
Automating the Construction of Compiler Heuristics Using

Machine Learning

by

Mark W. Stephenson

Bachelor of Science, Computer Engineering

University of Utah, 1998

Master of Science, Electrical Engineering and Computer Science

Massachusetts Institute of Technology, 2000

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

c© Massachusetts Institute of Technology 2006. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science

May 23, 2006

Certified by. .

Saman Amarasinghe

Associate Professor

Thesis Supervisor

Accepted by .

Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Automating the Construction of Compiler Heuristics Using Machine

Learning

by

Mark W. Stephenson

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy of Science in Computer Science and Engineering

Abstract

Compiler writers are expected to create effective and inexpensive solutions to NP-hard prob-
lems such as instruction scheduling and register allocation. To make matters worse, separate
optimization phases have strong interactions and competing resource constraints. Compiler
writers deal with system complexity by dividing the problem into multiple phases and de-
vising approximate heuristics for each phase. However, to achieve satisfactory performance,
developers are forced to manually tweak their heuristics with trial-and-error experimenta-
tion.

In this dissertation I present meta optimization, a methodology for automatically construct-
ing high quality compiler heuristics using machine learning techniques. This thesis describes
machine-learned heuristics for three important compiler optimizations: hyperblock forma-
tion, register allocation, and loop unrolling. The machine-learned heuristics outperform
(by as much as 3x in some cases) their state-of-the-art hand-crafted counterparts. By auto-
matically collecting data and systematically analyzing them, my techniques discover subtle
interactions that even experienced engineers would likely overlook. In addition to improving
performance, my techniques can significantly reduce the human effort involved in compiler
design. Machine learning algorithms can design critical portions of compiler heuristics,
thereby freeing the human designer to focus on compiler correctness.

The progression of experiments I conduct in this thesis leads to collaborative compilation, an
approach which enables ordinary users to transparently train compiler heuristics by running
their applications as they normally would. The collaborative system automatically adapts
itself to the applications in which a community of users is interested.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor

3

4

Acknowledgments

I want to begin by thanking the people who directly contributed to this thesis. First on the

list is my advisor, Saman Amarasinghe. I can’t thank him enough for his time, ideas, sound

advice, friendship, and yes, financial support during the seven years he advised me. It’s

pretty scary how quickly Saman can digest, distill, and evaluate ideas; his ability to quickly

discard my harebrained ideas came in pretty handy. I also thank Saman for giving me the

flexibility to work on the projects that interested me the most. I feel genuinely lucky to have

had him as an advisor. Thanks to Una-May O’Reilly, Martin Martin, Ben Wagner, and

Diego Puppin for contributing so much to the ideas presented in this dissertation. Thanks

also to my thesis committee — Leslie Kaelbling, Una-May O’Reilly, and Martin Rinard

— for giving me great feedback on this dissertation. It was a pleasure and a privilege

to work with you all. Thanks to all my sources of funding: NSF Graduate Fellowship,

NSF grants EIA9810173, EIA-0071841, and CCR- 0073510, and DARPA grants DBT63-96-

C-0036, F29601-01-2-0166, PCA-F29601-03-2-0065, F3060200-2-0562, and HPCA/PERCS-

W0133890.

Next on the list, I give a collective shout-out to the “Institute”; I really can’t think of a

better (academic) place to spend eight years. I thank the student body and faculty at MIT

for being so damn brilliant and open to anything.

I have had a lot of mentors during my academic career. I want to thank Erik Brunvand, Al

Davis, and Mike Parker at the University of Utah; it was truly an honor to work under them.

Thanks to Matt Frank, Michael Taylor, Walter Lee, Ben Greenwald, David Wentzlaff, and

the rest of the RAW group for showing me the ropes. Jon Babb, MIT just hasn’t been the

same since you graduated: thanks for your guidance during my first couple of years and for

showering me with all of your “Babb” ideas. Thanks to the many fine members of the Assam

group, especially Heidi Pan, Mark Hampton, and Jessica Tseng. Anant Agarwal and Krste

Asanović deserve special recognition for being such approachable and wise sounding boards.

Anant has an amazing blend of intellect, charisma, and suaveness that makes people clamor

to be around him. Krste is incredible because, among other things, he’s the smartest person

in the world. Seriously.

5

There are two people who I want to thank for caring so much about the welfare of students:

Mary McDavitt and Srini Devadas. To properly thank Mary McDavitt would take too long.

Mary goes way above the call of duty and I hope she knows how much the students love

her for that (she baked me a Guinness cake for my defense for heaven’s sake). Similarly,

Srini takes it upon himself to know the students around him. I love running into him at

the water cooler because he always has some bit of advice or funny observation to share.

I am fortunate to have belonged to the commit group, and I thank all of its past and current

members for making the lab a pleasant place to be. The group has seen its share of amazing

people. Bill Thies, you are a brilliant man, and I thank you for all your insights and help

over the years; you will most likely win a Nobel Prize someday. The whole commit group

was also lucky to have recruited Rodric Rabbah. Rodric is the first (and usually the last)

person I go to whenever I have a question. He is the man. Ben Wagner is a star, and it has

been fantastic working alongside him.

I’ve made the best friends I could ever have during my time at MIT. Michael Zhang, you

made 80 Allston Street what it was. Michael “Gordo” Gordon, pub crawling wouldn’t have

been the same without you. Ronny “Ralph’sr Rewards Card” Krashinsky, I truly think

you’re the man (you have to share this title with Rodric). Steve Gerding, buddy, you are

quite possibly the most entertaining person I have ever met. And Sam “[expletive]” Larsen!

Thanks for not only being such a great colleague, but for being such a damn fantastic friend

over the years. I’m going to miss you guys.

I’d like to thank the people who have always been there for me: my family. Even though

my parents have no idea what I’ve been working on for the last eight years, they couldn’t

be prouder, and I’m grateful for that. I’m proud of you too mom and dad. My sister Donna

and my brothers Joe and Bob (and their families) are the best, and it saddens me that I

don’t get to see them more often. And Dominic Primé isn’t technically a brother of mine,

but it sure seems like he is. I don’t know where I’d be without you all.

Finally, über thanks to my fiancée, Kristen Grauman. She’s without a doubt the best thing

that’s ever happened to me.

6

Contents

1 Introduction 17

1.1 Challenges Facing Compiler Writers . 19

1.2 Overview of Meta Optimization . 23

1.3 Contributions . 25

1.4 Roadmap . 26

2 Compiler Construction 27

2.1 Compiler Flow . 27

2.2 Important NP-Hard Compiler Problems . 33

2.2.1 Case Study: Instruction Scheduling 33

2.2.2 Heuristic Solution for Instruction Scheduling 37

3 Meta Optimization 41

3.1 Insight: Correctness v. Policy . 41

3.2 Meta Optimization : Learning Effective

Compiler Heuristics . 43

3.2.1 Objective Search . 44

7

3.2.2 Meta Optimization . 44

3.3 Using Empirical Observations . 45

3.4 Training Compiler Policies . 46

4 Searching and Pattern Recognition 49

4.1 Searching . 49

4.1.1 Exhaustive Search . 50

4.1.2 Genetic Algorithms . 51

4.1.3 Hill Climbing and Simulated Annealing 53

4.2 Supervised Learning . 55

4.2.1 Regression . 55

4.2.2 Classification . 59

4.2.3 Validation for Supervised Learning 61

4.3 Reinforcement Learning . 62

5 Policy Search for Meta Optimization 65

5.1 Priority Functions . 65

5.2 Policy Search with Genetic Programming 67

5.3 Methodology . 71

5.4 Case Study I: Hyperblock Formation . 75

5.4.1 Branching v. Predication . 75

5.4.2 Feature Extraction . 78

8

5.4.3 Trimaran’s Heuristic . 80

5.4.4 Experimental Setup . 82

5.4.5 Experimental Results . 83

5.5 Case Study II: Register Allocation . 90

5.5.1 Experimental Results . 91

5.6 Effort and Training Time Involved . 97

5.7 Conclusion . 98

6 Supervised Learning for Meta Optimization 101

6.1 Loop Unrolling . 102

6.2 Methodology and Infrastructure . 104

6.2.1 Supervised Learning . 105

6.2.2 Compiler and Platform . 106

6.2.3 Loop Instrumentation . 106

6.2.4 Effort Involved . 108

6.2.5 Benchmarks Used . 108

6.3 Multi-Class Classification . 109

6.3.1 Near Neighbor Classification . 109

6.3.2 Support Vector Machines . 111

6.4 Experiments with Multi-Class Classification 114

6.4.1 Realizing Speedups . 115

6.5 Feature Selection . 117

9

6.5.1 Mutual Information Score . 117

6.5.2 Greedy Feature Selection . 119

6.6 Conclusion . 120

7 Collaborative Data Collection 123

7.1 Collaborative Compilation . 123

7.2 Collaborative Instrumentation . 127

7.2.1 Coping with Noise . 129

7.2.2 Implementation Details . 135

7.2.3 Runtime Overhead . 135

7.3 Case Study: Improving Steady-State Performance 136

7.4 Reducing Privacy Concerns . 139

7.5 Conclusion . 139

8 Related Work 141

8.1 Program Specialization . 141

8.2 Meta Optimization Related Work . 144

8.3 Collaborative Compilation Related Work . 146

9 Conclusion 149

10

List of Figures

1-1 Layers of abstraction in a typical system . 18

1-2 Anatomy of an optimizing compiler . 20

2-1 Anatomy of an optimizing compiler (repeat) 28

2-2 An example control flow graph . 29

2-3 Optimization examples. 31

2-4 Instruction scheduling example . 34

2-5 The effectiveness of two different instruction schedules. 36

3-1 Abstract depiction of a heuristic’s task . 42

3-2 Various ways in which to train a compiler policy 47

4-1 Performance of a small matrix multiply kernel using various unroll factors . 50

4-2 Genetic algorithm flow and representation 52

4-3 Graphical depiction of hill climbing and simulated annealing 54

4-4 Regression example . 57

4-5 Model complexity and overfitting . 59

11

4-6 Binary classification with nearest neighbor 60

5-1 Genetic programming flow . 69

5-2 GP individuals . 70

5-3 Influence of control flow on processing . 76

5-4 Hyperblocks and predicated execution . 78

5-5 Hyperblock specialization using SASI . 85

5-6 Hyperblock formation evolution . 85

5-7 Training on multiple benchmarks with MASI 87

5-8 Validation of the general-purpose priority function 88

5-9 A GP-generated priority function for hyperblock scheduling 89

5-10 Register allocation specialization with SASI 93

5-11 Register allocation evolution . 94

5-12 Finding a general-purpose register allocation policy 95

5-13 Validation of the register allocation policy 96

5-14 Speedups over a simple register allocation policy 96

5-15 The best general-purpose register allocation priority function 97

6-1 Loop unrolling example . 102

6-2 Near neighbor classification . 110

6-3 Support vector machine classification . 112

6-4 Histogram of optimal unroll factors . 115

12

6-5 Realized performance on the SPEC 2000 benchmarks 116

7-1 Collaborative compilation . 125

7-2 (Naive) Instrumentation by a collaborative compiler 128

7-3 Various accumulator arrays . 130

7-4 A typical series of method samples . 131

7-5 Checking the accuracy of collaborative training labels 133

7-6 Steady-state performance of a collaboratively tuned compiler 138

13

14

List of Tables

1.1 Compiler infrastructures considered in this thesis 21

1.2 Hardware complexity . 22

2.1 NP-hard compiler optimizations . 33

2.2 Distribution of valid schedules . 37

3.1 Approaches to training compiler policies . 48

4.1 Choosing an appropriate model. 58

5.1 GP primitives . 73

5.2 GP parameters . 74

5.3 Architectural characteristics . 81

5.4 Hyperblock selection features . 82

5.5 Benchmarks used to train and test . 84

5.6 Memory hierarchy access times . 90

5.7 Register allocation features . 92

6.1 A subset of features for loop classification 104

15

6.2 Predictive accuracy for NN and SVM . 113

6.3 Best unrolling characteristics according to feature selection 118

6.4 Greedy feature selection for nearest neighbor 118

6.5 Greedy feature selection for SVM . 118

7.1 Runtime overhead of collaborative compilation 135

16

Chapter 1

Introduction

The level of complexity in today’s systems is unprecedented. Figure 1-1 shows that playing

a simple Java game on a typical user’s computer spans several abstraction layers. The

game runs within a virtual machine, which is likely embedded within a Web browser; the

Java virtual machine runs on top of the Windows r© operating system which executes on

a Pentium 4 r©. Even the instruction set architecture of the Pentium 4 is an abstraction:

the processor first converts x86 instructions into substantially simpler “micro-operations”

on which the rest of the processor operates [45].

The numerous layers of abstraction in the computing hierarchy facilitate the design of

sophisticated systems. However, as systems become increasingly layered and modularized,

the designers’ scope becomes increasingly myopic. Stitching together hundreds of locally

designed pieces into a single system creates several formidable challenges, one of which is

finding a synergy between all of the individual components.

The compiler is a critical link in the chain of complexity. The efficiency of the code that

the compiler generates has an enormous effect on a compiled application’s system-level per-

formance. Optimizing compilers are themselves the product of hundreds of thousands of

lines of code, and a typical compiler applies over a dozen optimizations to an input pro-

gram. Furthermore, many important compiler optimization problems are NP-complete, and

therefore they necessitate suboptimal heuristics to reasonably constrain compilation time.

Because compilers are so complex, most of the optimizations that a compiler performs are

17

� -op engine

Operating System

Virtual Machine Application

Application

Processor core

so
ftw

ar
e

ha
rd

w
ar

e

Figure 1-1: Layers of abstraction in a typical system.

not well-coordinated with “downstream” optimizations, let alone the target architectures,

which today are comprised of over 100 million transistors and feature such innovations as

deep pipelines, speculation, hyperthreading, and trace caching.

It is difficult for human engineers to design effective compiler optimizations because of

the myriad of complexities in the compiler and target system. Despite these difficulties,

optimizing compilers can extract high levels of performance from programs written in high

level languages. One study empirically shows that modern compiler technology accounts

for large speedups (2.5x to 17.3x) on a common set of benchmarks [86]. It is because

of this potential boost in performance that compiler writers are willing to cope with the

complexities wrought by compiler optimizations; in fact, they often spend a large portion

of their time tweaking heuristics in order to achieve suitable performance improvements.

For instance, the Open Research Compiler [77], on which I validate some of my techniques,

features a loop unrolling heuristic that researchers manually updated between every major

release (significantly in some cases).

I will show how to automatically construct effective compiler heuristics that are specialized

for a given computing platform. Specifically, in this dissertation I describe meta opti-

mization, an approach that can automatically induce compiler heuristics using well-known

machine learning techniques. In most cases, the machine-learned heuristics perform sub-

stantially better than their state-of-the-art hand-crafted counterparts. Furthermore, meta

optimization reduces the human effort involved with designing an optimizing compiler:

18

machine learning techniques can automatically design significant portions of a compiler

heuristic, thereby freeing the human designer to focus on compiler correctness.

The rest of this chapter discusses the challenges facing compiler writers, examines the

inherent complexity of compilers, describes the increasing complexity of architectures, gives

an overview of meta optimization, and highlights the contributions of this research.

1.1 Challenges Facing Compiler Writers

This section discusses the many reasons why it is difficult to design optimizing compilers.

A compiler, for the most part, creates the applications that run on top of all subsequent

layers of abstraction, and therefore, the effectiveness of the compiler is critical to achieving

top-notch application performance.

An optimizing compiler is a development tool that has the nontrivial task of converting a

high-level description of a program into instructions that can natively execute on a machine.

During the conversion, the semantics of the input program are maintained,1 but the program

itself often undergoes dramatic transformations. Figure 1-2(a) shows the flow of a typical

optimizing compiler, while part (b) focuses on the code generation component, which is

responsible for producing quality code from input programs. The blocks in part (b) of the

figure are referred to as passes (or equivalently phases).

Each of the passes in the code generator performs an optimization, or in some cases a

set of optimizations. An optimization restructures the code, while preserving the code’s

semantics, in order to attain a higher performance on the target architecture. Optimizing

a program for a given computer architecture is inherently a high-dimensional problem. In

other words, there are many facets of performance that the compiler must try to balance;

there are optimizations to improve register, processor, memory, and communication resource

utilization.

Each optimization, which the compiler sequentially applies, focuses on a subset of these di-

mensions, and it is not uncommon to optimize along a single dimension of performance. For

1Sometimes the user of the program can instruct a compiler to sacrifice numerical precision for increased
performance, but the vast majority of transformations preserve the semantics of the original program.

19

Lexical analysis

Syntax analysis

Semantic analysis

Code optimization

input program

object file

Code generation

Memory hierarchy optimizations

Method inlining

Tail recursion elimination

Scalar replacement

Constant folding

Value numbering

Copy propagation

Constant propagation

Partial redundancy elimination

Software pipelining

Loop unrolling

Instruction scheduling

Register allocation

Intermediate code generation

(a) (b)

Figure 1-2: The anatomy of an optimizing compiler. Part (a) shows a coarse view of
the compilation process, from a high-level program description to an object file. Part (b)
zooms in on the flow of the compiler’s code optimizer; a typical optimizer applies a dozen
optimizations or more to an input program. Many of these optimizations are not well-
coordinated with the other optimizations that are performed.

simplicity’s sake, compiler writers often assume that compiler optimizations are orthogonal

and independent, but this is definitely not the case. For example, in multiprocessor environ-

ments, maximizing processor utilization (across all N processors in the multiprocessor) may

be completely at odds with minimizing traffic to the architecture’s communication system.

Likewise, optimizations aimed at reducing inter-processor communication are likely to affect

processor utilizations. Another more subtle example is the interaction between the register

allocator and the instruction scheduler. Instruction schedulers often tend to increase the

lifetime of program variables, which can tax the register allocation optimization; on the

other hand, the register allocation optimization constrains the instruction scheduler.

As shown in Figure 1-2, a compiler typically performs a whole host of high-level optimiza-

tions first (e.g., method inlining, constant folding, constant propagation) [75]. Many of

these optimizations try to simplify the input program. The compiler performs loop opti-

mizations next: optimizations such as loop unrolling and software pipelining aim to expose

massive amounts of instruction parallelism. Afterwards the compiler schedules the order

20

Infrastructure Source Language Input Language Lines of Code

JikesRVM [6] Java Java Bytecodes 300,000
ORC [77] C++ C 1,200,000

Trimaran [94] C/C++ C 750,000

Table 1.1: Compiler infrastructures considered in this thesis. The source language column
describes the language in which the compiler is written. The language that the compiler
translates is shown in the third column. The last column lists the number of lines of source
code that comprises the compiler infrastructure.

in which instructions should execute. A register allocation phase, which assigns program

variables to fast hardware registers, is often one of the last optimizations performed before

the object file is generated. A seemingly worthwhile optimization performed early on in

the compilation process may hamper the effectiveness of the subsequent passes. Chapter 2

discusses such situations.

The compiler flow shown in Figure 1-2 mirrors the compiler infrastructures that this thesis

considers, all of which are listed in Table 1.1. While there are many differences between

these three infrastructures, they all have one vital characteristic in common: they are all big

systems. The last column in the table lists the number of lines of source code that comprise

each infrastructure. The size of the source base is not the best indication of complexity,

but these figures do begin to convey the significant amount of work a compiler performs.

Perhaps a more convincing argument about compiler complexity is that several key opti-

mizations are NP-complete. In fact, even the simplest form of instruction scheduling is

NP-complete for realistic architecture models [13]. Likewise, optimal register allocation is

NP-complete [35] since the problem can be reduced to a graph coloring problem. For such

optimizations, it is simply not practical to find the optimal solution. Given enough time,

optimal solutions to NP-hard problems can be found, but compile time must be reason-

ably bounded. Fortunately there are many heuristics that approximately solve NP-hard

problems.2

Because the set of all programs is diverse (and infinite), compiler writers are currently re-

sponsible for crafting, and then fine-tuning heuristics that work well across a wide range

of input programs; this is a formidable task. A heuristic that is tuned to perform well on

one class of applications may not perform well on other types of applications. For instance,

2In general this thesis refers to any potentially suboptimal compiler algorithm as a heuristic.

21

Processor Year Transistors Frequency New Features

Pentium 1993 3,100,000 233 MHz 2-way superscalar, 5-stage pipeline, in-
teger SIMD instruction set (MMX).

Pentium II 1997 7,500,000 450 MHz 3-way superscalar, 12-stage pipeline,
out-of-order execution, larger L1
cache.

Pentium III 1999 9,500,000 1 GHz Floating-point SIMD instructions
(SSE), new registers.

Pentium 4 2000 169,000,000 3.73 GHz Hyper-threading, trace cache, double
clocked ALU, 20-deep pipeline, im-
proved branch prediction.

Table 1.2: Hardware complexity. This data shows the chronological progression of Intel’s
Pentium line of microprocessors [44]. Massive increases in the number of transistors from
generation to generation have allowed Intel’s computer architects to increase the sophisti-
cation and complexity of their processors.

scientific applications are more amenable to loop optimizations than control-intensive “in-

teger” programs; aggressive loop optimizations may help scientific applications, but harm

the performance of branchy codes.

Increasingly complex computer architectures, the target of optimizing compilers, also make

a compiler’s task more difficult. In order to generate high quality code, the compiler must

have an accurate model of the target architecture. Whereas processors were once easy to

model, abstract models can no longer adequately describe today’s sophisticated processor

designs. Exponentially improving process technology continues to give computer architects

additional resources with which to incorporate sophisticated processing mechanisms.

Table 1.2 contains data on Intel’s Pentium line of microprocessors [44]. The last column

of the table shows some of the key features added to each successive generation of Intel’s

microprocessors. This indicates that architects have not squandered the sizable silicon

real estate increases. For example, in a relatively short amount of time, Intel has added a

significant number of architectural features to its Pentium processors. The original Pentium

processor, introduced in 1993, was a simple, in-order superscalar processor that was designed

on a budget of three million transistors. The most recent Pentium 4 processor at the time

of this writing consists of 169 million transistors. The designers used this extra silicon

real estate to add several performance-enhancing features (e.g., larger caches, speculative

execution, branch prediction, multi-media units, and improved floating point computation

units). An aggressive architecture like Intel’s Pentium 4 actually performs many (compiler)

22

optimizations at runtime (e.g., register renaming and trace construction). The Pentium

4 processor is capable of simultaneously executing up to 126 instructions. Because such

processors are not easily modeled, it is difficult to predict what impact a given compiler

optimization will have on a processor like the Pentium 4.

Not only is the coupling of compiler technology and the target architectures difficult to

model, their relationship changes over time. Consider the re-tuning effort that a compiler

writer must undertake for new releases of a processor. At the time of this writing there are

no fewer than 16 revisions of the Pentium 4, some of which provide substantially different

features than their predecessors [44]. How can compiler writers manually specialize heuris-

tics for the array of architectures even within a single processor family? Because the effort

involved in is too drastic, developers typically do not re-tune the compiler for every release.

Nevertheless, it is well known that achieving the best performance requires that the compiler

match the target processor. I argue in this thesis that there is a considerable amount of

slack in a typical compiler heuristic. In other words, a well-tuned heuristic can produce far

more efficient code than an un-tuned heuristic. Chapters 5, 6, and 7 experimentally support

my claim.

1.2 Overview of Meta Optimization

This chapter has discussed the complexity inherent to compilers and modern-day archi-

tectures. A major implication of systems complexity is that manually tuning a compiler

heuristic to work well within a modern day system is not an easy task: for a given system,

a designer has to ensure that the heuristic works well across a wide range of programs.

I propose to address this by using machine learning techniques to create heuristics that

are catered to the target system. Machine learning techniques, which have the ability to

“make sense” of complex, high-dimensional spaces, have the potential to change the way

compiler writers develop heuristics. By offloading much of the tedium of heuristic tuning to

an automated process, my techniques stand to both improve performance as well as reduce

the human effort involved in compiler construction.3

3I make no claims about reducing compiler complexity. My focus is on dealing with compiler complexity.

23

I call my approach meta optimization because it essentially optimizes compiler optimiza-

tions. Meta optimization takes advantage of the fact that many compiler optimizations are

naturally separated into two distinct phases: correctness checking, and policy. The correct-

ness checking phase finds a bounded (but large) set of legal optimization possibilities. For

many optimizations, finding the set of legal options is straightforward and precise; the more

difficult task is the policy phase, which chooses the best option from this set. While the

correctness checking component of an optimization ensures that the compiler will produce

code that is correct, the policy completely dictates what the attainable performance of the

optimization will be.

Meta optimization makes it possible to automatically search for effective policies. Consider

the global ramifications of a compiler optimization such as loop unrolling, which replicates

the body of a loop some number of times to increase parallelism. Loop unrolling interacts

with all other compiler passes; in some cases it can enable a host of downstream optimiza-

tions, but it can also adversely affect instruction cache performance and the effectiveness

of the register allocator. Constructing a heuristic to predict when loop unrolling is appro-

priate is nontrivial; yet if the heuristic is not well-designed, the performance of the whole

system may suffer. Currently human engineers use intuition and manual trial-and-error

experimentation to painstakingly construct loop unrolling heuristics.

One instantiation of meta optimization, which I describe in Chapter 6, uses empirical mea-

surements and supervised learning to automatically create effective policies. For the loop

unrolling problem, the approach first automatically gathers a database of empirical obser-

vations by inspecting over 2,500 loops drawn from multiple benchmarks: for each loop, the

meta optimizer extracts a vector of characteristics ~x that abstractly describes the loop’s

structure; it also empirically, and exhaustively finds the best unroll factor y for each loop.

With this database in place we can use well-known supervised learning techniques to auto-

matically construct a function y ← f(~x) that can accurately predict the unroll factor y for

a loop described by the vector ~x. In this way, the supervised learning algorithm learns to

predict the loops for which a given unroll factor best applies.

Meta optimization frees compiler writers of the burden of trial-and-error tuning associated

with human-constructed heuristics: once the database of loop examples is in place, it only

24

takes a few seconds to generate an effective compiler heuristic. Furthermore, the meta

optimized heuristics generate faster compiled code than their human-designed counterparts.

For loop unrolling, meta optimization achieves speedups (over a widely used human-designed

heuristic) of up to 26%, and attains an average speedup of 9% on a common set of scientific

applications.

On today’s complex systems, the only way to know how well a compiler heuristic works is to

test it empirically; as such, all of the experiments that I present in this thesis use empirical

performance observations to drive the machine learning process.

1.3 Contributions

This thesis investigates the hypothesis that machine learning algorithms can automatically

create effective compiler heuristics. I present several novel ideas and findings throughout

this document. This following list summarizes the contributions that this thesis makes:

• I have developed a generalized methodology for automatically creating compiler heuris-

tics. The technique is aided by the fact that many compiler heuristics are naturally

separated into two components. The first component is immutable and ensures the

correctness of the heuristic. The second component however, which I call the policy,

is flexible and it dictates the effectiveness of the heuristic. By “learning” the policy —

and leaving the correctness component intact — my technique drastically reduces the

search space size, making machine learning a feasible, and indeed a palatable approach

to heuristic design. In addition, any policy derived by a machine learning technique

will generate correct code. Chapter 3 discusses this approach.

• I introduce a technique that focuses on small, but high-impact functions called priority

functions [91]. By iteratively searching for quality priority functions via policy search,

a compiler’s effectiveness can, in many cases, be improved by large margins. Chapter 5

discusses this work.

• I show that it is possible to effectively learn compiler policies that make multi-class

decisions [90]. Recently, other researchers have applied supervised machine learn-

25

ing to compilation problems where possible actions are binary. However, there are

many compiler optimizations for which the set of possible actions is larger; these op-

timizations require a multi-class approach. Furthermore, I evaluate the multi-class

experimentation in a real computing environment using real applications, proving the

scalability of the technique. Chapter 6 describes this work in detail.

• I show that feature selection can automatically identify the most salient features for

creating effective compiler policies [90].

• I introduce collaborative compilation, a paradigm that enables ordinary users of already-

deployed systems to transparently contribute to and benefit from the machine learning

data collection process. Collaborative users share their automatically extracted empir-

ical runtime data with other members of a user community. In exchange for sharing,

collaborative users are granted access to the community knowledge base, which houses

the most current and effective machine-learned heuristics. These users are essentially

training the compiler to perform well on the applications and systems in which the

community as a whole is interested.

1.4 Roadmap

The next chapter describes the anatomy of an optimizing compiler. I outline my general

approach to tuning compiler heuristics with machine learning in Chapter 3. Chapter 4

discusses the machine learning concepts that are necessary for an adequate understanding

of the experiments performed in the remainder of the thesis. Chapter 5 shows how pol-

icy search can effectively fine-tune small, but high-impact portions of a compiler heuristic.

Chapter 6 describes an experiment with multi-class supervised learning. I discuss collabora-

tive compilation in Chapter 7. Finally, I present related work in Chapter 8, and I conclude

in Chapter 9.

26

Chapter 2

Compiler Construction

This chapter presents an overview of modern-day compiler construction. I focus on the

details that directly pertain to this thesis, and I purposely omit many aspects of compiler

construction that are not particularly relevant to my work. I relegate some important,

but not necessarily essentially details to footnotes. Readers who are familiar with compiler

construction can safely skip to the next chapter where I outline my approach.

2.1 Compiler Flow

The last chapter diagrammed the high-level flow of an optimizing compiler. This section

fills in many of the details that the last chapter omitted. Figure 2-1(a) graphically depicts

the operation of a modern compiler. A compiler begins with a high-level description of a

program. The compiler first ensures that the input program is well-formed by applying

lexical, syntactic, and semantic analyses [75, 4].

From this point, the compiler generates an intermediate representation (IR) on which the

remainder of the compiler will operate. The IR merely provides a semantic-preserving

representation of the input program that facilitates optimization and analysis. There are

typically a couple of different types of IR: high-level IR, which retains many of the high-level

constructs associated with a modern day programming language, and low-level IR, which

resembles assembly language for an abstract machine. A compiler typically uses high-level

27

Lexical analysis

Syntax analysis

Semantic analysis

Code optimization

input program

object file

Code generation

Memory hierarchy optimizations

Method inlining

Tail recursion elimination

Scalar replacement

Constant folding

Value numbering

Copy propagation

Constant propagation

Partial redundancy elimination

Software pipelining

Loop unrolling

Instruction scheduling

Register allocation

Intermediate code generation

(a) (b)

Figure 2-1: Anatomy of an optimizing compiler (repeated from Chapter 1).

IR early in the compilation of a program [75]. For instance, optimizations that aim to

improve the performance of the memory hierarchy (i.e., the performance of caches and

main memory) benefit from high-level knowledge of memory access patterns, which may

not be available in the low-level IR. However, all of the optimizations that I study in this

thesis operate on low-level IR.

Figure 2-2(a) shows a simple method written in C. A modern-day processor cannot directly

execute the high-level statements in this example because they are too expressive; it is the

job of a compiler to disassemble the statements into simple instructions that a processor can

execute, and conversion to low-level IR is a big step toward that end. Figure 2-2(b) shows

the method’s corresponding low IR representation.1 Notice in particular how the compiler

has transformed the high-level control flow (i.e., the for loop, and the if-statement) to low-

level branches, labels, and conditional tests. If we were to omit control flow, the low-level

IR instructions would execute sequentially, and while that would certainly simplify com-

piler analyses and code generation, it would severely limit the types of programs that we

could write. Labels designate the locations of code. In Figure 2-2(b) for example, the label

1Intermediate representations differ from compiler to compiler, and thus I just mean for this example to
give the reader a feel for what an IR looks like.

28

1: void clamp (int vals[], int length)
2: {
3: int i;
4: for (i = 0; i < length; i++)
5: {
6: int intval = vals[i];
7: if (intval > 32767)
8: vals[i] = 32767;
9: }
10: }

(a) Original program.

clamp: i = 0

 c0 = 0 < length

 bfalse c0, exit

bb1: intval = vals[i]

 c1 = 32767 < intval

 bfalse c1, bb3

bb2: vals[i] = 32767

bb3: i = i + 1

 c2 = length <= i

 bfalse c2, bb1

exit: return

(b) Low-level IR.

i = 0
c0 = 0 < length
bfalse c0, exit

clamp

intval = vals[i]
c1 = 32767 < intval
bfalse c1, bb3

bb1

vals[i] = 32767bb2

i = i + 1
c2 = length <= i
bfalse c2, bb1

bb3

returnexit

(c) Control flow graph.

Figure 2-2: An example control flow graph.

29

bb3 identifies the location of the instruction that increments the variable i. The IR also

includes instructions to set a variable’s value based on the outcome of a conditional test.

For instance, the instruction

c0 = 0 < length

assigns c0 a value of true if length is greater than zero. The branch instructions in the figure

(i.e., the bfalse instructions) transfer execution to the specified label if the conditional test

is false. If, on the other hand, the conditional test is true, execution simply falls through to

the next instruction in the sequence.

Branches and jumps introduce ambiguity about which portions of code will execute. For

instance, in Figure 2-2(a), the if-statement on line (7) controls whether the statement on

line (8) is executed. This uncertainty complicates program analysis, but does not prohibit

it. One commonly used structure that facilitates many compiler analyses in the presence of

branches is a Control Flow Graph (CFG). Figure 2-2(c) shows the CFG for the example in

part (a).

The nodes of a CFG are referred to as basic blocks, each of which is an ordered sequence

of instructions. A basic block can have at most one branch or jump instruction, which if

present must occur at the end of the block. All jumps or branches must transfer execution to

the beginning of a basic block. As a ramification of these traits, if one instruction in a basic

block executes they will all execute. The edges of the CFG denote control dependencies

between two basic blocks. For instance, in the entry block labeled “clamp” in Figure 2-2(c)

execution can either fall through to “bb1”, or it can branch to the “exit” block.

With an IR and a CFG in place, the compiler is armed to apply many classical compiler

optimizations. This thesis focuses on the next step of compilation: optimizing the IR to

produce a high-quality program. Figure 2-1(b) shows the phases, or equivalently, the passes

of a typical code optimizer [75]. Code optimizers are essentially a pipeline of optimization

passes, and remember, there is little or no coordination between these passes.

Sometimes one pass will facilitate a downstream optimization pass, and other times it

30

double fhelper(double x,
double omega,
int select)

{
switch(select)

 {
case 0: return(pow(x+1.0,x));
case 1: return(pow(x+1.0,x) * cos(omega*x));
case 2: return(pow(x+1.0,x) * sin(omega*x));

 }

return 0.0;
}

double f()
{

return fhelper(1.0, 3.14, 0);
}

(a) Original program.

double f()
{
double t0 = 1.0;
double t1 = 3.14;
int t2 = 0;

switch(t2)
 {

case 0: return(pow(t0+1.0,t0));
case 1: return(pow(t0+1.0,t0) * cos(t1*t0));
case 2: return(pow(t0+1.0,t0) * sin(t1*t0));

 }

return 0.0;
}

(b) After inlining.

double f()
{

switch(0)
 {

case 0: return(pow(1.0+1.0,1.0));
case 1: return(pow(1.0+1.0,1.0) * cos(3.14*1.0));
case 2: return(pow(1.0+1.0,1.0) * sin(3.14*1.0));

 }

return 0.0;
}

(c) After constant propagation.

double f()
{
switch(0)

 {
case 0: return(pow(2.0,1.0));
case 1: return(pow(2.0,1.0) * cos(3.14));
case 2: return(pow(2.0,1.0) * sin(3.14));

 }

return 0.0;
}

(d) After constant folding.

double f()
{

return(pow(2.0,1.0));
}

(e) After dead code elimination.

Figure 2-3: Optimization examples.

may inhibit the ability of a downstream pass to perform effectively. The method inlining

optimization nicely illustrates this concept. Method inlining, also referred to as procedure

integration, is an optimization that replaces method calls (i.e., calls to other methods) with

the actual body of the method [75]. Figure 2-3(a) shows the C description of a method that

calls another method. The method f calls fhelper, and the switch statement in fhelper

steers the computation based on the value of the variable select. Figure 2-3(b) shows the

result of inlining the fhelper method directly into f.2,3

2Note that for clarity I omit the fhelper method in Figure 2-3(b) even though a C compiler would have
generated code for it (since an external method may call it).

3The compiler cannot inline the calls to cos, pow, and sin because they are defined in an external library
and the source code may not be available.

31

In this example, inlining fhelper opens several optimization opportunities to the down-

stream compiler passes. For instance, the constant propagation pass identifies program

variables that represent constants, and replaces each of them with the actual constant they

represent. In Figure 2-3(b), the constant propagation pass would replace all occurrences

of t0 with the value 1.0 since this is the only value to which t0 ever refers. Note that

constant propagation cannot optimize the code in part (a); only through method inlining

does constant propagation become effective for this example. Constant propagation of the

code in Figure 2-3(b) results in the code of part (c). Figure 2-3(d) reveals how constant

propagation can facilitate the constant folding optimization. When all of an arithmetic

operation’s operands are constants, constant folding can replace the operation with the

value that would have been computed at runtime. For instance, the argument to cos in

Figure 2-3(c) is known at compile time to be 3.14*1.0, or just 3.14.

For this example, method inlining combined with constant propagation also enables the dead

code elimination optimization. Dead code elimination removes code that program execution

cannot possibly reach. For instance, it is only possible for execution to ever reach case 0

in Figure 2-3(d), and thus the compiler can eliminate the switch statement. Figure 2-3(e)

shows the streamlined version that results after the compiler applies dead code elimination.

It is important to note that compiler optimizations are not universally applicable [4, 75,

18]. For instance, method inlining is not always a beneficial optimization to perform.

Furthermore, predicting the circumstances under which inlining is beneficial is difficult.

Method inlining expands the memory footprint of an application — since the optimization

essentially creates redundant versions of a method — which may lead to deleterious memory

system behavior. For example, the register allocation phase attempts to map program

variables to a limited number of fast hardware registers. In the event that the register

allocator cannot assign a hardware register to all variables in a method, the allocator has

to spill a subset of the variables to memory, which is much slower to access. Inlining can

burden the register allocator by increasing the density of variables in a method. Chapter 7

studies a method inlining heuristic; in some cases, aggressive inlining leads to enormous

slowdowns.

32

Problem

Boolean simplification [5]
Cluster assignment [29]
Cyclic instruction scheduling [29]
Instruction scheduling with limited resources [35]
Loop fusion with loop interchange [5]
Loop selection [5]
Minimizing waits in presence of control flow [5]
Multi-dimensional scheduling [29]
Profitability determination [5]
Register allocation [75]

Table 2.1: Compiler optimizations that have been proven to be NP-hard.

2.2 Important NP-Hard Compiler Problems

Many of the most performance-critical compiler problems are NP-hard [75, 29]. Table 2.1

lists some example compiler problems that have been proven to be NP-hard. Even the most

basic scheduling problem is NP-complete when targeting a machine with limited resources.

Recent research has shown that integer linear programming (ILP) can effectively solve some

instances of important NP-hard compiler problems somewhat quickly [57]. However, ILP

techniques still take orders of magnitude longer to compute than the heuristic techniques

compiler writers have crafted to cope with NP-hard problems.

Heuristic techniques strike a balance between compile time and code generation quality

that suits most compiler users. The remainder of this section takes an in-depth look at

instruction scheduling, a critical NP-complete compiler problem; I also describe a popular

heuristic solution that (sub-optimally) solves it. The next chapter will use this problem to

illustrate meta optimization.

2.2.1 Case Study: Instruction Scheduling

The instruction scheduling pass is responsible for arranging the order in which instruc-

tions execute on a processor, and scheduling order can have a large impact on perfor-

mance [75, 4, 29]. A simple example illustrates the instruction scheduling problem. Fig-

ure 2-4(a) shows four C statements that add a scalar value to a four-element vector. The

compiler lowers the high-level description in (a) to low-level IR, which I show in part (b).

33

a[0] = a[0] + c;
a[1] = a[1] + c;
a[2] = a[2] + c;
a[3] = a[3] + c;

1

2

2

3

2

4

2

5

6

2

7

2

8

9

2

10

2

11

12

2

t1 = a[0]
t2 = t1 + c
a[0] = t2
t3 = a[1]
t4 = t3 + c
a[1] = t4
t5 = a[2]
t6 = t5 + c
a[2] = t6
t7 = a[3]
t8 = t7 + c
a[3] = t8

11
12

10
9

1
2
3
4
5
6
7
8

(a) (b) (c)

Figure 2-4: Instruction scheduling example. The low-level instructions in (b) show how a
typical compiler would convert the high-level instructions in (a). Only a small fraction of
the 12! possible orderings of the instructions in (b) are legal. The dependence graph in
(c) shows the partial ordering for this example that the compiler must satisfy to generate
correct code. The labels on the edges in the dependence graph correspond to instruction
latencies.

For each high-level statement, the compiler creates three low-level IR instructions. Take

the first statement for instance:

a[0] = a[0] + c;

The compiler first generates an instruction (1) to load the current value of a[0] from

memory into the temporary variable t1. The next compiler-generated instruction (2) adds

the variable c to t1 and stores this result in the temporary variable t2. To complete the

high-level statement, the compiler generates an instruction (3) that stores t2 to the memory

location a[0]. The low IR description in part (b) contains a list of twelve instructions. There

are 12! = 479, 001, 600 ways to schedule the instructions in (b), but only a small fraction of

those schedules are actually legal.

It is important for the instruction scheduler to adhere to dependencies in a program, oth-

erwise the compiler will likely generate incorrect code. Data dependencies impose a partial

order on instruction schedules which insures that data correctly flows between instructions

in a program. For instance, the read of t1 in instruction (2) requires that t1’s value first be

set in instruction (1). Figure 2-4(c) depicts a dependence graph — which is straightforward

34

to generate given a list of instructions [75] — that places a partial order on the instructions

in part (b). The nodes of the dependence graph correspond to the instructions in part (b),

and an edge between two nodes implies a constrained order between two instructions. For

instance, the example dependence graph says that instruction (3) is dependent on (2) and

(1); in other words, (3) cannot be scheduled before (1) or (2). The constraints that the

dependence graph specifies are intuitive: in the running example, adding c to t1 before t1

contains the value of a[0] will almost certainly produce an incorrect result.

We can see from the dependence graph that there are four independent “computations”

in the example (e.g., [(1),(2),(3)] is a single computation), and the relative ordering of the

instructions within a computation is completely constrained. We can think of this problem

in the following way: we have twelve slots, each of which will hold a single instruction from

the list in part (b). We can first choose any three of these locations to place one of the

completely constrained computations. There will then be nine remaining slots in which to

schedule an additional computation. Finally, after scheduling the next computation, there

will be six remaining slots in which to schedule an additional computation. Therefore, there

are
(

12
3

)(

9
3

)(

6
3

)(

3
3

)

= 369, 600 legal schedules, which is still a rather large number considering

the size of this small example.

While finding the set of legal schedules is straightforward, finding the best-performing subset

of schedules can be difficult. For a given target processor (i.e., the processor for which the

compiler generates code), some of the legal schedules are much better than others. The

numbers next to each edge in the dependence graph in part (c) correspond to the latency

of the associated dependence. The latency is the amount of time, measured in the number

of processor clock cycles, until an instruction’s result is ready to pass along to dependent

instructions.

For simplicity I have assigned a two cycle latency to all the instructions in the graph. Mod-

ern processors are pipelined, which, as the name implies, means they can execute multiple

instructions simultaneously. A pipelined processor is split up into a number of disparate

stages, each of which performs a small part of the overall computation of an instruction [81].

A hypothetical target processor with five stages, for example, can execute up to five instruc-

tions simultaneously. However, each of the concurrently executing instructions will be in

35

(a)

(b)

1 2 3 4 5 76 8 9 10 11 12

20 total cycles

2 cycle latency

1 74 10 2 85 11 3 96 12

12 total cycles

Figure 2-5: The effectiveness of two different instruction schedules.

different phases of the execution. An excellent real-world analogy is a manufacturing as-

sembly line.

Figure 2-5 shows the effectiveness of two different instruction schedules for the code in

Figure 2-4(b). The figure assumes execution occurs on an abstract, pipelined processor.4

The processor will execute the instructions in the order in which they are scheduled,5 and

it will stall an instruction’s execution until its operands are ready. A stall in this context

represents an idle processor cycle.

The instruction schedule shown in Figure 2-5(a) often stalls the processor (stalls are rep-

resented as gray circles). For example, instruction (1) takes two cycles to execute, and

therefore instruction (2), which is dependent on instruction (1), cannot begin executing

until the third clock cycle. The schedule in part (a) takes 20 total cycles to compute the

short vector addition. In contrast, the schedule, shown in part (b) only takes twelve total

cycles, and it completely eliminates processor stalls. Table 2.2 shows the distribution of

the effectiveness of all the valid schedules for the example dependence graph. Even for this

simple example, over 80% of the possible, legal schedules are suboptimal.

4The figure also assumes that the processor does not include bypassing support.
5This assumption is not entirely correct for modern-day architectures which can execute several instruc-

tions in parallel and possibly out of order. Nevertheless, instruction scheduling can still drastically affect
the performance of such machines.

36

Cycles Number of solutions

12 75,488
13 125,096
14 100,504
15 48,608
16 16,360
17 2,720
18 800
19 0
20 24

total 379,600

Table 2.2: Distribution of valid schedules for the example dependence graph. Each row
shows the number of valid schedules that lead to the associated schedule length. Even for
this simple

Garey and Johnson proved that instruction scheduling is NP-complete for resource-cons-

trained processors (which describes any implementable processor) [35]. While NP-complete-

ness makes it infeasible for the compiler to optimally arrange instructions, the next section

shows how heuristic solutions can create good schedules; this is the task of an instruction

scheduler.

2.2.2 Heuristic Solution for Instruction Scheduling

Given enough time, compilers can find optimal solutions to many difficult compilation prob-

lems. While some users might be willing to exchange long compilation times for higher-

quality code generation, most users prefer a balance between the effectiveness and the

efficiency of their compiler. This tradeoff is especially important in just-in-time (JIT) com-

pilation where compilation occurs every time a user runs an application (Chapter 7 describes

JIT compilation). Heuristic techniques can often quickly find good approximate solutions

to NP-hard problems. This section describes list scheduling, which is a heuristic solution for

scheduling a list of instructions [4, 75]. List scheduling is a greedy, priority-based algorithm

that schedules a sequential list of instructions (e.g., the instructions within a basic block).

List scheduling iterates N times, where N is the number of instructions to be scheduled. On

each iteration the algorithm schedules one instruction from the set of instructions that can

be legally scheduled, also called the ready worklist. For the example in Figure 2-4, on the

first iteration, the ready worklist consists of {(1),(4),(7),(10)} (because these instructions

37

are not dependent on any instructions that have not already been scheduled). Instructions

are removed from the worklist when they are scheduled, and new instructions are added to

the worklist when all of their dependencies have been satisfied.

Even randomly choosing instructions from the ready worklist will generate a legal schedule.

However, generating correct code is only a part of the scheduling problem: a scheduler

should also generate efficient instruction schedules. For list scheduling, the manner in

which instructions are scheduled from the ready worklist is crucial. On each iteration the

algorithm assigns a weight, or priority to each instruction in the ready worklist. Once the

relative priority of each ready instruction has been computed, the algorithm chooses the

instruction with the highest priority and schedules it next. For list scheduling, the function

that computes instruction priorities is extremely important for performance, but again note

that the priority function cannot affect the correctness of the generated code.

A popular heuristic assigns priorities using latency-weighted depths [37]:

P (i) =

{

latency(i) : if i is independent.

max

j depends on i
latency(i) + P (j) : otherwise.

The priority of instruction i therefore depends on its depth in the dependence graph, taking

into account the latency of instructions on all paths to the leaf nodes. For the simple,

in-order, pipelined machine described above, the best schedule for the example code in

Figure 2-4 is obtained by scheduling instructions with the greatest latency-weighted depths

first. This heuristic schedules (1),(4),(7), and (10) first because they all have a dependence

of height of 4. After (1),(4),(7), and (10) have been scheduled, (2),(5),(8), and (11) are

the instructions with the highest priority values, and therefore, the heuristic schedules

these instructions next. Continuing in this fashion, the heuristic creates the (non-uniquely)

optimal schedule shown in Figure 2-5(b).

It is important to note however, that the critical path heuristic does not always generate

optimal schedules. A scheduling heuristic for modern processors must consider many factors.

Production compilers use sophisticated priority functions that account for many competing

factors such as instruction occupancy in the pipeline, and how a given schedule may affect

downstream compiler passes. As we will see in later chapters, machine learning techniques

38

can effectively juggle many factors that may be important for a given optimization.

We can use machine learning to automatically create priority functions of the sort described

here. Priority functions can more generally be described as policies. The next chapter

describes, at a high level, how we can apply meta optimization techniques to learn compiler

policies.

39

40

Chapter 3

Meta Optimization

Abstractly, I automatically create powerful compiler heuristics using machine learning tech-

niques. The purpose of this chapter is to briefly describe the approach that is common to

all the experiments performed in this thesis. The reader could benefit greatly by keeping

this chapter’s content in mind when reading the next chapter, which describes the machine

learning techniques that this thesis considers.

There are four main points that I convey in this chapter. First, I focus my efforts on

the portions of compiler algorithms that are most amenable to machine learning. Second,

my goal is to automatically “learn” critical pieces of the compiler’s code generator, which

indirectly will improve the code that the compiler generates. Third, I describe how empirical

observations drive the machine learning process, and finally, I mention how compiler writers

can use my approach to create specialized and general-purpose compiler heuristics alike.

3.1 Insight: Correctness v. Policy

A key insight that enables the research that I present in this thesis is that compiler writers

tend to separate heuristics into two disparate phases: one that ensures correctness, and one

that focuses on performance. I call the phase of a compiler heuristic that concerns itself

with performance, the policy of the heuristic. The work I present in this thesis focuses on

learning effective policies.

41

Figure 3-1: An abstract depiction of a heuristic’s task. The large, light gray circle represents
the space of all possible solutions to a compiler problem. The heuristic first finds a subset of
solutions, represented by the dark gray circle, that will generate legal code. The heuristic’s
policy then chooses a single solution, denoted by the small white circle, from this subset.

Figure 3-1 abstractly shows the operation of a compiler heuristic. The light gray circle in

the figure represents the space of all possible solutions for a compiler problem; this space

is potentially extremely large. The correctness phase identifies a subset of the solutions

— represented by the dark gray circle — that will generate legal code. For most compiler

problems, it is relatively easy to identify legal solutions. The goal of the policy is more

difficult: choose the best (or close to the best) solution from the legal subset of solutions,

which I denote by the small white circle in the figure.

As a concrete example, consider the priority-based list scheduling heuristic we discussed at

the end of the last chapter. The heuristic first identifies, using a dependence graph, the set

of instructions that can legally be scheduled in the next slot. The policy for the heuristic

is a priority function which has the task of choosing a single instruction from the set to

schedule next. The policy for list scheduling completely dictates the effectiveness of the

optimization; and as we saw, some policies are much better than others.

The correctness phase is an absolutely critical component of the heuristic, but in most cases

it is relatively easy for humans to reason about and design. The constraints that enforce

the legality of a transformation are clearly known in most cases, and when they are not, the

compiler writer can always make conservative assumptions. The policy, on the other hand,

42

is difficult to design because the factors that may affect performance are not well known,

and can be too complex for humans to fully grasp.

Policies have two main qualities that make them ideal targets for machine learning tech-

niques: first, policies have a large affect on attainable performance, and second, any policy

that a machine learning algorithm constructs will generate correct code. The latter quality

is extremely important from the user’s perspective: users trust, above all else, that the

compiler will generate code that correctly represents their input programs.

Users and compiler writers alike benefit from my approach. Using my techniques, compiler

writers need only design the correctness enforcing component of a compiler algorithm. Al-

though the policy component is a small portion of a compiler heuristic, from a performance

perspective, it is extremely important that the policy is well-tuned. For instance, Chapter 5

describes an experiment where I use machine learning to modify a single priority function

in a compiler that is composed of 750,000 lines of C code. On a suite of multimedia and

integer applications, the machine-learned priority function attains large speedups (∼ 1.2x)

over its human-crafted counterpart.

3.2 Meta Optimization : Learning Effective

Compiler Heuristics

Broadly speaking, there are two main approaches for applying searching and machine learn-

ing techniques to compilation: objective search and meta optimization. I refer to any

approach that embeds a searching algorithm in compilation policies as objective search

(e.g., [70], [12]). This approach is used to specialize an application by searching for good

solutions at compile time. In contrast my approach, meta optimization, improves the com-

piler policies themselves, which will indirectly improve the performance of applications that

they optimize. The next two subsections clarify the difference between the two approaches.

43

3.2.1 Objective Search

Every time a user invokes the compiler, objective search looks for good solutions that are

specific to the code that is being compiled. A human-crafted objective function steers the

search process. For the list scheduling problem that the last chapter introduced, one could

imagine using an objective function to estimate the cost of a given instruction schedule.1 A

search algorithm that is embedded in the list scheduler could iteratively adjust the priorities

of the instructions, looking for schedules with a lower cost than the best-so-far schedule.

Chapter 8, which covers related work, discusses an approach to list scheduling that does

exactly this. Field programmable gate array (FPGA) compilers also use objective search

to find good placements of hardware components. These compilers estimate the cost of a

given placement of hardware components, and use search techniques to find progressively

better layouts.

Note that objective search does not alter compiler heuristics in any way; the heuristics,

including the objective functions, are fixed. Instead, objective search iteratively perturbs

and tests the code that the compiler generates. While objective search can be quite effective,

its success hinges on the quality of the objective function. Remember that today’s complex

systems are difficult to model. Thus, it is unlikely that a human-constructed objective

function can accurately describe the costs and benefits of a given solution.

3.2.2 Meta Optimization

This thesis presents an orthogonal approach, called meta optimization, that

searches for effective compiler policies offline. For instance, we can use meta op-

timization to find effective priority functions. One could even use meta optimization to

improve the quality of the objective function used in objective search.

The machine-learned policy, which for now can be thought of as a black box, has the same

input and output as a human-generated policy. For instance, consider learning a policy for

assigning the priorities of instructions for list scheduling. The policy in this case is a function

1One could even create an objective function that simulates the execution of a given instruction schedule
and returns the number of cycles needed to run to completion.

44

that takes as input a vector of characteristics that abstractly describes an instruction, and

returns a real number that represents the instruction’s priority:

pi ← f(~xi)

Here ~xi is a vector of characteristics that describes instruction i. Ideally, these characteristics

should be useful for determining relative instruction priorities. For example, the dependence

height of instruction i and the number of instructions that depend on it are two potentially

discriminating characteristics. The value pi in this case, is the priority value that the list

scheduling algorithm would use to schedule instructions. The goal of meta optimization

then reduces to finding a function, f , that generates effective code sequences.

One important difference between objective search and meta optimization pertains to when

the searching is performed. Objective search is performed every time a user invokes the

compiler, and thus it can incur significant compile-time overheads. Meta optimization on

the other hand, incurs little or no compile-time overhead. Meta optimization subjects

a compiler to a training phase, during which time the meta optimizer finds an effective

policy. After the training phase is completed however, the compiler heuristic directly uses

that policy to make its compilation decisions. Thus, the compiler policy could be trained

“at the factory”, and the learned heuristic could be shipped with the compiler.

3.3 Using Empirical Observations

The approach I take to meta optimization is evidence-based. I use actual observed metrics

to drive the machine learning process. What then are the metrics by which we can judge the

quality of a compiler policy? Because my goal is to create compiler policies that maximize

end-to-end performance, the only metric I consider in this thesis is the actual runtime of

the code a policy generates.

Alternatively, we could search for policies that generate the shortest, most succinct code

sequences. Such an approach might be beneficial for compiling to embedded devices which

are memory-limited. However, consider an optimization such as loop unrolling that increases

45

the footprint of the generated code, yet also can yield large performance improvements. We

could also consider minimizing cache misses, or the number of loads from memory. Such

metrics would perform poorly for the many methods that infrequently touch memory.

Because compilers and architectures are multi-faceted systems, we should not base opti-

mization decisions on indirect performance criteria. The only way to know the full impact

of a policy is to time its end-to-end performance. Other metrics may correlate with run-

time performance, but they are generally inadequate predictors of performance. Of course,

meta optimization is a general approach, and depending on the goals of the compiler, one

may wish to use other metrics to guide the learning process. The next section abstractly

discusses four different methodologies for training compiler policies.

3.4 Training Compiler Policies

Many people view a compiler as a tool that can effectively compile a diverse set of input

programs. The compiler will ideally generate high-quality code for applications ranging

from multimedia applications and integer codes to computationally intensive scientific ap-

plications. In addition, users expect the compiler-generated executables to perform well

on a wide range of program inputs (e.g., users expect their mp3 players to work well for a

diverse collection of music).

We can use meta optimization techniques to train a compiler policy to perform well on a

broad spectrum of applications. Later chapters will expound upon the notion of a training

set of data, but for now it will suffice to mention that the machine learning algorithms create

heuristics that are catered to this data. In other words, we can include in the training set,

data from applications on which we want a learned compiler policy to excel. If the training

set includes abundant data from a diverse set of applications, the learned policy will be

general-purpose.

Later chapters use an approach that I call Multiple Applications Single Input (MASI) to

train general-purpose compiler policies. The MASI approach, as shown in Figure 3-2(b)

trains a policy using data drawn from multiple applications, each of which runs a single

input. This thesis does not consider the Multiple Applications Multiple Inputs (MAMI)

46

mp3 N

mp3dec
source

mp3dec
application

quicksort
source

quicksort
application

compiler

List N
List B
List A

mp3 B
mp3 A

…

…

(a) Multiple Applications Multiple Inputs
(MAMI).

mp3dec
source

mp3dec
application

quicksort
source

quicksort
application

compiler

List Amp3 A

…

…

(b) Multiple Applications Single Input
(MASI).

mp3dec
source

mp3dec
application

compiler

mp3 N
mp3 B

mp3 A

(c) Single Application Multiple Inputs
(SAMI).

mp3dec
source

mp3dec
application

compiler

mp3 A

(d) Single Application Single Input (SASI).

Figure 3-2: The various ways in which to train a compiler policy. The MAMI and MASI
approaches shown in (a) and (b) train a general-purpose policy that will perform well across
a suite of applications. The SAMI and SASI approaches specialize compiler policies for a
single application.

approach shown in part (a), which uses data drawn from multiple applications, each of

which runs multiple inputs, to induce policies. The MAMI approach would increase training

time, but would likely lead to more robust solutions.

Of course, we can also use meta optimization to specialize the compiler for a single appli-

cation. In this case, the training data set is comprised of data that comes from a single

application. This thesis experiments with a Single Application Single Input (SASI) training

model, which caters the compiler to a particular application that runs a fixed input (e.g.,

an mp3 player that plays a single mp3). This mode of operation, which is shown in Fig-

ure 3-2(d) is beneficial for embedded systems developers who target platforms with tight

resource constraints. Though the compiler policy is trained using a single input, I empir-

ically show that the learned policy performs well when other inputs are applied. A Single

Application Multiple Inputs (SAMI) approach as part (c) shows would likely improve the

47

Mnemonic Description

MAMI Meta optimization extracts training data by first instrument-
ing multiple applications, and running multiple input data
sets on the resulting executables.

MASI Meta optimization extracts training data by first instrument-
ing multiple applications, and running each executable on a
single input data set. This dissertation uses MASI to create
general-purpose compiler policies.

SAMI Meta optimization extracts training data by first instrument-
ing a single application, and running the resulting executable
on multiple input data sets.

SASI Meta optimization extracts training data by first instrument-
ing a single application, and running the resulting executable
on a single input data set. This dissertation uses SASI to
create application-specific compiler policies.

Table 3.1: The various approaches to training compiler policies.

performance of the resulting application on novel inputs, but this thesis does not consider

such experiments.

The reader who is familiar with compiler technology may notice similarities between SASI

and SAMI approaches and standard feedback-directed optimizations (FDO). FDO is an

orthogonal approach that first compiles an application with instrumentation that is designed

to log details of the application’s execution. By running the instrumented executable on

a training input data set (or sets), FDO profiles the application by noting various vital

characteristics of the execution (e.g., which methods were hottest, which paths of control

flow were most active, etc.). The application is then recompiled and the compiler uses the

profile log to specialize code generation. The goals of FDO and meta optimization are much

different: FDO collects a large amount of data that fixed compiler policies use to specialize

optimization for an application, and meta optimization uses data to create compiler policies.

Table 3.1 summarizes the various ways in which we can train compiler policies.

The next chapter introduces the machine learning concepts that are necessary to understand

the remainder of the thesis.

48

Chapter 4

Searching and Pattern Recognition

This chapter introduces the machine learning concepts and techniques that are used through-

out this thesis. Later chapters will bolster the ideas presented here. I begin by describing

various techniques for searching through large problem spaces. Section 4.2 then introduces

supervised learning, which seeks to create predictive models given large amounts of data.

Finally, this chapter ends with a description of policy search, an approach that directly finds

effective policies. I use both supervised learning and policy search for meta optimization.

The reader who is already familiar with machine learning can safely skip this chapter.

4.1 Searching

The freely available compiler gcc has over 25 command-line options that dictate how the

compiler should optimize a given input program. The resulting performance of an appli-

cation critically depends on the settings to these command-line options. One could use

searching techniques to find effective settings to these options. Searching is the process of

looking through a problem space (e.g., the set of all possible optimization command-line

settings) with the goal of returning a good solution to the problem (e.g., a good setting to

the options for a given input program). The first technique we discuss, exhaustive search,

will return the optimal solution to the problem. However, because exhaustive search is of-

ten extremely inefficient, researchers have devised techniques that find good solutions with

49

75

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

Unroll Factor

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Figure 4-1: Performance of a matrix multiply kernel with respect to the loop unrolling
factor. There is a wide variance in performance across the unroll factors from one to 128.
Performance plateaus when the loop is fully unrolled. Note the abundance of local minima.
This chart was gathered using the Open Research Compiler (version 2.1) at optimization
level -O3 on an Itanium 2 r© processor.

much less computational effort. This section discusses two such techniques, both of which

are inspired by processes in the natural world.

4.1.1 Exhaustive Search

As the name, “exhaustive search” suggests, this conceptually simple class of algorithms

iteratively, and exhaustively combs the search space. Consider loop unrolling, which is a

highly effective and almost universally implemented optimization. Loop unrolling exposes

additional instruction level parallelism (ILP) to the compiler by replicating the loop body

N − 1 times, where N is called the unroll factor. Chapter 6 discusses loop unrolling in

detail, but for now it should suffice to mention that the variance in performance across the

range of unroll factors can be quite large for loop-intensive applications.

It is feasible to exhaustively search for the unroll factor that maximizes the performance

50

of a given application.1 Figure 4-1 graphs the resulting runtime of the SPEC 1992 [89]

matrix multiply benchmark for the unroll factors from one to 128. Despite the presence of

multiple local minima, exhaustive search easily isolates the best unroll factor for this small

benchmark (75). However, when combined with other loop optimizations that interact

with the loop unroller — such as loop tiling, array padding, software pipelining, and data

prefetching — the space of parameter settings quickly explodes. For instance, consider

searching over the possible parameter settings for the following trio of optimizations: loop

unrolling (U ∈ 1...128), loop tiling (T ∈ 1...100), and array padding (P ∈ 1..10). It would

take a considerable amount of time to evaluate all 128,000 combinations.

Exhaustive search has the advantage that it does not get trapped in local minima. However,

exhaustive search is generally not an option for searching through the vast space of compiler

solutions — it is too inefficient.

4.1.2 Genetic Algorithms

Genetic algorithms (GAs) — which are instances of so-called evolutionary algorithms — are

loosely based on Darwinian evolution [43, 8, 33]. GAs seek to improve searching efficiency

by maintaining and propagating good local decisions; they are iterative search algorithms,

and keeping with the analogy to evolution, each iteration is referred to as a generation.

The algorithm maintains a population of individuals. Each individual is represented by

a string of bits or characters, which encodes the actions that an individual will perform.

The algorithm assigns each individual a score, or fitness, that is commensurate with how

beneficial the individual’s actions are.

In most implementations of GAs, the individuals with the highest fitness scores are most

likely to survive and make it to the next generation. In other words, the algorithm weeds

unfit individuals from the population at the end of each generation. Akin to sexual repro-

duction, the GA creates a new individual by splicing together substrings from two — usually

highly-fit — individuals. GA proponents maintain that this act, referred to as crossover,

preserves and combines good local solutions to a problem. The algorithm randomly mutates

1While unroll factors can technically span the range of nonnegative integers, issues such as instruction
caching and register pressure practically limit the range.

51

Initialize population

Evaluate fitness for
each individual

Destroy least fit
individuals

Use crossover and
mutation to create

new individuals

Continue?

done

No

Yes

(a) General flow.

TFTFTTFFFTTF

FTTTTTFTFTTF

TFTFTTFFTFFF

New individual

Splice point

Parent individuals

(b) Example representation.

Figure 4-2: Genetic algorithm flow and representation. Part (a) shows the general flow
of genetic algorithms, and part (b) shows an example representation for a GA individual.
Each of the three individuals shown in (b) is composed of a character string, which can for
example represents possible compiler command line settings. The algorithm splices together
the representations of two individuals to create a new individual as shown in (b).

individuals in the population — typically with low probability — to help escape from local

minima.

Figure 4-2(a) diagrams the general flow of genetic algorithms. GAs begin by creating an

initial population of randomly created individuals. The algorithm then determines the

fitness level for each individual in the population. The function that evaluates an individ-

ual’s fitness determines which properties to favor; GAs sort the individuals in a population

according to fitness and then they destroy a (usually fixed) percentage of the least fit individ-

uals. To replenish the population for the next generation, a GA will create new individuals

by crossing over the representations of randomly chosen pairs of individuals as shown in

Figure 4-2(b).

For example, ACOVEA is a fairly popular software package that uses GAs to tune compiler

command-line settings to optimize the performance for a given application [59]. For this ap-

plication, the Boolean characters that comprise the individuals in Figure 4-2(b) determine

52

which optimizations to enable. For instance, the first character of an individual’s represen-

tation might determine whether to instruct the compiler to unroll loops. ACOVEA, like

the experiments I perform in this thesis, is driven by empirical tests; for each individual

in the population, the package compiles the input application according to the individual’s

representation. The package then runs the resulting binaries to determine which individuals

are fittest (the faster the binary, the fitter the individual).

4.1.3 Hill Climbing and Simulated Annealing

Although I do not use hill climbing or simulated annealing in any of the experiments per-

formed in this thesis, I describe them because of their widespread usage in compiler resource

assignment problems [16]. Unlike genetic algorithms, hill climbing maintains a single solu-

tion, S. Here S can be any sort of representation, including a vector of coefficients, or a

string of characters as with genetic algorithms [33]. On each iteration, hill climbing perturbs

the current best solution, S, to create a modified solution, S ′. If S′ is a better solution than

S — according to the objective function — then S ′ becomes the current best solution. The

algorithm repeats this process until a user-defined stopping criterion is reached.

Figure 4-3 shows the potential pitfalls of hill climbing. The figure shows a randomly created

2-dimensional solution space. The contour shows the cost of being in any particular state,

and the goal is to find the state with the lowest overall energy.2 There are three local

minima in the graph. If the hill climbing algorithm starts in the state labeled ‘start’, then

as the black dotted line shows, hill climbing will stop at the local minimum labeled ‘HC’.

Even worse, if the algorithm were to start in any completely flat region of the contour, it

would make no progress.

Beam search is a modification to hill climbing that increases the likelihood of finding the

global minimum. Beam search, like a GA, maintains a set of solutions [33]. The search

technique then proceeds by iteratively modifying and testing each solution. The most

promising solutions are retained, and these comprise the “beam”. Another widely used

technique to avoid getting trapped in local minima involves random restarts. In Figure 4-

3, for example, if we were to restart the algorithm in multiple random initial states, the

2I use the generic term ‘energy’ to specify any quantity worth minimizing (or maximizing).

53

0
10

20
30

40
50

60

0

20

40

60
−10

−8

−6

−4

−2

0

2

4

6

8

start
HC

SA

5 10 15 20 25 30 35 40 45 50 55 60

5

10

15

20

25

30

35

40

45

50

55

60

start

SA

HC

Figure 4-3: A graphical depiction of hill climbing and simulated annealing. The contour
plot shows an illustrative search space in which there are three local minima. The black,
dotted path, which begins at ‘start’ and ends at ‘HC’ corresponds to the exploration of the
hill climbing algorithm. The red path, which corresponds to a run of simulated annealing
algorithm, also begins at ‘start’ and explores a local minimum before eventually terminating
at the true global minimum. To improve visualization, I omit many intermediate steps of
the simulated annealing algorithm.

likelihood of finding the global minimum would increase.

Simulated annealing (SA) is a widely used algorithm that is similar to hill climbing yet

not as prone to stopping in local minima [33]. As such it has become an effective tool for

solving layout problems [16]. Simulated annealing is a searching technique that is inspired

by the metallurgical annealing process. Just as with hill climbing, SA maintains a single

current solution S, and furthermore, any perturbed state S ′ that results in a lower energy

54

configuration will supplant S as the current best solution. However, a simulated annealing

algorithm will probabilistically move to states of higher energy than the current best state.

More specifically, it will move to a worse state according to the following probability:

Pmove = e
−∆E

T

where ∆E is the difference in energy between the current state and the potential successor

state of higher energy, and T — often referred to as the temperature — is a parameter that

decreases over time according to a user-defined schedule. At the beginning of the algorithm’s

execution, high values of T will encourage exploration. The effect of decreasing T over time

is that the algorithm will eventually converge to some minimum. Figure 4-3 shows the

path of exploration in this search space for SA. The SA exploration path, which follows the

red line, also starts at the location ‘start’. The algorithm explores a local minimum but

eventually escapes and finds the true global minimum (labeled ‘SA’).

4.2 Supervised Learning

This section transitions from searching to pattern recognition. Supervised learning is an

approach to pattern recognition that operates on a database of examples [33, 84]. As

the name suggests, supervised learning requires a “supervisor” to correctly construct the

database. This section discusses regression and classification, both of which can be framed

as supervised learning techniques. I also describe tradeoffs that a designer must balance

between model complexity and generalization performance.

4.2.1 Regression

I introduce supervised learning by describing regression. Not only is regression probably

more familiar to the reader, but it is also a form of supervised learning. Regression attempts

to fit a function to a series of data. Assume we are presented with the following data:3

3Matlab generated the following data according to the function, y = 1 + 2.5x2 + ε, where ε represents a
Gaussian noise component of 0.25N(0, 1).

55

x -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

y 3.66 2.16 2.07 1.60 1.26 1.33 1.18 1.23 1.86 1.99 3.62

Adhering to supervised learning nomenclature, we will refer to this data set as our training

set, and we will call each of the eleven points that comprise the training set, training

examples. Each training example 〈xi, yi〉 is composed of a feature xi and a corresponding

label yi.

Our goal in this case is simple: find the function that minimizes the sum of squared error

for the examples in our training set. As mentioned above, we know that the data for this

example is roughly quadratic, so we will search for a solution to y = b+mx2. Linear algebra

provides an elegant solution for approximating this simple function:





b

m



 = (ATA)−1AT y, where A =





























































1 −1.02

1 −0.82

1 −0.62

1 −0.42

1 −0.22

1 0.02

1 0.22

1 0.42

1 0.62

1 0.82

1 1.02





























































, and y =





























































3.66

2.16

2.07

1.60

1.26

1.33

1.18

1.23

1.86

1.99

3.62





























































The calculation yields b = 1.09, and m = 2.27. Using these parameters we attain an error

of:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A





1.09

2.27



− y

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= 0.88.

These coefficients b and m define our model. For instance, if we were presented with a new

data point xq, we could predict yq using the equation yq = 1.09 + 2.27xq
2. Figure 4-4 plots

the training data alongside the values predicted by this model.

56

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

x

y

Figure 4-4: Regression example. The gray circles correspond to the training set of examples,
and the solid line represents the values predicted by the learned model.

For the above example, we sought a function, yi ← f(xi), where xi and yi are real-valued

scalars. It is not difficult to extend the function so that it considers a vector of inputs,

yi ← f(~xi). The machine learning community refers to the inputs, ~x, as a feature vector.

We can create arbitrarily complex feature vectors to construct more sophisticated models.

For example, we can create a 2nd-order polynomial model by creating a feature vector of

the form ~zi =
[

1 xi x2
i

]

. The matrix A then becomes:

A =

















~z0

~z1
...

~zN

















,

where N is the number of examples in the training set. Again, (ATA)−1AT y provides the

best least-squares linear fit for the examples in the training set. Notice that the feature

vector can contain elements that are non-linear in the original feature space. In general,

it is possible to arbitrarily transform the original feature space into a higher-dimensional

57

Model Training Error Validation Error

y = b+mx 2.79 2.51
y = b+mx2 0.88 0.50
y = b+mx2 + nx 0.82 0.65
y = b+mx9 + nx8 + . . .+ vx2 + wx 0.04 1.50

Table 4.1: Choosing an appropriate model.

feature space,
[

φ(xi) ϕ(xi) . . . ψ(xi)
]

, where φ, ϕ, and ψ are called basis functions.

For instance, in some cases it may be sensible to use a log transform to squash the inputs.

In this case we knew to learn a quadratic model (because I generated the data according

to a quadratic model). In general however, one does not know the distribution from which

the training data comes. Choosing an appropriate model is a balancing act. Table 4.1

shows the ramifications of increasing model complexity. The models in the table range

from a line to a 9th-order polynomial. Notice how the error on our training set decreases as

we increase model complexity. Intuitively this makes sense: the more complex models have

more flexibility to fit the data in the training set. However, the use of unnecessarily complex

models is not advised. To explain why, let me introduce the concept of a validation set. A

validation set is a collection of examples that was not used to train the model; testing the

performance of the model on the validation set allows us to estimate its general predictive

accuracy. The following data is drawn from the same distribution as the examples in the

training set:

x -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

y 3.05 2.08 1.46 0.95 1.01 1.12 1.14 1.50 2.22 2.98

The third column of table 4.1 shows the sum of squared error for each of the models on

this set of data. Notice how the quadratic model has the lowest error on the validation set.

The linear model is too simple to express the desired function well, and the higher-order

polynomial models are too flexible and overfit the data. Figure 4-5 graphically depicts

overfitting for the example. The gray circles in the figure are the training examples. The

9th-order polynomial latches on to these data, leading to a low error on the training set.

The added complexity allows the model to fit the added noise component, which hurts the

model’s accuracy on the validation set (represented by the red squares). In contrast, the

58

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

x

y

2nd order
9th order

Figure 4-5: Model complexity and overfitting. The gray circles represent the training
examples, and the red squares represent the validation set of examples. The 9th-order
polynomial overfits the training data, leading to a poor validation error.

quadratic model performs slightly better on the validation set than it does on the training

set. Validation, which I formalize in Section 4.2.3 refers to the use of a validation set to

gauge the generality of a learned model.

4.2.2 Classification

Supervised classification is similar to regression. Classification also uses a set of training

examples. Again, each training example 〈~xi, yi〉 is composed of a feature vector ~xi and a

corresponding label yi. For classification however, yi ∈ 0, 1, . . . ,M . In other words, each

example is categorized into one of M classes. This section describes binary classification,

where yi ∈ {0, 1}.

The feature vector contains measurable characteristics of the object under consideration.

The label indicates how the object should be classified. Training a classifier often involves

finding a function, y ← f(~x), that maps from feature vectors to labels so that the overall

59

3 3.5 4 4.5 5 5.5 6 6.5 7

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Petal Length

P
et

al
 W

id
th

Versicolor
Virginica
Novel query

Figure 4-6: Binary classification of irises with nearest neighbor.

classification error is minimized on the training set. For classification, the machine learning

community uses a different definition of error than that which one would apply for regression.

An example is either classified correctly or incorrectly. Therefore, the error for example i

is,

E(i) =







1 : if f(~xi) 6= yi

0 : otherwise.

and the error on a set of N examples becomes,

error =
1

N

N
∑

i=1

E(i) (4.1)

To clarify the supervised learning approach with an example, consider the data in Figure 4-

6. These data correspond to irises of two different types: Iris versicolor, and Iris verginica,

which I represent as orange squares and gray circles respectively in the figure.4 Based on

two features of a flower — the width and the length of the flower’s petals — it is fairly easy

for a human to correctly discriminate irises of these different types.

4This data is part of the University of California Irvine Machine Learning Repository [76].

60

How can we train a machine learning algorithm so that it can correctly discriminate between

objects of different types? One possible approach uses the simple and intuitive nearest

neighbor algorithm, which is represented as a database of N training examples, {〈~xi, yi〉 |
1 ≤ i ≤ N}. Nearest neighbor computes a label for a novel example (i.e., an example that

is not in the training set) by inspecting the label of the nearest example in the database.

One could use many different metrics to measure the distance between two examples, but

a common approach uses Euclidean distance in the feature space.

Thus, the mapping f from feature vectors to labels using Euclidean distance is defined as,

f(~xq) ≡ yi∗ | i∗ = argmin
1≤i≤N

{||~xi − ~xq||2},

where xq is a novel example.

The asterisk in Figure 4-6 shows a query for a novel example. The arrow in the figure points

to the training example that is nearest to the query example using Euclidean distance.

The nearest neighbor algorithm would therefore predict that the novel example is an Iris

versicolor, because this is the label of the closest training example.

Nearest neighbor, of course, is only one of many supervised learning algorithms devised

by the machine learning community. The next section discusses techniques to gauge the

performance of a supervised learning algorithm.

4.2.3 Validation for Supervised Learning

The simplest approach, which I mentioned in Section 4.2.1 is called validation. It randomly

splits the full set of labeled training examplesD into two disjoint sets: a training setDT that

is used to train the classifier, and another set DV that is used test the prediction accuracy

of the classifier [33, 84]. In other words, the classifier uses DT to train a model f , and the

prediction error of the classifier is obtained by applying Equation 4.1 to the examples in

DV . Because the examples in the validation set are novel to the classifier, the prediction

error of the classifier over all the examples in the validation set provides an estimate of the

generalization error [33]; in other words, validation gives us an idea how well a classifier will

61

perform in the real world where it will likely encounter unfamiliar cases.

While the results of this simple approach to validation are informative, leave-one-out cross-

validation (LOOCV) likely yields more accurate generalization estimates [33]. LOOCV is

an iterative process that iterates N times, where N is the size of the training dataset (|D|).
On each iteration i, the technique removes the ith example from D, trains the classifier

using the remaining N − 1 examples, and then determines how well the resulting classifier

categorizes the left-out example. The predicted generalization accuracy becomes the number

of correctly classified left-out examples divided by the total size of the training set, N .

While LOOCV is more robust than simple validation, it is also much more computationally

demanding, and thus, LOOCV is not always a feasible approach. For instance, the pol-

icy search experiments that I present in Chapter 5 require much simulation time, making

LOOCV an unappealing option because it would effectively increase simulation time by a

factor of N .

Just as with the regression example I presented in Section 4.2.1, overly complex models

tend to overfit the data in the training set. Thus a classification algorithm may choose to

sacrifice prediction accuracy on the training set for improved accuracy on novel examples.

Different learning algorithms use different mechanisms to manage complexity, but the main

approach remains the same: bias a learning algorithm toward simpler models. Genetic

programming, which I describe in Chapter 5, uses parsimony to favor shorter expressions.

The support vector machine classifier that I describe in a later chapter uses regularization

to limit complexity. Validation and LOOCV help a designer adjust the model parameters

to avoid overfitting.

4.3 Reinforcement Learning

In reinforcement learning, an agent learns how to adapt to its environment through trial-

and-error experimentation [9, 33, 84]. The agent periodically receives a reinforcement signal

that indicates how beneficial its past decisions were. The reinforcement signal is often de-

layed, which means the agent may make several decisions before it learns how efficacious

those decisions were. The goal of the reinforcement learning agent is to use intermittent re-

62

inforcement signals to learn the circumstances under which particular actions are desirable.

In some ways, reinforcement learning is more familiar than the other techniques because

many problems humans approach fit nicely into this paradigm. As a concrete, real-life

example, consider the process of brewing beer. The total brewing process takes several

weeks to complete, and at various points during the process the brewer can adjust the

flavor, aroma, and mouthfeel by taking certain actions (e.g., adding ingredients, reducing

the temperature of the fermentation vessel, adding carbonation). Unfortunately, however,

creating the perfect batch of beer is a trial-and-error process, and the brewer cannot really

tell if the beer is going to be tasty or subpar for weeks.

To formalize the reinforcement learning approach, at any given time t, the agent (e.g., the

brewer) receives some indication about the current state of the environment, ~st (e.g., the

current state of the beer). Based on ~st the agent will perform an action, at (e.g., adding

an ingredient). The environment responds to the action by transitioning to state ~st+1, and

additionally, the system may provide a reinforcement signal, r(~st) (e.g., the taste of the

beer) that indicates how appropriate the agent’s decision was given the circumstances with

which it was faced.

There are two main approaches for solving reinforcement learning problems: the first strat-

egy attempts to determine the utility of being in a given state, while the second strategy

searches directly for policies that perform well in the agent’s environment [51]. Instances

of the latter strategy are policy search methods, which the experiments in the next chapter

employ. Policy search methods maintain and adjust an explicit representation of a policy,

continuing to tweak the policy as long as the agent’s performance improves [84]. The mech-

anism for adjusting an agent’s policy depends largely on how the policy is represented, and

therefore, I will wait until the next chapter — where I use policy search to find good priority

functions — to provide a concrete description of this operation.

63

64

Chapter 5

Policy Search for Meta

Optimization

This chapter shows that a machine learning approach known as policy search can automat-

ically create effective compiler policies. In particular, policy search is the best approach for

constructing priority functions, which are prevalent in optimizing compilers. The next sec-

tion defines priority function. Section 5.2 describes the specific policy search approach that

I use to perform the experiments in this chapter. I discuss my experimental methodology

in Section 5.3. Sections 5.4 and 5.5 provide two case studies and Section 5.7 concludes.

5.1 Priority Functions

Many compiler heuristics have a focal point: a single priority or cost function often dictates

the efficacy of a heuristic. A priority function — a function of the factors that affect a given

problem — measures the relative importance of the different options available to a compiler

algorithm.

Put simply, priority functions prioritize the options available to a compiler algorithm. Recall

the list scheduling example in Chapter 2, where a priority function assigns a weight to each

instruction in the scheduler’s dependence graph, dictating the order in which to schedule

65

instructions. The list scheduler proceeds by scheduling ready instructions in priority order.

In other words, if two instructions are ready to be scheduled, the algorithm will favor the

instruction with the higher priority. The scheduling algorithm hinges upon the priority

function. Apart from enforcing the legality of the schedule, the scheduler entirely relies on

the priority function to make all of its performance-critical decisions.

Mathematically, a priority (or cost) function is a function, y ← f(~x), where ~x is a vector of

features that might be useful for prioritizing options, and y ∈ R. For the experiments that

I perform in this chapter, ~x is a composition of real-valued and Boolean-valued features.

To give the reader a feel for the ubiquity of priority functions, the following list describes

some common priority-based heuristics:

• Hyperblock formation: Later in this chapter I use the formation of predicated

hyperblocks as a case study.

• Meld scheduling: Abraham et al. rely on a priority function to schedule across

region boundaries [1]. The priority function is used to sort regions by the order in

which they should be visited.

• Modulo scheduling: In [83], Rau states that “there is a limitless number of priority

functions” that can be devised for modulo scheduling. Rau describes the tradeoffs

involved when considering scheduling priorities.

• Register allocation: Many register allocation algorithms use priority functions to

determine which variables to spill if spilling is required. I use register allocation as a

case study in this chapter.

• Loop invariant code motion: Trimaran’s IMPACT compiler uses a cost function

to determine whether to hoist an invariant out of a loop [94]. Aggressively hoisting

invariants can negatively affect performance by causing extra register pressure.

• Clustered scheduling: Özer et al. describe an approach to scheduling for architec-

tures with clustered register files [78]. They note that the choice of priority function

has a “strong effect on the schedule.” They also investigate five different priority

functions [78].

66

• Resource allocation: Gordon et al. use a cost function to distribute computation

on a multicore architecture [39].

This is not an exhaustive list of applications, as many other important compiler optimiza-

tions employ cost functions of the sort mentioned above.

Compiler writers typically revert to tedious trial-and-error experimentation to find effective

priority functions. For instance, Bernstein et al. manually identified three priority func-

tions for a register allocation heuristic [12]. By applying the three functions to a suite of

benchmarks, they found that a register allocator’s effectiveness is highly dependent on the

priority function the compiler uses.

This chapter shows that a machine learning approach known as policy search can automati-

cally create effective priority functions for two important priority-based compiler heuristics:

hyperblock formation, and register allocation. The rational for tuning priority functions is

based on the insight that these small functions are crucial for performance. I experimentally

verify this assumption in this chapter.

Policy search can be used to cater a priority function to a specific input program by using

the SASI or SAMI training approaches. More importantly, the techniques can use a MASI

or MAMI training approach to find a general-purpose function that works well for a broad

range of applications. In this mode of operation, policy search can perform the tedious

work that is currently performed by engineers. For both of the case studies I describe in

this chapter, policy search was able to at least match the performance of human-generated

priority functions. In some cases it created superior priority functions.

The next section describes the representation and operation of the policy search method

that I use to perform the experiments presented in this chapter.

5.2 Policy Search with Genetic Programming

Policy search is a form of reinforcement learning that searches for policies that work well in

an agent’s current environment. In the context of this chapter’s material, the agent refers

67

to the compiler heuristic that we wish to construct. For priority-based compiler heuristics,

the policy is the priority function.1

Many practitioners of reinforcement learning use lookup tables or neural networks to rep-

resent policies. In this chapter I take an alternate approach that uses genetic programming

(GP), which is a type of “evolutionary” algorithm [41, 73]. GP is well-suited to the problem

of fine-tuning priority functions:

• GP is especially appropriate when the relationships among relevant variables are

poorly understood [56]. Such is the case with compiler policies, which often feature

uncertain tradeoffs. Today’s complex systems also introduce uncertainty.

• GP can handle large state spaces [73]. As I mention above, many reinforcement

learning approaches use tables to represent state-action pairs. Unfortunately, the

state spaces of the policies for which I search in this chapter are far too big to store

in a table.

• GP is a distributed algorithm. With the cost of computing power at an all-time low,

it is now economically feasible to dedicate a cluster of machines to searching a solution

space.

• GP solutions are human readable. The individuals on which GP operates are parse

trees which can easily be converted to free-form arithmetic equations. Other machine

learning representations, such as neural networks, are not as comprehensible.

GP maintains a population of parse trees [56]. For this problem, each parse tree is an

expression that represents a priority function. As with natural selection, expressions are

chosen for reproduction (called crossover) according to their level of fitness. Expressions

that best solve the problem are most likely to have progeny. The algorithm also randomly

mutates some expressions to innovate a possibly stagnant population.

GP, like genetic algorithms, is a type of evolutionary algorithm; and as such, GP’s flow is

identical to that of genetic algorithms. As Figure 5-1(a) shows, the algorithm begins by cre-

ating a population of initial expressions. We can seed the population with human-generated

1Throughout the remainder of this chapter I interchange the terms, priority function, policy, expression,
and individual.

68

Initialize population
with random

priority functions

Evaluate fitness by
compiling, running,

and timing with
each individual

Select fittest
individuals, kill worst

Use crossover and
mutation to create

new individuals

Continue?

done

No

Yes

benchmark(s)

executable(s)

compiler

policy

…

4.1
/

*

…X
…

(a) (b)

4.1
/

Figure 5-1: Genetic programming flow. Part (a) shows the flow of GP policy search to find
compiler priority functions, and part (b) graphically depicts the operation of each phase.

heuristics, or we can simply start with randomly generated expressions.2 The algorithm

then determines each expression’s level of fitness. In this context, compilers that produce

the fastest code are fittest. To determine the fitness level of an expression, the algorithm

compiles and runs a set of benchmarks using the expression as a heuristic’s priority function

(as shown in Figure 5-1(b)). The priority functions that, on average, lead to the fastest

compiler-generated executables are the fittest. Once the algorithm reaches a user-defined

limit on the number of generations, the process stops; otherwise, the algorithm proceeds by

probabilistically choosing the best expressions for crossover. Some of the offspring undergo

mutation, and the algorithm continues.

Unlike other evolutionary algorithms, which use fixed-length string representations, GP’s

expressions are variable in length and free-form. Figure 5-2 provides several examples of

genetic programming individuals. Variable-length individuals do not artificially constrain

evolution by limiting representable solutions. However, without special consideration, indi-

2For the experiments I perform in this chapter, seeding the initial population with hand crafted policies
had little effect on the outcome.

69

(a) GP individual (b) GP individual

(c) Crossover (d) Mutation

Figure 5-2: GP individuals. Part (a) and (b) show examples of GP individuals. Part (c)
provides an example of a random crossover of the individuals in (a) and (b). Part (d) shows
a mutation of the expression in part (a).

viduals grow exponentially during crossover and mutation.

My system rewards parsimony by selecting the smaller of two otherwise equally fit expres-

sions [56], which helps limit model complexity.3 Parsimony also facilitates inspection by

human engineers, and without it, expressions quickly become unintelligible. In addition

to fine-tuning policies, I envision this work to function as a tool for compiler writers and

architects to identify important combinations of features.

Figure 5-2, part (c) provides an example of crossover, the method by which two expressions

reproduce. Here the two expressions in (a) and (b) produce offspring. Crossover works by

selecting a random node in each parent, and then swapping the subtrees rooted at those

3It may even be worthwhile to enforce parsimony even more strongly by favoring good-performing terse
expressions over better-performing complex expressions, but this work does not consider such an approach.

70

nodes.4 The crux of GP is that crossover propagates ‘good’ subexpressions.

GP is more likely to select expressions with favorable subexpressions for crossover, thereby

further disseminating fit subexpressions. Our system uses tournament selection to choose

expressions for crossover. Tournament selection chooses N expressions at random from

the population and selects the one with the highest fitness [56]. N is referred to as the

tournament size, and small values of N reduce selection pressure; expressions are only

compared against the other N − 1 expressions in the tournament.

Finally, part (d) shows a mutated version of the expression in (a). Here, a randomly

generated expression supplants a randomly chosen node in the expression. For details on

the mutation operators I implemented, see [8].

To find general-purpose expressions (i.e., expressions that work well for a broad range of

input programs), the learning algorithm learns from a set of training programs. To train

on multiple input programs, I use the technique described by Gathercole in [36]. The

technique — called dynamic subset selection (DSS) — trains on subsets of the training pro-

grams, concentrating more effort on programs that perform poorly compared to the baseline

heuristics. DSS reduces the number of fitness evaluations that need to be performed in or-

der to achieve a suitable solution. Because my system must compile and run benchmarks

to test an expression’s level of fitness, fitness evaluations for this problem are costly.

The next section describes the methodology that I use throughout the remainder of the

chapter.

5.3 Methodology

My system uses policy search to automatically search for effective priority functions. I

search for effective policies by wrapping the iterative framework of Figure 5-1(a) around

the compiler and architecture. As Figure 5-1(b) reveals, I replace the policy component

4Selection algorithms must use caution when selecting random tree nodes. If we consider a full binary
tree, then leaf nodes comprise over 50% of the tree. Thus, a naive selection algorithm will choose leaf nodes
over half of the time. For this reason I employ depth-fair crossover, which equally weighs each level of the
tree [52].

71

of a compiler heuristic with an expression parser and evaluator. This allows policy search

to quickly test the efficacy of a priority function in the population, by compiling, running,

and evaluating the fitness of the applications in the training set using said expression as

the policy. The expressions that create the fastest executables for the applications in the

training set are favored for crossover.

Notice that the selection of applications to include in the training set is an important

aspect of the training process. For instance, an embedded systems developer might want

to specialize the compiler to perform extremely well on the application under development;

thus, the developer would only include a single application in the training set. I use the

Single Application Single Input (SASI) training approach for program specialization. SASI

assigns fitnesses based on an application’s performance on a single input. To create general-

purpose policies I use the Multiple Application Single Input (MASI) training approach.

The system will find policies that perform well, on average, on the set of applications in the

training set. Please refer to Section 3.4 for a description of the SASI and MASI training

approaches.

For both the SASI and MASI experiments I perform, my system uses whole-program execu-

tion time to assign fitnesses. This approach focuses on frequently executed procedures, and

therefore, it may slowly converge upon general-purpose solutions (i.e., it will cater a policy

to the (usually small) subset of code that accounts for most of the execution time of the

application(s)). However, when using a SASI approach, we actually want to focus on the

‘hot’ methods, and thus, this evaluation of fitness works well. The alternative is to perform

method-level timing and average the performance over all of the methods in the program.

While this approach could facilitate the search for general-purpose solutions, it would also

require a compiler instrumentation pass to insert timers that would measure the runtimes

of individual methods.

Table 5.1 shows the GP expression primitives that my system uses. Careful selection of

GP primitives is essential. We want to give the system enough flexibility to potentially

find unexpected results. However, the more leeway we give GP, the longer it will take to

converge upon a general solution. Notice in particular that there are two primitives that

return constants: rconst, and bconst. Whenever the GP system generates an expression

72

Real-Valued Function Representation

Real1 +Real2 (add Real1 Real2)
Real1 −Real2 (sub Real1 Real2)
{

Real1/Real2 : if Real2 6= 0
0 : if Real2 = 0

(div Real1 Real2)

Real1 ·Real2 (mul Real1 Real2)
{

Real1 ·Real2 : ifBool1
Real2 : if notBool1

(cmul Bool1 Real1 Real2)
√
Real1 (sqrt Real1)

{

Real1 : ifBool1
Real2 : if notBool1

(tern Bool1 Real1 Real2)

Returns real constant K (rconst K)
Returns real value of arg from environment (rarg arg)

Boolean-Valued Function Representation

Bool1 and Bool2 (and Bool1 Bool2)
Bool1 or Bool2 (or Bool1 Bool2)
not Bool1 (not Bool1)
Real1 < Real2 (lt Real1 Real2)
Real1 > Real2 (gt Real1 Real2)
Real1 = Real2 (eq Real1 Real2)
Returns Boolean constant (bconst {true, false})
Returns Boolean value of arg from environment (barg arg)

Table 5.1: GP primitives. My GP system uses the primitives and syntax shown in this
table. The top segment represents the real-valued functions, which all return a real value.
Likewise, the functions in the bottom segment all return a Boolean value.

with an rconst terminal, it will assign the terminal a uniformly generated number on the

unit interval (0,1). The system can compose multiple constants via arithmetic operators

to create constants outside the unit interval. In addition, random mutation of the rconst

terminal perturbs the constant according to a Gaussian distribution. Similarly, bconst

terminals are randomly initialized with a Boolean constant, and mutation may choose to

toggle that value.

My system creates an initial population that consists of 399 randomly generated expressions

of varying heights using the primitives in Table 5.1 and features extracted by the compiler

writer. There is no restriction on what features a compiler writer could include; however,

for efficiency’s sake, the compiler writer should only include program characteristics that

she thinks may be important for forming good priority functions.

In addition to the randomly generated expressions, I seed the initial population with the

73

Parameter Setting

Population size 400 expressions
Number of generations 50 generations
Generational replacement 22% of expressions
Mutation rate 5%
Tournament size 7
Elitism Best expression is guaranteed survival.
Fitness Average speedup over the baseline on the suite of

benchmarks.

Table 5.2: GP parameters. This table shows the GP parameters I used to collect the results
in this section.

compiler writer’s best guess. In other words, I include the priority function distributed with

the compiler. For two of the three optimizations presented in this chapter, I found that the

seed was quickly obscured and weeded out of the population as more favorable expressions

emerged. In fact, for hyperblock selection, which I discuss later in this chapter, the seed had

little impact on the final solution. These results suggest that one could use policy search

to construct priority functions from scratch rather than trying to improve upon preexisting

functions.

Table 5.2 summarizes the parameters that I use to collect results. I chose the parameters in

the table after a moderate amount of experimentation. I give the GP system 50 generations

to find a solution. For the benchmarks that I surveyed, the time required to run for 50

generations is about one day per benchmark in the training set.5 Because fitness evaluations

are so costly — requiring a compile and run of a benchmark — my system memoizes

benchmark fitnesses.

After every generation the system randomly replaces 22% of the population with new expres-

sions created via the crossover operation presented in Section 5.2. Only the best expression

is guaranteed survival. Typically, GP practitioners use much higher replacement rates.

However, since I use dynamic subset selection, only a subset of benchmarks is evaluated

in a generation. Thus, I need a lower replacement rate in order to increase the likelihood

that a given expression will be tested on more than one subset of benchmarks. The system

mutates roughly 5% of the new expressions. Finally, I use a tournament size of 7 when

selecting the fittest expressions. This setting causes moderate selection pressure.

5We ran on 15 to 20 machines in parallel for the experiments in Section 5.4 and Section 5.5.

74

The following two sections present case studies and build upon the methodology I described

above. I include results for both of the case studies in their respective sections.

5.4 Case Study I: Hyperblock Formation

This section describes the operation of policy search in the context of a specific compiler

optimization: hyperblock formation. I first describe the predication paradigm on which

hyperblocks rely, and then I discuss factors (or features) that might be important when

creating a priority function for a hyperblock formation heuristic. I conclude the section by

presenting experimental results for this optimization.

5.4.1 Branching v. Predication

Processors fetch and execute the instructions of a basic block in order. Consider the example

code in Figure 5-3(a), and its corresponding control flow graph in part (b). The target of

the branch instruction on line (1) depends on whether or not inp is null. Figure 5-3(c)

shows a simple 5-stage processor pipeline based on the pedagogical DLX processor described

in [81]. The processor cannot resolve the branch condition until the EX stage, which means

the processor begins executing two instructions (in the IF and ID stages) without knowing

if they should be executed.

Figure 5-3(c) shows the default mode of operation, where the processor fetches and executes

instructions in order: by the time the processor resolves the branch condition — and hence

knows whether the branch should fall through to the next instruction, or jump to a different

address — it has already begun executing the instructions on lines (2) and (3). If the branch

condition (inp != null) is false, the processor does not miss a beat: it is already executing

the correct instructions. If on the other hand, the branch condition turns out to be true, the

processor must nullify the partially executed instructions in the IF and ID stages because

they should not be executed; the processor can then continue by fetching and executing the

correct instructions at bb3.

With each processor revision, computer architects increased the pipeline depth and the

75

(1) bb1: btrue inp!=null, bb3
(2) bb2: d = buf & 0x1
(3) bb2: goto bb4
(4) bb3: buf = *inp
(5) bb2: inp = inp + 1
(6) bb2: t = buf >> 4
(7) bb2: d = t & 0xf
(8) bb4:

(a) Sample IR

bb1

bb3
bb2

bb4

btrue inp!=null, bb3

buf = *inp
inp = inp + 1
t = buf >> 4
d = t & 0xf

d = buf & 0x1
goto bb4

fall thru

fall thru

(b) Control flow graph

b
t
r
u
e
i
n
p
!
=
n
u
l
l
,

b
b
3

d

=

b
u
f
&

0
x
1

g
o
t
o
b
b
4

IF ID EX M WB

(c) Fall through execution

b
t
r
u
e
i
n
p
!
=
n
u
l
l
,

b
b
3

b
u
f
=

*
i
n
p

i
n
p
=

i
n
p
+

1

IF ID EX M WB

(d) Branch predicted execution

Figure 5-3: Influence of control flow on processing. Part (a) shows a simple code frag-
ment, and (b) shows the corresponding CFG. Part (c) shows a simple processor pipeline
to illustrate the effects of branches. The processor might have already partially executed
instructions it should not have because the branch direction is not resolved until the EX
stage. Part (d) shows how branch prediction can predict likely instructions to fetch and
execute.

number of instructions executed per cycle, which exacerbates the potential penalty of nul-

lifying wrongly executed instructions. Fortunately, computer architects quickly realized

that for many branches, the branch outcome is predictable. Branch prediction allows the

processor to speculatively execute instructions along a likely path of control flow (i.e., a

likely sequence of instructions during execution). See [81] for a detailed discussion of branch

prediction.

76

When the processor’s branch predictor is correct, execution proceeds smoothly, and there

is no need for the processor to nullify instructions. For instance, Figure 5-3(d) shows

the pipeline that results when the branch predictor predicts that the processor should

branch to bb3. However, when the prediction is incorrect, the processor once again executes

instructions on a path that should not have executed; it has to nullify these mispredicted

instructions, restore the processor state, and begin executing the instructions that should

have been executed.

Due to its small scale, the simple processor pipeline diagrammed in Figure 5-3 is only of

academic interest. Consider the costs of misprediction on a real modern-day processor: the

Pentium r© 4 architecture features 20 pipeline stages, and because it is a superscalar proces-

sor (meaning it can execute multiple instructions per pipeline stage) it has to nullify up to

126 in-flight instructions when it mispredicts [47]. Improved branch prediction algorithms

obviously increase processor utilization. Unfortunately, some branches are inherently un-

predictable, and hence, even the most sophisticated prediction algorithm would fail. For

such branches, predication may be a fruitful alternative.

Rather than rely on branch prediction, predication allows a processor to simultaneously

execute instructions from the taken and fall-through paths of control flow. The processor

nullifies all instructions in the incorrect path. In this model, a predicate operand guards

the execution of every instruction. If the value of the operand is true, then the instruction

executes normally. If however, the operand is false, the processor nullifies the instruction,

preventing it from modifying processor state.

Using a process dubbed if-conversion, a predicating compiler merges disjoint paths of execu-

tion into a predicated hyperblock [67]. A hyperblock is a predicated single-entry, multiple-

exit region. Figure 5-4(a) shows the hyperblock corresponding to the control-flow in Fig-

ure 5-3(a). Here, p2 and p3 are mutually exclusive predicates that are set according to the

branch condition in part (a). When inp is null the cmp instruction sets p2 to true, and p3

to false. Thus, although all the instructions in this example hyperblock technically execute,

only the instruction that is guarded by p2 modifies processor state; the processor nullifies

all the instructions that are guarded by p3. Likewise, when inp is not null p3 becomes

true and p2 false.

77

cmp p3,p2 inp!=null
(p2) d = buf & 0x1
(p3) buf = *inp
(p3) inp = inp + 1
(p3) t = buf >> 4
(p3) d = t & 0xf

(a) A hyperblock
(
p
3
)

t

=

b
u
u
f
>
>

4

(
p
3
)

i
n
p
=

i
n
p
+

1

IF ID EX M WB

c
m
p
p
3
,
p
2

i
n
p
!
=
n
u
l
l

(
p
2
)

d

=

b
u
f
&

0
x
1

(
p
3
)

b
u
f
=

*
i
n
p

(b) Model of execution

Figure 5-4: Hyperblocks and predicated execution. Part (a) shows the hyperblock that
results from the control flow in Figure 5-3(b). Part (b) shows how all instructions in this
example execute to completion, though only instructions that are guarded by true predicates
are allowed to modify processor state. For instance, if p3 were false, then the processor
would ignore the instructions in the shaded instruction slots.

Figure 5-4(b) shows the execution of the hyperblock in part (a) on a simple pipeline. The

processor executes all the instructions in the hyperblock, but only instructions that are

guarded by a true predicate are allowed to modify processor state. The example illustrates

the case where p2 is true. Although predication can effectively expose ILP, simply predi-

cating everything will diminish performance by saturating machine resources with useless

instructions. If p2 is true all of the time for instance, the instructions guarded by p3 con-

sume valuable execution slots. An appropriate balance of predication and branching can

drastically improve performance.

5.4.2 Feature Extraction

In the following list I give a brief overview of several features that are useful to consider

when trying to balance predication versus traditional control flow. Again, a path refers to

a sequence of basic blocks connected by edges in the control flow graph:

• Path predictability: Predictable branches incur no misprediction penalties, and

thus, should probably remain unpredicated. Combining multiple paths of execution

78

into a single predicated region uses precious machine resources [67]. In this case, using

machine resources to parallelize individual paths is typically wiser.

• Path frequency: Infrequently executed paths are probably not worth predicating.

Including the path in a hyperblock would consume resources, and could negatively

affect performance.

• Path ILP: If a path’s level of parallelism is low, it may be worthwhile to predicate the

path. In other words, if a path does not fully use machine resources, combining it with

another sequential path probably will not diminish performance. Because predicated

instructions do not need to know the value of their guarding predicate until late in

the pipeline, a processor can sustain high levels of ILP.

• Number of instructions in path: Long paths use more machine resources, and

if predicated, may slow execution. On the other hand, the cost of misprediction is

relatively high for short paths. If the processor mispredicts on a short path, the

processor has to nullify all the instructions in the path, and the subsequent control-

independent instructions fetched before the branch condition resolves.

• Unbalanced paths: Since every instruction in a hyperblock executes, long paths

effectively delay the time to completion of short paths.

• Number of branches in path: Paths of control through several branches have a

greater chance of mispredicting. Therefore, it may be worthwhile to predicate such

paths. On the other hand, including several such paths may produce large hyperblocks

that saturate resources.

• Compiler optimization considerations: Paths that contain hazard conditions

(i.e., pointer dereferences and procedure calls) limit the effectiveness of many com-

piler optimizations. In the presence of hazards, a compiler must make conservative

assumptions. Depending on the details of the target architecture, the code in Fig-

ure 5-3(a) might benefit from predication. Without architectural support, the load

from *inp cannot be hoisted above the branch. The program will behave unexpectedly

if the load is not supposed to execute and it accesses protected memory. By remov-

ing branches from the instruction stream, predication affords the scheduler freer code

79

motion opportunities. The predicated hyperblock in Figure 5-4 allows the scheduler

to rearrange memory operations without control-flow concerns.

• Machine-specific considerations: A heuristic should account for machine charac-

teristics. For instance, the number of parallel resources and the branch delay penalty

are decisive factors.

Clearly, there is much to consider when designing a heuristic for hyperblock selection.

Many of the above considerations make sense on their own, but when they are put together,

contradictions arise. Finding the right mix of criteria to construct an effective priority

function is nontrivial for human designers.

5.4.3 Trimaran’s Heuristic

I use the Trimaran infrastructure to evaluate the ideas in this chapter [94]. Trimaran is a

freely available integrated compiler and Explicitly Parallel Instruction Computing (EPIC)

processor simulator. Trimaran’s IMPACT compiler creates predicated hyperblocks [67, 68].

The IMPACT compiler begins by transforming the code so that it is more amenable to

hyperblock formation [67]. IMPACT’s algorithm then identifies acyclic paths of control

that are suitable for hyperblock inclusion. Park and Schlansker detail this portion of the

algorithm in [80]. A priority function — which is the critical calculation in the predication

decision process — assigns a value to each of the paths based on characteristics such as

those I described in the last subsection [67]. Some of these characteristics come from

runtime profiling.

IMPACT uses the priority function shown below:

hi =







0.25 : if pathi contains a hazard.

1 : if pathi is hazard free.

d ratioi =
dep heighti

maxj=1→N dep heightj

80

Feature Description

Registers 64 general-purpose registers, 64 floating-point registers, and
256 predicate registers.

Integer units 4 fully-pipelined units with 1-cycle latencies, except for mul-
tiply instructions, which require 3 cycles, and divide instruc-
tions, which require 8.

Floating-point units 2 fully-pipelined units with 3-cycle latencies, except for divide
instructions, which require 8 cycles.

Memory units 2 memory units. L1 cache accesses take 2 cycles, L2 accesses
take 7 cycles, and L3 accesses require 35 cycles. Stores are
buffered, and thus require 1 cycle.

Branch unit 1 branch unit.
Branch prediction 2-bit branch predictor with a 5-cycle branch misprediction

penalty.

Table 5.3: Architectural characteristics. This table describes the EPIC architecture on
which I evaluate policy search. This model approximates the Intel Itanium architecture.

o ratioi =
num opsi

maxj=1→N num opsj

priorityi = exec ratioi · hi · (2.1− d ratioi − o ratioi) (5.1)

The heuristic applies the above equation to all paths in a predicatable region. Based on a

runtime profile, exec ratio is the probability that the path is executed. The priority function

also penalizes paths that contain hazards (e.g., pointer dereferences and procedure calls).

Such paths may constrain aggressive compiler optimizations. To avoid large hyperblocks,

the heuristic is careful not to choose paths that have a large dependence height (dep height)

with respect to the maximum dependence height. Similarly it penalizes paths that contain

many instructions (num ops).

After IMPACT’s algorithm assigns path priorities, it proceeds by merging together the paths

with the highest priorities into a predicated hyperblock. The algorithm stops merging paths

when it has consumed the target architecture’s estimated resources.

81

Feature Description

dep height The maximum instruction dependence height over all instruc-
tions in path.

num ops The total number of instructions in the path.
exec ratio How frequently this path is executed compared to other paths

considered (from profile).
num branches The total number of branches in the path.
predictability Average path predictability obtained by simulating a branch

predictor (from profile).
predict product Product of branch predictabilities in the path (from profile).
avg ops executed The average number of instructions executed in the path

(from profile).
unsafe JSR If the path contains a subroutine call that may have side-

effects, it returns true; otherwise it returns false.
safe JSR If the path contains a side-effect free subroutine call, it re-

turns true; otherwise it returns false.
mem hazard If the path contains an unresolvable memory access, it returns

true; otherwise it returns false.
max dep height The maximum dependence height over all paths considered

for hyperblock inclusion.
total ops The sum of all instructions in paths considered for hyperblock

inclusion.
num paths Number of paths considered for hyperblock inclusion.

Table 5.4: Hyperblock selection features. The compiler writer chooses interesting attributes,
and the system evolves a priority function based on them. Some of these parameters require
profiling the code before compilation. I also include the min, mean, max, and standard
deviation of path characteristics. This provides some global information to the greedy local
heuristic.

5.4.4 Experimental Setup

This section discusses the experimental setup for optimizing Trimaran’s hyperblock selection

priority function. Trimaran is an integrated compiler and simulator for a parameterized

EPIC architecture. Table 5.3 details the specific architecture over which I applied policy

search. This model resembles Intel’s Itanium r© architecture.

Recall that a priority function is a function, y ← f(~x), where ~x is a feature vector and y is

a real-valued priority. I modified Trimaran’s IMPACT compiler by replacing its hyperblock

formation priority function (Equation 5.1) with my GP expression parser and evaluator.

This allows IMPACT to read a GP policy, fGP (~x), and evaluate it based on the values of

human-selected features (~x) that might be important for creating effective priority functions.

82

Table 5.4 describes these features.

The hyperblock formation algorithm passes the features in the table as parameters to the

expression evaluator. For instance, if a GP individual contains a reference to dep height,

the path’s dependence height will be used when the expression is evaluated. Most of the

characteristics in Table 5.4 were already available in IMPACT. I also extract the minimum,

maximum, mean, and standard deviation of all path-specific characteristics in the table.

I added a 2-bit dynamic branch predictor to Trimaran’s processor simulator and I mod-

ified the compiler’s profiler to extract branch predictability statistics. Lastly, I enabled

the following compiler optimizations: function inlining, loop unrolling, backedge coalesc-

ing, acyclic global scheduling [22], modulo scheduling [96], hyperblock formation, register

allocation, machine-specific peephole optimization, and several classic optimizations.

5.4.5 Experimental Results

I use the benchmarks in Table 5.5 to test policy search. I include all of the Trimaran

certified benchmarks [94].6 The benchmark suite also includes many of the Mediabench

applications [62]. The build process for ghostscript proved too difficult to compile, and I

had to exclude the remainder of the Mediabench applications because the Trimaran system

does not compile them correctly.7

I begin by presenting results for application-specialized heuristics. Following this, I show

that it is possible to use policy search to create general-purpose heuristics.

Specialized Priority Functions

One can employ policy search using the SASI approach to create a priority function that is

catered exactly to one application. Figure 5-5 shows that policy search is extremely effective

6Due to preexisting bugs in Trimaran, I could not get 134.perl to execute correctly, though [94] certified
it.

7I exclude cjpeg, the complement of djpeg, because it does not execute properly when compiled with
some priority functions. My system can also be used to uncover bugs!

83

Benchmark Suite Description

codrle4 See [15] RLE type 4 encoder/decoder.
decodrle4
huff enc See [15] A Huffman encoder/decoder.
huff dec
djpeg Mediabench Lossy still image decompressor.
g721encode Mediabench CCITT voice compressor/decompressor.
g721decode
mpeg2dec Mediabench Lossy video decompressor.
rasta Mediabench Speech recognition application.
rawcaudio Mediabench Adaptive differential pulse code modulation audio
rawdaudio encoder/decoder.
toast Mediabench Speech transcoder.
unepic Mediabench Experimental image decompressor.
085.cc1 SPEC92 gcc C compiler.
052.alvinn SPEC92 Single-precision neural network training.
179.art SPEC2000 A neural network-based image recognition algorithm.
osdemo Mediabench Part of a 3-D graphics library similar to OpenGL.
mipmap
129.compress SPEC95 In-memory file compressor and decompressor.
023.eqntott SPEC92 Creates a truth table from a logical representation of a

Boolean equation.
132.ijpeg SPEC95 JPEG compressor and decompressor.
130.li SPEC95 Lisp interpreter.
124.m88ksim SPEC95 Processor simulator.
147.vortex SPEC95 An object oriented database.

Table 5.5: Benchmarks used. The set includes applications from the SpecInt, SpecFP, and
Mediabench benchmark suites, as well as a few miscellaneous programs.

on a per-benchmark basis. The dark bar shows the percentage speedup (over Trimaran’s

baseline heuristic) of each benchmark when run with the same input data set with which

it was trained. The light bar shows the speedup attained when the benchmark processes

a data set that was not used to train the priority function. I refer to the alternate data

set as the test data set, which is essentially a validation input set for gauging how well the

learned policy applies to unseen data.

Intuitively, in most cases the training input data achieves a better speedup. Policy search,

as I have applied it, finds priority functions that excel on the training input data. The

test input data likely exercises different paths of control flow— paths which may have

been unused during training. Nonetheless, in every case, the application-specific priority

function outperforms the baseline. The mpeg2dec benchmark is a particularly interesting

84

0% 0%

10
6%

43
%

22
9%

21
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

12
9.

co
m

pr
es

s

g7
21

en
co

de

g7
21

de
co

de

hu
ff_

de
c

hu
ff_

en
c

ra
w

ca
ud

io

ra
w

da
ud

io

to
as

t

m
pe

g2
de

c

ge
om

ea
n

%
 S

p
ee

d
u

p
 o

ve
r

D
ef

au
lt

Training set Test set

Figure 5-5: Hyperblock specialization using the SASI training approach. This graph shows
the speedups obtained by training on a per-benchmarks basis. The dark colored bars are
executions using the same data set on which the specialized priority function was trained.
The light colored bars are executions that use an alternate, or test data set.

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45 50

Generation

S
p
e
e
d
u
p

129.compress

g721decode

mpeg2dec

rawcaudio

rawdaudio

toast

huff_enc

huff_dec

Figure 5-6: Hyperblock formation evolution. This figure graphs the best fitness over gen-
erations. For this problem, policy search quickly finds a priority function that outperforms
Trimaran’s baseline heuristic.

85

case. Policy search found a priority function that improves the performance of mpeg2dec’s

method Decode MPEG2 Intra Block by a factor of four. That method accounts for 10% of

the total execution with the training set, and a whopping 43% of the execution with the

test set. Because the method accounts for a much larger fraction of the total execution time

in the test set, the learned priority function has a much larger impact.

Figure 5-6 shows fitness improvements over generations. In many cases, policy search finds

a superior priority function quickly, and finds only marginal improvements as the evolution

continues. In fact, the baseline priority function is quickly obscured by GP-generated ex-

pressions. Often, the initial population contains at least one expression that outperforms

the baseline. This means that by simply creating and testing 399 random expressions, I

was able to find a priority function that outperformed Trimaran’s for the given benchmark.

Once policy search has discovered a decent solution, the search space and GP operator

dynamics are such that most “offspring” are worse, some are equal, and very few are actually

better. This seems indicative of a steep hill in the solution space. In addition, multiple

reruns using different initialization seeds reveal minuscule differences in performance. It

might be a space in which there are many local maxima with similar fitness levels.

General-Purpose Priority Functions

This section discusses how we can use the MASI training approach to create a general-

purpose hyperblock formation priority function.8 Instead of creating a specialized priority

function for each benchmark, in this section I aim to find one priority function that works

well for all the benchmarks in the training set. To this end, I apply GP policy search over

the entire training set using dynamic subset selection [36]. To create a training set, I divided

the benchmarks in Table 5.5 into two sets:9 a training set, and a validation set.

Figure 5-7 shows the results of applying the single best priority function to the benchmarks

in the training set. The dark bar associated with each benchmark is the speedup over

Trimaran’s base heuristic when the training input data is used. This data set yields a

8The lack of inputs for the suite of benchmarks Trimaran compiles precludes using a MAMI approach.
9I chose to train mostly on Mediabench applications because they compile and run faster than the Spec

benchmarks.

86

21
3%

34
%

21
%

-30%

-10%

10%

30%

50%

70%

90%

110%

de
co

dr
le

4

co
dr

le
4

g7
21

de
co

de

g7
21

en
co

de

ra
w

da
ud

io

ra
w

ca
ud

io

to
as

t

m
pe

g2
de

c

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

hu
ff_

en
c

hu
ff_

de
c

ge
om

ea
n

%
 S

p
ee

d
u

p
 o

ve
r

D
ef

au
lt

Training set Test set
13

Figure 5-7: Training on multiple benchmarks using the MASI training approach. Policy
search found a single priority function that works well for all the benchmarks in this graph.
The dark bars represent speedups obtained by running the given benchmark on the same
data that was used to train the priority function. The light bars correspond to a test data
set.

34% improvement on average using the geometric mean (44% arithmetic). Note that the

MASI training approach seeks the policy that attains the best average improvement on the

training set. Policy search finds a priority function that performs well on average, but notice

that it slightly degrades the performance of rawcaudio. The light bar shows results when

the test input data is used. The overall improvement for this set is 21% (25% arithmetic).

Again, mpeg2dec performs very well on the test set.

I then apply the resulting priority function to the benchmarks in the validation set. The

machine learning community refers to this as validation. Since the benchmarks in the

validation set are not related to the benchmarks in the training set, this is a measure of the

policy’s generality.10

Figure 5-8 shows the results of validation. This experiment applies the best priority function

10In Chapter 4 I discussed a more thorough validation technique called leave-one-out cross validation that
would provide a better sense of a policy’s generality. However, due to the computational demands of GP
policy search, cross validation would have drastically lengthened the duration of these already long-running
experiments.

87

8%

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

un
ep

ic

dj
pe

g

ra
st

a

02
3.

eq
nt

ot
t

13
2.

ijp
eg

05
2.

al
vi

nn

14
7.

vo
rt

ex

08
5.

cc
1

ar
t

13
0.

li

os
de

m
o

m
ip

m
ap

ge
om

ea
n

%
 S

p
ee

d
u

p
 o

ve
r

D
ef

au
lt

Figure 5-8: Validation of the general-purpose priority function. The best priority function
found by training on the benchmarks in Figure 5-7 is applied to the benchmarks in this
graph.

on the training set to the benchmarks in the test set. The average speedup on the test set is

8% (9% arithmetic). In three cases (unepic, 023.eqntott, and 085.cc1) Trimaran’s baseline

heuristic marginally outperforms the GP-generated priority function. For the remaining

benchmarks, the heuristic policy search found is better.

The Best Priority Function

Figure 5-9 shows the best general-purpose priority function my system found for hyperblock

selection. Because parsimony pressure favors small expressions, most of my system’s solu-

tions are readable. Nevertheless, I hand-simplified the expressions presented in this chapter

for ease of discussion.

Notice that some parts of the expression have no impact on the overall result. For instance,

removing the sub-expression on line (2) will not affect the heuristic; the value is invariant

to a scheduling region since the mean execution ratio is the same for all paths in the region.

Such ‘useless’ expressions are called introns in GP nomenclature. According to theory,

88

(1) (add
(2) (sub (mul exec ratio mean 0.8720) 0.9400)
(3) (mul 0.4762
(4) (cmul (not mem hazard)
(5) (mul 0.6727 num paths)
(6) (mul 1.1609
(7) (add
(8) (sub
(9) (mul
(10) (div num ops dep height) 10.8240)
(11) exec ratio)

(12) (sub (mul (cmul has unsafe jsr

(13) predict product mean

(14) 0.9838)

(15) (sub 1.1039 num ops max))
(16) (sub (mul dep height mean

(17) num branches max)

(18) num paths)))))))

Figure 5-9: The best priority function my system found for hyperblock scheduling.

introns are useful for preserving good building blocks during crossover and mutation [56].

The conditional multiply statement on line (4) directly affects the priority function: it favors

paths that do not have pointer dereferences (because the sub-expression in line (5) will

always be greater than one). Pointers inhibit the effectiveness of the scheduler and other

compiler optimizations, and thus dereferences should be penalized. The IMPACT group

came to the exact same conclusion, though the extent to which they penalize dereferences

differs [67].

The sub-expression on line (8) favors ‘bushy’ parallel paths, where there are numerous

independent operations. This result is somewhat counterintuitive since highly parallel paths

will quickly saturate machine resources. In addition, paths with higher exec ratio’s are

slightly penalized, which also defies intuition.

The conditional multiply expression on line (12) penalizes paths with unsafe calls (i.e.,

calls to subroutines that may have side effects). Once again this agrees with the IMPACT

group’s reasoning [67].

Because Trimaran is such a large and complicated system, it is difficult to know exactly

why the priority function in Figure 5-9 works well. This is exactly the point of using a

methodology like meta optimization. The bountiful complexities of compilers and systems

are difficult to understand. Also worthy of notice is the fact that policy search gets such

89

Level Access time

Registers 0 cycles.
L1 cache 1 cycle.
L2 cache 5 cycles.
L3 cache 12-15 cycles.
Main memory 180-225 cycles

Table 5.6: Memory hierarchy access times for the Intel Itanium r2 procesor [46].

good speedups, particularly on the training set, by changing such a small portion of the

compiler.

5.5 Case Study II: Register Allocation

This case study shows that we can use GP policy search to automatically create register

allocation priority functions. The motivation behind register allocation is the widening gap

between processor speeds and main memory. Table 5.6 shows access times for Intel’s Itanium

2 processor in processor cycles for the various levels of the memory hierarchy. Almost all

processors have a small set of registers that the processor can access very quickly — faster

than any other level of the memory hierarchy. Unlike with the other levels however, the

compiler explicitly manages register access.

Register allocation is an optimization that tries to allocate processor registers to program

variables. This optimization has a large effect on performance because registers are so much

faster to access than the other levels of the memory hierarchy. Because it is often the case

that the register allocator cannot fit all of a program’s variables in registers, many register

allocation algorithms use cost functions to determine which variables to spill to memory

when spilling is required. For instance in priority-based coloring register allocation, the

priority function is an estimate of the relative benefits of storing a given variable in a

register [23].

Priority-based coloring first associates a live range with every variable. A live range is the

composition of basic blocks through which the associated variable’s value must be preserved.

The algorithm then tries to allocate each live range to a register in priority order. Trimaran’s

90

compiler uses Chow’s register allocation approach and the following functions to compute

the priority of a given live range, lr [23]:

savingsi = wi · (LDsave · usesi + STsave · defsi) (5.2)

priority(lr) =

∑

i∈lr savingsi

N
(5.3)

Equation 5.2 computes the savings of allocating the live range in basic block i. The terms

LDsave and STsave are estimates of the execution time saved by keeping the associated

live range in a register for references and definitions respectively. The terms usesi and

defsi represent the number of uses and definitions of the live range in block i, and wi is the

estimated execution frequency for the block.

Equation 5.3 sums the savings over the N blocks that compose the live range. Thus, this

priority function represents the savings incurred by accessing a register instead of resorting

to memory. The algorithm then tries to assign registers to live ranges in priority order.

Please see [23] for a complete description of the algorithm. For our purposes, the important

thing to note is that the success of the algorithm depends on the priority function.

The priority function described above is intuitive— it assigns weights to live ranges based on

the estimated execution savings of register allocating them. Nevertheless, as I will describe

below, my system automatically finds functions that improve the heuristic by up to 11%.

5.5.1 Experimental Results

I collected these results using the same experimental setup that I used for hyperblock

selection. Again, I use Trimaran and I target the architecture described in Table 5.3.

However, to more effectively stress the register allocator, I trim the number of general-

purpose registers and floating-point registers to 32 apiece.

I modified Trimaran’s Elcor register allocator by replacing its priority function (Equa-

tion 5.2) with the GP policy search parser and evaluator. The register allocation heuristic

described above essentially works at the basic block level. Equation 5.3 simply sums and

91

normalizes the priorities of the individual basic blocks. For this reason, I stay within the

algorithm’s framework and leave Equation 5.3 intact.

Table 5.7 shows a subset of the features that I extracted for register allocation.

Feature Description

region weight The number of times the region was executed (from profile).
live ops The number of live operations in the live range.
num defs The number of definitions created in the live range.
num uses The number of uses in the range.
num refs The number of references in the range.
store latency The latency of storing a value to memory.
load latency The latency of loading a value from memory.
move latency The latency of moving a value from one register to another.
num calls The number of procedure calls made in the block.
num refs The total number of references made in the block.
num forbidden regs The number of registers that are not available to the live

range (because it interferes with an allocated live range).
reg file size The number of registers in the bank associated with the type

of variable being considered.
entry edges The number of entry edges to the live unit.
exit edges The number of exit edges from the live unit.
inf lranges The number of interfering live ranges.
num lus The number of basic blocks in the live range.
avg refs The average number of references per basic block in the live

range.
stddev refs The standard deviation of the number of references per basic

block in the live range.
has single ref If the block has a single reference this returns true, otherwise

it returns false.
has single block If there is only one block in the live range, this returns true,

otherwise it returns false.
is pass through Returns true if there are no live references in this block, and

false otherwise.
is gpr Returns true if the live range corresponds to an integer type

variable.
is fpr Returns true if the live range corresponds to a floating-point

variable.
is pr Returns true if the live range corresponds to predicate vari-

able.

Table 5.7: Register allocation features. This table describes the features I extracted to learn
a register allocation policy. Some of these features come directly from profile information.

92

8%

6%

0%

2%

4%

6%

8%

10%

12%

14%

16%

m
pe

g2
de

c

ra
w

ca
ud

io

12
9.

co
m

pr
es

s

hu
ff_

en
c

hu
ff_

de
c

g7
21

de
co

de

ge
om

ea
n

%
 S

p
ee

d
u

p
 o

ve
r

D
ef

au
lt

Training set Test set

Figure 5-10: Register allocation specialization using SASI training. This graph shows
speedups obtained by training on a per-benchmarks basis. The dark colored bars are exe-
cutions using the same data set on which the specialized priority function was trained. The
light colored bars are executions that use a test data set.

Specialized Priority Functions

These results indicate that policy search works well, even for well-studied heuristics. Fig-

ure 5-10 shows speedups obtained by specializing Trimaran’s register allocator for a given

application using the SASI training approach. The dark bar associated with each appli-

cation represents the speedup obtained by using the same input data that was used to

specialize the heuristic. The light bar shows the speedup when the benchmark processes

a test data set. Again, because of differences in profiles, the huff enc benchmark performs

slightly better on the test data than it does on the training data.

However, overall the training input data outperforms the alternate input data. In the case

of register allocation however, we see that the disparity between speedups on training and

novel data is less pronounced than it is with hyperblock selection. This is because hyper-

block selection is extremely data-driven. An examination of the general-purpose hyperblock

formation heuristic reveals two dynamic factors (exec ratio and predict product mean) that

are critical components in the hyperblock decision process.

93

1

1.025

1.05

1.075

1.1

1.125

1.15

0 5 10 15 20 25 30 35 40 45 50

Generation

S
p
e
e
d
u
p

mpeg2dec

rawcaudio

g721decode

129.compress

huff_enc

huff_dec

Figure 5-11: Register allocation evolution. This figure graphs fitness over generations.
Unlike the hyperblock selection evolution, these fitnesses improve gradually.

Figure 5-11 graphs fitness improvements over generations. It is interesting to contrast this

graph with Figure 5-6. The fairly constant improvement in fitness over several generations

seems to suggest that this problem is harder to optimize than hyperblock selection. Addi-

tionally, unlike the hyperblock selection algorithm, the baseline heuristic typically remained

in the population for several generations.

General-Purpose Priority Functions

Just as in Section 5.4.5, I divide the benchmarks into a training set and a test set and use

the MASI training approach.11 The benchmarks in Figure 5-12 show the training set for this

experiment. The figure also shows the results of applying the best priority function to all the

benchmarks in the set. The dark bar associated with each benchmark is the speedup over

Trimaran’s baseline heuristic when using the training input data. The average for this data

set is 3%. Again, we see that policy search attempts to maximize overall performance, and

11This experiment uses smaller test and training sets due to preexisting bugs in Trimaran. It does not
correctly compile several of the benchmarks when targeting a machine with 32 registers.

94

3% 3%

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

%
 S

p
ee

d
u

p
 o

ve
r

D
ef

au
lt

Training set Test set

Figure 5-12: Training a register allocation priority function using the MASI training ap-
proach. Policy search used all the benchmarks in this figure to find a general-purpose
priority function. The single best priority function was applied to all the benchmarks. The
dark bars represent speedups obtained by running the given benchmark on the same data
that was used to train the priority function. The light bars correspond to a test data set.

as a result, the performance of rawcaudio suffers. This data point is particularly interesting

because using a SASI approach, policy search improved the effectiveness of the register

allocator by 12% for rawcaudio. On a test data set the best priority function also attains

an average speedup of 3%, which indicates that register allocation is not as susceptible to

variations in input data.

Figure 5-13 shows the validation results for this experiment. The figure shows the percent

speedup (over Trimaran’s baseline) achieved by applying the single best priority function

to a set of benchmarks that were not in the training set. The learned priority function

outperforms the baseline for all benchmarks except decodrle4 and 132.ijpeg. Although the

overall speedup on the cross validation set is only 2%, this is an exciting result. With about

a week’s worth of intensive processing, my technique improved upon the popular Chow and

Hennessey [23] register allocation approach.

Figure 5-14 provides another perspective on these results. The data in the graph com-

pares the machine-learned register allocation priority function against a simple function

that returns a constant value (and thus, equally weighs all spill candidates) on the vali-

95

2%

-1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

de
co

dr
le

4

co
dr

le
4

12
4.

m
88

ks
im

un
ep

ic

dj
pe

g

02
3.

eq
nt

ot
t

13
2.

ijp
eg

14
7.

vo
rt

ex

08
5.

cc
1

13
0.

li

ge
om

ea
n

%
 S

p
ee

d
u

p
 o

ve
r

D
ef

au
lt

Figure 5-13: Validation of the general-purpose register allocation priority function. The
best priority function found by policy search is applied to the benchmarks in this graph.

21
%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

de
co

dr
le

4

co
dr

le
4

12
4.

m
88

ks
im

un
ep

ic

dj
pe

g

02
3.

eq
nt

ot
t

13
2.

ijp
eg

14
7.

vo
rt

ex

08
5.

cc
1

13
0.

li

ge
om

ea
n

%
 S

p
ee

d
u

p
 o

ve
r

B
ra

in
d

ea
d

Figure 5-14: Speedups over a simple register allocation policy. This graph shows the impor-
tance of the register allocation priority function. When compared against a priority function
that returns a constant value, the machine-learned function achieves large speedups.

96

(1) (add
(2) (mul
(3) (mul (tern (eq num refs live ops)
(4) (sub (div move latency 0.3949) 0.8015)
(5) (mul
(6) 0.6297

(7) (sqrt (mul
(8) (sub (mul live ops reg file size)
(9) (sub 0.1345 caller benefit))
(10) (mul (mul (tern
(11) (eq num refs live ops)
(12) 0.6165

(13) caller benefit)

(14) (add (sub
(15) (add
(16) (mul live ops reg file size)
(17) 0.1541)

(18) (mul 0.3049
(19) (sub 0.1345 caller benefit)))
(20) num uses))

(21) (cmul has single ref 2.0 num defs))))))
(22) (add (sqrt (mul 0.5113 live ops)) caller benefit))
(23) (add (sub
(24) (add (mul live ops reg file size) 0.1541)
(25) (mul 0.3049
(26) (sub 0.1345 caller benefit)))
(27) num uses))

(28) (add 0.8655 caller benefit)))

Figure 5-15: The best general-purpose priority function my system found for register allo-
cation.

dation set. This graph highlights the impact that a small priority function can have on

overall performance. This graph also suggests that policy search can find powerful priority

functions.

Figure 5-15 shows the best general-purpose register allocation priority function that policy

search found.

5.6 Effort and Training Time Involved

This section discusses the effort that is involved with heuristic creation using GP policy

search. The GP system I created includes a training harness in which a developer can

specify a training set: the harness reads a configuration file that describes the applications

to include in the training set, as well as the commands needed to compile, run, and test the

correctness of each application.

97

There are two major steps that are not automated: first, as I have already mentioned the

designer needs to extract features that adequately distill the various “choices” available to

the optimization. For most experiments I performed, this step was easy and required at

most a few days of work. Then, the designer can simply replace the human-constructed

priority function with a call to the GP evaluator library function, passing the vector of

features as an argument.

The remainder of the learning process is entirely automated. Creating application-specific

priority functions using the SASI approach required around a day of processing using 15

Linux, Pentium 4 workstations. Of course, the training time depends on the size and running

time of the application on which they system trains. However, because I used a simulated

machine for these experiments, which drastically slows down evaluation, a training time of

one day is probably an overestimate.

For the experiments I perform in this Chapter, creating general-purpose priority functions

using the MASI approach required around a week of processing using 15 Linux, Pentium 4

workstations. Again, training time is entirely unsupervised. For the MASI approach, it is

important to emphasize that this is a one-time process. One can directly use the priority

function that the GP policy search system has found; from this point on, there will be no

additional compile-time overheads.

5.7 Conclusion

This chapter demonstrates two main points: first, while priority functions may represent

a small portion of a compiler’s code base, they can drastically affect performance; second,

policy search with genetic programming can find effective priority functions with little hu-

man intervention. For the priority-based hyperblock formation algorithm, policy search

attained huge performance increases (> 20%) on the training set, and a substantial per-

formance improvement on a validation set (8%). The speedups for register allocation were

not as drastic, achieving roughly 3% improvements over the baseline. Nevertheless, policy

search managed to automatically find a priority function that outperforms a well-studied

human-crafted heuristic. That in itself is an exciting result.

98

Several aspects of GP make it amenable to policy search. GP created high-quality priority

functions effectively despite the rather large set of features with which it was presented.

Both case studies I present in this chapter make use of large feature sets. In a way, the

crossover operator performs feature selection by propagating good building blocks: the

important features are passed on from a fit GP individual to its progeny. In this regard GP

was extremely easy to use. I thought little about what features were the most important,

and instead just provided any feature that I thought might be useful for designing a policy.

As pleased as I am with this chapter’s results, GP was somewhat frustrating at times. As

Table 5.2 shows, there are a lot of knobs to tweak in GP; and the whole point of using

policy search is that we do not want to have to manually tweak compiler heuristics! For-

tunately, from my experience with GP, it was fairly robust to different parameter settings.

In addition, my system was completely unsupervised: I chose parameter settings, started

the system, and examined the best priority function some number of days later. My system

definitely reduces the net level of tweaking.

One crucial aspect that this chapter fails to address is noise. GP relies on determining

small differences in fitness. On a real machine, small variances are hard to determine

because of noise (i.e., subsequent runs of the same program will likely produce different

fitnesses). Collecting results on a simulator is much easier because back-to-back runs of the

same program will produce the same fitness. However, using a simulator introduces two

more obstacles: first, simulator inaccuracies may produce misleading results, and second,

simulation is much slower than native execution.

The experiments I perform in the next chapter use a real (noisy) machine and an alternate

approach to automatic heuristic design.

99

100

Chapter 6

Supervised Learning for Meta

Optimization

Policy search can be applied to search for any compiler policy. However, in some cases,

supervised learning can more efficiently ‘solve’ hard compilation problems. This chapter

uses loop unrolling — a well-known optimization for exposing instruction level parallelism

— as a case study to demonstrate the effectiveness of supervised learning. Because loop

unrolling indirectly affects so many aspects of system performance, it is difficult to model

the appropriateness of the optimization. In this chapter I show that near neighbor (NN)

classification and support vector machines (SVM) work remarkably well for predicting unroll

factors. The best machine-learned classifier can predict with 65% accuracy the optimal

unroll factor, and the optimal or second-best unroll factor 79% of the time.

I evaluate the implications of improved unrolling decisions using the Open Research Com-

piler (ORC) and an Itanium r© 2 architecture. The best classifier achieves a 5% speedup

(over ORC’s heuristic) for the SPEC 2000 benchmarks, and a 9% speedup for the floating

pointing benchmarks in that suite. This chapter adds to the evidence that suggests machine

learning techniques can model systems at least as well as human designers, and with much

less effort.

The next section describes the loop unrolling optimization. Section 6.2 presents the method-

ology and infrastructure that I use for this chapter’s experiments. I discuss multi-class

101

void addScalar (char* a, int c, int l) {
for(int i = 0; i < l; i++) {

a[i] = a[i] + c;

}
}

(a) Original version.

void addScalar (char* a, int c, int l) {
int i = 0;

for(; i < l % 4; i++) {
a[i] = a[i] + c;

}

for(; i < l; i+=4) {
a[i] = a[i] + c;

a[i+1] = a[i+1] + c;

a[i+2] = a[i+2] + c;

a[i+3] = a[i+3] + c;

}
}

(b) Unrolled version.

Figure 6-1: Loop unrolling example. The loops in part (b) result from unrolling the loop
in part (a). The first loop in part (b) assures that the unrolled second loop will execute to
completion.

classification in Section 6.3. Section 6.4 provides concrete results, Section 6.5 describes

a methodology for identifying the most salient features of an optimization, and finally I

conclude in Section 6.6.

6.1 Loop Unrolling

Loop unrolling is a well known transformation in which the compiler replicates a loop body

some number of times. Figure 6-1 illustrates the operation of this optimization. Loop

unrolling decreases the number of times the backward branch (back to the top of the loop)

is encountered during the execution of a loop. This can be particularly important for

architectures that have high branching overhead. However, loop unrolling is primarily used

to enable other optimizations, many of which target the memory system. For example,

unrolling creates multiple static memory instructions corresponding to dynamic executions

of a single operation. After unrolling, these instructions can be rescheduled to exploit

memory locality. If the loop accesses the same memory locations on consecutive iterations,

many of these references can be eliminated altogether with scalar replacement. Another

method to reduce memory traffic utilizes a wide memory bus to transfer multiple words with

a single load or store operation. Unrolling is key to exposing adjacent memory references [30,

60] so that they can be merged into a single wide reference.

102

Arguably, the most important aspect of loop unrolling is its ability to expose instruction

level parallelism (ILP) to the compiler. After unrolling, the compiler can reschedule the

operations in the unrolled body to achieve overlap among iterations. Such a scheme was

first used in the Bulldog compiler [34] and is still important in compiling for machines that

support a high degree of ILP. Typically, unrolling is combined with other transformations

that increase the size of the scheduling window. Examples include trace scheduling [34] and

hyperblock formation [69].

Loop unrolling is an interesting optimization because it indirectly affects many aspects

of system performance: it affects the efficacy of the instruction scheduler, the software

pipeliner, the register architecture, and the memory system. Because its impact is mainly

noticed in secondary effects, it is difficult to decide when this optimization is appropriate.

Superficially, loop unrolling appears to be an optimization that is always beneficial. How-

ever, in many cases it will impair performance. The following non-exhaustive list considers

some possible drawbacks to loop unrolling:

• The most acknowledged detriment of unrolling is that code expansion can degrade the

performance of the instruction cache.

• Added scheduling freedom can result in an increase in the live ranges of variables,

resulting in additional register pressure. Since memory spills and reloads are typically

long latency operations, this can negate the benefits of unrolling.

• Control flow also complicates unrolling decisions. If the compiler cannot determine

that a loop may take an early exit, it will actually have to add control flow to the

unrolled loop which may negate — or at the very least neutralize — the benefits of

unrolling [75].

• Some compilers aggressively speculate on memory accesses. Execution time will in-

crease if the scheduler chooses to speculatively hoist unrolled memory accesses that

dynamically conflict.

The scheduler, the register allocator, and the underlying architecture interact in nontrivial

ways; loop unrolling increases the aggressiveness of certain optimizations, which, depend-

ing on the circumstances, may adversely affect other important optimizations and reduce

103

Feature

The loop nest level.
The number of operations in loop body.
The number of floating point operations in loop body.
The number of branches in loop body.
The number of memory operations in loop body.
The number of operands in loop body.
The number of implicit instructions in loop body.
The number of unique predicates in loop body.
The estimated latency of the critical path of loop.
The estimated cycle length of loop body.
The language (C or Fortran).
The number of parallel “computations” in loop.
The maximum dependence height of computations.
The maximum height of memory dependencies of computations.
The maximum height of control dependencies of computations.
The average dependence height of computations.
The number of indirect references in loop body.
The minimum memory-to-memory loop-carried dependence.
The number of memory-to-memory dependencies.
The tripcount of the loop (-1 if unknown).
The number of uses in the loop.
The number of definitions in the loop.

Table 6.1: A subset of features used for loop classification. These characteristics are used
to train the classifiers.

overall performance. The only way to truly know what will work is to empirically evaluate

decisions; even human-designed models must be evaluated at some point to determine their

effectiveness. It is the goal of this research to use empirical observations to train a learning

algorithm how to make informed decisions.

6.2 Methodology and Infrastructure

This section describes the methodology and infrastructure that I use to perform the loop

unrolling experiments. In this section I describe my general approach, the compiler and

platform I use, the loop instrumentation process, and the benchmarks that I use to test the

efficacy of my techniques.

104

6.2.1 Supervised Learning

I use a machine learning approach known as supervised learning to induce effective loop

unrolling heuristics. As described in Section 4.2.2, supervised learning uses a training set

of examples to learn a function f that maps a feature vector ~xi to a prediction yi:

yi ← f(~xi) (6.1)

Unlike the experiments that I performed in the last chapter, all elements of a feature

vector ~xi are real-valued, and the predictions are integer values within a constrained range:

yi ∈ {1, 2, . . . , 8}. The limit on the range of predictions is due to the fact that a substantial

number of benchmarks run incorrectly for unroll factors beyond eight.1

In my experiments, the feature vector contains loop characteristics such as the trip count of

the loop, the number of operations in the loop body, the programming language the loop is

written in, etc. I extract a feature vector for each unrollable loop in my suite of benchmarks.

Table 6.1 shows a subset of the features that the experiments in this chapter use. In all, I

collected 38 features for these experiments, but as I later discuss, all of these features are

not needed; we can use feature selection techniques to find a small subset of these features

that classifies the data extremely well.

In addition to the feature vector, I also extract a training label for each unrollable loop in

the benchmark suite. The training label indicates which (mutually exclusive) unroll factor

results in the highest performance for the training example. Labeling the data is relatively

straightforward: I measure the total runtime of each loop using eight different unroll factors

(1, 2, . . . , 8), and the label for the loop is the unroll factor that yields the best performance.

Thus, for each example loop i, I extract a vector of characteristics ~xi that describes the

loop, and a label yi that indicates what the empirically found best action for the loop is.

The task of a classifier is to learn a good function f using a set of N training examples

{〈~xi, yi〉 | 1 ≤ i ≤ N}.

While supervised learning is trained offline, one can easily incorporate the learned classifier

into a compiler.

1Technically, any policy should be correct; my approach exposed bugs in the ORC compiler.

105

6.2.2 Compiler and Platform

I use the Open Research Compiler (ORC v2.1) [77] — an open source research compiler

that targets Itanium architectures — to evaluate the benefits of applying learning to loop

unrolling. ORC is a well-engineered compiler whose performance rivals commercial compil-

ers. The experiments in this chapter target a 1.3 GHz Itanium 2 server running Red Hat

Linux Advanced Server 2.1. I use -O3 optimizations for all of these experiments. However,

I disable the software pipelining pass because it inhibits the operation of the loop unroller.

6.2.3 Loop Instrumentation

A training example for supervised learning consists of a feature vector and its corresponding

label. This section describes the machinery I implemented to acquire the label for a given

loop.

Because this chapter is concerned with loop optimizations, I wrote an instrumentation

pass that inserts code to measure the runtime of innermost loops. For every loop in a

program, the instrumentor assigns a unique counter identifier and an associated memory

location to store timer information. Immediately before execution of the program reaches

an innermost loop, the instrumentation code captures the processor’s cycle counter and

places it in the loop’s associated memory location. When the loop exits, the cycle counter

is again captured; the instrumentation code uses the saved initial timer value and the final

timer value to compute the total running time of the loop.

I invested much engineering effort to minimize the impact that the instrumentation code has

on the execution of the program. I initially inserted procedure calls to an instrumentation

library that started and stopped the loop timers. This methodology proved to be extremely

intrusive since the caller-saved register allocator spilled many variables on each call to the

instrumentation library. My current loop instrumentor inserts assembly instructions that

start and stop the loop timers. This lightweight model allows the instruction scheduler to

bundle instrumentation code with a loop’s prologue and epilogue code. Furthermore, the

instrumentor does not significantly affect register usage.

106

At all exit points in the program a call is made to an instrumentation library to store to

disk the cumulative running time of each loop in the program. The information on disk

then is just a list of loop identification numbers and associated cumulative running times.

To gather the label yl for a given innermost loop l, I must determine which unroll factor

u ∈ {1, 2, . . . 8} yields the best performance for the loop. Thus, I have to determine the

runtime rl,u for each loop l using each of the eight unroll factors; then, for a given loop l,

I can assign the label yl to be the unroll factor u that produced the fastest runtime for the

loop:

yl = argmin
1≤u≤8

{rl,u}

My strategy for collecting labels finds, in bulk, the runtimes rl,u for a given unroll factor u.

For instance, I collect all of the runtimes rl,8 at the same time by setting the unroll factor

to be 8 for all the innermost loops in a program. This strategy, while it is the easiest and

most efficient data labeling approach, is clearly imperfect. For example, consider the case

where there are two unrollable loops in the same method. It is likely the case — because of

caching and register allocation effects — that the optimal unroll factors for each loop are

dependently linked, and thus by finding labels (and making predictions) in isolation we will

miss these cases. Nevertheless, my simple strategy provides good performance results.

Because noise on a real machine introduces measurement uncertainty, I assign rl,u to be the

median of 30 trials of running loop l with unroll factor u. To further mitigate measurement

noise, I only use loops that run for at least 50,000 cycles. For instance, if a loop that is only

run for a few thousand cycles sits on the edge of an instruction cache boundary, a single

cache miss would comprise a significant portion of the total runtime of the loop.

It is not possible to measure loop runtimes without affecting the execution in some way.

Although I cannot quantitatively state the impact that the instrumentation code has on a

program’s execution, I am encouraged by the fact that I was able to induce highly effective

heuristics with measurements gathered using this infrastructure.

107

6.2.4 Effort Involved

This section discusses the effort that is involved with heuristic tuning of the sort I employ

in this chapter. The instrumentation of ORC — which I was completely unfamiliar with

at the time — was the most demanding task, and required about two weeks of intensive

work. Collecting the labels was somewhat time consuming since I ran each benchmark 30

times for each of the unroll factors, but this step was completely unsupervised and only

took a little longer than a week. Finally, when I had my training dataset, I could quickly

prototype several popular learning algorithms in Matlab.

The machine learning algorithms train and classify relatively quickly. The training phase

requires anywhere from a few milliseconds to around 30 seconds, depending on the learning

algorithm I employ. The prediction phase is extremely fast as well: the Matlab implemen-

tations required at most 5 milliseconds per prediction.

The effort that was involved is worthwhile. Now that my infrastructure is in place, quickly

retuning the unrolling heuristic to match architectural changes will be trivial. I will simply

have to collect a new labeled dataset, which is a fully automated process, and then I can

apply the learning algorithm of my choice. Contrast this with the tedious, manual retuning

efforts currently employed today. Furthermore, I am in the position to create heuristics for

other loop optimizations such as loop tiling and strip mining.

6.2.5 Benchmarks Used

I extracted training examples from 72 benchmarks taken from a variety of benchmark suites.

I use benchmarks from SPEC 2000,2 SPEC ’95, and SPEC ’92 [89]. For SPEC benchmarks

such as swim, where the application appears in two different SPEC suites, I include the

newest version only. In addition, I train with Mediabench applications, benchmarks from

the Perfect suite, and a handful of kernels. The training benchmarks span three languages

(C, Fortran, and Fortran90). For each benchmark I only use loops that ORC can unroll

2Please note that I have excluded two SPEC 2000 benchmarks: ORC cannot compile 252.eon because it
is a C++ program, and 191.fma3d because it does not compile correctly with my instrumentation library
(it creates a different number of loops depending on the unroll factor, and thus features and labels cannot
be correlated).

108

and whose “optimal” unroll factor is measurably better than the average (1.05x) over all

unroll factors up to eight.

There are many different classification techniques that one could employ. The next section

describes two techniques that work well for predicting loop unrolling factors (and have also

been shown to work well for a wide range of problems).

6.3 Multi-Class Classification

This section describes two multi-class classification algorithms. I begin by describing near

neighbor classification, a conceptually simple, but highly effective technique. I then de-

scribe support vector machines, a statistical learning algorithm that is currently a popular

technique within the machine learning community.

6.3.1 Near Neighbor Classification

Chapter 4.2.2 described the nearest neighbor technique. This section describes a simple

twist to nearest neighbor that worked quite well for the experiments I conduct in this

chapter.

Near neighbor (NN) classification is an extremely intuitive learning technique [33].3 The

idea of the algorithm is to construct a database of all 〈~xi, yi〉 pairs in the training set. A

label (unroll factor) can be computed for a novel example simply by inspecting the labels

of the examples that lie within a fixed radius of novel example. This is a sensible approach

for assigning loop unroll factors: the compiler should treat similar loops similarly. I use

Euclidean distance as the similarity metric. The distance between database entry ~xi and a

novel loop with feature vector ~xnovel is ‖~xnovel − ~xi‖. The feature vectors are normalized

to weigh all features equally; otherwise, features with large values such as loop tripcount

would grossly outweigh small-valued features in the distance calculation. More specifically,

I normalize feature vectors so that each dimension of the vector has zero mean and unit

standard deviation over all of the examples in the training set.

3This technique is also referred to as nearest neighbors within a radius.

109

−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

Figure 6-2: Near neighbor classification. This figure depicts the near neighbors algorithm
on real unroll data. Note that this graphic is only meant to illustrate the idea of near
neighbors: this figure only considers four classes, whereas the remainder of the chapter
considers classification into eight classes; to further improve visualization, I only include
examples where the given unroll factor is at least 30% better than the other three; I use
linear discriminant analysis to find a good 2-dimensional plane on which to project the
multi-dimensional data, and thus the axes are a linear combination of the higher-dimensional
axes [33].

The graph in Figure 6-2 visually depicts the operation of NN on real loop data (but it is

important to point out that this is only a pedagogical example). Each of the points in the

figure represents a loop from my suite of benchmarks. Points represented by pluses, circles,

stars, and dots correspond to unroll factors one, two, four, and eight respectively. Because

there are too many dimensions in the original feature space to graphically depict (equivalent

to the number of features in Table 6.1), I have reduced the dimensionality by projecting

loops from the original feature space — each of which is represented by a feature vector (~xi)

— onto a plane4. Again, however, this example is only meant to highlight the operation

of NN: the experiments I perform in this chapter operate in a 10-D space, as Section 6.5

explains.

The near neighbors algorithm makes predictions for a new point based on the labels of points

4To find a ‘good’ plane onto which to project the data, I use the linear discriminant analysis algorithm
described in [33]. Note that the axes of the graph correspond to a linear combination of the dimensions in
the original feature space.

110

that lie within a specified radius of the new point. For all NN experiments I use a radius of

0.3, the value of which I chose by manually inspecting the distances to training examples

for about 100 random queries. In Figure 6-2, the query point centered by the dotted circle

has three neighbors that lie within the specified radius. The algorithm predicts that the

unroll factor for the query point is the same label as the most commonly occurring label

among the near neighbors. In this case, the algorithm would predict an unroll factor of two,

represented by circles in the figure.

Near neighbors can also assign a confidence to a query. If the vast majority of near neighbors

share the same label, then the confidence of the query is high. Alternatively, there are cases

when there is no clear winner — or even no near neighbors — which corresponds to a low

confidence. In these cases, I simply assign the unroll factor based on the label of the single

nearest neighbor, but more elaborate schemes are certainly possible. One can imagine a tool

that automatically detects outliers by setting low confidence examples aside. An engineer

could then visually inspect outlier loops to determine why they are hard to classify.

Note that NN classification is trivial to train: one simply has to populate a ‘database’

of examples. Though the training time of a classifier is not a paramount concern (since

training the classifier is done offline), the time it takes for the resulting classifier to make

predictions is important (since this task will be performed by the compiler at compile time).

NN classifies a new example by performing a linear scan of the examples in the training set.

For small training sets like mine, the lookup is extremely fast: with over 2,500 examples in

the database, the linear-time scan takes less than 5 ms. Lookup time is far outweighed by

compiler fixed-point dataflow analyses. Furthermore, advances in the area of approximate

near neighbor lookup permit fast access (sublinear time in the size of the database) to

databases on the order of hundreds of thousands of examples, so I expect the NN method

to scale well with database size [38].

6.3.2 Support Vector Machines

A detailed description of support vector machines (SVMs) is beyond the scope of this

thesis, so I only describe the high-level ideas of the algorithm here. The operation of

an SVM is shown in Figure 6-3. There are two unique aspects of SVMs: first, an SVM

111

Don’t unroll
Unroll

Figure 6-3: Support vector machine classification. This figure illustrates the operation of
a support vector machine. To improve visualization in this example I linearly project the
original high-dimensional feature space to a 2-dimensional plane; I show here a case with
binary classification, and I only consider training examples where there is at least a 30%
performance improvement. The SVM non-linearly maps this pedagogical 2-dimensional
space into a higher dimensional space (using a radial basis kernel function [33]). The SVM
then finds the linear boundary in the high dimensional space that maximally separates data
from distinct classes.

maps the original D-dimensional feature space (using a non-linear function) to a higher-

dimensional space where it is easier to ‘separate’ data, and second, in this transformed space

the SVM attempts to find linear boundaries that maximally separate the classes, subject

to a regularization parameter. The regularization parameter adjusts the complexity of the

learned model, which means that an SVM does not necessarily try to minimize the errors

on the training set. Proponents of SVMs claim that this prevents overfitting the training

data, and thus will more likely generalize better to novel examples.

SVMs are binary classifiers, and thus some work must be done to use them in a multi-class

classification context. While there are many ways to do this, one common method uses

output codes [31]. Output codes associate a unique binary code to each label. For example,

112

Prediction Correctness NN SVM ORC Cost

Optimal unroll factor 62% 65% 16% 1x
Second-best unroll factor 75% 79% 37% 1.07x
Third-best unroll factor 84% 85% 58% 1.15x
Fourth-best unroll factor 90% 91% 71% 1.20x
Fifth-best unroll factor 93% 93% 87% 1.31x
Sixth-best unroll factor 96% 96% 91% 1.34x
Seventh-best unroll factor 98% 98% 96% 1.65x
Worst unroll factor 100% 100% 100% 1.77x

Table 6.2: Accuracy of predictions for the nearest neighbors algorithm, an SVM, and ORC’s
heuristic. This table shows the cumulative percentage of correctly made predictions by each
algorithm. For instance, the SVM predicts the optimal or nearly-optimal unroll factor 79%
of the time. The Cost column shows the average runtime penalty over all loops in the
training set for mispredicting (as compared to the optimal factor).

one possible set of codewords for a three-class problem is,

class h1 h2 h3

1 1 0 0

2 0 1 0

3 0 0 1

Now, the problem has been transformed into many binary classification problems. In the

case of the above example, I would train three binary classifiers, each of which would use the

binary partition induced by the codewords. Thus, classifier h1 would learn to discriminate

examples in class 1 from examples in classes 2 and 3. A query’s “code” representation is

formed by concatenating the binary classifier predictions. The multi-class prediction is the

class label corresponding to the closest codeword (in Hamming distance) to the query’s

code. The approach outlined above is also referred to as one-versus-all. Error correcting

codewords can provide better results by using more bits than necessary to describe each

label, but for simplicity I do not use such encodings.

SVMs take longer to train than the NN algorithm (around 30 seconds for my data), but

once the classifier has been constructed, unroll factors for novel examples can be predicted

quickly. For a good description of the operation of SVMs please see [33].

113

6.4 Experiments with Multi-Class Classification

In this section I describe the operation of a multi-class classifier for loop unrolling. More

specifically, I attempt to classify loops into one of eight categories, corresponding to unroll

factors one through eight. Recall that an unroll factor of one leaves the loop rolled.

As mentioned in Section 6.2, I first collect the amount of time it takes for each unroll factor

to execute each unrollable loop in my suite of benchmarks. The unroll factor that requires

the fewest number of cycles to execute a given loop is the label for that loop. For all

experiments in this chapter I use the MASI approach for collecting data. In other words,

the loop examples come from multiple applications, and each label in the training set is

computed using a single static application input. I do not use the full set of 38 features

that I extracted. Instead, as I will discuss in Section 6.5, I use the most “informative” ten

features for classification.

I train the NN algorithm by populating the database with examples. The predicted unroll

factor for a novel loop will be the most common unroll factor of the loops within a radius of

0.3. For the SVM, I obtained the C and Matlab SVM implementation distributed at [92].

The toolkit contains functions for tuning, training, and testing the accuracy of an SVM.

The SVM experiments presented in this section use a radial basis kernel function [33, 92].

Table 6.2 shows the accuracy of the learning algorithms and ORC’s heuristic. Using leave-

one-out cross validation (LOOCV) I find that 65% of the time the SVM finds the optimal

unroll factor, and 79% of the time it chooses either the optimal or the nearly-optimal

solution. The rightmost column in the table shows the average cost associated with mis-

predicting over all loops in the training set. We can tenuously conclude from the table

that 79% of the time, SVM classification is within 7% of the optimal performance (with

this dataset). The NN algorithm performs slightly worse, performing optimally 62% of the

time. However, this should only be looked at as an approximation of how well the algo-

rithms would perform if used in a compiler: I filter out many noisy examples to collect these

numbers, but in the end-to-end experiments I perform later, the learned compiler policy

has to make predictions for all loops.

The histogram in Figure 6-4 shows the distribution of “optimal” unroll factors. The optimal

114

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Unroll Factor

F
re

qu
en

cy

Figure 6-4: Histogram of “optimal” unroll factors. This figure shows the percentage of loops
for which the given unroll factor is optimal. The histogram data was collected from over
2,500 loops (spanning several benchmark suites).

unroll factor for each loop is the class label for the loop; however, because my data collection

technique is imperfect, the class label does not always correspond to the optimal unroll

factor. An interesting observation is that non-power-of-two unroll factors are rarely optimal

for this dataset. The figure also indicates that no one loop unrolling factor is dominantly

better than the others.

6.4.1 Realizing Speedups

In this section I see if improved unrolling classification accuracy yields program speedups.

For these experiments, I compile the SPEC 2000 benchmarks using the learned classifiers

to predict an unroll factor for each loop. Note that I train the learning algorithms using the

MASI approach. In other words, the corpus of training examples comes from a suite of 72

applications, each of which processed a static input file. Then, I determine the generalization

ability of the policies using an approach that is similar to LOOCV: for each benchmark in

115

17
6.

gc
c

25
6.

bz
ip

2

25
3.

pe
rlb

m
k

25
5.

vo
rt

ex

30
0.

tw
ol

f

17
5.

vp
r

19
7.

pa
rs

er

18
6.

cr
af

ty

18
1.

m
cf

25
4.

ga
p

17
9.

ar
t

17
1.

sw
im

30
1.

ap
si

20
0.

si
xt

ra
ck

18
9.

lu
ca

s

17
8.

ga
lg

el

17
2.

m
gr

id

17
7.

m
es

a

16
8.

w
up

w
is

e

18
7.

fa
ce

re
c

18
8.

am
m

p

18
3.

eq
ua

ke

17
3.

ap
pl

u

16
4.

gz
ip

-10%

0%

10%

20%

30%

Im
p

ro
ve

m
en

t
o

ve
r

O
R

C
NN v. ORC
SVM v. ORC
Oracle v. ORC

Figure 6-5: Realized performance on the SPEC 2000 benchmarks. Both NN and an SVM
achieve speedups on 19 of the 24 benchmarks. The SVM achieves a 5% speedup overall,
and it boosts the performance of all SPECfp benchmarks, leading to a 9% overall improve-
ment. Near neighbors performs slightly worse, boosting the performance by about 4%. The
rightmost bar shows the speedup that an “oracle” would attain (7.2% average).

the SPEC 2000 suite, I gauge how well a heuristic induced by training on the examples

from the remaining 71 benchmarks in the training set performs on it. This tells us how well

the learned compiler policy performs on loops that it has not seen before. In addition, the

learned classifier makes predictions for all unrollable loops when compiling a benchmark. I

do not instrument the compiled code for the experiments in this section. Instead I use the

UNIX time command and the median of three trials to measure whole-program runtimes.

Figure 6-5 shows the performance improvement of my method over ORC’s unrolling heuris-

tic. The figure also shows the speedup that the compiler could obtain if an “oracle” were

to make its unrolling decisions. The oracle here simply refers to a classifier that uses the

extracted training labels to make predictions. Thus, the oracle makes perfect predictions

according to the training data set. The SVM achieves a speedup on 19 of the 24 SPEC

benchmarks. Overall my technique attains a 5% average speedup on the SPECs, and a 9%

116

speedup when only the SPECfp benchmarks are considered.

The benchmarks on the left hand side of the graph come from the SPECfp benchmark set.

These applications are highly amenable to loop optimizations, and thus, meta optimization

substantially increases the performance of the loop unroller. The benchmarks on the right

hand side of the graph are from the SPECint application set. The loops in these bench-

marks contain abundant control flow which hinders the effectiveness of the loop unrolling

optimization. For these benchmarks, meta optimization is slightly outperformed on average

by ORC’s human-constructed constructed heuristic (by about one half percent), and the

oracle only achieves a 1% speedup overall.

Note that the oracle is slightly outperformed in a couple of cases because my data collec-

tion methodology is necessarily imperfect. In addition to working within a generally noisy

environment, I assume that the optimal unroll factor of a particular loop does not depend

on the unroll factors of the other loops. While this assumption may not be entirely correct,

it simplifies the data collection process (I can collect the runtimes for all loops given a

particular unroll factor in the same run). The overall performance of the oracle legitimizes

my assumptions.

6.5 Feature Selection

This section focuses on finding the most informative features for discriminating unroll fac-

tors. I take two approaches to feature selection in this section. The first method uses

information theory to score the information content of a feature, and the second method

greedily chooses features that match a given classifier for a given training set. For both

approaches I let fi represent an individual feature from the set of 38 features — 22 of which

Figure 6.1 lists — I extract for each loop F = [f1 . . . f38].

6.5.1 Mutual Information Score

The mutual information score (MIS) measures the reduction in uncertainly in one variable

(e.g., a particular feature fi) given information about another variable (e.g., the best unroll

117

Rank Feature MIS

1 # floating point operations 0.19
2 # operands 0.186
3 instruction fan-in in DAG 0.175
4 live range size 0.16
5 # memory operations 0.148

Table 6.3: The best five features according to MIS.

Rank Nearest neighbor Error

1 # operands 0.48
2 live range size 0.06
3 critical path length 0.03
4 # operations 0.02
5 known tripcount 0.02

Table 6.4: The top five features chosen by greedy feature selection for the nearest neighbor
algorithm. The error numbers reported here are for the training set, hence the low error
rates for these classifiers.

Rank SVM Error

1 # floating point operations 0.59
2 loop nest level 0.49
3 # operands 0.34
4 # branches 0.20
5 # memory operations 0.13

Table 6.5: The top five features chosen by greedy feature selection for the SVM algorithm.
The error numbers reported here are for the training set, hence the low error rates for these
classifiers.

factor u) [33]. The MIS adapted for the loop unrolling problem is given by,

I(fi) =
∑

φ∈Vfi

∑

y∈{1...8}

P (φ, y) · log2(
P (φ, y)

P (y) · P (φ))

where Vfi
represents the set of values that fi can assume. I use the MIS to determine the

extent to which knowing the value of a loop characteristic reduces the uncertainty about

the desired loop unroll factor. Informative features receive higher scores than uninformative

features. I bin the values of continuous features before estimating the probability mass

functions used to compute the MIS.

Table 6.3 shows the five features with the highest MIS.

118

6.5.2 Greedy Feature Selection

There are several problems with MIS, most notably that it does not tell us anything about

how features interact with each other. In addition, even though the score is a metric for

information content, it does not guarantee that the features will be useful for a particular

classifier.

Greedy feature selection identifies features that perform well for a given classifier and a given

training dataset. Given a feature set, F = {f1 . . . fD}, where D is the feature dimension,

the simple algorithm starts by choosing the single best feature, b1 ∈ F , for discriminating

the training dataset (using a particular classifier). The algorithm proceeds by choosing a

second feature, b2 ∈ F , that together with b1, best discriminates the training dataset. In

each iteration of the algorithm a new feature is chosen that minimizes the training error

given the features that have already been selected. The algorithm halts after a user-defined

number of features have been selected.

Tables 6.4 and 6.5 show the five best features for my dataset according to greedy feature

selection using the nearest neighbor and SVM algorithms, respectively. Notice that the

choice of classifier affects the list of features deemed to be the most informative. Also

note that the ideal setting of the radius for the NN algorithm depends on the number of

features I include; for instance, the 0.3 radius setting would not perform well if only a single

feature was considered. For this reason I use the nearest neighbor algorithm — which bases

predictions on the label of the single nearest neighbor to a query — instead of NN.

I used the ten features that correspond to the union of characteristics in Tables 6.3–6.5

to perform the classification experiments presented in Section 6.4. Whenever possible, it

is preferable to use a small number of features when training a classifier. Uninformative

features can ‘confuse’ a learning algorithm or lead to overfitting of the training data. In

addition, learning algorithms are generally more efficient when shorter feature vectors are

used.

Notice that the number of instructions in the loop body appears only once in Tables 6.3–6.5,

and relatively far down the list. I highlight this fact because this feature is the de facto stan-

dard when discussing unrolling heuristics [75]. According to both feature selection methods

119

applied above, there are many other features that are more useful for discriminating unroll

factors. The features that are listed in this section are not entirely surprising; arguments

could be made to support their predictive values. It would be more difficult however, to

determine why the features found by greedy selection are jointly informative.

6.6 Conclusion

Compilers rely on models to make informed decisions. While humans can generate highly

effective models, the number of person hours required to create them may be prohibitive.

This chapter presented novel research on the automatic creation of compiler policies using

supervised machine learning techniques. I used empirical evidence to teach two simple

machine learning algorithms how to make informed loop unrolling decisions.

The learned classifiers predict loop unrolling factors with good precision. Using LOOCV to

find the generalization ability of the classifier, the algorithm is able to predict the optimal

unroll factor for a given loop 65% of the time. Furthermore, it predicts the optimal or the

nearly optimal solution 79% of the time. I translate these results into speedups on a real

machine. Using the Open Research Compiler and targeting the Itanium 2 architecture, I

find that the learning algorithms improve the performance of 19 of the 24 benchmarks in the

SPEC 2000 benchmark set. When I focus solely on loop unrolling, the technique achieves

a 5% improvement on the SPEC benchmarks, while improving the SPECfp benchmarks by

9%.

One argument against using machine learning is that the compiler writer must extract the

features with which the learning algorithms are trained. However, most of the features that

I collected were readily available in the ORC infrastructure; and as with the experiments

I presented in the last chapter, I thought little about which features to include, and I

extracted any feature that I thought might be pertinent to discriminating loop unrolling

factors. Because supervised learning operates offline on a corpus of training examples, it is

possible to thoroughly analyze the information content of the features. I used two forms of

feature selection to identify the most salient features for predicting unroll factors.

Another potential argument against using machine learning to optimize policies is that

120

extracting features and labels takes time. By far the hardest part of this research was

writing the loop instrumentor. If meta optimization techniques become successful, I would

expect compiler infrastructures to export generalized timers to support supervised learning.

With the timers in place, only patience is required to create a training data set. While the

actual training of the classifiers takes less than a few seconds, it does take time to acquire

the labels. However, collecting the labels is a completely unsupervised process, and requires

far less effort than constructing an unrolling heuristic by hand. Unlike the GP policy search

technique I presented in the last chapter, I spent little time tweaking the machine learning

algorithms. Therefore, while the performance results are satisfying, I also excited about the

complexity ramifications of my research.

Perhaps the biggest drawback of the multi-class approach I use in this chapter is how

its predictions are confined to the limits of the labels with which the supervised learning

algorithm is trained (e.g., my learned classifiers will never predict unroll factors greater than

eight). While this limitation may prevent the technique from being used for some compiler

optimizations, the vast majority of optimizations already have imposed constraints. For my

experiments, I set my limits to the greatest unroll factor for which all of the loops in my

training set compile correctly.

In the previous chapter I had the benefit of working within a noiseless simulator. This

chapter shows that, with care, learning techniques can apply in noisy environments. To

combat noise, I assign class labels by using the median of 30 trials for each loop at each

unroll factor. As with the experiments in the previous chapter, the loop unrolling policy

is trained at the factory, and thus the machine-learned policy incurs little compile time

overhead. The next chapter describes a technique that enables ordinary users to contribute

to the data collection process in a self-improving, deployed system.

121

122

Chapter 7

Collaborative Data Collection

In order to adequately train compiler policies using machine learning, we have to collect a

large amount of training examples, and these examples have to be drawn from a diverse set

of applications. Furthermore, as we have seen, applications that we include in the training

set tend to perform better than novel applications. Thus, when we perform at-the-factory

training, the compiler vendor essentially has to guess the applications in which its clientele

is interested. This chapter introduces an approach that mitigates the stringent data require-

ments of machine learning. The next section provides a high-level view of my approach,

which I call collaborative compilation, and Section 7.2 provides implementation details.1

Section 7.3 presents two proof-of-concept experiments that I perform on a prototype col-

laborative compiler. Section 7.4 discusses privacy concerns, and Section 7.5 concludes.

7.1 Collaborative Compilation

Languages such as Java and C# are popularizing a new paradigm of compilation. Under

a traditional processing approach, the software developer ships a pre-compiled binary that

is ready for native execution on the user’s machine. Even though the application may be

used multiple times by millions of people, it is only compiled once. Modern-day interpreted

languages run within virtual machines (VMs) which actually feature just-in-time (JIT)

1I performed this work jointly with Ben Wagner. Please see his Master’s thesis for a more complete
description of collaborative compilation [95].

123

compilers that quickly generate native code on demand. Thus, every time a user runs an

application, the compiler is invoked.

Because the just-in-time (JIT) compiler in a modern-day virtual machine (VM) performs

compilation at runtime, it cannot afford to thoroughly analyze program behavior and eval-

uate multiple compilation options. The speed-of-compilation constraint makes JITs in-

creasingly reliant on effective and efficient heuristics. We can harness the frequent compiler

invocations associated with VM processing to facilitate the machine learning data collection

task.

As more data is added to a machine learning training set, the ability of a learning algorithm

to generalize typically increases. In addition to the quantity of data used, the quality of the

data is also extremely important. Previous attempts to learn compiler heuristics extracted

training data from standardized benchmark suites such as SPEC [89]. Computer bench-

marking has always been controversial because it is difficult for a handful of benchmarks

to simulate a “real world” workload. There is no reason to believe that a compiler that is

tuned to perform well on standardized benchmarks will perform well on applications that

a common user is interested in running.

Of course, we could ask compiler users to endure a time-consuming training process, and

to assemble a representative training set of applications and input data sets. Using this

approach, application developers could customize their compilers to perform well on the

applications and systems for which they are developing. Serious software vendors may

choose to employ meta optimization techniques, but casual programmers will probably not

subject themselves to the additional work required to train a compiler. Typical computer

users — who may not even know what a compiler is — will be even less inclined to optimize

the performance of their favorite applications. A typical user will not use meta optimization

techniques unless the process is completely transparent, non-disruptive, timely, and effec-

tive. I propose collaborative compilation, which satisfies these requirements and enables

typical users to automatically apply meta optimization.

Collaborative compilation asks regular users to contribute to the machine learning data

collection task. A collaborative compiler, which I refer to as a client, may insert low-

overhead (∼1%) instrumentation code that collects data that is suitable for training a

124

Collaborative compilation

client

client

client

clientknowledge
base

ML data

ML datapolicy

policy

M
L

da
ta

M
L data

policy
po

lic
y

Figure 7-1: Collaborative compilation. The compiler may instrument a small fraction of
the generated code to collect data that is used to train a learning algorithm. Users accept
a small runtime overhead as a fair cost for access to the community “knowledge base”. An
offline learning algorithm creates a policy using data that is contributed to the community
knowledge base by collaborative users. Because collaborative users are essentially training
a learning algorithm to work well for the applications and data sets they care about, they
will reap the rewards of contributing to the knowledge base.

machine learning algorithm. The instrumentation code measures the effectiveness of a given

optimization throughout the execution of the VM. Before the VM exits, it contributes the

data that it collected to a centralized knowledge base. Collaborative users will likely receive

good karma from agreeing to contribute their data: these users are training the learning

algorithm to perform well on code in which they are interested. I show in this chapter that

the reward that a collaborative user reaps may well be worth the small instrumentation

overhead.

Figure 7-1 shows a high-level view of a collaborative compilation. When a collaborative

user runs an application, the client VM will fetch the best-so-far compiler heuristics —

which may be cached locally — and use them to make compilation decisions. At the same

time the client may choose to instrument some of the methods in the user’s application.

When the client VM exits, it sends any data it collected to a central repository, where it is

incorporated into a growing training set. Thus, users of a collaborative compiler will accept

a small runtime overhead as a fair cost for access to the community knowledge base.

125

Communities can range in size from millions of users to a single user taking advantage of the

repeated use of a working set of programs. Perhaps specific collaborative communities could

be established for users that share common processing interests (e.g., a scientific computing

community). In large communities, users have access to a much larger corpus of training

data than they could generate on their own.

A successful collaborative compiler must have the following attributes:

• Transparent: users will not endure a separate training phase. Learning must be

performed online and incrementally. A collaborative system transparently trains the

compiler while it runs applications.

• Low overhead: people will not use this system if the instrumentation overhead negates

the benefits of access to the community knowledge base. Collaborative systems use

two techniques to reduce the overhead so that it is unnoticeable.

• Timely: users will not tolerate a long training process. Collaborative systems, which

have access to a vast community corpus of training data, can quickly reap performance

benefits.

• Accurate: the goal is to isolate and measure the effect of the proposed heuristic. In

other words, there must be a mechanism for discarding noisy measurements. In addi-

tion, runtime measurements must be independent of system workload. Collaborative

systems employ two techniques to identify and filter noisy measurements.

• Effective: users will only be inclined to use collaborative systems if doing so improves

the performance of their applications. Proof-of-concept experiments show that these

techniques can lead to substantial performance improvements.

This chapter evaluates a prototype collaborative compiler that successfully tackles these

issues. The next section describes the instrumentation required to collect machine learning

training data.

126

7.2 Collaborative Instrumentation

The high-level goal of collaborative compilation is to enable ordinary users to transparently

train their JIT compilers to perform well on the applications and systems in which they

are interested. The major component of collaborative compilation focuses on extracting

empirical performance data that is suitable for training machine learning techniques. The

data requirement varies depending on whether the compiler uses a policy search approach

or a supervised learning approach.

Consider the supervised learning approach that the last chapter discussed. For each loop in

an application I extract a feature vector and an empirically found label. The label indicates

which unroll factor is the best for the corresponding loop. We can collaboratively extract

this information using a JIT: extracting features is still easy, but now we have to devise a

strategy to determine the the loop’s label online, without adversely affecting the user.

I will build on the (somewhat naive) collaborative approach to on-the-fly data gathering

shown in Figure 7-2. The client first randomly chooses a method to instrument, in this

case addScalar (shown in part (a)). After the client extracts a feature vector to describe

the loop in the method — which could include system information to distinguish differ-

ent processing platforms — it creates two new versions of addScalar: addScalar’ and

addScalar’’, which are shown in parts (c) and (d), respectively. The loop in addScalar’’

is unrolled, whereas the same loop is left intact in addScalar’. Figure 7-2 (b) reveals that

the instrumentor wraps timers around the calls to addScalar’ and addScalar’’ in the

original method. In addition, the original method is updated to randomly choose between

executing one of the two newly-created versions, or executing the original code. I use the

sampling technique described by Liblit et al. in [63] to reduce the overhead of choosing

which version to execute.

With this instrumentation in place, the client can then determine, for example, whether un-

rolling is beneficial for a given loop by repeatedly sampling these new versions, addScalar’

and addScalar’’. Sampling, in this context, refers to measuring the runtime of a single in-

vocation of one of the newly-created methods. The instrumentor assigns each instrumented

method a set of storage cells, which I call the “accumulator array”, to keep track of runtime

127

public void addScalar(char* a, int c, int n) {
for(int i = 0; i < n; i++) {

a[i] = a[i] + c;

}
}

(a) Original version.

public void addScalar(char* a, int c, int n) {
if(shouldWeSample()) {

if(pickVersion()) {
start timer;

addScalar’(a, c, n);

stop and accumulate timer;

} else {
start timer;

addScalar’’(a, c, n);

stop and accumulate timer;

}
return;

}

for(int i = 0; i < n; i++) {
a[i] = a[i] + c;

}
}

(b) Original version, sampling added.

public void addScalar’(char* a, int c, int n) {
for(int i = 0; i < n; i++) {

a[i] = a[i] + c;

}
}

(c) Rolled version.

public void addScalar’’(char* a, int c, int n) {
int i = 0;

for(; i < n % 4; i++) {
a[i] = a[i] + c;

}

for(; i < n; i+=4) {
a[i] = a[i] + c;

a[i+1] = a[i+1] + c;

a[i+2] = a[i+2] + c;

a[i+3] = a[i+3] + c;

}
}

(d) Unrolled version.

Figure 7-2: (Naive) Instrumentation by a collaborative compiler. The client randomly
selects — according to a user-defined rate — a small subset of methods to instrument.
When a method is selected, the system creates three versions of the method. First, as
shown in (b), the system inserts code in the original method which will occasionally sample
from two newly-created methods, which are shown in (c) and (d). The methods in (c) and
(d) are optimized in two different ways, and both are timed to note runtime disparities
between the two optimization approaches.

128

statistics.

At runtime, the inserted instrumentation code measures the total elapsed time of each

method invocation and stores the value in the accumulator array, which I show in Figure 7-

3(a). The square of the elapsed time, t2 is also accumulated and a method-specific sample

counter N is incremented. With this information, a client can compute the mean and

standard deviation of a method’s runtime samples.

If there are enough samples to determine that one version is statistically better than the

other, the client will create a machine learning label for this loop. The client assumes that

one version is clearly better if there is at least a 3% performance difference between the

two versions. In the prototype compiler, the label takes the form of a runtime ratio that

indicates which of the two optimized versions was the best.

Before exiting, the client computes the average runtime for both versions. Based on runtime

averages it will compute a label that indicates which version was the fastest. The feature

vector(s) and label(s) collected during execution are then sent to the knowledge base. A

machine learning algorithm uses the aggregated data to induce a classifier for predicting

when to apply the optimization.

7.2.1 Coping with Noise

For really large communities, the naive approach may be sufficient. The law of large numbers

would allow the knowledge base to accurately estimate the relative benefits of one heuristic

over another.2 For instance, for reinforcement learning approaches, the knowledge base

could accumulate samples until it has a high confidence in the relative benefit of one heuristic

over another [84]; and for supervised learning, the knowledge base could aggregate all

training examples that share the same feature vector, and statistically compute the most

common label among them.

However, for small communities, the general approach described above suffers from one

primary problem: system noise. In order to be successful for small communities, the system

2This assumes that the distribution of noise has zero mean and is symmetric, which the experiments in
this chapter indicate.

129

addScalar’ addScalar’’

�
it

�
2
it 1N

�
jt

�
2
jt 2N

addScalar’ addScalar’’

�
it

�
2
it 1N

�
jt

�
2
jt 2N11T 12T 21T 22T

1 2

�
it

�
2
it aN1

�
jt

�
2
jt bN1

�
kt

�
2
kt aN2

�
lt

�
2
lt bN2

1 2

addScalar’ addScalar’’

(a)

(b)

(c)

Figure 7-3: Various accumulator arrays. The accumulator array for the example in Figure 7-
2 under various modes of operation. In its most basic mode, the system accumulates the
sum, the sum of squares, and the total number of samples for each version (a). With this
information it is possible to compute the mean and variance of the method runtimes. Part
(b) shows the form of the accumulator array for median filtering (median of three). Part
(c) shows the array when using redundant versions. Not shown is a simple extension of (b)
and (c) that combines median filtering and redundant versions.

must be able to isolate the impact of a heuristic, even if the heuristic only slightly affects

performance. Needless to say, it would be difficult to learn a heuristic if its effect were less

than the noise tolerance. My target for noise tolerance is 3%, which is more ambitious than

the 5% tolerance that I, along with other researchers have used in previous work [72, 90].

In other words, if one version is 3% better (or worse) than another version, the system

recognizes this as an informative machine learning training example.

Java virtual machines (JVMs) are complicated systems. At any given time a JVM is

juggling several threads. A thread switch during a timed sample may completely skew the

runtime average of a method’s samples. Furthermore, methods can be swapped out on the

fly with better-optimized versions that can lead to big boosts (or dips) in performance.

The garbage collector can also drastically change the runtime performance of a method. A

copying garbage collector, for instance, may change the alignment of code arrays, which can

cause sizable performance changes. Even for identical code copies, different addresses can

yield disparate branch predictor and instruction cache performance [50].

130

In addition to virtual machine noise, a client also has to deal with operating system (OS) and

computer architecture noise. It is not uncommon for any number of hardware or software

faults to occur during the execution of an application. OS context switches and page faults,

for instance, can add significant amounts of noise to runtime samples.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5
x 10

5

Sample Number

C
yc

le
s

(x
10

5)

Original Samples (note scale of Y axis)

0 100 200 300 400 500 600
1300

1400

1500

1600

1700

1800

Sample Number (scaled x3)

C
yc

le
s

Median Filtered Samples (note scale of Y axis)

0 100 200 300 400 500 600
1200

1400

1600

1800

2000

Sample Number (scaled x3)

C
yc

le
s

Median Filtered Samples of Two Redundant Methods

(a)

(b)

(c)

Figure 7-4: A typical series of method-level samples. These charts plot the runtime (in CPU
cycles) of invocations of a typical method over time. The chart in part (a) does not use
median filtering, and thus we can see several erroneous spikes in runtime. Such transient
measurements can skew the runtime average since they are often orders of magnitude higher
than average. The data in part (b) shows a median-filtered version of the graph in part (a)
(note the scale change of the Y-axis). Finally, the graph in part (c) shows how the mean
runtime of two identical methods can differ solely because of code placement. A client
should reject the samples in (c) because of the large performance difference between the
two identical copies.

Figure 7-4 (a) plots the runtime samples of a method that does a constant amount of

work per invocation. Any given sample corresponds to an invocation of the method. Each

invocation has a corresponding runtime, shown on the Y-axis, which describes how many

CPU cycles it took to execute the method in that invocation. The raw data in the top chart

131

has several transient spikes in runtime. Because these surges are often orders of magnitude

greater than the average sample times, they can significantly affect the computed mean and

variance of the runtime.

It is simply not possible to eliminate noise in the virtual machine. Identifying and dis-

carding noisy samples is a much better approach. Collaborative systems employ two online

techniques that effectively filter noisy samples: median filtering, and creating redundant

methods. As Figure 7-4(b) shows, median-of-three filtering nicely discards infrequent spikes

in method runtimes (note the scale of the Y-axis). The accumulator array for median fil-

tered collaborative compilation is shown in Figure 7-3(b). In this scenario samples are not

immediately accumulated; when three samples have been collected the system identifies and

accumulates the median value.

While median filtering effectively eliminates transient spikes in runtime, it will not help

identify noise due to differences in memory alignment. Figure 7-4(c) shows that the per-

formance of two identical methods can differ solely because of their placement in memory.

For instance, code alignment can affect instruction caching behavior and the effectiveness

of the branch predictor [50].

In addition, the reader may wonder how workloads that vary with invocations (e.g., have

drastic phase shifts [88]) will affect collaborative compilation. For example, an invocation

of a sorting method that sorts an array of length 10 will have a much smaller runtime than

an invocation of the method with an array of length 10,000. A collaborative system might

believe that one version of a method is superior to another only because it was repeatedly

tested on abnormally small workloads. To detect such cases, a client creates redundant

versions of a method. The only difference between copies of a version is where they are

placed in memory. The system uses these duplicate copies to gauge the level of noise for a

set of samples. For instance, the client can discard samples where there is a large average

runtime discrepancy between the two identical copies. Figure 7-3(c) depicts the accumulator

array for the redundant methods.

While the aforementioned safeguards cannot completely eliminate noisy examples, they do

have an immediate impact as seen in Figure 7-5. The histogram empirically demonstrates

that a client, with median filtering and redundant methods, can effectively reduce measure-

132

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.64

R
el

at
iv

e
Fr

eq
ue

nc
y

(a) No filtering.

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.68

(b) Median filtering.

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.86

R
el

at
iv

e
Fr

eq
ue

nc
y

(c) Redundant methods.

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.89

(d) Redundant methods & median filtering.

Figure 7-5: Checking the accuracy of collaborative training labels. This figure shows his-
tograms of runtime ratios obtained when 10,000 pairs of identical methods (from the Da-
Capo benchmark suite) are compared. For any given trial, because the methods are identi-
cal, we expect the runtime ratio to be 1. The histogram in (a) uses no filtering, and thus,
only 64% of the labels are within 3% of 1. Using median filtering only, as in part (b), 68%
of the labels are within 3%. Filtering with redundant methods vastly reduces noise: part
(c) shows results when using redundant methods only, and part (d) shows that 89% of the
labels lie within 3% tolerance when using both redundant methods and median filtering.
This figure highlights the fact that, although clients cannot eliminate system noise, they
can effectively filter noisy labels. The load on each machine varied unpredictably during
the experiment.

ment error. The histogram plots the labels of training examples — essentially runtime ratios

— obtained when comparing thousands of identical methods from the DaCapo benchmark

suite [28]. For this experiment a client randomly chooses methods to instrument. It then

creates two identical versions and measures the mean runtime for each throughout the exe-

133

cution of the benchmark to which it belongs. It finally computes a runtime ratio by dividing

the mean of one method by the mean of the other method. Notice that most of the ratios

are tightly clustered around 1, which is the desired value for this experiment.

The figure is especially compelling because the labels come from Pentium III and Pentium

4 machines that are shared by several research groups, and the load on each machine varied

unpredictably (from unloaded to completely loaded) during the experiment. The data in

Figure 7-5(a) shows that no filtering of the data yields poor results. Only 64% of the data

are clustered within 3% of 1. This could be due to variations in calling context, differences

in memory alignment, VM noise, OS noise, or miscellaneous architectural noise. Part (b)

shows that median filtering can provide modest improvements in accuracy. The use of

redundant methods is by far the most effective technique for reducing noise, as part (c)

indicates. Finally, by combining median filtering and redundant methods, a client ensures

that 89% of the runtime ratios are within ±3% of 1. Previous machine learning researchers

have successfully used a threshold of at least 5% — which contains 96% of the labels

in this experiment — to gauge whether one version is better than another [72, 90] (See

Section 6.2.5).

There are two components to a VM’s total runtime: compilation time, and method runtime.

When a long runtime is expected the user may wish to instruct the VM to aggressively

compile an application (e.g., the -server option on Sun’s virtual machine). In other words,

for long running programs, it is more appropriate to minimize the “steady-state” runtime

at the expense of compile time. The timers discussed above only measure method runtimes,

and therefore, they are only appropriate for learning to improve steady state performance.

However, many users are interested in quick-running programs where compile time must

be minimized. My infrastructure provides a mechanism for computing the total runtime of

a method, which includes the time spent in compilation. Thus, in addition to the label,

a client can also report the compilation rate of the optimization in bytecodes per cycle.

In contrast to collecting runtime samples, a collaborative client can only afford to collect

a small number of compile time samples per instrumented method (because compilation

is very expensive). Thus, the knowledge base will not use this information until it has

aggregated enough compile time samples to make accurate predictions of the means.

134

Rate Total

0.01 1%
0.05 8%
0.10 13%
0.20 24%

0.10 & capped at 1 2%

Table 7.1: Runtime overhead of collaborative compilation averaged over 12 complete runs
of the specjvm98 benchmark suite [89]. The rate column shows the rate at which methods
under compilation are selected to be collaboratively compiled. The total column contains
the total overhead of the collaborative system, including the cost of compiling redundant
methods, and of sending any gathered data to a collaborative server. The last row shows the
overhead when at most one method is instrumented per run. For large enough communities,
the instrumentation rate could be set such that there would be virtually no overhead.

7.2.2 Implementation Details

I have extended JikesRVM, which is an aggressive open source virtual machine that features

a JIT compiler [6]. The prototype client can instrument multiple methods per run of an

application. I reduce the amount of bookkeeping that the system must perform by allowing

only one thread and one method invocation to sample at a given time. Thus, if the system

were sampling a recursive method, subsequent recursive calls to that method would not

trigger the timer. The system times all computation that a method performs, including the

time spent in any methods it might call.

7.2.3 Runtime Overhead

This section discusses the overhead associated with collaborative compilation. Table 7.1

lists the average overhead of the system over 12 complete runs of the specjvm98 bench-

mark set [89]. I computed the overhead numbers using the user time reported by the

time command. These numbers include the cost of compiling four additional methods for

each collaboratively instrumented method and connecting to the knowledge base over the

network.

Later I discuss an experiment where the prototype compiler automatically tests the efficacy

of two key parameters for tuning the method inliner in Jikes RVM. The effectiveness of

these settings is highly dependent on which method is being compiled. As a result, a client

135

will sometimes try a setting that reduces the performance of the instrumented method.

Because the client will infrequently sample the instrumented methods, however, the overall

performance is hardly affected. The numbers in Table 7.1 account for occasionally making

bad decisions.

For all the experiments I perform in this chapter, I set the instrumentation rate at 10% and

cap the number of instrumented methods at one. In other words, with these settings, the

system will never instrument more than one method per run. This approach also eliminates

the possibility of instrumenting two different methods that are linked to each other in the

program call graph (i.e., one method either directly or indirectly calls another method).

The runtime overhead of using this option is small, as the last row of Table 7.1 indicates.

In the traditional compile, profile, feedback cycle, gathering data is an expensive proposition.

These feedback-directed systems were designed to extract as much data as possible during

the profiling phase. In contrast, a JIT is invoked every time a user runs an application on

a VM. Thus, unlike a traditional feedback-directed system, a collaborative compiler does

not have to gather data in wholesale. Instead, a client can afford to collect a small amount

of information per invocation of the JIT. For large communities, a client can make do with

instrumenting a negligible number of methods per VM invocation, which will drive the

client’s overhead toward zero.

7.3 Case Study: Improving Steady-State Performance

This section serves as a proof-of-concept validation of collaborative compilation. The ex-

periment I present here investigates improving the steady-state performance of the DaCapo

benchmark suite [28], and uses the SASI approach to application specialization.

Some users are more concerned with steady-state performance than they are about compila-

tion overhead. This section describes a simple experiment with the method inliner in Jikes

RVM. Method inlining can have a large effect on the resulting performance of a Java applica-

tion. Small accessor methods are commonly used in Java, which can lead to relatively high

calling overheads for small amounts of computation. Inlining of such methods can lead to

substantial performance gains. However, if the compiler overzealously inlines method calls,

136

instruction bloat and register pressure could degrade overall performance. For instance,

my system found that inlining the calls of the primary method (TrapezoidIntegrate) of

series in the Java Grande benchmark suite [49] leads to a 27% slowdown.

There are two key inlining parameters that adjust the aggressiveness of the JikesRVM

inliner. One parameter sets the maximum inline depth, and the other restricts the size

of methods the inliner will consider for inlining. In this experiment I used the system to

compare the relative benefits of three options: using the default settings, doubling the values

of both parameters, and halving the values of both parameters.

When the client selects a random method for instrumentation, it chooses to compare random

pairs of these three options. At the completion of a collaborative execution, the VM sends

the contents of the accumulator array to the centralized server. The centralized server

catalogs and maintains a database of training examples. The server then constructs an

application-specific database of the best per-method, inlining parameter settings. For each

benchmark, I collect around 600 training examples, which roughly corresponds to running

the application (over and over) for ten hours on a single machine. Note that this is a SASI

approach because I repeatedly run each benchmark with the same input file to populate

the database.

Because this experiment aims to maximize steady-state performance, I compare against a

VM that compiles all methods at the highest level of optimization. I also use the so-called

replay system in the virtual machine, which is essentially a profile-directed system. I ver-

ified that aggressive compilation and the use of profile-directed feedback in the comparison

system is faster (in the steady-state) than allowing the VM to incrementally re-optimize

methods. In other words, I compare against the fastest steady-state strategy. To collect

the steady-state runtime, I iteratively run each benchmark three times and take the fastest

of the last two runs. It is important to note that in replay mode, the VM compiles all

methods upfront, and thus compilation time does not factor into these results (i.e., no

compilation is performed in the second and third iterations of the benchmarks).

Figure 7-6 shows the gains attained by collaborative compilation on the DaCapo benchmark

suite (version 050224) [28].3 The results are averaged over ten runs of each application and

3My version of the RVM cannot run xalan, batik, or chart because of preexisting bugs.

137

5%

4%

-5%

0%

5%

10%

15%

20%

bloat fop hsqldb jython pmd antlr ps geomean

S
te

ad
y

S
ta

te
 S

p
ee

d
u

p

Training set Test set

Figure 7-6: Steady-state performance of collaboratively tuned benchmarks. The knowl-
edge base was populated with training examples for each benchmark (around 600 examples
for each benchmark) running the default dataset. As expected, access to the knowledge
base significantly increases the performance of these applications on the default dataset.
However, it also speeds up the alternate dataset, significantly in some cases.

input data set. This experiment was performed on a single 1.8 Ghz Pentium Mmachine with

512Mb of memory running Ubuntu Linux. The training input data set was exclusively used

to populate the collaborative database. The black bar indicates the performance of each

application on the training data set (which corresponds to the ‘default’ input in DaCapo).

We see that the collaborative database leads to substantial improvements for four of these

benchmarks, and furthermore, it does not slow down a single application. On this input

set, the database leads to a 5% improvement. Interestingly, when we apply the test dataset,

shown by the the gray bars, the performance is actually better for three of the benchmarks.

I use the ‘small’ input as the test data set. Because this input set processes less data

than the training input (for the most part), the memory system is not a bottleneck, which

increases the net impact that improved inlining settings have on performance. Overall, the

database leads to a 4% improvement on the test dataset.

138

7.4 Reducing Privacy Concerns

The virtual machine obviously has access to all of the code that is run by a user. Therefore,

privacy-conscious users may understandably be wary of using a system that communicates

abstracted descriptions of the programs it runs to a centralized server. I have done several

things to allay such concerns.

First, if the collaborative community were to adopt a reinforcement-style learning algorithm

such as policy search, the only data that a client would communicate to the knowledge base

is a reinforcement signal — in the form of a runtime ratio — that indicates whether the

agent’s actions were beneficial.

Second, in the event that the community chose to use supervised learning, the data that is

sent only summarizes high-level abstractions of the code that the virtual machine has run,

as well as a label which indicates the configuration that results in the best performance.

Furthermore, the system only collects per-method measurements for small slices of the

program. It would be difficult to piece together the structure of a program based on data

reported to the centralized server. I acknowledge that the proof-of-concept experiment

communicates fully-qualified method names, which is a definite privacy leak. As the system

matures, I will replace these names with abstract feature vectors. This means that there

may be conflicts (i.e., two different methods might have the same feature signature), but it

also has the advantage that there will be no problems with versioning (i.e., there might be

several methods named Foo.foo that have entirely different structures).

For users who do not want others to have any idea of the appearance of the programs they

run, the collaborative compiler can be configured to run locally. No data is communicated

to the outside world.

7.5 Conclusion

Collaborative compilation has the potential to alleviate the data collection requirement

imposed by meta optimization. A potential drawback of the meta optimization methodology

is that it requires a separate training phase, which is performed “at the factory.” However,

139

such factory settings may not work well in the field: subtle differences between architectures

and operating systems can negate the improvements of at-the-factory training. In contrast,

collaborative infrastructures offer a diverse pool of training data from which a general

heuristic can be constructed. Furthermore the process of training a collaborative heuristic is

much simpler from the user’s perspective than the process employed by previous researchers:

simply running the application trains the heuristic.

The work presented in this chapter is an important first step toward collaborative com-

pilation. I show that the sampling overhead is quite small with respect to the potential

gains of such a system. The data extraction mechanism is effective because it focuses on

the programs (and input data sets) that users are actually running. In addition, users have

access to a potentially much larger knowledge base than they would be able to generate on

their own.

While the prototype collaborative compiler resides in a JIT, one could easily apply the

techniques described in this chapter to traditional compilation. In fact, a traditional com-

pilation framework would pose fewer challenges as much of the engineering effort was spent

dealing with VM noise and speed-of-compilation constraints.

140

Chapter 8

Related Work

The idea of applying machine learning techniques to difficult systems problems is becoming

increasingly accepted. In fact, many researchers have applied machine learning to compi-

lation. This chapter describes the work that is most related to the research I presented in

the previous chapters.

The next section describes searching approaches that have been applied for program special-

ization. This mostly corresponds to SASI training. Remember, there is no guarantee that

applying the parameter settings that maximize the performance of the specialized applica-

tion will enhance the performance of any other program. The following section describes

MASI approaches, which attempt to find a unique heuristic that performs well for a wide

range of programs. This chapter concludes by describing work that relates to collaborative

compilation.

8.1 Program Specialization

The Superoptimizer is among the first approaches to program specialization [70]. Superop-

timization exhaustively searches for programs with certain properties, such as the smallest

sequence of instructions that performs a certain task. For instance, in [70], the Super-

optimizer takes as input an assembly specification of a function, and then it creates all

possible assembly programs that contain less instructions than the input. Each of these

141

computer-generated sequences is run on an array of inputs and the outputs are tested

against precomputed outputs that are known to be correct. While this quick-and-dirty cor-

rectness check is not perfect, it significantly increases search speed. A much slower Boolean

test, which validates the correctness of a sequence bit-by-bit, can be used to validate short

sequences found by the quick-and-dirty test. Superoptimizers often find extremely clever

(and shorter) sequences that perform the same computation as the input program. How-

ever, because pointer arithmetic drastically complicates the search, this approach is only

feasible for short input functions that do not access memory [70].

Bernstein et al. manually identified three priority functions for choosing spill variables [12].

The authors mention that these priority functions are applicable under different scenarios.

For each method, their technique performs a compile-time search for the priority function

that spills the fewest variables to memory. This simple approach increased the effectiveness

of their register allocator; the cost of the compile-time search in this case was limited to

roughly a 3x slowdown of the register allocator.

Iterative Compilation, which is a SASI program specialization technique, refers to any num-

ber of iterative searching methods to find near optimal command line parameter settings

for a given application [14, 53, 55, 54, 27, 79, 59]. Iterative Compilation is an increasingly

popular technique because of its simplicity and sheer ability to highly optimize an applica-

tion. Agakov et al. add an interesting twist to iterative compilation: they increase the speed

of iteration by combining MASI supervised learning techniques that can quickly identify

and skip over command line settings that are likely to perform poorly [2]. ACOVEA, a

freely-downloadable compiler tuning package, uses a SASI approach and genetic algorithms

to find high-quality command line settings for an application [59].

Recall that the passes of an optimizing compiler are not well coordinated with downstream

passes. One alternative to tweaking optimization heuristics to achieve symbiosis among

the passes is to rearrange the order in which the passes are applied. Cooper et al. at

Rice University use genetic algorithms (GAs) and the SASI approach to find good phase

orders for application specialization [25, 26, 24]. Their compiler implements ten different

optimizations, which can be run multiple times and in any order. They fix the maximum

number of passes to be run at 12, leading to a search-space size of 1012. Their GA assigns

142

a fitness to each individual based on how compact the generated code is; shorter gener-

ated code sequences correspond to higher fitness levels. Thus, we expect the length of

code generated by the best individuals to monotonically decrease with generation number.

Intuitively, phase ordering can benefit greatly from encouraging the survival of effective

local solutions; it may likely be the case that some optimizations expose key properties of

the code that downstream optimizations can exploit. Their work shows that GAs, which

purportedly preserve good local solutions, are far more efficient than random sampling for

this problem [25]. Other researchers have conducted similar studies with different learning

techniques and infrastructures [82, 58].

Many other compiler researchers have also creatively used genetic algorithms for program

specialization. Steven Beaty used genetic algorithms to search for effective instruction

schedules [10, 11]. His work used a GA to enumerate instructions for scheduling; an off-the-

shelf list scheduling algorithm uses the instruction enumerations to schedule instructions

legally, and in a good priority order.

Researchers have also investigated using genetic algorithms for compiling to embedded

systems. Imtiaz Ahmad et al. follow the same scheduling approach described in [10]

for compacting microcode [3]. Martin Grajcar extends [10] and [3] by scheduling across

branches [40]. Gary Grewal et al. use GAs to compile for a Digital Signal Processor

(DSP) [42]. Their system first compiles code for a simple and easily-targeted machine

model, which they call the clean machine. A genetic algorithm then searches for good

translations from clean machine instructions to target DSP instructions. Their work fo-

cuses on instruction selection and register allocation.

Gradient-based hill climbing and simulated annealing approaches have been successfully

applied to solve 2-D and 3-D bin packing problems to which layout and scheduling prob-

lems map. For instance, it is quite common to use simulated annealing for automating

VLSI circuit layout (e.g., [87, 97, 85, 48]). Recent work has used simulated annealing to

statically distribute processing workload on multi-core architectures [39]. For a good survey

on approaches to solving layout problems, see [16, 93].

143

8.2 Meta Optimization Related Work

Instead of searching for effective application-specific solutions, the approaches I describe

here search for quality, general-purpose compiler heuristics using MASI training. Of course,

meta optimization can also be used to specialize the compiler for a given application as I

explained in Chapter 5; and some of the program specialization approaches I described in

the last section could have been applied to meta optimization (though they were not) by

including the notion of a diverse training set.

Calder et al. provide the earliest example of meta optimization [17]. They used supervised

learning techniques to fine-tune static branch prediction heuristics. They employed neu-

ral networks and decision trees to construct effective static branch prediction heuristics.

Their machine-learned techniques achieved a prediction rate of 80%, while state-of-the art

program-based prediction heuristics could only achieve 75% accuracy. There are two impor-

tant distinctions that distinguish my approach to supervised classification from theirs: first,

branch prediction is a binary problem that is simpler than the multi-class problem my work

considers; and secondly, their problem has the benefit that instrumentation code to deter-

mine branch direction will not affect the direction to which branches are resolved. In other

words, they were able to work with a noiseless dataset. Even in a controlled environment,

back-to-back runs of a program on a real machine will result in different program runtimes.

To deal with noise for learning with empirical runtime data, I used repeated sampling and

median statistics to assign class labels to the training data set.

Monsifrot et al. use a classifier based on “boosted” decision tree learning to determine

which loops to unroll [72]. Their work considers binary classification, leaving the choice of

unroll factors up to a compiler heuristic. Doing so, their learned classifier correctly predicts

86% of the loops in their benchmark suite. My work takes a multi-class approach that not

only predicts if a loop should be unrolled, it also predicts the best unroll factor for the

loop. Judging by the histogram in Figure 6-4, simply unrolling all the time will achieve

77% accuracy, and while unrolling may be better than not unrolling for a given example,

Table 6.2 shows that choosing the wrong unroll factor can severely limit performance.1

1I use a different infrastructure than that presented in [72]. Therefore, the reader should not directly
compare the 77% accuracy achieved by always predicting unroll on my infrastructure against the binary
classification results [72] presents.

144

Cavazos and Moss use supervised learning to improve the compilation speed of a Java JIT

compiler [19]. They train a learning algorithm to recognize when the compiler can forgo

scheduling a basic block without sacrificing much performance. The resulting JIT compiles

code faster while retaining 90% of the performance of scheduling every basic block. For a

similar reason, Cavazos et al. use supervised classification techniques to choose between two

different optimizations: they learn when it is appropriate to use a compile-time intensive

graph coloring allocator instead of the fast linear-scan allocator [20]. While these two

problems are interesting and well-formed, they are again both binary problems.

Cavazos et al. use iterative compilation based on GAs to search the space of command line

settings for a Java Virtual Machine [21]. In particular, they use their system to search for

good settings to five command line arguments that affect method inlining.

Moss et al. use supervised learning to learn how to schedule instructions from a ready work-

list [74]. Because of the combinatorial blowup of measuring all permutations of instructions

— in order to extract the training data examples — it is unclear whether a supervised

approach applies to this problem. The authors achieve good results, but they admit that it

was difficult to cast the problem into a form suitable for supervised learning.

Shortly thereafter, McGovern et al. used the TD(λ) reinforcement learning approach to

learn to schedule instructions in a basic block [71]. The TD(λ) heuristic performed slightly

worse than the hand-crafted commercial scheduler against which they compared. This

approach to meta optimization resembles my policy search experiments; while policy search

and TD(λ) are both forms of reinforcement learning, policy search is the simpler approach.

Policy search simply looks for a policy that works well in the compiler’s environment,

whereas TD(λ) tries to estimate the utility of being in a given state in the environment and

bases decisions on the utilities. In addition, I recognized the critical importance of priority

functions, and the applicability of policy search to automatically creating them; this thesis

shows results of policy search for two priority functions. I describe a third experiment in [91]

that uses policy search to find a policy for data prefetching. These three experiments show

that policy search is a generally applicable technique.

Shun Long et al. use classification to select among a set of optimizations that historically

performed well for similar code [66]. Their creative approach learns how to effectively predict

145

which combinations of transformations are applicable for a given code segment. They

performed their experiments concurrently with the multi-class experiments I conducted in

this thesis. One drawback of the methodology presented in [66] is the size and similarity of

the benchmarks on which the system was tested: they used small kernels, many of which

are quite similar to one another, to test their methodology.

8.3 Collaborative Compilation Related Work

Diniz and Rinard implemented a system for improving the dynamic, or steady-state per-

formance of an application [32]. Their system creates multiple versions of a method and

periodically samples each to see which version is the fastest for a given computation. More

recently, Lau et al. use a similar approach to Diniz’s for automatically adapting the steady-

state performance of IBM’s product Java VM [61]. The key difference between my work

and these related projects is that my data is intended to be contributed to a collaborative

community of users, and thus the data we extract must be representative of possible future

runtimes. The dynamic approaches employed by Diniz and Lau do not necessarily care why

one version is better than another; their systems can attain speedups as long as one version

is better than another. In theory, by learning when to apply a given optimization, a collab-

orative approach can improve the total runtime of an application, not just the steady-state

runtime.

Arnold, Welc, and Rajan, maintain an application-specific database of profile information

to improve the performance of a user’s applications [7]. Their system collects profile infor-

mation, in the form of coarse timer information, across multiple runs of a given application

that helps identify — early in the application’s execution — which methods are likely to

become “hot”. Their system, like mine, gradually accrues data that helps improve future

invocations of the program. Essentially, their system provides a good estimate of the ex-

pected future runtime (in terms of baseline-compiled time) of a given method. Thus, their

work is exceptionally effective at improving the startup costs of a VM because it does not

spend time compiling ephemeral methods (and it can also aggressively compile long-lasting

methods). My work is orthogonal to theirs; the information my system gathers would im-

prove their results, and likewise their information would improve mine. Another major

146

differentiation is the scalability of the two different approaches: collaborative compilation

can support large communities, whereas the work in [7] is designed exclusively for local

usage.

Ben Liblit et al. have implemented a system for isolating bugs. Their system instruments

user programs at-the-factory with statistically sampled code that tracks the values of key

program variables. Users pay a slight runtime overhead in exchange for helping the software

developer identify bugs [65, 64, 63]. Their system, like collaborative compilation, benefits

from the analysis of large amounts of aggregated data.

147

148

Chapter 9

Conclusion

This thesis introduces a systematic process for automatically creating compiler heuristics.

The meta optimization approach takes advantage of the typical two-phased construction of

compiler optimizations. First an optimization’s correctness phase ensures that the compiler

will not generate incorrect code, and then the policy phase determines which of the legal

actions to take. Focusing optimization effort on the policy has several advantages:

• Any policy is legal. This is an important attribute, because above all else, users trust

the compiler to faithfully maintain the semantics of an input program.

• Policies are critical to performance. In this thesis I have closely examined several

compiler heuristics. I have shown that a good compiler policy can easily provide a

factor of two speedup over poor policies.

• Policies are prevalent in compilers. My research has automatically constructed heuris-

tics for hyperblock formation, register allocation, data prefetching, loop unrolling,

method inlining, phase ordering,1 and adaptive recompilation. Many other optimiza-

tions could also benefit from my approach.

Priority functions are an important subclass of policies. Many suboptimal heuristics for

NP-hard problems are priority-based, meaning small priority functions make all of the

1Phase ordering research is joint work with Diego Puppin [82].

149

performance-critical decisions. My thesis describes a simple and effective approach called

policy search, that automatically creates excellent priority functions. My genetic program-

ming-based implementation found better priority functions — sometimes much better —

than the best human-constructed priority functions, and with virtually no human interven-

tion.

Policy search can ‘solve’ a wide range of compiler problems. For instance, it would be

extremely difficult to cast the search for priority functions into a supervised learning problem

(and to extract a labeled training data set). However, for cases in which it is easy to create a

labeled training data set, supervised learning is the most effective and efficient approach, and

it extends to problems that require categorization into multiple classes. This dissertation

describes an experiment whereby I create a highly effective loop unrolling policy using

multi-class supervised learning.

With a labeled training set in place, I have shown how to use feature selection to identify the

most informative program characteristics for a given optimization policy. Such an approach

enables the compiler writer to extract any feature he or she thinks might be important

for categorization. Because of the strange interactions between various compiler passes

and the architecture, determining which features are important is nontrivial for humans.

Feature selection techniques not only improve the quality of the generated heuristics, they

further reduce the amount of time and effort required to generate quality compiler policies.

If my techniques are proven to be widely accepted, compiler infrastructures may someday

provide ‘feature extraction’ mechanisms, much like current compilers provide generic data

flow analysis packages.

Meta optimization also has the potential to aid with architecture design-space exploration.

The tightly-coupled nature of compilers and computer architectures necessitates co-design.

However, because it is currently difficult to re-tune compiler optimizations for new archi-

tectures, computer architects cannot adequately test the true potential of their innovations.

Meta optimization can allow architects to quickly test the system-level impact of their de-

signs. Similarly, compiler writers can use these techniques to automatically re-target new

or emerging architectures.

150

While the training phase may require several days of unsupervised processing, the machine-

learned policies will not measurably increase compilation time. The compiler vendor can

train the heuristics “at-the-factory”, and deploy the compiler with the learned policies.

While my techniques can (and do) construct general-purpose compiler heuristics that apply

to unseen benchmarks, in general, the learned heuristics will perform best on the applica-

tions on which they were trained. Thus, in order to build general machine-learned compiler

heuristics one has to collect a large amount of data, drawn from a diverse set of programs

(and preferably, drawn from programs that users actually run).

In light of this, I have introduced collaborative compilation, a new paradigm for self-

improving compilers that has the potential to satisfy the stringent data requirements of

machine learning algorithms. By distributing the data collection process over a large com-

munity of users, collaborative compilation will experience no shortage of training data.

Furthermore, the users of a collaborative community drive the learning process: ordinary

users train the machine learning algorithms to perform well on their important applications

and input data sets.

I firmly believe that the meta optimization techniques that my colleagues and I are pursuing

will fundamentally change compiler development. Today, most compiler developers do not

start from scratch when targeting a new architecture. Instead, developers leverage existing

compilers, and adapt them to the task at hand. Nevertheless, in order to attain high levels

of performance, all of the policies must be re-tuned. I believe that automatic heuristic

tuning based on empirical evaluation will become prevalent, and that designers will someday

intentionally expose algorithm policies to facilitate machine learning optimization.

That said, we still have much work to perform before meta optimization is adopted by

the general compiler community. If we are to popularize meta optimization we need to

build tools that compiler writers will want to use: we need to write feature extraction

libraries, generalized timers for creating labels, and toolkits for feature selection and auto-

matic heuristic generation. Once this infrastructure is in place, applying meta optimization

will be painless.

Apart from the “user interface”, there are still many interesting problems left to investigate.

To my knowledge, all meta optimization approaches have looked at optimizations in isola-

151

tion. In other words, no one has tried to simultaneously learn two or more symbiotically

linked optimizations. This is an interesting direction for future work.

Among the more pressing items that the community has to address is collecting accurate

measurements without affecting the object under measurement. Modern architectures are

helping our cause by exporting many architectural profiling mechanisms; however, archi-

tectural timers and counters are generally expensive (in terms of processor clock cycles) to

access. This issue becomes even more critical when measuring small sections of code.

While collaborative compilation has great potential, the approach is in its infancy. Much

work is needed to actually deploy a collaborative compiler. Because collaborative heuristics

reside in JIT compilers, where speed of predictions is a concern, computationally intensive

machine learning algorithms will negate any performance benefit from making correct pre-

dictions: we have to find accurate and fast predictors. We must also investigate all of the

privacy concerns that come with a data sharing system. Future work will focus on finding

high-payoff JIT optimizations that will benefit from meta optimization and collaborative

compilation. Additionally, we will study the community aspect of collaborative systems.

Can collaboratively trained heuristics adapt to dynamically changing user communities?

Can general-purpose heuristics be induced in diverse computing communities?

The results presented in this dissertation lead me to believe that machine learning techniques

can optimize policies at least as well human designers. Meta optimization has the potential

to simultaneously reduce the human effort required for compiler design, and increase the

attainable performance of tomorrow’s complex systems.

152

Bibliography

[1] S. G. Abraham, V. Kathail, and B. L. Deitrich. Meld Scheduling: Relaxing Scheduling

Constaints Across Region Boundaries. In Proceedings of the 29th Annual International

Symposium on Microarchitecture (MICRO-29), pages 308–321, 1996.

[2] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle, J. Thomson,

M. Toussaint, and C. Williams. Using Machine Learning to Focus Iterative Optimiza-

tion. In International Symposium on Code Generation and Optimization, New York,

New York, Mar. 2006.

[3] I. Ahmad, M. K. Dhodhi, and K. A. Saleh. An Evolution-Based Technique for Local

Microcode Compaction. In Microprocessors and Microsystems, volume 19, pages 467–

474, 1995.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers : Principles, Techniques, and Tools.

Addison-Wesley, 1986.

[5] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan

Kaufmann, 2002.

[6] B. Alpen, C. Attanasio, J. Barton, M. Burke, P. Cheng, J. Choi, A. Cocchi, S. Find,

D. Grove, M. Hind, S. Hummel, D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. Rus-

sell, V. Sarkar, M. Serrano, J. Shepherd, S. Smith, V. Sreedhar, H. Srinivasan, and

J. Whaley. The Jalapeño Virtual Machine. In IBM Systems Journal, volume 39(1),

pages 211–238, February 2000.

153

[7] M. Arnold, A. Welc, and V. Rajan. Improving Virtual Machine Performance Using

a Cross-Run Profile Repository. In Proceedings of the SIGPLAN ’05 Conference on

Object-Oriented Programming, Systems, Languages, and Applications, 2005.

[8] W. Banzhaf, P. Nordin, R. Keller, and F. Francone. Genetic Programming : An

Introduction : On the Automatic Evolution of Computer Programs and Its Applications.

Morgan Kaufmann, 1998.

[9] A. G. Barto, R. S. Sutton, and C. Watkins. Learning and Sequential Decision Mak-

ing. In M. Gabriel and J. Moore, editors, Learning and Computational Neuroscience :

Foundations of Adaptive Networks. M.I.T. Press, Cambridge, Mass, 1990.

[10] S. J. Beaty. Genetic Algorithms and Instruction Scheduling. In Proceedings of the 24th

Annual International Symposium on Microarchitecture (MICRO-24), November 1991.

[11] S. J. Beaty. A Study of Instruction Scheduling Using Genetic Algorithms. PhD thesis,

Colorado State University, Mechanical Engineering Department, 1991.

[12] D. Bernstein, D. Goldin, M. Golumbic, H. Krawcyk, Y. Mansour, I. Nahshon, and R. Y.

Pinter. Spill Code Minimization Techniques for Optimizing Compilers. In Proceedings

of the SIGPLAN ’89 Conference on Programming Language Design and Implementa-

tion, pages 258–263, 1989.

[13] D. Bernstein, M. Rodeh, and I. Gertner. On the Complexity of Scheduling Problems

for Parallel/Pipelined Machines. IEEE Transactions on Computers, 38(9):1308–1313,

September 1989.

[14] F. Bodin, T. Kisuki, P. Knijnenburg, M. F. O’Boyle, and E. Rohou. Iterative Com-

pilation in a Non-Linear Optimization Space. In Workshop on Profile and Feedback

Directed Compilation, 1998.

[15] D. Bourgin. Losslessy compression schemes.

http://hpux.u-aizu.ac.jp/hppd/hpux/Languages/codecs-1.0/.

[16] J. Cagan, K. Shimada, and S. Yin. A Survey of Computational Approaches to Three-

Dimensional Layout Problems. Computer Aided Design, 34(8):597–611, 2002.

154

[17] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer, and B. Zorn.

Evidence-Based Static Branch Prediction Using Machine Learning. In ACM Transac-

tions on Programming Languages and Systems (TOPLAS-19), volume 19, 1997.

[18] S. Carr and K. Kennedy. Improving the Ratio of Memory Operations to Floating-Point

Operations in Loops. In ACM Transactions on Programming Languages and Systems

(TOPLAS-16), November 1994.

[19] J. Cavazos and J. E. B. Moss. Inducing Heuristics to Decide Whether to Schedule. In

Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design

and Implementation 2004. ACM, 2004.

[20] J. Cavazos, J. E. B. Moss, and M. F. O’Boyle. Hybrid Optimizations: Which Optimiza-

tion Algorithm to Use? In 15th International Conference on Compiler Construction

(CC 2006), Vienna, Austria, Mar. 2006.

[21] J. Cavazos and M. F. O’Boyle. Automatic Tuning of Inlining Heuristics. In 11th

International Workshop on Compilers for Parallel Computers, January 2006.

[22] P. Chang, D. Lavery, S. Mahlke, W. Chen, and W. Hwu. The Importance of Prepass

Code Scheduling for Superscalar and Superpipelined processors. In IEEE Transactions

on Computers, volume 44, pages 353–370, March 1995.

[23] F. C. Chow and J. L. Hennessey. The priority-based coloring approach to register

allocation. In ACM Transactions on Programming Languages and Systems (TOPLAS-

12), pages 501–536, 1990.

[24] K. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian, L. Torczon, and

T. Waterman. Exploring the Structure of the Space of Compilation Sequences Using

Randomized Search Algorithms. In Los Alamos Computer Science Institute Sympo-

sium, 2003.

[25] K. Cooper, P. Scheilke, and D. Subramanian. Optimizing for Reduced Code Space

using Genetic Algorithms. In Languages, Compilers, Tools for Embedded Systems,

pages 1–9, 1999.

[26] K. Cooper, D. Subramanian, and L. Torczon. Adaptive Optimizing Compilers for the

21st Century. In Los Alamos Computer Science Institute Symposium, 2001.

155

[27] K. Cooper and T. Waterman. Investigating Adaptive Compilation using the MIPSpro

Compiler. In Los Alamos Computer Science Institute Symposium, 2003.

[28] The DaCapo Benchmark Suite. http://ali-www.cs.umass.edu/DaCapo/gcbm.html.

[29] A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic Parallelization.

Birkhäuser, 2000.

[30] J. W. Davidson and S. Jinturkar. Memory Access Coalescing: A Technique for Elimi-

nating Redundant Memory Accesses. In Proceedings of the SIGPLAN ’94 Conference

on Programming Language Design and Implementation, pages 186–195, Orlando, FL,

June 1994.

[31] T. Dietterich and G. Bakiri. Solving Multiclass Learning Problems via Error-Correcting

Output Codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

[32] P. C. Diniz and M. C. Rinard. Dynamic Feedback: An Effective Technique for Adaptive

Computing. In SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 71–84, 1997.

[33] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley-Interscience, 2001.

[34] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. The MIT Press, Cambridge,

MA, 1985.

[35] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman and Company, 1979.

[36] C. Gathercole. An Investigation of Supervised Learning in Genetic Programming. PhD

thesis, University of Edinburgh, 1998.

[37] P. B. Gibbons and S. S. Muchnick. Efficient Instruction Scheduling for a Pipelined

Architecture. In Proceedings of the ACM Symposium on Compiler Construction, vol-

ume 21, pages 11–16, 1986.

[38] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High Dimensions via Hash-

ing. In Proceedings of the 25th Conference on Very Large Data Bases, pages 518–529,

February 1999.

156

[39] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, C. Leger, J. Wong, H. Hoffmann,

D. Maze, and S. Amarasinghe. A Stream Compiler for Communication-Exposed Ar-

chitectures. In International Conference on Architectural Support for Programming

Languages and Operating Systems, San Jose, CA, USA, October 2002.

[40] M. Grajcar. Conditional Scheduling for Embedded Systems Using Genetic List Schedul-

ing. In 13th International Symposium on System Synthesis (ISSS), 2000.

[41] J. J. Grefenstette, C. L. Ramsey, and A. Schultz. Learning Sequential Decision Rules

Using Simulation Models and Competition. Machine Learning, 5:355–381, 1990.

[42] G. W. Grewal and T. C. Wilson. Shake and Bake: A Method of Mapping Code to

Irregular DSPs. In 10th International Conference on VLSI Design, 1997.

[43] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,

1975.

[44] Intel. http://www.intel.com.

[45] Intel. Hyper-threading technology. Intel Technology Journal, 6(1), February 2002.

[46] Intel. Intel Itanium 2 Processor Reference Manual for Software Development and Op-

timization, May 2004.

[47] Intel. IA-32 Intel Architecture Software Developer’s Manual, March 2006.

[48] S. Jajodia, I. Minis, G. Harkhalakis, and J.-M. Proth. CLASS: Computerized LAyout

Solutions Using Simulated Annealing. International Journal of Production Research,

30(1):95–108, 1992.

[49] Java Grande. http://www.epcc.ed.ac.uk/javagrande/.

[50] D. A. Jiménez. Code Placement for Improving Dynamic Branch Prediction Accuracy.

In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 107–116, New York, NY, USA, 2005.

ACM Press.

[51] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement Learning: A Survey.

Journal of Artificial Intelligence Research, 4:237–285, 1996.

157

[52] M. Kessler and T. Haynes. Depth-Fair Crossover in Genetic Programming. In Proceed-

ings of the ACM Symposium on Applied Computing, pages 319–323, February 1999.

[53] T. Kisuki, P. Knijnenburg, and M. F. O’Boyle. Combined Selection of Tile Sizes and

Unroll Factors Using Iterative Compilation. In In Proceedings of Parallel Architectures

and Compilation Techniques, pages 237–246, 2000.

[54] P. Knijnenburg, T. Kisuki, K. Gallivan, and M. F. O’Boyle. The Effect of Cache

Models on Iterative Compilation for Combined Tiling and Unrolling. In Concurrency

and Computation: Practice and Experience, volume 16, pages 247–270, 2004.

[55] P. Knijnenburg, T. Kisuki, and M. F. O’Boyle. Combined Selection of Tile Sizes

and Unroll Factors Using Iterative Compilation. In The Journal of Supercomputing,

volume 24, pages 43–67, 2003.

[56] J. Koza. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. The MIT Press, 1992.

[57] U. Kremer. Optimal and Near-Optimal Solutions for Hard Compilation Problems.

Parallel Processing Letters, 7(4):371–378, 1997.

[58] P. Kulkarni, D. Whalley, G. Tyson, and J. Davidson. Exhaustive Optimization Phase

Order Space Exploration. In International Symposium on Code Generation and Opti-

mization, New York, New York, Mar. 2006.

[59] S. R. Ladd. ACOVEA : Analysis of Compiler Options via Evolutionary Algorithm.

http://www.coyotegulch.com/products/acovea/index.html.

[60] S. Larsen and S. Amarasinghe. Exploiting Superword Level Parallelism with Multime-

dia Instruction Sets. In Proceedings of the SIGPLAN ’00 Conference on Programming

Language Design and Implementation, pages 145–156, Vancouver, BC, June 2000.

[61] J. Lau, M. Arnold, M. Hind, and B. Calder. Online Performance Auditing: Using

Hot Optimizations Without Getting Burned. In PLDI ’06: Proceedings of the ACM

SIGPLAN 2006 Conference on Programming Language Design and Implementation,

2006.

158

[62] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A Tool for Eval-

uating and Synthesizing Multimedia and Communication Systems. In International

Symposium on Microarchitecture, volume 30, pages 330–335, 1997.

[63] B. Liblit, A. Aiken, and A. Zheng. Distributed Program Sampling. In Proceedings of

the ACM SIGPLAN 2003 Conference on Programming Language Design and Imple-

mentation, San Diego, California, June 9–11 2003.

[64] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug Isolation via Remote Program

Sampling. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming

Language Design and Implementation, San Diego, California, June 9–11 2003.

[65] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable Statistical Bug

Isolation. In Proceedings of the ACM SIGPLAN 2005 Conference on Programming

Language Design and Implementation, Chicago, Illinois, June 12–15 2005.

[66] S. Long and M. O’Boyle. Adaptive Java Optimisation Using Instance-Based Learning.

In International Conference on Supercomputing, 2004.

[67] S. A. Mahlke. Exploiting Instruction Level Parallelism in the Presence of Branches.

PhD thesis, University of Illinois at Urbana-Champaign, Department of Electrical and

Computer Engineering, 1996.

[68] S. A. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann. Effective Compiler

Support for Predicated Execution Using the Hyperblock. In International Symposium

on Microarchitecture, volume 25, pages 45–54, 1992.

[69] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effec-

tive Compiler Support for Predicated Execution Using the Hyperblock. In Proc. 25th

Annual International Symposium on Microarchitecture, pages 45–54, Portland, OR,

December 1992.

[70] H. Massalin. Superoptimizer: A Look at the Smallest Program. In ASPLOS-II: Pro-

ceedings of the Second International Conference on Architectual Support for Program-

ming Languages and Operating Systems, pages 122–126, Los Alamitos, CA, USA, 1987.

IEEE Computer Society Press.

159

[71] A. McGovern and J. E. B. Moss. Scheduling Straight-Line Code Using Reinforcement

Learning and Rollouts. In Proceedings of Neural Information Processing Symposium,

1998.

[72] A. Monsifrot, F. Bodin, and R. Quiniou. A Machine Learning Approach to Automatic

Production of Compiler Heuristics. In Artificial Intelligence: Methodology, Systems,

Applications, pages 41–50, 2002.

[73] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette. Evolutionary Algorithms for

Reinforcement Learning. Journal of Artificial Intelligence Research, 11:199–229, 1999.

[74] J. E. B. Moss, P. Utgoff, J. Cavazos, D. Precup, D. Stefanovi, C. Brodley, and

D. Scheeff. Learning to Schedule Straight-Line Code. In Proceedings of Neural In-

formation Processing Symposium, 1997.

[75] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,

1997.

[76] D. Newman, S. Hettich, C. Blake, and C. Merz. UCI repository of machine learning

databases, 1998.

[77] Open Research Compiler. http://ipf-orc.sourceforge.net.

[78] E. Ozer, S. Banerjia, and T. Conte. Unified Assign and Schedule: A New Approach to

Scheduling for Clustered Register Filee Microarchitectures. In Proceedings of the 27th

Annual International Symposium on Microarchitecture (MICRO-24), pages 308–315,

1998.

[79] Z. Pan and R. Eigenmann. Fast and Effective Orchestration of Compiler Optimizations

for Automatic Performance Tuning. In International Symposium on Code Generation

and Optimization, New York, New York, Mar. 2006.

[80] J. C. H. Park and M. S. Schlansker. On Predicated Execution. Technical Report

HPL-91-58, Hewlett Packard Laboratories, 1991.

[81] D. A. Patterson and J. L. Hennessy. Computer Architecture: A Quantitative Approach.

Morgan Kauffman, 1996.

160

[82] D. Puppin, M. Stephenson, S. Amarasinghe, M. Martin, and U. M. O’Reilly. Adapting

Convergent Scheduling Using Machine Learning. In Proceedings of the ’03 Workshop

on Languages and Compilers for Parallel Computing, College Station, TX, 2003.

[83] B. R. Rau. Iterative Modulo Scheduling: An Algorithm for Software Pipelining

Loops. In Proceedings of the 27th Annual International Symposium on Microarchi-

tecture (MICRO-24), November 1994.

[84] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,

2003.

[85] R. A. Ruttenbar. Simulated Annealing Algorithms: An Overview. IEEE Circuits and

Devices Magazine, 5(1):19–26, 1989.

[86] K. Scott. On Proebsting’s Law. Technical Report CS-2001-12, University of Virginia,

2001.

[87] C. Sechen. VLSI Placement and Global Routing Using Simulated Annealing. Kluwer

Academic Publishers, Boston, MA, USA, 1988.

[88] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discovering and

Exploiting Program Phases. IEEE Micro, 23(6):84–93, 2003.

[89] SPEC.org. http://www.spec.org.

[90] M. Stephenson and S. Amarasinghe. Predicting Unroll Factors Using Supervised Clas-

sification. In International Symposium on Code Generation and Optimization, San

Jose, California, Mar. 2005.

[91] M. Stephenson, M. Martin, U. M. O’Reilly, and S. Amarasinghe. Meta Optimization:

Improving Compiler Heuristics with Machine Learning. In Proceedings of the SIGPLAN

’03 Conference on Programming Language Design and Implementation, San Diego, CA,

June 2003.

[92] J. Suykens and J. Vandewalle. Least Squares Support Vector Machine Classifiers.

http://www.esat.kuleuven.ac.be/sista/lssvmlab/.

161

[93] R. Tessier. Fast Place and Route Approaches for FPGAs. PhD thesis, Massachusetts

Institute of Technology, Department of Electrical Engineering and Computer Science,

1998.

[94] Trimaran. http://www.trimaran.org.

[95] B. Wagner. Collaborative Compilation. Master’s thesis, Massachusetts Institute of

Technology, 2006.

[96] N. Warter. Modulo Scheduling with Isomorphic Control Transformations. PhD thesis,

University of Illinois at Urbana-Champaign, Department of Electrical and Computer

Engineering, 1993.

[97] D. F. Wong, H. W. Leong, and C. L. Liu. Simulated Annealing for VLSI Design.

Kluwer Academic Publishers, Boston, MA, USA, 1988.

162

