, however. First, unroll factors that are not a multiple of the vector length

guarantee misaligned vector memory references. Second, the compiler must discover an

unroll factor that leads to the best resource usage. If opportunities for selective vector-

ization already exist, additional unrolling may be useless. In general, the compiler should

employ unrolling judiciously since the transformation can place additional pressure on the

instruction cache and instruction fetch unit.

Another area for future work concerns register pressure. Contemporary multimedia

extensions provide separate scalar and vector registers. For these architectures, selective

vectorization can reduce spilling by utilizing both register files. Higher performance might

be available if the selective vectorization algorithm could predict the implications of register

pressure during partitioning.

Currently, my infrastructure supports countable loops without internal control flow.

An obvious extension would target a broader class of loops. Modulo scheduling can ac-

commodate loops with control flow using if-conversion [5] or superblock and hyperblock

formation [57]. These transformations convert control dependences into data dependences

and allow the modulo scheduler to operate normally on straightline code. If-conversion is

also a standard mechanism for vectorizing operations in control flow [6].

Extending selective vectorization to non-countable loops (i.e., while loops) presents a

more difficult problem. While modulo scheduling is possible, resolution of the branch con-
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dition limits the scheduler’s ability to overlap iterations. In other words, a new iteration

cannot begin until the branch condition from the current iteration resolves. When possible,

speculative execution can relax this constraint [75]. Vectorization of non-countable loops is

possible with hardware support [7].

Selective vectorization would also benefit from any transformations that expose ad-

ditional data parallelism. Loop interchange [4] and reduction recognition [6] would be

especially beneficial. In cases where a loop nest does not access consecutive locations of

a multidimensional array, loop interchange might reorder the loops to create unit-stride

references in the inner loop. Reduction recognition enables vectorization of reductions.

Finally, the evaluation in Chapter 6 does not employ the most sophisticated alignment

transformations. For example, the per-statement peeling scheme discussed in Section 5.8

might enable further improvements, particularly if we combine that approach with profiling

and runtime testing. Also, my current formulation performs pre-loop construction and

selective vectorization in separate phases. As a result, the compiler may generate runtime

tests for memory operations that it does not vectorize. A more sophisticated approach

might combine alignment transformations and selective vectorization in a single phase.

7.3 Summary

Short-vector extensions are prevalent in general-purpose and embedded microprocessors. In

order to provide transparency to the programmer, the compiler must target these extensions

automatically and efficiently. Current solutions typically adopt technology first developed

for vector supercomputers. Compared to these designs, multimedia extensions offer unique

challenges. One of the most important issues is the alignment restriction placed on vec-

tor memory references. This thesis describes a suite of tools to manage this complexity,

including a dataflow analysis to extract alignment information at compile-time, as well as

transformations that detect alignment at runtime. The most practical method combines

profiling with dynamic peeling and runtime testing, and is able to enforce alignment for

roughly 75% of dynamic memory references.

This thesis also introduces selective vectorization, a method for balancing computation

across vector and scalar resources. Compared to traditional techniques, selective vector-

ization provides improved resource utilization and leads to software pipelines with shorter
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initiation intervals. Selective vectorization operates in the back-end, where it measures

vectorization decisions by their performance impact on a specific target architecture. An

important consequence is that selective vectorization accurately accounts for explicit com-

munication of operands between scalar and vector instructions. Even when operand commu-

nication requires memory operations, the technique is sufficiently sophisticated to provide

large performance gains. I compare selective vectorization to traditional techniques using a

realistic VLIW processor model. On a set of SPEC FP benchmarks, the technique achieves

whole-program speedups of up to 1.35×. For individual loops, selective vectorization pro-

vides speedups of up to 1.75×.
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