Abstraction Layers for Scalable
Microfluidic Blocomputers

William Thies*, J.P. UrbanskiT,
Todd Thorsen™ and Saman Amarasinghe*

* Computer Science and Artificial Intelligence Laboratory
THatsopoulos Microfluids Laboratory

Massachusetts Institute of Technology

International Meeting on DNA Computing — June 8, 2006

Biocomputing Demands Complex Protocols

« Complex biology experiments have many hazards
— Time-consuming laboratory protocols
— Risk of human error
— EXxpensive reagents and equipment

 Biocomputing: complexity grows with problem size
— 20-variable 3-SAT problem: >96 hours to complete [Adleman02]
— Larger instances will be even more challenging
— Need a scalable approach

 Our approach:
Write protocols as programs, run on microfluidic chips

— Write once, run anywhere
— This talk: how do you “program” a biological protocol?

Microfluidic Chips

 |dea: awhole biology lab on a smgle chlp
— Input/output i |

— Sensors: luminescence,
PH, glucose, etc.

— Actuators: mixing, PCR,
electrophoresis, cell lysis, etc.

 Benefits:
— Small sample volumes
— High throughput
— Geometrical manipulation

1mm 70x real-time

« Applications:
— Biochemistry - Cell biology

— Biological computing
[Livstone/Landweber][van Noort] [Grover/Mathies] [McCaskill]
[Gehani/Reif] [Farfel/Stefanovic] [Somei/Kaneda/F ujii/Murata]

Moore’s Law of Microfluidics:
Valve Density Doubles Every 4 Months

Fluidigm's Pace
sumxeumil, oook)
1000000 ,..-"
.-"
,.-r
100000 # Faldien’'s Commenck
DID > R CRITN S T
(BoK, 206K) e
E L 6.96
10000 0.9
o - (27.648)
o Py §58.48
o e (6,912) *
@ 1000 — P 8.06 -
o~ e i (2,304) .
v (2500 4.96 :
W Mux L2 (1152)
= 100 (s545) - 1.96
o 44, (288)
= A . Moore's Law
Cell - e
10 Sorter. ” —
First S TR
irst I
Valye . - - "~
1 i " 1- - T 1]]] 1]] 1 1 T]] 1
‘99 ‘00 ‘o1 ‘oz ‘o3 04 ‘o5 ‘06

Source: Fluidigm Corporation (http.//7www.fluidigm.com/images/mlaw _1g.jpg)

Moore’s Law of Microfluidics:
Valve Density Doubles Every 4 Months

Fluidigm ._'Ea

|

!
]

|

!

Source: Fluidigm Corporation (http.//7www.fluidigm.com/didIF C.htm)

How to Conduct Experiments?

——

Human director <= Lab bench Lab-on-a-chip

e TwWo choices:

e Design custom microfluidic chip to
automatically perform your experiment

* Orchestrate every valve operation
by hand (e.g., using Labview)

Programmable Solution

« Example: Gradient generation

Fluid yellow = input (0);

Fluid blue = input(1);

for (int i=0; i<=4; i++) {
mix(yellow, 1-i/4, blue, i/4);

}

 Hidden from programmer:
— Location of fluids
— Detalls of mixing, 1/O
— Logic of valve control
— Timing of chip operations

450 Valve Operations

Programmable Solution

« Example: Gradient generation

yellow = input (0);
blue = input(l);

for (int i=0; i<=4; i++) {

mix(yellow, 1-i/4, blue, i/4);

e

 Hidden from programmer:

Location of fluids

Detalls of mixing, 1/0O
Logic of valve control
Timing of chip operations

setValve(0, HIGH); setValve(l, HIGH);
setValve(2, LOW); setValve(3, HIGH);
setValve(4, LOW); setValve(5, LOW);
setValve(6, HIGH); setValve(7, LOW);
setValve(8, LOW); setValve(9, HIGH);
setValve(10, LOW); setValve(1l, HIGH);
setValve(12, LOW); setValve(13, HIGH);
setValve(14, LOW); setValve(15, HIGH);
setValve(16, LOW); setValve(17, LOW);
setValve(18, LOW); setValve(19, LOW);
wait(2000);

setValve(14, HIGH); setValve(2, LOW);
wait(1000);

setValve(4, HIGH); setValve(12, LOW);
setValve(16, HIGH); setValve(18, HIGH);
setValve(19, LOW);

wait(2000);

450 Valve Operations

« Example: Gradient generation

Programmable Solution

}

yellow = input (0);
blue = input(1);

for (int i=0; i<=4; i++) {

mix(yellow, 1-i/4, blue, i/4);

e

 Hidden from programmer:

Location of fluids

Detalls of mixing, 1/0O
Logic of valve control
Timing of chip operations

wait(2000);
setValve(14, HIGH);
wait(1000);
setValve(4, HIGH);
setValve(16, HIGH);
setValve(19, LOW);
wait(2000);
setValve(0, LOW);
setValve(2, LOW);
setValve(4, LOW);
setValve(6, HIGH);
setValve(8, LOW);
setValve(10, HIGH);
setValve(12, LOW);
setValve(14, LOW);
setValve(16, HIGH);

setValve(18, HIGH);

setValve(2, LOW);

setValve(12, LOW);
setValve(18, HIGH);

setValve(1, LOW);
setValve(3, HIGH);
setValve(5, HIGH);
setValve(7, LOW);
setValve(9, HIGH);
setValve(11, LOW);
setValve(13, LOW);
setValve(15, HIGH);
setValve(17, LOW);
setValve(19, LOW);

Fluidic Abstraction Layers

Abstract Computational Problem
- SAT formula, max-clique graph

. !

Protocol Description Language
- readable code with high-level mixing ops

. 2

Fluidic Instruction Set Architecture (ISA)
- primitives for I/O, storage, transport, mixing

Silicon Analog

Mathematica

.

C

. 2

X86

: 3

Pentium I,
Pentium IV

Fluidic Abstraction Layers

Abstract Computational Problem
- SAT formula, max-clique graph

. !

Protocol Description Language
- readable code with high-level mixing ops

. 2

Fluidic Instruction Set Architecture (ISA)
- primitives for I/O, storage, transport, mixing

Benefits:

— Portability

— Division of labor
— Scalability

— EXxpressivity

Fluidic Abstraction Layers

Abstract Computational Problem
- SAT formula, max-clique graph

. !

Protocol Description Language
- readable code with high-level mixing ops

: 2

Fluidic Instruction Set Architecture (ISA)
- primitives for 1/O, storage, transport, mixing

Benefits:

— Portability

— Division of labor
— Scalability

— EXxpressivity

Abstraction 1. Digital Architecture

 Recent chips can control independent fluid samples
— Droplet-based samples [Fair et al] —— =
e

— Continuous-flow samples[Urbanski et al]

— T e

— Microfluidic latches [Urbanski et al.]

e |n abstract machine, all

samples have unit volume

— Input/output a sample
— Store a sample
— Operate on a sample

Sensors
and

Actuators

puts MM MMM

Out

Abstraction 2: Mix Instruction

* Microfluidic chips have various mixing technologies
— Electrokinetic mixing [Levitan et al] ’ Jj{, : é' ﬂl:_‘ ;
— Droplet mixing [Fair et al] W s
— Rotary mixing [Quake et al.] 1

« Common attributes: T i
— Abllity to mix two samples in equal proportions, store result

—_—

e Fluidic ISA: mix (int src,, int src,, int dst)
— Ex: mix(1, 2, 3) Storage Cells Mixer

— To allow for lossy transport, only 1 unit of mixture retained

Abstraction 2: Mix Instruction

* Microfluidic chips have various mixing technologies
— Electrokinetic mixing [Levitan et al] ’ Jj{, : é' ﬂl:_‘ ;
— Droplet mixing [Fair et al] W s
— Rotary mixing [Quake et al.] 1

« Common attributes: T i
— Abllity to mix two samples in equal proportions, store result

—_—

e Fluidic ISA: mix (int src,, int src,, int dst)

— Ex: mix(1, 2, 3) Storage Cells Mixer
1
2]
3
4

— To allow for lossy transport, only 1 unit of mixture retained

Abstraction 2: Mix Instruction

 Microfluidic chips have various mlxmg technologles
— Electrokinetic mixing [Levitan et al.] | e
— Droplet mixing [Fair et al.] W
— Rotary mixing [Quake etal] 1

« Common attributes: i
— Abllity to mix two samples in equal proportions, store result

e Fluidic ISA: mix (int src,, int src,, int dst)

— Ex: mix(1, 2, 3) Storage Cells Mixer
1
: S
3
4

— To allow for lossy transport, only 1 unit of mixture retained

Abstraction 2: Mix Instruction

 Microfluidic chips have various mlxmg technologles
— Electrokinetic mixing [Levitan et al.] | e
— Droplet mixing [Fair et al.] W
— Rotary mixing [Quake etal] 1

« Common attributes: i
— Abllity to mix two samples in equal proportions, store result

e Fluidic ISA: mix (int src,, int src,, int dst)

— Ex: mix(1, 2, 3) Storage Cells Mixer
1
2]
3 [
4

— To allow for lossy transport, only 1 unit of mixture retained

Gradient Generation in Fluidic ISA

wait(2000);
setValve(14, HIGH);
wait(1000);
setValve(4, HIGH);
setValve(16, HIGH);
setValve(19, LOW);
wait(2000);
setValve(0, LOW);
setValve(2, LOW);
setValve(4, LOW);
setValve(6, HIGH);
setValve(8, LOW);
setValve(10, HIGH);
setValve(12, LOW);
setValve(14, LOW);
setValve(16, HIGH);

| setvalve(18, HIGH);

setValve(2, LOW);

setValve(12, LOW);
setValve(18, HIGH);

setValve(1, LOW);
setValve(3, HIGH);
setValve(5, HIGH);
setValve(7, LOW);
setValve(9, HIGH);

setValve(11, LOW);
setValve(13, LOW);
setValve(15, HIGH);

setValve(17, LOW);
setValve(19, LOW);

Direct Control
- 450 valve actuations
- only works on 1 chip

abstraction

L

input(0, 0);
input(1, 1);
input(0, 2);
mix(1, 2, 3);
input(0, 2);
mix(2, 3, 1);
input(1, 3);
input(0, 4);
mix(3, 4, 2);
input(1, 3);
input(0, 4);
mix(3, 4, 5);
input(1, 4);
mix(4, 5, 3);
mix(0, 4);

Fluidic ISA

- 15 instructions
- portable across chips

Implementation: Oil-Driven Chip

NN

| %aste | |
4+ Mixer
-

Waste

N

Input 1 @

—ta Il 1L

Inputzl [T
| 7€ Storage Cells

.

\
r

oo

_*__

/\T\r \r\+ »\\

Flow Layer Control Layer

Inputs

Storage Cells | Background Phase

Wash Phase Mixing

Chip 1

8

Oll

— Rotary

Implementation: Oil-Driven Chip

mix (S;, S,, D) {
1.Load S,
2. Load S,
3. Rotary mixing
4. Store into D

50x real-time H,:H_' _' "_’ ‘ ‘ JEIL i

i
1
b
uuuuuu

Inputs | Storage Cells

Background Phase

Wash Phase

Mixing

Chip 1 2 8

Oill

Rotary

Implementation 2: Air-Driven Chip

Inputs Waste

T]

+ = E 1 L Air
. = | '
+7
Storage Cells
+7
——+
Water + SECE-SCSCScSsas T 4
Vent 4 |
+ Flow Layer Control Layer
Inputs | Storage Cells | Background Phase | Wash Phase Mixing
Chip 1 2 8 Qil — Rotary
Chip 2 4 32 Air Water In channels

Implementation 2: Air-Driven Chip

mix (S;, S,, D) { P e T~ — v
1. Load S, —
2.Load S,

3. Mix / Store into D
4. Wash S,
5. Wash S,

} Water +—

- Air

Vent 4+—

50x real-time .L Flow Layer Control Layer

Inputs | Storage Cells | Background Phase | Wash Phase Mixing

Chip 1 2 8 Qil — Rotary

Chip 2 4 32 Air Water In channels

Abstraction Layers

Abstract Computational Problem
- SAT formula, max-clique graph

.

Protocol Description Language
- readable code with high-level mixing ops

. 2

Fluidic Instruction Set Architecture (ISA)
- primitives for 1/O, storage, transport, mixing

/ \\\\ 3 :

Abstraction 1. Managing Fluid Storage

Fluidic
ISA

input(0, 0);
input(1, 1);
input(0, 2);

mix(1, 2, 3);

input(0, 2);

mix(2, 3, 1);

input(1, 3);
input(0, 4);

mix(3, 4, 2);

input(1, 3);
input(0, 4);

mix(3, 4, 5);

input(1, 4);

mix(4, 5, 3);

mix(0, 4);

[] out = new [8];
yellow, blue, green;
out[0] = input(0);
yellow = input(0);
blue = input(l);
green = mix(yellow, blue);
yellow = input(0);
out[1] = mix(yellow, green);
yellow = input(0);
blue = input(l);
out[2] = mix(yellow, blue);
yellow = input(0);
blue = input(l);
green = mix(yellow, blue);
blue = input(l);
out[3] = mix(blue, green);
out[4] = input(1);

1. Storage
Management

« Programmer uses location-independent Fluid variables
— Runtime system assigns & tracks location of each Fluid
— Comparable to automatic memory management (e.g., Java)

Abstraction 2: Fluid Re-Generation

Fluid[] out = new Fluid[8];

Fluid yellow, blue, green; Fluid[] out = new Fluid[8];

out[0] = input(0); Fluid yellow = input(0);

yellow = input(0); Fluid blue = input(1);

blue = input(1): Fluid green = mix(yellow, blue);
green = mix(yellow, blue);

out[0] = yellow;

yellow = input(0); _
out[1] = mix(yellow, green): ‘ out[1] = mix(yellow, green);
] x(yellow, g) out[2] = green;

yellow = input(0); _

blue = input(1): out[3] = mix(blue, green);
out[2] = mix(yellow, blue): out|4] = blue;

(o = i) 2. Fluid Re-Generation
blue = input(l);

green = mix(yellow, blue);
blue = input(l);

out[3] = mix(blue, green);
out[4] = input(1);

« Programmer may use a Fluid variable multiple times
— Each time, a physical Fluid is consumed on-chip
— Runtime system re-generates Fluids from computation history

Abstraction 3. Arbitrary Mixing

[] out = new Fluid[8];

yellow = input(0); [] out = new Fluid[8];

blue = input(l); yellow = input (0);

green = mix(yellow, blue); blue = input (1);
out[0] = yellow; ‘ out[0] = yellow;
out[1] = mix(yellow, green); out[1] = mix(yellow, 3/4, blue, 1/4);
out[2] = green; out[2] = mix(yellow, 1/2, blue, 1/2);
out[3] = mix(blue, green); out[3] = mix(yellow, 1/4, blue, 3/4);
out[4] = blue; out[4] = blue;
2. Fluid Re-Generation 3. Arbitrary Mixing

 Allows mixing fluids in any proportion, not just 50/50
— Fluid mix (Fluid F,, float p,, Fluid f,, float F,)
- Returns Fluid that is p, parts F, and p, parts F,
— Runtime system translates to 50/50 mixes in Fluidic ISA

— Note: some mixtures only reachable within error tolerance ¢

Abstraction 3. Arbitrary Mixing

[] out = new Fluid[8];
yellow = input (0);
blue = input (1);

out[0] = yellow;

out[1] = mix(yellow, 3/4, blue, 1/4);
out[2] = mix(yellow, 1/2, blue, 1/2);
out[3] = mix(yellow, 1/4, blue, 3/4);
out[4] = blue;

=

3. Arbitrary Mixing

 Allows mixing fluids in any proportion, not just 50/50

[] out = new Fluid[8];
yellow = input (0);
blue = input (1);

for (int i=0; i<=4; i++) {

out[i] = mix(yellow, 1-i/4, blue, i/4); |

}

4. Parameterized Mixing

— Fluid mix (Fluid F,, float p,, Fluid f,, float F,)
- Returns Fluid that is p, parts F, and p, parts F,

— Runtime system translates to 50/50 mixes in Fluidic ISA
— Note: some mixtures only reachable within error tolerance ¢

BioStream Protocol Language

« Supports all the abstractions

— Automatic storage management

— Re-generation of fluids
— Arbitrary mixing

« Implemented as a Java library
— Allows flexible integration with general-purpose Java code

}

yellow = input (0);
blue = input (1);
[] out = new Fluid[8];

for (int i1=0; i<=4; i++) {

out[i] = mix(yellow, 1-i/4, blue, i/4);

 Targets microfluidic chips or auto-generated simulator

User Code

i

Architecture Description
- Double camera(Fluid f);

BioStream Library

—

¥

Fluidic ISA

¥

¥

Simulator Generator

—

|

Microfluidic chip

Microfluidic simulator

Example: Fixed-pH Reaction

 Goal: maintain given pH throughout reaction
— For in-vitro modeling of natural environment

« Method: periodically test, adjust pH if needed

sample = input (0);
acid = input(1);
base = input(2);
do {
pH_test = mix(sample, 0.9, indicator, 0.1); // test pH of sample
double pH =test_luminescence(pH_test);

if (pH > 7.5) { // if pH too high, add acid
sample = mix (sample, 0.9, acid, 0.1);

}else if (pH < 6.5) { //'if pH too low, add base
sample = mix (sample, 0.9, base, 0.1);

}

wait(60);

} while (detect_activity(sample));

Example: Fixed-pH Reaction

 Goal: maintain given pH throughout reaction
— For in-vitro modeling of natural environment

« Method: periodically test, adjust pH if needed

sample = input (0); Feedback-Intensive
acid = input(1); Applications:
base = input(2);

do { - Recursive descent

pH_test = mix(sample, 0.9, indicator, 0.1); | Search

double pH = test_luminescence(pH_test); Nhitectedieveiiie

if (pH > 7.5) {
sample = mix (sample, 0.9, acid, 0.1); - Cell isolation
} else if (pH < 6.5) { and manipulation
} sample = mix (sample, 0.9, base, 0.1); - Dose/response curves
wait(60); - Long, complex

} while (detect_activity(sample)); protocols

Big Picture

e Abstraction Iayers enable Abstract Computational Problem
simple, scalable hardware ARSI ”‘"";C"q“e il
o Ins_tead of custom ChipS, _ BioStream Protocol Language
build general-purpose devices - readable code with high-level mixing ops
* Vision fOI’ mICrOﬂUIdICS: Fluidic Instruction Set Architecture

everyone uses a standard chi 0 - primitives for storage, transport, mixing

— Thousands of storage cells
— Dozens of parallel mixers

— Integrated support for cell
manipulation, PCR, readout, etc.

* Vision for software:
a defacto language for experimental science

— You can download a colleague’s code, run it on your chip

Related Work

 Automatic generation / scheduling of biology protocols
— EDNAC computer for automatically solving 3-SAT [Johnson]
— Compile SAT to microfluidic chips [Landweber et al.] [van Noort]
— Robot scientist: generates/tests genetic hypotheses [King et al.]
— Mapping sequence graphs to grid-based chips [Su/Chakrabarty]

« Custom microfluidic chips for biological computation

— DNA computing [Grover & Mathies] [van Noort et al.] [McCaskill]
[Livstone, Weiss, & Landweber] [Gehani & Reif] [Farfel & Stefanovic]

— Self-assembly [Somei, Kaneda, Fuijii, & Murata] [Whitesides et al.]

 General-purpose microfluidic chips
— Using electrowetting, with flexible mixing [Fair et al.]
— Using dialectrophoresis, with retargettable GUI [Gascoyne et al.]
— Using Brallle displays as programmable actuators [Gu et al.]

Conclusions

 End-to-end system for programmable microfluidics
— Usable: high-level code is natural expression of protocol
— Portable: same code executes on diverse chips
— Scalable: protocols automatically utilize parallel resources

 Relies on abstraction layers
— Fluidic ISA
— BioStream language

e Future work

— Incorporate stateful molecules,
cells into abstraction layers

— Looking for killer applications!

http://cag.csail.mit.edu/biostream

