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Abstract and gradually migrated to a parallel representation. Given
the broad array of programming tasks, there is unlikely to
The emergence of multicore processors has heightenede a “silver bullet” solution to these problems; rather, it
the need for effective parallel programming practices. In will be beneficial to develop a number of orthogonal tech-
addition to writing new parallel programs, the next gener- niques, each of which caters to a style of parallelism that
ation of programmers will be faced with the overwhelming is present in a certain class of algorithms. Already, sev-
task of migrating decades’ worth of legacy C code into a eral kinds of parallelism have good language-level support
parallel representation. Addressing this problem regsiiee  For example, task parallelism — in which separate routines
toolset of parallel programming primitives that can brogdl execute independently — is naturally supported by threads.
apply to both new and existing programs. While tools such Also, data parallelism — in which one routine is parallelize
as threads and OpenMP allow programmers to express taskacross many data elements — is naturally expressed using
and data parallelism, support for pipeline parallelism is dialects such as OpenMP. However, one style of parallelism
distinctly lacking. that has been largely neglected is pipeline parallelism, in
In this paper, we offer a new and pragmatic approach which a loop is split into multiple stages that communicate
to leveraging coarse-grained pipeline parallelism in Cpro in a pipelined fashion.
grams. We target the domain of streaming applications, Pipeline parallelism is an important abstraction, suit-
such as audio, video, and digital signal processing, which able to both new and existing programs, that all paral-
exhibit regular flows of data. To exploit pipeline paral- lel programmers should have at their disposal. Firstly,
lelism, we equip the programmer with a simple set of an- pipeline parallelism is often lurking in otherwise sequen-
notations (indicating pipeline boundaries) and a dynamic tial codes. Loops with carried dependences can admit a
analysis that tracks all communication across those bound- pipeline-parallel mapping (the dependence being carrjed b
aries. Our analysis outputs a stream graph of the applica- a single pipeline stage) even though a data-parallel map-
tion as well as a set of macros for parallelizing the program ping is impossible. Secondly, pipeline parallelism can be
and communicating the data needed. We apply our method-more efficient than data parallelism due to improved in-
ology to six case studies, including MPEG-2 decoding, MP3 struction and data locality within each pipeline stage, as
decoding, GMTI radar processing, and three SPEC bench-well as point-to-point communication between cores (there
marks. Our analysis extracts a useful block diagram for is no global scatter/gather). Pipeline parallelism also of
each application, and the parallelized versions offer é82.7  fers appeals over task parallelism, as all shared data can be
mean speedup on a 4-core machine. communicated in a deterministic producer/consumer style,
eliminating the possibility of data races.
Previous efforts to exploit pipeline parallelism in C pro-
1. Introduction grams have been very fine-grained, partitioning individ-
ual instructions across processing cores [19]. Such fine-
As multicore processors are becoming ubiquitous, it grained communication is inefficient on commodity ma-
is increasingly important to provide programmers with chines and demands new hardware support [19, 22]. While
the right abstractions and tools to express new and exist-a coarse-grained partitioning is more desirable, it is -diffi
ing programs in a parallel style. The problem of legacy cult to achieve at compile time due to the obscured data de-
code is especially daunting, as decades’ worth of (often- pendences in C; constructs such as pointer arithmetic; func
undocumented) C programs need to be reverse-engineeretion pointers, and circular buffers (with modulo operaspn
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In this paper, we overcome the traditional barriers in €x-  Eiiminate cyclic dependences
ploiting coarse-grained pipeline parallelism by embrgcin Yes
an unsoundprogram transformation. Our key insight is
that, for a large class of applications, the data commueditat

Recompile annotated program
against communication macros

across pipeline-parallel stages is stable throughouifie | for (i=0; i<N; i++) {
time of the program. We focus on streaming applications if (i==0) { ... // fork into 3 processes, establish pipes }
such as video, audio, and digital signal processing, which| _

. . . . if (process_id == 1) {
are often described by a block diagram with a fixed flow Il stage 1
of data. No matter how obfuscated the C implementation write(pipe_1_2, &result1, 4); write(pipe_1_3, &result3, 4);
appears, the heart of the algorithm is following a regular _ _ \
communication pattern. For this reason, it is unnecessary t | 1 e (Processid == 2){

. ; . ! read(pipe_1_2, &result1, 4); < Send and receive
undertake a heroic static analysis; we need only observe the ... Il stage 2 pre-recorded
communication pattern at the beginning of execution, and write(pipe_2_3, &result2, 4); 4~ variables via pipes
then “safely” infer that it will remain constant throughout _ _ /

. . } else if (process_id == 3) {
the rest of execution (and perhaps other executions). read(pipe_2 3, &result2, 4); read(pipe_1_3, &result3, 4):

As depicted in Figure 1, our analysis does exactly that. ... Il stage 3
We allow the programmer to naturally specify the bound- }
aries of pipeline partitions, and then we record all commu- | ¢ __n_1){ .. // terminate processes, collect data }
nication across those boundaries during a training run. The| }

communication trace is emitted as a stream graph that re- Parallel Program (Simplified)
flects the high-level structure of the algorithm (aidingpro
gram understanding), as well as a list of producer/consumer
statements that can be used to trace down problematic deour analysis is useful in aiding manual parallelization'ef t
pendences. The programmer never needs to worry abou€ode — a process which, after all, is only sound insofar as
providing a “correct” partitioning; if there is no paraliin the programmer’s understanding of the system. By improv-
between the suggested partitions, it will result in cyckes i ing the programmer’s understanding, we are also improving
the stream graph. If the programmer is satisfied with the the soundness of the current best-practice for paralgjizi
parallelism in the graph, he recompiles the annotated pro-legacy C applications.
gram against a set of macros that are emitted by our analysis We have applied our methodology to six case studies:
tool. These macros serve to fork each partition into its own MPEG-2 decoding, MP3 decoding, GMTI radar process-
process and to communicate the recorded locations usindng, and three SPEC benchmarks. Our tool was effective
pipes between processes. at parallelizing the programs, providing a mean speedup
Though our transformation is grossly unsound, we ar- of 2.78x on a four-core architecture. Despite the potential
gue that it is quite practical within the domain of streaming unsoundness of the tool, our transformations correctly de-
applications. Because pipeline parallelism is determinis coded ten popular videos from YouTube, ten audio tracks
tic, any incorrect transformations incurred by our teclieiq  from MP3.com, and the complete test inputs for GMTI and
can be identified via traditional testing methods, and éaile SPEC benchmarks. At the same time, we did identify spe-
tests can be fixed by adding the corresponding input to ourcific combinations of training and testing data (for MP3)
training set. Further, the communication trace provided by that lead to erroneous results. Thus, it is important to maxi



mize the coverage of the training set and to apply the tech-MPEG-2 and MP3 decoding using the most popular con-

nigue in concert with a rigorous testing framework. tent from YouTubé and MP3.com; results appear in Fig-
To summarize, this paper makes the following contribu- ures 2 and 3. These graphs plot the cumulative number
tions: of unique addresses that are passed between program par-

titions as execution proceeds. The figures show that after a
' few frames, the program has already performed a commu-
nication for most of the addresses it will ever send between
pipeline stages.

In the case of MPEG-2, all of the address traces remain
constant after 50 frames, and 8 out of 10 traces remain con-
e We define a simple API for indicating potential stant after 20 frames. The videos converge at differensrate

pipeline parallelism in the program. Comparable to inthe beginning due to varying parameters and frame types;

threads for task parallelism or OpenMP for data par- for example, video 10 contains an intra-coded frame where
allelism, this API serves as a fundamental abstraction all other videos have a predictive-coded frame, thereby de-

for pipeline parallelism (Section 3). laying the use of predictive buffers in video 10. Video 1
communicates more addresses than the others because it has
a larger frame size.

MP3 exhibits a similar stability property, though conver-
gence is slower for some audio tracks. While half of the
. tracks exhibit their complete communication pattern in the
dates or refutes the parallelism suggested by the pro-jqt 35 frames, the remaining tracks exhibit a variableglela
grammer. It also provides a detalled_statemeqt—leyel (up to 420 frames) in making the final jump to the common
trace .and a set of macros for automatic parallelization - munication envelope. These jumps correspond to ele-
(Sections 3-4). ments of two parameter structures which are toggled only

e We apply our methodology to six case studies, en- UPOn encountering certain frame types. Track 10 is an out-
compassing MPEG-2 decoding, MP3 decoding, GMTI lier because it starts with a few layer-1 frames, thus delay-
radar processing, and three SPEC benchmarks. WeNg the primary (layer-3) communication and resulting in
extract meaningful stream graphs of each application, & higher overall communication footprint. The only other

and achieve a 2.78x mean speedup on a 4-core archifile to contain layer-1 frames is track 9, resulting in a small
tecture (Section 5). address jump at iteration 17,900 (not illustrated).

It is important to note that there does exist a dynamic
component to these applications; however, the dynamism
is contained within a single pipeline stage. For example,
in MP3, there is a Huffman decoding step that relies on
a dynamically-allocated lookup tree. Throughout the pro-
gram, the shape of the tree grows and shrinks and is manip-
ulated on the heap. Using a static analysis, it is difficult to
contain the effects of such dynamic data structures; a con-
servative pointer or shape analysis may conclude that the

e We show that for the class of streaming applications
pipeline parallelism is very stable. Communication
observed at the start of execution is often preserved
throughout the program lifetime, as well as other exe-
cutions (Section 2).

e We present a dynamic analysis tool, built on top of Val-
grind, for tracking producer/consumer relationships
between coarse-grained program partitions. The tool
outputs a stream graph of the application, which vali-

2. Stability of Stream Programs

A dynamic analysis is most useful when the observed be-
havior is likely to continue, both throughout the remainder
of the current execution as well as other executions (with
other inputs). Our hypothesis is that streaming applica-
tions — such as audio, video, and digital signal processing

codes — exhibit very stable flows of data, enhancing the re'dynamism extends throughout the entire program. How-

liability of dynamic analyses toward the point where they ever, using a dynamic analysis, we are able to observe the

can be_ trusted to validate othermse—unsafe program _trans'actual flow of data, ignoring the intra-node communication
formations. For the purpose of our analysis, we consider a

: : . and extracting the regular patterns that exist betwee part
program to bestableif there is a predictable set of memory . g g P P

dependences between pipeline stages. The boundaries be-
tween stages are specified by the programmer using a sim: - . .
ple set of annotations; the boundaries used for the exper-2'2' Stability Across Different Executions

iments in this section are illustrated by the stream graphs

that appear later (Figure 7). The communication patterns observed while decoding
one input file can often extend to other inputs as well. Ta-
2.1. Stability Within a Single Execution bles 1 and 2 illustrate the minimum number iterations (i.e.,

frames) that need to be profiled from one file in order to

Our first ex_pe_rimem explores the Stabilit¥ of memory qe' LyouTube videos were converted from Flash to MPEG-2 usingégn
pendences within a single program execution. We profiled and vixy.net.
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Figure 2. Stability of streaming communica- Figure 3. Stability of streaming communica-
tion patterns for MPEG-2 decoding. The de- tion patterns for MP3 decoding. The decoder
coder was monitored while processing the was monitored while processing the top 10
top 10 short videos from YouTube. See Fig- tracks from MP3.com. See Figure 7b for a
ure 7a for a stream graph of the application. stream graph of the application.
MPEG-2 Testing File MP3 Testing File
1.m2v | 2m2v | 3.m2v | 4m2v | 5.m2v | 6.m2v | 7.m2v | 8.m2v | 9.m2v | 10.m2v 1.mp3 | 2.mp3 | 3.mp3 | 4.mp3 | 5.mp3 | 6.mp3 | 7.mp3 | 8.mp3 | 9.mp3 | 10.mp3
1.m2v 3 3 3 3 3 3 3 3 3 3 1.mp3 1 1 1 1 1 1 1 1 — —
2.m2v 3 3 3 3 3 3 3 3 3 3 2.mp3 1 1 1 1 1 1 1 1 — —
g 3.m2v 5 5 5 5 5 5 5 5 5 5 g 3.mp3 1 1 1 1 1 1 1 1 — —
L | 4mav 3 3 3 3 3 3 3 3 3 3 L | 4mp3 1 1 1 1 1 1 1 1 — —
g’ 5.m2v 3 3 3 3 3 3 3 3 3 3 g‘ 5.mp3 1 1 1 1 1 1 1 1 — —
‘e | 6.m2v 3 3 3 3 3 3 3 3 3 3 ‘s | 6.mp3 1 1 1 1 1 1 1 1 — —
'E 7.m2v 3 3 3 3 3 3 3 3 3 3 'E 7.mp3 1 1 1 1 1 1 1 1 — —
= | 8.m2v 3 3 3 3 3 3 3 3 3 3 = | 8.mp3 1 1 1 1 1 1 1 1 — —
9.m2v 3 3 3 3 3 3 3 3 3 3 9.mp3 1 1 1 1 1 1 1 1 17900 —
10.m2v| 4 4 4 4 4 4 4 4 4 4 10mp3| 5 5 5 5 5 5 5 5 5 5
Table 1. Minimum number of training itera- Table 2. Minimum number of training itera-
tions (frames) needed on each video in order tions (frames) needed on each track in order
to correctly decode the other videos. to correctly decode the other tracks.

enable correct parallel decoding of the other files. In mosttiple executions relies on two aspects of our methodology.
cases, a training set of five loop iterations is sufficienhtoi  First, as described later, we require the user to supply a sym
fer an address trace that correctly decodes the other inputbolic size for each dynamically-allocated variable; this a

in their entirety. The exceptions are tracks 9 and 10 of MP3 lows MPEG-2 address traces to apply across different frame
decoding, which are the only two files containing layer-1 sizes. Second, we coarsen the granularity of the trace to
frames; because they execute code that is never reached hyeat structure types and dynamically-allocated segrmants
the other files, training on the other files is insufficient to atomic units. That is, whenever a single element of such
expose the full communication trace. In addition, track 9 a structure is communicated between partitions, the rest of
is insufficient training for track 10, as the latter contaams  the structure is communicated as well (so long as it does
early CRC error that triggers a unique recovery procedure.not conflict with a local change in the target partition).
As each of these hazards is caused by executing code that iSuch coarsening increases the tolerance to small element-
untouched by the training set, the runtime system could easwise changes as observed in later iterations of MPEG-2 and
ily detect such cases (using guards around untrained codeMP3. However, it does not trivialize the overall result, as
and revert to a sequential execution for the iterations in coarsening is only needed for a small fraction of communi-
guestion. Rigorous testing practices that incorporatecod cated addresses (15% for MP3 and dependent on frame size
coverage metrics would also help to reduce the risk of en-for MPEG-2).

countering unfamiliar code at runtime. While we have focused on MPEG-2 and MP3 in this sec-
The ability to generalize short training runs across mul- tion, we observe similar stability across our other bench-
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Figure 4. Stream graph for GMTI, as extracted
using our tool. Nodes are annotated with
their computation requirements, and edges
are labeled with the number of bytes trans-
ferred per steady-state iteration.

marks (GMTI, bzip2, parser, and hmmer). As described in
Section 5, we profile five iterations of a training file and

(with minimal programmer intervention) apply the trace to

correctly execute a test file.

3. Programmer Workflow

Typically, the process of parallelizing a legacy C applica-
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Figure 5. Stream graph for GMTI, as it ap-
pears in the GMTI specification [24].

We introduce a dynamic analysis tool that empowers the
programmer in migrating legacy C applications to a parallel
representation. Using this tool, the programmer folloves th
workflow illustrated in Figure 1. The first step is to identify
the main loop in the application, which is typically iteradi
over frames, packets, or another long-running data source.
The programmer annotates the start and end of this loop, as
well as the boundaries between the desired pipeline-garall
partitions. The tool reports the percentage of executiop i
spent in each pipeline stage in order to help guide the place-
ment of pipeline boundaries.

In our current implementation, there are some restric-
tions on the placement of the partition boundaries. All
boundaries must appear within the loop body itself, rather
than within a nested loop, within nested control flow, or as
part of another function (this is an artifact of using macros
to implement the parallelism). The programmer may work
around these restrictions by performing loop distribution
or function inlining. Also, though botti or loops and
whi | e loops are supported, there cannot be angak
or cont i nue statements within the loop; such statements
implicitly alter the control flow in all of the partitions, an
effect that is difficult to trace in our dynamic analysis. If
such statements appear in the original code, the programmer
needs to convert them to a seriesi ¢f statements, which
our tool will properly handle.

Once a loop has been annotated with partition bound-
aries, the programmer selects a set of training inputs and

tion is an arduous and time-consuming process. The mostuns our dynamic analysis to trace the communication pat-

important resources that could help with parallelization —

tern. The tool outputs a stream graph, a list of pro-

such as the original author of the code, or the high-level ducer/consumer statements, and a set of communication
design documents that guided its implementation — are of-macros for automatically running the code in parallel.

ten unavailable. Thus, a fresh programmer is left with the

daunting task of obtaining an in-depth understanding of all

An example stream graph for GMTI radar processing
appears in Figure 4. The graph extracted by our tool is

the program modules, the dependences between them, andery similar to the block diagram from the GMTI specifi-

the possibilities for safely extracting parallelism.

cation, which appears in Figure 5. Our graph contains some



additional edges that are not depicted in the specification;“orEﬂ;‘;?l,‘\f";;l‘F:'Ig'zl{N b Loop( -
these represent communication of minor flags rather than - - 0;

X ... Il stage 1
the steady-state dataflow. Edges flowing from a node back pipeLiNEW);
unto itself (e.g., in Setup, Beamformer, and Tracker) indi- .../ stage 2 [stage2,| o * ¢ [stage2,|
cate mutable state that is retained across iterations of the PIPELINE(); \L/
main loop. Nodes without such dependences are stateless = // stage 3
) X END_PIPELINED_LOOP();
with respect to the main loop, and the programmer may , - - 0 <7

choose to execute them in a data-parallel manner (see be-
low). Overall, the tight correspondence between our ex-  Figure 6. Programmers can specify data par-
tracted stream graph and the original specification demon-  gallelism by passing an extra argument to the
strates that the tool can effectively capture the underly-  pipeline annotation. In this case, the runtime
ing communication patterns, assisting the programmer in  system executes W parallel copies of stage 2.
understanding the opportunities and constraints for paral
lelization.

Many nodes in a streaming application are suitable to
data parallelism, in which multiple loop iterations arepro emitted by the tool. In most cases, the macros communicate
cessed in parallel by separate instances of the node. Suchems from one partition to another using the corresponding
nodes are immediately visible in the stream graph, asvariable name (and potential offset, in the case of arrays)
they lack a carried dependeridee., a self-directed edge). from the program. However, a current limitation is in the
Our tool offers natural support for exploiting data paral- case of dynamically-allocated data, where we have yet to
lelism: the user simply provides an extra argument to the automate the discovery of variable name given the absolute
PI PELI NE annotation, specifying the number of ways that addresses that are communicated dynamically. Thus, if the
the following stage should be replicated (see Figure 6).tool detects any communication of dynamically-allocated
While this annotation does not affect the profiler output, data, it alerts the user and indicates the line of the program
it is incorporated by the runtime system to implement the that is performing the communication. The user needs to
intended parallelism. supply a symbolic expression for the name and size of the

Depending on the parallelism evident in the stream allocated region. Only two of our six benchmarks (MPEG-2

graph, it may be desirable to iterate the parallelizatian pr and bzip2) communicate dynamically-allocated data across
cess by adjusting the pipeline partitions as well as the pro-partition boundaries.

gram itself. The partitions can execute in a pipeline-pealral

manner so long as there are no cyclic dependences betwees), Implementation

them. If there are any strongly connected componentsin the

stream graph, they will execute sequentially; the program- 4 . Dynamic Analysis Tool

mer can reduce the overhead by collapsing such partitions
into one. Alternately, the programmer may be able to ver-

ify that certain dependences can safely be ignored, in Wh'Chfor dynamic binary instrumentation [18]. Our analysis in-

case our analysis tooI_W|II filter them out of futu_re reports. terprets every instruction of the program and (by tracireg th
For example, successive calls to malloc result in a data de-

endence that was originally reported by our tool- however line number in the annotated loop) recognizes which parti-
b ginatly rep y ! 'tion it belongs to. The analysis maintains a table that indi-

g;llicda?% ing]e;p(;e d(;\;hs'C:osttgrrgsh:éﬁ”;:rglllj;?S?;eg);fag]sznlﬁ;ygates, for each memory location, thg identity of the pariiti

calls can safely execute in any order. Additional examples (if any) f[hat Ias.t wrote to that .Iocat|on. On _encoun_tgrlng

o B denandences include' legacy debugging .2 store instruction, the gnalyss records whlch partiten |
writing to the location. Likewise, on every load instructjo

formation such as timers, counters, etc. that are not observthe analysis does a table lookup to determine the partition
that produced the value being consumed by the load. Ev-

also pe removed bY eliminating t_he reuse of certain storageery unique producer-consumer relationship is recorded in a
locations (see Section 5 for details).

0 h . istied with th lelism | list that is output at the end of the program, along with the
h nce the prograrr]nmegs satishe W't_ t ”e [laaara elism ('jn_ stream graph and communication macros.
the stream graph, the code can automatically be executedin tpqrq gre some interesting consequences of tracking de-

apipeline-parallel fashion using the communication macro pendence information in terms of load and store instruc-

2 . . tions. In order to track the flow of data through local vari-

In some cases, nodes with carried dependences on an oytecdao . . . RN

still be data-parallelized on an inner loop. We perform sattansforma- ables, we dlS?.ble reg|ster- a”QCauon and. C_)thEl’ optimomnati
tion in MP3, though it is not fully automatic. when preparing the application for profiling. However, as

Our tool is built on top of Valgrind, a robust framework




we do not model the dataflow through the registers, the toolthis approach requires a deep program analysis in order to
is unable to detect cases in which loaded values are nevemnfer all of the variables and pointer references that need t
used (and thus no dependence exists). This pattern oftebe remapped to shift the produced or consumed data to a
occurs for short or unaligned datatypes; even writes to suchnew location. Such an analysis seems largely intractable fo
variables can involve loads of neighboring bytes, as the en-a language such as C.
tire word is loaded for modification in the registers. Our  The second approach, and the one that we adopt, avoids
tool filters out such dependences when they occur in paral-the complexities of modifying the code by simply forking
lel stack frames, i.e., a spurious dependence between locathe original program into multiple processes. The mem-
variables of two neighboring function calls. Future work ory spaces of the processes are isolated from one another,
could further improve the precision of our reported depen- yet the processes share the exact same data layout so no
dences by also tracking dependences through registers (ipointers or instructions need to be adjusted. A standard
the style of Redux [17]). inter-process communication mechanism (such as pipes) is
As the dynamic analysis traces communication in terms used to send and buffer data from one process to another;
of absolute memory locations, some engineering was re-a producer sends its latest value for a given location, and
quired to translate these addresses to variable names in ththe consumer reads that value into the same location in its
generated macros. (While absolute addresses could also bprivate address space. At the end of the loop’s execution,
used in the macros, they would not be robust to changes inall of the processes copy their modified data (as recorded
stack layout or in the face of re-compilation.) We accom- by our tool during the profiling stage) into a single process
plish this mapping using a set of gdb scriptshich provide that continues after the loop. Our analysis also verifies tha
the absolute location of every global variable as well as thethere is no overlap in the addresses that are sent to a given
relative location of every local variable (we insert a known pipeline stage; such an overlap would render the program
local variable and print its location as a reference poimt).  non-deterministic and would likely lead to incorrect out-
generating the communication code, we express every adputs.
dress as an offset from the first variable allocated at or be-
low the given location. In the case of dynamically-allocate 5 Cgse Studies
data, the mapping from memory location to variable name
is not yet automated and requires programmer assistance (as

described in the previous section), To evaluate our approach, we applied our tool and

methodology to six realistic programs. Three of these
are traditional stream programs (MPEG-2 decoding, MP3
decoding, GMTI radar processing) while three are SPEC
_ o ) L benchmarks (parser, bzip2, hmmer) that also exhibit regu-
The primary challenge in implementing pipeline paral- |5/ o5 of data. As illustrated in Table 3, the size of these
lelism is the need to buffer data between execution stagesyanchmarks ranges from 5 KLOC to 37 KLOC. Each pro-
In the sequential version of the program, & given producer gy, m processes a conceptually-unbounded stream of input
and consumer takes tums in accessing the shared variableg,a. our technique adds pipeline parallelism to the tagplev
used for communication. However, in the parallel version, |44, of each application, which is responsible for 100% of
the producer is writing a given output while the produceris o gteady-state runtime. (For bzip2, there are two topleve

still reading the previous one. This o!emands that the Pro-|50ps, one for compression and one for decompression.)
ducer and consumer each have a private copy of the COM- |, the rest of this section, we first describe our experi-

municated data, so that they can progress independently oy i parallelizing the benchmarks before presenting per
different iterations of the original loop. Such a transfarm ¢ mance results.

tion is commonly referred to as “double-buffering”, though
we may wish to buffer more than two copies to reduce the
synchronization between pipeline stages.

There are two broad approaches for establishing a buffer
between pipeline stages: either explicitly modify the code
to do the buffering, or implicitly wrap the existing code in

4.2. Parallel Runtime System

5.1. Parallelization Experience

During the parallelization process, the programmer re-
lied heavily on the stream graphs extracted by our tool. The
final graphs for each benchmark appear in Figures 7 and 8.

a virtual environment that performs the buffering automati :
: . In the graphs, node labels are gleaned from function names
cally. The first approach utilizes a shared address space an . :
and comments in the code, rather than from any domain-

modifies the code for the producer or consumer so that they

. LT . specific knowledge of the algorithm. Nodes are also anno-
access different locations; values are copied from one loca . .
: o . tated with the amount of work they perform, while edges are
tion to the other at synchronization points. Unfortunately

labeled with the number of bytes communicated per steady-
30ur scripts rely on having compiled with debug information. state iteration. Nodes that were data-parallelized are-ann




Benchmark | Description | Source | Lines of Code |

MPEG-2 MPEG-2 video decoder MediaBench [14] 10,000
MP3 MP3 audio decoder Fraunhofer IIS [9] 5,000
GMTI Ground Moving Target Indicator MIT Lincoln Laboratory [24]| 37,000
197.parser | Grammatical parser of English language | SPECINT 2000 11,000
256.bzip2 bzip2 compression and decompression | SPECINT 2000 5,000
456.hmmer | Calibrating HMMs for biosequence analysisSPECCPU 2006 36,000

Table 3. Benchmark characteristics.

decode block Input
tated with their multiplicity; for example, the Dequantize (8%) ) Hufﬁn(ir(l)/r;ecode )
stage in MPFB (Flgure 7b.) is replicated ange. 230400/
As described in Section 3, our tool relies on some pro- 2620
grammer assistance to parallelize the code. The manual |t

(1%) Dequantize

of the dynamic analysis tool. Because the desired partition
boundaries fell in distinct functions, those functions ever 19200("/

steps required for each benchmark are summarized in Fig- (40%) %2
ure 9 and detailed in the following sections. 230400 115200
IDCT 72
) (10%) -
MPEG-2 Decoding 230400\ a0 5
To obtain the stream graph for MPEG-2 (Figure 7a), the o DrediedonS A .
programmer iteratively refined the program with the help add_block ) X‘i‘z
(9%) 8

inlined into the main loop. Early return statements in these [grvazoi0a22 C Rt x2
functions led to unstructured control flow after inliningget (14%)

programmer converted the control flow to if/else blocks as 192000l 153600 /
required by our analysis. The tool exposed an unintended Polyphase synthesis

data dependence that was inhibiting parallelism: a global |12 (12%) D
variable (progressivérame) was being re-used as a tempo- 2304

rary variable in one module. The programmer introduced a 7680&‘

unigue temporary variable for this module, thereby restor- store,ppm,tga) Output )
ing the parallelism. In addition, the updates to some coun- (45%) (2%)

ters in the main loop were reordered so as to place them in
the same pipeline stage that the counters were utilized. (a) MPEG-2 (b) MP3

In generating the parallel version, our tool required two
interventions from the programmer. First, as the pipeline  Figure 7. Extracted stream graphs for MPEG-
boundaries spanned multiple loop nests, the communication 2 and MP3 decoding.
code (auto-generated for a single loop nest) was patched
to ensure that matching send and receive instructions exe-
cuted the same number of times. Second, as described i\s profiling indicated that the dequantization and inverse
Section 3, the programmer supplied the name and size ofMDCT stages were consuming most of the runtime, they
dynamically-allocated variables (in this case, framedmsif were each data-parallelized two ways.

that were sent between partitions. In analyzing the parallelism of MP3, the programmer
made three deductions. First, the initial iteration of e
MP3 Decoding was found to exhibit many excess dependences due to one-

time initialization of coefficient arrays; thus, the prafil
The extracted stream graph for MP3 decoding appears inand parallelization was postponed to the second iteration.
Figure 7b. In the process of placing the pipeline boundaries Second, though the tool reports a carried dependence in
the programmer inlined functions, unrolled two loops, and the inverse MDCT stage, the programmer found that this
distributed a loop. Four dynamically-allocated arrays (of dependence is on an outer loop and that it is safe to data-
fixed size) were changed to use static allocation, so thatparallelize the stage on an inner loop. Finally, the program
our tool could manage the communication automatically. mer judged the execution to be insensitive to the ordering of



Input > Input )
Process special comands Calculate CRC

1540 900,309
. - Input Generate random sequence
Parse Do reversible transformation 264 Decode move-to-front values > Calculate Viterbi score x4
x 4 Generate move-to-front values ||| x 7 G
O 901,045
4 3,601,052\ 4
Undo reversible transformation
Accumulate errors ) Send move-to-front values > Check CRC ) Histogram )
Output Output
(a) 197.parser (b) 256.bzip2 (compression) (c) 256.bzip2 (decompression) (d) 456.hmmer

Figure 8. Extracted stream graphs for parser, bzip2 (compre ssion and decompression) and hmmer.

diagnostic print statements, allowing the dependences beParser

tween statements to be ignored for the sake of paralleliza-

tion. (With some additional effort, the original orderinfy o The stream graph for 197.parser appears in Figure 8a. Each

print statements can always be preserved by extracting thesteady-state iteration of the graph parses a single sentenc

print function into its own pipeline stage.) the benchmark runs in batch mode, repeatedly parsing all of
As in the case of MPEG-2, the programmer also patchedthe sentences in a file. As indicated in the graph, the cyclic

the generated communication code to handle nested loops.dependences in the benchmark are limited to the input stage
(which performs file reading and adjusts the configuration

of the parser) and the output stage (which accumulates an
error count). The parsing stage itself (which representg mo

The Ground Moving Target Indicator (GMTI) is a radar of the computation) retains no mutable state from one sen-
processing application that extracts targets from rawrrada tence to the next, and can thus be replicated to operate on
data [24]. The stream graph extracted by our tool (Figure 4) Many sentences in parallel. In our optimized version, the
is very similar to the one that appears in the GMTI specifi- Parsing stage is replicated four times.
cation (Figure 5). During the iterative parallelization process, the program

In analyzing GMTI, the programmer made minor mer made three adjustments to the program. Our tool re-
changes to the original application. The programmer in- ported a number of loop-carried dependences due to the
lined two functions, removed the application’s self-timer program’s implicit use of uninitialized memory locations;
and scaled down an FFT window from 4096 to 512 during the program allocates space for a struct and later copies the
the profiling phase (the resulting communication code was struct (by value) before all of the elements have been ini-
patched to transfer all 4096 elements during parallel execu tialized. This causes our tool to report a dependence on the
tion). previous write to the uninitialized locations, even though

As print statements were judged to be independent ofsuch writes were modifying a different data structure that
ordering, the tool was instructed to ignore the correspond-has since been de-allocated. The programmer eliminated
ing dependences. Dependences between calls to memorthese dependence reports by initializing all elements to a
allocation functions (malloc/free) were also disregarded ~dummy value at the time of allocation.
as to allow pipeline stages to manage their local memories The programmer also made two adjustments to the com-
in parallel. The programmer verified that regions allocated munication trace emitted by our tool. One block of ad-
within a stage remained private to that stage, thus ensuringdresses was expanding gradually over the first few iteration
that the parallelism introduced could not cause any memoryof the program. Closer inspection revealed that that sen-
hazards. tences of increasing length were being passed between par-

Our tool reported an address trace that was gradually in-titions. The programmer patched the trace to always com-
creasing over time; closer inspection revealed that aryarra municate the complete sentence buffer. Also, the program-
was being read in a sparse pattern that was gradually enmer observed that in the case of errors, the parser’s error
compassing the entire data space. The programmer directedount needs to be communicated to the output stage and ac-
the tool to patch the parallel version so that the entireyarra cumulated there. As none of our training or testing samples
was communicated at once. elicited errors, our trace did not detect this dependence.

GMTI Radar Processing



I. Modifications to sequential version

I1. Annotations to tool during parallelization

II1. Patches to parallel version

- inlined functions

- reordered statements

- expanded temporary variable into two
- regularized control flow

MPEG-2

- patched communication across nested loops
- patched communication of malloc'd data

- inlined functions

- unrolled loops

- distributed a loop

- converted dynamically-allocated
arrays to statically-allocated arrays

MP3

- postponed parallelization to second loop iteration
- identified IMDCT as data-parallel on outer loop
- ignored dependences between print statements *

- patched communication across nested loops

- inlined functions

- ignored dependences between print statements *

GMTI | - removed self-profiling functionality . . - expanded address trace to cover full array
. .. - ignored dependences between mem. allocations*
- scaled down FFT size (for training only)
- ignored dependences on uninitalized memory - expanded address trace to cover full array
197.parser . . . .
- ignored dependences between print statements * | - manually accumulated reduction variable
256.bzip2 | - reordered statements - patched communication of malloc'd data
- ignored order of incremental buffer expansion
456.hmmer - ignored dependences between calls to rand * - reset random seed in each parallel partition

- ignored dependences between mem. allocations*

izing each benchmark. Assistance
erify parallelism using the tool, or to
ted with an asterisk (*) may change the

Figure 9. Steps taken by the programmer to assist in parallel
may be needed to expose parallelism in the original code, to v
handle special cases in the parallelized code. Steps annota
observable behavior of the program 1.

Our data-parallel version of the program may reorder the Hmmer
program’s print statements. If desired, the print statasen
can be serialized by moving them to the output stage. In 456.hmmer, a Hidden Markov Model is loaded at ini-
tialization time, and then a series of random sequences are
used to calibrate the model. Figure 8d shows the extracted
stream graph for this benchmark. The calibration is com-
The stream graphs for 256.bzip2 appear in Figures 8bpletely data-parallel except for a histogram at the end of
and 8c. The benchmark includes both a compression andhe loop, which must be handled with pipeline parallelism.
decompression stage, which were parallelized separately. In our experiments, the programmer replicated the data-

Because bzip2 compresses blocks of fixed size, the mairparallel stage four ways to utilize the four-core machine.

compression routine is completely data-parallel. The only  oyr tool reports three parallelism-limiting dependences
cyclic dependences in the compressor are at the input staggyr hmmer. The first is due to random number generation:
(file reading, CRC calculation) and output stage (file writ- gach jteration generates a new random sample and modifies
ing). The programmer replicated the compression stagethe random seed. The programmer chose to ignore this de-
seven ways to match the four-core machine; this allows pendence, causing the output of our parallel version tediff
three cores to handle two compression stages each, whilg;gm the original version by 0.01%. Also, the programmer
one core handles a single compression stage as well agade an important patch to the parallel code: after forking
the input and output stages. The decompression step lack§om the original process, each parallel partition needeto
data-parallelism because the boundaries of the compressefls random seed to a different value. Otherwise each parti-
blocks are unknown; however, it can be splitinto a pipeline tjon would follow an identical sequence of random values,
of two stages. and the parallel program would sample only a fraction of
In parallelizing bzip2, the programmer reordered some the input space as the original program.
statements to improve the pipeline partitioning (the aall t The second problematic dependence is due to an incre-

gener at eMIFVal ues moved from the output stage to mental resizing of an array to fit the length of the input se-

the compute stage). The programmer also supplied the . . : .
name and size of two dynamically-allocated arrays. guence. Since each parallel partition can expand its own pri

vate array, this dependence is safely ignored. Finallynas i
the case of GMTI, dependences between memory allocation
functions were relaxed for the sake of the parallelization.

Bzip2

1Reordering calls to malloc (or reordering calls to free)lvaihly
change the program’s behavior if one of the calls fails.
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5.2. Performance Results Pipeline | Data-Parallel
Benchmark Depths Widths Speedup
Following parallelization with our tool, all of the bench- | GMTI 9 — 3.03x
marks obtain the correct results on their training andrgsti MPEG-2 7 — 2.03x
sets. For MPEG-2 and MP3, we train using five iterations | MP3 6 2,2 2.48x
of input files 1 and 10, respectively (see Section 2). For | 197.parser 3 4 2.95x
GMTI, we only have access to a single input trace, so we | 256.bzip2 3,2 7 2.66x
use five iterations for training and the rest (300 iterafjons | 456.hmmer 2 4 3.89x
for testing. For the SPEC benchmarks, we train on five iter- | GeoMean 2.78x
ations of the provided training set and test on the provided
testing set. Table 4. Characteristics of the parallel stream

Our evaluation platform contains two AMD Opteron 270 graphs and performance results on a 4-core
dual-core processors (for a total of 4 cores) with 1 MB L2  machine. Data-parallel width refers to the
cache per processor and 8 GB of RAM. We measure the number of ways any data-parallel stage was
speedup of the parallel version, which uses up to 4 cores, replicated.
versus the original sequential version, which uses 1 core.
We generate one process per stage of the stream graph,
and rely on the operating system to distribute the processes
across cores (we do not provide an explicit mapping from to indicate that successive calls to the function can béyfree
threads to cores). All speedups reflect total (wall clock) ex reordered. Such source-level annotations are attraetige (
ecution time. for malloc/free) and could be integrated with our approach.
Our performance results appear in Table 4. SpeedupsHowever, our transformations rely on a different property
range from 2.03x (MPEG-2) to 3.89x (hmmer), with a geo- of these functions, as we call them in parallel from isolated
metric mean of 2.78x. While these results are good, there isaddress spaces rather than reordering the calls in a single
some room for improvement. Some benchmarks (MPEG- address space.
2, decompression stage of bzip2) suffer from load imbal-
ance that is difficult to amend without rewriting parts of ~ Once parallelism has been exposed, their compiler au-
the program. The imperfect speedups in other benchmarkgomatically places the pipeline boundaries and generates a
may reflect synchronization overheads between threads, agarallel runtime, whereas we rely on the programmer to
the operating system would need to interleave executionsPlace pipeline boundaries and to provide some assistance
in a specific ratio to avoid excessive blocking in any one in generating the parallel version (see Section 3). Our ap-
process. The volume of communication does not appearProaches arrive at equivalent decompositions of 197.parse
to be a significant bottleneck; for example, duplicating all and 256.bzip2. However, our runtime systems differ. Rather
communication instructions in MP3 results in only a 1.07x than forking multiple processes that communicate via pipes
slowdown. Ongoing work will focus on improving the they rely on a proposed “versioned memory” system [28]
runtime Schedu“ng of the processes, as well as exp]oringthat maintains multiple versions of each memory location.
other inter-process communication mechanisms (e.g.gusin This allows threads to communicate via shared memory,

shared memory). with the version history serving as buffers between threads
Their evaluation platform also includes a specialized hard
6. Related Work ware construct termed the synchronization array [22]. In

comparison, our technique runs on commaodity hardware.

6.1. Static Analysis Dai et al. presents an algorithm for automatically
partitioning sequential packet-processing applicatifors

The work most closely related to ours is that of Bridges pipeline-parallel execution on network processors [5].
et al. [2], which was developed concurrently. They ex- Their static analysis targets fine-grained instruction se-
ploit pipeline parallelism using the techniques of Decou- quences within a single procedure, while our dynamic anal-
pled Software Pipelining [19, 22]. In addition, they em- ysis is coarse-grained and inter-procedural. Du et al. de-
ploy thread-level speculation to speculatively executému scribes a system for pipeline-parallel execution of Jaga pr
tiple loop iterations in parallel. Both of our systems re- grams [8]. The programmer declares parallel regions, while
quire some assistance from the programmer in paralleliz-the compiler automatically places pipeline boundaries and
ing legacy applications. Whereas we annotate spurious deinfers the communicated variables using an inter-procadur
pendences within our tool, they annotate the original sourc static analysis. Unlike our system, the compiler does not
code with a new function modifier (called “commutative”) check if the declared regions are actually parallel.
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6.2. Dynamic Analysis more coarse-grained than slicing; we divide the program
into partitions and ask which partitions affect a given part

The dynamic analysis most similar to ours is that of Rul tion- Also, we identify a list of memory locations that are
et al. [25], which also tracks producer/consumer relation- Sufficient to convey all the information needed between par-
ships between functions and uses the information gleaneditions. Finally, we are interested only in direct deperzén
to assist the programmer in parallelizing the program. They between part|.t|c.)ns, rather than the transitive dependence
use bzip2 as a case study and report speedups comparable fgPorted by slicing tools.
ours. However, it appears that their system requires the pro
grammer to determine which variables should be communi-6-3. Stream Programming
cated between threads and to modify the original program
to insert new buffers and coordinate thread synchronimatio ~ An alternate approach to extracting a streaming repre-

Karkowski and Corporaal also utilize dynamic informa- Sentation from legacy C programs is to re-write the appli-
tion to uncover precise dependences for parallelizatidd of ~cation in a programming language that has built-in sup-
programs [13]. Their runtime system utilizes a data-patall Port for streams. For example, the StreamC/KernelC lan-
mapping rather than a pipeline-parallel mapping, and theyguage has been compiled [7] to stream processors such

place less emphasis on the programmer interface and visuas Imagine [12] and Merrimac [6]; Brook [3] has been
alization tools. mapped to graphics processors [3] and multicores [15]; and

Redux is a tool that traces instruction-level pro- Streamlt [26] has targeted the Raw architecture [11]. We

ducer/consumer relationships for program comprehensior@nticipate that many of the techniques developed in these
and debugging [17]. Unlike our tool, Redux tracks dataflow €fforts will be directly applicable to the streaming refnes
through registers in addition to memory locations. Because!ation extracted by our analysis.

it generates a distinct graph node for every value produced,

the authors note that the visualization becomes unwieldy7. Conclusions

and does not scale to realistic programs. We address this

issue by coarsening the program partitions. This work represents one of the first systematic tech-
A style of parallelism that is closely related to pipeline niques to exploit coarse-grained pipeline parallelism in C
parallelism is DOACROSS parallelism [4, 20]. Rather than programs. Rather than pipelining small instruction se-
devoting a processor to a single pipeline stage, DOACROSSquences or inner loops, we pipeline the outermost toplevel
parallelism assigns a processor to execute complete loop itloop of a streaming application, which encapsulates 100%
erations, spanning all of the stages. In order to support de-of the steady-state runtime. Our approach is applicable bot
pendences between iterations, communication is insetted ato legacy codes, in which the user has little or no knowledge

pipeline boundaries to pass the loop-carried state betweembout the structure of the program, as well as new applica-
processors. While DOACROSS parallelism has been ex-tions, in which programmers can utilize our annotations to

ploited dynamically using inspector/executor models (see easily express the desired pipelining.

Rauchwerger [23] for a survey), they lack the generality — The key observation underlying our technique is that for
needed for arbitrary C programs. The parallelism and com-the domain of streaming applications, the steady-state com
munication patterns inferred by our tool could be used to munication pattern is regular and stable, even if the progra
generate a DOACROSS-style mapping; such a mappingis written in a language such as C that resists static analy-
could offer improved load balancing, at the possible ex- sis. To exploit this pattern, we employ a dynamic analy-
pense of degrading instruction locality and adding commu- sis to trace the memory locations communicated between
nication latency to the critical path. program partitions at runtime. Partition boundaries are de

Giacomoni et al. describe a toolchain for pipeline- fined by the programmer using a simple set of annotations;
parallel programming [10], including BDD-based compres- the partitions can be iteratively refined to improve the par-
sion of dependence traces [21]. Such techniques could exallelism and load balance. Our tool uses the communica-
tend our stream graph visualization to a much finer gran-tion trace to construct a stream graph for the application
ularity. There are additional dynamic analyses that offer as well as a detailed list of producer-consumer instruction
visualizations to aid program understanding [1, 16], thoug pairs, both of which aid program understanding and help to
they do not focus on extracting streams of data flow. track down any problematic dependences.

Program slicing is a technique that aims to identify the ~ Our dynamic analysis tool also outputs a set of macros
set of program statements that may influence a given stateto automatically parallelize the program and communicate
ment in the program. Slicing is a rich research area with the needed data between partitions. While this transforma-
many static and dynamic approaches developed to date; seton is unsound, it is deterministic and suitable to rigaou
Tip [27] for a review. The problem that we consider is testing. Applying the transformation to six realistic case
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studies, the parallel programs produced the correct output[10] J. Giacomoni, T. Moseley, G. Price, B. Bushnell, M. Vach

and offered a mean speedup of 2.78x on a 4-core machine.

There are rich opportunities for future work in enhanc-
ing the soundness and automation of our tool. If the run-

time system encounters code that was not visited during

training, it could execute the corresponding loop itemratio

in a sequential manner (such a policy would have fixed the 1
only unsoundness we observed). A static analysis could
also lessen the programmer’s involvement, e.g., by auto-

[11]

matically handling nested loops or automatically placing [13]
the pipeline partitions. However, fully-automatic soduts

for such large-scale program transformations are not only

unnecessary but often distrusted in an industrial setBiyg.

leveraging a pragmatic combination of programmer annota-

tions, dynamic analysis, visualization tools, and palialie

tion macros, our approach immediately eases the burden o

migrating C applications to multicores.
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