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Abstract

The emergence of multicore processors has heightened
the need for effective parallel programming practices. In
addition to writing new parallel programs, the next gener-
ation of programmers will be faced with the overwhelming
task of migrating decades’ worth of legacy C code into a
parallel representation. Addressing this problem requires a
toolset of parallel programming primitives that can broadly
apply to both new and existing programs. While tools such
as threads and OpenMP allow programmers to express task
and data parallelism, support for pipeline parallelism is
distinctly lacking.

In this paper, we offer a new and pragmatic approach
to leveraging coarse-grained pipeline parallelism in C pro-
grams. We target the domain of streaming applications,
such as audio, video, and digital signal processing, which
exhibit regular flows of data. To exploit pipeline paral-
lelism, we equip the programmer with a simple set of an-
notations (indicating pipeline boundaries) and a dynamic
analysis that tracks all communication across those bound-
aries. Our analysis outputs a stream graph of the applica-
tion as well as a set of macros for parallelizing the program
and communicating the data needed. We apply our method-
ology to six case studies, including MPEG-2 decoding, MP3
decoding, GMTI radar processing, and three SPEC bench-
marks. Our analysis extracts a useful block diagram for
each application, and the parallelized versions offer a 2.78x
mean speedup on a 4-core machine.

1. Introduction

As multicore processors are becoming ubiquitous, it
is increasingly important to provide programmers with
the right abstractions and tools to express new and exist-
ing programs in a parallel style. The problem of legacy
code is especially daunting, as decades’ worth of (often-
undocumented) C programs need to be reverse-engineered

and gradually migrated to a parallel representation. Given
the broad array of programming tasks, there is unlikely to
be a “silver bullet” solution to these problems; rather, it
will be beneficial to develop a number of orthogonal tech-
niques, each of which caters to a style of parallelism that
is present in a certain class of algorithms. Already, sev-
eral kinds of parallelism have good language-level support.
For example, task parallelism – in which separate routines
execute independently – is naturally supported by threads.
Also, data parallelism – in which one routine is parallelized
across many data elements – is naturally expressed using
dialects such as OpenMP. However, one style of parallelism
that has been largely neglected is pipeline parallelism, in
which a loop is split into multiple stages that communicate
in a pipelined fashion.

Pipeline parallelism is an important abstraction, suit-
able to both new and existing programs, that all paral-
lel programmers should have at their disposal. Firstly,
pipeline parallelism is often lurking in otherwise sequen-
tial codes. Loops with carried dependences can admit a
pipeline-parallel mapping (the dependence being carried by
a single pipeline stage) even though a data-parallel map-
ping is impossible. Secondly, pipeline parallelism can be
more efficient than data parallelism due to improved in-
struction and data locality within each pipeline stage, as
well as point-to-point communication between cores (there
is no global scatter/gather). Pipeline parallelism also of-
fers appeals over task parallelism, as all shared data can be
communicated in a deterministic producer/consumer style,
eliminating the possibility of data races.

Previous efforts to exploit pipeline parallelism in C pro-
grams have been very fine-grained, partitioning individ-
ual instructions across processing cores [19]. Such fine-
grained communication is inefficient on commodity ma-
chines and demands new hardware support [19, 22]. While
a coarse-grained partitioning is more desirable, it is diffi-
cult to achieve at compile time due to the obscured data de-
pendences in C; constructs such as pointer arithmetic, func-
tion pointers, and circular buffers (with modulo operations)
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for (i=0; i<N; i++) {

BEGIN_PIPELINED_LOOP();

… // stage 1

PIPELINE();

… // stage 2

PIPELINE();

… // stage 3

END_PIPELINED_LOOP();

}

for (i=0; i<N; i++) {

… // stage 1

… // stage 2

… // stage 3

}
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for (i=0; i<N; i++) {

if (i==0) {  … // fork into 3 processes, establish pipes }

if (process_id == 1) {

… // stage 1

write(pipe_1_2, &result1, 4);  write(pipe_1_3, &result3, 4);

} else if (process_id == 2) {

read(pipe_1_2, &result1, 4);

… // stage 2

write(pipe_2_3, &result2, 4); 

} else if (process_id == 3) {

read(pipe_2_3, &result2, 4);  read(pipe_1_3, &result3, 4);

… // stage 3

}

if (i==N-1) { … // terminate processes, collect data }

}

#define BEGIN_PIPELINED_LOOP()  // fork processes, establish pipes

#define PIPELINE()  // send/receive all variables used in given partition

#define END_PIPELINED_LOOP()  // terminate processes, collect data
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Figure 1. Overview of our approach.

make it nearly impossible to extract coarse-grained paral-
lelism from realistic C programs.

In this paper, we overcome the traditional barriers in ex-
ploiting coarse-grained pipeline parallelism by embracing
an unsoundprogram transformation. Our key insight is
that, for a large class of applications, the data communicated
across pipeline-parallel stages is stable throughout the life-
time of the program. We focus on streaming applications
such as video, audio, and digital signal processing, which
are often described by a block diagram with a fixed flow
of data. No matter how obfuscated the C implementation
appears, the heart of the algorithm is following a regular
communication pattern. For this reason, it is unnecessary to
undertake a heroic static analysis; we need only observe the
communication pattern at the beginning of execution, and
then “safely” infer that it will remain constant throughout
the rest of execution (and perhaps other executions).

As depicted in Figure 1, our analysis does exactly that.
We allow the programmer to naturally specify the bound-
aries of pipeline partitions, and then we record all commu-
nication across those boundaries during a training run. The
communication trace is emitted as a stream graph that re-
flects the high-level structure of the algorithm (aiding pro-
gram understanding), as well as a list of producer/consumer
statements that can be used to trace down problematic de-
pendences. The programmer never needs to worry about
providing a “correct” partitioning; if there is no parallelism
between the suggested partitions, it will result in cycles in
the stream graph. If the programmer is satisfied with the
parallelism in the graph, he recompiles the annotated pro-
gram against a set of macros that are emitted by our analysis
tool. These macros serve to fork each partition into its own
process and to communicate the recorded locations using
pipes between processes.

Though our transformation is grossly unsound, we ar-
gue that it is quite practical within the domain of streaming
applications. Because pipeline parallelism is determinis-
tic, any incorrect transformations incurred by our technique
can be identified via traditional testing methods, and failed
tests can be fixed by adding the corresponding input to our
training set. Further, the communication trace provided by

our analysis is useful in aiding manual parallelization of the
code – a process which, after all, is only sound insofar as
the programmer’s understanding of the system. By improv-
ing the programmer’s understanding, we are also improving
the soundness of the current best-practice for parallelizing
legacy C applications.

We have applied our methodology to six case studies:
MPEG-2 decoding, MP3 decoding, GMTI radar process-
ing, and three SPEC benchmarks. Our tool was effective
at parallelizing the programs, providing a mean speedup
of 2.78x on a four-core architecture. Despite the potential
unsoundness of the tool, our transformations correctly de-
coded ten popular videos from YouTube, ten audio tracks
from MP3.com, and the complete test inputs for GMTI and
SPEC benchmarks. At the same time, we did identify spe-
cific combinations of training and testing data (for MP3)
that lead to erroneous results. Thus, it is important to maxi-
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mize the coverage of the training set and to apply the tech-
nique in concert with a rigorous testing framework.

To summarize, this paper makes the following contribu-
tions:

• We show that for the class of streaming applications,
pipeline parallelism is very stable. Communication
observed at the start of execution is often preserved
throughout the program lifetime, as well as other exe-
cutions (Section 2).

• We define a simple API for indicating potential
pipeline parallelism in the program. Comparable to
threads for task parallelism or OpenMP for data par-
allelism, this API serves as a fundamental abstraction
for pipeline parallelism (Section 3).

• We present a dynamic analysis tool, built on top of Val-
grind, for tracking producer/consumer relationships
between coarse-grained program partitions. The tool
outputs a stream graph of the application, which vali-
dates or refutes the parallelism suggested by the pro-
grammer. It also provides a detailed statement-level
trace and a set of macros for automatic parallelization
(Sections 3-4).

• We apply our methodology to six case studies, en-
compassing MPEG-2 decoding, MP3 decoding, GMTI
radar processing, and three SPEC benchmarks. We
extract meaningful stream graphs of each application,
and achieve a 2.78x mean speedup on a 4-core archi-
tecture (Section 5).

2. Stability of Stream Programs

A dynamic analysis is most useful when the observed be-
havior is likely to continue, both throughout the remainder
of the current execution as well as other executions (with
other inputs). Our hypothesis is that streaming applica-
tions – such as audio, video, and digital signal processing
codes – exhibit very stable flows of data, enhancing the re-
liability of dynamic analyses toward the point where they
can be trusted to validate otherwise-unsafe program trans-
formations. For the purpose of our analysis, we consider a
program to bestableif there is a predictable set of memory
dependences between pipeline stages. The boundaries be-
tween stages are specified by the programmer using a sim-
ple set of annotations; the boundaries used for the exper-
iments in this section are illustrated by the stream graphs
that appear later (Figure 7).

2.1. Stability Within a Single Execution

Our first experiment explores the stability of memory de-
pendences within a single program execution. We profiled

MPEG-2 and MP3 decoding using the most popular con-
tent from YouTube1 and MP3.com; results appear in Fig-
ures 2 and 3. These graphs plot the cumulative number
of unique addresses that are passed between program par-
titions as execution proceeds. The figures show that after a
few frames, the program has already performed a commu-
nication for most of the addresses it will ever send between
pipeline stages.

In the case of MPEG-2, all of the address traces remain
constant after 50 frames, and 8 out of 10 traces remain con-
stant after 20 frames. The videos converge at different rates
in the beginning due to varying parameters and frame types;
for example, video 10 contains an intra-coded frame where
all other videos have a predictive-coded frame, thereby de-
laying the use of predictive buffers in video 10. Video 1
communicates more addresses than the others because it has
a larger frame size.

MP3 exhibits a similar stability property, though conver-
gence is slower for some audio tracks. While half of the
tracks exhibit their complete communication pattern in the
first 35 frames, the remaining tracks exhibit a variable delay
(up to 420 frames) in making the final jump to the common
communication envelope. These jumps correspond to ele-
ments of two parameter structures which are toggled only
upon encountering certain frame types. Track 10 is an out-
lier because it starts with a few layer-1 frames, thus delay-
ing the primary (layer-3) communication and resulting in
a higher overall communication footprint. The only other
file to contain layer-1 frames is track 9, resulting in a small
address jump at iteration 17,900 (not illustrated).

It is important to note that there does exist a dynamic
component to these applications; however, the dynamism
is contained within a single pipeline stage. For example,
in MP3, there is a Huffman decoding step that relies on
a dynamically-allocated lookup tree. Throughout the pro-
gram, the shape of the tree grows and shrinks and is manip-
ulated on the heap. Using a static analysis, it is difficult to
contain the effects of such dynamic data structures; a con-
servative pointer or shape analysis may conclude that the
dynamism extends throughout the entire program. How-
ever, using a dynamic analysis, we are able to observe the
actual flow of data, ignoring the intra-node communication
and extracting the regular patterns that exist between parti-
tions.

2.2. Stability Across Different Executions

The communication patterns observed while decoding
one input file can often extend to other inputs as well. Ta-
bles 1 and 2 illustrate the minimum number iterations (i.e.,
frames) that need to be profiled from one file in order to

1YouTube videos were converted from Flash to MPEG-2 using ffmpeg
and vixy.net.

3



0

250000

500000

750000

1000000

1 10 100

Iteration

U
n

iq
u

e
 A

d
d

re
s
s
e
s
 

S
e
n

t 
B

e
tw

e
e
n

 P
a
rt

it
io

n
s

1.m2v 6.m2v

2.m2v 7.m2v

3.m2v 8.m2v

4.m2v 9.m2v

5.m2v 10.m2v

10.m2v

1.m2v

MPEG-2

Figure 2. Stability of streaming communica-
tion patterns for MPEG-2 decoding. The de-
coder was monitored while processing the
top 10 short videos from YouTube. See Fig-
ure 7a for a stream graph of the application.
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Figure 3. Stability of streaming communica-
tion patterns for MP3 decoding. The decoder
was monitored while processing the top 10
tracks from MP3.com. See Figure 7b for a
stream graph of the application.

1.m2v 2.m2v 3.m2v 4.m2v 5.m2v 6.m2v 7.m2v 8.m2v 9.m2v 10.m2v

1.m2v 3 3 3 3 3 3 3 3 3 3

2.m2v 3 3 3 3 3 3 3 3 3 3

3.m2v 5 5 5 5 5 5 5 5 5 5

4.m2v 3 3 3 3 3 3 3 3 3 3

5.m2v 3 3 3 3 3 3 3 3 3 3

6.m2v 3 3 3 3 3 3 3 3 3 3

7.m2v 3 3 3 3 3 3 3 3 3 3

8.m2v 3 3 3 3 3 3 3 3 3 3

9.m2v 3 3 3 3 3 3 3 3 3 3

10.m2v 4 4 4 4 4 4 4 4 4 4

Testing File
MPEG-2

Table 1. Minimum number of training itera-
tions (frames) needed on each video in order
to correctly decode the other videos.

1.mp3 2.mp3 3.mp3 4.mp3 5.mp3 6.mp3 7.mp3 8.mp3 9.mp3 10.mp3

1.mp3 1 1 1 1 1 1 1 1 — —

2.mp3 1 1 1 1 1 1 1 1 — —

3.mp3 1 1 1 1 1 1 1 1 — —

4.mp3 1 1 1 1 1 1 1 1 — —

5.mp3 1 1 1 1 1 1 1 1 — —

6.mp3 1 1 1 1 1 1 1 1 — —

7.mp3 1 1 1 1 1 1 1 1 — —

8.mp3 1 1 1 1 1 1 1 1 — —

9.mp3 1 1 1 1 1 1 1 1 17900 —

10.mp3 5 5 5 5 5 5 5 5 5 5

Testing File
MP3

Table 2. Minimum number of training itera-
tions (frames) needed on each track in order
to correctly decode the other tracks.

enable correct parallel decoding of the other files. In most
cases, a training set of five loop iterations is sufficient to in-
fer an address trace that correctly decodes the other inputs
in their entirety. The exceptions are tracks 9 and 10 of MP3
decoding, which are the only two files containing layer-1
frames; because they execute code that is never reached by
the other files, training on the other files is insufficient to
expose the full communication trace. In addition, track 9
is insufficient training for track 10, as the latter containsan
early CRC error that triggers a unique recovery procedure.
As each of these hazards is caused by executing code that is
untouched by the training set, the runtime system could eas-
ily detect such cases (using guards around untrained code)
and revert to a sequential execution for the iterations in
question. Rigorous testing practices that incorporate code
coverage metrics would also help to reduce the risk of en-
countering unfamiliar code at runtime.

The ability to generalize short training runs across mul-

tiple executions relies on two aspects of our methodology.
First, as described later, we require the user to supply a sym-
bolic size for each dynamically-allocated variable; this al-
lows MPEG-2 address traces to apply across different frame
sizes. Second, we coarsen the granularity of the trace to
treat structure types and dynamically-allocated segmentsas
atomic units. That is, whenever a single element of such
a structure is communicated between partitions, the rest of
the structure is communicated as well (so long as it does
not conflict with a local change in the target partition).
Such coarsening increases the tolerance to small element-
wise changes as observed in later iterations of MPEG-2 and
MP3. However, it does not trivialize the overall result, as
coarsening is only needed for a small fraction of communi-
cated addresses (15% for MP3 and dependent on frame size
for MPEG-2).

While we have focused on MPEG-2 and MP3 in this sec-
tion, we observe similar stability across our other bench-
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Figure 4. Stream graph for GMTI, as extracted
using our tool. Nodes are annotated with
their computation requirements, and edges
are labeled with the number of bytes trans-
ferred per steady-state iteration.

marks (GMTI, bzip2, parser, and hmmer). As described in
Section 5, we profile five iterations of a training file and
(with minimal programmer intervention) apply the trace to
correctly execute a test file.

3. Programmer Workflow

Typically, the process of parallelizing a legacy C applica-
tion is an arduous and time-consuming process. The most
important resources that could help with parallelization –
such as the original author of the code, or the high-level
design documents that guided its implementation – are of-
ten unavailable. Thus, a fresh programmer is left with the
daunting task of obtaining an in-depth understanding of all
the program modules, the dependences between them, and
the possibilities for safely extracting parallelism.
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Figure 5. Stream graph for GMTI, as it ap-
pears in the GMTI specification [24].

We introduce a dynamic analysis tool that empowers the
programmer in migrating legacy C applications to a parallel
representation. Using this tool, the programmer follows the
workflow illustrated in Figure 1. The first step is to identify
the main loop in the application, which is typically iterating
over frames, packets, or another long-running data source.
The programmer annotates the start and end of this loop, as
well as the boundaries between the desired pipeline-parallel
partitions. The tool reports the percentage of execution time
spent in each pipeline stage in order to help guide the place-
ment of pipeline boundaries.

In our current implementation, there are some restric-
tions on the placement of the partition boundaries. All
boundaries must appear within the loop body itself, rather
than within a nested loop, within nested control flow, or as
part of another function (this is an artifact of using macros
to implement the parallelism). The programmer may work
around these restrictions by performing loop distribution
or function inlining. Also, though bothfor loops and
while loops are supported, there cannot be anybreak
or continue statements within the loop; such statements
implicitly alter the control flow in all of the partitions, an
effect that is difficult to trace in our dynamic analysis. If
such statements appear in the original code, the programmer
needs to convert them to a series ofif statements, which
our tool will properly handle.

Once a loop has been annotated with partition bound-
aries, the programmer selects a set of training inputs and
runs our dynamic analysis to trace the communication pat-
tern. The tool outputs a stream graph, a list of pro-
ducer/consumer statements, and a set of communication
macros for automatically running the code in parallel.

An example stream graph for GMTI radar processing
appears in Figure 4. The graph extracted by our tool is
very similar to the block diagram from the GMTI specifi-
cation, which appears in Figure 5. Our graph contains some
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additional edges that are not depicted in the specification;
these represent communication of minor flags rather than
the steady-state dataflow. Edges flowing from a node back
unto itself (e.g., in Setup, Beamformer, and Tracker) indi-
cate mutable state that is retained across iterations of the
main loop. Nodes without such dependences are stateless
with respect to the main loop, and the programmer may
choose to execute them in a data-parallel manner (see be-
low). Overall, the tight correspondence between our ex-
tracted stream graph and the original specification demon-
strates that the tool can effectively capture the underly-
ing communication patterns, assisting the programmer in
understanding the opportunities and constraints for paral-
lelization.

Many nodes in a streaming application are suitable to
data parallelism, in which multiple loop iterations are pro-
cessed in parallel by separate instances of the node. Such
nodes are immediately visible in the stream graph, as
they lack a carried dependence2 (i.e., a self-directed edge).
Our tool offers natural support for exploiting data paral-
lelism: the user simply provides an extra argument to the
PIPELINE annotation, specifying the number of ways that
the following stage should be replicated (see Figure 6).
While this annotation does not affect the profiler output,
it is incorporated by the runtime system to implement the
intended parallelism.

Depending on the parallelism evident in the stream
graph, it may be desirable to iterate the parallelization pro-
cess by adjusting the pipeline partitions as well as the pro-
gram itself. The partitions can execute in a pipeline-parallel
manner so long as there are no cyclic dependences between
them. If there are any strongly connected components in the
stream graph, they will execute sequentially; the program-
mer can reduce the overhead by collapsing such partitions
into one. Alternately, the programmer may be able to ver-
ify that certain dependences can safely be ignored, in which
case our analysis tool will filter them out of future reports.
For example, successive calls to malloc result in a data de-
pendence that was originally reported by our tool; however,
this dependence (which stems from an update of a memory
allocation map) does not prohibit parallelism because the
calls can safely execute in any order. Additional examples
of non-binding dependences include legacy debugging in-
formation such as timers, counters, etc. that are not observ-
able in the program output. Sometimes, dependences can
also be removed by eliminating the reuse of certain storage
locations (see Section 5 for details).

Once the programmer is satisfied with the parallelism in
the stream graph, the code can automatically be executed in
a pipeline-parallel fashion using the communication macros

2In some cases, nodes with carried dependences on an outer loop can
still be data-parallelized on an inner loop. We perform sucha transforma-
tion in MP3, though it is not fully automatic.

{ )++i ;N<i ;0=i( rof

;)(POOL_DENILEPIP_NIGEB

1 egats //…

;)W(ENILEPIP

2 egats //…

;)(ENILEPIP

3 egats //…

;)(POOL_DENILEPIP_DNE

}

1 egats

3 egats

2 egats 1 2 egats W

Figure 6. Programmers can specify data par-
allelism by passing an extra argument to the
pipeline annotation. In this case, the runtime
system executes W parallel copies of stage 2.

emitted by the tool. In most cases, the macros communicate
items from one partition to another using the corresponding
variable name (and potential offset, in the case of arrays)
from the program. However, a current limitation is in the
case of dynamically-allocated data, where we have yet to
automate the discovery of variable name given the absolute
addresses that are communicated dynamically. Thus, if the
tool detects any communication of dynamically-allocated
data, it alerts the user and indicates the line of the program
that is performing the communication. The user needs to
supply a symbolic expression for the name and size of the
allocated region. Only two of our six benchmarks (MPEG-2
and bzip2) communicate dynamically-allocated data across
partition boundaries.

4. Implementation

4.1. Dynamic Analysis Tool

Our tool is built on top of Valgrind, a robust framework
for dynamic binary instrumentation [18]. Our analysis in-
terprets every instruction of the program and (by tracing the
line number in the annotated loop) recognizes which parti-
tion it belongs to. The analysis maintains a table that indi-
cates, for each memory location, the identity of the partition
(if any) that last wrote to that location. On encountering
a store instruction, the analysis records which partition is
writing to the location. Likewise, on every load instruction,
the analysis does a table lookup to determine the partition
that produced the value being consumed by the load. Ev-
ery unique producer-consumer relationship is recorded in a
list that is output at the end of the program, along with the
stream graph and communication macros.

There are some interesting consequences of tracking de-
pendence information in terms of load and store instruc-
tions. In order to track the flow of data through local vari-
ables, we disable register allocation and other optimizations
when preparing the application for profiling. However, as
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we do not model the dataflow through the registers, the tool
is unable to detect cases in which loaded values are never
used (and thus no dependence exists). This pattern often
occurs for short or unaligned datatypes; even writes to such
variables can involve loads of neighboring bytes, as the en-
tire word is loaded for modification in the registers. Our
tool filters out such dependences when they occur in paral-
lel stack frames, i.e., a spurious dependence between local
variables of two neighboring function calls. Future work
could further improve the precision of our reported depen-
dences by also tracking dependences through registers (in
the style of Redux [17]).

As the dynamic analysis traces communication in terms
of absolute memory locations, some engineering was re-
quired to translate these addresses to variable names in the
generated macros. (While absolute addresses could also be
used in the macros, they would not be robust to changes in
stack layout or in the face of re-compilation.) We accom-
plish this mapping using a set of gdb scripts3, which provide
the absolute location of every global variable as well as the
relative location of every local variable (we insert a known
local variable and print its location as a reference point).In
generating the communication code, we express every ad-
dress as an offset from the first variable allocated at or be-
low the given location. In the case of dynamically-allocated
data, the mapping from memory location to variable name
is not yet automated and requires programmer assistance (as
described in the previous section).

4.2. Parallel Runtime System

The primary challenge in implementing pipeline paral-
lelism is the need to buffer data between execution stages.
In the sequential version of the program, a given producer
and consumer takes turns in accessing the shared variables
used for communication. However, in the parallel version,
the producer is writing a given output while the producer is
still reading the previous one. This demands that the pro-
ducer and consumer each have a private copy of the com-
municated data, so that they can progress independently on
different iterations of the original loop. Such a transforma-
tion is commonly referred to as “double-buffering”, though
we may wish to buffer more than two copies to reduce the
synchronization between pipeline stages.

There are two broad approaches for establishing a buffer
between pipeline stages: either explicitly modify the code
to do the buffering, or implicitly wrap the existing code in
a virtual environment that performs the buffering automati-
cally. The first approach utilizes a shared address space and
modifies the code for the producer or consumer so that they
access different locations; values are copied from one loca-
tion to the other at synchronization points. Unfortunately,

3Our scripts rely on having compiled with debug information.

this approach requires a deep program analysis in order to
infer all of the variables and pointer references that need to
be remapped to shift the produced or consumed data to a
new location. Such an analysis seems largely intractable for
a language such as C.

The second approach, and the one that we adopt, avoids
the complexities of modifying the code by simply forking
the original program into multiple processes. The mem-
ory spaces of the processes are isolated from one another,
yet the processes share the exact same data layout so no
pointers or instructions need to be adjusted. A standard
inter-process communication mechanism (such as pipes) is
used to send and buffer data from one process to another;
a producer sends its latest value for a given location, and
the consumer reads that value into the same location in its
private address space. At the end of the loop’s execution,
all of the processes copy their modified data (as recorded
by our tool during the profiling stage) into a single process
that continues after the loop. Our analysis also verifies that
there is no overlap in the addresses that are sent to a given
pipeline stage; such an overlap would render the program
non-deterministic and would likely lead to incorrect out-
puts.

5. Case Studies

To evaluate our approach, we applied our tool and
methodology to six realistic programs. Three of these
are traditional stream programs (MPEG-2 decoding, MP3
decoding, GMTI radar processing) while three are SPEC
benchmarks (parser, bzip2, hmmer) that also exhibit regu-
lar flows of data. As illustrated in Table 3, the size of these
benchmarks ranges from 5 KLOC to 37 KLOC. Each pro-
gram processes a conceptually-unbounded stream of input
data; our technique adds pipeline parallelism to the toplevel
loop of each application, which is responsible for 100% of
the steady-state runtime. (For bzip2, there are two toplevel
loops, one for compression and one for decompression.)

In the rest of this section, we first describe our experi-
ence in parallelizing the benchmarks before presenting per-
formance results.

5.1. Parallelization Experience

During the parallelization process, the programmer re-
lied heavily on the stream graphs extracted by our tool. The
final graphs for each benchmark appear in Figures 7 and 8.
In the graphs, node labels are gleaned from function names
and comments in the code, rather than from any domain-
specific knowledge of the algorithm. Nodes are also anno-
tated with the amount of work they perform, while edges are
labeled with the number of bytes communicated per steady-
state iteration. Nodes that were data-parallelized are anno-
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Benchmark Description Source Lines of Code

MPEG-2 MPEG-2 video decoder MediaBench [14] 10,000
MP3 MP3 audio decoder Fraunhofer IIS [9] 5,000
GMTI Ground Moving Target Indicator MIT Lincoln Laboratory [24] 37,000
197.parser Grammatical parser of English language SPECINT 2000 11,000
256.bzip2 bzip2 compression and decompression SPECINT 2000 5,000
456.hmmer Calibrating HMMs for biosequence analysisSPECCPU 2006 36,000

Table 3. Benchmark characteristics.

tated with their multiplicity; for example, the Dequantize
stage in MP3 (Figure 7b) is replicated twice.

As described in Section 3, our tool relies on some pro-
grammer assistance to parallelize the code. The manual
steps required for each benchmark are summarized in Fig-
ure 9 and detailed in the following sections.

MPEG-2 Decoding

To obtain the stream graph for MPEG-2 (Figure 7a), the
programmer iteratively refined the program with the help
of the dynamic analysis tool. Because the desired partition
boundaries fell in distinct functions, those functions were
inlined into the main loop. Early return statements in these
functions led to unstructured control flow after inlining; the
programmer converted the control flow to if/else blocks as
required by our analysis. The tool exposed an unintended
data dependence that was inhibiting parallelism: a global
variable (progressiveframe) was being re-used as a tempo-
rary variable in one module. The programmer introduced a
unique temporary variable for this module, thereby restor-
ing the parallelism. In addition, the updates to some coun-
ters in the main loop were reordered so as to place them in
the same pipeline stage that the counters were utilized.

In generating the parallel version, our tool required two
interventions from the programmer. First, as the pipeline
boundaries spanned multiple loop nests, the communication
code (auto-generated for a single loop nest) was patched
to ensure that matching send and receive instructions exe-
cuted the same number of times. Second, as described in
Section 3, the programmer supplied the name and size of
dynamically-allocated variables (in this case, frame buffers)
that were sent between partitions.

MP3 Decoding

The extracted stream graph for MP3 decoding appears in
Figure 7b. In the process of placing the pipeline boundaries,
the programmer inlined functions, unrolled two loops, and
distributed a loop. Four dynamically-allocated arrays (of
fixed size) were changed to use static allocation, so that
our tool could manage the communication automatically.
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Figure 7. Extracted stream graphs for MPEG-
2 and MP3 decoding.

As profiling indicated that the dequantization and inverse
MDCT stages were consuming most of the runtime, they
were each data-parallelized two ways.

In analyzing the parallelism of MP3, the programmer
made three deductions. First, the initial iteration of the loop
was found to exhibit many excess dependences due to one-
time initialization of coefficient arrays; thus, the profiling
and parallelization was postponed to the second iteration.
Second, though the tool reports a carried dependence in
the inverse MDCT stage, the programmer found that this
dependence is on an outer loop and that it is safe to data-
parallelize the stage on an inner loop. Finally, the program-
mer judged the execution to be insensitive to the ordering of
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Figure 8. Extracted stream graphs for parser, bzip2 (compre ssion and decompression) and hmmer.

diagnostic print statements, allowing the dependences be-
tween statements to be ignored for the sake of paralleliza-
tion. (With some additional effort, the original ordering of
print statements can always be preserved by extracting the
print function into its own pipeline stage.)

As in the case of MPEG-2, the programmer also patched
the generated communication code to handle nested loops.

GMTI Radar Processing

The Ground Moving Target Indicator (GMTI) is a radar
processing application that extracts targets from raw radar
data [24]. The stream graph extracted by our tool (Figure 4)
is very similar to the one that appears in the GMTI specifi-
cation (Figure 5).

In analyzing GMTI, the programmer made minor
changes to the original application. The programmer in-
lined two functions, removed the application’s self-timers,
and scaled down an FFT window from 4096 to 512 during
the profiling phase (the resulting communication code was
patched to transfer all 4096 elements during parallel execu-
tion).

As print statements were judged to be independent of
ordering, the tool was instructed to ignore the correspond-
ing dependences. Dependences between calls to memory
allocation functions (malloc/free) were also disregardedso
as to allow pipeline stages to manage their local memories
in parallel. The programmer verified that regions allocated
within a stage remained private to that stage, thus ensuring
that the parallelism introduced could not cause any memory
hazards.

Our tool reported an address trace that was gradually in-
creasing over time; closer inspection revealed that an array
was being read in a sparse pattern that was gradually en-
compassing the entire data space. The programmer directed
the tool to patch the parallel version so that the entire array
was communicated at once.

Parser

The stream graph for 197.parser appears in Figure 8a. Each
steady-state iteration of the graph parses a single sentence;
the benchmark runs in batch mode, repeatedly parsing all of
the sentences in a file. As indicated in the graph, the cyclic
dependences in the benchmark are limited to the input stage
(which performs file reading and adjusts the configuration
of the parser) and the output stage (which accumulates an
error count). The parsing stage itself (which represents most
of the computation) retains no mutable state from one sen-
tence to the next, and can thus be replicated to operate on
many sentences in parallel. In our optimized version, the
parsing stage is replicated four times.

During the iterative parallelization process, the program-
mer made three adjustments to the program. Our tool re-
ported a number of loop-carried dependences due to the
program’s implicit use of uninitialized memory locations;
the program allocates space for a struct and later copies the
struct (by value) before all of the elements have been ini-
tialized. This causes our tool to report a dependence on the
previous write to the uninitialized locations, even though
such writes were modifying a different data structure that
has since been de-allocated. The programmer eliminated
these dependence reports by initializing all elements to a
dummy value at the time of allocation.

The programmer also made two adjustments to the com-
munication trace emitted by our tool. One block of ad-
dresses was expanding gradually over the first few iterations
of the program. Closer inspection revealed that that sen-
tences of increasing length were being passed between par-
titions. The programmer patched the trace to always com-
municate the complete sentence buffer. Also, the program-
mer observed that in the case of errors, the parser’s error
count needs to be communicated to the output stage and ac-
cumulated there. As none of our training or testing samples
elicited errors, our trace did not detect this dependence.
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Figure 9. Steps taken by the programmer to assist in parallel izing each benchmark. Assistance
may be needed to expose parallelism in the original code, to v erify parallelism using the tool, or to
handle special cases in the parallelized code. Steps annota ted with an asterisk (*) may change the
observable behavior of the program 1.

Our data-parallel version of the program may reorder the
program’s print statements. If desired, the print statements
can be serialized by moving them to the output stage.

Bzip2

The stream graphs for 256.bzip2 appear in Figures 8b
and 8c. The benchmark includes both a compression and
decompression stage, which were parallelized separately.

Because bzip2 compresses blocks of fixed size, the main
compression routine is completely data-parallel. The only
cyclic dependences in the compressor are at the input stage
(file reading, CRC calculation) and output stage (file writ-
ing). The programmer replicated the compression stage
seven ways to match the four-core machine; this allows
three cores to handle two compression stages each, while
one core handles a single compression stage as well as
the input and output stages. The decompression step lacks
data-parallelism because the boundaries of the compressed
blocks are unknown; however, it can be split into a pipeline
of two stages.

In parallelizing bzip2, the programmer reordered some
statements to improve the pipeline partitioning (the call to
generateMTFValues moved from the output stage to
the compute stage). The programmer also supplied the
name and size of two dynamically-allocated arrays.

1Reordering calls to malloc (or reordering calls to free) will only
change the program’s behavior if one of the calls fails.

Hmmer

In 456.hmmer, a Hidden Markov Model is loaded at ini-
tialization time, and then a series of random sequences are
used to calibrate the model. Figure 8d shows the extracted
stream graph for this benchmark. The calibration is com-
pletely data-parallel except for a histogram at the end of
the loop, which must be handled with pipeline parallelism.
In our experiments, the programmer replicated the data-
parallel stage four ways to utilize the four-core machine.

Our tool reports three parallelism-limiting dependences
for hmmer. The first is due to random number generation:
each iteration generates a new random sample and modifies
the random seed. The programmer chose to ignore this de-
pendence, causing the output of our parallel version to differ
from the original version by 0.01%. Also, the programmer
made an important patch to the parallel code: after forking
from the original process, each parallel partition needs toset
its random seed to a different value. Otherwise each parti-
tion would follow an identical sequence of random values,
and the parallel program would sample only a fraction of
the input space as the original program.

The second problematic dependence is due to an incre-
mental resizing of an array to fit the length of the input se-
quence. Since each parallel partition can expand its own pri-
vate array, this dependence is safely ignored. Finally, as in
the case of GMTI, dependences between memory allocation
functions were relaxed for the sake of the parallelization.
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5.2. Performance Results

Following parallelization with our tool, all of the bench-
marks obtain the correct results on their training and testing
sets. For MPEG-2 and MP3, we train using five iterations
of input files 1 and 10, respectively (see Section 2). For
GMTI, we only have access to a single input trace, so we
use five iterations for training and the rest (300 iterations)
for testing. For the SPEC benchmarks, we train on five iter-
ations of the provided training set and test on the provided
testing set.

Our evaluation platform contains two AMD Opteron 270
dual-core processors (for a total of 4 cores) with 1 MB L2
cache per processor and 8 GB of RAM. We measure the
speedup of the parallel version, which uses up to 4 cores,
versus the original sequential version, which uses 1 core.
We generate one process per stage of the stream graph,
and rely on the operating system to distribute the processes
across cores (we do not provide an explicit mapping from
threads to cores). All speedups reflect total (wall clock) ex-
ecution time.

Our performance results appear in Table 4. Speedups
range from 2.03x (MPEG-2) to 3.89x (hmmer), with a geo-
metric mean of 2.78x. While these results are good, there is
some room for improvement. Some benchmarks (MPEG-
2, decompression stage of bzip2) suffer from load imbal-
ance that is difficult to amend without rewriting parts of
the program. The imperfect speedups in other benchmarks
may reflect synchronization overheads between threads, as
the operating system would need to interleave executions
in a specific ratio to avoid excessive blocking in any one
process. The volume of communication does not appear
to be a significant bottleneck; for example, duplicating all
communication instructions in MP3 results in only a 1.07x
slowdown. Ongoing work will focus on improving the
runtime scheduling of the processes, as well as exploring
other inter-process communication mechanisms (e.g., using
shared memory).

6. Related Work

6.1. Static Analysis

The work most closely related to ours is that of Bridges
et al. [2], which was developed concurrently. They ex-
ploit pipeline parallelism using the techniques of Decou-
pled Software Pipelining [19, 22]. In addition, they em-
ploy thread-level speculation to speculatively execute mul-
tiple loop iterations in parallel. Both of our systems re-
quire some assistance from the programmer in paralleliz-
ing legacy applications. Whereas we annotate spurious de-
pendences within our tool, they annotate the original source
code with a new function modifier (called “commutative”)

Benchmark
Pipeline
Depths

Data-Parallel
Widths

Speedup

GMTI 9 — 3.03x
MPEG-2 7 — 2.03x
MP3 6 2,2 2.48x
197.parser 3 4 2.95x
256.bzip2 3,2 7 2.66x
456.hmmer 2 4 3.89x
GeoMean 2.78x

Table 4. Characteristics of the parallel stream
graphs and performance results on a 4-core
machine. Data-parallel width refers to the
number of ways any data-parallel stage was
replicated.

to indicate that successive calls to the function can be freely
reordered. Such source-level annotations are attractive (e.g.,
for malloc/free) and could be integrated with our approach.
However, our transformations rely on a different property
of these functions, as we call them in parallel from isolated
address spaces rather than reordering the calls in a single
address space.

Once parallelism has been exposed, their compiler au-
tomatically places the pipeline boundaries and generates a
parallel runtime, whereas we rely on the programmer to
place pipeline boundaries and to provide some assistance
in generating the parallel version (see Section 3). Our ap-
proaches arrive at equivalent decompositions of 197.parser
and 256.bzip2. However, our runtime systems differ. Rather
than forking multiple processes that communicate via pipes,
they rely on a proposed “versioned memory” system [28]
that maintains multiple versions of each memory location.
This allows threads to communicate via shared memory,
with the version history serving as buffers between threads.
Their evaluation platform also includes a specialized hard-
ware construct termed the synchronization array [22]. In
comparison, our technique runs on commodity hardware.

Dai et al. presents an algorithm for automatically
partitioning sequential packet-processing applicationsfor
pipeline-parallel execution on network processors [5].
Their static analysis targets fine-grained instruction se-
quences within a single procedure, while our dynamic anal-
ysis is coarse-grained and inter-procedural. Du et al. de-
scribes a system for pipeline-parallel execution of Java pro-
grams [8]. The programmer declares parallel regions, while
the compiler automatically places pipeline boundaries and
infers the communicated variables using an inter-procedural
static analysis. Unlike our system, the compiler does not
check if the declared regions are actually parallel.
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6.2. Dynamic Analysis

The dynamic analysis most similar to ours is that of Rul
et al. [25], which also tracks producer/consumer relation-
ships between functions and uses the information gleaned
to assist the programmer in parallelizing the program. They
use bzip2 as a case study and report speedups comparable to
ours. However, it appears that their system requires the pro-
grammer to determine which variables should be communi-
cated between threads and to modify the original program
to insert new buffers and coordinate thread synchronization.

Karkowski and Corporaal also utilize dynamic informa-
tion to uncover precise dependences for parallelization ofC
programs [13]. Their runtime system utilizes a data-parallel
mapping rather than a pipeline-parallel mapping, and they
place less emphasis on the programmer interface and visu-
alization tools.

Redux is a tool that traces instruction-level pro-
ducer/consumer relationships for program comprehension
and debugging [17]. Unlike our tool, Redux tracks dataflow
through registers in addition to memory locations. Because
it generates a distinct graph node for every value produced,
the authors note that the visualization becomes unwieldy
and does not scale to realistic programs. We address this
issue by coarsening the program partitions.

A style of parallelism that is closely related to pipeline
parallelism is DOACROSS parallelism [4, 20]. Rather than
devoting a processor to a single pipeline stage, DOACROSS
parallelism assigns a processor to execute complete loop it-
erations, spanning all of the stages. In order to support de-
pendences between iterations, communication is inserted at
pipeline boundaries to pass the loop-carried state between
processors. While DOACROSS parallelism has been ex-
ploited dynamically using inspector/executor models (see
Rauchwerger [23] for a survey), they lack the generality
needed for arbitrary C programs. The parallelism and com-
munication patterns inferred by our tool could be used to
generate a DOACROSS-style mapping; such a mapping
could offer improved load balancing, at the possible ex-
pense of degrading instruction locality and adding commu-
nication latency to the critical path.

Giacomoni et al. describe a toolchain for pipeline-
parallel programming [10], including BDD-based compres-
sion of dependence traces [21]. Such techniques could ex-
tend our stream graph visualization to a much finer gran-
ularity. There are additional dynamic analyses that offer
visualizations to aid program understanding [1, 16], though
they do not focus on extracting streams of data flow.

Program slicing is a technique that aims to identify the
set of program statements that may influence a given state-
ment in the program. Slicing is a rich research area with
many static and dynamic approaches developed to date; see
Tip [27] for a review. The problem that we consider is

more coarse-grained than slicing; we divide the program
into partitions and ask which partitions affect a given parti-
tion. Also, we identify a list of memory locations that are
sufficient to convey all the information needed between par-
titions. Finally, we are interested only in direct dependences
between partitions, rather than the transitive dependences
reported by slicing tools.

6.3. Stream Programming

An alternate approach to extracting a streaming repre-
sentation from legacy C programs is to re-write the appli-
cation in a programming language that has built-in sup-
port for streams. For example, the StreamC/KernelC lan-
guage has been compiled [7] to stream processors such
as Imagine [12] and Merrimac [6]; Brook [3] has been
mapped to graphics processors [3] and multicores [15]; and
StreamIt [26] has targeted the Raw architecture [11]. We
anticipate that many of the techniques developed in these
efforts will be directly applicable to the streaming represen-
tation extracted by our analysis.

7. Conclusions

This work represents one of the first systematic tech-
niques to exploit coarse-grained pipeline parallelism in C
programs. Rather than pipelining small instruction se-
quences or inner loops, we pipeline the outermost toplevel
loop of a streaming application, which encapsulates 100%
of the steady-state runtime. Our approach is applicable both
to legacy codes, in which the user has little or no knowledge
about the structure of the program, as well as new applica-
tions, in which programmers can utilize our annotations to
easily express the desired pipelining.

The key observation underlying our technique is that for
the domain of streaming applications, the steady-state com-
munication pattern is regular and stable, even if the program
is written in a language such as C that resists static analy-
sis. To exploit this pattern, we employ a dynamic analy-
sis to trace the memory locations communicated between
program partitions at runtime. Partition boundaries are de-
fined by the programmer using a simple set of annotations;
the partitions can be iteratively refined to improve the par-
allelism and load balance. Our tool uses the communica-
tion trace to construct a stream graph for the application
as well as a detailed list of producer-consumer instruction
pairs, both of which aid program understanding and help to
track down any problematic dependences.

Our dynamic analysis tool also outputs a set of macros
to automatically parallelize the program and communicate
the needed data between partitions. While this transforma-
tion is unsound, it is deterministic and suitable to rigorous
testing. Applying the transformation to six realistic case
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studies, the parallel programs produced the correct output
and offered a mean speedup of 2.78x on a 4-core machine.

There are rich opportunities for future work in enhanc-
ing the soundness and automation of our tool. If the run-
time system encounters code that was not visited during
training, it could execute the corresponding loop iteration
in a sequential manner (such a policy would have fixed the
only unsoundness we observed). A static analysis could
also lessen the programmer’s involvement, e.g., by auto-
matically handling nested loops or automatically placing
the pipeline partitions. However, fully-automatic solutions
for such large-scale program transformations are not only
unnecessary but often distrusted in an industrial setting.By
leveraging a pragmatic combination of programmer annota-
tions, dynamic analysis, visualization tools, and paralleliza-
tion macros, our approach immediately eases the burden of
migrating C applications to multicores.
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