DEP: Detailed Execution Profile

Qin Zhao!, Joon Edward Sim?,
Weng-Fai Wong!2
!Singapore-MIT Alliance
2Department of Computer Science
National University of Singapore

{zhaogin,esim,wongwf}@comp.nus.edu.sg

ABSTRACT

In many areas of computer architecture design and program
development, the knowledge of dynamic program behavior
can be very handy. Several challenges beset the accurate
and complete collection of dynamic control flow and mem-
ory reference information. These include scalability issues,
runtime-overhead, and code coverage. For example, while
Tallam and Gupta’s work on extending WPP (Whole Pro-
gram Paths) showed good compressibility, their profile re-
quires 500MBytes of intermediate memory space and an av-
erage of 23 times slowdown to be collected.

To address these challenges, this paper presents DEP (De-
tailed Execution Profile). DEP captures the complete dy-
namic control flow, data dependency and memory reference
of a whole program’s execution. The profile size is signifi-
cantly reduced due to the insight that most information can
be recovered from a tightly coupled record of control flow
and register value changes. DEP is collected in an infras-
tructure called Adept (A dynamic execution profiling tool),
which uses the DynamoRIO binary instrumentation frame-
work to insert profile-collecting instructions within the run-
ning application. DEP profiles user-level code execution in
its entirety, including interprocedural paths and the execu-
tion of multiple threads.

The framework for collecting DEP has been tested on real,
large and commercial applications. Our experiments show
that DEP of Linux SPECInt 2000 benchmarks and Windows
SysMark benchmarks can be collected with an average of
5 times slowdown while maintaining competitive compress-
ibility. DEP’s profile sizes are about 60% that of traditional
profiles.

Categories and Subject Descriptors

D.3.4 PROGRAMMING LANGUAGES]: Processors—
Run-time environments

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PACT’06, September 16-20, 2006, Seattle, Washington, USA.

Copyright 2006 ACM 1-59593-264-X/06/0009 ...$5.00.

Larry Rudolph
Singapore-MIT Alliance
Computer Science and Artificial Intelligence
Laboratory
Massachusetts Institute of Technology

rudolph@csail.mit.edu

General Terms

Measurement, Performance

Keywords

Profile, Dynamic Instrumentation, Memory Reference, Con-
trol Flow

1. INTRODUCTION

Tallam et. al [14] proposed an extension to Larus’ work on
WPP (Whole Program Paths) [6], called eWPP (extended
WPP). eWPP is WPP with additional encoding of memory
dependency information. However, eWPP requires a large
overhead in terms of intermediate space needed (500MBytes
of buffers) and execution time slowdown (23 times on aver-
age). eWPP requires a two-pass approach in order to handle
interprocedural paths. This paper describes DEP (Detailed
Execution Profile) which is collected in a single pass. It
incurs considerably less overhead in terms of intermediate
space needed (10MBytes per thread) and execution time
slowdown (five times on the average). The way in which
DEP is collected handles inter-procedural paths at virtually
no extra cost. Last but not least, DEP can be applied to
multi-threaded applications and encodes more information
than eWPP because both dynamic control flow and memory
references can be recovered.

Dynamic control flow supplies the information needed by
path-based optimizations [3] and analysis [7], providing im-
portant details such as frequently executed basic block se-
quences. Memory reference information encompass details
such as memory dependences and memory access patterns
which are required by many memory hierarchy researches [12].

However, there are specific challenges in collecting both
control flow and memory references at the same time. The
storage space and time needed to obtain the complete profile
may not scale with the number of instructions executed dy-
namically in the program. Also, completeness of the profile
may be an issue if one does not have access to the library
sources. Furthermore, profiling multi-threaded applications
is made complicated by the sharing of code and data be-
tween threads.

This paper shows how these problems are addressed by
DEP which is collected by Adept (A dynamic execution
profiling tool), a runtime binary instrumentation infrastruc-
ture. The observation that memory is accessed through
register-relative addresses leads to the intuition that a tightly-
coupled record of control flow and register value changes is
sufficient for the recovery of memory reference. Thus, Adept

collects DEPs through dynamic binary instrumentation by
inserting code to record register values at the appropriate
program points. Section 7 shows that this insight reduces
both profile size and runtime overhead significantly.

The main advantages of DEP are as follows:

e A DEP has complete coverage of the program, includ-
ing shared libraries, because it is collected by a runtime
binary instrumentation system.

e Thread-private DEPs can be collected easily for multi-
threaded applications.

e Adept and DEP does not rely on any special operat-
ing system, compiler, hardware, or modification of pro-
grams, so the approach can be applied in most modern
architectures.

e The collection of DEP is very efficient, incurring a 5
times slowdown on average.

e DEP, as far as we know, is the first profile which com-
pactly represents memory reference and control flow
information.

The remainder of the paper is organized as follow: Sec-
tion 2 discusses the format of DEP. Section 3 describes the
collection framework, Adept. Section 4, 5 and 6 discuss
the collection, optimization and analysis aspects of Adept.
Experimental results are discussed in Section 7. This is fol-
lowed by the related work and conclusion.

2. DETAILED EXECUTION PROFILE

In this section we describe how the control flow and mem-
ory reference information are represented in DEP before
showing how the reference trace can be restored from the
DEP representation. It should be noted that the control flow
and the memory reference profiles are stored separately. In
this way, the control flow profile can be used independently
and different compression algorithms can be applied to each
profile. For the rest of the paper, we shall refer to the control
flow and memory reference components of a DEP as DEP¢
and DEP s, respectively.

2.1 Control Flow Profile: DEP.

Control flow is usually represented as a sequence of ba-
sic blocks executed by an application. One naive way of
doing this is to note down the starting address of each ba-
sic block. Assuming a 32-bit machine, four bytes would be
needed to tag a basic block. However, a full 4-byte tag is an
overkill and would consume too much space. Using a 3-byte
tag would cause mis-aligned memory reference in our profile
buffer and would degrade performance. On the other hand,
using a 2-byte tag limits us to only 65,536 basic blocks. In
addition, smaller tags require some amount of static analy-
sis of the application so as one is able to assign each basic
block an unique tag. This is difficult in the case of indirect
branches and dynamically generated code.

In DEP we use a 2-byte tag to represent most basic blocks
with extra bytes for special cases. No static analysis is re-
quired. The 4-byte starting address of a basic block is split
into two tags: H-tag for high 2 bytes of the starting address
and L-tag for the low 2 bytes. During the profiling, changes
to the H-tag are tracked. If two consecutive basic blocks
have the same H-tag, only L-tag is entered into the profile

0xff48
0x0804ff48 Oxffad
0x0804ffad 0x0000
0x08050000 0x0805
0x08050026 gigzgg
0x08050048 010026

0x0048

4-byte tag profile 2-byte tag profile
Figure 1: An example of H-tag and L-tag.

buffer. When they have different H-tags, a special value of
0x0000 followed by the new H-tag are stored into the profile
buffer to indicate the change. In the case of a L-tag being
0x0000, two 0x0000 is appended into the buffer. In addition,
the memory location 0x00000000 to 0x0000£f£fff is reserved
for Adept’s use. In this way, two consecutive 0x0000, 0x0000
uniquely represents the L-tag 0x0000.

Figure 1 shows an example of how control flow is recorded.
Let us assume that five basic blocks are executed in the
following sequence: 0x0804ff48, 0x0804ffa4, 0x08050000,
0x08050026, and 0x08050048. The first two and the last
two basic blocks are only represented by their L-tags since
there is no change in their H-tags, assuming the basic block
preceding the first has a H-tag of 0x0804. The third ba-
sic block has a different H-tag from the second basic block.
0x0000 followed by 0x0805 represents this change in the H-
tag. Furthermore, because its L-tag is 0x0000, an extra
0x0000 is inserted to avoid confusion. A 4-byte tag profile
would use 20 bytes for the five entries, while DEP¢ uses
16 bytes for eight entries. This way we are able to reduce
the total profile size to as much as 60% that of the original
4-byte tag profile. In Section 7 we shall further show that
this optimization does not compromise the compressibility
of the profile.

Recovering the full 4-byte basic block execution trace from
the DEP profile is straight-forward. Starting from the be-
ginning of the profile, which must be 0x0000 and a H-tag,
the 4-byte tag is the concatenation of current H-tag and
L-tag.

It is also possible to use a single bit to represent the
branching decision of the control flow [11]. This leads to a
denser control flow profile but it would be harder to recover
the full 4-byte basic block execution trace. In addition, such
a stream of fairly random bits do not compress well. The
comparison between the compressibility of the bit control
flow profile and DEP¢ is reported in Section 7.

Finally, it should be noted that the amount of space re-
quired by the control flow is small compared to memory
reference trace, which will be discussed in the next section.

2.2 Memory References Profile: DEP,,

A complete memory reference should be represented as
{pc, addr, size, type} to indicate the program counter of
the memory reference instruction, the address of memory
reference, the size of the data being accessed, and if it is
a read or a write. Considering that the number of data

memory references can be very large even for a small pro-
gram run, the execution and memory overhead involved for
storing memory references can be very significant. This is
especially the case for a CISC ISA like the Intel TA-32 ar-
chitecture that has a small number of registers and most
instructions are allowed to access memory directly. So it is
a challenge to collect the complete memory reference infor-
mation.

This is where DEP makes its contribution. The key in-
sight is that in many modern architectures, a memory refer-
ence is addressed via several registers and an offset encoded
in the instruction’s operands. So with the registers’ values
and the memory reference instruction, the complete mem-
ory reference can be recovered. DEP¢ is used to pin-point
the memory reference instruction. DEP s stores the values
of the registers used for the address calculation. By storing
only the necessary values, the profile size is minimized.

We also observe that a register’s value may not change
for every memory reference. For example, the stack pointer
is usually updated at the entry and the exit of a function,
and different local variables are referenced via a fixed stack
pointer with different offsets. Another common scenario is
when members of an object are referenced from a fixed ob-
ject base by using different offsets. Making use of this ob-
servation reduces the profile size as well.

Below is a typical code sequence at beginning of a func-
tion. It first saves and updates the frame pointer ebp, and
then allocates space for local variables and initializes them.

push ebp // store esp if necessary

mov esp — ebp;

sub esp 16 — esp;

mov O — J[esp + 4]; //store esp
mov 0 — [esp + 8];

There are three memory references: one push at the begin-
ning and two movs at the end. In the corresponding DEP/,
at most two values of esp are stored. The first value stored
is for the push instruction if the esp has been updated and
was not previously stored. The second value stored is for
the the mov instruction (as shown by the comments above)
since esp is updated by the third sub instruction. Although
the esp is also updated in the first instruction by the push,
the new value will not be stored since there is no memory
reference that uses it.

Recovering the exact memory reference information from
a DEP is more complicated than recovering the control flow
information. Section 6.2 shows how the complete mem-
ory reference information can be recovered from DEP¢ and
DEP .

3. ADEPT: ADYNAMICEXECUTION PRO-
FILING TOOL

We have implemented a tool we called Adept to collect the
DEP profile described above. Another contribution of this
paper is that Adept is very efficient and usable in collecting
different kinds of profiles. In this section, we will describe
Adept framework in detail. Adept uses the DynamoRIO [5]
binary instrumentation framework as a vehicle to perform
its dynamic instrumentation on running applications. It is
conceivable that Adept may be implemented using other
dynamic binary instrumentation frameworks. The inserted
profiling code is executed along with user code and collects

Instrumentor

Start basic block builder
\ dispatch ‘
context switch
BASIC BLOCK TRACE CACHE
CACHE
non-control-flow indirect branch non-control-flow indirect branch
insiructions lookup instructions =/ stays on trace?

Figure 2: DynamoRIO and the Adept extensions.

the DEP into a profile buffer. We utilized the page protec-
tion mechanism to trigger an analyzer whenever the buffer is
full. Any customized analysis can be implemented in the an-
alyzer. After returning from analyzer, the buffer is reset and
the application’s execution continues. To reduce the profil-
ing overhead, an optimizer is used to optimize frequently
executed profiled code during the execution.

3.1 DynamoRIO

DynamoRIO is an efficient, and transparent runtime code
manipulation system. It can execute and manipulate large,
real world applications running on [A-32 hardware, under
both Linux and Windows. Figure 2 shows the main com-
ponents of DynamoRIO. The darkened components repre-
sents the extensions for Adept described in the later sec-
tions. DynamoRIO executes applications by copying the
user code, one basic block at a time, into a basic block cache,
and then executing the code from there. The copied code is
the same as the original application code, with the excep-
tion that control transfer operations are modified so that
DynamoRIO retains control of execution. DynamoRIO re-
duces its copying overhead by caching the basic blocks for fu-
ture re-execution. To reduce the number of context switches
between DynamoRIO and the application, it directly links
blocks that are joined with direct branch as soon as they
are encountered. A fast in-cache lookup is used to transit
between blocks that are linked with an indirect branch. If
some code fragments and paths are “hot” enough, they are
stitched together as single-entry multi-exits traces and up-
graded into a trace cache. DynamoRIO provides a program-
ming interface for a client to manipulate the code in execu-
tion. Before emitting code into either caches, DynamoRIO
calls hooks that are implemented by the client to allow any
customized modifications of the application code.

3.2 Adept’s extensions

Adept is built on top of DynamoRIO and consists of three
added components: the instrumentor, the analyzer, and the
optimizer.

e The instrumentor is invoked each time before a basic
block is emitted into basic block cache. It instruments
all of the user’s code for collecting profiles such as DEP
into a buffer.

o The analyzer is triggered periodically whenever the

profile buffer is full. It can be implemented as any cus-
tomized online analysis on the profile, or it can com-
press or write the profile onto the hard disk for future
off-line analysis. At the end of the analyzer, the pro-
file buffer is reset and application execution continues
with profiling.

e The optimizer is an optional component we imple-
mented to improve the performance of Adept. It is
called when basic blocks are upgraded into a trace.
At that point, certain redundant profile code can be
removed, thereby reducing the profiling overhead in
frequently executed code (traces).

DynamoRIO maintains private code caches for each thread.

Therefore, Adept is naturally able to handle multi-threaded
code by maintaining runtime profile information for differ-
ent threads simultaneously. Thanks to DynamoRIO, Adept
can profile events for dynamically generated code and self-
modified code without any difficulty since any user code will
be copied into code cache before being executed.

4. COLLECTING DEPS IN ADEPT

The instrumentor is the key component of Adept, which is
invoked before a basic block is emitted into cache and after
it is built. The implementation of instrumentor determines
how and what type of runtime information is collected. Our
implementation is designed to collect the DEP of a pro-
gram’s entire execution in user space including dynamically
loaded modules and dynamically generated code. All of the
instrumented code, buffer and variables are thread private
in order to support the profiling of multi-threaded applica-
tions.

4.1 Control Flow: Obtaining DEP-

As described in the previous section, a basic block is
tagged by a two bytes H-tag and a two bytes L-tag. The
instrumentor inserts a stub code at beginning of each basic
block to check if the H-tag of new basic block is different
from the previous one. If the H-tag has changed, a value of
0x0000 and the new H-tag is stored. The L-tag is then writ-
ten into the profile. For ease of understanding we will use
C-like pseudo code to show the stub code for checking and
profiling and ignore details such as register stealing. H_tag
and L_tag are known constants when a basic block is built,
and prev_H_tag is a variable holding previous H-tag value.
The variable cf_buf is the control flow profile buffer and
cf_cnt is the buffer counter. The pseudo-code of control
flow profiling is shown below:

short cf_buf [CF_BUF_SIZE];

if (prev_H_tag !'= H_tag) {

prev_H_tag = H_tag;
cf_buf [cf_cnt] = 0x0000;
cf_buf [cf_cnt+1] = H_tag;
cf_cnt = cf_cnt + 2;

}

cf_buf [cf_cnt] = L_tag;

cf_cnt = cf_cnt + 1;

If the L-tag is 0x0000, the last two statements are changed
to

cf_buf [cf_cnt]
cf_buf [cf_cnt+1]
cf_cnt

0x0000;
0x0000;
cf_cnt + 2;

4.2 Memory References: Obtaining DEP,,

In order to minimize the updating of register values, Adept
tracks the status of each register, i.e., whether or not they
have been updated since the last time it was recorded. Be-
fore executing any memory reference instruction, the status
of the register used for address calculation is checked, and
its value is written into profile buffer if necessary.

For each register, Adept uses a shadow variable to repre-
sent if it is UPDATED or RECORDED. The shadow variables are
also thread private so that Adept can trace status of differ-
ent threads’ execution correctly. For each instruction that
writes to a register, the instrumentor inserts an instruction
to set its corresponding shadow variable as UPDATED. Before
each memory reference instruction, code is inserted to per-
form a check to see if the register has been updated. If it has
been updated, the register’s value is written into the profile
buffer and the shadow variable is set as RECORDED. Other-
wise, the memory reference instruction is executed directly.
We are therefore able to track register value changes and
only record its value when necessary. As a result, we are
able to produce a profile that is less than half of a straight
forward memory address profile.

unsigned int mem_buf [MEM_BUF_SIZE];

if (esp_var == UPDATED) {

mem_buf [mem_cnt] = esp;
mem_cnt = mem_cnt + 1;
esp_var = RECORDED;

}

esp_var = UPDATED;

push ebp;

ebp_var = UPDATED;

mov esp — ebp;

esp_var = UPDATED;
sub esp 16 — esp;
if (esp_var == UPDATED) {

mem_buf [mem_cnt] = esp;
mem_cnt = mem_cnt + 1;
esp_var = RECORDED;

}
mov 0 — [esp + 4];
if (esp_var == UPDATED) {

mem_buf [mem_cnt] = esp;
mem_cnt = mem_cnt + 1;
esp_var = RECORDED;

}

mov 0 — [esp + 8];

The above is the instrumented version of the function en-
try code example given in Section 2.2. The original assem-
bly code is shown in bold face. The other pseudo-code are
instrumentation code. Checking and updating code have
been inserted before the three memory reference instruc-
tions. The first three (original) instructions — push, mov,
and sub — write to registers. Therefore, there is one register
status updating statements for each instruction.

As is apparent, in order to minimize the size of the pro-
file, there are a lot of dynamic checking that need to be
performed. These can significantly degrade performance.
In Section 5, we will describe how performance can be im-
proved by optimizations that remove redundant checking.

4.3 The Profile Buffer

The profile buffer is used to temporarily store the collected
profile for future analysis. The size of buffer depends on

the number of threads of an application since there is one
buffer for each thread. A single threaded application can
use a larger buffer to reduce the number of context switches
and analyzer invocations. For multi-threaded applications,
however, the buffer for each thread has to be smaller.

Each profile buffer is divided into two parts so as to store
DEPc¢ and DEP s separately. We found that a 80-20 split —
with 80% of the buffer devoted to hold the memory reference
profile — works reasonably well in practice.

In order to avoid checking to see if the buffer is full at
each basic block, we used the page protection mechanism to
trigger the analyzer when either parts of the buffer is full.
Section 6 will elaborate on the details of this trick.

S. OPTIMIZING THE COLLECTION PRO-
CESS

As discussed in Section 4, the instrumented user code in-
cludes many checks to avoid storing redundant information,
degrading the application’s performance. The optimizer is
a component of Adept that streamlines the profiling of fre-
quently executed code. Recall that in DynamoRIO “hot”
basic blocks are stitched together to form traces. The opti-
mizer is called when a set of basic blocks are upgraded to a
trace. By taking advantage of the single-entry, multi-exits
property of a trace, some checking and profiling code can be
safely removed. The subsections below give some details on
how this is achieved.

5.1 Optimizing Control Flow Profiling

The original instrumented control flow profiling code first
checks if the H-tag has changed, and updates the H-tag if
necessary. Then the L-tag is written into the profile buffer.
In a trace, except the first basic block, the other basic blocks
will not be executed unless their predecessor has been ex-
ecuted. So the check of the H-tag can be performed only
once statically as the trace is built. The checks in the pro-
file code are removed while the corresponding update and
profile action is kept unchanged. This way, the overhead of
dynamically checking H-tags is reduced.

We shall illustrate this optimization using Figure 1 as an
example. Let us assume that the five basic blocks constitute
a trace. A check for changes in the H-tag needs only be
inserted in the first basic block. At the third basic block,
we know that the H-tag is different, so a new H-tag together
with the L-tag is written into the profile buffer. The other
blocks simply store their L-tag into the profile buffer. The
optimized profile code is as follows:

// bb 0x0804ff48
if (prev_H_tag !'= 0x0804) {

prev_H_tag = 0x0804;
cf_buf [cf_cn] = 0x0000;
cf_buf[cf_cn+1] = 0x0804;
cf_cnt = cf_cnt + 2;
}
cf_buf [cf_cnt] = 0xff48;
cf_cnt = cf_cnt + 1;
// bb 0x0804ffad
cf_buf[cf_cnt] Oxffa4d;

cf_cnt cf_cnt + 1;

// bb 0x08050000
prev_H_tag
cf_buf [cf_cnt]

0x0805;
0x0000;

cf_buf [cf_cnt+1] = 0x0805;
cf_cnt = cf_cnt + 2;
cf_buf [cf_cnt] = 0x0000;
cf_cnt[cf_cnt+1] = 0x0000;

cf_cnt cf_cnt + 2;

// bb 0x08050026
cf_buf [cf_cnt]
cf_cnt

0x0026;
cf_cnt + 1;

// bb 0x08050048
cf_buf [cf_cnt]
cf_cnt

0x0048;
cf_cnt + 1;

5.2 Optimizing Memory Reference Profiling

As in the case in control flow profiling, there are a lot of
checking in the profile code for memory references. More-
over, there are many register status update instructions.
The optimizer scans the instructions in a trace looking for
the following optimization opportunities. If an instruction
tries to set a register’s shadow variable which has already
been set to an UPDATED status, this instruction can be re-
moved. Furthermore, if a register’s status is known, the
checking code can be removed. The update and profile
instructions are left unchanged if the register’s status is
UPDATED.

if (esp_var == UPDATED) {

mem_buf [mem_cnt] = esp;
mem_cnt = mem_cnt + 1;
esp_var = RECORDED;

}

esp_var = UPDATED;

push ebp;

ebp_var = UPDATED;

mov esp — ebp

sub esp 16 — esp

mem_buf [mem_cnt] esp;

mem_cnt mem_cnt + 1;

esp_var RECORDED;

mov 0 — [esp + 4]
mov 0 — [esp + 8]

The optimized version of our previous memory reference
profiling code is shown above. Several redundant profiling
instructions has been removed. First, the second ‘esp_var =
UPDATED;’ is removed since the status of esp_var is already
at UPDATED. Next, the conditional checking instructions for
‘mov 0 — [esp + 4]’ is removed because the esp’s status
is known to be at UPDATED. Finally, all the instrumentation
code for the last instruction is removed because the value of
esp has already been stored.

Other optimization opportunities exist. For example, all
the update statements for esp_var can be removed because
they are in the same basic block, and only the final ‘esp_var
= RECORDED;’ determines esp_var’s status. We did not im-
plement these because the context in which they can be
applied are not general enough. The expected returns did
not warrant the effort.

6. ANALYZING DEP

The analyzer is invoked periodically when one of the two
parts of the profile buffer is full. The analyzer can implement
any customized analysis or simulation.

In this section, we describe the analyzer invocation mech-
anism, and some ways of using DEPs collected by Adept.
In particular, we shall describe how the complete memory

reference information can be recovered from DEP and give
an example of how DEP can be used to detect data race
between threads of a multi-threaded application.

6.1 Optimizing the Analyzer’s Invocation

To avoid the overhead of checking if the buffer is full on
every buffer counter update, we use the operating system’s
page protection mechanism to trigger the analyzer. The last
page of each part of the profile buffer is set to be ‘not ac-
cessible’. Any attempt to write to a full profile buffer will
cause a page access violation signal to be raised. In Linux,
the SIGSEGV signal is sent to the process. In order to re-
tain control of execution and to keep track of self-modifying
code execution, DynamoRIO uses its own signal handler to
intercept all the signal sent to a process before taking the
corresponding action. We extended DynamoRIO’s signal
handler to check if the received SIGSEGV signal is caused by
writing to a full profile buffer. If so, the analyzer is called
with two parts of the profile as its parameters. On the return
of the analyzer, the profile buffer is reset, and the register
used as the profile counter is also reset to zero. The applica-
tion’s execution resumes, and the write instruction causing
SIGSEGV signal is re-executed, only this time writing to start
of profile buffer. A similar analyzer invocation mechanism
has been implemented in the Windows version.

6.2 Recovering memory reference trace

In order to recover the memory reference trace, a traver-
sal of all dynamically executed basic blocks is unavoidable.
As these basic blocks are traversed, two pieces of informa-
tion for each register need to be maintained: (a) the up-to-
date values for the register which are obtained by reading
DEPj; and (b) an EXPIRED/CURRENT status flag associated
with each register indicating whether the value of the reg-
ister is currently valid. The status flag information can be
efficiently represented using a bit array.

The naive approach of recovering the memory reference
trace from a DEP is straight-forward and is akin to pro-
gram interpretation. By traversing basic blocks indicated
by dynamic control flow, we decode the instructions in each
basic block sequentially. If an instruction alters the value
of a register, the flag of the corresponding register is set to
be EXPIRED. On the other hand, if the instruction references
memory, we can calculate the address using the register val-
ues being maintained. However, if the status of any of the
registers required for the address calculation is EXPIRED, the
correct value has to be read from DEP s before address cal-
culation can proceed. Thereafter, the status of the registers
are set to be CURRENT. In this way, we are able recover the
complete memory reference represented as {pc, addr, size,
type}.

This approach, as one might expect, is very time consum-
ing. One of the main overhead is in the decoding of each
instruction every time its basic block is encountered. As
an optimization, instructions of each basic block are pre-
decoded. Before the traversal, we decode each instruction
and derive the following information from each memory ref-
erence instruction: (a) the registers used for address cal-
culation and (b) the register values which has expired be-
tween the current memory reference instruction and its pre-
decessor. These information can be efficiently represented
by means of bit vectors associated with each of these in-
structions. Let us illustrate this with an example. Suppose

the assembly code below are the first few instructions of a
particular basic block.

sub eax 16 -> eax
add edx 32 -> edx
mov [eax, ecx, 4]16 -> ebx

For the third mov instruction, the registers used bit vector
is 00000101b, i.e., eax and ecx is needed. The bit vector
for expired register values is 00001001b, i.e., eax and edx
has been overwritten prior to the current instruction. Dur-
ing the traversal of the dynamically executed basic blocks,
whether these two values needs to be obtained from DEP s
depends on the value of the registers’ status flags. Assuming
that the status flags bit array is 00000000b, only one value
needs to be read from DEPjys to update eax. The status
flags bit vector is updated to 00001010b after processing this
memory reference instruction. The key idea here is that the
bit vectors can be obtained prior to traversal and the first
two instructions can be ignored when the basic blocks are
traversed during the actual address calculation.

6.3 DEP-based Data Race Detection

Different threads of a process share the same address space.
A thread is able to access any part of memory that another
thread is using. Although programmers can use locks to
ensure atomicity, there is no way to enforce it in practice.
A bug such as a buffer overflow or neglecting to properly
lock critical regions of data can result in improper accesses
to shared data. Moreover, if a data race is caused by im-
proper arguments passed to the utility function in a dynami-
cally loaded module and the un-authorized access happens in
the utility function, it is even harder to isolate the problem
through a source code level analysis approach. For instance,
assuming two strings src and dst are passed to strcpy, and
the length of src is longer than dst, a buffer overflow occurs
on dst string could very well overwrite some data in a criti-
cal region. Such a bug may cause incorrect behavior due to
data races. In such a scenario, it is hard to detect the data
race using buffer overflow detection tools.

A customized Adept analyzer can be implemented for the
data race detection over specific memory ranges. The an-
alyzer maintains the software locks status. The status is
updated when the function for lock request and release is
encountered in the control flow. Information such as which
software lock was accessed, and the result of the operation,
for example whether a trylock successfully obtained the
lock or not, can be recovered from the DEP. With the sta-
tus of the locks, it is easy to check if any memory reference
in the specified memory region was performed without re-
questing the proper lock.

The data race detection described above is but one exam-
ple of how Adept and DEP can be used. Our framework
opens up many more possibilities for both on-line and off-
line performance tuning and debugging.

7. EXPERIMENTAL EVALUATION

In this section, we shall evaluate the performance of Adept,
as well as the size, the compressibility, and the recovery
overhead of DEPs. We ran the experiments on a dual-core
3.2GHz Intel Pentium D 840 processor with 2 GBytes of
RAM which dual-boots to Linux Fedora Core 4 and Win-
dows XP Professional SP2. For our experiments in Linux,
we used the SPEC CPU2000 integer [1] benchmarks, which

Benchmark Native | BB_pc+Mem_addr | DEP
(sec) (sec) (sec)
164.gzip 181 943 625
175.vpr/place 91 462 319
176.gcc 77.3 618 513
181.mcf 182 355 282
186.crafty 114 983 613
197.parser 203 1081 880
252.eon.cook 53.1 262 176
253.perlbmk 183 1309 1064
254.gap 85.4 672 563
255.vortex 147 1552 1249
256.bzip2 178 979 648
300.twolf 305 1316 1053
Access 283 1147 1107
PowerPoint 349 517 526
WinWord 257 451 477

Table 1: Execution Time of Benchmark.

| mBB_pc+Mem_addr 0 DEP O0eWPP @ Pin S Valgrind |

©
o

~ o
o O

o

Relative Slowdown
w A O o
S o
\SSRSRRY

o
]

SIS

N

. N
N
N
N N g N
N N 19 7 AN
An;\ AEHA HA
N §£§ A RNAKNANK

SIS
222222200 P22

S SN
P222222220222200202222)

2222222222022

S
222222222227
SSSISSIISSSSSSS
D222
ESSSSSSSSSSISSSSSSSSS
SSSSSSSSSSSSSSY:
222222222222

N
N
N
N
N
AN KN

S o S 3
Q/DQ "f.f\Q S « 0&% Q'D@Q @W@o k@&b‘%g& Ao& \)\Q QQ‘\ 4@‘
o N ©° S @ O O O
& ,é\ v qf;’Q v & @ 5 v

Figure 3: Relative slowdown of various profiling
frameworks.

were compiled with gcc 4.0 using the -O3’ flag. In the
Windows experiments, we selected several benchmarks from
SysMark 2004 SE [2]. SysMark is a commercial benchmark-
ing suite for Microsoft Windows. It measures performance
based on real applications such as the Microsoft Office suite.
SysMark runs and evaluates interactive applications by us-
ing the IBM Rational Visual Test suite to perform a se-
ries of mouse and keyboard actions simulating human op-
erations. We chose the Microsoft Access, PowerPoint and
Word benchmarks as we were able to run them individually
instead of using the standard SysMark interface which runs
all the benchmarks in a single pass.

In the following section, we shall use the following nota-
tions to describe various profile formats. BB_pc shall refer
to the 4-byte basic block profile, consisting of the starting
addresses of each basic block. CF_bit refers the bit vector
control flow profile that represents conditional branches us-
ing bits and 4-byte target addresses for indirect branches.
For memory references, Mem_addr refers to the memory ad-
dresses only profile, without the other components of pc,
size and type. The definitions of DEP¢c and DEPj; were
given in Section 2.

7.1 Runtime Overhead

The first set of experiments assess the runtime overhead of

Adept. In these experiments, we set the size of profile buffer
for each thread to be 10 MBytes, consisting of 2 MBytes
for control flow and 8 MBytes for memory references. The
analyzer merely computes the total size of the profiles.

In order to evaluate the runtime overhead of collecting
DEP, we implemented a version of Adept that collects a
profile format that consists of a 4-byte basic block tag and
the memory reference address (BB_pc+Mem_addr). Table 1
shows three execution times for each benchmark, namely the
native execution time (Native), the time it took to collect a
profile in the BB_pc+Mem_addr format, and the time taken
to collect DEPs. The timings shown are taken by running
the SPECint 2000 with reference inputs in Linux and Sys-
Mark benchmarks in Windows XP.

The collection of DEP profiles performs better than the
collection of BB_pc+Mem_addr profiles.. There are two rea-
sons for this. Firstly, for a given buffer size, the smaller
profile record of DEP will trigger fewer numbers of calls to
the analyzer compared to a more traditional profile format
(BB_pc+Mem_-addr). Secondly, to collect BB_pc+Mem_addr,
a higher penalty has to be paid for the calculation of the
memory address. This penalty includes stealing and restor-
ing registers, the address calculation, storage of the address,
and the update of the profile counter. The overhead of reg-
ister profiling is lower as there is less need to steal registers
and no need to perform address calculation. On the other
hand, there is an extra overhead on checking for changes in
the H-tag, and the checking and updating of register status.
However, the optimizer removes many redundant checks and
register updates in frequently executed code. This signifi-
cantly reduced both the dynamic execution overhead and
the code size.

From Table 1, we can see that PowerPoint and Win-
Word has a smaller relative slowdown with profiling. This
is because PowerPoint and WinWord are interactive appli-
cations. So a large fraction of time is spent in waiting for
events and I/0. Here, collecting BB_pc+Mem_addr outper-
forms collecting DEPs. We attribute this to the fewer num-
ber of ‘hot’ traces compared to the SPECint benchmarks.
Consequently, there are fewer opportunities for the opti-
mizer to remove redundant profile code.

We also compare our relative slowdown with that of three
important previous works: Pin [8], Valgrind [9] and eWPP [14].
The Pin dynamic instrumentation framework could be used
for building customized program-analysis tools through a
provided rich set of APIs. Using these APIs, we imple-
mented a control flow and memory reference profiler. The
profiler inserts function calls into each basic block of a trace
and before each memory reference. These function calls sim-
ply count the number of basic block executed and the num-
ber of memory references. Cachegrind is a cache profiler and
simulator distributed with Valgrind. The cache simulator is
invoked every 16 events or at the end of each basic block
for the events that occurred in a basic block. To evaluate
the profiling overhead, we modified Cachegrind so that ba-
sic block execution events and memory reference events can
be captured and counted. Extended Whole Program Paths
(eWPP) [14] is a representation for recording control flow
and dependence information. It uses a two-phase profiling
approach. In the first phase, a filter identifies all memory de-
pendence. The second collection phase produces the e WPP.
Using the CPU time of collection phase and the native exe-
cution times — both of which were reported in their paper —

l Benchmark | BB _pc | DEPc¢ | CF _bit | Mem_addr | DEP
164.gzip 82,825 43,836 (52.93%) 4,908 (5.93%) 283,005 94,694 (33.46%)
175.vpr 55,998 29,480 (52.64%) 4,985 (8.90%) 234,068 86,703 (37.04%)
176.gcc 26,148 14,533 (55.58%) 4,081 (15.61%) 78,537 | 36,447 (46.41%)
181.mcf 40,869 20,464 (50.07%) 1,406 (3.44%) 97,634 33,989 (34.81%)
186.crafty 87,797 | 58,334 (66.44%) | 20,027 (22.81%) 480,970 | 153,997 (32.02%)
197.parser 198,090 | 123,532 (62.36%) | 55,414 (27.97%) 673,455 | 384,212 (57.05%)
252.eon 19,709 13,664 (69.33%) 9,950 (50.48%) 189,745 90,773 (47.84%)
253.perl 14,289 10,928 (76.48%) 6,839 (47.86%) 50,325 31,886 (63.36%)
254.gap 110,289 73,030 (66.22%) | 48,966 (44.40%) 433,493 | 258,693 (59.68%)
255.vortex 72,969 | 44,746 (61.32%) | 17,742 (24.31%) 278,306 | 195,841 (70.37%)
256.bzip2 49343 26,056 (52.81%) 7,785 (15.78%) 240,034 | 112,709 (46.96%)
300.twolf 162,951 94,251 (57.84%) | 18,391 (11.29%) 603,199 | 268,381 (44.49%)
Average (60.33%) (23.23%) (47.79%)

Table 2: Uncompressed Profile Size in MBytes. Runs conducted using ref inputs. The percentages shown
for DEPc and CF _bit indicates how their profile sizes compare with BB_pc while for DEP,; the percentages
are calculated by comparing with Mem_addr

Bench # thr BB_pc DEP- Mem_addr DEP

min [max [avg min [max [avg | min [max [avg | min [max [avg
Access 15 | 0.00484 | 112445 | 7555 | 0.0033 | 67855 | 4561 | 0.017 | 284622 | 19112 | 0.011 | 191790 | 12872
PowerPnt 45 0.005 | 12936 | 406.8 | 0.0037 | 7969 | 254.7 | 0.017 | 52153 | 1808 | 0.012 | 24454 | 875.1
WinWord 20 | 0.0069 | 16186 | 831.3 | 0.0049 | 9928 | 502.3 | 0.024 | 57236 | 2891 | 0.015 | 32126 | 1620

Table 3: Uncompressed Profile Sizes for multithreaded Windows benchmarks in MBytes.

we computed its relative slowdown. eWPP shows an aver-
age 23 times slowdown compared to native execution. This
does not take the filter-phase into account.

As shown in Figure 3, Adept has the best performance
with the lowest relative slowdown. Pin and Valgrind have
significant overheads due to frequent analyzer invocations
and context switches. Valgrind generally performed better
than Pin because the analyzer is invoked only once every 16
events or at the end of a basic block. Pin on the other hand
invokes the analyzer on every memory reference, as well as
on the entry of basic blocks. eWPP performs better than
Pin and Valgrind because its static instrumentation inlines
the analysis code, doing away with context switches. The
major overhead of eWPP lies in the runtime disambiguation
checks. The main advantage of Adept lies in the delayed
invocation of the analyzer because of the buffering of events.

7.2 Profile Size and Compressibility

We evaluated three types of control flow profile formats,
namely BB_pc, DEP¢, and CF_bit. The results for Linux
and multi-threaded Windows benchmarks are shown in Ta-
bles 2 and 3. In terms of profile sizes, DEP¢ is 60% of BB_pc
on the average, while CF_bit is 23%. For memory references,
our DEP), profile is half the size of the Mem_addr profile.

To assess compressibility, we profiled the SPEC integer
benchmarks ran with the test input sets. Two compres-
sion algorithms, namely Sequitur [10] and bzip2 [13], were
then used to compress the profiles stored on disk. The pro-
files that are too large for Sequitur to handle were split into
smaller files and compressed separately.

Figure 4 shows the relative sizes of different compressed
control flow, which are the quotients of the compressed pro-
file sizes divided by the size of the uncompressed BB_pc

profile for the same benchmark. Comparing profile formats,
we find that DEP¢ are nearly the same size as BB_pc when
compressed by Sequitur and smaller when compressed by
bzip2. In practice, DEP¢ has an important advantage. Dur-
ing execution, keeping 2-byte tags implies that longer traces
can be stored in the profile buffer before the analyzer is
triggered. This translates to better performance especially
if compression is done online. It is noteworthy that although
CF_bit representation is small prior to compression, it does
not compress well, and has the largest compressed file.

Figure 5 shows the relative sizes of various compressed
memory reference representations which are the quotients
of the compressed memory profile sizes divided by the size
of the uncompressed Mem_addr profile for the same bench-
mark. DEPjs shows good compressibility with both com-
pression algorithms, and is on average half the size of the
compressed Mem_addr.

In general, DEP showed good compressibility in both com-
pression algorithms. Sequitur generally performs better than
bzip2, but bzip2 is able to handle larger data.

7.3 Recovering Memory References

We implemented the memory reference recovery in the
analyzer invoked by Adept when the profile buffer is full. We
evaluate the performance of reference recovery by comparing
two scenarios: (1) the entire complete memory reference
profile i.e. {pc, addr, size, type} is collected by Adept and
during invocation of analyzer, the profile buffer is scanned
once from the beginning to the end; and (2) DEP is collected
by Adept and a memory reference recovery is performed
when the profile is full.

Figure 6 compares the difference between the time spent
in the analyzer by the two scenarios described above, nor-

W BB_pc - Sequitur

- Sequitur
- bzip2

B BB_pc - bzip2

B DEP - Sequitur

OCF_bit

& DEP - bzip2
8 CF_bit

]

0.06

<]
=] S =)
o o _ o

azis ajiyoid od—gg meu

0} aAle[aa 921S passaldwo)

0.05
0.011

f compressed control flow profile.

Relative size o

4

igure

F

o
p=}
=
El o
mr.m.
S5 N
»n = Qo
_u_2
A - G ©
- ® © N
- W T
a__a__M
S
E o € o
O W O W
= 0 =0
| Zu7
[
0 o 0 o 0 =}
N N - - S
o o o =)

o
a|1youd ssaippe passaidwooun
0} 9Aljejal 9zis passaldwo)

f compressed memory reference profile.

Relative size o

Figure 5

malized to the benchmark’s native execution time, i.e. it is

m Scenario 1

§ Scenario 2

Wrzzz7zz27;

40.00

the difference of the running times of Adept with and with-

35.00

out the above changes to the analyzer, divided by the native
execution time of the benchmark. The benchmarks were run

with the ref input set.

awi| A19A009Y dAleDY

For each memory reference,

Scenario 1 spends an average of 7.5 times of native ex-
there is one conditional branch to check whether the pro-
file boundary is reached and at least four values, i.e., {pc,
native execution time, or almost thrice the time of the sce-
nario 1. As one would expect, there is a trade-off between

memory references from DEP takes an average of 21 times of
profile sizes and recovery time.

addr, size, type}, are read from memory. Recovering the

ecution time in the analyzer.

RELATED WORKS

The two works most closely related to DEP would be

8.

Overhead of Profile Recovery.

6

Figure

15] and extended Whole

[

(WET)
(eWPP) [14]. Whole Execution Trace aims

to be be a unified representation of different kinds of pro-

Whole Execution Traces

Program Paths

files that will serve as the basis for the study of the inter-
relationships between these profiles. WET is implemented
on Trimaran which is a simulation environment. Therefore,
the real run-time overhead incurred in the collection of WET
is not known yet. WET employs static instrumentation and
thus it may not support multi-threaded applications easily.

eWPP seeks to encode memory dependences trace infor-
mation in WPP. It captures the dependences by inserting
disambiguation checks before use statements. However, in
order to handle interprocedural paths, eWPP takes a two-
pass approach. The first pass captures dynamic memory
edges and the second pass inserts the disambiguation checks.
The first pass accounts for a large part of the run-time over-
head whereas Section 7 has shown that collection of DEP
incurs little runtime overhead. Finally, eWPP is not eas-
ily extensible to multi-threaded applications because of the
problem of sharing.

Other works have concentrated on compact, analyzable
representation of dynamic control flow. Larus introduced
WPP (Whole Program Paths) which is an extension of Ball
and Larus [4] work on path profiling. The key idea is that a
sequence of acyclic intraprocedural paths can be compactly
represented by compressing this sequence with Sequitur [10].
Zhang and Gupta [16] extended this work by making subsets
of information more accessible by the removal of redundant
sub-paths. Manos et al. [11] proposed an efficient way to rep-
resent program paths as arithmetically encoded bit traces.

9. CONCLUSION

In this paper, we proposed DEP, a detailed program exe-
cution profile, which captures the major program execution
information, including control flow, memory reference, and
data dependency.

DEP is collected by Adept, a dynamic execution profiling
tool, which is used to perform on-line or off-line analysis of
large and/or multi-threaded applications. Adept does not
require any special operating systems, compiler or hardware
support. It is completely transparent to applications as it
works on binary executables requiring no knowledge of the
source code. Adept builds the mapping between collected
information and original application. It is able to obtain
runtime profiles from dynamically loaded modules, dynam-
ically generated code, or even self-modified code.

Our experiment results show that Adept can collect a
large amount of profile information with a low overhead,
average less than 5 times slowdown compared to native ex-
ecution. Furthermore, we were able to save up to 40% of
space, compared to traditional profiles without compromis-
ing compressibility.

One of the properties of DEP that we would like to point
out is that we do not need the complete trace to recover
segments of program execution. That is, dividing the trace
into segments and given the initial context of a segment, the
program behavior of that particular segment can be easily
reproduced. This may be especially useful for replay mech-
anisms or fast forwarding simulations.

10. REFERENCES
[1] Standard Performance Evaluation Corporation. SPEC

CPU2000 benchmark suite, 2000.
http://www.spec.org/osg/cpu2000/.

[2] Sysmark 2004 SE. SYSmark benchmark Second
Edition, 2004. http://www.bapco.com/.

[3] Glenn Ammons and James R. Larus. Improving
data-flow analysis with path profiles. In Proceedings of
the ACM SIGPLAN 1998 conference on Programming
language design and implementation, pages 72—84,
1998.

[4] Thomas Ball and James R. Larus. Efficient path
profiling. In Proceedings of the 29th annual
ACM/IEEEF international symposium on
Microarchitecture, pages 46—57, 1996.

[5] Derek Bruening. Efficient, Transparent, and
Comprehensive Runtime Code Manipulation. PhD
thesis, Massachusetts Institute of Technology,
September 2004. http://www.cag.csail.mit.edu/rio/.

[6] James R. Larus. Whole program paths. In Proceedings
of the ACM SIGPLAN 1999 conference on
Programming language design and implementation,
pages 259-269, 1999.

[7] James Law and Gregg Rothermel. Whole program
path-based dynamic impact analysis. In Proceedings of
the 25th International Conference on Software
Engineering, pages 308-318, 2003.

[8] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with
dynamic instrumentation. In Proceedings of the ACM
SIGPLAN 2005 conference on Programming language
design and implementation, pages 190-200, 2005.

[9] Nicholas Nethercote. Dynamic Binary Analysis and
Instrumentation. PhD thesis, University of
Cambridge, November 2004. http://valgrind.org/.

[10] Craig G. Nevill-Manning and ITan H. Witten.
Identifying hierarchical structure in sequences: A
linear-time algorithm. Journal of Artificial Intelligence
Research, 7:67-82, 1997.

[11] Manos Renieris, Shashank Ramaprasad, and Steven P.
Reiss. Arithmetic program paths. SIGSOFT Softw.
Eng. Notes, 30(5):90-98, 2005.

[12] Shai Rubin, Rastislav Bodik, and Trishul M. Chilimbi.
An efficient profile-analysis framework for data-layout
optimizations. In Proceedings of the 29th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 140-153, 2002.

[13] Julian Seward. bzip2. http://www.bzip.org/.

[14] Sriraman Tallam, Rajiv Gupta, and Xiangyu Zhang.
Extended whole program paths. In Proceedings of the
14th International Conference on Parallel
Architectures and Compilation Techniques, pages
17-26, 2005.

[15] Xiangyu Zhang and Rajiv Gupta. Whole execution
traces. In Proceedings of the 37th annual IEEE/ACM
International Symposium on Microarchitecture, pages
105-116, 2004.

[16] Youtao Zhang and Rajiv Gupta. Timestamped whole
program path representation and its applications. In
Proceedings of the ACM SIGPLAN 2001 conference
on Programming language design and implementation,
pages 180-190, 2001.

