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Abstract. Microfluidic devices are emerging as an attractive technol-
ogy for automatically orchestrating the reactions needed in a biological
computer. Thousands of microfluidic primitives have already been inte-
grated on a single chip, and recent trends indicate that the hardware
complexity is increasing at rates comparable to Moore’s Law. As in the
case of silicon, it will be critical to develop abstraction layers—such as
programming languages and Instruction Set Architectures (ISAs)—that
decouple software development from changes in the underlying device
technology.
Towards this end, this paper presents BioStream, a portable language
for describing biology protocols, and the Fluidic ISA, a stable interface
for microfluidic chip designers. A novel algorithm translates microflu-
idic mixing operations from the BioStream layer to the Fluidic ISA. To
demonstrate the benefits of these abstraction layers, we build two mi-
crofluidic chips that can both execute BioStream code despite significant
differences at the device level. We consider this to be an important step
towards building scalable biological computers.

1 Introduction

One of the challenges in biological computing is that the laboratory protocols
needed to carry out a computation can be very time consuming. For example, a
20-variable 3-SAT problem required 96 hours to complete [1], not counting the
considerable time needed for setup and evaluation. To automate and optimize
this process, researchers have turned to microfluidic devices [2–10]. Microfluidics
offers the promise of a “lab on a chip” system that can individually control
picoliter-scale quantities of fluids, with integrated support for operations such as
mixing, storage, PCR, heating/cooling, cell lysis, electrophoresis, and others [11–
13]. Apart from being amenable to computer control, microfluidics drastically
reduces the volumes of samples, thereby reducing costs and improving capture
kinetics. Using microfluidics, DNA hybridization times can be reduced from 24
hours to 4 minutes [10] and the number of bases needed to encode information
can be decreased from 15 bases per bit to 1 base per bit [1, 8].
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Fig. 1. Abstraction layers for DNA computing.

Thus has emerged a vision for creating a hybrid DNA computer: one that
uses microfluidics for the plumbing (the control paths) and biological primitives
for the computations (the ALUs). On the hardware side, this vision is becom-
ing scalable: microfluidic chips have integrated up to 3,574 valves with 1,000
individually-addressable storage chambers [14]. Moreover, recent trends indicate
that microfluidics is following a path similar to Moore’s law, with the number
of soft-lithography valves per unit area doubling every 4.5 months [15].

On the software side, however, the microfluidic realm is lagging far behind
its silicon counterpart. For silicon computers, the complexity and scale of the
underlying hardware is masked by a set of well-defined abstraction layers. For
example, transistors are organized into gates, which combine to form functional
units, which together can implement an Instruction Set Architecture (ISA). The
user operates at an even higher level of abstraction (e.g., C++), which is auto-
matically translated into the ISA. These abstraction layers have proven critical
for managing complexity. Without them, the computing field would have stag-
nated as every researcher tried to gain a transistor-level understanding of his
machine.

Unfortunately, the current practice in experimental microfluidics is to expose
all of the hardware resources directly to the experimentalist. Using a graphical
system such as Labview, the user orchestrates the individual behavior of each
valve in the microfluidic device. While this practice is merely tedious for today’s
devices, it will soon become completely intractable—akin to programming a
modern microprocessor by directly toggling each of a million gates.

In this paper, we present a system and methodology that uses new abstrac-
tion layers for scalable biological computing. As illustrated in Figure 1, our
system consists of three layers. At the highest level, the programmer indicates
the abstract computation to be performed—for example, in the form of a SAT
formula. With some expertise in DNA computing and experimental biology, the
computation can be transformed to the next layer: a portable biological proto-
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col for performing the computation. The protocol is portable in that it does not
depend on the physical implementation of the protocol; for example, it specifies
fluid concentrations but not fluid volumes. Finally, the bottom layer specifies the
operations needed to execute the protocol on a specific microfluidic chip. Each
microfluidic chip designer provides a library that translates an abstract protocol
into the specific sequence of valve actuations needed to execute that protocol on
a specific chip.

These abstraction layers provide many benefits. Primarily, by using an ar-
chitecture-independent description of the biological protocol (the middle layer),
the application development can be decoupled from advances in the underlying
device technology. Thus, as microfluidic devices come to support additional in-
puts, mixers, storage cells, etc., the existing suite of protocols can run without
modification (much as C programs run without modification on successive gener-
ations of microprocessors). In addition, the protocol layer serves as a division of
labor. Rather than requiring a heroic and brittle translation from a SAT formula
directly to a microfluidic chip, a biologist provides a mapping to the abstract
protocol while a microfluidics expert maps the protocol to the underlying device.
The abstract protocol is also perfectly suited to simulation, thereby allowing the
logical operations to be verified without relying on any physical implementation.
Further, a portable protocol description could serve the role of pseudocode in
technical publications, providing a precise account of the experimental meth-
ods used. Third-party protocols could be downloaded and executed (or called as
sub-routines) on one’s own microfluidic device.

In the long term, the protocol description language will support all of the op-
erations needed for biological computing. However, as there does not yet exist a
single microfluidic device that can encompass all the functionality (preparation
of DNA libraries, selection, readout, etc.), this paper focuses on three funda-
mental primitives: fluid mixing, fluid transport, and fluid storage. We describe a
programming system called BioStream (Section 2) that provides an architecture-
independent interface for these operations. To show that BioStream is portable,
we execute BioStream code on two fundamentally different microfluidic archi-
tectures (Section 3). We also present a novel algorithm for mixing fluids to a
given concentration using the minimal number of simple on-chip mixing steps
(Section 4). Our system represents a fully-functional, end-to-end demonstration
of portable software on microfluidic hardware.

2 BioStream Protocol Language

We have developed a software system called BioStream for portable microflu-
idics protocols. BioStream is a Java library that virtualizes many aspects of the
underlying hardware resources. While BioStream can be targeted by a compiler
(for example, a DNA computing compiler that converts a mathematical prob-
lem into a biological protocol), it is also suitable for direct programming and
experimentation by biologists. As such, the language provides several high-level
abstractions to improve readability and programmer productivity.

3



����������	�
���
�������	
ary

// mix fluids in arbitrary proportions

Fluid mix(Fluid[] f, double[] c);

// set precision of mixing ope ����� ions

void setPrecision(double precision);

// wait for a period before ����� ceeding

void waitFor(long seconds);
 

[native functions with Fluid arguments]

Microfluidic Device Microfluidic Simulator

 Library 

Generator

G enerate a

B ioS tream 

L ibrary  for an

architecture.

 Simulator 

Generator

G enerate a 

simulated 

backend for an

architecture.

                   Fluidic Instruction 

                Set Architectu
	�


(ISA)

// mix two fluids in eq ����������� ����� tions

void mixAndS tore(L ocation src1,

                               L ocation src2,

                               L ocation dst)
 

[native functions with L ocation arguments] 

                  P
	����

ocol Code 

Portable between microfluidic chips

supporting architecture requirements.

     
 

Declares native functions such as

I/O, sensors, agitators. �! r "$# ample:

       Fluid input(Integer i);

       Double camera(Fluid i);

     Architectu
	�


Requ
��	�
�
%


nts
 

Implemented by

H ardw &('*)
Developers

Implemented by+%,�-/.�0
'1)�&(2

Implemented by

P'
-(0

ocol 

Developers

Fig. 2. Abstraction layers in the BioStream system.

2.1 Providing Portability

As shown in Figure 2, BioStream offers two levels of abstraction underneath the
protocol developer. The first abstraction layer is the BioStream library, which
provides first-class Fluid objects to represent the physical fluids on the chip.
The programmer deals only with Fluid variables, while the runtime system au-
tomatically assigns and tracks the location of the corresponding fluids on the
device. The library also supports a general mix operation for combining Fluids
in arbitrary proportions and with adjustable precision.

The second abstraction layer, the Fluidic Instruction Set Architecture (ISA),
interfaces with the underlying hardware. The fundamental operation is mixAnd-
Store, which mixes two fluids in equal proportions and stores the result in a
destination cell. (We describe how to translate the flexible mix operations in
BioStream to a series of equal-proportion mixes in Section 4.) As all storage
cells on the chip have unit volume, only one unit of mixture is stored in the
destination; any leftover mixture may be discarded. As detailed in Section 3, this
allows for a flexible implementation of mixAndStore on diverse architectures.

In addition to the abstractions for mixing, there are some architecture-specific
features that need to be made available to the programmer. These “native func-

4



tions” include I/O devices, sensors, and agitators that might not be supported
by every chip, but are needed to execute the program; for example, special input
lines, cameras, or heaters. As shown in Figure 2, BioStream supports this func-
tionality by having the programmer declare a set of architecture requirements.
BioStream uses the requirements to generate a library which contains the same
functionality; it also checks that the architecture target supports all of the re-
quired functions. Finally, BioStream includes a generic simulator that inputs a
set of architecture requirements and outputs a virtual machine that emulates the
architecture. This allows full protocol development and validation even without
hardware resources.

The BioStream system is fully implemented. The reflection capabilities of
Java are utilized to automatically generate the library and the simulator from
the architecture requirements. As described in Section 3, we also execute the
Fluidic ISA on two real microfluidic chips.

2.2 Example Protocol

An example of a BioStream protocol appears in Figure 3. This is a general
program that seeks to find the ratio of two reagents that leads to the highest
activity in the presence of a given indicator. Experiments of this sort are common
in biology. For example, the program could be applied to investigate the roles
of cytochrome-c and caspase 8 in activating apoptosis (cell death); cell lysate
would serve as the indicator in this experiment [16]. The protocol uses feedback
from a luminescence detector to guide the search for the highest activity. After
sampling some concentrations in the given range, it descends recursively and
narrows the range for the next round of sampling. Using self-directed mixing, a
high precision can be obtained after only a few rounds.

The recursive descent program declares a SimpleLibrary interface (see bot-
tom of Figure 3) describing the functionality required on the target architec-
ture. In this case, a camera is needed to detect luminescence. While we have not
mounted a camera on our current device, it would be straightforward to do so.

2.3 Automatic Fluid Regeneration

A distinguishing feature of BioStream code is the use of Fluid variables to rep-
resent samples on the device. The challenge in implementing this functionality
is that physical fluids can be used only once, as they are consumed in mixtures
and reactions. However, the programmer might reference a Fluid variable multi-
ple times (e.g., variables A and B in the recursive descent example). BioStream
supports this behavior by keeping track of how each Fluid was generated and
automatically regenerating Fluids that are reused. This process assumes that
the original steps employed to generate a Fluid (input, mixing, agitation, etc.)
will produce an equivalent Fluid if repeated. While this assumption is a natural
fit for protocols depending only on the concentrations of reagents, there are also
non-deterministic systems (such as directed evolution of cells) to which it does
not apply. We leave full consideration of such systems for future work.
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                                       // The Recursive Descent protocol recursively 
// zooms in on the ratio of fluids A and B that 
// has the highest activity. It requires the  
// following setup in the laboratory:

import biostream.library.*;         // - input(0) -- fluid A 
// - input(1) -- fluid B 

public class RecursiveDescent {                   // - input(2) -- luminescent activity indicator

public static void main(String[] args) {            // Initialize the backend to use (for example,
          String backend = args[0];       // an actual chip or a microfluidic simulator) 
             // based on command-line input. 
          SimpleLibrary lib =   
               (SimpleLibrary)LibraryFactory.     // Create an interface to the backend using the 
               buildLibrary("SimpleLibrary", args[0]);    // native functions declared in SimpleLibrary. 
        run(lib); 

     } 

private static void run(SimpleLibrary lib) {    // Perform the protocol:
          int ROUNDS = 10; int SAMPLES = 5;        // Set number of rounds and samples per round. 

          Fluid A = lib.input(new Integer(0));             // Assign names to the input fluids. 
          Fluid B = lib.input(new Integer(1)); 
          Fluid indicator = lib.input(new Integer(2)); 

          double center = 0.5, radius = 0.5;      // Initialize center, radius of concentration range.

          for (int i=0; i<ROUNDS; i++) {      // Repeat for a number of rounds: 
               lib.setPrecision(0.1*(2*radius)/ SAMPLES);   // Set absolute mixing precision to 10X 
                                                              //      more than the granularity of sampling.
               double bestActivity = -1; int bestJ = -1;    
               for (int j=1; j<SAMPLES; j++) {     // Repeat across concentrations in range:

                    double target = center+radius*     //           Obtain sample of the 
                                              (1-2*(double)j/SAMPLES);    //           target concentration. 
                    Fluid sample = lib.mix(A, target, B, 1-target); 

                    Fluid test = lib.mix(indicator, 0.9, sample, 0.1);  //           Mix sample with indicator,
                    lib.wait(30);         //           wait, and measure activity. 
                    double act = lib.luminescence(test).doubleValue(); 

                    if (act > bestActivity)                      //           Remember highest activity.
                         bestActivity = act; bestJ = j; 
               } 

               center = center+radius*(1-2*(double)bestJ/SAMPLES); //     Zoom in by factor of 2 around best activity.
               radius = radius / 2; 

               if (center < radius) center = radius;          //      If needed, move center away from boundary.
               if (center > 1-radius) center = 1-radius; 
          } 
     } 
     System.out.println("Best activity: “ + center);    // Print concentration yielding highest activity.
}

interface SimpleLibrary extends FluidLibrary {    // Declare devices needed by RecursiveDescent:
Fluid input(Integer i);                                     // Require array of fluid inputs.
Double luminescence(Fluid f);                      // Require luminescence camera.

}

Fig. 3. Recursive descent search in BioStream.
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Driving Wash Mixing Sample Inputs Storage Valves Control

fluid fluid size cells lines

Chip 1 oil N/A rotary mixer half of mixer 2 8 46 26
Chip 2 air water during transport full mixer 4 32 140 21

Table 1. Key properties of the microfluidic chips developed. Chip 1 provides better
isolation and retention of samples, while Chip 2 offers faster and simpler operation.

The regeneration mechanism works by associating each Fluid object with the
name and arguments of the function that created it. The creating function must
be a mix operation or a native function, both of which are visible to BioStream
(the Fluid constructor is not exposed). BioStream maintains a valid bit for each
Fluid, which indicates whether or not the Fluid is stored in a storage chamber
on the chip. By default, the bit is true when the Fluid is first created, and it is
invalidated when the Fluid is used as an argument to a BioStream function. If
a BioStream function is called with an invalid Fluid, that Fluid is regenerated
using its history. Note that this regeneration mechanism is fully dynamic (no
analysis of the source code is needed) and is accurate even in the presence of
pointers and aliasing.

The computation history created for Fluids can be viewed as a dependence
tree with several interesting applications. For example, the library can execute a
program in a demand-driven fashion by initializing each Fluid to an invalid state
and only generating it when it is used by a native function. Dynamic optimiza-
tions such as these are especially promising for microfluidics, as the silicon-based
control processors operate much faster than their microfluidic counterparts.

3 Microfluidic Implementation

To demonstrate an end-to-end system, we have designed and fabricated two mi-
crofluidic chips using a standard multi-layer soft lithography process [13]. While
there are fundamental differences between the chips (see Table 1), both provide
support for programmable mixing, storage, and transport of fluid samples. More
specifically, both chips implement the mixAndStore operation in the Fluidic ISA:
they can load two samples from storage, mix them together, and store the re-
sult. Thus, despite their differences, code written in BioStream will be portable
between the chips.

The first chip (see Figure 4) isolates fluid samples by suspending them in
oil [17]. To implement mixAndStore, each input sample is transported from a
storage bin to one side of the mixer. The mixer uses rotary flow, driven by
peristaltic pumps, to mix the samples to uniformity [18]. Following mixing, one
half of the mixer is drained and stored in the target location. While the second
half could also be stored, it is currently discarded, as the basic mixAndStore

abstraction produces only one unit of output.
The second chip (see Figure 5) isolates fluid samples using air instead of oil.

Because fluid transport is very rapid in the absence of oil, a dedicated mixing
element is not needed. Instead, the input samples are loaded from storage and
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Fig. 5. Layout and photo of Chip 2 (driven by air).

aligned in a metering element; when the element is drained, the samples are
mixed during transport to storage. Because the samples are in direct contact
with the walls of the flow channels, a small fraction of the sample is lost during
transport. This introduces the need for a wash phase, to clean the channel walls
between operations. Also, to maintain sample volumes, the entire result of mixing
is stored. Any excess volume is discarded in future mixing operations, as the
metering element has fixed capacity.

To demonstrate BioStream’s portability between these two chips, consider
the following code, which generates a gradient of concentrations:

Fluid blue = input(1);

Fluid yellow = input(2);

Fluid[] gradient = new Fluid[5];

for (int i=0; i<=4; i++) {

gradient[i] = mix(blue, yellow, i/4.0, 1-i/4.0);

}

This code was used to generate the gradient pictured in Figure 4 and produces
an identical result on both microfluidic devices. (The gradient shown in Figure 5
is different and was generated by a different program.)
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4 Mixing Algorithms

The mixing and dilution of fluids plays a fundamental role in almost all bio-
analytical procedures. Mixing is used to prepare input samples for analysis, to
dilute concentrated substances, and to control reagent volumes. In DNA comput-
ing, mixing is needed for reagent preparation (e.g., DNA libraries, PCR buffers,
detection assays) and, in some techniques, for restriction digests [19, 20] or fine-
grained concentration control [21]. It is critical to provide integrated support for
mixing on microfluidic devices, as otherwise the samples would have to leave the
system every time a mixture is needed.

As described in the previous sections, our microfluidic chips support the
mixAndStore instruction from the Fluidic ISA. This operation simply mixes two
fluids in equal proportions. However, the mix command in BioStream allows
the programmer to specify complex mixtures involving multiple fluids in vari-
ous concentrations. To bridge the gap between these abstractions, this section
describes how to obtain a complex mixture using a series of simple steps. We
describe an abstract model for mixing, an algorithm for minimizing the number
of steps required, and how to deal with error tolerances.

4.1 A Model of Mixing

The following definition gives our notation for mixtures.

Definition 1. A mixture M is a set of substances Si at given concentrations
ci:

M = {〈S1, c1〉 . . . 〈Sk, ck〉}
∑k

i=1 ci = 1

For example, a mixture of 3/4 buffer and 1/4 reagent is denoted as {〈buffer, 3/4〉,
〈reagent, 1/4〉}. We further define a sample to be a mixture with only one
substance (|M| = 1). For example, a sample of buffer is denoted {〈buffer, 1〉},
or just 〈buffer〉.

To obtain a given mixture on a microfluidic chip, one performs a series of
mixes using an on-chip mixing primitive. While the capabilities of this mixer
might vary from one chip to another, a simple 1-to-1 mixing model can be
implemented on both continuous flow and droplet-based architectures [18, 22].
In this model, all fluids are stored in uniform chambers of unit volume. The
mix operation combines two fluids in equal proportions, producing two units of
the mixture. However, since there may be some amount of fluid loss with every
operation, the result of the mixture might not be able to completely fill the
contents of two storage cells. Thus, the result is stored in only one storage cell,
and the extra mixture is discarded.

The 1-to-1 mixing process can be visualized using a “mixing tree”. As de-
picted in Figure 6, each leaf node of a mixing tree represents a sample, while
each internal node represents the mixture resulting from the combination of its
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children. Figure 7 illustrates that the mixture at an internal node can be calcu-
lated as the arithmetic mean of the components in child mixtures. In the 1-to-1
model, mixing trees are binary trees because each mix operation has two inputs.
Evaluation of the tree proceeds from the leaf nodes upwards; the mixture for a
given node can be produced once the child mixtures are available. The overall
result of the operation is the mixture specified at the root node.

The following theorem is useful for reasoning about mixing trees. It describes
the concentration of a substance in the overall mixture based on the depths of
leaf nodes containing samples of the substance. The depth of a node n in a binary
tree is the length of the path from the root node to n.

Theorem 1. Consider a mixing tree and a substance S. Let md denote the
number of leaf nodes with sample 〈S〉 appearing at depth d of the tree. Then the
concentration of S contained in the root mixture is given by

∑

d md ∗ 2−d.

Proof. A sample at depth d is diluted d times in the mixing process, each time
by a factor of two. Thus it contributes 2−d to the root mixture. Since each mix
operation sums the concentrations from child nodes, the overall contribution is
the sum across the leaf nodes at all depths:

∑

d md ∗ 2−d. ut

The following theorem describes the set of mixtures that can be obtained
using a 1-to-1 mixer. Informally, it states that a mixture is reachable if and only
if the concentration of each substance can be written as an integral fraction k/2d.

Theorem 2. (1-to-1 Mixing Reachability) Consider a finite set of substances
{S1 . . . Sk} with an unlimited supply of samples 〈Si〉. Let R denote the set of
mixtures that can be obtained via any sequence of 1-to-1 mixes. Then:

R =







{〈S1, c1〉 . . . 〈Sk, ck〉} s.t. ∃ pi, qi, d ∈ Z :

LCM(q1 . . . qk) = 2d ∧ ∀i ∈ [1, k] : ci =
pi

qi







Proof. Available in an extended version of this paper [23].
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It is natural to suggest a number of optimization problems for mixing. Of
particular interest are the number of mixes and the number of samples con-
sumed, as these directly impact the running time and resource requirements of
a laboratory experiment. The following theorem shows that (under the 1-to-1
model) these two optimization problems are equivalent.

Theorem 3. In any 1-to-1 mixing sequence, the number of samples consumed
is exactly one greater than the number of mixes.

Proof. By induction on the number of nodes, there is always exactly one more
leaf node than internal node in a binary tree. The mixing tree is a binary tree
in which each internal node represents a mix and each leaf node represents a
sample. Thus there is always exactly one more sample consumed than there are
mixes. ut

Note that this theorem only holds under the 1-to-1 mixing model, in which
two units of volume are mixed but only one unit of the mixture is retained. For
microfluidic chips that attempt to retain both units of mixture (such as droplet-
based architectures or our oil-driven chip), it might be possible to decrease the
number of samples consumed by increasing the number of mix operations.

4.2 Algorithm for Optimal Mixing

In this section, we give an efficient algorithm for finding a mixing tree that
requires the minimal number of mixes to obtain a given concentration. For clarity,
we frame the problem as follows:

Problem 1. (Minimal Mixing) Consider a finite set of substances {S1 . . . Sk}
with an unlimited supply of samples 〈Si〉. Given a reachable mixture {〈S1, p1/n〉
. . . 〈Sk, pk/n〉}, what is the mixing tree with the minimal number of leaves?

Our algorithm runs in O(k lg n) time3 and produces an optimal mixing tree (with
respect to this metric). The tree produced has no more than k lg n internal nodes.

The idea behind the algorithm, which we refer to as Min-Mix, is to place
a leaf node with sample 〈S〉 at depth d in the mixing tree if and only if the
target concentration for S has a 1 in bit lg n − d of its binary representation.
Theorem 1 then ensures that all substances have the desired concentrations,
while fewer than lg n samples are used for each one.

Psuedocode for Min-Mix appears in Figure 8. We illustrate its operation for
the example mixture of {〈A, 5/16〉, 〈B, 4/16〉, 〈C, 7/16〉}. As shown in Figure 9,
the algorithm begins with a pre-processing stage that allocates substances to
bins according to the binary representation of the target concentrations. It then
builds the mixing tree via calls to Min-Mix-Helper, which descends through
the bins. When a bin is empty, an internal node is created in the graph and the
procedure recurses into the next bin. When a bin has a substance identifier in
it, the substance is removed from the bin and a corresponding sample is added

3 lg n denotes log
2
n.
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node �������������
( 	�

� ture { 〈S1, p1 / n〉,                                                        ..., 〈Sk, pk / n〉 } ) { 

    depth = lg(n) 

    bins = new stack[depth+1] 

    // pre-pr����� ssing: ����� ld a st�����  of the 

    // bitwise components of each concentration 

    for i = 1 to k 

        mask = 1 

        for j = 0 to depth-1 

            if (mask & pi ≠ 0) then 

                bins[j].push(Si)

            endif 

            mask = mask <<  1 

        endfor 

    endfor 

    return buildMixingHelper(bins, depth) 

}

node ��������������� Helper (stack[] bins, int pow) { 

    if bins[pow].empty() then

        node child1 = Min-Mix-Helper(bins, 

        node child2 = Min-Mix-Helper(bins,

        return 〈child1, child2〉 as internal node 

    else 
        return bins[pow].pop() as leaf node 

    endif 

}

 pow-1)

 pow-1)

Fig. 8. Min-Mix algorithm.
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as a leaf node to the graph. Figure 9 labels the order in which the nodes in the
final mixing tree are created by the algorithm.

The following lemma is key to proving the correctness of Min-Mix. We
denote the nth least significant bit of x by LSB(x, n). That is, LSB(x, n) ≡
(x � n) & 1.

Lemma 1. Consider the mixing tree t produced by Min-Mix({〈S1, p1/n〉 . . .
〈Sk, pk/n〉}). A substance Si appears at a depth d in t if and only if LSB(pi, lg n−
d) = 1.

Proof. If: It suffices to show that there is a substance added to the mixing tree
for each LSB of 1 drawn from the pi (that the substance appears at depth d is
given by the only if direction.) Further, since bins[j] is constructed to contain
all substances i for which LSB(pi, j) = 1, it suffices to show that a) all bins are
empty at the end of the procedure, and b) the procedure does not try to pop
from an empty bin. To show (a), use the invariant that each call to Min-Mix-

Helper adds a total of 2−d to the mixing tree, where d is the current depth;
either a leaf node is added (which contributes 2−d by Theorem 1) or two child
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nodes are added, contributing 2∗2−(d+1) = 2−d. But since the initial depth is 0,
the external call results in 20 = 1 unit of mixture being generated. Since the bins
represent exactly one unit of mixture (i.e.,

∑

j bins[j] ∗ 2−j = 1), all bins will be
used. To show (b), observe that Min-Mix references the bins in order, testing if
each is empty before proceeding. Thus no empty bin will ever be dereferenced.

Only if: When a substance is added to the tree from bins[j], it appears
at depth lg n − j in the tree. This is evident from the recursive call in Min-

Mix-Helper: it initially draws from bins[lg n] and then works down when the
upper bins are empty. By construction, bins[j] contains only substances Si with
LSB(pi, j) = 1. Thus, if Si appears at depth d in the mixing tree, it was added
from bins[lg n − d] which has LSB(pi, lg n − d) = 1. ut

The following theorem asserts the correctness of Min-Mix.

Theorem 4. The mixing tree given by Min-Mix gives the correct concentration
for each substance in the target mixture.

Proof. Consider a component 〈S, p/n〉 of the mixture passed to Min-Mix. Let
md denote the number of leaf nodes with sample S at depth d of the resulting
mixing tree. By Lemma 1, md = LSB(p, lg(n)−d). Using Theorem 1, this implies
that the concentration for S in the root mixture is given by:

c =
∑

d LSB(p, lg(n) − d) ∗ 2−d

=
∑

x LSB(p, x) ∗ 2−(lg(n)−x)

=
∑

x LSB(p, x) ∗ 2x/n

= p/n

Thus the concentration in the root node of the mixing tree is the same as that
passed to Min-Mix. ut

The Min-Mix algorithm requires O(k lg n) time to find a mixing tree for
mixture ({〈S1, p1/n〉 . . . 〈Sk, pk/n〉}). The resulting mixing tree is optimal in
that there does not exist a mixing tree that yields the same concentration using
fewer mixes. Proofs of these properties are available in an extended version of
this paper [23].

4.3 Supporting Error Tolerances

Thus far the presentation has been in terms of mixtures that can be obtained
exactly with a 1-to-1 mixer, i.e., those with target concentrations in the form of
k/2d. However, the programmer should not be concerned with the reachability
of a given mixture.

In the BioStream system, the programmer specifies a concentration range
[cmin, cmax] and the system ensures that the mixture produced will fall within
the given range4. Such error tolerances are already a natural aspect of scientific

4 Alternately, BioStream supports a global error tolerance ε that applies to all con-
centrations.
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experiments, as all measuring equipment has a finite precision that is carefully
noted as part of the procedure. Given a concentration range, the system increases
the internal precision d until some concentration k/2d (which can be obtained
exactly) falls within the range.

5 Related Work

Several researchers have pursued the goal of automating the control systems
for microfluidic chips. Gascoyne et al. describe a graphical user interface for
controlling chips that manipulate droplets over a two-dimensional grid [24]. By
varying parameters in the interface, the software can target grids with varying
dimensions, speeds, etc. However, portability is limited to grid-based droplet
processors. While the BioStream protocol language could target their chips, their
software is not suitable for targeting ours.

Su et al. represent protocols as acyclic sequence graphs and map them to
droplet-based processors using automatic scheduling [25] and module place-
ment [26]. While the sequence graph is portable, it lacks the expressiveness of
a programming language and cannot represent feedback loops (as in our recur-
sive descent example). King et al. demonstrate a “robot scientist” that directs
laboratory experiments using a high-level programming language [27], but lacks
the abstraction layers needed to target other devices. Gu et al. have controlled
microfluidic chips using programmable Braille displays [28], but protocols are
mapped to the chip by hand.

Johnson demonstrates a special-purpose robotic system (controlled by Lab-
view) that automatically solves 3-SAT problems using DNA computing [29].
Miniaturizing his benchtop devices could result in a fully-automatic microfluidic
biocomputer. Livstone et al. compile an abstract SAT problem into a sequence
of DNA-computing steps [5]. The output of their system would be a good match
for BioStream and the abstraction layers proposed in this paper.

There are other microfluidic chips that support flexible gradient generation[30–
32] and programmable mixing on a droplet array[33]. To the best of our knowl-
edge, our chips are the only ones that provide arbitrary mixing of discrete sam-
ples in a soft lithography medium. A more detailed comparison of the devices is
published elsewhere [17].

Fair et al. also suggest a mixing algorithm for diluting a single reagent by
a given factor [34]. It seems that their algorithm performs a binary search for
the target concentration, progressively approximating the target by a factor of
two. However, since intermediate reagents must be regenerated in the search,
this algorithm requires O(n) mixes to obtain a concentration k/n. In contrast,
our algorithm needs O(lg n) to mix two fluids.

6 Conclusions

Microfluidic devices are an exciting substrate for biological computing because
they allow precise and automatic control of the underlying biological proto-
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cols. However, as the complexity of microfluidic hardware comes to rival that of
silicon-based computers, it will be critical to develop effective abstraction layers
that decouple application development from low-level hardware details.

This paper presents two new abstraction layers for microfluidic biocomputers:
the BioStream protocol language and the Fluidic ISA. Protocols expressed in
BioStream are portable across all devices implementing a given Fluidic ISA. We
demonstrate this portability by building two fundamentally different microfluidic
devices that support execution of the same BioStream code. We also present a
new and optimal algorithm for obtaining a given concentration of fluids using a
simple on-chip mixing device. This algorithm is essential for efficiently supporting
the mix abstraction in the BioStream language.

It remains an interesting area of future work to leverage DNA computing
technology to target the BioStream language from a high-level description of the
computation. This will create an end-to-end platform for biological computing
that is seamlessly portable across future generations of microfluidic chips.
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