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Abstract
As multicore architectures gain widespread use, it becomes increas-
ingly important to be able to harness their additional processing
power to achieve higher performance. However, exploiting paral-
lel cores to improve single-program performance is difficult from a
programmer’s perspective because most existing programming lan-
guages dictate a sequential method of execution.

Stream programming, which organizes programs by indepen-
dent filters communicating over explicit data channels, exposes
useful types of parallelism that can be exploited. However, there is
still the burden of mapping high-level stream programs to specific
multicore architectures. The complexities of each architecture’s un-
derlying details makes it difficult to schedule the execution of a
stream program with high performance.

In this paper, we present the specifications for an intermediate
layer between the stream program and the target architecture. This
multicore streaming layer (MSL) provides a common level of ab-
straction that facilitates efficient execution of stream programs by
making it easier for compilers to manage computation, and by pro-
viding automatic orchestration and optimization of communication
when appropriate. We implemented a framework for one such in-
stance of the MSL targeted to the Cell processor and the StreamIt
language and achieved greater than 88% utilization on all bench-
marks with relatively small amounts of code. The framework can
also be applied to other architectures and stream programming lan-
guages to enhance generality and portability.

1. Introduction
Multicore architectures have become the rule rather than the excep-
tion in the changing computing landscape. With single-core perfor-
mance limited by power consumption, memory latency, and circuit
complexity, almost all new architectures (certain mobile and em-
bedded applications excepted) are branching into more cores rather
than better cores. Exploiting parallelism has already become abso-
lutely critical if applications wish to make full use of current and
future architectures.

Compilers for traditional imperative languages are faced with
a daunting task when attempting to aid the programmer in this
regard: it is very difficult to automatically extract parallelism from
a sequential program written in a von Neumann language such as
C. Much of the time, the task of parallelizing a program remains in
the hands of the programmer, who must manually convert a single-
threaded sequential program into a multi-threaded parallel one.
While doing so, programmers must contend with issues specific to
the architectures they target, thereby limiting portability. They must
also worry about race conditions and a number of other bugs that
typically plague multi-threaded programs. Programmers do have
access to a number of frameworks such as MPI and OpenMP to
aid in their programming; however, parallelization of sequential
programs remains a difficult process.

Streaming languages provide a way to alleviate the burden of
manually parallelizing applications. In a streaming language, the
programmer defines actors that operate on streams of data; the
programmer then composes actors and streams into a program.
The structure that is explicitly expressed by a streaming language
exposes rather than hides the parallelism present in a program,
making it much easier for the compiler to automatically extract
parallelism. For the programmer, many applications fit within the
streaming model and can be naturally expressed in various stream-
ing languages.

Ideally, a compiler for a streaming language is able to focus on
high-level scheduling issues: finding parallelism and scheduling ac-
tors to obtain the best possible utilization of available computation
resources. However, there are generally numerous low-level issues
the compiler must contend with, especially when presented with a
heterogeneous, distributed-memory architecture.

The Cell multicore architecture is one such example of a hetero-
geneous, distributed-memory architecture. Its design is a trade-off
favoring computing power, ease of manufacturing, and low power
consumption at the cost of increased programming complexity.
For programmers writing applications that run on Cell and simi-
lar distributed-memory architectures, they are left with additional
programming complications to contend with: they not only need
to effectively orchestrate parallel computation, but must carefully
manage communication as well.

The goal of this paper is to create a general runtime framework
for streaming applications to alleviate these programming com-
plexities for multicores, especially distributed-memory architec-
tures like Cell. The paper i) describes a multicore streaming layer
(MSL) that abstracts away the architecture-specific details that oth-
erwise complicate the scheduling of computation and communica-
tion in a stream program, and ii) demonstrates an implementation
of the MSL for the Cell processor. We chose Cell as a test target ar-
chitecture because we believe that (heterogeneous) multicore archi-
tectures with distributed memory will be prevalent in the future, as
they scale better [12] than their shared-memory counterparts which
are predominant today.

The proposed MSL framework is primarily geared toward com-
pilers rather than programmers. Just as a programmer manually
parallelizing a sequential program has access to frameworks like
MPI that abstract certain low-level operations, the goal of the MSL
framework is to provide similar functionality to streaming language
compilers and schedulers that target multicore architectures.

A noteworthy aspect of the MSL is its automatic management
and optimization of communication between cores. For example,
a static (or dynamic) scheduler targeting the MSL can transpar-
ently benefit from double-buffering optimizations that can effec-
tively hide communication latencies. The automatic handling of
communication lowers the burden on compilers and programmers
so that they are not involved in every detail of the parallel compu-
tation.



The paper makes the following contributions:

1. A specification of a general runtime framework for streaming
applications.

2. An implementation of such a runtime framework for the Cell
processor.

3. A dynamic scheduler implemented on top of the runtime library
that dynamically schedules computation and communication
for streaming programs.

4. A static scheduler implemented on top of the runtime library
that statically schedules streaming computation. The static
scheduler relies on the runtime library to automatically man-
age communication.

With our implementation for Cell, we achieve at least 97%
utilization on data parallel applications, giving a reasonable 3%
overhead, and at least 88% utilization on pipelined applications,
giving an acceptable 12% overhead. The amount of code needed is
also significantly reduced compared to programming directly at a
lower level, thereby simplifying the implementation of a scheduler.

2. Multicore Streaming Layer
Emerging multicore architectures provide an excellent target for
streaming language compilers for a number of reasons:
� Individual cores are optimized for computation, often support-

ing short vector operations in the form of SIMD instructions.
� Limited memory capacity on a core is not a severe limitation for

streaming actors. In a stream program, actors typically embody
computation, are independent of each other, have extremely
local data-access patterns, and generally have small code sizes.

� The availability of high-bandwidth and low-latency on-chip
communication networks enables a large number of scheduling
options which are not generally feasible on other platforms such
as computing clusters.

In a multicore setting, a streaming language compiler (or pro-
grammer) must address the following challenges:

1. Generating code that explicitly manages data communication
(e.g., DMA operations). Architectures that provide an asyn-
chronous communication model also require pipelining the
data transfers (e.g., double-buffering) to increase efficiency and
throughput.

2. For architectures with a finite local store on a core, the code,
input and output buffers, and state required by the computation
must be tightly packaged to fit into the local memory. This
consideration is akin to locality enhancing optimizations for
architectures with caches.

3. Performing high-level optimizations and scheduling to achieve
a balanced distribution of work among the cores, avoiding ex-
cess communication, transforming code to improve efficiency,
and ultimately delivering high processing throughput.

The purpose of the multicore streaming layer (MSL) is to ab-
stract

���	�
and provide facilities that simplify

��
��
and

��
��
. The MSL

frees a compiler or programmer from the need to deal with the de-
tails of the architecture’s communication model, allowing it to fo-
cus on exploring high-level optimization and scheduling choices.
The main goal of the MSL is to provide a generic framework for
controlling and dispatching computation to multicores that simpli-
fies scheduling operations. The low-level details that are specific to
individual platforms are embedded in the MSL library implementa-
tion and hidden from the programmer or the compiler. As a result,
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Figure 1. MPEG-2 stream graph.

the MSL can provide a common platform for mapping streaming
computation to multicores and thereby enhance portability.

3. MSL Constructs
There are a number of stream-oriented languages drawing from do-
mains such as functional, dataflow, CSP, and synchronous program-
ming [18]. The MSL assumes an architecture-independent pro-
gramming language for high-performance stream programming. It
requires that the stream program presented for execution simply
consist of a dataflow graph expressing the computation. Nodes in
the graph embody computation (e.g., actors, filters, kernels, some
encapsulated code block), and edges imply data dependencies be-
tween input and output buffers attached to the compute nodes. An
example stream graph for an MPEG-2 decoder is shown in Fig-
ure 1. Nodes in sequence expose pipeline parallelism, and nodes in
parallel expose task (two branches of a split-join that contain dif-
ferent computation) and data parallelism (branches of a split-join
that contain the same computation operate on different data).

An execution of a stream program is an ordered sequence of
node firings. Each node follows a set of execution steps that con-
sume a number of items from each input channel and produce a
number of items onto each output channel.

There are two basic constructs in the MSL: filters and buffers. A
filter represents a generic actor that exposes a work function which
conceptually runs infinitely. Filters may be stateful and can read
from multiple input buffers and write to multiple output buffers.
While a filter can correspond directly to a single node in the pro-



gram, a compiler can also perform optimizations such as fusing
multiple nodes into a single coarse grained MSL filter [8]. Work
functions are opaque to the MSL.

Buffers are contiguous regions of memory that are reserved for
temporarily storing input or output data. All buffers are circular,
and the MSL library maintains head and tail pointers for each buffer
that indicate where data begins and ends. Conceptually, a buffer has
front and back ends; data toward the front of a buffer originated
earlier in the execution of the program.

Conceptually, a filter consists of two major components, code
and state, as well as basic properties that describe its work func-
tion such as the number of input and output buffers. Code is a sin-
gle contiguous block of arbitrary data that may contain constant
data and instructions that define multiple functions; the MSL only
requires that it contain a function with a specific signature that is
used as the work function. Code for a filter is intended to be a single
modular component that can be easily relocated to different cores.
On a distributed-memory architecture where each core has a dedi-
cated local store (LS), code should not reference absolute addresses
(e.g., absolute branches or loads) or modify itself1.

Furthermore, code should not contain any references to mutable
global variables. Instead, code should declare and access mutable
state through fields that are local to a filter. State contains all
mutable data that must be maintained across iterations of the work
function. Hence, state for different filters is disjoint, and filters do
not share data.

Before a filter can run on a core, it must be loaded onto the
core through the MSL library. Although the filter code and state
must reside on a core’s LS while the filter work function is run-
ning, every filter must have a permanent store location in memory.
The MSL provides facilities for loading code onto cores and copy-
ing state between local store and memory. Note that although we
refer to a core’s local store, the MSL concepts and constructs are
applicable on shared memory multicores. The locality restrictions
are generally advantageous for cache-based architectures, NUMA
architectures, and distributed-memory architectures.

A user (e.g., compiler or scheduler) provides the library with the
properties of the filter and the local store address of its work func-
tion; the library initializes a control block that describes the loaded
filter in local store. The LS address of the control block identifies
the loaded filter in all future operations until it is unloaded. If the
filter is stateful, the library also copies its state into local store from
its permanent store in memory. Code for the filter must be sepa-
rately copied into local store through the library, but can be located
anywhere as long as the correct work function address is provided
to the library. When the user is done with a loaded filter, it can un-
load the filter through the library, causing the library to copy the
filter’s state back to its permanent store in memory. Stateful filters
can be loaded on at most one core at any time, while stateless fil-
ters can be simultaneously loaded on any number of cores (thus
facilitating coarse-grained data parallelism).

This separation of code and state allows the user additional
control over how and when core local store is used. Since code
is constant, the user can preload the code of a filter onto a core
even while the filter is loaded on another core (and thus its state is
owned by that core) in preparation for loading it on the first core in
the future. If multiple (possibly stateful) filters have identical code,
only one copy of it needs to reside in memory or a core’s local store
and it can be shared. When a filter is not being run, its code does
not need to be present in core local store, leaving more space free
for buffering (local store management is discussed in more detail
below).

1 These restrictions may be ignored if it is acceptable to not relocate filter
code, or to pin the code to a single core.

The library provides similar facilities for allocating buffers on
cores. The size of a buffer must be a power of two, to allow
wrap-around computations to be done with a single bit-wise �����
instruction. Buffers are identified by the LS address at which their
data region begins in core local store; when allocating a buffer,
the library initializes a control block located immediately before
the data region that stores the buffer’s head and tail pointers and
participates in data transfers. The user must specify which buffers
the filter refers to before a loaded filter can run.

Theoretically, the number of filters loaded and buffers allocated
on a core is limited only by the size of the local store. Allocating
local store is completely left to the user, allowing a scheduler to
base allocation decisions on scheduling decisions. This is critically
important on architectures like Cell that have severely limited local
store space, where the scheduler can make much better informed
allocation decisions than any other party.

Conceptually, data produced during the execution of a program
is contained in exactly one buffer on one core until it is con-
sumed. The MSL library provides facilities for moving data be-
tween buffers on different cores.

4. MSL Operations
The MSL defines a simple set of operations to ease the mapping of
stream programs to multicores. A scheduler dispatches work items
to cores by issuing MSL commands, and is notified when cores
complete them. Each MSL command encapsulates a specific action
to be performed, and has parameters that are specified by the user.
The set of operations is divided into three main types.
� Filter commands: commands to load or unload filters, copy

filter code into local store, attach filters to buffers, and run
filters.

� Buffer commands: commands to allocate buffers.
� Data transfer commands: commands to move data between

buffers in the local stores of different cores, or between local
store and memory.

As an example, the ��� ����� ����� command, which runs a loaded
filter, takes two parameters: the LS address of a loaded filter’s
control block and the number of times (iterations) to run the work
function. The user is responsible for ensuring that there is sufficient
data in input buffers and sufficient space in output buffers for all
specified iterations. Other commands have similar requirements.
For a complete description of all commands, see [19].

The amount of work specified by a single command varies de-
pending on the command parameters. Typically, work functions are
small and thus ��� ����� ����� commands do not take more than a few
hundred microseconds to complete; some other commands, such as
allocating and attaching buffers, are auxiliary commands and com-
plete almost immediately. This allows the user to quickly change
scheduling decisions and avoids tying a core into any specific long-
term action.

When the user issues a command to a core, it assigns the com-
mand an ID that must be unique among all commands previously
issued to that core that have not yet completed. This ID is used to
notify the user when the core finishes executing the command.

4.1 Dependencies

In order to keep cores supplied with work at all times, it is necessary
to limit round-trips between the scheduler and the cores during
which the cores have no commands to execute. The MSL library
provides a general facility for queuing and ordering commands on
individual cores by allowing each command to specify a set of
command IDs on the core on which it depends. Commands issued



to a core are queued and executed only after all dependencies have
finished.

At any time, a command that has been issued to a core can be
either queued (a command with unfinished dependencies), active (a
command with all dependencies satisfied and currently being exe-
cuted), or completed (a command for which all work has been done,
but the user has not yet been notified). From the perspective of the
user, all commands that are active on a core are run “concurrently”.
When a command is issued, all dependency IDs that have not been
issued are considered to have already completed and are ignored.

In effect, each core maintains a small dependency graph of com-
mands that represents a subset in time and space of the entire sched-
ule. The scheduler (which may be user code, or a dynamic sched-
uler running on a control processor) continually adds commands to
the dependency graph, while the core continually processes com-
mands that have their dependencies satisfied. To make full use of
a core, it is only necessary for the scheduler to ensure the depen-
dency graph on the core is never empty. The scheduler cannot re-
move commands once issued, but if it keeps the dependency graph
shallow in depth, it can quickly change the pattern of work done by
a core simply by issuing a different set of new commands.

4.2 Command Groups

Each command has a small amount of data associated with it, con-
sisting of command-specific parameters in addition to generic ID
and dependency information. Typically, the user will be issuing
sets of related commands at once. To avoid the overhead of issu-
ing each command individually, the user can organize commands
into groups; the library only allows entire command groups to be
issued2. Each group specifies a sequence of commands; commands
in the group are saved and can be reissued until the group is explic-
itly cleared.

Since core local store is managed by the user, the user must
provide the library with an LS address where command data will
be copied to when it issues a command group. For dependency
purposes, cores treat commands in a group as having been issued
in the order they appear in the group, so later commands in a group
can depend on earlier ones (but not vice-versa).

4.3 Scheduler Interface

Commands issued to different cores are completely independent;
the dependency graph on each core is strictly local. The scheduler
serves as the main point of synchronization between cores by ad-
justing the commands it issues to a core in response to command
completion notifications from all cores.

The scheduler is mainly callback-driven. It registers a callback
function with the MSL library that is called whenever a command
issued to a core completes. The library maintains a per-core bitmap
of command IDs that have completed; the user can query this
bitmap in the callback to determine which commands have com-
pleted and respond accordingly. Bits in the bitmap are set until ex-
plicitly acknowledged by the user. After an ID has been acknowl-
edged, it can be reused for a new command issued to the core.

4.4 Data Transfer

Data transfer commands indirectly result in additional points of
synchronization between cores. A data transfer conceptually moves
data from the front of a source buffer to the back of a destination
buffer, and requires two commands: a command to transfer data out
of the source buffer, issued to the core containing the source buffer,
and a command to transfer data into the destination buffer, issued
to the core containing the destination buffer.

2 To issue a single command, the user can create a group containing only
that command.

Splitting data transfers into a pair of commands with one on
each core provides the user with explicit control over when the
data transfer occurs with respect to both cores. The library ensures
that the transfer does not occur until both commands become ac-
tive on their respective cores. The scheduler must ensure, via the
dependency graphs on cores or manually on a control processor,
that when a data transfer command becomes active on a core, the
local buffer has sufficient data or space to fulfill the transfer.

There are no restrictions on the size of a data transfer (except for
the size of the buffers involved), but the same size must be specified
by both commands in the pair. Each data transfer command also
specifies the address and size of the opposing buffer, since this is
information the scheduler (or user) will know in advance; however,
buffer head and tail pointers, which are more difficult to track
in advance, are handled by the library. In addition, data transfer
commands have additional inter-core requirements that the user
must ensure are met across all cores.

This “decoupling” of data transfers simplifies the information
the scheduler needs to keep track of. When issuing commands to
one core, it usually does not need to be concerned with the state
of other cores; as long as pairs of data transfer commands are
eventually issued with the correct parameters and dependencies,
the MSL library will automatically handle synchronization between
buffers.

4.5 Runtime Checks

The MSL library supports a number of runtime checks that can
be enabled or disabled. When enabled, the library can validate
buffer accesses to ensure that they contain sufficient data/space,
and can perform additional checks to ensure that issued commands
are consistent. While this cannot identify all bugs in a schedule
or filter work function, it can nonetheless be very useful during
the development of a scheduler or programs. These checks can
expose bugs that may otherwise appear non-deterministically as
hung executions or incorrect output.

5. MSL Use-Case Examples
As an example, we will illustrate the commands required to set up
and run a filter on a single core. For simplicity, we assume the filter
is connected to a buffer that provides a FIFO abstraction over tapes
(the input buffer is the input tape, and the output buffer is the output
tape). The filter has a single input tape, single output tape, and static
rates: its work function pops � , peeks �! #" , and pushes $ bytes per
iteration.

Before the filter can be run, it must be loaded, its input and out-
put buffers must be allocated, and the filter’s tapes must be attached
to the buffers. The commands that perform this are illustrated in
Figure 2.

buffer_alloc
Allocate input buffer at Ai

buffer_alloc
Allocate output buffer at Ao

filter_load
Place control block at Af

filter_attach_input
Use buffer Ai for input of Af

filter_attach_output
Use buffer Ao for output of Af

Figure 2. Commands to load a filter and to allocate and attach in-
put and output buffers. Lines between commands represent depen-
dencies that must be specified to the library when the commands are
issued. These commands may be issued in one or multiple groups.

In addition, input data must be transferred into the input buffer
before the filter can be run, and output data must eventually be
transferred out of the output buffer. With an initially empty input
buffer, the commands to transfer in % iterations of input, run the



filter for % iterations, and then transfer out % iterations of output
(assuming that the input and output buffers were sized appropri-
ately) are shown in Figure 3.

dt_in
ni + e bytes

filter_run
n iters

dt_out
no bytes

Figure 3. Commands to run a filter for the first % iterations, includ-
ing transferring input and output. The corresponding data transfer
commands on other cores are not shown.

A sequence of commands is required to run the filter for a larger
number of iterations on a core with a finite local store capacity. This
is illustrated in Figure 4.

dt_in
ni bytes

filter_run
n iters

dt_out
no bytes

dt_in
ni bytes

filter_run
n iters

dt_out
no bytes

dt_in
ni bytes

filter_run
n iters

dt_in
ni + e bytes

0

3 4

0 1 2

3 4 5

dt_in
ni bytes

filter_run
n iters

dt_out
no bytes

dt_in
ni bytes

filter_run
n iters

dt_out
no bytes

0 1 2

3 4 5

g0

g1

dt_in
ni bytes

filter_run
n iters

dt_out
no bytes

0 1 2

filter_run
n iters

dt_out
no bytes

4 5

dt_out
no bytes

2

Figure 4. Sequence of commands to run a filter for a large number
of iterations. Command IDs are indicated in the upper right. Each
row is issued as a different group.

Provided that the input buffer is at least &'%(�) *" bytes and the
output buffer is at least &�%�$ bytes, the dependencies among the
commands in the sequence ensure that:

� When a +,� -.� command becomes active, there are at most %��/ 0"
bytes of data in the input buffer, and thus enough space to
transfer in an additional %(� bytes.

� When a +,� 12�	� command becomes active, there are at least
%�$ bytes of data in the output buffer, and thus enough data to
transfer out.

� When a �(� ����� ����� command becomes active, there are at least
%��! #" bytes of data in the input buffer and at most %�$ bytes of
data in the output buffer. This is enough input data and output
space to run the filter for % iterations.

This sequence of commands effectively “pipelines” the basic
operation from Figure 3. Double-buffering is accomplished when
the data transfer commands in a group complete before the ��� 3
����� ����� does. In this case, the following �(� ����� ����� has no outstand-
ing dependencies once the current �(� ����� ����� completes, and can
become active immediately.

The user or scheduler can keep the core continually supplied
with work by initially issuing the first two groups and thereafter
issuing the next group whenever a group completes. In this case, the
core almost always has two groups of commands issued, with one
group active and the other queued. In addition, with the exception
of the first two and last two groups, the command parameters, IDs
and dependencies in every other group are identical. This allows
the user to initially set up two groups ( 4�5 and 4 � in Figure 4) and
repeatedly issue them for a majority of the execution. If executions
are relatively long, the overhead of the first and last group, where
no filter is being run, will be amortized effectively. Alternatively,
the user can load another filter and run it during those gaps.

In practice, situations such as the above, where a static-rate filter
is run for a large number of iterations and large amounts of input
and output data are transferred, are very common in streaming ap-
plications. To avoid requiring the user to manually issue groups
and deal with command completion callbacks in every such case,
the MSL library also provides extended operations that encapsulate
this pattern. In an extended operation, the user provides the library
with filter rates, the addresses of opposing buffers on other proces-
sors for data transfers, and the number of iterations to run for; the
library issues and responds to all commands internally and notifies
the user when the entire operation is complete. Extended operations
greatly simplify setting up pipelines of any length where all filters
in the pipeline have static rates.

6. Scheduling Stream Programs Using the MSL
Streaming programs typically allow for a lot of freedom in terms
of orchestrating the parallel execution of the stream graph. This
freedom is afforded by the dataflow models of computation that
many streaming languages are founded on. In a stream program,
the rules governing the execution of a node or filter in the graph are
often simple, and usually reduce to having sufficient buffering on
the input to a filter, and sufficient buffering to store the output.

The execution of a stream program requires mapping and order-
ing filters to cores, allocating buffers, and managing data transfers
between buffers. Collectively, mapping, ordering, and buffer man-
agement are embodied in a schedule of execution.

It is possible to devise a schedule statically (e.g., at compile
time or graph creation time) or dynamically (e.g., during runtime).
The goal of a scheduler is simply to maximize the throughput of
the streaming application. In the age of multicore architectures, a
scheduler will need to utilize multiple cores to increase concur-
rency and hence improve the throughput of a given streaming ap-
plication.

A dynamic scheduler is conceptually easy to understand. The
scheduler maintains an internal representation of a given stream



graph (e.g., list or priority queue). In a multicore architecture,
when there is a core available, the scheduler scans its internal
representation of the stream graph, and determines which filter
is ready to fire. The scheduler assigns the filter to the available
core. The core is also informed where the input buffer for the filter
resides in memory, and where in memory to commit (buffer) the
output of the filter for its successors. The scheduler then updates its
internal representation to indicate the filter firings and implement
a fairness policy to assure overall progress (e.g., a round-robin
scheduler).

For stream graphs that are “predictable”, dynamic scheduling
generally does not present any advantages over static scheduling.
Dynamic scheduling inevitably involves additional communication
and scheduling overhead due to extra filter loading and unloading,
buffer management, and scheduling computation. When all filters
in a program are data-parallel, a static scheduler can make full use
of all cores by simply executing each filter in turn on all cores,
with a sufficient coarsening of the steady state to amortize filter
load/unload and synchronization overhead. The optimal situation
results when the compiler can fuse all filters into a single data-
parallel filter; this produces the minimum possible communication.
This situation would also be optimal for a dynamic scheduler.

Even when filters are stateful and thus cannot be data-parallelized,
static software pipelining techniques [7] can make full use of cores
when the compiler has an accurate static work estimator and can
divide filters in a steady state evenly across cores. A single stateful
filter with a heavily imbalanced work function creates a bottleneck,
but dynamic schedulers are also faced with this problem.

Dynamic scheduling becomes beneficial when filters are not
“predictable”: when it is difficult to statically balance loads across
cores, when it is difficult to estimate the amount of work done
by filter work functions, or when work functions perform widely
varying amounts of work through the execution of the program. In
these situations, dynamic scheduling may be able to deliver better
load-balancing than static scheduling.

A dynamically scheduled program can be run on varying num-
bers of processors without requiring recompilation or the reanalysis
that complex static schedulers would need to perform, and is also
tolerant of changes in the availability of processors while the pro-
gram is running.

We implemented static and dynamic schedulers that use the
MSL to facilitate the mapping of stream programs to a multicore.
Our methodology and results are discussed next.

6.1 Methodology

We evaluated dynamic and static scheduling schemes for the Cell
multicore architecture. The Cell processor has 9 cores [10]: a PPE
that serves as a general purpose processor, and 8 SPEs that are
designed to perform the bulk of the computation. Each SPE has
256KB of local store and a DMA processor to manage data in and
out of the SPE. In our methodology, the schedule is run on the PPE
and the filters run on the SPEs.

We used the StreamIt [1] programming language to generate
the stream graphs that are presented to the MSL, and to the static
and dynamic schedulers. StreamIt is an architecture-independent
stream programming language that allows a programmer to fo-
cus on describing the dataflow in their algorithm, without much
concern for how the computation is refined to an implementation.
Stream graphs are described programmatically and algorithmically,
and the program description does not commit to a specific imple-
mentation, buffering, or scheduling strategy. Rather, the program
exposes the communication and its characteristics to a compiler or
a scheduler that can then decide on the best implementation choices
depending on the target architecture.

The basic unit of computation in StreamIt is a filter. There are
three basic constructs for composing filters into a communicating
network: a pipeline, a splitjoin, and a feedbackloop. A pipeline
behaves as the sequential composition of all its child streams.
A splitjoin is used to specify independent parallel streams that
diverge from a common splitter and merge into a common joiner. A
feedbackloop provides a way to create cycles in the stream graph.

The Cell backend for the StreamIt compiler maps StreamIt pro-
grams to C code that is run on the Cell processor through the MSL.
The backend is built upon the robust StreamIt compiler infrastruc-
ture [7]. Briefly, StreamIt code is converted into a high-level stream
IR which then undergoes a series of optimizing transformations.

6.2 Static Scheduler Implementation

In the case of static scheduling, the compiler generates the MSL
filters, allocates the buffers, and attaches the buffers to filters. It
relies on the MSL library to manage the communication thereafter.
Programs are compiled in four phases.
� In the scheduling phase, a steady state schedule, which main-

tains a constant number of data items in each input and output
buffer after every execution, is calculated based on each filter’s
declared I/O rates. This steady state schedule can then be run in
an infinite loop. Additionally, an initialization schedule may be
generated to prime the buffers or to initialize state.

� In the partitioning phase, filters are fused or duplicated to
achieve the best level of granularity for the best load balanc-
ing.

� In the layout phase, filters are assigned to virtual cores on which
they are to be run.

� In the code generation phase, appropriate code that encapsulates
the schedule, partitioning, and layout are generated and run on
the target architecture.

For our data parallel applications (i.e., stream graph that are
comprised of stateless filters), our partitioning phase fuses all filters
into a single filter. We generate all code, both control and filter work
function code, through the backend. We then run this fused filter in
parallel across all SPEs. Many real-world applications are stateless
and can therefore be data-parallelized in this fashion.

6.3 Dynamic Scheduler Implementation

The Cell architecture’s communication network provides very high
memory bandwidth. The design of the dynamic scheduler assumes
that memory bandwidth will never be a bottleneck, and the dynamic
scheduler buffers all output produced on SPEs to memory. The
scheduler performs dynamic coarse-grained software pipelining on
the stream graph; if sufficient data can be buffered in all channels
at all times, pipeline stalls can be avoided and all SPEs can be
fully utilized. While SPE–SPE communication is more efficient
than SPE–memory communication, SPE local store is generally too
limited to store the buffering needed for software pipelining, and
thus the scheduler never executes SPE–SPE pipelines; this avoids
having to deal with work imbalances between pairs of adjacent
filters. At any time, any two SPEs will typically be operating on
data from different iterations of the program.

At startup, the dynamic scheduler allocates a large3 buffer in
memory for each channel; this is used to buffer the output of the
upstream filter to provide input for the downstream filter. At any
time, for any specific filter, the amount of data available in its
input channels and amount of space available in its output channels,
along with its rates, determines the maximum number of iterations
that the filter can be run for.

3 1 MB in the current implementation, but this can be adjusted.



The scheduler selects filters to run on SPEs based on a metric
computed from the maximum number of iterations and certain filter
properties (see below). When a filter is selected to run on an SPE,
it is scheduled for a limited but fairly large number of iterations
in order to amortize the cost of loading it. Filters run for their
entire allotment of iterations; however, allotments are kept small to
allow the scheduler to quickly schedule another filter if necessary
in response to the changing amount of data in different parts of the
stream graph.

Using command completion notifications, the scheduler deter-
mines when the current filter scheduled on an SPE has almost fin-
ished running for all of its allotted iterations and selects a replace-
ment filter for the SPE. While the current filter is still running, the
scheduler issues additional commands to load the new filter, allo-
cate its buffers, and transfer data into its input buffers from mem-
ory; this communication is overlapped with the computation done
by the current filter. When the replacement filter is the same as the
current filter, this additional work can be avoided. Finally, the first
command to run the new filter is queued after the last command to
run the current filter. When the replacement filter is selected early
enough, it will be set up on the SPE before the current filter finishes
running, ensuring that it can start running as soon as the current fil-
ter finishes. When the current filter has completed all of its allotted
iterations, it is unloaded and can then be scheduled on another SPE.

The dynamic scheduler can run multiple instances of data-
parallel filters on multiple SPEs at the same time. A data-parallel
filter is still selected by the same metric as other filters; it will
only be run on more than one SPE at once if it is determined to be
significantly better than other filters.

The current metric implemented is very simple: it prioritizes
filters based on the amount of data the state of their input and
output channels allow them to consume and produce, respectively.
However, the filter that is currently running on an SPE is prioritized
when considered for scheduling on the same SPE; this effectively
causes filters to be run for as long as possible on an SPE, with no
load overhead, while no other filters are significantly better. Other
more complex metrics can be easily substituted. We have yet to
make a full analysis of the design of metrics and their effects on the
propagation of data through the stream graph; we plan to use the
dynamic scheduling framework to investigate this.

When the dynamic scheduler encounters a pipeline, the filter
selection metric quickly causes all filters in the pipeline to be run
sufficiently to generate some data in every channel buffer. There-
after, the sequence of filter executions selected by the scheduler
appears to perform software pipelining, although without a recog-
nizable steady state.

6.4 Code Generation

For both static and dynamic scheduling cases, we must generate
the code that is to be run on the multicore. In the case of Cell, we
generate C code that utilizes the library and compile it with Cell’s
GCC. The C output from the StreamIt compiler is scalar code, and
is currently not vectorized by GCC. We run all control code on the
PPE and all filter initialization and work functions on the SPEs.

We set up filter description parameters specifying how many
inputs and outputs a filter has, which input and output buffers the
filter reads from and writes to, and how many bytes the filter reads
and writes in one execution. These parameters are then used by the
library to handles the necessary data transfers and executions of the
work function of the filter.

In the case of dynamic scheduling, scheduling, partitioning, and
layout are handled at run-time by the dynamic scheduler. Thus, the
compiler need only generate the aforementioned code to set up the
scheduler for execution.

In the case of static scheduling, we additionally set up filter
layout parameters which specify on which SPE a filter should be
run. The initialization and steady state schedules are explicit in
the code: filters are loaded and run according to the schedule, and
callbacks are used to set up parameters for and to run the next filter
in the schedule.

7. Performance
We evaluate the performance of the MSL library and StreamIt
compiler backend on a set of four StreamIt applications and us-
ing different scheduling methodologies. The applications are de-
scribed in Table 1. For statically-scheduled benchmarks, the sched-
uler executes a sufficiently coarsened steady state to reduce li-
brary overhead, and imposes an explicit synchronization barrier be-
tween steady state iterations. The dynamic scheduler automatically
coarsens work functions as necessary.

BitonicSort 8-element bitonic sort
DCT 16x16 IEEE reference DCT
FFT 256-element FFT
MPEG MPEG-2 block and motion vector decoding

(subset of full MPEG-2 decoder)

Table 1. Benchmark applications.

The benchmarks were run on PlayStation 3 hardware, which
provides only six usable SPEs. All benchmarks were scheduled to
use six SPEs except for the two versions of the MPEG benchmark,
which use five SPEs. Benchmarks were run for a large number of
steady state iterations to reduce the effect of one-time execution
startup overhead. Performance results are given in Table 2.

The Util column gives the average SPE utilization of the bench-
mark. This is the percentage of total execution time spent inside fil-
ter work functions, averaged over all SPEs. The remainder is over-
head, which we divide into two categories: library overhead and
scheduling overhead. Library overhead is time during which an
SPE has active ��� ����� ����� commands but is not running a work func-
tion. This type of overhead is added entirely by library code when
it is either dispatching or executing other commands. Scheduling
overhead is time during which an SPE has no active ��� �6��� ����� com-
mands. During this time, the SPE has no useful work to do. It may
be either i) waiting for filters to be scheduled or ii) waiting for suf-
ficient input or output data to be transferred to allow a scheduled
filter to run (i.e., due to inadequate double-buffering). When large,
scheduling overhead can be viewed as resulting from the schedul-
ing algorithm (or the nature of the program). However, a compo-
nent of scheduling overhead is also due to the latency/efficiency
with which the library executes commands.

The Lib and Sched columns give the average library and
scheduling overhead as a percentage of total execution time, av-
eraged over all SPEs. The Min Sched and Max Sched columns give
the scheduling overhead (as a percentage of total execution time)
on the SPEs with the minimum and maximum scheduling over-
head; wider ranges indicate larger work imbalance resulting from
the scheduling algorithm. For 7)- �618�,- 9;:21��.� <=�6>'�?- 9 , the Throughput
column gives billions of compare operations per second. For the
MPEG benchmarks, the Throughput column gives the number of
352x240 frames processed per second. For all other benchmarks,
the Throughput column gives GFLOPs.

The 7)- �=12�,- 9;:81��@� <A��>	�/- 9 , �CBED <A��>	�/- 9 , and FGF�D <A��>	�/- 9 bench-
marks are statically scheduled and generated by the StreamIt com-
piler. These applications are fully data-parallel, and the compiler
fuses the stream graph into a single filter, which is then duplicated
to the number of cores. As expected from fully data-parallel pro-
grams, average utilization remains nearly the same as the number



Util (%) Lib (%) Sched (%) Min Sched (%) Max Sched (%) Throughput
7)- �=12�,- 9H:21��.� <=��>	�/- 9 97.1 0.1 2.9 2.9 2.9 0.5 GOPs
�CBED <A��>	�/- 9 97.7 1.0 1.3 1.3 1.3 3.2 GFLOPs
FIF�D 9 99.1 — — — — 2.5 GFLOPs
FIF�D <=��>	�/- 9 98.6 0.6 0.9 0.9 0.9 1.9 GFLOPs
FIF�D +,J���>LKM- 9 88.8 9.2 2.0 1.2 2.9 2.2 GFLOPs
FIF�D N,-.N,��� -.��� 78.0 3.6 18.5 4.2 33.9 1.9 GFLOPsOQPSRIT <=�6>'�?- 9 95.1 1.0 3.9 1.5 8.1 46.9 fpsOQPSRIT +,J���>�KM- 9 97.8 1.7 0.5 0.3 0.8 48.2 fps

Table 2. Benchmark performance.

of SPEs is varied from one to six, and scheduling overhead is es-
sentially identical on all SPEs, demonstrating nearly perfectly lin-
ear speedup. The total overhead in each benchmark is less than 3%.
Scheduling overhead appears to dominate total overhead, largely
due to the synchronization barrier after each steady state iteration
that creates repeated additional costs as the program executes.

For programs consisting of a single fused data-parallel filter,
the dynamic scheduler produces identical performance as static
scheduling. Results for the dynamic scheduler on these applications
are not separately given.

The FGF�D +,J���>LKM- 9 and FGF�D N,-.N���� -.��� benchmarks are different
manual implementations of the FFT application. The FFT stream
graph consists of a single pipeline with 15 filters. FGF�D +,J���>LKM- 9
schedules this pipeline using the dynamic scheduler.

In FGF�D N,-.N,��� -U��� , the stream graph is first manually fused into
a pipeline of six filters, each of which is statically placed on a
different SPE. All communication except for input and output is
done directly between SPE local stores and remains entirely on-
chip. GFLOPs numbers for FGF�D +,J���>�KM- 9 and FGF�D N,-.N,��� -.��� can
be compared with each other but not directly to FGF�D <=��>	�/- 9 . The
former two have manual work function implementations that are
slightly more efficient than the compiler-generated code.

For FGF�D +,J���>LKM- 9 , scheduling overhead is low and very similar
across SPEs. This indicates that the dynamic scheduler has no diffi-
culties keeping all SPEs supplied with work. Moreover, the results
show that if there is sufficient memory bandwidth, as is the case
with the Cell architecture, it is practical to perform all buffering
to memory, avoiding core-to-core communication entirely. Average
utilization remains nearly identical as the number of SPEs is varied
from one to six, indicating almost perfectly linear speedup.

However, the library overhead on this benchmark is high, ap-
proaching 10%, resulting in somewhat low average utilization. This
overhead has two main sources: i) individual filters in the pipeline
have much lower communication–computation ratios than the sin-
gle fused filter in the FGF�D <=�6>'�?- 9 benchmark; and ii) the dynamic
scheduler continually issues additional commands to switch filters
between SPEs, which are not needed in a static schedule.

For FGF�D N,-.N,��� -U��� , a single filter/SPE in the middle of the
pipeline is the bottleneck. Although average utilization is low, it is
not due to library overhead, which is also low. Average scheduling
overhead is high and varies widely between SPEs: the bottleneck
SPE had 92% utilization, while the least-utilized SPE had only 63%
utilization. In general, this illustrates the difficulty of performing
direct static SPE–SPE pipelining. Although SPE–SPE pipelining
keeps communication on-chip, where extremely high bandwidth is
available and there is no danger of exhausting comparatively lim-
ited memory bandwidth, work imbalances between filters make it
difficult to fully utilize all SPEs.

For comparison, FGF�D 9 is a hand-tuned implementation of
FGF�D <A��>	�/- 9 that does not use the MSL library. The same work
function code is used as FGF�D +,J���>�KM- 9 and FIF�D N,-.N,��� -.��� (how-

ever, this is different from FGF�D <=��>	�/- 9 , which is generated by the
StreamIt compiler), and data transfers are fully double-buffered.
Compared to FGF�D 9 , FGF�D +,J���>LKM- 9 is approximately 12% slower,
most of which is due to library overhead. FGF�D N,-.N,��� -U��� is signifi-
cantly slower, but this is entirely due to the major work imbalance
it exhibits.

MPEG has a small amount of state and cannot be fused into
a single filter. The compiler fuses the stream graph down to a
single stateful filter and a single stateless filter as the branches of
a two-way splitjoin. When mapping this to the MSL library, both
statically- and dynamically-scheduled benchmarks explicitly treat
the scattering and gathering operations as separate stateless filters,
resulting in four total filters to schedule.

The
OQPSRIT <=��>	�/- 9 benchmark statically software-pipelines the

four filters. We generated the static schedule for five SPEs by man-
ually profiling, duplicating, and partitioning filters, and manually
generating control code to issue the resulting schedule. The map-
ping of filters to SPEs in the partition that we obtained is given in
Table 3.

SPE Filters
0 % splitter, % stateful
1 V�% joiner
2 &�% stateless
3 &�% stateless
4 &�% stateless

Table 3. Partition for
OQPSRIT <=�6>'�?- 9 benchmark.

This partition exhibits a slight work imbalance: SPE 0 has
slightly less work than SPE 1, which has slightly less work than the
remaining SPEs. As a result, there is a small variation in scheduling
overhead, resulting in somewhat lower utilization than could be
achieved. The bottleneck SPEs were 98% utilized, while SPE 0
was 90% utilized. Aside from the work imbalance, which can be
reduced with better partitioning, this benchmark shows that static
software pipelining using the MSL library can be done with very
low overhead.

The
OQPSRIT +,J���>�KM- 9 benchmark uses the dynamic scheduler to

schedule the four filters. As with FGF�D +,J���>LKM- 9 , average utilization
is very similar across all SPEs, and there is still nearly perfectly lin-
ear speedup as the number of SPEs is varied. Compared to the static
schedule, the dynamic scheduler is not limited to executing repeti-
tions of a steady state and does not impose any synchronization
barriers. However, in order to dynamically switch filters on cores,
it must issue more commands. This translates into slightly lower
scheduling overhead but slightly higher library overhead. Overall,
the dynamic scheduler is able to distribute work more efficiently
across all available cores, resulting in higher average utilization and
2.8% increased throughput compared to

OQPSRIT <=�6>'�?- 9 .



It must be noted that the throughput obtained in these bench-
marks is low compared to the maximum performance attainable
on Cell and the performance of other implementations of the same
benchmarks. No SIMD vectorization (either automatic or manual)
was performed within filter work functions for any of the bench-
marks; as a result, they did not take advantage of the SIMD capa-
bility of Cell SPEs. In addition, filter code could have been con-
siderably optimized. For instance, FGF�D <=��>	�/- 9 performs more inte-
ger operations to maintain loop counters than actual FLOPs. How-
ever, the high utilization demonstrated in the benchmarks should
extend to real-world, optimized applications as long as individual
filter work functions perform a comparable amount of work.

8. Related Work
Streaming languages provide an attractive alternative to sequential
languages for many applications. In a streaming language, the pro-
grammer defines actors that operate on data streams and composes
programs by connecting actors. Many common high-performance
applications, especially those involving signal, audio, image, and
video processing, have explicit block diagram structure and are
most easily conceptualized in that manner, making streaming lan-
guages a natural choice for these applications. Because programs
written in streaming languages are explicitly structured as com-
municating actors, they typically expose a high degree of paral-
lelism. This allows streaming language compilers to easily ana-
lyze stream programs and efficiently parallelize them. Compared
to sequential languages, streaming languages free programmers
from the burden of having to explicitly write parallelized code for
specific architectures, allowing them to focus on expressing the
high-level semantics of the algorithm in a natural way. Recent de-
velopments in streaming languages include Brook [4], Cg [14],
StreamC/KernelC [11], and StreamIt [1]. The MSL is not tied to
any particular language choice and simply relies on the expression
of computation as a dataflow graph.

MPI and OpenMP are arguably the most well-known and widely
used parallelization frameworks for computing clusters and tradi-
tional SMP architectures. These two programming APIs represent
opposite ends of a spectrum: MPI defines a language-independent,
low-level network communication API, while OpenMP defines a
set of high-level annotations that programs can use to direct com-
patible compilers to generate multi-threaded code. The multicore
streaming layer and library are intended to provide the same kind
of low-level functionality as MPI, with two major differences: i)
they are more naturally suited for multicores rather that clusters,
and ii) they are specific to streaming applications and hence pro-
vide more targeted control functionality.

The work presented here also complements parallelization
frameworks that have been designed specifically for multicores or
Cell; see [5] for a review. RapidMind [16] and MPI Microtask [17]
follow a “task-based” approach by providing runtime systems that
help schedule program-defined tasks, or kernels. Mercury’s Mul-
tiCore Framework [3] adopts a similar approach. However, it is
primarily designed for exploiting data parallelism in large matrix
computations instead of streaming. CellSs [2] automatically gener-
ates tasks from annotations to linear code. Sequoia [6] is a language
that exposes an abstract hierarchical memory model and allows the
programmer to define communication and local computation; its
compiler and runtime system can efficiently execute Sequoia pro-
grams on Cell. The MSL allows for the exploration of various
scheduling methodologies for executing programs on multicores.

The Stream Virtual Machine (SVM) also aims to simplify com-
pilation to diverse multicore architectures [15, 13]. As a specifi-
cation, the SVM is more general than the MSL, encompassing a
broader class of architectures and applications while potentially in-
curring higher runtime overhead. The SVM supports a rich parame-

terized machine model encompassing FIFO interconnects, special-
ized DMA processors, and hierarchical control processors, while
the MSL targets regular distributed-memory machines with a sin-
gle control processor and implicit DMA between processors. A
complete implementation of the SVM must support automatic flow
control, end-of-stream markers, and suspension/termination of fil-
ters; the MSL elides these functions because they complicate the
interface and are difficult to implement efficiently. The MSL API
simplifies the tracking of filter dependences by assigning a unique
identifier to each command instance, rather than tracking the under-
lying filters and sometimes depending on the state of those filters
(as in the SVM). Finally, the MSL was designed from the begin-
ning to be implemented as a standalone library; while a library im-
plementation is also possible with the SVM, the specification was
influenced by an intention to employ a special-purpose “low-level
compiler” to process the client code.

Gummaraju and Rosenblum use the SVM to map programs
written in a streaming fashion to a general purpose multi-threaded
processor [9]. Their results demonstrate that using a streaming pro-
gramming model can benefit general purpose cache-based architec-
tures. They use a scheduling model where dependencies between
computation and communication are determined at compile time
and scheduling is performed at runtime. However, they assume that
there is a shared cache level between thread contexts, and hence do
not have to deal with the general communication challenges that
arise in a distributed memory multicore. The MSL and library pre-
sented in this paper offer a more general solution that can also deal
with future large scale multicores, especially ones patterned after a
distributed memory model.

9. Conclusions and Future Work
Streaming languages provide an excellent way to target new multi-
core architectures while placing minimal parallelization burden on
the programmer. Multicore architectures such as Cell that are de-
signed to offer high peak performance are well suited for streaming
applications. This paper described a runtime framework for stream-
ing applications on multicores consisting of i) a common Multi-
core Streaming Layer (MSL) that provides high-level primitives for
schedulers, ii) an implementation of the MSL for an existing pro-
cessor, namely Cell, iii) a lightweight dynamic scheduler for stream
graphs, and iv) a static scheduler for stream graphs. The framework
offers automatic management and optimization of communication,
and greatly simplifies the task of a streaming language compiler or
scheduler.

The real benefit provided by the framework, in particular the
MSL runtime library, is that it allows a scheduler to think directly
in terms of filters and how they are scheduled instead of lower-level
architecture-specific details. We found that it required far less code
to implement scheduling patterns on top of the library than at a
lower level on Cell. The MSL library also allows for far more com-
plex patterns to be implemented than is directly feasible at a lower
level. The library running the data-parallel fused FFT benchmark
produces a reasonably small amount of overhead (1.4%), and the
dynamic scheduler running the pipelined version of the benchmark
produces an acceptable amount of overhead (11.2%).

The MSL library currently provides two orthogonal branches
that can be further developed. First, it is important to reduce the
12% overhead observed in the pipelined FFT tests involving the
dynamic scheduler. This overhead is entirely due to the cost of
switching between commands when many are active, and it can
probably be significantly reduced by optimizing library code.

In addition, the implementation currently lacks real support for
filters with dynamic rates (i.e., I/O rates that change over time and
across executions). The library simply leaves the responsibility of
tracking rates to the scheduler entirely. Feedback from the library



on the amount of data produced and consumed by individual filters
would be very useful for schedulers; ultimately, the library should
have some way of running filters with unbounded dynamic rates.
The latter requires a general mechanism to suspend dynamic rate
filters in the middle of executing their work functions.

The dynamic scheduler can be extended in many directions. The
simplest additions involve adjusting the metric used for selecting
filters to test and improve the performance of the dynamic sched-
uler as work becomes more and more imbalanced between filters.
In addition, an important advantage of dynamic scheduling in gen-
eral is the ability to react to dynamic rate filters and the runtime
distribution of work in the stream graph; implementing robust sup-
port for dynamic rate filters in the stream graph would drastically
increase its usefulness.
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